FEATURES ►DIP-24 Metal Package 31.8 x 20.3 x 10.2 mm (1.25 x 0.8 x 0.4 inches) ►Ultra-wide 4:1 Input Range ►Excellent Load and Line Regulation ►Operating Temp. Range –40°C to +85°C ►Short Circuit Protection ►I/O-isolation 1500VDC ►Input Filter meets EN55022,class A and FCC, level A ►3 Years Product Warranty PRODUCT OVERVIEW The MIW4100 series is a range of isolated DC/DC converter modules with 5-6W output power featuring fully regulated output voltages and ultra-wide 4:1 input voltage ranges. The product comes in a shielded metal DIP-24 package with standard pinout. A high efficiency allows an operating temperature range of –40°C to +85°C. The product features an input filter meeting EN 55022,class A and FCC, level A. Typical applications for these converters are in battery operated equipment and instrumentation, distributed power systems, data communication and general industrial electronics. Model Selection Guide Model Input Output Output Number Voltage Voltage Current (Range) VDC MIW4121 MIW4122 MIW4123 MIW4124 MIW4125 MIW4126 MIW4127 MIW4131 MIW4132 MIW4133 MIW4134 MIW4135 MIW4136 MIW4137 24 (9 ~ 36) 48 (18 ~ 75.) VDC 3.3 5 12 15 ±5 ±12 ±15 3.3 5 12 15 ±5 ±12 ±15 Input Current Reflected Max. capacitive Ripple Load Max. Min. @Max. Load @No Load Current mA 1200 1000 500 400 ±500 ±250 ±200 1200 1000 500 400 ±500 ±250 ±200 mA 120 100 50 40 ±50 ±25 ±20 120 100 50 40 ±50 ±25 ±20 mA(typ.) 220 267 301 305 267 301 305 110 134 151 152 134 151 152 mA(typ.) mA(typ.) 20 uF 100 100# 470 10 15 (typ.) @Max. Load 470 20 Efficiency 100 100# % 75 78 83 82 78 83 82 75 78 83 82 78 83 82 # For each output Input Specifications Parameter Input Surge Voltage (1 sec. max.) Start-Up Voltage Under Voltage Shutdown Reverse Polarity Input Current Short Circuit Input Power Internal Power Dissipation Conducted EMI In Total Power International, Inc Model 24V Input Models 48V Input Models 24V Input Models 48V Input Models 24V Input Models 48V Input Models All Models Min. -0.7 -0.7 7 14 ----------- Typ. ----8 16 ----------- Max. 50 100 9 18 8.5 16 1 3000 2500 Unit VDC A mW mW Compliance to EN 55022,class A and FCC part 15,class A Toll Free: 877-646-0900 www.total-power.com MIW4100 SERIES Tota Total Power International, Inc. DC/DC CONVERTER 5-6W, DIP-Package Output Specifications Parameter Output Voltage Accuracy Output Voltage Balance Line Regulation Load Regulation Cross Regulation (Dual) Ripple & Noise (20MHz) Ripple & Noise (20MHz) Ripple & Noise (20MHz) Transient Recovery Time Transient Response Deviation Temperature Coefficient Over Load Protection Short Circuit Protection Conditions Min. ----------------------110 Dual Output, Balanced Loads Vin=Min. to Max. Io=10% to 100% Asymmetrical load 25% / 100% FL Over Line, Load & Temp. 25% Load Step Change Foldback Typ. ±1.0 ±1.0 ±0.1 ±0.5 --50 ----300 ±3 ±0.01 250 Max. ±2.0 ±2.0 ±0.5 ±1.0 ±5.0 80 100 15 500 --±0.02 350 Unit % % % % % mV P-P mV P-P mV rms uS % %/℃ % Continuous General Specifications Parameter Conditions Min. Typ. Max. Unit 60 Seconds 1500 --- --- VDC I/O Isolation Resistance 500 VDC 1000 --- --- MΩ I/O Isolation Capacitance 100KHz, 1V --- 1000 1200 pF --- 450 --- KHz 800,000 --- --- Hours I/O Isolation Voltage (rated) Switching Frequency MTBF (calculated) MIL-HDBK-217F@25℃, Ground Benign Safety Approvals UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1 Input Fuse 24V Input Models 48V Input Models 1200mA Slow-Blow Type 750mA Slow-Blow Type Environmental Specifications Parameter Conditions Min. Max. Ambient -40 +85 ℃ Case Temperature --- +100 ℃ Storage Temperature Range -50 +125 ℃ Humidity (non condensing) --- 95 % rel. H 260 ℃ Operating Temperature Range (with Derating) Cooling Free-Air convection Lead Temperature (1.5mm from case for 10Sec.) --- Power Derating Curve 100 Natural convection Output Power (%) 80 100LFM 200LFM 60 400LFM 40 20 0 ~ -40 0 20 40 60 80 100 110 Ambient Temperature ] In Total Power International, Inc Toll Free: 877-646-0900 www.total-power.com Unit MIW4100 SERIES Tota Total Power International, Inc. DC/DC CONVERTER 5-6W, DIP-Package Notes 1 Specifications typical at Ta=+25℃, resistive load, nominal input voltage and rated output current unless otherwise noted. 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100% 3 Ripple & Noise measurement bandwidth is 0-20MHz. 4 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; 5 All DC/DC converters should be externally fused at the front end for protection. 6 Other input and output voltage may be available, please contact factory. 7 Specifications subject to change without notice. however they may not meet all specifications listed. Package Specifications 4.1 [0.16] 10.2 [0.40] Mechanical Dimensions 0.50 [0.02] 23 16 22 15.24 [0.60] 2.54 [0.10] 31.8 [1.25] -Vin -Vin 9 No Pin Common 11 NC -Vout 14 +Vout +Vout 16 -Vout Common 22 +Vin +Vin 23 +Vin +Vin 11 Bottom View Dual Output -Vin 3 NC: No Connection 20.3 [0.80] 9 15.22 [0.60] 3 14 5.08 4.5 [0.20][0.18] 2.54 [0.10] 2 Pin Connections Pin Single Output 2 -Vin ►All dimensions in mm (inches) ►Tolerance: X.X±0.25 (X.XX±0.01) X.XX±0.13 ( X.XXX±0.005) ►Pin diameter 0.5 ±0.05 (0.02±0.002) Physical Characteristics ase Size : 31.8x20.3x10.2mm (1.25x0.80x0.40 Inches) Case Material : Aluminum Anodizing Treatment in Black Weight : 13.9g In Total Power International, Inc Toll Free: 877-646-0900 www.total-power.com MIW4100 SERIES Tota Total Power International, Inc. DC/DC CONVERTER 5-6W, DIP-Package Test Configurations Input Reflected-Ripple Current Test Setup Input reflected-ripple current is measured with a inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz. To Oscilloscope + + Battery +Vin Lin DC / DC Converter Current Probe Cin +Out -Vin Load -Out Peak-to-Peak Output Noise Measurement Test Use a Cout 0.47uF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter. +Vin +Out Copper Strip Single Output DC / DC Converter -Vin Cout -Out Scope Resistive Load Copper Strip +Vin +Out Copper Strip Dual Output DC / DC Converter Com. Copper Strip -Vin -Out Scope Cout Resistive Load Cout Scope Copper Strip Design & Feature Considerations Overcurrent Protection To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range. Input Source Impedance The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 4.7uF for the 24V input devices and a 2.2uF for the 48V devices. + DC Power Source +Vin + +Out DC / DC Converter Load Cin - -Vin -Out Output Ripple Reduction A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3uF capacitors at the output. + +Vin DC Power Source - +Out Single Output DC / DC Converter -Vin + Cout Load -Out +Vin DC Power Source - +Out Dual Output Com. DC / DC Converter -Vin -Out Cout Load Load Cout Maximum Capacitive Load The MIW4100 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet. Thermal Considerations Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100℃. The derating curves are determined from measurements obtained in a test setup. Position of air velocity probe and thermocouple 50mm / 2in 15mm / 0.6in In Total Power International, Inc Air Flow DUT Toll Free: 877-646-0900 www.total-power.com