MC10EP01, MC100EP01 3.3V / 5V ECL 4-Input OR/NOR Description The MC10EP01 is a 4-input OR/NOR gate. The device is functionally equivalent to the EL01 device, LVEL01, and E101 (a quad version). With AC performance much faster than the LVEL01 device, the EP01 is ideal for applications requiring the fastest AC performance available. The 100 Series contains temperature compensation. Features 1 1 MARKING DIAGRAMS* 8 8 1 HEP01 ALYW G 1 HP01 ALYWG G 1 KP01 ALYWG G 1 4 8 8 1 5H MG G VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = −3.0 V to −5.5 V Open Input Default State These Devices are Pb-Free, Halogen Free and are RoHS Compliant KEP01 ALYW G 1 SOIC−8 NB H K 5H 2W M = MC10 = MC100 = MC10 = MC100 = Date Code 2W MG G • • 8 8 SOIC−8 NB TSSOP−8 DFN8 D SUFFIX DT SUFFIX MN SUFFIX CASE 751−07 CASE 948R−02 CASE 506AA • 230 ps Typical Propagation Delay • Maximum Frequency = > 3 GHz Typical • PECL Mode Operating Range: • www.onsemi.com TSSOP−8 A L Y W G 4 DFN8 = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. © Semiconductor Components Industries, LLC, 2016 August, 2016 − Rev. 10 1 Publication Order Number: MC10EP01/D MC10EP01, MC100EP01 Table 1. PIN DESCRIPTION D0 D1 1 8 2 7 VCC Pin Q D2 3 6 Q D3 4 5 VEE Function D0 − D3 ECL Data Inputs Q, Q ECL Data Outputs VCC Positive Supply VEE Negative Supply EP (DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open. Table 2. TRUTH TABLE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram D0* D1* D2* D3* Q Q L L L L L H H X X X H L X H X X H L X X H X H L X X X H H L H H H H H L *Pins will default LOW when left open. Table 3. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 kW Internal Input Pullup Resistor N/A ESD Protection Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) SOIC−8 NB TSSOP−8 DFN8 Flammability Rating Pb-Free Pkg Level 1 Level 3 Level 1 Oxygen Index: 28 to 34 Transistor Count UL 94 V−0 @ 0.125 in 115 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. www.onsemi.com 2 MC10EP01, MC100EP01 Table 4. MAXIMUM RATINGS Symbol Rating Unit VCC PECL Mode Power Supply Parameter VEE = 0 V Condition 1 Condition 2 6 V VEE NECL Mode Power Supply VCC = 0 V −6 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 −6 V Iout Output Current Continuous Surge 50 100 mA IBB VBB Sink/Source ±0.5 mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm SOIC−8 NB SOIC−8 NB 190 130 °C/W qJC Thermal Resistance (Junction-to-Case) Standard Board SOIC−8 NB 41 to 44 °C/W qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm TSSOP−8 TSSOP−8 185 140 °C/W qJC Thermal Resistance (Junction-to-Case) Standard Board TSSOP−8 41 to 44 °C/W qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm DFN8 DFN8 129 84 °C/W Tsol Wave Solder (Pb-Free) < 2 to 3 sec @ 260°C 265 °C qJC Thermal Resistance (Junction-to-Case) (Note 2) 35 to 40 °C/W VI ≤ VCC VI ≥ VEE DFN8 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 2. JEDEC standard multilayer board − 2S2P (2 signal, 2 power) www.onsemi.com 3 MC10EP01, MC100EP01 Table 5. 10EP DC CHARACTERISTICS, PECL (VCC = 3.3 V, VEE = 0 V (Note 1)) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 24 31 20 24 31 20 24 31 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 2) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1430 1755 1490 1815 mV IIH Input HIGH Current 150 mA IIL Input LOW Current 150 150 0.5 0.5 0.5 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to −2.2 V. 2. All loading with 50 W to VCC − 2.0 V. Table 6. 10EP DC CHARACTERISTICS, PECL (VCC = 5.0 V, VEE = 0 V (Note 1)) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 24 31 20 24 31 20 24 31 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 2) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV IIH Input HIGH Current 150 mA IIL Input LOW Current 150 150 0.5 0.5 0.5 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to −0.5 V. 2. All loading with 50 W to VCC − 2.0 V. Table 7. 10EP DC CHARACTERISTICS, NECL (VCC = 0 V; VEE = −5.5 V to −3.0 V (Note 1)) −40°C Symbol IEE Characteristic Power Supply Current 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 24 31 20 24 31 20 24 31 mA VOH Output HIGH Voltage (Note 2) −1135 −1010 −885 −1070 −945 −820 −1010 −885 −760 mV VOL Output LOW Voltage (Note 2) −1935 −1810 −1685 −1870 −1745 −1620 −1810 −1685 −1560 mV VIH Input HIGH Voltage (Single-Ended) −1210 −885 −1145 −820 −1085 −760 mV VIL Input LOW Voltage (Single-Ended) −1935 −1610 −1870 −1545 −1810 −1485 mV IIH Input HIGH Current 150 mA IIL Input LOW Current 150 0.5 150 0.5 0.5 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. Input and output parameters vary 1:1 with VCC. 2. All loading with 50 W to VCC − 2.0 V. www.onsemi.com 4 MC10EP01, MC100EP01 Table 8. 100EP DC CHARACTERISTICS, PECL (VCC = 3.3 V, VEE = 0 V (Note 1)) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 15 24 32 17 26 36 19 28 38 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 2) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV IIH Input HIGH Current 150 mA IIL Input LOW Current 150 150 0.5 0.5 0.5 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to −2.2 V. 2. All loading with 50 W to VCC − 2.0 V. Table 9. 100EP DC CHARACTERISTICS, PECL (VCC = 5.0 V, VEE = 0 V (Note 1)) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 15 24 32 17 26 36 19 28 38 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 2) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV IIH Input HIGH Current 150 mA IIL Input LOW Current 150 150 0.5 0.5 0.5 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to −0.5 V. 2. All loading with 50 W to VCC − 2.0 V. Table 10. 100EP DC CHARACTERISTICS, NECL (VCC = 0 V; VEE = −5.5 V to −3.0 V (Note 1)) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 15 24 32 17 26 36 19 28 38 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) −1145 −1020 −895 −1145 −1020 −895 −1145 −1020 −895 mV VOL Output LOW Voltage (Note 2) −1945 −1820 −1695 −1945 −1820 −1695 −1945 −1820 −1695 mV VIH Input HIGH Voltage (Single-Ended) −1225 −880 −1225 −880 −1225 −880 mV VIL Input LOW Voltage (Single-Ended) −1945 −1625 −1945 −1625 −1945 −1625 mV IIH Input HIGH Current 150 mA IIL Input LOW Current 150 0.5 150 0.5 0.5 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. Input and output parameters vary 1:1 with VCC. 2. All loading with 50 W to VCC − 2.0 V. www.onsemi.com 5 MC10EP01, MC100EP01 Table 11. AC CHARACTERISTICS (VCC = 3.0 V to 5.5 V; VEE = 0 V or VCC = 0 V; VEE = −3.0 V to −5.5 V (Note 1)) −40°C Symbol Min Characteristic fmax Maximum Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay D to Q, Q tJITTER tr tf 25°C Typ Max Min >3 150 Cycle-to-Cycle Jitter (See Figure 2. Fmax/JITTER) Output Rise/Fall Times Q, Q (20%−80%) 50 85°C Typ Max Min >3 260 330 0.2 <1 120 170 150 60 Typ Max >3 270 330 0.2 <1 130 180 200 70 Unit GHz 300 350 0.2 <1 150 200 ps ps ps 900 8 800 7 700 6 600 5 500 4 ÉÉ ÉÉ ÉÉ 400 3 300 2 200 ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ 100 0 1 (JITTER) 0 1000 2000 3000 JITTEROUT (ps) (RMS) VOUTpp (mV) NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. 4000 5000 6000 FREQUENCY (MHz) Figure 2. Fmax/Jitter Q Zo = 50 W D Receiver Device Driver Device Q D Zo = 50 W 50 W 50 W VTT VTT = VCC − 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices) www.onsemi.com 6 MC10EP01, MC100EP01 ORDERING INFORMATION Package Shipping† MC10EP01DG SOIC−8 NB (Pb-Free) 98 Units / Tube MC10EP01DR2G SOIC−8 NB (Pb-Free) 2500 / Tape & Reel MC10EP01DTG TSSOP−8 (Pb-Free) 100 Units / Tube MC10EP01DTR2G TSSOP−8 (Pb-Free) 2500 / Tape & Reel MC10EP01MNR4G DFN8 (Pb-Free) 1000 / Tape & Reel MC100EP01DG SOIC−8 NB (Pb-Free) 98 Units / Tube MC100EP01DR2G SOIC−8 NB (Pb-Free) 2500 / Tape & Reel MC100EP01DTG TSSOP−8 (Pb-Free) 100 Units / Tube MC100EP01DTR2G TSSOP−8 (Pb-Free) 2500 / Tape & Reel MC100EP01MNR4G DFN8 (Pb-Free) 1000 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Resource Reference of Application Notes AN1405/D − ECL Clock Distribution Techniques AN1406/D − Designing with PECL (ECL at +5.0 V) AN1503/D − ECLinPSt I/O SPiCE Modeling Kit AN1504/D − Metastability and the ECLinPS Family AN1568/D − Interfacing Between LVDS and ECL AN1672/D − The ECL Translator Guide AND8001/D − Odd Number Counters Design AND8002/D − Marking and Date Codes AND8020/D − Termination of ECL Logic Devices AND8066/D − Interfacing with ECLinPS AND8090/D − AC Characteristics of ECL Devices www.onsemi.com 7 MC10EP01, MC100EP01 PACKAGE DIMENSIONS SOIC−8 NB D SUFFIX CASE 751−07 ISSUE AK −X− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 0.25 (0.010) M Y M 1 4 −Y− K G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE −Z− 0.10 (0.004) H D 0.25 (0.010) M Z Y S X M J S SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm Ǔ ǒinches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 8 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 MC10EP01, MC100EP01 PACKAGE DIMENSIONS TSSOP−8 DT SUFFIX CASE 948R−02 ISSUE A 8x 0.15 (0.006) T U 0.10 (0.004) S 2X L/2 L 8 5 1 PIN 1 IDENT 0.15 (0.006) T U K REF M T U V S 0.25 (0.010) B −U− 4 M A −V− S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. S F DETAIL E C 0.10 (0.004) −T− SEATING PLANE D −W− G DETAIL E www.onsemi.com 9 DIM A B C D F G K L M MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 0.80 1.10 0.05 0.15 0.40 0.70 0.65 BSC 0.25 0.40 4.90 BSC 0_ 6_ INCHES MIN MAX 0.114 0.122 0.114 0.122 0.031 0.043 0.002 0.006 0.016 0.028 0.026 BSC 0.010 0.016 0.193 BSC 0_ 6_ MC10EP01, MC100EP01 PACKAGE DIMENSIONS DFN8 2x2, 0.5 P MN SUFFIX CASE 506AA ISSUE F D PIN ONE REFERENCE 2X 0.10 C 2X A B L1 ÇÇ ÇÇ 0.10 C DETAIL A E OPTIONAL CONSTRUCTIONS ÉÉ ÉÉ ÇÇ EXPOSED Cu TOP VIEW A DETAIL B 0.10 C NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 . 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. L L DIM A A1 A3 b D D2 E E2 e K L L1 ÉÉ ÇÇ ÇÇ A3 MOLD CMPD A1 DETAIL B 0.08 C (A3) NOTE 4 SIDE VIEW ALTERNATE CONSTRUCTIONS A1 C MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.20 REF 0.20 0.30 2.00 BSC 1.10 1.30 2.00 BSC 0.70 0.90 0.50 BSC 0.30 REF 0.25 0.35 −−− 0.10 SEATING PLANE RECOMMENDED SOLDERING FOOTPRINT* DETAIL A D2 1 4 8X L E2 K 8 5 e/2 e 8X 1.30 PACKAGE OUTLINE 0.90 b 2.30 1 0.10 C A B 0.05 C 8X 0.50 8X 0.50 PITCH 0.30 NOTE 3 BOTTOM VIEW DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 10 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC10EP01/D