MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 MSP430FG43x Mixed-Signal Microcontrollers 1 Device Overview 1.1 Features 1 • Low Supply-Voltage Range, 1.8 V to 3.6 V • Ultra-Low Power Consumption – Active Mode: 300 µA at 1 MHz, 2.2 V – Standby Mode: 1.1 µA – Off Mode (RAM Retention): 0.1 µA • Five Power-Saving Modes • Wakeup From Standby Mode in Less Than 6 µs • 16-Bit RISC Architecture, 125-ns Instruction Cycle Time • Single-Channel Internal DMA • 12-Bit Analog-to-Digital Converter (ADC) With Internal Reference, Sample-and-Hold and Autoscan Feature • Three Configurable Operational Amplifiers • Dual 12-Bit Digital-to-Analog Converters (DACs) With Synchronization • 16-Bit Timer_A With Three Capture/Compare Registers • 16-Bit Timer_B With Three Capture/CompareWith-Shadow Registers 1.2 • • • Applications Analog and Digital Sensor Systems Digital Motor Control Remote Controls 1.3 • On-Chip Comparator • Serial Communication Interface (USART), Select Asynchronous UART or Synchronous SPI by Software • Brownout Detector • Supply-Voltage Supervisor and Monitor With Programmable Level Detection • Bootstrap Loader (BSL) • Serial Onboard Programming, No External Programming Voltage Needed, Programmable Code Protection by Security Fuse • Integrated Liquid Crystal Display (LCD) Driver for up to 128 Segments • Available in 113-Ball BGA (ZCA) and 80-Pin QFP (PN) Packages • Section 3 Summarizes the Available Family Members • For Complete Module Descriptions, See the MSP430x4xx Family User's Guide (SLAU056) • • • Thermostats Digital Timers Hand-Held Meters Description The Texas Instruments MSP430™ family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in less than 6 µs. The MSP430FG43x devices are microcontrollers with two 16-bit timers, a high-performance 12-bit ADC, dual 12-bit DACs, three configurable operational amplifiers, one universal synchronous/asynchronous communication interface, DMA, 48 I/O pins, and an LCD driver. Table 1-1. Device Information (1) PACKAGE BODY SIZE (2) MSP430FG439PN LQFP (80) 12 mm x 12 mm MSP430FG439ZCA BGA (113) 7 mm x 7 mm PART NUMBER (1) (2) For the most current device, package, and ordering information, see the Package Option Addendum in Section 8, or see the TI web site at www.ti.com. The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 8. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 1.4 www.ti.com Functional Block Diagram Figure 1-1 shows the functional block diagram. XIN XT2IN XT2OUT DV CC1/2 DV SS1/2 XOUT AV CC AV SS P1 P2 P4 P3 8 8 P6 P5 8 8 8 8 ACLK Oscillator FLL+ Flash SMCLK 60KB 48KB 32KB MCLK 8 MHz CPU incl. 16 Registers Emulation Module ADC12 DAC12 Port 1 Port 2 2KB 1KB 12-Biit 12 Channels <10µs Conv. 12-Bit 2 Channels Voltage Out 8 I/O Interrupt Capability 8 I/O Interrupt Capability DMA Controller Watchdog Timer WDT RAM Port 3 Port 4 Port 5 Port 6 8 I/O 8 I/O 8 I/O 8 I/O LCD 128 Segments 1,2,3,4 MUX USART0 OA0, OA1 OA2 UART Mode SPI Mode MAB MDB POR/ SVS/ Brownout JTAG Interface 1 Channel 15/16-Bit Timer_B3 Timer_A3 3 CC Reg Shadow Reg 3 CC Reg Comparator_ A Basic Timer 1 1 Interrupt Vector 3 Op Amps fLCD RST/NMI Figure 1-1. Functional Block Diagram 2 Device Overview Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 Table of Contents 1 2 3 4 5 Device Overview ......................................... 1 5.24 12-Bit ADC, Built-In Reference...................... 28 1.1 Features .............................................. 1 5.25 12-Bit ADC, Timing Parameters 1.2 Applications ........................................... 1 5.26 12-Bit ADC, Linearity Parameters................... 30 1.3 Description ............................................ 1 5.27 12-Bit ADC, Temperature Sensor and Built-In VMID 1.4 Functional Block Diagram ............................ 2 5.28 12-Bit DAC, Supply Specifications .................. 31 Revision History ......................................... 4 Device Comparison ..................................... 5 Terminal Configuration and Functions .............. 6 5.29 12-Bit DAC, Linearity Specifications ................ 32 5.30 12-Bit DAC, Output Specifications .................. 34 5.31 12-Bit DAC, Reference Input Specifications ........ 35 4.1 Pin Diagrams ......................................... 6 5.32 12-Bit DAC, Dynamic Specifications ................ 35 4.2 Signal Descriptions ................................... 8 5.33 12-Bit DAC, Dynamic Specifications (Continued) ... 36 Specifications ........................................... 12 5.34 5.35 Operational Amplifier (OA), Supply Specifications .. 37 Operational Amplifier (OA), Input/Output Specifications........................................ 37 12 5.36 Operational Amplifier (OA), Dynamic Specifications 38 Supply Current Into AVCC + DVCC Excluding External Current .................................... 14 Schmitt-Trigger Inputs – Ports P1 to P6, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI) ........... 15 5.37 OA Dynamic Specifications Typical Characteristics 5.38 Flash Memory ....................................... 39 5.39 JTAG Interface ...................................... 39 5.40 JTAG Fuse 5.1 5.2 5.3 5.4 5.5 ........................ Handling Ratings .................................... Recommended Operating Conditions ............... Absolute Maximum Ratings 12 12 5.6 Inputs Px.y, TAx, TBx ............................... 15 5.7 ................. ........................... Output Frequency ................................... Typical Characteristics – Outputs ................... Wake-Up From LPM3 ............................... RAM ................................................. LCD.................................................. Comparator_A ...................................... Comparator_A Typical Characteristics .............. 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 6 .................... ......................................... 30 31 38 39 Detailed Description ................................... 40 Leakage Current – Ports P1 to P6 15 6.1 CPU Outputs – Ports P1 to P6 16 6.2 Instruction Set ....................................... 41 ................................................. 40 16 6.3 Operating Modes .................................... 42 17 6.4 Interrupt Vector Addresses.......................... 43 18 6.5 Special Function Registers (SFRs) 18 6.6 Memory Organization ............................... 46 ................. 44 18 6.7 Bootstrap Loader (BSL) ............................. 47 19 6.8 Flash Memory ....................................... 47 19 6.9 Peripherals 6.10 Input/Output Schematics ............................ 55 Power-On Reset (POR) and Brownout Reset (BOR) .......................................... 48 5.17 ...................................................... 21 Supply Voltage Supervisor (SVS) and Supply Voltage Monitor (SVM) ............................. 22 7.1 Device Support ...................................... 78 5.18 DCO ................................................. 24 7.2 Documentation Support ............................. 80 5.19 Crystal Oscillator, XT1 Oscillator ................... Crystal Oscillator, XT2 Oscillator ................... USART0 ............................................ 26 7.3 Trademarks.......................................... 80 26 7.4 Electrostatic Discharge Caution ..................... 80 26 12-Bit ADC, Power Supply and Input Range Conditions .......................................... 27 7.5 Glossary ............................................. 80 5.20 5.21 5.22 5.23 12-Bit ADC, External Reference ................... 27 7 8 Device and Documentation Support ............... 78 Mechanical Packaging and Orderable Information .............................................. 81 8.1 Packaging Information Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 .............................. Table of Contents 81 3 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision C (March 2011) to Revision D • • • • • • • • • • • • • • • • • • • • • • • • • • • 4 Page Document format and organization changes throughout, including addition of section numbering........................ 1 Added Section 1.2 ................................................................................................................... 1 Added Device Information table .................................................................................................... 1 Added Section 3 ...................................................................................................................... 5 Added ZCA package pinout ......................................................................................................... 7 Added ZCA package to Table 4-1 .................................................................................................. 8 Added Section 5 and moved all electrical specifications to it ................................................................. 12 Added Section 5.2 and moved Tstg to it .......................................................................................... 12 Added ZCA package to BSL table ................................................................................................ 47 Added ZCA package to Timer_A3 table.......................................................................................... 49 Added ZCA package to Timer_B3 table ......................................................................................... 50 Moved Section 6.10 ................................................................................................................. 55 Changed the values in the Port/LCD column ................................................................................... 59 Changed the input signals (LCDPx[0:2]) in the top left of the figure ......................................................... 60 Changed the input signal (LCDPx[2]) in the top left of the figure ............................................................. 61 Changed the values in the DEVICE, PORT FUNCTION, and LCD SEGMENT FUNCTION columns................... 62 Changed the input "1, If LCDPx ≥ 01h" near the top left of the figure ....................................................... 63 Changed the values in the DEVICE, PORT FUNCTION, and LCD SEGMENT FUNCTION columns................... 63 Changed the input "1, If LCDPx ≥ 01h" near the top left of the figure ....................................................... 64 Changed the values in the DEVICE, PORT FUNCTION, and LCD SEGMENT FUNCTION columns................... 64 Changed the input "1, If LCDPx ≥ 01h" near the top left of the figure ....................................................... 65 Changed the values in the DEVICE, PORT FUNCTION, and LCD SEGMENT FUNCTION columns................... 65 Changed the input "1, If LCDPx ≥ 01h" near the top left of the figure ....................................................... 66 Changed the LCDPx column heading and values .............................................................................. 66 Changed the value in the Port/LCD column ..................................................................................... 66 Added Section 7 ..................................................................................................................... 78 Added Section 8 .................................................................................................................... 81 Revision History Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 3 Device Comparison The following table summarizes the available family members. Table 3-1. Device Comparison (1) (2) Device FLASH (KB) SRAM (KB) ADC12 DAC12 Comp_A Timer_A (3) Timer_B (4) USART LCD I/Os Package Type MSP430FG439 60 2 12 channels 2 channels 16 channels 3 3 Yes Yes 48 80 PN 113 ZCA MSP430FG438 48 2 12 channels 2 channels 16 channels 3 3 Yes Yes 48 80 PN 113 ZCA MSP430FG437 32 1 12 channels 2 channels 16 channels 3 3 Yes Yes 48 80 PN 113 ZCA (1) (2) (3) (4) For the most current package and ordering information, see the Package Option Addendum in Section 8, or see the TI web site at www.ti.com. Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging. Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 capture/compare registers and PWM output generators and the second instantiation having 5 capture/compare registers and PWM output generators, respectively. Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 capture/compare registers and PWM output generators and the second instantiation having 5 capture/compare registers and PWM output generators, respectively. Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Device Comparison 5 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 4 Terminal Configuration and Functions 4.1 Pin Diagrams P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/CA0 P6.2/A2/OA0I1 P6.1/A1/OA0O P6.0/A0/OA0I0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT AV CC DV SS1 AV SS Figure 4-1 shows the pin assignments for the 80-pin PN package. 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 1 60 2 59 3 58 4 57 5 56 6 55 7 54 8 53 9 52 10 51 11 50 12 49 13 48 14 47 15 46 16 45 17 44 18 43 19 42 20 41 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P1.7/CA1 P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 P2.4/UTXD0 P2.5/URXD0 DV SS2 DV CC2 P5.7/R33 P5.6/R23 P5.5/R13 R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P3.0/STE0/S31 P3.1/SIMO0/S30 P3.2/SOMI0/S29 P4.0/S9 S10 S11 S12 S13 S14 S15 S16 S17 P2.7/ADC12CLK/S18 P2.6/CAOUT/S19 S20 S21 S22 S23 P3.7/S24 P3.6/S25/DMAE0 P3.5/S26 P3.4/S27 P3.3/UCLK0/S28 DV CC1 P6.3/A3/OA1I1/OA1O P6.4/A4/OA1I0 P6.5/A5/OA2I1/OA2O P6.6/A6/DAC0/OA2I0 P6.7/A7/DAC1/SVSIN VREF+ XIN XOUT Ve REF+/DAC0 VREF- /VeREFP5.1/S0/A12/DAC1 P5.0/S1/A13 P4.7/S2/A14 P4.6/S3/A15 P4.5/S4 P4.4/S5 P4.3/S6 P4.2/S7 P4.1/S8 Figure 4-1. 80-Pin PN Package (Top View) 6 Terminal Configuration and Functions Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 Figure 4-2 shows the pin assignments for the 113-pin ZCA package. ZCA PACKAGE (TOP VIEW) P6.1 P6.0 RST P1.3 P1.6 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 DVCC DVSS AVCC P6.2 P6.3 DVSS DVSS DVSS P1.2 P1.5 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 DVSS AVSS AVCC VREF+ DVCC XT2IN XT2OUT DVSS A12 P1.7 B11 B12 P2.0 P2.4/TX DVSS C1 C2 AVSS P6.7 P6.5 P6.4 TMS TDO P1.0 P1.1 D1 D2 D4 D5 D6 D7 D8 D9 D11 D12 XIN AVSS P6.6 TCK TDI E1 E2 E4 E6 E7 XOUT AVSS P5.1 F1 F2 F4 AVSS AVSS P5.0 G1 G2 G4 C3 VeREF+ AVSS H1 VREF- AVSS J2 P4.5 P4.4 E5 F5 G5 P1.4 P2.2 DVSS2 E9 E11 E12 P2.3 DVCC2 F8 F9 F11 F12 G8 G9 COM3 R33 G11 G12 COM2 R23 H4 H5 H6 H7 H8 H9 H11 H12 P4.6 S13 S16 S21 S22 S23 COM1 R13 J4 J5 J6 J7 J8 J9 J11 J12 COM0 R03 K1 K2 P4.1 P4.2 P4.3 S11 S14 S17 S20 L1 L2 L3 L4 L5 L6 L7 P4.0 S10 S12 S15 M2 M3 M4 M5 M1 C12 E8 P4.7 H2 J1 C11 P2.1 P2.5/RX K11 P3.6/S25 P3.5/S26 P3.4/S27 L8 L9 L10 K12 P3.0/S31 L11 L12 P2.7/S18 P2.6/S19 P3.7/S24 P3.3/S28 P3.2/S29 P3.1/S30 M6 M7 M8 M9 M10 M11 M12 Figure 4-2. 113-Pin ZCA Package (Top View) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Copyright © 2004–2014, Texas Instruments Incorporated 7 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 4.2 www.ti.com Signal Descriptions Table 4-1 describes the signals for all device variants and package options. Table 4-1. Signal Descriptions TERMINAL NAME NO. I/O DESCRIPTION PN ZCA 1 B1, C2 2 B5 I/O General-purpose digital I/O Analog input a3—12-bit ADC OA1 output and/or input multiplexer on +terminal and −terminal 3 D5 I/O General-purpose digital I/O Analog input a4—12-bit ADC OA1 input multiplexer on +terminal and −terminal 4 D4 I/O General-purpose digital I/O Analog input a5—12-bit ADC OA2 output and/or input multiplexer on +terminal and −terminal 5 E4 I/O General-purpose digital I/O Analog input a6—12-bit ADC DAC12.0 output OA2 input multiplexer on +terminal and −terminal 6 D2 I/O General-purpose digital I/O Analog input a7—12-bit ADC DAC12.1 output/analog input to supply voltage supervisor VREF+ 7 C1 O Positive output terminal of the reference voltage in the ADC XIN 8 E1 I Input terminal of crystal oscillator XT1 XOUT 9 F1 O Output terminal of crystal oscillator XT1 10 H1 I/O Positive input terminal for an external reference voltage to the 12-bit ADC/DAC12.0 output 11 J1 I 12 F4 I/O General-purpose digital I/O LCD segment output 0 Analog input a12—12-bit ADC DAC12.1 output 13 G4 I/O General-purpose digital I/O LCD segment output 1 Analog input a13—12-bit ADC 14 H4 I/O General-purpose digital I/O LCD segment output 2 Analog input a14—12-bit ADC 15 J4 I/O General-purpose digital I/O LCD segment output 3 Analog input a15—12-bit ADC 16 K1 I/O General-purpose digital I/O LCD segment output 4 17 K2 I/O General-purpose digital I/O LCD segment output 5 18 L3 I/O General-purpose digital I/O LCD segment output 6 19 L2 I/O General-purpose digital I/O LCD segment output 7 20 L1 I/O General-purpose digital I/O LCD segment output 8 21 M2 I/O General-purpose digital I/O LCD segment output 9 22 M3 O LCD segment output 10 DVCC1 Digital supply voltage, positive terminal. P6.3/A3/OA1I1/OA1O P6.4/A4/OA1I0 P6.5/A5/OA2I1/OA2O P6.6/A6/DAC0/OA2I0 P6.7/A7/DAC1/SVSIN VeREF+/DAC0 VREF−/VeREF− P5.1/S0/A12/DAC1 P5.0/S1/A13 P4.7/S2/A14 P4.6/S3/A15 P4.5/S4 P4.4/S5 P4.3/S6 P4.2/S7 P4.1/S8 P4.0/S9 S10 8 Terminal Configuration and Functions Negative terminal for the 12-bit ADC's reference voltage for both sources, the internal reference voltage or an external applied reference voltage to the 12-bit ADC. Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 Table 4-1. Signal Descriptions (continued) TERMINAL NAME NO. PN I/O DESCRIPTION ZCA S11 23 L4 O LCD segment output 11 S12 24 M4 O LCD segment output 12 S13 25 J5 O LCD segment output 13 S14 26 L5 O LCD segment output 14 S15 27 M5 O LCD segment output 15 S16 28 J6 O LCD segment output 16 S17 29 L6 O LCD segment output 17 30 M6 I/O General-purpose digital I/O Conversion clock—12-bit ADC LCD segment output 18 31 M7 I/O General-purpose digital I/O Comparator_A output / LCD segment output 19 S20 32 L7 O LCD segment output 20 S21 33 J7 O LCD segment output 21 S22 34 J8 O LCD segment output 22 S23 35 J9 O LCD segment output 23 36 M8 I/O General-purpose digital I/O LCD segment output 24 37 L8 I/O General-purpose digital I/O LCD segment output 25/DMA Channel 0 external trigger 38 L9 I/O General-purpose digital I/O LCD segment output 26 39 L10 I/O General-purpose digital I/O LCD segment output 27 40 M9 I/O General-purpose digital I/O External clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode LCD segment output 28 41 M10 I/O General-purpose digital I/O Slave out/master in of USART0/SPI mode LCD segment output 29 42 M11 I/O General-purpose digital I/O Slave in/master out of USART0/SPI mode LCD segment output 30 43 L12 I/O General-purpose digital I/O Slave transmit enable-USART0/SPI mode LCD segment output 31 44 K11 O Common output, COM0−3 are used for LCD backplanes. 45 J11 I/O General-purpose digital I/O Common output, COM0−3 are used for LCD backplanes. 46 H11 I/O General-purpose digital I/O Common output, COM0−3 are used for LCD backplanes. 47 G11 I/O General-purpose digital I/O Common output, COM0−3 are used for LCD backplanes. 48 K12 I Input port of fourth positive (lowest) analog LCD level (V5) 49 J12 I/O General-purpose digital I/O input port of third most positive analog LCD level (V4 or V3) 50 H12 I/O General-purpose digital I/O Input port of second most positive analog LCD level (V2) 51 G12 I/O General-purpose digital I/O Output port of most positive analog LCD level (V1) 52 F12 P2.7/ADC12CLK/S18 P2.6/CAOUT/S19 P3.7/S24 P3.6/S25/DMAE0 P3.5/S26 P3.4/S27 P3.3/UCLK0/S28 P3.2/SOMI0/S29 P3.1/SIMO0/S30 P3.0/STE0/S31 COM0 P5.2/COM1 P5.3/COM2 P5.4/COM3 R03 P5.5/R13 P5.6/R23 P5.7/R33 DVCC2 Digital supply voltage, positive terminal Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Copyright © 2004–2014, Texas Instruments Incorporated 9 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME NO. I/O DESCRIPTION PN ZCA 53 E12 54 D12 I/O General-purpose digital I/O Receive data in—USART0/UART mode 55 C12 I/O General-purpose digital I/O Transmit data out—USART0/UART mode 56 F11 I/O General-purpose digital I/O Timer_B3 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output 57 E11 I/O General-purpose digital I/O Timer_B3 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output 58 D11 I/O General-purpose digital I/O Timer_B3 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output 59 C11 I/O General-purpose digital I/O Timer_A Capture: CCI2A input, compare: Out2 output 60 B12 I/O General-purpose digital I/O Comparator_A input 61 A11 I/O General-purpose digital I/O Comparator_A input 62 B10 I/O General-purpose digital I/O Timer_A, clock signal TACLK input ACLK output (divided by 1, 2, 4, or 8) 63 E9 I/O General-purpose digital I/O Input clock TBCLK—Timer_B3 Submain system clock SMCLK output 64 A10 I/O General-purpose digital I/O Switch all PWM digital output ports to high impedance—Timer_B3 TB0 to TB2 SVS: output of SVS comparator 65 B9 I/O General-purpose digital I/O Timer_A, Capture: CCI1A, compare: Out1 output 66 D9 I/O General-purpose digital I/O Timer_A. Capture: CCI0B / MCLK output. Note: TA0 is only an input on this pin BSL receive 67 D8 I/O General-purpose digital I/O Timer_A. Capture: CCI0A input, compare: Out0 output BSL transmit XT2OUT 68 A8 O Output terminal of crystal oscillator XT2 XT2IN 69 A7 I Input port for crystal oscillator XT2. Only standard crystals can be connected. TDO/TDI 70 D7 I/O 71 E7 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TMS 72 D6 I Test mode select. TMS is used as an input port for device programming and test. TCK 73 E6 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 74 A6 I Reset or nonmaskable interrupt input 75 A5 I/O General-purpose digital I/O Analog input a0 − 12-bit ADC OA0 input multiplexer on +terminal and −terminal 76 A4 I/O General-purpose digital I/O Analog input a1 − 12-bit ADC OA0 output 77 B4 I/O General-purpose digital I/O Analog input a2 − 12-bit ADC OA0 input multiplexer on + terminal and − terminal DVSS2 P2.5/URXD0 P2.4/UTXD0 P2.3/TB2 P2.2/TB1 P2.1/TB0 P2.0/TA2 P1.7/CA1 P1.6/CA0 Digital supply voltage, negative terminal P1.5/TACLK/ACLK P1.4/TBCLK/SMCLK P1.3/TBOUTH/SVSOUT P1.2/TA1 P1.1/TA0/MCLK P1.0/TA0 TDI/TCLK P6.0/A0/OA0I0 P6.1/A1/OA0O P6.2/A2/OA0I1 10 Terminal Configuration and Functions Test data output port. TDO/TDI data output or programming data input terminal Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 Table 4-1. Signal Descriptions (continued) TERMINAL NAME NO. I/O PN ZCA 78 A2, D1, E2, F2, G2, G1, H2, J2 Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive divider circuitry. A1, B2, C3, B6, B7, B8, A9 Digital supply voltage, negative terminal 79 80 A3, B3 AVSS DVSS1 AVCC Reserved (1) DESCRIPTION (1) Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive divider circuitry; must not power up prior to DVCC1/DVCC2. Reserved A12, B11, E5, E8, F5, F8, F9, G5, G8, G9, H5, H6, H7, H8, H9, L11, M1, M12 are reserved and should be connected to ground. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Copyright © 2004–2014, Texas Instruments Incorporated 11 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 5 Specifications Absolute Maximum Ratings (1) 5.1 over operating free-air temperature range (unless otherwise noted) Voltage applied at VCC to VSS Voltage applied to any pin (2) MIN MAX UNIT –0.3 4.1 V –0.3 VCC + 0.3 V ±2 mA Diode current at any device terminal (1) (2) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS.The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. 5.2 Handling Ratings Tstg Storage temperature range 5.3 MIN MAX Unprogrammed device -55 150 Programmed device -40 85 UNIT °C Recommended Operating Conditions MIN During program execution Supply voltage (1) (AVCC = DVCC1 = DVCC2 = VCC) VCC NOM MAX UNIT 1.8 3.6 2 3.6 2.7 3.6 0 0 V –40 85 °C 450 8000 kHz 1000 8000 450 8000 1000 8000 VCC = 1.8 V dc 4.15 VCC = 3.6 V dc 8 During program execution, SVS enabled and PORON = 1 (2) During flash memory programming V (1) VSS Supply voltage (AVSS = DVSS1 = DVSS2 = VSS) TA Operating free-air temperature range f(LFXT1) XT1 crystal frequency (3) XT2 crystal frequency f(System) Processor frequency (signal MCLK) (2) (3) 12 Watch crystal XT1 selected, XTS_FLL = 1 Ceramic resonator XT1 selected, XTS_FLL = 1 Crystal Ceramic resonator f(XT2) (1) LF selected, XTS_FLL = 0 Crystal 32.768 kHz MHz It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply voltage. POR is going inactive when the supply voltage is raised above the minimum supply voltage plus the hysteresis of the SVS circuitry. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal. Specifications Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 f(System) – MHz 8 Supply voltage range, MSP430FG43x, during program execution Supply voltage range, MSP430FG43x, during flash memory programming 4.15 1.8 2.7 3 Supply Voltage - V 3.6 Figure 5-1. Frequency vs Supply Voltage, Typical Characteristic Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 13 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.4 www.ti.com Supply Current Into AVCC + DVCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted) PARAMETER TA TYP MAX 2.2 V 300 370 3V 470 570 2.2 V 55 70 3V 95 110 2.2 V 11 14 3V 17 22 –40°C 1 2 25°C 1.1 2 2 3 (1) I(AM) Active mode f(MCLK) = f(SMCLK) = 1 MHz, f(ACLK) = 32768 Hz, XTS_FLL = 0, SELM = (0,1) I(LPM0) Low-power mode (LPM0) (1) I(LPM2) Low-power mode (LPM2), f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32768 Hz, SCG0 = 0 (3) –40°C to 85°C (2) –40°C to 85°C (2) –40°C to 85°C 60°C I(LPM3) Low-power mode (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32768 Hz, SCG0 = 1 (3) (4) (2) 3.5 6 –40°C 1.8 2.8 1.6 2.7 60°C 2.5 3.5 4.2 7.5 –40°C 0.1 0.5 0.1 0.5 0.7 1.1 85°C 1.7 3 –40°C 0.1 0.8 0.1 0.8 0.8 1.2 1.9 3.5 60°C (2) 3V 85°C 25°C I(LPM4) 2.2 V 25°C 60°C 2.2 V 3V 85°C (1) (2) (3) (4) MIN 85°C 25°C Low-power mode (LPM4) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 0 Hz, SCG0 = 1 (3) VCC UNIT µA µA µA µA µA Timer_B is clocked by f(DCOCLK) = f(DCO) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Current for brownout included. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The current consumption in LPM3 is measured with active Basic Timer1 and LCD (ACLK selected). The current consumption of the Comparator_A and the SVS module are specified in the respective sections. The LPM3 currents are characterized with a KDS Daishinku DT−38 (6 pF) crystal and OSCCAPx = 01h. Current consumption of active mode versus system frequency: I(AM) = I(AM) [1 MHz] × f(System) [MHz] Current consumption of active mode versus supply voltage: I(AM) = I(AM) [3 V] + 175 µA/V × (VCC – 3 V) 14 Specifications Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com 5.5 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 Schmitt-Trigger Inputs – Ports P1 to P6, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT– ) 5.6 VCC MIN MAX 2.2 V 1.1 1.55 3V 1.5 1.98 2.2 V 0.4 0.9 3V 0.9 1.3 2.2 V 0.3 1.1 3V 0.5 1 MIN MAX UNIT V V V Inputs Px.y, TAx, TBx over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC 2.2 V 62 3V 50 2.2 V 62 3V 50 t(int) External interrupt timing Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag (1) t(cap) Timer_A or Timer_B capture timing TA0, TA1, TA2 TB0, TB1, TB2 f(TAext) Timer_A or Timer_B clock frequency externally applied to pin TACLK, TBCLK, INCLK: t(H) = t(L) Timer_A or Timer_B clock frequency SMCLK or ACLK signal selected f(TBext) f(TAint) f(TBint) (1) UNIT ns ns 2.2 V 8 3V 10 2.2 V 8 3V 10 MHz MHz The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It might be set with trigger signals shorter than t(int). Leakage Current – Ports P1 to P6 (1) 5.7 over recommended operating free-air temperature range (unless otherwise noted) PARAMETER Ilkg(Px.y) (1) (2) Leakage current, Port Px TEST CONDITIONS V(Px.y) (2) VCC = 2.2 V, 3 V MIN MAX UNIT ±50 nA The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted. The port pin must be selected as input. Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 15 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.8 www.ti.com Outputs – Ports P1 to P6 over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOH(max) = –1.5 mA, VCC = 2.2 V VOH High-level output voltage (1) VCC – 0.25 VCC VCC – 0.6 VCC IOH(max) = –1.5 mA, VCC = 3 V (1) VCC – 0.25 VCC VCC – 0.6 VCC IOL(max) = 1.5 mA, VCC = 2.2 V (1) (2) Low-level output voltage MAX IOH(max) = –6 mA, VCC = 2.2 V (2) IOH(max) = –6 mA, VCC = 3 V (2) VOL MIN (1) UNIT V VSS VSS + 0.25 IOL(max) = 6 mA, VCC = 2.2 V (2) VSS IOL(max) = 1.5 mA, VCC = 3 V (1) VSS VSS + 0.25 IOL(max) = 6 mA, VCC = 3 V (2) VSS VSS + 0.6 V VSS + 0.6 The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified voltage drop. 5.9 Output Frequency over recommended operating free-air temperature range (unless otherwise noted) PARAMETER f(Px.y) (1 ≤ × ≤ 6, 0 ≤ y ≤ 7) f(MCLK) P1.1/TA0/MCLK f(SMCLK) P1.4/TBCLK/SMCLK f(ACLK) P1.5/TACLK/ACLK TEST CONDITIONS CL = 20 F, IL = ±1.5 mA 16 Duty cycle of output frequency Specifications VCC = 2.2 V, 3 V TYP dc CL = 20 pF P1.5/TACLK/ACLK, CL = 20 pF, VCC = 2.2 V, 3 V t(Xdc) MIN f(ACLK) = f(LFXT1) = f(XT1) 40% f(ACLK) = f(LFXT1) = f(LF) 30% f(ACLK) = f(LFXT1) P1.1/TA0/MCLK, CL = 20 pF, VCC = 2.2 V, 3 V f(MCLK) = f(XT1) P1.4/TBCLK/SMCLK, CL = 20 pF, VCC = 2.2 V, 3 V f(SMCLK) = f(XT2) MAX UNIT f(System) MHz f(System) MHz 60% 70% 50% 40% 50% – 15 ns f(MCLK) = f(DCOCLK) 60% 50% 40% f(SMCLK) = f(DCOCLK) 50% – 15 ns 50%+ 15 ns 60% 50% 50%+ 15 ns Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.10 Typical Characteristics – Outputs over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) 25 TA = 25°C VCC = 2.2 V P2.7 14 12 I OL - Typical Low-level Output Current - m A I OL - Typical Low-level Output Current - m A 16 TA = 85°C 10 8 6 4 2 0 0.0 0.5 1.0 1.5 2.0 2.5 VOL - L ow-Level Output Voltage - V Figure 5-2. Typical Low-Level Output Current vs Typical LowLevel Output Current I OL - Typical High-level Output Current - m A I OL - Typical High-level Output Current - m A -4 -6 -8 TA = 85°C -12 TA = 25°C -14 0.0 20 TA = 85°C 15 10 5 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 VCC = 2.2 V P2.7 -10 TA = 25°C VOL - L ow-Level Output Voltage - V Figure 5-3. Typical Low-Level Output Current vs Typical LowLevel Output Current 0 -2 VCC = 3 V P2.7 0.5 1.0 1.5 2.0 2.5 VOH - H igh-Level Output Voltage - V Figure 5-4. Typical High-Level Output Current vs Typical HighLevel Output Current VCC = 3 V P2.7 -5 -10 -15 TA = 85°C -20 -25 TA = 25°C -30 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH - High-Level Output Voltage - V Figure 5-5. Typical High-Level Output Current vs Typical HighLevel Output Current Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 17 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.11 www.ti.com Wake-Up From LPM3 over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MAX f = 1 MHz td(LPM3) Delay time 6 f = 2 MHz VCC = 2.2 V, 3 V 6 f = 3 MHz 5.12 UNIT µs 6 RAM over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS (1) MIN CPU halted (1) VRAMh MAX 1.6 UNIT V This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. 5.13 LCD over recommended operating free-air temperature range (unless otherwise noted) PARAMETER V(33) TEST CONDITIONS Voltage at P5.7/R33 V(23) Analog voltage V(13) Voltage at P5.6/R23 Voltage at P5.5/R13 V(33)-V(03) Voltage at R33 to R03 I(R03) R03 = VSS I(R13) Input leakage I(R23) P5.5/R13 = VCC/3 P5.6/R23 = 2 × VCC/3 V(Sxx0) V(Sxx1) V(Sxx2) Segment line voltage V(Sxx3) 18 Specifications I(Sxx) = −3 µA, VCC = 3 V MIN TYP 2.5 MAX [V(33)−V(03)] × 2/3 + V(03) VCC = 3 V UNIT VCC + 0.2 V [V(33)−V(03)] × 1/3 + V(03) 2.5 VCC + 0.2 No load at all segment and common lines, VCC = 3 V ±20 ±20 nA ±20 V(03) V(03) - 1 V(13) V(13) - 1 V(23) V(23) - 1 V(33) V(33) - 1 V Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.14 Comparator_A (1) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC I(CC) CAON = 1, CARSEL = 0, CAREF = 0 I(Refladder/RefDiode) CAON = 1, CARSEL = 0, CAREF = (1,2,3), No load at P1.6/CA0 and P1.7/CA1 MIN TYP MAX 2.2 V 25 40 3V 45 60 2.2 V 30 50 3V 45 71 V(Ref025) (Voltage at 0.25 VCC node) / VCC PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P1.6/CA0 and P1.7/CA1 2.2 V, 3 V 0.23 0.24 0.25 V(Ref050) (Voltage at 0.55 VCC node) / VCC PCA0 = 1, CARSEL = 1, CAREF = 2, No load at P1.6/CA0 and P1.7/CA1 2.2 V, 3 V 0.47 0.48 0.5 2.2 V 390 480 540 3V 400 490 550 V(RefVT) PCA0 = 1, CARSEL = 1, CAREF = 3, See Figure 5-6 and Figure 5-7 No load at P1.6/CA0 and P1.7/CA1, TA = 85°C VIC Common-mode input voltage range CAON = 1 (2) Vp – VS Offset voltage See Vhys Input hysteresis CAON = 1 (1) (2) µA µA mV VCC –1 2.2 V, 3 V 0 2.2 V, 3 V –30 30 mV 2.2 V, 3 V 0 0.7 1.4 mV TA = 25°C, Overdrive 10 mV, without filter: CAF = 0 2.2 V 160 210 300 3V 80 150 240 TA = 25°C, Overdrive 10 mV, with filter: CAF = 1 2.2 V 1.4 1.9 3.4 3V 0.9 1.5 2.6 TA = 25°C, Overdrive 10 mV, without filter: CAF = 0 2.2 V 130 210 300 3V 80 150 240 TA = 25°C, Overdrive 10 mV, with filter: CAF = 1 2.2 V 1.4 1.9 3.4 3V 0.9 1.5 2.6 t(response LH) t(response HL) UNIT V ns µs ns µs The leakage current for the Comparator_A terminals is identical to Ilkg(Px.y) specification. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. 5.15 Comparator_A Typical Characteristics 650 650 VCC = 2.2 V VREF - Reference Voltage - mV VREF - Reference Voltage - mV VCC = 3 V 600 Typical 550 500 450 400 -45 -25 -5 15 35 55 75 95 TA - Free-Air Temperature - °C Figure 5-6. Reference Voltage vs Free-Air Temperature 600 Typical 550 500 450 400 -45 -25 -5 15 35 55 75 95 TA - Free-Air Temperature - °C Figure 5-7. Reference Voltage vs Free-Air Temperature Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 19 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 0V www.ti.com VCC 0 1 CAF CAON To Internal Modules Low-Pass Filter V+ V- + _ 0 0 1 1 CAOUT Set CAIFG Flag t » 2 µs Figure 5-8. Block Diagram of Comparator_A Module VCAOUT Overdrive V- 400 mV V+ t(response) Figure 5-9. Overdrive Definition 20 Specifications Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.16 Power-On Reset (POR) and Brownout Reset (BOR) (1) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP td(BOR) VCC(start) dVCC/dt ≤ 3 V/s (see Figure 5-10) V(B_IT–) dVCC/dt ≤ 3 V/s (see Figure 5-10 through Figure 5-12) Brownout (2) dVCC/dt ≤ 3 V/s (see Figure 5-10) t(reset) Pulse length needed at RST/NMI pin to accepted reset internally, VCC = 2.2 V, 3 V (2) UNIT 2000 µs 0.7 × V(B_IT– ) Vhys(B_IT–) (1) MAX 70 130 V 1.71 V 210 mV 2 µs The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT–) + Vhys(B_IT–) is ≤ 1.8 V. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT–) + Vhys(B_IT–). The default FLL+ settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User's Guide (SLAU056) for more information on the brownout/SVS circuit. VCC Vhys(B_IT-) V(B_IT-) VCC(start) 1 0 td(BOR) Figure 5-10. POR and BOR vs Supply Voltage V CC 2 tpw 3V VCC = 3 V Typical Conditions VCC(drop) - V 1.5 1 V CC(drop) 0.5 0 0.001 1 1000 1 ns tpw - Pulse Width - m s 1 ns tpw - Pulse Width - ms Figure 5-11. VCC(drop) Level with a Square Voltage Drop to Generate a POR or BOR Signal Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 21 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com V CC 2 tpw 3V VCC = 3 V V C C (drop) - V 1.5 Typical Conditions 1 V CC(drop) 0.5 tf = tr 0 0.001 1 1000 tf tr tpw - Pulse Width - ms tpw - Pulse Width - m s Figure 5-12. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR or BOR Signal 5.17 Supply Voltage Supervisor (SVS) and Supply Voltage Monitor (SVM) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN dVCC/dt > 30 V/ms (see Figure 5-13) t(SVSR) SVS on, switch from VLD = 0 to VLD ≠ 0, VCC = 3 V tsettle VLD ≠ 0 (1) V(SVSstart) VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 5-13) 2000 150 1.55 VLD = 1 VCC/dt ≤ 3 V/s (see Figure 5-13) Vhys(SVS_IT–) VCC/dt ≤ 3 V/s (see Figure 5-13), external voltage applied on A7 VCC/dt ≤ 3 V/s (see Figure 5-13) V(SVS_IT–) VCC/dt ≤ 3 V/s (see Figure 5-13), external voltage applied on A7 ICC(SVS) (3) (2) (3) 22 MAX 150 dVCC/dt ≤ 30 V/ms td(SVSon) (1) TYP 5 VLD = 2 to 14 VLD = 15 70 120 µs 12 µs 1.7 V 155 mV V(SVS_IT–) × 0.016 4.4 20 VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.23 VLD = 3 2.05 2.2 2.35 VLD = 4 2.14 2.3 2.46 VLD = 5 2.24 2.4 2.58 VLD = 6 2.33 2.5 2.69 VLD = 7 2.46 2.65 2.84 VLD = 8 2.58 2.8 2.97 VLD = 9 2.69 2.9 3.10 VLD = 10 2.83 3.05 3.26 VLD = 11 2.94 3.2 3.39 VLD = 12 3.11 3.35 3.58 (2) VLD = 13 3.24 3.5 3.73 (2) VLD = 14 3.43 (2) 3.96 (2) VLD = 15 1.1 1.2 1.3 10 15 VLD ≠ 0, VCC = 2.2 V, 3 V µs 300 V(SVS_IT–) × 0.001 3.7 UNIT mV V µA tsettle is the settling time that the comparator output needs to have a stable level after VLD is switched from VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV. The recommended operating voltage range is limited to 3.6 V. The current consumption of the SVS module is not included in the ICC current consumption data. Specifications Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 VCC V(SVS_IT-) V(SVSstart) Software Sets VLD>0: SVS is Active Vhys(SVS_IT-) Vhys(B_IT-) V(B_IT-) VCC(start) Brown Out Region Brownout Region Brownout 1 0 SVSOut t d(BOR) t d(BOR) SVS Circuit is Active From VLD > to VCC < V(B_IT-) 1 0 td(SVSon) Set POR 1 td(SVSR) undefined 0 Figure 5-13. SVS Reset (SVSR) vs Supply Voltage V CC tpw 3V 2 Rectangular Drop V CC(drop) V C C (drop) - V 1.5 Triangular Drop 1 1 ns 1 ns 0.5 V CC t pw 3V 0 1 10 100 1000 tpw - Pulse Width - m s V CC(drop) tf = tr tf tr t - Pulse Width - ms Figure 5-14. VCC(drop) With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 23 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.18 www.ti.com DCO over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC f(DCOCLK) N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0, fCrystal = 32.738 kHz f(DCO=2) FN_8=FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1 f(DCO=27) FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1 f(DCO=2) FN_8 = FN_4 = FN_3 = FN_2 = 1, DCOPLUS = 1 f(DCO=27) FN_8 = FN_4 = FN_3 = FN_2 = 1, DCOPLUS = 1 f(DCO=2) FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1 f(DCO=27) FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1 f(DCO=2) FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1 f(DCO=27) FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1 f(DCO=2) FN_8 = 1, FN_4 = FN_3 = FN_2 = x, DCOPLUS = 1 f(DCO=27) FN_8 = 1, FN_4 = FN_3 = FN_2 = x, DCOPLUS = 1 Sn Step size between adjacent DCO taps: Sn = fDCO(Tap n+1) / fDCO(Tap n) (see Figure 5-16 for taps 21 to 27) Dt Temperature drift, N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 DV Drift with VCC variation, N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 MIN TYP 2.2 V, 3 V f(DCO) f(DCO20°C) MHz 2.2 V 0.3 0.65 1.25 3V 0.3 0.7 1.3 2.2 V 2.5 5.6 10.5 3V 2.7 6.1 11.3 2.2 V 0.7 1.3 2.3 3V 0.8 1.5 2.5 2.2 V 5.7 10.8 18 3V 6.5 12.1 20 2.2 V 1.2 2 3 3V 1.3 2.2 3.5 9 15.5 25 3V 10.3 17.9 28.5 2.2 V 1.8 2.8 4.2 3V 2.1 3.4 5.2 2.2 V 13.5 21.5 33 3V 16 26.6 41 2.2 V 2.8 4.2 6.2 3V 4.2 6.3 9.2 2.2 V 21 32 46 3V 30 46 70 1 < TAP ≤ 20 1.06 1.11 TAP = 27 1.07 1.17 2.2 V –0.2 –0.3 –0.4 3V –0.2 –0.3 –0.4 0 5 15 2.2 V, 3 V f(DCO) 1.0 UNIT 1 2.2 V f(DCO3V) MAX MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz %/°C %/V 1.0 0 1.8 2.4 3.0 3.6 -40 -20 0 20 40 60 85 TA - ° C VCC - V Figure 5-15. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature 24 Specifications Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 S n - S tepsize R atio betw een D C O Taps www.ti.com 1.17 Max 1.11 1.07 1.06 Min 1 20 27 DCO Tap Figure 5-16. DCO Tap Step Size Legend f(DCO) Tolerance at Tap 27 DCO Frequency Adjusted by Bits 9 5 2 to 2 in SCFI1 {N{DCO}} Tolerance at Tap 2 Overlapping DCO Ranges: Uninterrupted Frequency Range FN_2=0 FN_3=0 FN_4=0 FN_8=0 FN_2=1 FN_3=0 FN_4=0 FN_8=0 FN_2=x FN_3=1 FN_4=0 FN_8=0 FN_2=x FN_3=x FN_4=1 FN_8=0 FN_2=x FN_3=x FN_4=x FN_8=1 Figure 5-17. Five Overlapping DCO Ranges Controlled by FN_x Bits Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 25 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.19 www.ti.com Crystal Oscillator, XT1 Oscillator (1) (2) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER CXIN CXOUT TEST CONDITIONS Integrated input capacitance (3) Integrated output capacitance (3) MIN TYP OSCCAPx = 0h, VCC = 2.2 V, 3 V 0 OSCCAPx = 1h, VCC = 2.2 V, 3 V 10 OSCCAPx = 2h, VCC = 2.2 V, 3 V 14 OSCCAPx = 3h, VCC = 2.2 V, 3 V 18 OSCCAPx = 0h, VCC = 2.2 V, 3 V 0 OSCCAPx = 1h, VCC = 2.2 V, 3 V 10 OSCCAPx = 2h, VCC = 2.2 V, 3 V 14 OSCCAPx = 3h, VCC = 2.2 V, 3 V VIL (1) (2) (3) (4) UNIT pF pF 18 VCC = 2.2 V, 3 V (4) Input levels at XIN VIH MAX VSS 0.2 × VCC 0.8 × VCC VCC V The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is (CXIN × CXOUT) / (CXIN+ CXOUT). This is independent of XTS_FLL. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines should be observed. • Keep the trace between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. • Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins. • If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins. • Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. External capacitance is recommended for precision real-time clock applications, OSCCAPx = 0h. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator. 5.20 Crystal Oscillator, XT2 Oscillator (1) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER CXT2IN TEST CONDITIONS Integrated input capacitance CXT2OUT Integrated output capacitance VIL Input levels at XT2IN VIH (1) (2) MIN TYP VCC = 2.2 V, 3 V 2 VCC = 2.2 V, 3 V 2 VCC = 2.2 V, 3 V (2) MAX UNIT pF pF VSS 0.2 × VCC V 0.8 × VCC VCC V The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator. 5.21 USART0 (1) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER t(τ) (1) 26 USART0 deglitch time TEST CONDITIONS MIN TYP MAX VCC = 2.2 V, SYNC = 0, UART mode 200 430 800 VCC = 3 V, SYNC = 0, UART mode 150 280 500 UNIT ns The signal applied to the USART0 receive signal/terminal (URXD0) should meet the timing requirements of t(τ) to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum timing condition of t(τ). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0 line. Specifications Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com 5.22 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 12-Bit ADC, Power Supply and Input Range Conditions (1) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(P6.x/Ax) Analog input voltage range (2) All external Ax terminals, Analog inputs selected in ADC12MCTLx register and P6Sel.x = 1, V(AVSS) ≤ VAx ≤ V(AVCC) IADC12 Operating supply current into the AVCC terminal (3) fADC12CLK = 5.0 MHz, ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0 IREF+ Operating supply current into the AVCC terminal (4) fADC12CLK = 5.0 MHz, ADC12ON = 0, REFON = 1, REF2_5V = 1 fADC12CLK = 5.0 MHz, ADC12ON = 0 REFON = 1, REF2_5V = 0 MAX 3.6 V 0 VAVCC V 0.65 1.3 VCC = 3 V 0.8 1.6 VCC = 3 V 0.5 0.8 VCC = 2.2 V 0.5 0.8 VCC = 3 V 0.5 0.8 Input capacitance Only one terminal can be selected at one VCC = 2.2 V time, Ax RI Input MUX ON resistance 0 V ≤ VAx ≤ VAVCC UNIT 2.2 VCC = 2.2 V CI (1) (2) (3) (4) TYP VCC = 3 V mA mA mA 40 pF 2000 Ω The leakage current is defined in the leakage current table with Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The internal reference supply current is not included in current consumption parameter IADC12. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. 5.23 12-Bit ADC, External Reference (1) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VeREF+ Positive external reference voltage input VeREF+ > VREF–/VeREF– (2) 1.4 VAVCC V VREF–/VeREF– Negative external reference voltage input VeREF+ > VREF–/VeREF– (3) 0 1.2 V (VeREF+ – VREF–/VeREF–) Differential external reference voltage input VeREF+ > VREF–/VeREF– (4) 1.4 VAVCC V IVeREF+ Static input current 0 V ≤ VeREF+ ≤ VAVCC VCC = 2.2 V, 3 V ±1 µA IVREF–/VeREF– Static input current 0 V ≤ VeREF– ≤ VAVCC VCC = 2.2 V, 3 V ±1 µA (1) (2) (3) (4) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 27 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.24 www.ti.com 12-Bit ADC, Built-In Reference over recommended operating free-air temperature range (unless otherwise noted) PARAMETER Positive built in reference voltage output VREF+ TEST CONDITIONS VCC MIN TYP MAX REF2_5V = 1 for 2.5 V, IVREF+max ≤ IVREF+ ≤ IVREF+min 3V 2.4 2.5 2.6 REF2_5V = 0 for 1.5 V, IVREF+max ≤ IVREF+ ≤ IVREF+min 2.2 V, 3 V 1.44 1.5 1.56 V REF2_5V = 0, IVREF+max ≤ IVREF+ ≤ IVREF+min AVCC(min) 2.2 AVCC minimum voltage, REF2_5V = 1, Positive built in reference active IVREF+min ≥ IVREF+ ≥ –0.5 mA 2.8 REF2_5V = 1, IVREF+min ≥ IVREF+ ≥ – 1 mA IL(VREF)+ Load-current regulation, VREF+ terminal IVREF+ = 500 µA ± 100 µA, Analog input voltage ≈ 0.75 V, REF2_5V = 0 –0.5 3V 0.01 –1 mA 3V ±2 IVREF+ = 500 µA ± 100 µA, Analog input voltage ≈ 1.25 V, REF2_5V = 1 3V ±2 LSB IVREF+ = 100 µA → 900 µA, CVREF+ = 5 µF, ax ≈ 0.5 × VREF+, Error of conversion result ≤ 1 LSB 3V 20 ns CVREF+ Capacitance at pin VREF+ TREF+ Temperature coefficient of built- IVREF+ is a constant in the range of in reference 0 mA ≤ IVREF+ ≤ 1 mA tREFON Settle time of internal reference IVREF+ = 0.5 mA, CVREF+ = 10 µF, voltage (see Figure 5-18 ) (2) VREF+ = 1.5 V, VAVCC = 2.2 V (2) 0.01 ±2 Load current regulation, VREF+ terminal (1) 2.2 V 2.2 V IDL(VREF)+ (1) V 2.9 Load current out of VREF+ terminal IVREF+ UNIT REFON =1, 0 mA ≤ IVREF+ ≤ IVREF+max 2.2 V, 3 V 5 10 2.2 V, 3 V LSB µF ±100 ppm/°C 17 ms The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses two capacitors between pins VREF+ and AVSS and VREF-–/VeREF– and AVSS: 10 µF tantalum and 100 nF ceramic. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external capacitive load. CVREF+ 100 mF tREFON » .66 x CVREF+ [ms] with CVREF+ in mF 10 mF 1 mF 0 1 ms 10 ms 100 ms tREFON Figure 5-18. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+ 28 Specifications Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 DV CC1/2 + - From Power Supply DV SS1/2 10µF 100 nF AVCC + - MSP430FG43x AVSS Apply External Reference [VeREF+] or Use Internal Reference [VREF+] 10µF 100 nF VREF+ or V eREF+ + 10µF 100 nF Apply External Reference VREF -/V eREF- + 10µF 100 nF Figure 5-19. Supply Voltage and Reference Voltage Design VREF–/VeREF– External Supply DV CC1/2 From Power Supply + DV SS1/2 10µF 100 nF AVCC + - MSP430FG43x AVSS Apply External Reference [VeREF+] or Use Internal Reference [VREF+] Reference Is Internally Switched to AVSS 10µ F 100 nF VREF+ or VeREF+ + 10µF 100 nF VREF- /VeREF- Figure 5-20. Supply Voltage and Reference Voltage Design VREF–/VeREF– = AVSS, Internally Connected Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 29 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.25 www.ti.com 12-Bit ADC, Timing Parameters over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fADC12CLK ADC12 clock frequency For specified performance of ADC12 linearity parameters 2.2 V, 3 V 0.45 5 6.3 MHz fADC12OSC Internal ADC12 oscillator ADC12DIV = 0, fADC12CLK = fADC12OSC 2.2 V, 3 V 3.7 5 6.3 MHz CVREF+ ≥ 5 µF, Internal oscillator, fADC12OSC = 3.7 MHz to 6.3 MHz 2.2 V, 3 V 2.06 3.51 µs tCONVERT Conversion time tADC12ON Turn on settling time of the ADC See tSample Sampling time RS = 400 Ω,RI = 1000 Ω, CI = 30 pF, τ = [RS +RI] × CI (1) (2) 13 × ADC12DIV × 1/fADC12CLK External fADC12CLK from ACLK, MCLK, or SMCLK, ADC12SSEL ≠ 0 (1) µs 100 (2) 3V 1220 2.2 V 1400 ns ns The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already settled. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) × (RS + RI) x CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance. 5.26 12-Bit ADC, Linearity Parameters over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS 1.4 V ≤ (VeREF+ – VREF–/VeREF–) min ≤ 1.6 V VCC EI Integral linearity error ED Differential linearity error (VeREF+ – VREF–/VeREF–) min ≤ (VeREF+ – VREF–/VeREF–), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V, 3 V EO Offset error (VeREF+ – VREF–/VeREF–) min ≤ (VeREF+ – VREF–/VeREF–), Internal impedance of source RS < 100 Ω, CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V, 3 V EG Gain error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), CVREF+ =10 µF (tantalum) and 100 nF (ceramic) ET Total unadjusted error (VeREF+ – VREF–/VeREF– )min ≤ (VeREF+ – VREF–/VeREF–), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 30 Specifications 1.6 V < (VeREF+ – VREF–/VeREF–) min ≤ VAVCC MIN TYP MAX ±2 2.2 V, 3 V ±1.7 UNIT LSB ±1 LSB ±2 ±4 LSB 2.2 V, 3 V ±1.1 ±2 LSB 2.2 V, 3 V ±2 ±5 LSB Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.27 12-Bit ADC, Temperature Sensor and Built-In VMID over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS TYP MAX 2.2 V 40 120 3V 60 160 ADC12ON = 1, INCH = 0Ah, TA = 0°C 2.2 V, 3V 986 ADC12ON = 1, INCH = 0Ah 2.2 V, 3V 3.55 ± 3% ISENSOR Operating supply current into REFON = 0, INCH = 0Ah, AVCC terminal (1) ADC12ON = NA, TA = 25°C VSENSOR See (2) TCSENSOR tSENSOR(sample) Sample time required if channel 10 is selected (3) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB IVMID Current into divider at channel 11 (4) ADC12ON = 1, INCH = 0Bh AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID ≈ 0.5 × VAVCC VMID tVMID(sample) (1) (2) (3) (4) (5) Sample time required if channel 11 is selected (5) ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB VCC MIN 2.2 V 30 3V 30 mV/°C µs NA 3V NA 2.2 V 1.1 1.10 ± 0.04 3V 1.5 1.50 ± 0.04 1400 3V 1220 µA mV 2.2 V 2.2 V UNIT µA V ns The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON = 1), or (ADC12ON = 1 AND INCH = 0Ah and sample signal is high). When REFON = 1, ISENSOR is already included in IREF+. The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended in order to minimize the offset error of the built-in temperature sensor. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on) No additional current is needed. The VMID is used during sampling. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. 5.28 12-Bit DAC, Supply Specifications over recommended operating free-air temperature range (unless otherwise noted) PARAMETER AVCC TEST CONDITIONS Analog supply voltage VCC AVCC = DVCC, AVSS = DVSS = 0 V IDD DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0800h , VeREF+ = VREF+ = AVCC DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AVCC 2.2 V, 3V DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AVCC PSRR Power-supply rejection ratio (3) (1) (2) (3) (4) (4) DAC12_xDAT = 0800h, VREF = 1.5 V, ΔAVCC = 100 mV DAC12_xDAT = 0800h, VREF = 1.5 V or 2.5 V, ΔAVCC = 100 mV TYP 2.2 DAC12AMPx = 2, DAC12IR = 0, DAC12_xDAT = 0800h Supply current, single DAC channel (1) (2) MIN MAX 3.6 50 110 50 110 200 440 700 1500 UNIT V µA 2.2 V 70 dB 3V No load at the output pin, DAC0 or DAC1, assuming that the control bits for the shared pins are set properly. Current into reference terminals not included. If DAC12IR = 1, current flows through the input divider (see Reference Input specifications). PSRR = 20 × log(ΔAVCC / ΔVDAC12_xOUT). VREF is applied externally. The internal reference is not used. Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 31 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 5.29 12-Bit DAC, Linearity Specifications over recommended operating free-air temperature range (unless otherwise noted) (see Figure 5-21) PARAMETER TEST CONDITIONS Resolution DNL MIN 12-bit monotonic Integral nonlinearity (1) INL VCC Differential nonlinearity (1) Offset voltage without calibration (1) (2) EO Offset voltage with calibration (1) (2) dE(O)/dT Offset error temperature coefficient (1) EG Gain error (1) dE(G)/dT Gain temperature coefficient (1) tOffset Cal Time for offset calibration (3) TYP 12 Vref = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V Vref = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V Vref = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V Vref = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V Vref = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V Vref = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V Vref = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V Vref = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V ±2.0 ±8.0 LSB ±0.4 ±1.0 LSB ±21 mV ±2.5 2.2 V, 3 V VREF = 1.5 V 2.2 V VREF = 2.5 V 3V ±30 µV/°C ±3.5 2.2 V, 3 V %FSR ppm of FSR/°C 10 100 DAC12AMPx = 3, 5 2.2 V, 3 V 32 DAC12AMPx = 4, 6, 7 (2) (3) UNIT bits DAC12AMPx = 2 (1) MAX ms 6 Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first-order equation: y = a + b × x. VDAC12_xOUT = EO + (1 + EG) × (VeREF+ / 4095) × DAC12_xDAT, DAC12IR = 1. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may affect accuracy and is not recommended. DAC VOUT DAC Output V R+ R Load = Ideal transfer function AVCC 2 Offset Error C Load = 100pF Gain Error Positive Negative DAC Code Figure 5-21. Linearity Test Load Conditions and Gain/Offset Definition 32 Specifications Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 INL - Integral Nonlinearity Error - LSB 4 VCC = 2.2 V, V REF = 1.5V DAC12AMPx = 7 DAC12IR = 1 3 2 1 0 -1 -2 -3 -4 0 512 1024 1536 2048 2560 3072 3584 4095 DAC12_xDAT - Digital Code Figure 5-22. Typical INL Error vs Digital Input Data DNL - Differential Nonlinearity Error - LSB 2.0 VCC = 2.2 V, V REF = 1.5V DAC12AMPx = 7 DAC12IR = 1 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 0 512 1024 1536 2048 2560 3072 3584 4095 DAC12_xDAT - Digital Code Figure 5-23. Typical DNL Error vs Digital Input Data Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 33 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 5.30 12-Bit DAC, Output Specifications over recommended operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN No Load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 Output voltage range (1) (see Figure 5-24) VO No Load, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 2.2 V, 3V RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 TYP MAX 0 0.005 AVCC – 0.05 AVCC V 0 0.1 AVCC – 0.13 AVCC CL(DAC12) Maximum DAC12 load capacitance 2.2 V, 3V IL(DAC12) Maximum DAC12 load current 2.2 V –0.5 +0.5 3V –1.0 +1.0 RLoad = 3 kΩ, VO/P(DAC12) < 0.3 V, DAC12AMPx = 7, DAC12_xDAT = 0h RO/P(DAC12) Output resistance (see Figure 5-24) RLoad = 3 kΩ, VO/P(DAC12) > AVCC – 0.3 V, DAC12AMPx = 7, DAC12_xDAT = 0FFFh 2.2 V, 3V RLoad = 3 kΩ, 0.3 V ≤ VO/P(DAC12) ≤ AVCC – 0.3 V DAC12AMPx = 7 (1) UNIT 100 150 250 150 250 1 4 pF mA Ω Data is valid after the offset calibration of the output amplifier. R O/P(DAC12_x) I Load Max R Load AVCC DAC12 2 O/P(DAC12_x) C Load = 100pF Min 0.3 AVCC -0.3V V OUT AVCC Figure 5-24. DAC12_x Output Resistance Tests 34 Specifications Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.31 12-Bit DAC, Reference Input Specifications over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN (1) (2) Reference input voltage DAC12IR = 0 range DAC12IR = 1 (3) VeREF+ Ri(VREF+), (Ri(VeREF+) Reference input resistance 2.2 V, 3 V (4) MAX AVCC / 3 AVCC + 0.2 AVCC AVCC + 0.2 DAC12_0 IR = DAC12_1 IR = 0 20 DAC12_0 IR = 1, DAC12_1 IR = 0 40 48 56 40 48 56 20 24 28 2.2 V, 3 V DAC12_0 IR = 0, DAC12_1 IR = 1 DAC12_0 IR = DAC12_1 IR =1, DAC12_0 SREFx = DAC12_1 SREFx (5) (1) (2) (3) (4) (5) TYP UNIT V MΩ kΩ For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / [3 × (1 + EG)]. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / (1 + EG). When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel, reducing the reference input resistance. 5.32 12-Bit DAC, Dynamic Specifications Vref = VCC, DAC12IR = 1, over recommended operating free-air temperature range (unless otherwise noted) (see Figure 5-25 and Figure 5-26) PARAMETER tON TEST CONDITIONS DAC12_xDAT = 800h, ErrorV(O) < ±0.5 LSB (1) (see Figure 5-25) DAC12 on time VCC MIN DAC12AMPx = 0 → {2, 3, 4} DAC12AMPx = 0 → {5, 6} 2.2 V, 3 V DAC12AMPx = 0 → 7 DAC12AMPx = 2 tS(FS) Settling time, full scale DAC12_xDAT = 80h→F7Fh→80h DAC12AMPx = 3, 5 2.2 V, 3 V DAC12AMPx = 4, 6, 7 tS(C–C) DAC12AMPx = 2 DAC12_xDAT = 3F8h→408h→3F8h BF8h→C08h→BF8h Settling time, code to code 2.2 V, 3 V DAC12AMPx = 3, 5 2.2 V, 3 V 12 200 40 80 15 30 0.12 0.35 0.7 1.5 2.7 µs µs µs V/µs 10 DAC12AMPx = 3, 5 2.2 V, 3 V 10 DAC12AMPx = 4, 6, 7 (1) (2) 6 100 0.05 DAC12AMPx = 2 DAC12_xDAT = 80h→ F7Fh→ 80h 30 1 DAC12AMPx = 4, 6, 7 Glitch energy, full scale 120 15 2 DAC12AMPx = 4, 6, 7 DAC12_xDAT = 80h→ F7Fh→ 80h (2) Slew rate 60 5 DAC12AMPx = 3, 5 DAC12AMPx = 2 SR TYP MAX UNIT nV-s 10 RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 5-25. Slew rate applies to output voltage steps ≥ 200 mV. Conversion 1 V OUT DAC Output I Load R Load = 3 k W Glitch Energy Conversion 2 Conversion 3 +/- 1/2 LSB AVCC 2 R O/P(DAC12.x) +/- 1/2 LSB C Load = 100pF t settleLH t settleHL Figure 5-25. Settling Time and Glitch Energy Testing Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 35 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com Conversion 1 Conversion 2 Conversion 3 V OUT 90% 90% 10% 10% t SRLH t SRHL Figure 5-26. Slew Rate Testing 5.33 12-Bit DAC, Dynamic Specifications (Continued) TA = 25°C unless otherwise noted PARAMETER TEST CONDITIONS VCC MIN DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 3-dB bandwidth, VDC = 1.5 V, VAC = 0.1 VPP (see Figure 5-27) BW–3dB 2.2 V, 3 V 180 DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h (1) MAX UNIT 40 DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h kHz 550 DAC12_0DAT = 800h, No Load, DAC12_1DAT = 80h↔F7Fh, RLoad = 3 kΩ fDAC12_1OUT = 10 kHz with 50/50 duty cycle Channel-to-channel crosstalk (1) (see Figure 5-28) TYP –80 2.2 V, 3 V DAC12_0DAT = 80h↔F7Fh, RLoad = 3 kΩ, DAC12_1DAT = 800h, No Load, fDAC12_0OUT = 10 kHz with 50/50 duty cycle dB –80 RLOAD = 3 kΩ, CLOAD = 100 pF I Load VeREF+ R Load = 3 k W AVCC DAC12_x 2 DACx AC C Load = 100pF DC Figure 5-27. Test Conditions for 3-dB Bandwidth Specification I Load R Load AVCC 2 DAC12_0 DAC0 DAC12_xDAT 080h 7F7h 080h 7F7h 080h V OUT C Load = 100pF VREF+ I Load V DAC12_yOUT R Load AVCC 2 DAC12_1 DAC1 V DAC12_xOUT f Toggle C Load = 100pF Figure 5-28. Crosstalk Test Conditions 36 Specifications Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 5.34 Operational Amplifier (OA), Supply Specifications over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VCC TEST CONDITIONS VCC MIN TYP MAX Fast Mode, RRIP OFF 180 290 Medium Mode, RRIP OFF 110 190 50 80 300 490 190 350 90 190 Supply voltage 2.2 Slow Mode, RRIP OFF Supply current (1) ICC 2.2 V, 3 V Fast Mode, RRIP ON Medium Mode, RRIP ON Slow Mode, RRIP ON PSRR Power supply rejection ratio (1) Non-inverting 2.2 V, 3 V UNIT 3.6 V µA 70 dB P6SEL.x = 1 for each corresponding pin when used in OA input or OA output mode. 5.35 Operational Amplifier (OA), Input/Output Specifications over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VI/P Voltage supply, I/P IIkg Input leakage current, I/P (1) (2) VCC MIN VCC – 1.2 RRIP ON –0.1 VCC + 0.1 TA = –40°C to +55°C –5 ±0.5 5 TA = +55°C to +85°C –20 ±5 20 Medium Mode Voltage noise density, I/P 140 Fast Mode 30 fV(I/P) = 10 kHz Offset voltage, I/P nV/√Hz 65 ±10 Offset temperature drift, I/P See Offset voltage drift with supply, I/P 0.3 V ≤ VIN ≤ VCC – 0.3 V ΔVCC ≤ ±10%, TA = 25°C VOH High-level output voltage, O/P Fast Mode, ISOURCE ≤ –500 µA 2.2 V VCC – 0.2 VCC Slow Mode, ISOURCE ≤ –150 µA 3V VCC – 0.1 VCC VOL Low-level output voltage, O/P Fast Mode, ISOURCE ≤ +500 µA 2.2 V VSS 0.2 Slow Mode, ISOURCE ≤ +150 µA 3V VSS 0.1 (3) 2.2 V, 3 V ±10 2.2 V, 3 V RLoad = 3 kΩ,CLoad = 50 pF, RRIP ON, VO/P(OAx) > AVCC – 0.2 V 2.2 V, 3 V RLoad = 3 kΩ,CLoad = 50 pF, RRIP ON, 0.2 V ≤ VO/P(OAx) ≤ AVCC – 0.2 V (1) (2) (3) (4) Common-mode rejection ratio Non-inverting 2.2 V, 3 V mV µV/°C ±1.5 RLoad = 3 kΩ,CLoad = 50 pF, RRIP ON, VO/P(OAx) < 0.2 V CMRR nA 50 2.2 V, 3 V Output resistance (4) (see Figure 5-29) V 80 fV(I/P) = 1 kHz Slow Mode RO/P (OAx) UNIT 50 Slow Mode Medium Mode VIO MAX –0.1 Fast Mode Vn TYP RRIP OFF 150 250 150 250 0.1 4 mV/V 70 V V Ω dB ESD damage can degrade input current leakage. The input bias current is overridden by the input leakage current. Calculated using the box method. Specification valid for voltage-follower OAx configuration. Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 37 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com R O/P(OAx) Max R Load I Load AVCC 2 OAx C Load O/P(OAx) Min 0.2V AVCC -0.2V AV V OUT CC Figure 5-29. OAx Output Resistance Tests 5.36 Operational Amplifier (OA), Dynamic Specifications over recommended operating free-air temperature range (unless otherwise noted) PARAMETER SR TEST CONDITIONS Slew rate VCC MIN Fast Mode 1.2 Medium Mode 0.8 Slow Mode 0.3 Open-loop voltage gain φm GBW TYP MAX UNIT V/µs 100 dB Phase margin CL = 50 pF 60 deg Gain margin CL = 50 pF 20 dB Non-inverting, Fast Mode, RL = 47 kΩ,CL = 50 pF 2.2 Gain-bandwidth product (see Figure 5-30 and Figure 5-31) 1.4 Non-inverting, Medium Mode, RL = 300 kΩ, CL = 50 pF 2.2 V, 3 V MHz 0.5 Non-inverting, Slow Mode, RL = 300 kΩ, CL = 50 pF ten(on) Enable time on ten(off) Enable time off ton, non-inverting, Gain = 1 2.2 V, 3 V 10 2.2 V, 3 V 20 µs 1 µs 5.37 OA Dynamic Specifications Typical Characteristics 0 140 120 Fast Mode 100 -50 80 Phase - degrees Medium Mode Gain = dB 60 40 20 0 Slow Mode Fast Mode -100 Medium Mode -150 Slow Mode -20 -200 -40 -60 -80 0.001 0.01 0.1 1 10 100 1000 10000 Input Frequency - kHz Figure 5-30. Typical Open-Loop Gain vs Frequency 38 Specifications -250 1 10 100 1000 10000 Input Frequency - kHz Figure 5-31. Typical Phase vs Frequency Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com 5.38 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 Flash Memory over recommended operating free-air temperature range (unless otherwise noted) TEST CONDITIONS PARAMETER VCC MIN TYP MAX UNIT VCC(PGM/ ERASE) Program and erase supply voltage 2.7 3.6 V fFTG Flash timing generator frequency 257 476 kHz IPGM Supply current from DVCC during program 5 mA IERASE Supply current from DVCC during erase 7 mA tCPT Cumulative program time See (1) 2.7 V, 3.6 V 10 ms tCMErase Cumulative mass erase time See (2) 2.7 V, 3.6 V 2.7 V, 3.6 V 3 2.7 V, 3.6 V 3 200 4 Program and erase endurance 10 10 tRetention Data retention duration tWord Word or byte program time 35 Block program time for first byte or word 30 tBlock, 0 TJ = 25°C ms 5 years tBlock, 1-63 Block program time for each additional byte or word tBlock, End Block program end-sequence wait time tMass Erase Mass erase time 5297 tSeg Erase Segment erase time 4819 (1) (2) (3) See cycles 100 21 (3) tFTG 6 The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word or byte write and block write modes. The mass erase duration generated by the flash timing generator is at least 11.1 ms ( = 5297 × 1/fFTG,max = 5297 × 1 / 476 kHz). To achieve the required cumulative mass erase time the Flash Controller's mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required). These values are hard-wired into the flash controller's state machine (tFTG = 1 / fFTG). 5.39 JTAG Interface over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS fTCK TCK input frequency See (1) RInternal Internal pullup resistance on TMS, TCK, TDI/TCLK See (2) (1) (2) MAX UNIT 2.2 V VCC MIN 0 TYP 5 MHz 3V 0 10 MHz 2.2 V, 3 V 25 90 kΩ 60 fTCK may be restricted to meet the timing requirements of the module selected. TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions. 5.40 JTAG Fuse (1) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TDI/TCLK for fuse-blow IFB Supply current into TDI/TCLK during fuse blow tFB Time to blow fuse (1) TEST CONDITIONS TA = 25°C MIN MAX 2.5 6 UNIT V 7 V 100 mA 1 ms After the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Specifications 39 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6 Detailed Description 6.1 CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator 40 Detailed Description SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com 6.2 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 Instruction Set The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 6-1 shows examples of the three types of instruction formats; Table 6-2 lists the address modes. Table 6-1. Instruction Word Formats INSTRUCTION FORMAT EXAMPLE OPERATION Dual operands, source-destination ADD R4,R5 R4 + R5 → R5 Single operands, destination only CALL R8 PC→(TOS), R8 →PC Relative jump, un/conditional JNE Jump-on-equal bit = 0 Table 6-2. Address Mode Descriptions (1) ADDRESS MODE S (1) D (1) SYNTAX EXAMPLE Register ✓ ✓ MOV Rs,Rd MOV R10,R11 R10 → R11 Indexed ✓ ✓ MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5)→ M(6+R6) Symbolic (PC relative) ✓ ✓ MOV EDE,TONI Absolute ✓ ✓ MOV & MEM, & TCDAT Indirect ✓ MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect autoincrement ✓ MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2→ R10 Immediate ✓ MOV #X,TONI MOV #45,TONI #45 → M(TONI) OPERATION M(EDE) → M(TONI) M(MEM) → M(TCDAT) S = source D = destination Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 41 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.3 www.ti.com Operating Modes The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: • Active mode (AM) – All clocks are active • Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active. MCLK is disabled – FLL+ loop control remains active • Low-power mode 1 (LPM1) – CPU is disabled – FLL+ loop control is disabled – ACLK and SMCLK remain active. MCLK is disabled • Low-power mode 2 (LPM2) – CPU is disabled – MCLK, FLL+ loop control and DCOCLK are disabled – DCO's dc-generator remains enabled – ACLK remains active • Low-power mode 3 (LPM3) – CPU is disabled – MCLK, FLL+ loop control, and DCOCLK are disabled – DCO's dc-generator is disabled – ACLK remains active • Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK, FLL+ loop control, and DCOCLK are disabled – DCO's dc-generator is disabled – Crystal oscillator is stopped 42 Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com 6.4 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 Interrupt Vector Addresses The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 6-3. Interrupt Sources, Flags, and Vectors of MSP430FG43x Configurations INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-Up External Reset Watchdog Flash Memory WDTIFG KEYV (1) Reset 0FFFEh 15, highest NMI Oscillator Fault Flash Memory Access Violation NMIIFG (1) OFIFG (1) ACCVIFG (1) (Non)maskable (2) (Non)maskable (Non)maskable 0FFFCh 14 Timer_B3 TBCCR0 CCIFG0 (3) Maskable 0FFFAh 13 Timer_B3 TBCCR1 CCIFG1 and TBCCR2 CCIFG2, TBIFG (1) (3) Maskable 0FFF8h 12 Comparator_A CAIFG Maskable 0FFF6h 11 Watchdog Timer WDTIFG Maskable 0FFF4h 10 USART0 Receive URXIFG0 Maskable 0FFF2h 9 USART0 Transmit UTXIFG0 Maskable 0FFF0h 8 Maskable 0FFEEh 7 Maskable 0FFECh 6 Maskable 0FFEAh 5 Maskable 0FFE8h 4 Maskable 0FFE6h 3 0FFE4h 2 Maskable 0FFE2h 1 Maskable 0FFE0h 0, lowest ADC12 ADC12IFG Timer_A3 Timer_A3 I/O Port P1 (Eight Flags) DAC12 DMA I/O Port P2 (Eight Flags) TACCR0 CCIFG0 (3) TACCR1 CCIFG1 and TACCR2 CCIFG2, TAIFG (1) (3) P1IFG.0 to P1IFG.7 (1) (3) DAC12.0IFG, DAC12.1IFG, DMA0IFG P2IFG.0 to P2IFG.7 Basic Timer1 (1) (2) (3) (1) (3) BTIFG (1) (3) (1) (3) Multiple source flags (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. Interrupt flags are located in the module. Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 43 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.5 www.ti.com Special Function Registers (SFRs) The MSP430 SFRs are located in the lowest address space and are organized as byte-mode registers. SFRs should be accessed with byte instructions. Legend rw Bit can be read and written. rw-0, rw-1 Bit can be read and written. It is Reset or Set by PUC. rw-(0), rw-1 Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device. 6.5.1 Interrupt Enable Registers 1 and 2 Figure 6-1. Interrupt Enable Register 1 (Address = 0h) 7 UTXIE0 rw–0 6 URXIE0 rw–0 5 ACCVIE rw–0 4 NMIIE rw–0 3 2 1 OFIE rw–0 0 WDTIE rw–0 Table 6-4. Interrupt Enable Register 1 Field Descriptions BIT FIELD TYPE RESET DESCRIPTION 7 UTXIE0 RW 0h USART0: UART and SPI transmit-interrupt enable 6 URXIE0 RW 0h USART0: UART and SPI receive-interrupt enable 5 ACCVIE RW 0h Flash access violation interrupt enable 4 NMIIE RW 0h Nonmaskable-interrupt enable 1 OFIE RW 0h Oscillator-fault-interrupt enable 0 WDTIE RW 0h Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured as a general-purpose timer. Figure 6-2. Interrupt Enable Register 2 (Address = 1h) 7 BTIE rw–0 6 5 4 3 2 1 0 Table 6-5. Interrupt Enable Register 2 Field Descriptions BIT 7 44 FIELD TYPE RESET DESCRIPTION BTIE RW 0h Basic timer interrupt enable Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com 6.5.2 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 Interrupt Flag Registers 1 and 2 Figure 6-3. Interrupt Flag Register 1 (Address = 2h) 7 UTXIFG0 rw–1 6 URXIFG0 rw–0 5 4 NMIIFG rw–0 3 2 1 OFIFG rw–1 0 WDTIFG rw–(0) Table 6-6. Interrupt Flag Register 1 Field Descriptions BIT FIELD TYPE RESET DESCRIPTION 7 UTXIFG0 RW 1h USART0: UART and SPI transmit flag 6 URXIFG0 RW 0h USART0: UART and SPI receive flag 4 NMIIFG RW 0h Set by RST/NMI pin 1 OFIFG RW 1h Flag set on oscillator fault 0 WDTIFG RW 0h Set on watchdog timer overflow (in watchdog mode) or security key violation Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode Figure 6-4. Interrupt Flag Register 2 (Address = 3h) 7 BTIFG rw–0 6 5 4 3 2 1 0 1 0 1 0 Table 6-7. Interrupt Flag Register 2 Field Descriptions BIT FIELD TYPE RESET DESCRIPTION 7 BTIFG RW 0h Basic timer flag 6.5.3 Module Enable Registers 1 and 2 Figure 6-5. Module Enable Register 1 (Address = 4h) 7 UTXE0 rw–0 6 URXE0 USPIE0 rw–0 5 4 3 2 Table 6-8. Module Enable Register 1 Field Descriptions BIT FIELD TYPE RESET DESCRIPTION 7 UTXE0 RW 0h USART0: UART mode transmit enable URXE0 RW 0h USART0: UART mode receive enable USPIE0 RW 0h USART0: SPI mode transmit and receive enable 6 Figure 6-6. Module Enable Register 2 (Address = 5h) 7 6 5 4 3 2 Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 45 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.6 www.ti.com Memory Organization Table 6-9 shows the memory organization for all device variants. Table 6-9. Memory Organization MSP430FG437 MSP430FG438 Size 32KB 48KB 60KB Main: interrupt vector Flash 0FFFFh-0FFE0h 0FFFFh-0FFE0h 0FFFFh-0FFE0h Main: code memory Flash 0FFFFh-08000h 0FFFFh-04000h 0FFFFh-01100h Information memory Size 256 Byte 256 Byte 256 Byte Flash 010FFh-01000h 010FFh-01000h 010FFh-01000h Memory Boot memory RAM Size 1KB 1KB 1KB ROM 0FFFh-0C00h 0FFFh-0C00h 0FFFh-0C00h Size Peripherals 1KB 2KB 2KB 05FFh-0200h 09FFh-0200h 09FFh-0200h 16-bit 01FFh-0100h 01FFh-0100h 01FFh-0100h 8-bit 0FFh-010h 0FFh-010h 0FFh-010h 0Fh-00h 0Fh-00h 0Fh-00h 8-bit SFR 46 Detailed Description MSP430FG439 Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com 6.7 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 Bootstrap Loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see MSP430 Programming Via the Bootstrap Loader (BSL) (SLAU319). 6.8 BSL FUNCTION PN PACKAGE PINS ZCA PACKAGE PINS Data Transmit 67 – P1.0 D8 – P1.0 Data Receiver 66 – P1.1 D9 – P1.1 Flash Memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A and B can be erased individually, or as a group with segments 0 to n. Segments A and B are also called information memory. • New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. 32KB 48KB 60KB 0FFFFh 0FFFFh 0FFFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh Segment 0 with Interrupt Vectors Segment 1 Segment 2 Main Memory 08400h 083FFh 04400h 043FFh 01400h 013FFh 08200h 081FFh 04200h 041FFh 01200h 011FFh 08000h 010FFh 04000h 010FFh 01100h 010FFh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01000h 01000h 01000h Segment n-1 Segment n (see Note A) Segment A Information Memory Segment B A. MSP430FG43x flash segment n = 256 bytes. Figure 6-7. Flash Memory Segments Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 47 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.9 www.ti.com Peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x4xx Family User's Guide (SLAU056). 6.9.1 DMA Controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral. 6.9.2 Oscillator and System Clock The clock system in the MSP430FG43x family of devices is supported by the FLL+ module, which includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO), and a high frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The FLL+ module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal • Main clock (MCLK), the system clock used by the CPU • Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules • ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8 6.9.3 Brownout, Supply Voltage Supervisor The brownout circuit is implemented to provide the proper internal reset signal to the device during poweron and power-off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must make sure that the default FLL+ settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). 6.9.4 Digital I/O There are six 8-bit I/O ports implemented—ports P1 through P6: • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt conditions is possible. • Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. • Read and write access to port-control registers is supported by all instructions 6.9.5 Basic Timer1 The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 can be used to generate periodic interrupts and clock for the LCD module. 48 Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com 6.9.6 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 LCD Drive The LCD driver generates the segment and common signals required to drive an LCD display. The LCD controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. 6.9.7 OA The MSP430FG43x has three configurable low-current general-purpose operational amplifiers. Each OA input and output terminal is software-selectable and offers a flexible choice of connections for various applications. The OA op amps primarily support front-end analog signal conditioning prior to analog-todigital conversion. 6.9.8 Watchdog Timer (WDT) The primary function of the WDT module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. 6.9.9 USART0 The MSP430FG43x has one hardware universal synchronous/asynchronous receive transmit (USART) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. 6.9.10 Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-10. Timer_A3 Signal Connections INPUT PIN NUMBER ZCA PN DEVICE INPUT SIGNAL MODULE INPUT NAME B10 - P1.5 62 - P1.5 TACLK TACLK ACLK ACLK SMCLK SMCLK B10 - P1.5 62 - P1.5 TACLK INCLK D8 - P1.0 67 - P1.0 TA0 CCI0A D9 - P1.1 66 - P1.1 TA0 CCI0B B9 - P1.2 C11 - P2.0 65 - P1.2 59 - P2.0 DVSS GND DVCC VCC TA1 MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0 OUTPUT PIN NUMBER PN ZCA 67 - P1.0 D8 - P1.0 B9 - P1.2 TA0 CCI1A 65 - P1.2 CAOUT (internal) CCI1B ADC12 (internal) DVSS GND DVCC VCC TA2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC CCR1 TA1 59 - P2.0 CCR2 C11 - P2.0 TA2 Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 49 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6.9.11 Timer_B3 Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-11. Timer_B3 Signal Connections INPUT PIN NUMBER ZCA PN DEVICE INPUT SIGNAL E9 - P1.4 63 - P1.4 TBCLK MODULE INPUT NAME TBCLK ACLK ACLK SMCLK SMCLK MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA OUTPUT PIN NUMBER PN ZCA D11 - P2.1 E9 - P1.4 63 - P1.4 TBCLK INCLK D11 - P2.1 58 - P2.1 TB0 CCI0A 58 - P2.1 TB0 CCI0B ADC12 (internal) D11 - P2.1 58 - P2.1 DVSS GND DVCC VCC CCR0 TB0 E11 - P2.2 57 - P2.2 TB1 CCI1A 57 - P2.2 E11 - P2.2 57 - P2.2 TB1 CCI1B ADC12 (internal) DVSS GND DVCC VCC F11 - P2.3 56 - P2.3 TB2 CCI2A F11 - P2.3 56 - P2.3 TB2 CCI2B DVSS GND DVCC VCC CCR1 TB1 56 - P2.3 CCR2 E11 - P2.2 F11 - P2.3 TB2 6.9.12 Comparator_A The primary function of the comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. 6.9.13 ADC12 The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. 6.9.14 DAC12 The DAC12 module is a 12-bit, R-ladder, voltage output DAC. The DAC12 may be used in 8- or 12-bit mode, and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation. 50 Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.9.15 Peripheral File Map Table 6-12 shows peripherals with word-access registers, and Table 6-13 shows peripherals with byteaccess registers. Table 6-12. Peripherals With Word Access PERIPHERAL REGISTER NAME ACRONYM OFFSET Watchdog Watchdog timer control WDTCTL 0120h Timer_B3 Capture/compare register 2 TBCCR2 0196h Capture/compare register 1 TBCCR1 0194h Capture/compare register 0 TBCCR0 0192h Timer_B register TBR 0190h Capture/compare control 2 TBCCTL2 0186h Capture/compare control 1 TBCCTL1 0184h Capture/compare control 0 TBCCTL0 0182h Timer_B control TBCTL 0180h Timer_B interrupt vector TBIV 011Eh Capture/compare register 2 TACCR2 0176h Capture/compare register 1 TACCR1 0174h Capture/compare register 0 TACCR0 0172h Timer_A register TAR 0170h Capture/compare control 2 TACCTL2 0166h Capture/compare control 1 TACCTL1 0164h Capture/compare control 0 TACCTL0 0162h Timer_A control TACTL 0160h Timer_A interrupt vector TAIV 012Eh Flash control 3 FCTL3 012Ch Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h DMA module control 0 DMACTL0 0122h DMA module control 1 DMACTL1 0124h DMA channel 0 control DMA0CTL 01E0h DMA channel 0 source address DMA0SA 01E2h DMA channel 0 destination address DMA0DA 01E4h DMA channel 0 transfer size DMA0SZ 01E6h Timer_A3 Flash DMA Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 51 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com Table 6-12. Peripherals With Word Access (continued) PERIPHERAL ADC12 (See also Table 6-13) DAC12 REGISTER NAME ACRONYM OFFSET Conversion memory 15 ADC12MEM15 015Eh Conversion memory 14 ADC12MEM14 015Ch Conversion memory 13 ADC12MEM13 015Ah Conversion memory 12 ADC12MEM12 0158h Conversion memory 11 ADC12MEM11 0156h Conversion memory 10 ADC12MEM10 0154h Conversion memory 9 ADC12MEM9 0152h Conversion memory 8 ADC12MEM8 0150h Conversion memory 7 ADC12MEM7 014Eh Conversion memory 6 ADC12MEM6 014Ch Conversion memory 5 ADC12MEM5 014Ah Conversion memory 4 ADC12MEM4 0148h Conversion memory 3 ADC12MEM3 0146h Conversion memory 2 ADC12MEM2 0144h Conversion memory 1 ADC12MEM1 0142h Conversion memory 0 ADC12MEM0 0140h Interrupt-vector-word register ADC12IV 01A8h Interrupt-enable register ADC12IE 01A6h Interrupt-flag register ADC12IFG 01A4h Control register 1 ADC12CTL1 01A2h Control register 0 ADC12CTL0 01A0h DAC12_1 data DAC12_1DAT 01CAh DAC12_1 control DAC12_1CTL 01C2h DAC12_0 data DAC12_0DAT 01C8h DAC12_0 control DAC12_0CTL 01C0h Table 6-13. Peripherals With Byte Access PERIPHERAL OA2 OA1 OA0 LCD REGISTER NAME OFFSET OA2CTL1 0C5h Operational Amplifier 2 control register 0 OA2CTL0 0C4h Operational Amplifier 1 control register 1 OA1CTL1 0C3h Operational Amplifier 1 control register 0 OA1CTL0 0C2h Operational Amplifier 0 control register 1 OA0CTL1 0C1h Operational Amplifier 0 control register 0 OA0CTL0 0C0h LCD memory 20 LCDM20 0A4h ⋮ ⋮ ⋮ LCD memory 16 LCDM16 0A0h LCD memory 15 LCDM15 09Fh ⋮ 52 ACRONYM Operational Amplifier 2 control register 1 ⋮ ⋮ LCD memory 1 LCDM1 091h LCD control and mode LCDCTL 090h Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 Table 6-13. Peripherals With Byte Access (continued) PERIPHERAL ADC12 (Memory control registers require byte access) REGISTER NAME ACRONYM OFFSET ADC memory-control register 15 ADC12MCTL15 08Fh ADC memory-control register 14 ADC12MCTL14 08Eh ADC memory-control register 13 ADC12MCTL13 08Dh ADC memory-control register 12 ADC12MCTL12 08Ch ADC memory-control register 11 ADC12MCTL11 08Bh ADC memory-control register 10 ADC12MCTL10 08Ah ADC memory-control register 9 ADC12MCTL9 089h ADC memory-control register 8 ADC12MCTL8 088h ADC memory-control register 7 ADC12MCTL7 087h ADC memory-control register 6 ADC12MCTL6 086h ADC memory-control register 5 ADC12MCTL5 085h ADC memory-control register 4 ADC12MCTL4 084h ADC memory-control register 3 ADC12MCTL3 083h ADC memory-control register 2 ADC12MCTL2 082h ADC memory-control register 1 ADC12MCTL1 081h ADC memory-control register 0 ADC12MCTL0 080h Transmit buffer U0TXBUF 077h Receive buffer U0RXBUF 076h Baud rate U0BR1 075h Baud rate U0BR0 074h Modulation control U0MCTL 073h Receive control U0RCTL 072h Transmit control U0TCTL 071h USART control U0CTL 070h Comparator_A port disable CAPD 05Bh Comparator_A control 2 CACTL2 05Ah Comparator_A control 1 CACTL1 059h BrownOUT, SVS SVS control register (Reset by brownout signal) SVSCTL 056h FLL+ Clock FLL+ Control 1 FLL_CTL1 054h FLL+ Control 0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h BT counter 2 BTCNT2 047h BT counter 1 BTCNT1 046h BT control BTCTL 040h Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h USART0 (UART or SPI mode) Comparator_A Basic Timer1 Port P6 Port P5 Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 53 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com Table 6-13. Peripherals With Byte Access (continued) PERIPHERAL Port P4 Port P3 Port P2 Port P1 Special functions 54 REGISTER NAME ACRONYM OFFSET Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR module enable 2 ME2 005h SFR module enable 1 ME1 004h SFR interrupt flag 2 IFG2 003h SFR interrupt flag 1 IFG1 002h SFR interrupt enable 2 IE2 001h SFR interrupt enable 1 IE1 000h Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.10 Input/Output Schematics 6.10.1 Port P1, P1.0 to P1.5, Input/Output With Schmitt Trigger Pad Logic DVSS DVSS CAPD.x P1SEL.x 0: Input 1: Output 0 P1DIR.x Direction Control From Module 1 0 1 P1OUT.x Module X OUT Bus Keeper P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1IN.x EN D Module X IN P1IE.x P1IRQ.x P1IFG.x EN Q Set Interrupt Edge Select P1IES.x P1SEL.x Note: 0 ≤ x ≤ 5 Note: Port function is active if CAPD.x = 0 (1) (2) PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN PnIE.x PnIFG.x PnIES.x P1SEL.0 P1DIR.0 P1DIR.0 P1OUT0 Out0 sig. (1) P1IN.0 CCI0A (1) P1IE.0 P1IFG.0 P1IES.0 (1) P1SEL.1 P1DIR.1 P1DIR.1 P1OUT.1 MCLK P1IN.1 CCI0B P1IE.1 P1IFG.1 P1IES.1 P1SEL.2 P1DIR.2 P1DIR.2 P1OUT.2 Out1 sig. (1) P1IN.2 CCI1A (1) P1IE.2 P1IFG.2 P1IES.2 P1SEL.3 P1DIR.3 P1DIR.3 P1OUT.3 SVSOUT P1IN.3 TBOUTH (2) P1IE.3 P1IFG.3 P1IES.3 P1SEL.4 P1DIR.4 P1DIR.4 P1OUT.4 SMCLK P1IN.4 TBCLK (2) P1IE.4 P1IFG.4 P1IES.4 P1SEL.5 P1DIR.5 P1DIR5 P1OUT.5 ACLK P1IN.5 TACLK (1) P1IE.5 P1IFG.5 P1IES.5 Timer_A Timer_B Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 55 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6.10.2 Port P1, P1.6 and P1.7, Input/Output With Schmitt Trigger Pad Logic Note: Port function is active if CAPD.6 = 0 CAPD.6 P1SEL.6 0: Input 1: Output 0 P1DIR.6 P1.6/ CA0 1 P1DIR.6 0 P1OUT.6 1 DV SS Bus Keeper P1IN.6 EN unused D P1IE.7 P1IRQ.07 EN Interrupt Edge Select Q P1IFG.7 Set P1IES.x P1SEL.x Comparator_A P2CA AVcc CAREF CAEX CA0 CAF CCI1B + to Timer_Ax - CA1 2 CAREF Reference Block Pad Logic CAPD.7 Note: Port function is active if CAPD.7 = 0 P1SEL.7 0: input 1: output 0 P1DIR.7 P1.7/ CA1 1 P1DIR.7 0 P1OUT.7 1 DV SS Bus keeper P1IN.7 EN unused P1IRQ.07 D P1IE.7 P1IFG.7 EN Q Set Interrupt Edge Select P1IES.7 56 Detailed Description P1SEL.7 Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.10.3 Port P2, P2.0 and P2.4 to P2.5, Input/Output With Schmitt Trigger Pad Logic DVSS DVSS P2SEL.x 0: Input 1: Output 0 P2DIR.x Direction Control From Module 1 0 1 P2OUT.x Module X OUT Bus Keeper P2.0/TA2 P2.4/UTXD0 P2IN.x P2.5/URXD0 EN D Module X IN P2IE.x P2IRQ.x P2IFG.x EN Q Set Interrupt Edge Select P2IES.x Note: (1) (2) P2SEL.x x {0,4,5} PnSel.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN PnIE.x PnIFG.x PnIES.x P2Sel.0 P2DIR.0 P2DIR.0 P2OUT.0 Out2 sig. (1) P2IN.0 CCI2A (1) P2IE.0 P2IFG.0 P2IES.0 P2Sel.4 P2DIR.4 DVCC P2OUT.4 UTXD0 (2) P2IN.4 unused P2IE.4 P2IFG.4 P2IES.4 P2Sel.5 P2DIR.5 DVSS P2OUT.5 DVSS P2IN.5 URXD0 (2) P2IE.5 P2IFG.5 P2IES.5 Timer_A USART0 Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 57 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6.10.4 Port P2, P2.1 to P2.3, Input/Output With Schmitt Trigger Pad Logic DVSS DVSS Module IN of pin P1.3/TBOUTH/SVSOUT P1DIR.3 P1SEL.3 P2SEL.x 0: Input 1: Output 0 P2DIR.x Direction Control From Module P2OUT.x 1 0 1 Module X OUT Bus Keeper P2.1/TB0 P2.2/TB1 P2IN.x P2.3/TB2 EN Module X IN D P2IE.x P2IRQ.x Q P2IFG.x EN Set Interrupt Edge Select P2IES.x P2SEL.x Note: 1 ≤ x ≤ 3 PnSel.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN PnIE.x PnIFG.x PnIES.x P2Sel.1 P2DIR.1 P2DIR.1 P2OUT.1 Out0 sig. (1) P2IN.1 CCI0A (1) CCI0B P2IE.1 P2IFG.1 P2IES.1 P2IE.2 P2IFG.2 P2IES.2 P2IE.3 P2IFG.3 P2IES.3 P2Sel.2 P2Sel.3 (1) 58 P2DIR.2 P2DIR.3 P2DIR.2 P2DIR.3 P2OUT.2 P2OUT.3 Out1 sig. (1) Out2 sig. (1) (1) P2IN.2 CCI1A CCI1B (1) P2IN.3 CCI2A CCI2B Timer_B Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.10.5 Port P2, P2.6 and P2.7, Input/Output With Schmitt Trigger 0: Port active 1: Segment xx function active Pad Logic Port/LCD Segment xx P2SEL.x 0: Input 1: Output 0 P2DIR.x Direction Control From Module 1 0 P2OUT.x 1 Module X OUT Bus Keeper P2.6/CAOUT/S19 P2.7/ADC12CLK/S18 P2IN.x EN Module X IN D P2IE.x P2IRQ.x P2IFG.x EN Interrupt Edge Select Q Set P2IES.x P2SEL.x Note: 6 ≤ x ≤ 7 PnSel.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN PnIE.x PnIFG.x PnIES.x Port/LCD P2Sel.6 P2DIR.6 P2DIR.6 P2OUT.6 CAOUT (1) P2IN.6 unused P2IE.6 P2IFG.6 P2IES.6 0: LCDPx < 02h P2IN.7 unused P2IE.7 P2IFG.7 P2IES.7 0: LCDPx < 02h P2Sel.7 (1) (2) P2DIR.7 P2DIR.7 P2OUT.7 ADC12CLK (2) Comparator_A ADC12 Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 59 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6.10.6 Port P3, P3.0 to P3.3, Input/Output With Schmitt Trigger MSP430x43xIPN (80-Pin) Only 0: Port active 1: Segment xx function active LCDPx[0] LCDPx[1] LCDPx[2] Pad Logic x43xIPZ and x44xIPZ have not segment Function on Port P3: Both lines are low. Segment xx P3SEL.x 0: Input 1: Output 0 P3DIR.x Direction Control From Module 1 0 1 P3OUT.x Module X OUT Bus Keeper P3.0/STE0/S31 P3.1/SIMO0/S30 P3.2/SOMI0/S29 P3.3/UCLK0/S28 P3IN.x EN D Module X IN Note: 0 ≤ x ≤ 3 Direction Control From Module PnOUT.x P3DIR.0 DVSS P3DIR.1 DCM_SIMO0 P3DIR.2 P3DIR.3 PnSel.x PnDIR.x P3Sel.0 P3Sel.1 P3Sel.2 P3Sel.3 Module X OUT PnIN.x P3OUT.0 DVSS P3IN.0 STE0(in) P3OUT.1 SIMO0(out) P3IN.1 SIMO0(in) DCM_SOMI0 P3OUT.2 SOMIO(out) P3IN.2 SOMI0(in) DCM_UCLK0 P3OUT.3 UCLK0(out) P3IN.3 UCLK0(in) Direction Control for SIMO0 and UCLK0 SYNC MM 60 DCM_SIMO0 DCM_UCLK0 Direction Control for SOMI0 SYNC MM STC STC STE STE Detailed Description Module X IN DCM_SOMI0 Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.10.7 Port P3, P3.4 to P3.7, Input/Output With Schmitt Trigger 0: Port active 1: Segment xx function active Pad Logic LCDPx[2] Segment xx P3SEL.x 0: Input 1: Output 0 P3DIR.x Direction Control From Module 1 0 P3OUT.x 1 Module X OUT Bus Keeper P3.4/S27 P3.5/S26 P3.6/S25/DMAE0 P3.7/S24 P3IN.x EN Module X IN D Note: 4 ≤ x ≤ 7 PnSel.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P3SEL.4 P3DIR.4 P3DIR.4 P3OUT.4 DVSS P3IN.4 unused P3SEL.5 P3DIR.5 P3DIR.5 P3OUT.5 DVSS P3IN.5 unused P3SEL.6 P3DIR.6 P3DIR.6 P3OUT.6 DVSS P3IN.6 DMAE0 P3SEL.7 P3DIR.7 P3DIR.7 P3OUT.7 DVSS P3IN.7 unused Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 61 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6.10.8 Port P4, P4.0 to P4.5, Input/Output With Schmitt Trigger 0: Port active 1: Segment xx function active Pad Logic Port/LCD Segment xx P4SEL.x 0: Input 1: Output 0 P4DIR.x Direction Control From Module 1 0 1 P4OUT.x Module X OUT Bus Keeper P4.0/S9 P4.1/S8 P4.2/S7 P4.3/S6 P4.4/S5 P4.5/S4 P4IN.x EN Module X IN D Note: 0 ≤ x ≤ 5 62 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P4SEL.0 P4DIR.0 P4DIR.0 P4OUT.0 DVSS P4IN.0 unused P4SEL.1 P4DIR.1 P4DIR.1 P4OUT.1 DVSS P4IN.1 unused P4SEL.2 P4DIR.2 P4DIR.2 P4OUT.2 DVSS P4IN.2 unused P4SEL.3 P4DIR.3 P4DIR.3 P4OUT.3 DVSS P4IN.3 unused P4SEL.4 P4DIR.4 P4DIR.4 P4OUT.4 DVSS P4IN.4 unused P4SEL.5 P4DIR.5 P4DIR.5 P4OUT.5 DVSS P4IN.5 unused DEVICE PORT BITS PORT FUNCTION LCD SEGMENT FUNCTION MSP430FG43x P4.0 to P4.5 LCDPx < 01h LCDPx ≥ 01h Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.10.9 Port P4, P4.6, Input/Output With Schmitt Trigger INCH=15(1) a15 (1) 0: Segment S3 disabled 1: Segment S3 enabled Pad Logic 1, If LCDPx ≥ 01h Segment S3 P4SEL.6 0: input 1: output 0 P4DIR.6 Direction Control From Module 1 0 P4OUT.6 1 Module XOUT Bus keeper P4.6/S3/A15 P4IN.6 EN D Module X IN (1) Signal from or to ADC12 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P4SEL.6 P4DIR.6 P4DIR.6 P4OUT.6 DVSS P4IN.6 unused DEVICE PORT BITS PORT FUNCTION LCD SEGMENT FUNCTION MSP430FG43x P4.6 LCDPx < 01h LCDPx ≥ 01h Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 63 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6.10.10 Port P4, P4.7, Input/Output With Schmitt Trigger INCH=14 (1) a14 (1) OAADC0 0: Segment S2 disabled 1: Segment S2 enabled Pad Logic 1, If LCDPx ≥ 01h Segment S2 P4SEL.7 0: input 1: output 0 P4DIR.7 Direction Control From Module 1 0 P4OUT.7 1 Module XOUT Bus keeper P4.7/S2/A14 P4IN.7 EN D Module X IN (1) 64 Signal from or to ADC12 PnSel.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P4Sel.7 P4DIR.7 P4DIR.7 P4OUT.7 DVSS P4IN.7 Unused DEVICE PORT BITS PORT FUNCTION LCD SEGMENT FUNCTION MSP430FG43x P4.7 LCDPx < 01h LCDPx ≥ 01h Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.10.11 Port P5, P5.0, Input/Output With Schmitt Trigger OAADC0 INCH=13(1) a13 (1) 0: Segment S1 disabled 1: Segment S1 enabled Pad Logic 1, If LCDPx ≥ 01h Segment S1 P5SEL.0 0: input 1: output 0 P5DIR.0 Direction Control From Module 1 0 P5OUT.0 1 Module XOUT Bus keeper P5.0/S1/A13 P5IN.0 EN D Module X IN (1) Signal from or to ADC12 PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P5SEL.0 P5DIR.0 P5DIR.0 P5OUT.0 DVSS P5IN.0 unused DEVICE PORT BITS PORT FUNCTION LCD SEGMENT FUNCTION MSP430FG43x P5.0 LCDPx < 01h LCDPx ≥ 01h Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 65 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6.10.12 Port P5, P5.1, Input/Output With Schmitt Trigger INCH=12(1) OAADC0 a12(1) 0: Segment S0 disabled 1: Segment S0 enabled 1, If LCDPx ≥ 01h Pad Logic DAC12.1OPS Segment S0 P5SEL.1 0: input 1: output 0 P5DIR.1 Direction Control From Module 1 0 P5OUT.1 1 Module XOUT Bus keeper P5.1/S0/ A12/DAC1 P5IN.1 EN D Module X IN ’0’, if DAC12.1CALON=0 AND DAC12.1AMPx>1 AND DAC12.1OPS=1 + 1 0 - ’1’, if DAC12.1AMPx>1 ’1’, if DAC12.1AMPx=1 DAC12.1OPS DAC12.1OPS 1 P6.7/A7/ DAC1/SVSIN DAC1_2_OA (1) 0 Signal from or to ADC12 Function P5SEL.1 LCDPx DAC12.1OPS DAC12.1AMPx 3-State X X 1 0 0V X X 1 1 DAC1 output (the output voltage can be converted with ADC12, channel A12) X X 1 >1 ADC12 Channel 12, A12 1 X 0 X LCD Segment S0, initial state 0 ≥ 01h 0 X Port P5.1 0 < 01h 0 X DAC12 66 Description PnSEL.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN Segment Port/LCD P5SEL.1 P5DIR.1 P5DIR.1 P5OUT.1 DVSS P5IN.1 Unused S0 0: LCDPx < 01h Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.10.13 Port P5, P5.2 to P5.4, Input/Output With Schmitt Trigger 0: Port active 1: LCD function active Port/LCD LCD signal Pad Logic P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module 1 0 1 P5OUT.x Module X OUT Bus Keeper P5.2/COM1 P5.3/COM2 P5.4/COM3 P5IN.x EN Module X IN D Note: 2 ≤ x ≤ 4 PnSel.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN LCD signal Port/LCD P5Sel.2 P5DIR.2 P5DIR.2 P5OUT.2 DVSS P5IN.2 Unused COM1 P5SEL.2 P5Sel.3 P5DIR.3 P5DIR.3 P5OUT.3 DVSS P5IN.3 Unused COM2 P5SEL.3 P5Sel.4 P5DIR.4 P5DIR.4 P5OUT.4 DVSS P5IN.4 Unused COM3 P5SEL.4 Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 67 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6.10.14 Port P5, P5.5 to P5.7, Input/Output With Schmitt Trigger 0: Port active 1: LCD function active Port/LCD LCD signal Pad Logic P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module 1 0 1 P5OUT.x Module X OUT Bus Keeper P5.5/R13 P5.6/R23 P5.7/R33 P5IN.x EN D Module X IN Note: 5 ≤ x ≤ 7 68 PnSel.x PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN LCD signal Port/LCD P5Sel.5 P5DIR.5 P5DIR.5 P5OUT.5 DVSS P5IN.5 Unused R13 P5SEL.5 P5Sel.6 P5DIR.6 P5DIR.6 P5OUT.6 DVSS P5IN.6 Unused R23 P5SEL.6 P5Sel.7 P5DIR.7 P5DIR.7 P5OUT.7 DVSS P5IN.7 Unused R33 P5SEL.7 Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.10.15 Port P6, P6.0, P6.2, and P6.4, Input/Output With Schmitt Trigger (1)(2) INCH=x (1)(2) ax (1) P6SEL.x (1) 0 P6DIR.x Direction Control From Module P6OUT.x Pad Logic 0: input 1: output 1 (1) 0 1 Module XOUT Bus keeper P6.0/A0/OA0I0 P6.2/A2/OA0I1 P6.4/A4/OA1I0 (1) P6IN.x EN (1) D Module X IN + - (1) (1) x = {0, 2, 4} (2) Signal from or to ADC12 OA0 / OA1 PnSel.x (1) PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P6Sel.0 P6DIR.0 P6DIR.0 P6OUT.0 DVSS P6IN.0 unused P6Sel.2 P6DIR.2 P6DIR.2 P6OUT.2 DVSS P6IN.2 unused P6Sel.4 P6DIR.4 P6DIR.4 P6OUT.4 DVSS P6IN.4 unused The signal at pin P6.x/Ax is used by the 12-bit ADC module. Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 69 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6.10.16 Port P6, P6.1, Input/Output With Schmitt Trigger INCH=1(1) a1 (1) P6SEL.1 0 P6DIR.1 Direction Control From Module P6OUT.1 Pad Logic 0: input 1: output 1 0 1 Module XOUT Bus keeper P6.1/A1/OA0O P6IN.1 EN D Module X IN ’1’, if OAADC1 = 1 OR OAFCx = 0 + 0 OA0 - (1) (1) 70 1 OA0 Signal from or to ADC12 PnSel.x (1) PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P6Sel.1 P6DIR.1 P6DIR.1 P6OUT.1 DVSS P6IN.1 unused The signal at pin P6.x/Ax is used by the 12-bit ADC module. Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.10.17 Port P6, P6.3, Input/Output With Schmitt Trigger INCH=3(1) a3 (1) P6SEL.3 Pad Logic 0: input 1: output 0 P6DIR.3 Direction Control From Module P6OUT.3 1 0 1 Module XOUT Bus keeper P6.3/A3/OA1I1/OA1O P6IN.3 EN D Module X IN ’1’, if OAADC1 = 1 OR OAFCx = 0 + 0 OA1 - (1) (1) 1 OA1 Signal from or to ADC12 PnSel.x (1) PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P6Sel.3 P6DIR.3 P6DIR.3 P6OUT.3 DVSS P6IN.3 unused The signal at pin P6.x/Ax is used by the 12-bit ADC module. Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 71 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6.10.18 Port P6, P6.5, Input/Output With Schmitt Trigger INCH=5(1) a5 (1) P6SEL.5 Pad Logic 0: input 1: output 0 P6DIR.5 Direction Control From Module P6OUT.5 1 0 1 Module XOUT Bus keeper P6.5/A5/OA2I1/OA2O P6IN.5 EN D Module X IN ’1’, if OAADC1 = 1 OR OAFCx = 0 0 + OA2 - (1) (1) 72 1 OA2 Signal from or to ADC12 PnSel.x (1) PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P6Sel.5 P6DIR.5 P6DIR.5 P6OUT.5 DVSS P6IN.5 unused The signal at pins P6.x/Ax is used by the 12-bit ADC module. Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.10.19 Port P6, P6.6, Input/Output With Schmitt Trigger 0: Port active, T- Switch off 1: T- Switch is on, Port disabled INCH=6(1) a6 (1) ’1’, if DAC12.0AMP>0 P6SEL.6 P6DIR.6 0 P6DIR.6 1 P6OUT.6 0 0: input 1: output Pad Logic 1 DVSS Bus keeper P6.6/A6/DAC0/OA2I0 P6IN.6 EN D ’0’, if DAC12CALON = 0 AND DAC12AMPx>1 AND DAC12OPS = 0 + - 1 0 ’1’, if DAC12AMPx>1 (1) ’1’, if DAC12AMPx=1 DAC12OPS Signal from or to ADC12 DAC12OPS 0 Ve REF+/DAC0 DAC0_2_OA 1 (1) PnSel.x (1) PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P6Sel.6 P6DIR.6 P6DIR.6 P6OUT.6 DVSS P6IN.6 unused The signal at pins P6.x/Ax is used by the 12-bit ADC module. Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 73 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6.10.20 Port P6, P6.7, Input/Output With Schmitt Trigger To SVS Mux (15) (2) 0: Port active, T−Switch off 1: T−Switch is on, Port disabled INCH=7(1) a7 (1) ’1’, if DAC12.1AMP>0 DAC12.1OPS ’1’, if VLD=15 (3) P6SEL.7 P6DIR.7 Pad Logic 0: input 1: output 0 1 P6DIR.7 0 P6OUT.7 1 DVSS Bus keeper P6.7/A7/ DAC1/SVSIN P6IN.7 EN D ’0’, if DAC12CALON = 0 AND DAC12AMPx>1 AND DAC12OPS = 0 + − 1 0 ’1’, if DAC12AMPx>1 ’1’, if DAC12AMPx=1 DAC12OPS DAC12OPS 0 P5.1/S0/ A12/DAC1 DAC1_2_OA 1 PnSel.x (1) P6Sel.7 (1) 74 (1) Signal from or to ADC12 (2) Signal to SVS block, selected if VLD=15 (3) VLD control bits are located in SVS PnDIR.x Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P6DIR.7 P6DIR.7 P6OUT.7 DVSS P6IN.7 unused The signal at pins P6.x/Ax is used by the 12-bit ADC module. The signal at pin P6.7/A7/SVSIN is also connected to the input multiplexer in the module brownout/supply voltage supervisor. Detailed Description Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.10.21 VeREF+/DAC0 DAC12.0OPS 0 DAC0_2_OA P6.6/A6/DAC0/OA2I0 1 Reference Voltage to DAC1 Reference Voltage to ADC12 (1) Reference Voltage to DAC0 Ve REF+ /DAC0 ’0’, if DAC12CALON = 0 DAC12AMPx>1 AND DAC12OPS=1 + - 1 0 ’1’, if DAC12AMPx>1 ’1’, if DAC12AMPx=1 DAC12OPS (1) If the reference of DAC0 is taken from pin Ve /DAC0, unpredictable voltage levels will be on pin. REF+ In this situation, the DAC0 output is fed back to its own reference input. Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 75 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 6.10.22 JTAG Pins TMS, TCK, TDI/TCLK, TDO/TDI, Input/Output With Schmitt Trigger or Output TDO Controlled by JTAG Controlled by JTAG TDO/TDI JTAG Controlled by JTAG DV CC TDI Burn and Test Fuse TDI/TCLK Test and Emulation DV CC TMS Module TMS DV CC TCK TCK RST/NMI Tau ~ 50 ns Brownout TCK 76 Detailed Description G D U S G D U S Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 6.10.23 JTAG Fuse Check Mode MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current (I(TF)) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 6-8). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). The JTAG pins are terminated internally and therefore do not require external termination. Time TMS Goes Low After POR TMS I(TF) ITDI/TCLK Figure 6-8. Fuse Check Mode Current Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Detailed Description 77 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 www.ti.com 7 Device and Documentation Support 7.1 Device Support 7.1.1 Development Support TI offers an extensive line of development tools, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE). The following products support development of the MSP430FG43x device applications: Software Development Tools: Code Composer Studio™ Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools. For a complete listing of development-support tools for the MSP430FG43x platform, visit the Texas Instruments website at www.ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. 7.1.1.1 Development Kit The MSP-FET430U80 is a powerful flash emulation tool that includes the hardware and software required to quickly begin application development on the MSP430 MCU. It includes a ZIF socket target board and a USB debugging interface (MSP-FET) used to program and debug the MSP430 in-system through the JTAG interface or the pin saving Spy Bi-Wire (2-wire JTAG) protocol. The flash memory can be erased and programmed in seconds with only a few keystrokes, and because the MSP430 flash is ultra-low power, no external power supply is required. The debugging tool interfaces the MSP430 to the included integrated software environment and includes code to start your design immediately. 7.1.2 Device and Development Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430 MCU devices and support tools. Each MSP430 MCU commercial family member has one of three prefixes: MSP, PMS, or XMS (for example, MSP430F5259). Texas Instruments recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for devices and MSP for tools). Device development evolutionary flow: XMS – Experimental device that is not necessarily representative of the final device's electrical specifications PMS – Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification MSP – Fully qualified production device Support tool development evolutionary flow: MSPX – Development-support product that has not yet completed Texas Instruments internal qualification testing. MSP – Fully-qualified development-support product XMS and PMS devices and MSPX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." 78 Device and Documentation Support Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (XMS and PMS) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZP) and temperature range (for example, T). Figure 7-1 provides a legend for reading the complete device name for any family member. MSP 430 F 5 438 A I ZQW T XX Processor Family Optional: Additional Features 430 MCU Platform Optional: Tape and Reel Device Type Packaging Series Feature Set Processor Family Optional: Temperature Range Optional: A = Revision CC = Embedded RF Radio MSP = Mixed Signal Processor XMS = Experimental Silicon PMS = Prototype Device TI’s Low Power Microcontroller Platform 430 MCU Platform Device Type Memory Type C = ROM F = Flash FR = FRAM G = Flash or FRAM (Value Line) L = No Nonvolatile Memory Specialized Application AFE = Analog Front End BT = Preprogrammed with Bluetooth BQ = Contactless Power CG = ROM Medical FE = Flash Energy Meter FG = Flash Medical FW = Flash Electronic Flow Meter Series 1 Series = Up to 8 MHz 2 Series = Up to 16 MHz 3 Series = Legacy 4 Series = Up to 16 MHz w/ LCD 5 Series = Up to 25 MHz 6 Series = Up to 25 MHz w/ LCD 0 = Low Voltage Series Feature Set Various Levels of Integration Within a Series Optional: A = Revision N/A Optional: Temperature Range S = 0°C to 50°C C = 0°C to 70°C I = -40°C to 85°C T = -40°C to 105°C Packaging www.ti.com/packaging Optional: Tape and Reel T = Small Reel R = Large Reel No Markings = Tube or Tray Optional: Additional Features -EP = Enhanced Product (-40°C to 105°C) -HT = Extreme Temperature Parts (-55°C to 150°C) -Q1 = Automotive Q100 Qualified Figure 7-1. Device Nomenclature Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Copyright © 2004–2014, Texas Instruments Incorporated 79 MSP430FG439, MSP430FG438, MSP430FG437 SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 7.2 www.ti.com Documentation Support The following documents describe the MSP430FG43x microcontrollers. Copies of these documents are available on the Internet at www.ti.com. 7.2.1 SLAU056 MSP430x4xx Family User's Guide. Detailed description of all modules and peripherals available in this device family. SLAZ365 MSP430FG439 Device Erratasheet. Describes the known exceptions to the functional specifications for all silicon revisions of this device. SLAZ364 MSP430FG438 Device Erratasheet. Describes the known exceptions to the functional specifications for all silicon revisions of this device. SLAZ363 MSP430FG437 Device Erratasheet. Describes the known exceptions to the functional specifications for all silicon revisions of this device. Related Links Table 7-1 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 7-1. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY MSP430FG439 Click here Click here Click here Click here Click here MSP430FG438 Click here Click here Click here Click here Click here MSP430FG437 Click here Click here Click here Click here Click here 7.2.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 7.3 Trademarks MSP430, E2E are trademarks of Texas Instruments. 7.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 7.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 80 Device and Documentation Support Copyright © 2004–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 MSP430FG439, MSP430FG438, MSP430FG437 www.ti.com SLAS380D – APRIL 2004 – REVISED NOVEMBER 2014 8 Mechanical Packaging and Orderable Information 8.1 Packaging Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Mechanical Packaging and Orderable Information Submit Documentation Feedback Product Folder Links: MSP430FG439 MSP430FG438 MSP430FG437 Copyright © 2004–2014, Texas Instruments Incorporated 81 PACKAGE OPTION ADDENDUM www.ti.com 15-Apr-2017 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430A008IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG439 MSP430A017IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG437 MSP430A018IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG439 MSP430A079IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG438 MSP430A095IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG438 MSP430FG437IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG437 MSP430FG437IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG437 MSP430FG437IZCAR ACTIVE NFBGA ZCA 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 85 FG437 MSP430FG437IZCAT ACTIVE NFBGA ZCA 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 85 FG437 MSP430FG438IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG438 MSP430FG438IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG438 MSP430FG438IZCAR ACTIVE NFBGA ZCA 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 85 FG438 MSP430FG438IZCAT ACTIVE NFBGA ZCA 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 85 FG438 MSP430FG439IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG439 MSP430FG439IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG439 MSP430FG439IZCAR ACTIVE NFBGA ZCA 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 85 FG439 MSP430FG439IZCAT ACTIVE NFBGA ZCA 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 85 FG439 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 15-Apr-2017 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 27-Jun-2015 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant MSP430FG437IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430FG437IZCAR NFBGA ZCA 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430FG437IZCAT NFBGA ZCA 113 250 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430FG438IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430FG438IZCAR NFBGA ZCA 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430FG438IZCAT NFBGA ZCA 113 250 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430FG439IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430FG439IZCAR NFBGA ZCA 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430FG439IZCAT NFBGA ZCA 113 250 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 27-Jun-2015 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430FG437IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430FG437IZCAR NFBGA ZCA 113 2500 341.0 336.6 31.8 MSP430FG437IZCAT NFBGA ZCA 113 250 341.0 336.6 31.8 MSP430FG438IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430FG438IZCAR NFBGA ZCA 113 2500 341.0 336.6 31.8 MSP430FG438IZCAT NFBGA ZCA 113 250 341.0 336.6 31.8 MSP430FG439IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430FG439IZCAR NFBGA ZCA 113 2500 341.0 336.6 31.8 MSP430FG439IZCAT NFBGA ZCA 113 250 341.0 336.6 31.8 Pack Materials-Page 2 MECHANICAL DATA MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996 PN (S-PQFP-G80) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 41 60 61 40 80 21 0,13 NOM 1 20 Gage Plane 9,50 TYP 12,20 SQ 11,80 14,20 SQ 13,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040135 / B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated