FUJITSU SEMICONDUCTOR DATA SHEET DS05-50104-2E MCP (Multi-Chip Package) FLASH MEMORY & SRAM CMOS 16M (×16) FLASH MEMORY & 2M (× 8) STATIC RAM MB84VA2102-10/MB84VA2103-10 ■ FEATURES • Power supply voltage of 2.7 to 3.6 V • High performance 100 ns maximum access time • Operating Temperature –20 to +85°C — FLASH MEMORY • Minimum 100,000 write/erase cycles • Sector erase architecture One 8 K word, two 4 K words, one 16 K word, and thirty one 32 K words. Any combination of sectors can be concurrently erased. Also supports full chip erase. • Boot Code Sector Architecture MB84VA2102: Top sector MB84VA2103: Bottom sector • Embedded EraseTM Algorithms Automatically pre-programs and erases the chip or any sector • Embedded ProgramTM Algorithms Automatically writes and verifies data at specified address • Data Polling and Toggle Bit feature for detection of program or erase cycle completion • Ready-Busy output (RY/BY) Hardware method for detection of program or erase cycle completion • Automatic sleep mode When addresses remain stable, automatically switch themselves to low power mode. • Low VCC write inhibit ≤ 2.5 V • Erase Suspend/Resume Suspends the erase operation to allow a read in another sector within the same device Please refer to "MBM29LV160T/B" data sheet in detailed function — SRAM • Power dissipation Operating : 35 mA max. Standby : 50 µA max. • Power down features using CE1s and CE2s • Data retention supply voltage: 2.0 V to 3.6 V Embedded EraseTM and Embedded ProgramTM are trademarks of Advanced Micro Devices, Inc. MB84VA2102-10/MB84VA2103-10 ■ BLOCK DIAGRAM VCCf VSS A0 to A19 RY/BY A0 to A19 DQ8 to DQ15 16 M bit Flash Memory RESET CEf DQ0 to DQ7 VCCs VSS A0 to A16 2 M bit Static RAM SA WE OE CE1s CE2s ■ EXAMPLE OF CONNECTION WITH CHIPSET VCC A[1:20] A[0:20] A0 A[0:19] SA VCCf RESET RY/BY ROM_CS/ CEf RAM_CS/ CE1s Battery Backup Control VCCs CE2s BATTERY BACKUP HWR/ LWR/ WE RD/ OE D[0:15] D[0:15] CHIPSET 2 DQ[0:15] MB84VA2102/3 MB84VA2102-10/MB84VA2103-10 ■ PIN ASSIGNMENTS (Top View) A B C D E F G H 6 CE1s VSS DQ1 A1 A2 A4 CE2s A9 5 A10 DQ5 DQ2 A0 A3 A7 RY/BY A14 4 OE DQ7 DQ4 DQ0 A6 A18 RESET A15 3 A11 A8 A5 DQ8 DQ3 DQ12 A12 A19 2 A13 A17 SA* CEf DQ10 VCCf DQ6 DQ15/A-1 1 WE VCCs A16 VSS DQ9 DQ11 DQ13 DQ14 *: A17 for SRAM Table 1 Pin Configuration Pin Function Input/ Output A0 to A16 Address Inputs (Common) I A17 to A19 Address Input (Flash) I SA Address Input (SRAM) I DQ0 to DQ7 Data Inputs/Outputs (Common) I/O DQ8 to DQ15 Data Inputs/Outputs (Flash) I/O CEf Chip Enable (Flash) I CE1s Chip Enable (SRAM) I CE2s Chip Enable (SRAM) I OE Output Enable (Common) I WE Write Enable (Common) I RY/BY Ready/Busy Outputs (Flash) O RESET Hardware Reset Pin/Sector Protection Unlock (Flash) I N.C. No Internal Connection — VSS Device Ground (Common) Power VCCf Device Power Supply (Flash) Power VCCs Device Power Supply (SRAM) Power 3 MB84VA2102-10/MB84VA2103-10 ■ PRODUCT LINE UP Flash Memory Ordering Part No. VCC = 3.0 V +0.6 V –0.3 V SRAM MB84VA2102-10/MB84VA2103-10 Max. Address Access Time (ns) 100 100 Max. CE Access Time (ns) 100 100 Max. OE Access Time (ns) 40 50 ■ BUS OPERATIONS Table 2 User Bus Operations Operation (1), (3) Full Standby CEf CE2s H X X L X X H X X L H X X L H Output Disable X Read from Flash (2) L Write to Flash CE1s L OE WE DQ0 to DQ7 DQ8 to DQ15 X X HIGH-Z HIGH-Z H H H HIGH-Z HIGH-Z H L H DOUT DOUT H H L DIN DIN H Read from SRAM H L H L H DOUT HIGH-Z H Write to SRAM H L H X L DIN HIGH-Z H H X Flash Hardware Reset X X X HIGH-Z HIGH-Z L X L Legend: L = VIL, H = VIH, X = VIL or VIH. See DC Characteristics for voltage levels. Notes: 1. Other operations except for indicated this column are inhibited. 2. WE can be VIL if OE is VIL, OE at VIH initiates the write operations. 3. Do not apply CEf = VIL, CE1s = VIL and CE2s = VIH at a time. 4 RESET MB84VA2102-10/MB84VA2103-10 ■ FLEXIBLE SECTOR-ERASE ARCHITECTURE on FLASH MEMORY •One 8 K word, two 4 K words, one 16 K word, and thirty one 32 K words. •Individual-sector, multiple-sector, or bulk-erase capability. Sector SA0 SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13 SA14 SA15 SA16 SA17 SA18 SA19 SA20 SA21 SA22 SA23 SA24 SA25 SA26 SA27 SA28 SA29 SA30 SA31 SA32 SA33 SA34 Sector Size 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 16K Words 4K Words 4K Words 8K Words Address Range 00000H to 07FFFH 08000H to 0FFFFH 10000H to 17FFFH 18000H to 1FFFFH 20000H to 27FFFH 28000H to 2FFFFH 30000H to 37FFFH 38000H to 3FFFFH 40000H to 47FFFH 48000H to 4FFFFH 50000H to 57FFFH 58000H to 5FFFFH 60000H to 67FFFH 68000H to 6FFFFH 70000H to 77FFFH 78000H to 7FFFFH 80000H to 87FFFH 88000H to 8FFFFH 90000H to 97FFFH 98000H to 9FFFFH A0000H to A7FFFH A8000H to AFFFFH B0000H to B7FFFH B8000H to BFFFFH C0000H to C7FFFH C8000H to CFFFFH D0000H to D7FFFH D8000H to DFFFFH E0000H to E7FFFH E8000H to EFFFFH F0000H to F7FFFH F8000H to FBFFFH FC000H to FCFFFH FD000H to FDFFFH FE000H to FFFFFH MB84VA2102 Sector Architecture Sector SA0 SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13 SA14 SA15 SA16 SA17 SA18 SA19 SA20 SA21 SA22 SA23 SA24 SA25 SA26 SA27 SA28 SA29 SA30 SA31 SA32 SA33 SA34 Sector Size 8K Words 4K Words 4K Words 16K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words 32K Words Address Range 00000H to 01FFFH 02000H to 02FFFH 03000H to 03FFFH 04000H to 07FFFH 08000H to 0FFFFH 10000H to 17FFFH 18000H to 1FFFFH 20000H to 27FFFH 28000H to 2FFFFH 30000H to 37FFFH 38000H to 3FFFFH 40000H to 47FFFH 48000H to 4FFFFH 50000H to 57FFFH 58000H to 5FFFFH 60000H to 67FFFH 68000H to 6FFFFH 70000H to 77FFFH 78000H to 7FFFFH 80000H to 87FFFH 88000H to 8FFFFH 90000H to 97FFFH 98000H to 9FFFFH A0000H to A7FFFH A8000H to AFFFFH B0000H to B7FFFH B8000H to BFFFFH C0000H to C7FFFH C8000H to CFFFFH D0000H to D7FFFH D8000H to DFFFFH E0000H to E7FFFH E8000H to EFFFFH F0000H to F7FFFH F8000H to FFFFFH MB84VA2103 Sector Architecture 5 MB84VA2102-10/MB84VA2103-10 Table 3 Sector Address Tables (MB84VA2102) 6 Sector Address A19 A18 A17 A16 A15 A14 A13 A12 Address Range SA0 0 0 0 0 0 X X X 00000H to 07FFFH SA1 0 0 0 0 1 X X X 08000H to 0FFFFH SA2 0 0 0 1 0 X X X 10000H to 17FFFH SA3 0 0 0 1 1 X X X 18000H to 1FFFFH SA4 0 0 1 0 0 X X X 20000H to 27FFFH SA5 0 0 1 0 1 X X X 28000H to 2FFFFH SA6 0 0 1 1 0 X X X 30000H to 37FFFH SA7 0 0 1 1 1 X X X 38000H to 3FFFFH SA8 0 1 0 0 0 X X X 40000H to 47FFFH SA9 0 1 0 0 1 X X X 48000H to 4FFFFH SA10 0 1 0 1 0 X X X 50000H to 57FFFH SA11 0 1 0 1 1 X X X 58000H to 5FFFFH SA12 0 1 1 0 0 X X X 60000H to 67FFFH SA13 0 1 1 0 1 X X X 68000H to 6FFFFH SA14 0 1 1 1 0 X X X 70000H to 77FFFH SA15 0 1 1 1 1 X X X 78000H to 7FFFFH SA16 1 0 0 0 0 X X X 80000H to 87FFFH SA17 1 0 0 0 1 X X X 88000H to 8FFFFH SA18 1 0 0 1 0 X X X 90000H to 97FFFH SA19 1 0 0 1 1 X X X 98000H to 9FFFFH SA20 1 0 1 0 0 X X X A0000H to A7FFFH SA21 1 0 1 0 1 X X X A8000H to AFFFFH SA22 1 0 1 1 0 X X X B0000H to B7FFFH SA23 1 0 1 1 1 X X X B8000H to BFFFFH SA24 1 1 0 0 0 X X X C0000H to C7FFFH SA25 1 1 0 0 1 X X X C8000H to CFFFFH SA26 1 1 0 1 0 X X X D0000H to D7FFFH SA27 1 1 0 1 1 X X X D8000H to DFFFFH SA28 1 1 1 0 0 X X X E0000H to E7FFFH SA29 1 1 1 0 1 X X X E8000H to EFFFFH SA30 1 1 1 1 0 X X X F0000H to F7FFFH SA31 1 1 1 1 1 0 X X F8000H to FBFFFH SA32 1 1 1 1 1 1 0 0 FC000H to FCFFFH SA33 1 1 1 1 1 1 0 1 FD000H to FDFFFH SA34 1 1 1 1 1 1 1 X FE000H to FFFFFH MB84VA2102-10/MB84VA2103-10 Table 4 Sector Address Tables (MB84VA2103) Sector Address A19 A18 A17 A16 A15 A14 A13 A12 Address Range SA0 0 0 0 0 0 0 0 X 00000H to 01FFFH SA1 0 0 0 0 0 0 1 0 02000H to 02FFFH SA2 0 0 0 0 0 0 1 1 03000H to 03FFFH SA3 0 0 0 0 0 1 0 X 04000H to 07FFFH SA4 0 0 0 0 1 X X X 08000H to 0FFFFH SA5 0 0 0 1 0 X X X 10000H to 17FFFH SA6 0 0 0 1 1 X X X 18000H to 1FFFFH SA7 0 0 1 0 0 X X X 20000H to 27FFFH SA8 0 0 1 0 1 X X X 28000H to 2FFFFH SA9 0 0 1 1 0 X X X 30000H to 37FFFH SA10 0 0 1 1 1 X X X 38000H to 3FFFFH SA11 0 1 0 0 0 X X X 40000H to 47FFFH SA12 0 1 0 0 1 X X X 48000H to 4FFFFH SA13 0 1 0 1 0 X X X 50000H to 57FFFH SA14 0 1 0 1 1 X X X 58000H to 5FFFFH SA15 0 1 1 0 0 X X X 60000H to 67FFFH SA16 0 1 1 0 1 X X X 68000H to 6FFFFH SA17 0 1 1 1 0 X X X 70000H to 77FFFH SA18 0 1 1 1 1 X X X 78000H to 7FFFFH SA19 1 0 0 0 0 X X X 80000H to 87FFFH SA20 1 0 0 0 1 X X X 88000H to 8FFFFH SA21 1 0 0 1 0 X X X 90000H to 97FFFH SA22 1 0 0 1 1 X X X 98000H to 9FFFFH SA23 1 0 1 0 0 X X X A0000H to A7FFFH SA24 1 0 1 0 1 X X X A8000H to 8FFFFH SA25 1 0 1 1 0 X X X B0000H to B7FFFH SA26 1 0 1 1 1 X X X B8000H to BFFFFH SA27 1 1 0 0 0 X X X C0000H to C7FFFH SA28 1 1 0 0 1 X X X C8000H to CFFFFH SA29 1 1 0 1 0 X X X D0000H to D7FFFH SA30 1 1 0 1 1 X X X D8000H to DFFFFH SA31 1 1 1 0 0 X X X E0000H to E7FFFH SA32 1 1 1 0 1 X X X E8000H to EFFFFH SA33 1 1 1 1 0 X X X F0000H to F7FFFH SA34 1 1 1 1 1 X X X F8000H to FFFFFH 7 MB84VA2102-10/MB84VA2103-10 Table 5. 1 Flash Memory Autoselect Codes A6 A1 A0 Code (HEX) VIL VIL VIL 04H MB84VA2102 VIL VIL VIH 22C4H MB84VA2103 VIL VIL VIH 2249H Type Manufacturer’s Code Device Code Table 5. 2 Expanded Autoselect Code Table Type Manufacturer’s Code Device Code 8 Code DQ15 DQ14 DQ13 DQ12 DQ11 DQ10 DQ9 DQ8 DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0 04H 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 MB84VA2102 22C4H 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 MB84VA2103 2249H 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 MB84VA2102-10/MB84VA2103-10 Table 6 Flash Memory Command Definitions Bus Write Cycles Req’d First Bus Write Cycle Second Bus Write Cycle Third Bus Write Cycle Fourth Bus Read/Write Cycle Fifth Bus Write Cycle Sixth Bus Write Cycle Addr. Data Addr. Data Addr. Data Addr. Data Addr. Data Addr. Data Read/Reset 1 XXXH F0H — — — — — — — — — — Read/Reset 3 555H AAH 2AAH 55H 555H F0H RA RD — — — — Autoselect 3 555H AAH 2AAH 55H 555H 90H — — — — — — Command Sequence Program 4 555H AAH 2AAH 55H 555H A0H PA PD — — — — Chip Erase 6 555H AAH 2AAH 55H 555H 80H 555H AAH 2AAH 55H 555H 10H Sector Erase 6 555H AAH 2AAH 55H 555H 80H 555H AAH 2AAH 55H SA 30H Sector Erase Suspend Erase can be suspended during sector erase with Addr. (“H” or “L”). Data (B0H) Sector Erase Resume Erase can be resumed after suspend with Addr. (“H” or “L”). Data (30H) Set to Fast Mode 3 555H AAH 2AAH 55H Fast Program (Note) 2 XXXH A0H Reset from Fast Mode (Note) Extended Sector Protect 555H 20H — — — — — — PD — — — — — — — — 2 XXXH 90H XXXH F0H — — — — — — — — 4 XXXH 60H SPA 40H SPA SD — — — — PA SPA 60H Address bits A11 to A20 = X = “H” or “L” for all address commands except for Program Address (PA) and Sector Address (SA). Bus operations are defined in Table 2. Both Read/Reset commands are functionally equivalent, resetting the device to the read mode. RA =Address of the memory location to be read. PA =Address of the memory location to be programmed. Addresses are latched on the falling edge of the write pulse. SA =Address of the sector to be erased. The combination of A20, A19, A18, A17, A16, A15, A14, and A13 will uniquely select any sector. RD =Data read from location RA during read operation. PD =Data to be programmed at location PA. SPA =Sector address to be protected. Set sector address (SA) and (A6, A1, A0) = (0, 1, 0). SD =Sector protection verify data. Output 01H at protected sector addresses and output 00H at unprotected sector addresses. Note:This command is valid while Fast Mode. 9 MB84VA2102-10/MB84VA2103-10 ■ ABSOLUTE MAXIMUM RATINGS Storage Temperature .................................................................................................. –55°C to +125°C Ambient Temperature with Power Applied .................................................................. –25°C to +85°C Voltage with Respect to Ground All pins (Note) .......................................................... –0.3 V to VCCf +0.5 V –0.3 V to VCCs +0.5 V VCCf/VCCs Supply (Note) .............................................................................................. –0.3 V to +4.6 V Note: Minimum DC voltage on input or I/O pins are –0.5 V. During voltage transitions, inputs may negative overshoot VSS to –2.0 V for periods of up to 20 ns. Maximum DC voltage on output and I/O pins are VCCf +0.5 V or VCCs +0.5 V. During voltage transitions, outputs may positive overshoot to VCC +2.0 V for periods of up to 20 ns. WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. ■ RECOMMENDED OPERATING RANGES Commercial Devices Ambient Temperature (TA) .........................................................................–20°C to +85°C VCCf/VCCs Supply Voltages.........................................................................+2.7 V to +3.6 V Operating ranges define those limits between which the functionality of the device is guaranteed. WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device’s electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand. 10 MB84VA2102-10/MB84VA2103-10 ■ DC CHARACTERISTICS Parameter Symbol Parameter Description Test Conditions Min. Typ. Max. Unit ILI Input Leakage Current — –1.0 — +1.0 µA ILO Output Leakage Current — –1.0 — +1.0 µA — — 35 — — 17 — — 35 mA tCYCLE =10 MHz — — 40 mA tCYCLE = 1 MHz — — 12 mA tCYCLE = 10 MHz — — 35 mA tCYCLE = 1 MHz — — 6 mA ICC1f Flash VCC Active Current VCCf = VCC Max., CEf = VIL tCYCLE = 10 MHz (Read) OE = VIH tCYCLE = 5 MHz ICC2f Flash VCC Active Current VCCf = VCC Max., CEf = VIL, OE = VIH (Program/Erase) ICC1s SRAM VCC Active Current VCCs = VCC Max., CE1s = VIL, CE2s = VIH ICC2s SRAM VCC Active Current CE1s = 0.2 V, CE2s = VCCs – 0.2 V, WE = VCCs – 0.2 V ISB1f Flash VCC Standby Current VCCf = VCC Max., CEf = VCCf ± 0.3 V RESET = VCCf ± 0.3 V — — 5 µA ISB2f Flash VCC Standby Current (RESET) VCCf = VCC Max., RESET = VSS ± 0.3 V — — 5 µA ISB1s SRAM VCC Standby Current CE1s = VIH or CE2s = VIL — — 2 mA ISB2s** SRAM VCC Standby Current mA VCCs = 3.0 V ±10% TA = 25°C — 1 2.5 µA TA = –20 to +85°C — — 55 µA VCCs = CE1s = VCC – 3.3 V 0.2 V or CE2s ±0.3 V = 0.2 V TA = 25°C — 1.5 3 µA TA = –20 to +85°C — — 60 µA TA = 25°C — 1 2 µA TA = –20 to +40°C — — 5 µA TA = –20 to +85°C — — 50 µA VCCs = 3.0 V VIL Input Low Level — –0.3 — 0.6 V VIH Input High Level — 2.2 — VCC+0.3* V VOL Output Low Voltage Level IOL = 2.1 mA, VCCf = VCCs = VCC Min. — — 0.4 V VOH Output High Voltage Level IOH = –500 µA, VCCf = VCCs = VCC Min. VCC – 0.5 — — V VLKO Flash Low VCC Lock-Out Voltage 2.3 — 2.5 V — * : VCC indicate lower of VCCf or VCCs ** :During standby mode with CE1s = VCCS – 0.2 V, CE2s should be CE2s < 0.2V or CE2s > VCCS – 0.2V 11 MB84VA2102-10/MB84VA2103-10 ■ AC CHARACTERISTICS • CE Timing Parameter Symbols JEDEC Standard — tCCR Description Test Setup CE Recover Time — Min. • Timing Diagram for alternating SRAM to Flash CEf tCCR tCCR tCCR tCCR CE1s CE2s 12 -10 Unit 0 ns MB84VA2102-10/MB84VA2103-10 • Read Only Operations Characteristics (Flash) Parameter Symbols Description JEDEC Standard tAVAV tRC Read Cycle Time tAVQV tACC tELQV -10 (Note) Test Setup Unit Min. Max. — 100 — ns Address to Output Delay CEf = VIL OE = VIL — 100 ns tCEf Chip Enable to Output Delay OE = VIL — 100 ns tGLQV tOE Output Enable to Output Delay — — 40 ns tEHQZ tDF Chip Enable to Output High-Z — — 30 ns tGHQZ tDF Output Enable to Output High-Z — — 30 ns tAXQX tOH Output Hold Time From Addresses, CEf or OE, Whichever Occurs First — 0 — ns — tREADY RESET Pin Low to Read Mode — — 20 µs Note: Test Conditions–Output Load: 1 TTL gate and 30 pF Input rise and fall times: 5 ns Input pulse levels: 0.0 V to 3.0 V Timing measurement reference level Input: 1.5 V Output: 1.5 V 13 MB84VA2102-10/MB84VA2103-10 • Read Cycle (Flash) tRC Addresses Stable ADDRESSES tACC CEf tOE tDF OE tOEH WE tCE HIGH-Z DQ HIGH-Z Output Valid tRC ADDRESSES Addresses Stable tACC tRH RESET tOH DQ 14 HIGH-Z Output Valid MB84VA2102-10/MB84VA2103-10 • Erase/Program Operations (Flash) Parameter Symbols Description JEDEC Standard tAVAV tWC Write Cycle Time tAVWL tAS tAVEL -10 Unit Min. Typ. Max. 100 — — ns Address Setup Time (WE to Addr.) 0 — — ns tAS Address Setup Time (CEf to Addr.) 0 — — ns tWLAX tAH Address Hold Time (WE to Addr.) 50 — — ns tELAX tAH Address Hold Time (CEf to Addr.) 50 — — ns tDVWH tDS Data Setup Time 50 — — ns tWHDX tDH Data Hold Time 0 — — ns — tOES Output Enable Setup Time 0 — — ns — tOEH Output Enable Hold Time Read 0 — — ns Toggle and Data Polling 10 — — ns tGHEL tGHEL Read Recover Time Before Write (OE to CEf) 0 — — ns tGHWL tGHWL Read Recover Time Before Write (OE to WE) 0 — — ns tWLEL tWS WE Setup Time (CEf to WE) 0 — — ns tELWL tCS CEf Setup Time (WE to CEf) 0 — — ns tEHWH tWH WE Hold Time (CEf to WE) 0 — — ns tWHEH tCH CEf Hold Time (WE to CEf) 0 — — ns tWLWH tWP Write Pulse Width 50 — — ns tELEH tCP CEf Pulse Width 50 — — ns tWHWL tWPH Write Pulse Width High 30 — — ns tEHEL tCPH CEf Pulse Width High 30 — — ns tWHWH1 tWHWH1 Programming Operation — 16 — µs tWHWH2 tWHWH2 Sector Erase Operation (Note 1) — 1 — sec — — 15 sec — tVCS VCCf Setup Time 50 — — µs — tVLHT Voltage Transition Time (Note 2) 4 — — µs — tVIDR Rise Time to VID (Note 2) 500 — — ns — tRB Recover Time from RY/BY 0 — — ns — tRP RESET Pulse Width 500 — — ns — tRH RESET Hold Time Before Read 200 — — ns — tEOE Delay Time from Embedded Output Enable — — 100 ns — tBUSY Program/Erase Valid to RY/BY Delay — — 90 ns Note : 1. This does not include the preprogramming time. 2. This timing is for Sector Protection Operation. 15 MB84VA2102-10/MB84VA2103-10 • Write Cycle (WE control) (Flash) 3rd Bus Cycle Data Polling 555H ADDRESSES tWC PA tAS PA tRC tAH CEf tCH tCS tCO OE tGHWL tWP tFOE tWHWH1 tWPH WE tOH tDS tDH DQ Notes: 1. 2. 3. 4. 5. 16 A0H PD DQ7 DOUT PA is address of the memory location to be programmed. PD is data to be programmed at byte address. DQ7 is the output of the complement of the data written to the device. DOUT is the output of the data written to the device. Figure indicates last two bus cycles out of four bus cycle sequence DOUT MB84VA2102-10/MB84VA2103-10 • Write Cycle (CEf control) (Flash) 3rd Bus Cycle ADDRESSES Data Polling PA 555H tWC tAS PA tAH WE tWS tWH OE tGHEL tCP tWHWH1 tCPH CEf tDS tDH DQ Notes: 1. 2. 3. 4. 5. A0H PD DQ7 DOUT PA is address of the memory location to be programmed. PD is data to be programmed at byte address. DQ7 is the output of the complement of the data written to the device. DOUT is the output of the data written to the device. Figure indicates last two bus cycles out of four bus cycle sequence. 17 MB84VA2102-10/MB84VA2103-10 • AC Waveforms Chip/Sector Erase Operations (Flash) 2AAH 555H ADDRESSES tWC tAS 555H 555H 2AAH SA*1 tAH CEf tCS tCH OE tGHWL tWP tWPH WE tDS tDH AAH DQ 30H for Sector Erase 55H 80H AAH 55H tVCS VCC Notes: 1. SA is the sector address for Sector Erase. Addresses = 555H for Chip Erase. 18 10H/ 30H MB84VA2102-10/MB84VA2103-10 • AC Waveforms for Data Polling during Embedded Algorithm Operations (Flash) CEf tCH tOD tFOE OE tOEH WE tCO * DQ7 DQ7 = Valid Data DQ7 Data In High-Z tWHWH1 or 2 DQ (DQ0 to DQ6) DQ0 to DQ6 = Invalid Data In DQ0 to DQ6 Valid Data High-Z tEOE *DQ7 = Valid Data (The device has completed the Embedded operation.) • AC Waveforms for Toggle Bit during Embedded Algorithm Operations (Flash) CEf tOEH WE tOES OE * DQ6 Data In DQ6 = Toggle DQ6 = Toggle DQ6 = Stop Toggling DQ0 to DQ7 Data Valid tEOE *DQ6 = Stops toggling. (The device has completed the Embedded operation.) 19 MB84VA2102-10/MB84VA2103-10 • RY/BY Timing Diagram during Write/Erase Operations (Flash) CEf The rising edge of the last WE signal WE Entire programming or erase operations RY/BY tBUSY • RESET, RY/BY Timing Diagram (Flash) WE RESET tRP tRB RY/BY tREADY • Temporary Sector Unprotection (Flash) VCC tVIDR tVCS tVLHT VID 3V 3V RESET CE WE tVLHT Program or Erase Command Sequence RY/BY Unprotection period 20 tVLHT MB84VA2102-10/MB84VA2103-10 • Extended Sector Protection (Flash) VCC tVCS RESET tVLHT tVIDR Add SPAX SPAX SPAY A0 A1 A6 CE OE TIME-OUT WE Data 60H 60H 40H 01H 60H tOE SPAX : Sector Address to be protected SPAY : Next Sector Address to be protected TIME-OUT : Time-Out window = 150 µs (min) 21 MB84VA2102-10/MB84VA2103-10 • Read Cycle (SRAM) Parameter Symbol Parameter Description Min. Max. Unit 100 — ns tRC Read Cycle Time tAA Address Access Time — 100 ns tCO1 Chip Enable (CE1s) Access Time — 100 ns tCO2 Chip Enable (CE2s) Access Time — 100 ns tOE Output Enable Access Time — 50 ns tCOE Chip Enable (CE1s Low and CE2s High) to Output Active 5 — ns tOEE Output Enable Low to Output Active 0 — ns tOD Chip Enable (CE1s High or CE2s Low) to Output High-Z — 40 ns tODO Output Enable High to Output High-Z — 40 ns tOH Output Data Hold Time 10 — ns • Read Cycle (Note 1) (SRAM) tRC ADDRESSES tAA tOH tCO1 CE1s tCOE tOD tCO2 CE2s tOD tOE OE tOEE tODO tCOE DQ Note: 1. WE remains HIGH for the read cycle. 22 VALID DATA OUT MB84VA2102-10/MB84VA2103-10 • Write Cycle (SRAM) Parameter Symbol Parameter Description Min. Max. Unit tWC Write Cycle Time 100 — ns tWP Write Pulse Width 60 — ns tCW Chip Enable to End of Write 80 — ns tAS Address Setup Time 0 — ns tWR Write Recovery Time 0 — ns tODW WE Low to Output High-Z — 40 ns tOEW WE High to Output Active 0 — ns tDS Data Setup Time 40 — ns tDH Data Hold Time 0 — ns • Write Cycle (Note 4) (WE control) (SRAM) tWC ADDRESSES tAS tWP tWR WE tCW CE1s CE2s DOUT tCW tODW tOEW Note 2 Note 3 tDS DIN Note 5 tDH VALID DATA IN Note 5 Notes: 2.If CE1s goes LOW (or CE2s goes HIGH) coincident with or after WE goes LOW, the output will remain at high impedance. 3.If CE1s goes HIGH (or CE2s goes LOW) coincident with or before WE goes HIGH, the output will remain at high impedance. 4.If OE is HIGH during the write cycle, the outputs will remain at high impedance. 5.Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied. 23 MB84VA2102-10/MB84VA2103-10 • Write Cycle (Note 4) (CE1s control) (SRAM) tWC ADDRESSES tAS tWP tWR WE tCW CE1s CE2s tCW tCOE tODW DOUT tDS DIN Note 5 tDH VALID DATA IN Note 5 Notes: 2.If CE1s goes LOW (or CE2s goes HIGH) coincident with or after WE goes LOW, the output will remain at high impedance. 3.If CE1s goes HIGH (or CE2s goes LOW) coincident with or before WE goes HIGH, the output will remain at high impedance. 4.If OE is HIGH during the write cycle, the outputs will remain at high impedance. 5.Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied. 24 MB84VA2102-10/MB84VA2103-10 • Write Cycle (Note 4) (CE2s Control) (SRAM) tWC ADDRESSES tAS tWP tWR WE tCW CE1s CE2s tCW tCOE tODW DOUT tDS DIN Note 5 tDH VALID DATA IN Note 5 Notes: 2.If CE1s goes LOW (or CE2s goes HIGH) coincident with or after WE goes LOW, the output will remain at high impedance. 3.If CE1s goes HIGH (or CE2s goes LOW) coincident with or before WE goes HIGH, the output will remain at high impedance. 4.If OE is HIGH during the write cycle, the outputs will remain at high impedance. 5.Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied. 25 MB84VA2102-10/MB84VA2103-10 ■ ERASE AND PROGRAMMING PERFORMANCE (Flash) Limits Parameter Unit Comment Min. Typ. Max. Sector Erase Time — 1 15 sec Excludes programming time prior to erasure Programming Time — 16 5,200 µs Excludes system-level overhead Chip Programming Time — 16.8 100 sec Excludes system-level overhead 100,000 — — cycles Erase/Program Cycle ■ DATA RETENTION CHARACTERISTICS (SRAM) Parameter Symbol Parameter Description Min. Typ. Max. Unit 2.0 — 3.6 V VDH = 3.0 V — — 50* µA VDH = 3.6 V — — 60 µA Chip Deselect to Data Retention Mode Time 0 — — ns Recovery Time 5 — — ms VDH Data Retention Supply Voltage IDDS2 Standby Current tCDR tR * : 5 µA (Max.) at TA = –20°C to +40°C • CE1s Controlled Data Retention Mode (Note 1) VCCs DATA RETENTION MODE 2.7 V See Note 2 See Note 2 VIH CE1s GND 26 VCCS –0.2 V tCDR tR MB84VA2102-10/MB84VA2103-10 • CE2s Controlled Data Retention Mode (Note 3) VCCs DATA RETENTION MODE 2.7 V VIH CE2s tCDR tR VIL 0.2 V GND Notes: 1. In CE1s controlled data retention mode, input level of CE2s should be fixed Vccs to Vccs-0.2V or Vss to 0.2V during data retention mode. Other input and input/output pins can be used between -0.3V to Vccs+0.3V. 2. When CE1s is operating at the VIH min. level (2.2 V), the standby current is given by ISB1s during the transition of VCCs from 3.6 to 2.2 V. 3. In CE2s controlled data retention mode, input and input/output pins can be used between -0.3V to Vccs+0.3V. ■ PIN CAPACITANCE Parameter Symbol Parameter Description Test Setup Typ. Max. Unit CIN Input Capacitance VIN = 0 T.B.D T.B.D pF COUT Output Capacitance VOUT = 0 T.B.D T.B.D pF CIN2 Control Pin Capacitance VIN = 0 T.B.D T.B.D pF Note: Test conditions TA = 25°C, f = 1.0 MHz ■ HANDLING OF PACKAGE Please handle this package carefully since the sides of packages are right angle. ■ CAUTION 1)The high voltage (VID) can not apply to address pins and control pins except RESET. Therefore, it can not use autoselect and sector protect function by applying the high voltage (VID) to specific pins. 2)For the sector protection, since the high voltage (VID) can be applied to the RESET, it can be protected the sector useing "Extended sector protect" command. 27 MB84VA2102-10/MB84VA2103-10 ■ PACKAGE 48-pin plastic FBGA (BGA-48P-M10) ■ PACKAGE DIMENSIONS 48-pin plastic BGA (BGA-48P-M10) Note: The actual shape of corners may differ from the dimension. 14.00±0.15(.551±.006) 1.40±0.20 (.055±.008) 0.30±0.10 (.012±.004) 7.00±0.15(.276±.006) 10.00±0.15 (.394±.006) 5.00±0.15 (.197±.006) 1st PIN INDEX C 28 1998 FUJITSU LIMITED MCM-M002-3-2 0.15(.006) Ø0.40±0.10 (Ø.016±.004) 1.00±0.15 (.039±.006) INDEX Dimension in mm (inches). MB84VA2102-10/MB84VA2103-10 FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: (044) 754-3763 Fax: (044) 754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: (800) 866-8608 Fax: (408) 922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 http://www.fujitsu-ede.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan. http://www.fmap.com.sg/ F9805 FUJITSU LIMITED Printed in Japan 29