IRF IRFBA1404P Power mosfet(vdss=40v, rds(on)=3.7mohm, id=206a) Datasheet

PD - 93806
AUTOMOTIVE MOSFET
Typical Applications
l
l
l
l
IRFBA1404P
HEXFET® Power MOSFET
Anti-lock Braking Systems (ABS)
Electric Power Steering (EPS)
Electric Braking
Radiator Fan Control
D
VDSS = 40V
Benefits
l
l
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
Increase Current Handling Capability
175°C Operating Temperature
Fast Switching
Dynamic dv/dt Rating
Repetitive Avalanche Allowed up to Tjmax
RDS(on) = 3.7mΩ
G
ID = 206A†
S
Description
Specifically designed for Automotive applications, this Stripe Planar
design of HEXFET® Power MOSFETs utilizes the latest processing
techniques to achieve extremely low on-resistance per silicon area.
Additional features of this MOSFET are a 175oC junction operating
temperature, fast switching speed and improved ruggedness in
single and repetitive avalanche. The Super-220 TM is a package that
has been designed to have the same mechanical outline and pinout
as the industry standard TO-220 but can house a considerably
larger silicon die. The result is significantly increased current
handling capability over both the TO-220 and the much larger TO247 package. The combination of extremely low on-resistance
silicon and the Super-220 TM package makes it ideal to reduce the
component count in multiparalled TO-220 applications, reduce
system power dissipation, upgrade existing designs or have TO-247
performance in a TO-220 outline. This package has been designed
to meet automotive, Q101, qualification standard.
These benefits make this design an extremely efficient and reliable
device for use in Automotive applications and a wide variety of other
applications.
Super-220™
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
www.irf.com
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Recommended clip force
Max.
206†
145†
650
300
2.0
± 20
See Fig.12a, 12b, 15, 16
30
5.0
-40 to + 175
-55 to + 175
300 (1.6mm from case )
20
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
N
1
10/24/00
IRFBA1404P
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
40
–––
–––
2.0
106
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.036
–––
–––
–––
–––
–––
–––
–––
160
35
42
17
140
72
26
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
2.0
LS
Internal Source Inductance
–––
5.0
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
–––
–––
–––
–––
–––
–––
7360
1680
240
6630
1490
1540
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
3.7
mΩ VGS = 10V, ID = 95A „
4.0
V
VDS = 10V, ID = 250µA
–––
S
VDS = 25V, ID = 60A
20
VDS = 40V, VGS = 0V
µA
250
VDS = 32V, VGS = 0V, TJ = 150°C
200
VGS = 20V
nA
-200
VGS = -20V
200
ID = 95A
–––
nC
VDS = 32V
60
VGS = 10V
–––
VDD = 20V
–––
ID = 95A
ns
–––
RG = 2.5Ω
–––
RD = 0.21Ω „
D
Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
S
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 32V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 32V
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 206†
showing the
A
G
integral reverse
––– ––– 650
S
p-n junction diode.
––– ––– 1.3
V
TJ = 25°C, IS = 95A, VGS = 0V „
––– 71 110
ns
TJ = 25°C, IF = 95A
––– 180 270
nC
di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
2
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Typ.
Max.
Units
–––
0.5
–––
0.50
–––
58
°C/W
www.irf.com
IRFBA1404P
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
4.5V
100
100
4.5V
20µs PULSE WIDTH
TJ = 25 °C
10
0.1
1
10
10
0.1
100
Fig 1. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.5
I D , Drain-to-Source Current (A)
TJ = 25 ° C
TJ = 175 ° C
100
V DS = 25V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
Fig 3. Typical Transfer Characteristics
www.irf.com
10
100
Fig 2. Typical Output Characteristics
1000
VGS , Gate-to-Source Voltage (V)
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
10
4.0
20µs PULSE WIDTH
TJ = 175 °C
9.0
ID = 159A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFBA1404P
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
8000
Ciss
6000
4000
Coss
2000
ID = 95A
VDS = 32V
VDS = 20V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
Crss
0
1
10
0
100
0
VDS , Drain-to-Source Voltage (V)
40
80
120
160
200
240
Q G , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
10000
1000
OPERATION IN THIS AREA LIMITED
BY R DS(on)
TJ = 175 ° C
1000
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
C, Capacitance (pF)
10000
20
VGS , Gate-to-Source Voltage (V)
12000
100
100us
100
TJ = 25 ° C
10
1ms
10ms
10
1
0.4
V GS = 0 V
0.8
1.2
1.6
2.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
10us
2.4
TC = 25 ° C
TJ = 175 ° C
Single Pulse
1
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFBA1404P
240
VDS
LIMITED BY PACKAGE
VGS
RD
D.U.T.
RG
I D , Drain Current (A)
180
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
120
Fig 10a. Switching Time Test Circuit
60
VDS
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
P DM
0.01
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.00001
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFBA1404P
1000
DR IV E R
L
VD S
D.U .T
RG
+
V
- DD
IA S
20V
0.01 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS
tp
A
EAS , Single Pulse Avalanche Energy (mJ)
15V
TOP
800
BOTTOM
ID
39A
67A
95A
600
400
200
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( °C)
IAS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGD
50
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
48
46
44
42
40
0
VGS
20
40
60
80
100
IAV , Avalanche Current ( A)
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
V DSav , Avalanche Voltage ( V )
QGS
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
www.irf.com
IRFBA1404P
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
100
0.05
0.10
10
1
1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
500
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 95A
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
t av = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
175
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC
∆T/ [1.3·BV·Zth]
Iav = 2∆
EAS (AR) = PD (ave)·tav
7
IRFBA1404P
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
Driver Gate Drive
P.W.
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
Period
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. For N-Channel HEXFET Power MOSFETs
8
www.irf.com
IRFBA1404P
Super-220™ Package Outline
11.00 [.433]
10.00 [.394]
A
5.00 [.196]
4.00 [.158]
9.00 [.354]
8.00 [.315]
B
0.25 [.010]
B A
1.50 [.059]
0.50 [.020]
4
15.00 [.590]
14.00 [.552]
1
2
4.00 [.157]
3.50 [.138]
3
14.50 [.570]
13.00 [.512]
3X
2.55 [.100]
4X
1.30 [.051]
0.90 [.036]
0.25 [.010]
1.00 [.039]
0.70 [.028]
3.00 [.118]
2.50 [.099]
B A
2X
LEAD AS S IGNMENT S
IGBT
MOS FET
NOT ES :
1.
2.
3.
4.
13.50 [.531]
12.50 [.493]
DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994.
CONT ROLLING DIMENSION: MILLIMET ER.
DIMENS IONS ARE SHOWN IN MILLIMET ERS [INCHES ].
OUT LINE CONFORMS T O JEDEC OUT LINE T O-273AA.
1 - GAT E
2 - DRAIN
3 - S OURCE
4 - DRAIN
1 - GAT E
2 - COLLECT OR
3 - EMIT T ER
4 - COLLECT OR
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS . Refer to AN-1001
‚ Starting TJ = 25°C, L = 0.12mH
RG = 25Ω, IAS = 95A.
ƒ ISD ≤ 95A, di/dt ≤ 150A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
†
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 95A.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 10/00
www.irf.com
9
Similar pages