MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 MIXED SIGNAL MICROCONTROLLER FEATURES 1 • 23 • Embedded Microcontroller – 16-Bit RISC Architecture up to 24-MHz Clock – Wide Supply Voltage Range (2 V to 3.6 V) – -40°C to 85°C Operation Optimized Ultra-Low Power Modes Mode Active Mode Consumption (Typical) 81.4 µA/MHz Standby (LPM3 With VLO) 6.3 µA Real-Time Clock (LPM3.5 With Crystal) 1.5 µA Shutdown (LPM4.5) 0.32 µA • • • • Ultra-Low Power Ferroelectric RAM – Up to 16KB Nonvolatile Memory – Ultra-Low Power Writes – Fast Write at 125 ns per Word (16KB in 1 ms) – Built in Error Coding and Correction (ECC) and Memory Protection Unit (MPU) – Universal Memory = Program + Data + Storage – 1015 Write Cycle Endurance – Radiation Resistant and Nonmagnetic Intelligent Digital Peripherals – 32-Bit Hardware Multiplier (MPY) – Three-Channel Internal DMA – Real-Time Clock With Calendar and Alarm Functions – Five 16-Bit Timers With up to Three Capture/Compare – 16-Bit Cyclic Redundancy Checker (CRC) High-Performance Analog – 16-Channel Analog Comparator With Voltage Reference and Programmable Hysteresis – 14-Channel 10-Bit Analog-to-Digital Converter (ADC) With Internal Reference and Sample-and-Hold – 200 ksps at 100-µA Consumption Enhanced Serial Communication • • • • – eUSCI_A0 and eUSCI_A1 Support: – UART With Automatic Baud-Rate Detection – IrDA Encode and Decode – SPI at Rates up to 10 Mbps – eUSCI_B0 Supports: – I2C With Multi-Slave Addressing – SPI at Rates up to 10 Mbps – Hardware UART or I2C Bootstrap Loader (BSL) Power Management System – Fully Integrated LDO – Supply Voltage Supervisor for Core and Supply Voltages With Reset Capability – Always-On Zero-Power Brownout Detection – Serial On-Board Programming With No External Voltage Needed Flexible Clock System – Fixed-Frequency DCO With Six Selectable Factory-Trimmed Frequencies (Device Dependent) – Low-Power Low-Frequency Internal Clock Source (VLO) – 32-kHz Crystals (LFXT) – High-Frequency Crystals (HFXT) Development Tools and Software – Free Professional Development Environments (IAR, CCS, GCC) – Low-Cost Full-Featured Kit (MSPEXP430FR5739) – Full Development Kit (MSP-FET430U40A) – Target Board (MSP-TS430RHA40A) Family Members – 20 Different Variants and 5 Available Packages Summarized in Table 1 and Table 2 – For Complete Module Descriptions, See the MSP430FR57xx Family User's Guide (SLAU272) 1 2 3 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. MSP430 is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com CAUTION These products use FRAM nonvolatile memory technology. FRAM retention is sensitive to extreme temperatures, such as those experienced during reflow or hand soldering. See Absolute Maximum Ratings for more information. CAUTION System-level ESD protection must be applied in compliance with the device-level ESD specification to prevent electrical overstress or disturb of data or code memory. See the application report MSP430™ System-Level ESD Considerations (SLAA530) for more information. DESCRIPTION The Texas Instruments MSP430FR57xx family of ultralow-power microcontrollers consists of multiple devices featuring embedded FRAM nonvolatile memory, ultralow power 16-bit MSP430 CPU, and different peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption. Peripherals include 10-bit A/D converter, 16-channel comparator with voltage reference generation and hysteresis capabilities, three enhanced serial channels capable of I2C, SPI, or UART protocols, internal DMA, hardware multiplier, real-time clock, five 16-bit timers, and more. The family members that are available are summarized in Table 1. Table 1. Family Members eUSCI Device FRAM (KB) SRAM (KB) System Clock (MHz) ADC10_B Comp_D MSP430FR5739 16 1 24 12 ext, 2 int ch. 16 ch. 6 ext, 2 int ch. 10 ch. 8 ext, 2 int ch. 12 ch. 5 ext, 2 int ch. 9 ch. MSP430FR5738 MSP430FR5737 16 16 1 1 24 24 16 ch. Timer_A 3, 3 3, 3 3, 3 (1) Timer_B 3, 3, 3 3 3, 3, 3 (2) Channel A: UART, IrDA, SPI Channel B: SPI, I2C 2 1 1 2 1 1 10 ch. MSP430FR5736 16 1 24 12 ch. 3, 3 3 1 1 9 ch. MSP430FR5735 MSP430FR5734 MSP430FR5733 MSP430FR5732 MSP430FR5731 (1) (2) (3) 2 8 8 8 8 4 1 1 1 1 1 24 24 12 ext, 2 int ch. 16 ch. 6 ext, 2 int ch. 10 ch. 8 ext, 2 int ch. 12 ch. 24 16 ch. 10 ch. 24 24 12 ch. 12 ext, 2 int ch. 16 ch. 3, 3 3, 3, 3 2 1 3, 3 3 1 1 3, 3 3, 3 3, 3 3, 3, 3 3 3, 3, 3 2 1 2 1 1 1 I/O Package 32 RHA 30 DA 17 RGE 21 PW 16 YFF (3) 32 RHA 30 DA 17 RGE 21 PW 16 YFF (3) 32 RHA 30 DA 17 RGE 21 PW 32 RHA 30 DA 17 RGE 21 PW 32 RHA 30 DA Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively. Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively. Product Preview Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Table 1. Family Members (continued) eUSCI Device MSP430FR5730 MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 FRAM (KB) 4 16 16 16 16 8 8 8 8 4 4 SRAM (KB) 1 1 1 1 1 1 1 1 1 1 1 System Clock (MHz) 24 8 8 ADC10_B Comp_D 6 ext, 2 int ch. 10 ch. 8 ext, 2 int ch. 12 ch. 5 ext, 2 int ch. 9 ch. 12 ext, 2 int ch. 16 ch. 6 ext, 2 int ch. 10 ch. 8 ext, 2 int ch. 12 ch. 8 16 ch. 10 ch. 8 8 8 12 ch. 12 ext, 2 int ch. 16 ch. 6 ext, 2 int ch. 10 ch. 8 ext, 2 int ch. 12 ch. 8 16 ch. 10 ch. 8 8 8 Copyright © 2011–2012, Texas Instruments Incorporated 12 ch. 12 ext, 2 int ch. 16 ch. 6 ext, 2 int ch. 10 ch. 8 ext, 2 int ch. 12 ch. Timer_A (1) Timer_B (2) 3, 3 3 Channel A: UART, IrDA, SPI 1 Channel B: SPI, I2C 1 3, 3 3, 3, 3 2 1 3, 3 3 1 1 3, 3 3, 3 3, 3, 3 3 2 1 1 1 3, 3 3, 3, 3 2 1 3, 3 3 1 1 3, 3 3, 3 3, 3, 3 3 2 1 1 1 3, 3 3, 3, 3 2 1 3, 3 3 1 1 I/O Package 17 RGE 21 PW 16 YFF (3) 32 RHA 30 DA 17 RGE 21 PW 32 RHA 30 DA 17 RGE 21 PW 32 RHA 30 DA 17 RGE 21 PW 32 RHA 30 DA 17 RGE 21 PW 32 RHA 30 DA 17 RGE 21 PW Submit Documentation Feedback 3 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 2. Ordering Information (1) PACKAGED DEVICES (2) TA –40°C to 85°C (1) (2) (3) 4 PLASTIC 40-PIN VQFN (RHA) PLASTIC 24-PIN VQFN (RGE) PLASTIC 38-PIN TSSOP (DA) PLASTIC 28-PIN TSSOP (PW) PLASTIC 25-BALL DSBGA (YFF) (3) MSP430FR5721IRHA MSP430FR5720IRGE MSP430FR5721IDA MSP430FR5720IPW MSP430FR5730IYFF (3) MSP430FR5723IRHA MSP430FR5722IRGE MSP430FR5723IDA MSP430FR5722IPW MSP430FR5736IYFF (3) MSP430FR5725IRHA MSP430FR5724IRGE MSP430FR5725IDA MSP430FR5724IPW MSP430FR5738IYFF (3) MSP430FR5727IRHA MSP430FR5726IRGE MSP430FR5727IDA MSP430FR5726IPW MSP430FR5729IRHA MSP430FR5728IRGE MSP430FR5729IDA MSP430FR5728IPW MSP430FR5731IRHA MSP430FR5730IRGE MSP430FR5731IDA MSP430FR5730IPW MSP430FR5733IRHA MSP430FR5732IRGE MSP430FR5733IDA MSP430FR5732IPW MSP430FR5735IRHA MSP430FR5734IRGE MSP430FR5735IDA MSP430FR5734IPW MSP430FR5737IRHA MSP430FR5736IRGE MSP430FR5737IDA MSP430FR5736IPW MSP430FR5739IRHA MSP430FR5738IRGE MSP430FR5739IDA MSP430FR5738IPW For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging. Product Preview Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Functional Block Diagram – MSP430FR5721IRHA, MSP430FR5725IRHA, MSP430FR5729IRHA, MSP430FR5731IRHA, MSP430FR5735IRHA, MSP430FR5739IRHA PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16 KB Clock System ACLK 8 KB SMCLK 4 KB (’5731, ‘5721) FRAM MCLK CPUXV2 and Working Registers 1 KB Power Management Boot ROM SYS Watchdog P3.x I/O Ports P1/P2 2×8 I/Os (’5739, ’5729) (’5735, ‘5725) PA P2.x I/O Ports P3/P4 1×8 I/Os 1x 2 I/Os Interrupt & Wakeup PB 1×10 I/Os REF Interrupt & Wakeup PA 1×16 I/Os SVS RAM Memory Protection Unit PB P4.x MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG/ SBW Interface eUSCI_A0: UART, IrDA, SPI TA0 TA1 TB0 TB1 TB2 (2) Timer_A 3 CC Registers (3) Timer_B 3 CC Registers RTC_B MPY32 eUSCI_A1: UART, IrDA, SPI CRC eUSCI_B0: SPI, I2C ADC10_B 10 Bit 200KSPS Comp_D 16 channels 16 channels (12 ext/2 int) Functional Block Diagram – MSP430FR5723IRHA, MSP430FR5727IRHA, MSP430FR5733IRHA, MSP430FR5737IRHA PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16 KB Clock System ACLK 8 KB SMCLK FRAM MCLK CPUXV2 and Working Registers 1 KB Boot ROM Power Management P3.x I/O Ports P1/P2 2×8 I/Os (’5737, ’5727) (’5733, ‘5723) PA P2.x SYS Watchdog Interrupt & Wakeup PA 1×16 I/Os SVS RAM Memory Protection Unit PB P4.x I/O Ports P3/P4 1×8 I/Os 1x 2 I/Os Interrupt & Wakeup PB 1×10 I/Os MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG/ SBW Interface TA0 TA1 TB0 TB1 TB2 (2) Timer_A 3 CC Registers (3) Timer_B 3 CC Registers RTC_B MPY32 Copyright © 2011–2012, Texas Instruments Incorporated CRC eUSCI_A0: UART, IrDA, SPI eUSCI_B0: SPI, I2C eUSCI_A1: UART, IrDA, SPI Comp_D REF 16 channels Submit Documentation Feedback 5 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Pin Designation – MSP430FR5721IRHA, MSP430FR5723IRHA, MSP430FR5725IRHA, MSP430FR5727IRHA, MSP430FR5729IRHA, MSP430FR5731IRHA, MSP430FR5733IRHA, MSP430FR5735IRHA, MSP430FR5737IRHA, MSP430FR5739IRHA RHA PACKAGE (TOP VIEW) P2.4/TA1.0/UCA1CLK/A7*/CD11 P2.3/TA0.0/UCA1STE/A6*/CD10 P2.7 DVCC DVSS 31 32 33 35 34 36 37 39 30 1 2 29 MSP430FR5721 MSP430FR5723 MSP430FR5725 MSP430FR5727 MSP430FR5729 MSP430FR5731 MSP430FR5733 MSP430FR5735 MSP430FR5737 MSP430FR5739 3 4 5 6 7 8 9 28 27 26 25 24 23 22 10 PJ.0/TDO/TB0OUTH/SMCLK/CD6 PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7 PJ.2/TMS/TB2OUTH/ACLK/CD8 PJ.3/TCK/CD9 P4.0/TB2.0 VCORE P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0 P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0 P3.7/TB2.2 P3.6/TB2.1/TB1CLK P3.5/TB1.2/CDOUT P3.4/TB1.1/TB2CLK/SMCLK P2.2/TB2.2/UCB0CLK/TB1.0 P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0 P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK 20 19 18 17 16 15 14 13 11 21 12 P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-* P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+* P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2 P3.0/A12*/CD12 P3.1/A13*/CD13 P3.2/A14*/CD14 P3.3/A15*/CD15 P1.3/TA1.2/UCB0STE/A3*/CD3 P1.4/TB0.1/UCA0STE/A4*/CD4 P1.5/TB0.2/UCA0CLK/A5*/CD5 38 40 AVSS PJ.4/XIN PJ.5/XOUT AVSS AVCC RST/NMI/SBWTDIO TEST/SBWTCK P2.6/TB1.0/UCA1RXD/UCA1SOMI P2.5/TB0.0/UCA1TXD/UCA1SIMO P4.1 * Not available on MSP430FR5737, MSP430FR5733, MSP430FR5727, MSP430FR5723 Note: Power Pad connection to VSS recommended. 6 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Functional Block Diagram – MSP430FR5721IDA, MSP430FR5725IDA, MSP430FR5729IDA, MSP430FR5731IDA, MSP430FR5735IDA, MSP430FR5739IDA PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16 KB Clock System ACLK (’5739, ’5729) 8 KB (’5735, ‘5725) SMCLK 4 KB CPUXV2 and Working Registers Power Management Boot ROM (’5731, ‘5721) FRAM MCLK 1 KB SYS Watchdog PA P2.x PB P3.x I/O Ports P1/P2 2×8 I/Os I/O Ports P3 1×8 I/Os Interrupt & Wakeup PA 1×16 I/Os Interrupt & Wakeup PB 1×8 I/Os REF SVS RAM Memory Protection Unit MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG/ SBW Interface eUSCI_A0: UART, IrDA, SPI TA0 TA1 TB0 TB1 TB2 (2) Timer_A 3 CC Registers (3) Timer_B 3 CC Registers RTC_B MPY32 eUSCI_A1: UART, IrDA, SPI CRC eUSCI_B0: SPI, I2C ADC10_B 10 Bit 200KSPS Comp_D 16 channels 16 channels (12 ext/2 int) Functional Block Diagram – MSP430FR5723IDA, MSP430FR5727IDA, MSP430FR5733IDA, MSP430FR5737IDA PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16 KB Clock System ACLK (’5737, ’5727) 8 KB (’5733, ‘5723) SMCLK FRAM MCLK CPUXV2 and Working Registers 1 KB Boot ROM Power Management SYS PA P2.x PB P3.x I/O Ports P1/P2 2×8 I/Os I/O Ports P3 1×8 I/Os Interrupt & Wakeup PA 1×16 I/Os Interrupt & Wakeup PB 1×8 I/Os Watchdog SVS RAM Memory Protection Unit MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG/ SBW Interface TA0 TA1 TB0 TB1 TB2 (2) Timer_A 3 CC Registers (3) Timer_B 3 CC Registers RTC_B MPY32 Copyright © 2011–2012, Texas Instruments Incorporated CRC eUSCI_A0: UART, IrDA, SPI eUSCI_B0: SPI, I2C eUSCI_A1: UART, IrDA, SPI Comp_D REF 16 channels Submit Documentation Feedback 7 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Pin Designation – MSP430FR5721IDA, MSP430FR5723IDA, MSP430FR5725IDA, MSP430FR5727IDA, MSP430FR5729IDA, MSP430FR5731IDA, MSP430FR5733IDA, MSP430FR5735IDA, MSP430FR5737IDA, MSP430FR5739IDA DA PACKAGE (TOP VIEW) PJ.4/XIN PJ.5/XOUT AVSS AVCC 1 38 2 37 3 36 4 35 P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-* P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+* P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2 P3.0/A12*/CD12 P3.1/A13*/CD13 P3.2/A14*/CD14 P3.3/A15*/CD15 P1.3/TA1.2/UCB0STE/A3*/CD3 P1.4/TB0.1/UCA0STE/A4*/CD4 P1.5/TB0.2/UCA0CLK/A5*/CD5 PJ.0/TDO/TB0OUTH/SMCLK/CD6 PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7 PJ.2/TMS/TB2OUTH/ACLK/CD8 PJ.3/TCK/CD9 P2.5/TB0.0/UCA1TXD/UCA1SIMO 5 34 6 MSP430FR5721 33 7 MSP430FR5723 32 8 MSP430FR5725 31 MSP430FR5727 9 MSP430FR5729 30 10 29 11 MSP430FR5731 28 12 MSP430FR5733 27 MSP430FR5735 13 26 MSP430FR5737 14 MSP430FR5739 25 15 24 16 23 17 22 18 21 19 20 AVSS P2.4/TA1.0/UCA1CLK/A7*/CD11 P2.3/TA0.0/UCA1STE/A6*/CD10 P2.7 DVCC DVSS VCORE P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0 P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0 P3.7/TB2.2 P3.6/TB2.1/TB1CLK P3.5/TB1.2/CDOUT P3.4/TB1.1/TB2CLK/SMCLK P2.2/TB2.2/UCB0CLK/TB1.0 P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0 P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK RST/NMI/SBWTDIO TEST/SBWTCK P2.6/TB1.0/UCA1RXD/UCA1SOMI * Not available on MSP430FR5737, MSP430FR5733, MSP430FR5727, MSP430FR5723 8 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Functional Block Diagram – MSP430FR5720IRGE, MSP430FR5724IRGE, MSP430FR5728IRGE, MSP430FR5730IRGE, MSP430FR5734IRGE, MSP430FR5738IRGE PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16 KB Clock System ACLK (’5734, ‘5724) SMCLK 4 KB CPUXV2 and Working Registers 1 KB (’5730, ‘5720) FRAM MCLK I/O Ports P1/P2 1×8 I/Os 1×3 I/Os (’5738, ’5728) 8 KB Power Management Boot ROM SYS Watchdog PA P2.x REF SVS Interrupt & Wakeup PA 1×11 I/Os RAM Memory Protection Unit MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG/ SBW Interface eUSCI_A0: UART, IrDA, SPI TA0 TA1 TB0 (2) Timer_A 3 CC Registers (1) Timer_B 3 CC Registers RTC_B MPY32 ADC10_B 10 Bit 200KSPS CRC eUSCI_B0: SPI, I2C Comp_D 10 channels 8 channels (6 ext/2 int) Functional Block Diagram – MSP430FR5722IRGE, MSP430FR5726IRGE, MSP430FR5732IRGE, MSP430FR5736IRGE PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16 KB Clock System ACLK (’5732, ‘5722) SMCLK FRAM MCLK CPUXV2 and Working Registers I/O Ports P1/P2 1×8 I/Os 1×3 I/Os (’5736, ’5726) 8 KB 1 KB Boot ROM Power Management PA P2.x SYS Watchdog SVS Interrupt & Wakeup PA 1×11 I/Os RAM Memory Protection Unit MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG/ SBW Interface TA0 TA1 TB0 (2) Timer_A 3 CC Registers (1) Timer_B 3 CC Registers RTC_B MPY32 Copyright © 2011–2012, Texas Instruments Incorporated CRC eUSCI_A0: UART, IrDA, SPI eUSCI_B0: SPI, I2C Comp_D REF 10 channels Submit Documentation Feedback 9 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Pin Designation – MSP430FR5720IRGE, MSP430FR5722IRGE, MSP430FR5724IRGE, MSP430FR5726IRGE, MSP430FR5728IRGE, MSP430FR5730IRGE, MSP430FR5732IRGE, MSP430FR5734IRGE, MSP430FR5736IRGE, MSP430FR5738IRGE RGE PACKAGE (TOP VIEW) PJ.4/XIN DVCC DVSS 1 20 21 23 19 18 17 16 15 14 13 VCORE P1.7/UCB0SOMI/UCB0SCL/TA1.0 P1.6/UCB0SIMO/UCB0SDA/TA0.0 P2.2/UCB0CLK P2.1/UCA0RXD/UCA0SOMI/TB0.0 P2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK 12 7 PJ.0/TDO/TB0OUTH/SMCLK/CD6 PJ.1/TDI/TCLK/MCLK/CD7 PJ.2/TMS/ACLK/CD8 11 5 6 10 3 4 9 MSP430FR5720 MSP430FR5722 MSP430FR5724 MSP430FR5726 MSP430FR5728 MSP430FR5730 MSP430FR5732 MSP430FR5734 MSP430FR5736 MSP430FR5738 2 8 P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-* P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+* P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2 P1.3/TA1.2/UCB0STE/A3*/CD3 P1.4/TB0.1/UCA0STE/A4*/CD4 P1.5/TB0.2/UCA0CLK/A5*/CD5 22 24 PJ.5/XOUT AVSS AVCC RST/NMI/SBWTDIO TEST/SBWTCK PJ.3/TCK/CD9 * Not available on MSP430FR5736, MSP430FR5732, MSP430FR5726, MSP430FR5722 Note: Power Pad connection to VSS recommended. 10 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Pin Designation – MSP430FR5730IYFF, MSP430FR5736IYFF, MSP430FR5738IYFF YFF PACKAGE (TOP VIEW) 1 1 P1.1 P1.2 P1.3 P1.5 A1 A2 A3 A4 A5 PJ.5 AVCC AVSS P1.4 PJ.1 B1 B2 B3 B4 B5 PJ.4 AVSS PJ.0 PJ.2 PJ.3 C1 C2 C3 C4 C5 DVCC DVSS D1 D2 D3 D4 D5 VCORE P1.6 P1.7 P2.2 P2.0 E1 E2 E3 E4 E5 NC P2.1 RST/NMI TEST NC (no connect). This ball must be attached but remain floating (no electrical connection). P1.0 must be initialized properly to avoid the floating input of the device. Package Dimensions: The package dimensions for the YFF package are shown in Table 3. See the package drawing at the end of this data sheet for more details. Table 3. YFF Package Dimensions PACKAGED DEVICES D E 2.04 ± 0.03 2.24 ± 0.03 MSP430FR5738IYFF MSP430FR5736IYFF MSP430FR5730IYFF Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 11 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Functional Block Diagram – MSP430FR5720IPW, MSP430FR5724IPW, MSP430FR5728IPW, MSP430FR5730IPW, MSP430FR5734IPW, MSP430FR5738IPW PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16 KB Clock System ACLK (’5734, ‘5724) SMCLK 4 KB CPUXV2 and Working Registers 1 KB (’5730, ‘5720) FRAM MCLK I/O Ports P1/P2 1×8 I/Os 1×7 I/Os (’5738, ’5728) 8 KB Power Management Boot ROM SYS Watchdog PA P2.x REF SVS Interrupt & Wakeup PA 1×15 I/Os RAM Memory Protection Unit MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG/ SBW Interface eUSCI_A0: UART, IrDA, SPI TA0 TA1 TB0 (2) Timer_A 3 CC Registers (1) Timer_B 3 CC Registers RTC_B MPY32 ADC10_B 10 Bit 200KSPS CRC eUSCI_B0: SPI, I2C Comp_D 12 channels 12 channels (8 ext/2 int) Functional Block Diagram – MSP430FR5722IPW, MSP430FR5726IPW, MSP430FR5732IPW, MSP430FR5736IPW PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16 KB Clock System ACLK (’5732, ‘5722) SMCLK FRAM MCLK CPUXV2 and Working Registers I/O Ports P1/P2 1×8 I/Os 1×7 I/Os (’5736, ’5726) 8 KB 1 KB Boot ROM Power Management PA P2.x SYS Watchdog SVS Interrupt & Wakeup PA 1×15 I/Os RAM Memory Protection Unit MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK 12 JTAG/ SBW Interface TA0 TA1 TB0 (2) Timer_A 3 CC Registers (1) Timer_B 3 CC Registers RTC_B MPY32 Submit Documentation Feedback CRC eUSCI_A0: UART, IrDA, SPI eUSCI_B0: SPI, I2C Comp_D REF 12 channels Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Pin Designation – MSP430FR5720IPW, MSP430FR5722IPW, MSP430FR5724IPW, MSP430FR5726IPW, MSP430FR5728IPW, MSP430FR5730IPW, MSP430FR5732IPW, MSP430FR5734IPW, MSP430FR5736IPW, MSP430FR5738IPW PW PACKAGE (TOP VIEW) PJ.4/XIN PJ.5/XOUT AVSS AVCC P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-* P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+* P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2 P1.3/TA1.2/UCB0STE/A3*/CD3 P1.4/TB0.1/UCA0STE/A4*/CD4 P1.5/TB0.2/UCA0CLK/A5*/CD5 PJ.0/TDO/TB0OUTH/SMCLK/CD6 PJ.1/TDI/TCLK/MCLK/CD7 PJ.2/TMS/ACLK/CD8 PJ.3/TCK/CD9 1 28 2 27 3 26 4 25 MSP430FR5738 MSP430FR5736 5 MSP430FR5734 6 MSP430FR5732 7 MSP430FR5730 24 23 22 8 21 9 20 MSP430FR5728 MSP430FR5726 10 MSP430FR5724 11 MSP430FR5722 12 MSP430FR5720 19 18 17 13 16 14 15 P2.4/TA1.0/A7*/CD11 P2.3/TA0.0/A6*/CD10 DVCC DVSS VCORE P1.7/UCB0SOMI/UCB0SCL/TA1.0 P1.6/UCB0SIMO/UCB0SDA/TA0.0 P2.2/UCB0CLK P2.1/UCA0RXD/UCA0SOMI/TB0.0 P2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK RST/NMI/SBWTDIO TEST/SBWTCK P2.6 P2.5/TB0.0 * Not available on MSP430FR5736, MSP430FR5732, MSP430FR5726, MSP430FR5722 Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 13 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 4. Terminal Functions TERMINAL NAME P1.0/TA0.1/DMAE0/ RTCCLK/A0/CD0/VeREF- P1.1/TA0.2/TA1CLK/ CDOUT/A1/CD1/VeREF+ P1.2/TA1.1/TA0CLK/ CDOUT/A2/CD2 P3.0/A12/CD12 P3.1/A13/CD13 P3.2/A14/CD14 P3.3/A15/CD15 (1) (2) 14 NO. RHA 1 2 3 4 5 6 7 RGE 1 2 3 N/A N/A N/A N/A DA 5 6 7 8 9 10 11 I/O PW 5 6 7 N/A N/A N/A N/A (1) DESCRIPTION YFF (2) A2 A3 N/A N/A N/A N/A I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA0 CCR1 capture: CCI1A input, compare: Out1 External DMA trigger RTC clock calibration output Analog input A0 – ADC (not available on devices without ADC) Comparator_D input CD0 External applied reference voltage (not available on devices without ADC) I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA0 CCR2 capture: CCI2A input, compare: Out2 TA1 input clock Comparator_D output Analog input A1 – ADC (not available on devices without ADC) Comparator_D input CD1 Input for an external reference voltage to the ADC (not available on devices without ADC) I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA1 CCR1 capture: CCI1A input, compare: Out1 TA0 input clock Comparator_D output Analog input A2 – ADC (not available on devices without ADC) Comparator_D input CD2 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) Analog input A12 – ADC (not available on devices without ADC or package options PW, RGE) Comparator_D input CD12 (not available on package options PW, RGE) I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) Analog input A13 – ADC (not available on devices without ADC or package options PW, RGE) Comparator_D input CD13 (not available on package options PW, RGE) I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) Analog input A14 – ADC (not available on devices without ADC or package options PW, RGE) Comparator_D input CD14 (not available on package options PW, RGE) I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) Analog input A15 – ADC (not available on devices without ADC or package options PW, RGE) Comparator_D input CD15 (not available on package options PW, RGE) I = input, O = output, N/A = not available The functions associated with P1.0 are implemented but not available on the device pinout. To avoid floating inputs, this digital I/O should be properly configured. The pullup/down resistors of P1.0 should be enabled. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Table 4. Terminal Functions (continued) TERMINAL NAME P1.3/TA1.2/UCB0STE/ A3/CD3 P1.4/TB0.1/UCA0STE/ A4/CD4 P1.5/TB0.2/UCA0CLK/ A5/CD5 PJ.0/TDO/TB0OUTH/ SMCLK/CD6 (3) PJ.1/TDI/TCLK/TB1OUTH/ MCLK/CD7 (3) NO. RHA 8 9 10 11 12 RGE 4 5 6 7 8 DA 12 13 14 15 16 I/O PW 8 9 10 11 12 (1) DESCRIPTION YFF A4 B4 A5 C3 B5 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA1 CCR2 capture: CCI2A input, compare: Out2 Slave transmit enable – eUSCI_B0 SPI mode Analog input A3 – ADC (not available on devices without ADC) Comparator_D input CD3 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB0 CCR1 capture: CCI1A input, compare: Out1 Slave transmit enable – eUSCI_A0 SPI mode Analog input A4 – ADC (not available on devices without ADC) Comparator_D input CD4 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB0 CCR2 capture: CCI2A input, compare: Out2 Clock signal input – eUSCI_B0 SPI slave mode, Clock signal output – eUSCI_B0 SPI master mode Analog input A5 – ADC (not available on devices without ADC) Comparator_D input CD5 I/O General-purpose digital I/O Test data output port Switch all PWM outputs high impedance input – TB0 SMCLK output Comparator_D input CD6 I/O General-purpose digital I/O Test data input or test clock input Switch all PWM outputs high impedance input – TB1 (not available on devices without TB1) MCLK output Comparator_D input CD7 13 9 17 13 C4 I/O General-purpose digital I/O Test mode select Switch all PWM outputs high impedance input – TB2 (not available on devices without TB2) ACLK output Comparator_D input CD8 14 10 18 14 C5 I/O General-purpose digital I/O Test clock Comparator_D input CD9 P4.0/TB2.0 15 N/A N/A N/A N/A I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) TB2 CCR0 capture: CCI0B input, compare: Out0 (not available on devices without TB2 or package options DA, PW, RGE) P4.1 16 N/A N/A N/A N/A I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options DA, PW, RGE) PJ.2/TMS/TB2OUTH/ ACLK/CD8 (3) PJ.3/TCK/CD9 (3) (3) See JTAG Operation for use with JTAG function. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 15 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 4. Terminal Functions (continued) TERMINAL NO. NAME RHA P2.5/TB0.0/UCA1TXD/ UCA1SIMO 17 P2.6/TB1.0/UCA1RXD/ UCA1SOMI TEST/SBWTCK (3) (4) RST/NMI/SBWTDIO (3) (4) P2.0/TB2.0/UCA0TXD/ UCA0SIMO/TB0CLK/ACLK (4) P2.1/TB2.1/UCA0RXD/ UCA0SOMI/TB0.0 (5) P2.2/TB2.2/UCB0CLK/ TB1.0 P3.4/TB1.1/TB2CLK/ SMCLK (4) (5) 16 RGE N/A DA 19 I/O PW 15 (1) DESCRIPTION YFF N/A I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB0 CCR0 capture: CCI0A input, compare: Out0 Transmit data – eUSCI_A1 UART mode, Slave in, master out – eUSCI_A1 SPI mode (not available on devices without UCSI_A1) General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB1) Receive data – eUSCI_A1 UART mode, Slave out, master in – eUSCI_A1 SPI mode (not available on devices without UCSI_A1) 18 N/A 20 16 N/A I/O 19 11 21 17 D5 I 20 12 22 18 D4 I/O Reset input active low Non-maskable interrupt input Spy-Bi-Wire data input/output I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB2 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB2) Transmit data – eUSCI_A0 UART mode, Slave in, master out – eUSCI_A0 SPI mode TB0 clock input ACLK output I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB2 CCR1 capture: CCI1A input, compare: Out1 (not available on devices without TB2) Receive data – eUSCI_A0 UART mode, Slave out, master in – eUSCI_A0 SPI mode TB0 CCR0 capture: CCI0A input, compare: Out0 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB2 CCR2 capture: CCI2A input, compare: Out2 (not available on devices without TB2) Clock signal input – eUSCI_B0 SPI slave mode, Clock signal output – eUSCI_B0 SPI master mode TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB1) I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) TB1 CCR1 capture: CCI1B input, compare: Out1 (not available on devices without TB1) TB2 clock input (not available on devices without TB2 or package options PW, RGE) SMCLK output (not available on package options PW, RGE) 21 22 23 24 13 14 15 N/A 23 24 25 26 19 20 21 N/A E5 D3 E4 N/A Test mode pin – enable JTAG pins Spy-Bi-Wire input clock See Bootstrap Loader (BSL) and JTAG Operation for use with BSL and JTAG functions. See Bootstrap Loader (BSL) and JTAG Operation for use with BSL and JTAG functions. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Table 4. Terminal Functions (continued) TERMINAL NAME P3.5/TB1.2/CDOUT P3.6/TB2.1/TB1CLK P3.7/TB2.2 P1.6/TB1.1/UCB0SIMO/ UCB0SDA/TA0.0 P1.7/TB1.2/UCB0SOMI/ UCB0SCL/TA1.0 VCORE (6) NO. RHA 25 26 27 28 RGE N/A N/A N/A 16 DA 27 28 29 30 I/O PW N/A N/A N/A 22 29 17 31 23 (1) DESCRIPTION YFF N/A N/A N/A E2 E3 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) TB1 CCR2 capture: CCI2B input, compare: Out2 (not available on devices without TB1) Comparator_D output (not available on package options PW, RGE) I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) TB2 CCR1 capture: CCI1B input, compare: Out1 (not available on devices without TB2) TB1 clock input (not available on devices without TB1 or package options PW, RGE) I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) TB2 CCR2 capture: CCI2B input, compare: Out2 (not available on devices without TB2 or package options PW, RGE) I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB1 CCR1 capture: CCI1A input, compare: Out1 (not available on devices without TB1) Slave in, master out – eUSCI_B0 SPI mode I2C data – eUSCI_B0 I2C mode TA0 CCR0 capture: CCI0A input, compare: Out0 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB1 CCR2 capture: CCI2A input, compare: Out2 (not available on devices without TB1) Slave out, master in – eUSCI_B0 SPI mode I2C clock – eUSCI_B0 I2C mode TA1 CCR0 capture: CCI0A input, compare: Out0 30 18 32 24 E1 Regulated core power supply (internal use only, no external current loading) DVSS 31 19 33 25 D2 Digital ground supply DVCC 32 20 34 26 D1 Digital power supply P2.7 33 N/A 35 N/A N/A P2.3/TA0.0/UCA1STE/ A6/CD10 P2.4/TA1.0/UCA1CLK/ A7/CD11 (6) 34 35 N/A N/A 36 37 27 28 N/A N/A I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options RGE) TA0 CCR0 capture: CCI0B input, compare: Out0 (not available on package options RGE) Slave transmit enable – eUSCI_A1 SPI mode (not available on devices without eUSCI_A1) Analog input A6 – ADC (not available on devices without ADC) Comparator_D input CD10 (not available on package options RGE) I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options RGE) TA1 CCR0 capture: CCI0B input, compare: Out0 (not available on package options RGE) Clock signal input – eUSCI_A1 SPI slave mode, Clock signal output – eUSCI_A1 SPI master mode (not available on devices without eUSCI_A1) Analog input A7 – ADC (not available on devices without ADC) Comparator_D input CD11 (not available on package options RGE) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 17 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 4. Terminal Functions (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION RHA RGE DA PW YFF AVSS 36 N/A 38 N/A B3 PJ.4/XIN 37 21 1 1 C1 I/O General-purpose digital I/O Input terminal for crystal oscillator XT1 PJ.5/XOUT 38 22 2 2 B1 I/O General-purpose digital I/O Output terminal of crystal oscillator XT1 AVSS 39 23 3 3 C2 Analog ground supply AVCC 40 24 4 4 B2 Analog power supply Pad Pad N/A N/A N/A QFN package pad. Connection to VSS recommended. QFN Pad 18 Submit Documentation Feedback Analog ground supply Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 SHORT-FORM DESCRIPTION CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 19 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Operating Modes The MSP430 has one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake up the device from low-power modes LPM0 through LPM4, service the request, and restore back to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption. The following eight operating modes can be configured by software: • Active mode (AM) – All clocks are active • Low-power mode 0 (LPM0) – CPU is disabled – ACLK active, MCLK disabled, SMCLK optionally active – Complete data retention • Low-power mode 1 (LPM1) – CPU is disabled – ACLK active, MCLK disabled, SMCLK optionally active – DCO disabled – Complete data retention • Low-power mode 2 (LPM2) – CPU is disabled – ACLK active, MCLK disabled, SMCLK optionally active – DCO disabled – Complete data retention • Low-power mode 3 (LPM3) – CPU is disabled – ACLK active, MCLK and SMCLK disabled – DCO disabled – Complete data retention • Low-power mode 4 (LPM4) – CPU is disabled – ACLK, MCLK, SMCLK disabled – Complete data retention • Low-power mode 3.5 (LPM3.5) – RTC operation – Internal regulator disabled – No data retention – I/O pad state retention – Wake up from RST, general-purpose I/O, RTC events • Low-power mode 4.5 (LPM4.5) – Internal regulator disabled – No data retention – I/O pad state retention – Wake up from RST and general-purpose I/O 20 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Interrupt Vector Addresses The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 5. Interrupt Sources, Flags, and Vectors INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY System Reset Power-Up, Brownout, Supply Supervisors External Reset RST Watchdog Timeout (Watchdog mode) WDT, FRCTL MPU, CS, PMM Password Violation FRAM double bit error detection MPU segment violation Software POR, BOR SVSLIFG, SVSHIFG PMMRSTIFG WDTIFG WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW DBDIFG MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG, MPUSEG3IFG PMMPORIFG, PMMBORIFG (SYSRSTIV) (1) (2) Reset 0FFFEh 63, highest System NMI Vacant Memory Access JTAG Mailbox FRAM access time error Access violation FRAM single, double bit error detection VMAIFG JMBNIFG, JMBOUTIFG ACCTIMIFG ACCVIFG SBDIFG, DBDIFG (SYSSNIV) (1) (Non)maskable 0FFFCh 62 User NMI External NMI Oscillator Fault NMIIFG, OFIFG (SYSUNIV) (1) (2) (Non)maskable 0FFFAh 61 Comparator_D Comparator_D interrupt flags (CBIV) (1) (3) Maskable 0FFF8h 60 TB0 TB0CCR0 CCIFG0 (3) Maskable 0FFF6h 59 TB0 TB0CCR1 CCIFG1 to TB0CCR2 CCIFG2, TB0IFG (TB0IV) (1) (3) Maskable 0FFF4h 58 Watchdog Timer (Interval Timer Mode) WDTIFG Maskable 0FFF2h 57 eUSCI_A0 Receive and Transmit UCA0RXIFG, UCA0TXIFG (SPI mode) UCA0STTIFG, UCA0TXCPTIFG, UCA0RXIFG, UXA0TXIFG (UART mode) (UCA0IV) (1) (3) Maskable 0FFF0h 56 eUSCI_B0 Receive and Transmit UCB0STTIFG, UCB0TXCPTIFG, UCB0RXIFG, UCB0TXIFG (SPI mode) UCB0ALIFG, UCB0NACKIFG, UCB0STTIFG, UCB0STPIFG, UCB0RXIFG0, UCB0TXIFG0, UCB0RXIFG1, UCB0TXIFG1, UCB0RXIFG2, UCB0TXIFG2, UCB0RXIFG3, UCB0TXIFG3, UCB0CNTIFG, UCB0BIT9IFG (I2C mode) (UCB0IV) (1) (3) Maskable 0FFEEh 55 ADC10_B ADC10OVIFG, ADC10TOVIFG, ADC10HIIFG, ADC10LOIFG ADC10INIFG, ADC10IFG0 (ADC10IV) (1) (3) (4) Maskable 0FFECh 54 Maskable 0FFEAh 53 Maskable 0FFE8h 52 TA0 TA0 (1) (2) (3) (4) TA0CCR0 CCIFG0 (3) TA0CCR1 CCIFG1 to TA0CCR2 CCIFG2, TA0IFG (TA0IV) (1) (3) Multiple source flags A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. Interrupt flags are located in the module. Only on devices with ADC, otherwise reserved. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 21 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 5. Interrupt Sources, Flags, and Vectors (continued) INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY eUSCI_A1 Receive and Transmit UCA1RXIFG, UCA1TXIFG (SPI mode) UCA1STTIFG, UCA1TXCPTIFG, UCA1RXIFG, UXA1TXIFG (UART mode) (UCA1IV) (1) (3) Maskable 0FFE6h 51 DMA DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) (1) (3) Maskable 0FFE4h 50 Maskable 0FFE2h 49 TA1 TA1CCR0 CCIFG0 TA1 TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV) (1) (3) Maskable 0FFE0h 48 I/O Port P1 P1IFG.0 to P1IFG.7 (P1IV) (1) (3) Maskable 0FFDEh 47 TB1 TB1CCR0 CCIFG0 Maskable 0FFDCh 46 TB1 Maskable 0FFDAh 45 I/O Port P2 P2IFG.0 to P2IFG.7 (P2IV) (1) (3) Maskable 0FFD8h 44 TB2CCR0 CCIFG0 (3) Maskable 0FFD6h 43 TB2 TB2CCR1 CCIFG1 to TB2CCR2 CCIFG2, TB2IFG (TB2IV) (1) (3) Maskable 0FFD4h 42 I/O Port P3 P3IFG.0 to P3IFG.7 (P3IV) (5) (6) Maskable 0FFD2h 41 I/O Port P4 P4IFG.0 to P4IFG.2 (P4IV) (5) (6) Maskable 0FFD0h 40 RTC_B RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV) (5) (6) Maskable 0FFCEh 39 0FFCCh 38 Reserved 22 (3) TB1CCR1 CCIFG1 to TB1CCR2 CCIFG2, TB1IFG (TB1IV) (1) (3) TB2 (5) (6) (7) (3) Reserved (7) ⋮ ⋮ 0FF80h 0, lowest Multiple source flags Interrupt flags are located in the module. Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, it is recommended to reserve these locations. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Memory Organization Table 6. Memory Organization (1) (2) MSP430FR5726 MSP430FR5727 MSP430FR5728 MSP430FR5729 MSP430FR5736 MSP430FR5737 MSP430FR5738 MSP430FR5739 MSP430FR5722 MSP430FR5723 MSP430FR5724 MSP430FR5725 MSP430FR5732 MSP430FR5733 MSP430FR5734 MSP430FR5735 MSP430FR5720 MSP430FR5721 MSP430FR5730 MSP430FR5731 15.5 KB 00FFFFh–00FF80h 00FF7Fh–00C200h 8.0 KB 00FFFFh–00FF80h 00FF7Fh–00E000h 4 KB 00FFFFh–00FF80h 00FF7Fh–00F000h RAM 1 KB 001FFFh–001C00h 1 KB 001FFFh–001C00h 1 KB 001FFFh–001C00h Device Descriptor Info (TLV) (FRAM) 128 B 001A7Fh–001A00h 128 B 001A7Fh–001A00h 128 B 001A7Fh–001A00h N/A 0019FFh–001980h Address space mirrored to Info A 0019FFh–001980h Address space mirrored to Info A 0019FFh–001980h Address space mirrored to Info A N/A 00197Fh–001900h Address space mirrored to Info B 00197Fh–001900h Address space mirrored to Info B 00197Fh–001900h Address space mirrored to Info B Info A 128 B 0018FFh–001880h 128 B 0018FFh–001880h 128 B 0018FFh–001880h Info B 128 B 00187Fh–001800h 128 B 00187Fh–001800h 128 B 00187Fh–001800h BSL 3 512 B 0017FFh–001600h 512 B 0017FFh–001600h 512 B 0017FFh–001600h BSL 2 512 B 0015FFh–001400h 512 B 0015FFh–001400h 512 B 0015FFh–001400h BSL 1 512 B 0013FFh–001200h 512 B 0013FFh–001200h 512 B 0013FFh–001200h BSL 0 512 B 0011FFh–001000h 512 B 0011FFh–001000h 512 B 0011FFh–001000h 4 KB 000FFFh–0h 4 KB 000FFFh–0h 4 KB 000FFFh–0h Memory (FRAM) Main: interrupt vectors Main: code memory Total Size Information memory (FRAM) Bootstrap loader (BSL) memory (ROM) Peripherals (1) (2) Size N/A = Not available All address space not listed in this table is considered vacant memory. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 23 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Bootstrap Loader (BSL) The BSL enables users to program the FRAM or RAM using a UART serial interface. Access to the device memory by the BSL is protected by an user-defined password. Use of the BSL requires four pins as shown in Table 7. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader User's Guide (SLAU319). Table 7. BSL Pin Requirements and Functions DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P2.0 Data transmit P2.1 Data receive VCC Power supply VSS Ground supply JTAG Operation JTAG Standard Interface The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. The JTAG pin requirements are shown in Table 8. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320). Table 8. JTAG Pin Requirements and Functions DEVICE SIGNAL DIRECTION FUNCTION PJ.3/TCK IN JTAG clock input PJ.2/TMS IN JTAG state control PJ.1/TDI/TCLK IN JTAG data input, TCLK input PJ.0/TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset VCC Power supply VSS Ground supply Spy-Bi-Wire Interface In addition to the standard JTAG interface, the MSP430 family supports the two-wire Spy-Bi-Wire interface. SpyBi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire interface pin requirements are shown in Table 9. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320). Table 9. Spy-Bi-Wire Pin Requirements and Functions DEVICE SIGNAL 24 DIRECTION FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input and output VCC Power supply VSS Ground supply Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 FRAM The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. Features of the FRAM include: • Low-power ultrafast write nonvolatile memory • Byte and word access capability • Programmable and automated wait state generation • Error Correction Coding (ECC) with single bit detection and correction, double bit detection Memory Protection Unit (MPU) The FRAM can be protected from inadvertent CPU execution or write access by the MPU. Features of the MPU include: • Main memory partitioning programmable up to three segments • Each segment's (main and information memory) access rights can be individually selected • Access violation flags with interrupt capability for easy servicing of access violations Peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430FR57xx Family User's Guide (SLAU272). Digital I/O There are up to four 8-bit I/O ports implemented: • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt conditions is possible. • Programmable pullup or pulldown on all ports. • Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all ports. • Read/write access to port-control registers is supported by all instructions. • Ports can be accessed byte-wise or word-wise in pairs. Oscillator and Clock System (CS) The clock system includes support for a 32-kHz watch crystal oscillator XT1 (LF mode), an internal very-lowpower low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a highfrequency crystal oscillator XT1 (HF mode). The clock system module is designed to meet the requirements of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The clock system module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1 LF mode), a high-frequency crystal (XT1 HF mode), the internal VLO, or the internal DCO. • Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by the same sources made available to ACLK. • Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by the same sources made available to ACLK. Power Management Module (PMM) The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also includes supply voltage supervisor (SVS) and brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the primary and core supplies. Hardware Multiplier (MPY) The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 25 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Real-Time Clock (RTC_B) The RTC_B module contains an integrated real-time clock (RTC) (calendar mode). Calendar mode integrates an internal calendar which compensates for months with fewer than 31 days and includes leap year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. RTC operation is available in LPM3.5 mode to minimize power consumption. Watchdog Timer (WDT_A) The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. System Module (SYS) The SYS module handles many of the system functions within the device. These include power-on reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators, bootstrap loader entry mechanisms, and configuration management (device descriptors). It also includes a data exchange mechanism using JTAG called a JTAG mailbox that can be used in the application. 26 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Table 10. System Module Interrupt Vector Registers INTERRUPT VECTOR REGISTER SYSRSTIV, System Reset SYSSNIV, System NMI ADDRESS 019Eh 019Ch INTERRUPT EVENT No interrupt pending 00h Brownout (BOR) 02h RSTIFG RST/NMI (BOR) 04h PMMSWBOR software BOR (BOR) 06h LPMx.5 wake up (BOR) 08h Security violation (BOR) 0Ah SVSLIFG SVSL event (BOR) 0Ch SVSHIFG SVSH event (BOR) 0Eh Reserved 10h Reserved 12h PMMSWPOR software POR (POR) 14h WDTIFG watchdog timeout (PUC) 16h WDTPW password violation (PUC) 18h FRCTLPW password violation (PUC) 1Ah DBDIFG FRAM double bit error (PUC) 1Ch Peripheral area fetch (PUC) 1Eh PMMPW PMM password violation (PUC) 20h MPUPW MPU password violation (PUC) 22h CSPW CS password violation (PUC) 24h MPUSEGIIFG information memory segment violation (PUC) 26h MPUSEG1IFG segment 1 memory violation (PUC) 28h MPUSEG2IFG segment 2 memory violation (PUC) 2Ah MPUSEG3IFG segment 3 memory violation (PUC) 2Ch Reserved 2Eh Reserved 30h to 3Eh No interrupt pending 00h DBDIFG FRAM double bit error 02h ACCTIMIFG access time error 04h ACCVIFG access violation 0Eh VMAIFG Vacant memory access 10h JMBINIFG JTAG mailbox input 12h JMBOUTIFG JTAG mailbox output 14h SBDIFG FRAM single bit error Reserved SYSUNIV, User NMI 019Ah VALUE Highest Lowest Highest 16h 18h to 1Eh No interrupt pending 00h NMIFG NMI pin 02h OFIFG oscillator fault 04h Reserved 06h Reserved 08h Reserved 0Ah to 1Eh Copyright © 2011–2012, Texas Instruments Incorporated PRIORITY Lowest Highest Lowest Submit Documentation Feedback 27 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com DMA Controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC10_B conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. Table 11. DMA Trigger Assignments TRIGGER CHANNEL 0 CHANNEL 1 0 DMAREQ DMAREQ DMAREQ 1 TA0CCR0 CCIFG TA0CCR0 CCIFG TA0CCR0 CCIFG 2 TA0CCR2 CCIFG TA0CCR2 CCIFG TA0CCR2 CCIFG 3 TA1CCR0 CCIFG TA1CCR0 CCIFG TA1CCR0 CCIFG 4 TA1CCR2 CCIFG TA1CCR2 CCIFG TA1CCR2 CCIFG 5 Reserved Reserved Reserved Reserved Reserved Reserved 7 TB0CCR0 CCIFG TB0CCR0 CCIFG TB0CCR0 CCIFG 8 TB0CCR2 CCIFG TB0CCR2 CCIFG TB0CCR2 CCIFG TB1CCR0 CCIFG (2) TB1CCR2 CCIFG (2) TB1CCR2 CCIFG (2) TB1CCR2 CCIFG (2) 11 TB2CCR0 CCIFG (3) TB2CCR0 CCIFG (3) TB2CCR0 CCIFG (3) 12 TB2CCR2 CCIFG (3) TB2CCR2 CCIFG (3) TB2CCR2 CCIFG (3) 10 TB1CCR0 CCIFG (2) TB1CCR0 CCIFG (2) 13 Reserved Reserved Reserved 14 UCA0RXIFG UCA0RXIFG UCA0RXIFG 15 UCA0TXIFG UCA0TXIFG UCA0TXIFG 16 17 18 (1) (2) (3) (4) (5) (6) CHANNEL 2 6 9 28 (1) UCA1RXIFG (4) UCA1TXIFG (4) UCB0RXIFG0 UCA1RXIFG (4) UCA1TXIFG (4) UCB0RXIFG0 UCA1RXIFG (4) UCA1TXIFG (4) UCB0RXIFG0 19 UCB0TXIFG0 UCB0TXIFG0 UCB0TXIFG0 20 UCB0RXIFG1 UCB0RXIFG1 UCB0RXIFG1 21 UCB0TXIFG1 UCB0TXIFG1 UCB0TXIFG1 22 UCB0RXIFG2 UCB0RXIFG2 UCB0RXIFG2 23 UCB0TXIFG2 UCB0TXIFG2 UCB0TXIFG2 24 UCB0RXIFG3 UCB0RXIFG3 UCB0RXIFG3 25 UCB0TXIFG3 UCB0TXIFG3 UCB0TXIFG3 (5) ADC10IFGx 27 Reserved Reserved Reserved 28 Reserved Reserved Reserved 29 MPY ready MPY ready MPY ready 30 DMA2IFG DMA0IFG 31 DMAE0 DMAE0 (6) ADC10IFGx (5) 26 (6) ADC10IFGx (5) DMA1IFG DMAE0 (6) If a reserved trigger source is selected, no trigger is generated. Only on devices with TB1, otherwise reserved Only on devices with TB2, otherwise reserved Only on devices with eUSCI_A1, otherwise reserved Only on devices with ADC, otherwise reserved This function is not available on YFF package types. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Enhanced Universal Serial Communication Interface (eUSCI) The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each eUSCI module contains two portions, A and B. The eUSCI_An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, or IrDA. The eUSCI_Bn module provides support for SPI (3 pin or 4 pin) or I2C. The MSP430FR572x and MSP430FR573x series include one or two eUSCI_An modules (eUSCI_A0, eUSCI_A1) and one eUSCI_Bn module (eUSCI_B). TA0, TA1 TA0 and TA1 are 16-bit timers/counters (Timer_A type) with three capture/compare registers each. Each can support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 12. TA0 Signal Connections INPUT PIN NUMBER RHA RGE, YFF DA PW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 3-P1.2 3-P1.2, A3‑P1.2 7-P1.2 7-P1.2 TA0CLK TACLK ACLK (internal) ACLK SMCLK (internal) SMCLK MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer N/A N/A OUTPUT PIN NUMBER RHA RGE, YFF DA PW 3-P1.2 3-P1.2, A3‑P1.2 7-P1.2 7-P1.2 TA0CLK TACLK 28-P1.6 16-P1.6, E2‑P1.6 30-P1.6 22-P1.6 TA0.0 CCI0A 28-P1.6 16-P1.6 , E2‑P1.6 30-P1.6 22-P1.6 34-P2.3 N/A 36-P2.3 27-P2.3 TA0.0 CCI0B TA0.0 34-P2.3 N/A 36-P2.3 27-P2.3 DVSS GND DVCC VCC TA0.1 CCI1A 1-P1.0 1-P1.0 , N/A 5-P1.0 5-P1.0 CDOUT (internal) CCI1B TA0.1 ADC10 (internal) (1) ADC10SHSx = {1} ADC10 (internal) (1) ADC10SHSx = {1} ADC10 (internal) (1) ADC10SHSx = {1} ADC10 (internal) (1) ADC10SHSx = {1} 2-P1.1 2-P1.1, A2‑P1.1 6-P1.1 6-P1.1 1-P1.0 2-P1.1 (1) 1-P1.0, N/A 2-P1.1, A2‑P1.1 5-P1.0 6-P1.1 5-P1.0 6-P1.1 DVSS GND DVCC VCC TA0.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC CCR0 CCR1 CCR2 TA0 TA1 TA2 TA0.2 Only on devices with ADC Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 29 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 13. TA1 Signal Connections RHA RGE, YFF INPUT PIN NUMBER DA PW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 2-P1.1 2-P1.1, A2‑P1.1 6-P1.1 6-P1.1 TA1CLK TACLK ACLK (internal) ACLK SMCLK (internal) SMCLK 2-P1.1 2-P1.1, A2‑P1.1 6-P1.1 6-P1.1 TA1CLK TACLK 29-P1.7 17-P1.7, E3‑P1.7 31-P1.7 23-P1.7 TA1.0 CCI0A 35-P2.4 N/A 37-P2.4 28-P2.4 TA1.0 CCI0B DVSS GND 3-P1.2 8-P1.3 30 3-P1.2, N/A 4-P1.3, A4‑P1.3 7-P1.2 12-P1.3 7-P1.2 8-P1.3 Submit Documentation Feedback DVCC VCC TA1.1 CCI1A CDOUT (internal) CCI1B DVSS GND DVCC VCC TA1.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer N/A N/A CCR0 CCR1 CCR2 TA0 TA1 TA2 TA1.0 OUTPUT PIN NUMBER RHA RGE, YFF DA PW 29-P1.7 17-P1.7, E3‑P1.7 31-P1.7 23-P1.7 35-P2.4 N/A 37-P2.4 28-P2.4 3-P1.2 3-P1.2, N/A 7-P1.2 7-P1.2 8-P1.3 4-P1.3, A4‑P1.3 12-P1.3 8-P1.3 TA1.1 TA1.2 Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 TB0, TB1, TB2 TB0, TB1, and TB2 are 16-bit timers/counters (Timer_B type) with three capture/compare registers each. Each can support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 14. TB0 Signal Connections RHA RGE, YFF INPUT PIN NUMBER DA PW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 21-P2.0 13-P2.0, E5‑P2.0 23-P2.0 19-P2.0 TB0CLK TBCLK ACLK (internal) ACLK SMCLK (internal) SMCLK 21-P2.0 13-P2.0, E5‑P2.0 23-P2.0 19-P2.0 TB0CLK TBCLK 22-P2.1 14-P2.1, D3‑P2.1 24-P2.1 20-P2.1 TB0.0 CCI0A 17-P2.5 N/A 19-P2.5 15-P2.5 TB0.0 CCI0B MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer N/A N/A CCR0 DVSS 9-P1.4 10-P1.5 (1) 5-P1.4, B4‑P1.4 6‑P1.5, A5P1.5 13-P1.4 14-P1.5 9-P1.4 19-P1.5 TB0 TB0.0 GND DVCC VCC TB0.1 CCI1A CDOUT (internal) CCI1B DVSS GND DVCC VCC TB0.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC CCR1 CCR2 TB1 TB2 TB0.1 OUTPUT PIN NUMBER RHA RGE, YFF DA PW 22-P2.1 14-P2.1, D3‑P2.1 24-P2.1 20-P2.1 17-P2.5 N/A 19-P2.5 15-P2.5 ADC10 (internal) (1) ADC10SHSx = {2} ADC10 (internal) (1) ADC10SHSx = {2} ADC10 (internal) (1) ADC10SHSx = {2} ADC10 (internal) (1) ADC10SHSx = {2} 9-P1.4 5-P1.4, B4‑P1.4 13-P1.4 9-P1.4 ADC10 (internal) (1) ADC10SHSx = {3} ADC10 (internal) (1) ADC10SHSx = {3} ADC10 (internal) (1) ADC10SHSx = {3} ADC10 (internal) (1) ADC10SHSx = {3} 10-P1.5 6-P1.5, A5‑P1.5 14-P1.5 19-P1.5 TB0.2 Only on devices with ADC Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 31 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 15. TB1 Signal Connections RHA RGE, YFF INPUT PIN NUMBER DA PW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 26-P3.6 N/A (DVSS), N/A (DVSS) 28-P3.6 N/A (DVSS) TB1CLK TBCLK ACLK (internal) ACLK SMCLK (internal) SMCLK 26-P3.6 N/A (DVSS), N/A (DVSS) 28-P3.6 N/A (DVSS) TB1CLK TBCLK 23-P2.2 N/A (DVSS), N/A (DVSS) 25-P2.2 N/A (DVSS) TB1.0 CCI0A 18-P2.6 N/A (DVSS), N/A (DVSS) 20-P2.6 N/A (DVSS) TB1.0 CCI0B DVSS GND DVCC VCC 28-P1.6 N/A (DVSS), N/A (DVSS) 30-P1.6 N/A (DVSS) TB1.1 CCI1A 24-P3.4 N/A (DVSS), N/A (DVSS) 26-P3.4 N/A (DVSS) TB1.1 CCI1B DVSS GND DVCC VCC 29-P1.7 N/A (DVSS), N/A (DVSS) 31-P1.7 N/A (DVSS) TB1.2 CCI2A 25-P3.5 N/A (DVSS), N/A (DVSS) 27-P3.5 N/A (DVSS) TB1.2 CCI2B DVSS GND DVCC VCC (1) MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer N/A N/A CCR0 CCR1 CCR2 TB0 TB1 TB2 TB1.0 TB1.1 TB1.2 RHA RGE, YFF INPUT PIN NUMBER DA PW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 24-P3.4 N/A (DVSS), N/A (DVSS) 26-P3.4 N/A (DVSS) TB2CLK TBCLK ACLK (internal) ACLK SMCLK (internal) SMCLK 24-P3.4 N/A (DVSS), N/A (DVSS) 26-P3.4 N/A (DVSS) TB2CLK TBCLK 21-P2.0 N/A (DVSS), N/A (DVSS) 23-P2.0 N/A (DVSS) TB2.0 CCI0A 15-P4.0 N/A (DVSS), N/A (DVSS) N/A (DVSS) N/A (DVSS) TB2.0 CCI0B DVSS GND DVCC VCC 22-P2.1 N/A (DVSS), N/A (DVSS) 24-P2.1 N/A (DVSS) TB2.1 CCI1A 26-P3.6 N/A (DVSS), N/A (DVSS) 28-P3.6 N/A (DVSS) TB2.1 CCI1B DVSS GND DVCC VCC 23-P2.2 N/A (DVSS), N/A (DVSS) 25-P2.2 N/A (DVSS) TB2.2 CCI2A 27-P3.7 N/A (DVSS), N/A (DVSS) 29-P3.7 N/A (DVSS) TB2.2 CCI2B DVSS GND DVCC VCC 32 OUTPUT PIN NUMBER RHA RGE, YFF DA PW 23-P2.2 N/A 25-P2.2 N/A 18-P2.6 N/A 20-P2.6 N/A 28-P1.6 N/A 30-P1.6 N/A 24-P3.4 N/A 26-P3.4 N/A 29-P1.7 N/A 31-P1.7 N/A 25-P3.5 N/A 27-P3.5 N/A RHA RGE, YFF DA PW 21-P2.0 N/A 23-P2.0 N/A 15-P4.0 N/A 36-P4.0 N/A 22-P2.1 N/A 24-P2.1 N/A 26-P3.6 N/A 28-P3.6 N/A 23-P2.2 N/A 25-P2.2 N/A 27-P3.7 N/A 29-P3.7 N/A TB1 is not present on all device types. Table 16. TB2 Signal Connections (1) (1) (1) MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer N/A N/A CCR0 CCR1 CCR2 TB0 TB1 TB2 TB2.0 TB2.1 TB2.2 OUTPUT PIN NUMBER TB2 is not present on all device types. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 ADC10_B The ADC10_B module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and a conversion result buffer. A window comparator with a lower limit and an upper limit allows CPU-independent result monitoring with three window comparator interrupt flags. Comparator_D The primary function of the Comparator_D module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals. CRC16 The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard. Shared Reference (REF) The reference module (REF) is responsible for generation of all critical reference voltages that can be used by the various analog peripherals in the device. Embedded Emulation Module (EEM) The EEM supports real-time in-system debugging. The S version of the EEM implemented on all devices has the following features: • Three hardware triggers or breakpoints on memory access • One hardware trigger or breakpoint on CPU register write access • Up to four hardware triggers can be combined to form complex triggers or breakpoints • One cycle counter • Clock control on module level Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 33 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Peripheral File Map Table 17. Peripherals BASE ADDRESS OFFSET ADDRESS RANGE Special Functions (see Table 18) 0100h 000h-01Fh PMM (see Table 19) 0120h 000h-010h FRAM Control (see Table 20) 0140h 000h-00Fh CRC16 (see Table 21) 0150h 000h-007h Watchdog (see Table 22) 015Ch 000h-001h CS (see Table 23) 0160h 000h-00Fh SYS (see Table 24) 0180h 000h-01Fh Shared Reference (see Table 25) 01B0h 000h-001h Port P1/P2 (see Table 26) 0200h 000h-01Fh Port P3/P4 (see Table 27) 0220h 000h-01Fh Port PJ (see Table 28) 0320h 000h-01Fh TA0 (see Table 29) 0340h 000h-02Fh TA1 (see Table 30) 0380h 000h-02Fh TB0 (see Table 31) 03C0h 000h-02Fh TB1 (see Table 32) 0400h 000h-02Fh TB2 (see Table 33) 0440h 000h-02Fh Real-Time Clock (RTC_B) (see Table 34) 04A0h 000h-01Fh 32-Bit Hardware Multiplier (see Table 35) 04C0h 000h-02Fh DMA General Control (see Table 36) 0500h 000h-00Fh DMA Channel 0 (see Table 36) 0510h 000h-00Ah DMA Channel 1 (see Table 36) 0520h 000h-00Ah DMA Channel 2 (see Table 36) 0530h 000h-00Ah MPU Control (see Table 37) 05A0h 000h-00Fh eUSCI_A0 (see Table 38) 05C0h 000h-01Fh eUSCI_A1 (see Table 39) 05E0h 000h-01Fh eUSCI_B0 (see Table 40) 0640h 000h-02Fh ADC10_B (see Table 41) 0700h 000h-03Fh Comparator_D (see Table 42) 08C0h 000h-00Fh MODULE NAME 34 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Table 18. Special Function Registers (Base Address: 0100h) REGISTER DESCRIPTION REGISTER OFFSET SFR interrupt enable SFRIE1 00h SFR interrupt flag SFRIFG1 02h SFR reset pin control SFRRPCR 04h Table 19. PMM Registers (Base Address: 0120h) REGISTER DESCRIPTION REGISTER OFFSET PMM Control 0 PMMCTL0 00h PMM interrupt flags PMMIFG 0Ah PM5 Control 0 PM5CTL0 10h Table 20. FRAM Control Registers (Base Address: 0140h) REGISTER DESCRIPTION REGISTER OFFSET FRAM control 0 FRCTLCTL0 00h General control 0 GCCTL0 04h General control 1 GCCTL1 06h Table 21. CRC16 Registers (Base Address: 0150h) REGISTER DESCRIPTION REGISTER OFFSET CRC data input CRC16DI 00h CRC data input reverse byte CRCDIRB 02h CRC initialization and result CRCINIRES 04h CRC result reverse byte CRCRESR 06h Table 22. Watchdog Registers (Base Address: 015Ch) REGISTER DESCRIPTION Watchdog timer control REGISTER WDTCTL OFFSET 00h Table 23. CS Registers (Base Address: 0160h) REGISTER DESCRIPTION REGISTER OFFSET CS control 0 CSCTL0 00h CS control 1 CSCTL1 02h CS control 2 CSCTL2 04h CS control 3 CSCTL3 06h CS control 4 CSCTL4 08h CS control 5 CSCTL5 0Ah CS control 6 CSCTL6 0Ch Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 35 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 24. SYS Registers (Base Address: 0180h) REGISTER DESCRIPTION REGISTER OFFSET System control SYSCTL 00h JTAG mailbox control SYSJMBC 06h JTAG mailbox input 0 SYSJMBI0 08h JTAG mailbox input 1 SYSJMBI1 0Ah JTAG mailbox output 0 SYSJMBO0 0Ch JTAG mailbox output 1 SYSJMBO1 0Eh Bus Error vector generator SYSBERRIV 18h User NMI vector generator SYSUNIV 1Ah System NMI vector generator SYSSNIV 1Ch Reset vector generator SYSRSTIV 1Eh Table 25. Shared Reference Registers (Base Address: 01B0h) REGISTER DESCRIPTION Shared reference control REGISTER REFCTL OFFSET 00h Table 26. Port P1/P2 Registers (Base Address: 0200h) REGISTER DESCRIPTION REGISTER OFFSET Port P1 input P1IN 00h Port P1 output P1OUT 02h Port P1 direction P1DIR 04h Port P1 pullup/pulldown enable P1REN 06h Port P1 selection 0 P1SEL0 0Ah Port P1 selection 1 P1SEL1 0Ch Port P1 interrupt vector word P1IV 0Eh Port P1 complement selection P1SELC 16h Port P1 interrupt edge select P1IES 18h Port P1 interrupt enable P1IE 1Ah Port P1 interrupt flag P1IFG 1Ch Port P2 input P2IN 01h Port P2 output P2OUT 03h Port P2 direction P2DIR 05h Port P2 pullup/pulldown enable P2REN 07h Port P2 selection 0 P2SEL0 0Bh Port P2 selection 1 P2SEL1 0Dh Port P2 complement selection P2SELC 17h Port P2 interrupt vector word P2IV 1Eh Port P2 interrupt edge select P2IES 19h Port P2 interrupt enable P2IE 1Bh Port P2 interrupt flag P2IFG 1Dh 36 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Table 27. Port P3/P4 Registers (Base Address: 0220h) REGISTER DESCRIPTION REGISTER OFFSET Port P3 input P3IN 00h Port P3 output P3OUT 02h Port P3 direction P3DIR 04h Port P3 pullup/pulldown enable P3REN 06h Port P3 selection 0 P3SEL0 0Ah Port P3 selection 1 P3SEL1 0Ch Port P3 interrupt vector word P3IV 0Eh Port P3 complement selection P3SELC 16h Port P3 interrupt edge select P3IES 18h Port P3 interrupt enable P3IE 1Ah Port P3 interrupt flag P3IFG 1Ch Port P4 input P4IN 01h Port P4 output P4OUT 03h Port P4 direction P4DIR 05h Port P4 pullup/pulldown enable P4REN 07h Port P4 selection 0 P4SEL0 0Bh Port P4 selection 1 P4SEL1 0Dh Port P4 complement selection P4SELC 17h Port P4 interrupt vector word P4IV 1Eh Port P4 interrupt edge select P4IES 19h Port P4 interrupt enable P4IE 1Bh Port P4 interrupt flag P4IFG 1Dh Table 28. Port J Registers (Base Address: 0320h) REGISTER DESCRIPTION REGISTER OFFSET Port PJ input PJIN 00h Port PJ output PJOUT 02h Port PJ direction PJDIR 04h Port PJ pullup/pulldown enable PJREN 06h Port PJ selection 0 PJSEL0 0Ah Port PJ selection 1 PJSEL1 0Ch Port PJ complement selection PJSELC 16h Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 37 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 29. TA0 Registers (Base Address: 0340h) REGISTER DESCRIPTION REGISTER OFFSET TA0 control TA0CTL 00h Capture/compare control 0 TA0CCTL0 02h Capture/compare control 1 TA0CCTL1 04h Capture/compare control 2 TA0CCTL2 06h TA0 counter register TA0R 10h Capture/compare register 0 TA0CCR0 12h Capture/compare register 1 TA0CCR1 14h Capture/compare register 2 TA0CCR2 16h TA0 expansion register 0 TA0EX0 20h TA0 interrupt vector TA0IV 2Eh Table 30. TA1 Registers (Base Address: 0380h) REGISTER DESCRIPTION REGISTER OFFSET TA1 control TA1CTL 00h Capture/compare control 0 TA1CCTL0 02h Capture/compare control 1 TA1CCTL1 04h Capture/compare control 2 TA1CCTL2 06h TA1 counter register TA1R 10h Capture/compare register 0 TA1CCR0 12h Capture/compare register 1 TA1CCR1 14h Capture/compare register 2 TA1CCR2 16h TA1 expansion register 0 TA1EX0 20h TA1 interrupt vector TA1IV 2Eh Table 31. TB0 Registers (Base Address: 03C0h) REGISTER DESCRIPTION REGISTER OFFSET TB0 control TB0CTL 00h Capture/compare control 0 TB0CCTL0 02h Capture/compare control 1 TB0CCTL1 04h Capture/compare control 2 TB0CCTL2 06h TB0 register TB0R 10h Capture/compare register 0 TB0CCR0 12h Capture/compare register 1 TB0CCR1 14h Capture/compare register 2 TB0CCR2 16h TB0 expansion register 0 TB0EX0 20h TB0 interrupt vector TB0IV 2Eh 38 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Table 32. TB1 Registers (Base Address: 0400h) REGISTER DESCRIPTION REGISTER OFFSET TB1 control TB1CTL 00h Capture/compare control 0 TB1CCTL0 02h Capture/compare control 1 TB1CCTL1 04h Capture/compare control 2 TB1CCTL2 06h TB1 register TB1R 10h Capture/compare register 0 TB1CCR0 12h Capture/compare register 1 TB1CCR1 14h Capture/compare register 2 TB1CCR2 16h TB1 expansion register 0 TB1EX0 20h TB1 interrupt vector TB1IV 2Eh Table 33. TB2 Registers (Base Address: 0440h) REGISTER DESCRIPTION REGISTER OFFSET TB2 control TB2CTL 00h Capture/compare control 0 TB2CCTL0 02h Capture/compare control 1 TB2CCTL1 04h Capture/compare control 2 TB2CCTL2 06h TB2 register TB2R 10h Capture/compare register 0 TB2CCR0 12h Capture/compare register 1 TB2CCR1 14h Capture/compare register 2 TB2CCR2 16h TB2 expansion register 0 TB2EX0 20h TB2 interrupt vector TB2IV 2Eh Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 39 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 34. Real-Time Clock Registers (Base Address: 04A0h) REGISTER DESCRIPTION REGISTER OFFSET RTC control 0 RTCCTL0 00h RTC control 1 RTCCTL1 01h RTC control 2 RTCCTL2 02h RTC control 3 RTCCTL3 03h RTC prescaler 0 control RTCPS0CTL 08h RTC prescaler 1 control RTCPS1CTL 0Ah RTC prescaler 0 RTCPS0 0Ch RTC prescaler 1 RTCPS1 0Dh RTC interrupt vector word RTCIV 0Eh RTC seconds, RTC counter register 1 RTCSEC, RTCNT1 10h RTC minutes, RTC counter register 2 RTCMIN, RTCNT2 11h RTC hours, RTC counter register 3 RTCHOUR, RTCNT3 12h RTC day of week, RTC counter register 4 RTCDOW, RTCNT4 13h RTC days RTCDAY 14h RTC month RTCMON 15h RTC year low RTCYEARL 16h RTC year high RTCYEARH 17h RTC alarm minutes RTCAMIN 18h RTC alarm hours RTCAHOUR 19h RTC alarm day of week RTCADOW 1Ah RTC alarm days RTCADAY 1Bh Binary-to-BCD conversion register BIN2BCD 1Ch BCD-to-binary conversion register BCD2BIN 1Eh 40 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Table 35. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) REGISTER DESCRIPTION REGISTER OFFSET 16-bit operand 1 – multiply MPY 00h 16-bit operand 1 – signed multiply MPYS 02h 16-bit operand 1 – multiply accumulate MAC 04h 16-bit operand 1 – signed multiply accumulate MACS 06h 16-bit operand 2 OP2 08h 16 × 16 result low word RESLO 0Ah 16 × 16 result high word RESHI 0Ch 16 × 16 sum extension register SUMEXT 0Eh 32-bit operand 1 – multiply low word MPY32L 10h 32-bit operand 1 – multiply high word MPY32H 12h 32-bit operand 1 – signed multiply low word MPYS32L 14h 32-bit operand 1 – signed multiply high word MPYS32H 16h 32-bit operand 1 – multiply accumulate low word MAC32L 18h 32-bit operand 1 – multiply accumulate high word MAC32H 1Ah 32-bit operand 1 – signed multiply accumulate low word MACS32L 1Ch 32-bit operand 1 – signed multiply accumulate high word MACS32H 1Eh 32-bit operand 2 – low word OP2L 20h 32-bit operand 2 – high word OP2H 22h 32 × 32 result 0 – least significant word RES0 24h 32 × 32 result 1 RES1 26h 32 × 32 result 2 RES2 28h 32 × 32 result 3 – most significant word RES3 2Ah MPY32 control register 0 MPY32CTL0 2Ch Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 41 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 36. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 0 control DMA0CTL 00h DMA channel 0 source address low DMA0SAL 02h DMA channel 0 source address high DMA0SAH 04h DMA channel 0 destination address low DMA0DAL 06h DMA channel 0 destination address high DMA0DAH 08h DMA channel 0 transfer size DMA0SZ 0Ah DMA channel 1 control DMA1CTL 00h DMA channel 1 source address low DMA1SAL 02h DMA channel 1 source address high DMA1SAH 04h DMA channel 1 destination address low DMA1DAL 06h DMA channel 1 destination address high DMA1DAH 08h DMA channel 1 transfer size DMA1SZ 0Ah DMA channel 2 control DMA2CTL 00h DMA channel 2 source address low DMA2SAL 02h DMA channel 2 source address high DMA2SAH 04h DMA channel 2 destination address low DMA2DAL 06h DMA channel 2 destination address high DMA2DAH 08h DMA channel 2 transfer size DMA2SZ 0Ah DMA module control 0 DMACTL0 00h DMA module control 1 DMACTL1 02h DMA module control 2 DMACTL2 04h DMA module control 3 DMACTL3 06h DMA module control 4 DMACTL4 08h DMA interrupt vector DMAIV 0Ah Table 37. MPU Control Registers (Base Address: 05A0h) REGISTER DESCRIPTION REGISTER OFFSET MPU control 0 MPUCTL0 00h MPU control 1 MPUCTL1 02h MPU Segmentation Register MPUSEG 04h MPU access management MPUSAM 06h 42 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Table 38. eUSCI_A0 Registers (Base Address: 05C0h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA0CTLW0 00h eUSCI _A control word 1 UCA0CTLW1 03h eUSCI_A baud rate 0 UCA0BR0 06h eUSCI_A baud rate 1 UCA0BR1 07h eUSCI_A modulation control UCA0MCTLW 08h eUSCI_A status UCA0STAT 0Ah eUSCI_A receive buffer UCA0RXBUF 0Ch eUSCI_A transmit buffer UCA0TXBUF 0Eh eUSCI_A LIN control UCA0ABCTL 10h eUSCI_A IrDA transmit control UCA0IRTCTL 12h eUSCI_A IrDA receive control UCA0IRRCTL 13h eUSCI_A interrupt enable UCA0IE 1Ah eUSCI_A interrupt flags UCA0IFG 1Ch eUSCI_A interrupt vector word UCA0IV 1Eh Table 39. eUSCI_A1 Registers (Base Address: 05E0h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA1CTLW0 00h eUSCI _A control word 1 UCA1CTLW1 03h eUSCI_A baud rate 0 UCA1BR0 06h eUSCI_A baud rate 1 UCA1BR1 07h eUSCI_A modulation control UCA1MCTLW 08h eUSCI_A status UCA1STAT 0Ah eUSCI_A receive buffer UCA1RXBUF 0Ch eUSCI_A transmit buffer UCA1TXBUF 0Eh eUSCI_A LIN control UCA1ABCTL 10h eUSCI_A IrDA transmit control UCA1IRTCTL 12h eUSCI_A IrDA receive control UCA1IRRCTL 13h eUSCI_A interrupt enable UCA1IE 1Ah eUSCI_A interrupt flags UCA1IFG 1Ch eUSCI_A interrupt vector word UCA1IV 1Eh Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 43 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 40. eUSCI_B0 Registers (Base Address: 0640h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_B control word 0 UCB0CTLW0 00h eUSCI_B control word 1 UCB0CTLW1 02h eUSCI_B bit rate 0 UCB0BR0 06h eUSCI_B bit rate 1 UCB0BR1 07h eUSCI_B status word UCB0STATW 08h eUSCI_B byte counter threshold UCB0TBCNT 0Ah eUSCI_B receive buffer UCB0RXBUF 0Ch eUSCI_B transmit buffer UCB0TXBUF 0Eh eUSCI_B I2C own address 0 UCB0I2COA0 14h eUSCI_B I2C own address 1 UCB0I2COA1 16h eUSCI_B I2C own address 2 UCB0I2COA2 18h eUSCI_B I2C own address 3 UCB0I2COA3 1Ah eUSCI_B received address UCB0ADDRX 1Ch eUSCI_B address mask UCB0ADDMASK 1Eh eUSCI I2C slave address UCB0I2CSA 20h eUSCI interrupt enable UCB0IE 2Ah eUSCI interrupt flags UCB0IFG 2Ch eUSCI interrupt vector word UCB0IV 2Eh Table 41. ADC10_B Registers (Base Address: 0700h) REGISTER DESCRIPTION REGISTER OFFSET ADC10_B Control register 0 ADC10CTL0 00h ADC10_B Control register 1 ADC10CTL1 02h ADC10_B Control register 2 ADC10CTL2 04h ADC10_B Window Comparator Low Threshold ADC10LO 06h ADC10_B Window Comparator High Threshold ADC10HI 08h ADC10_B Memory Control Register 0 ADC10MCTL0 0Ah ADC10_B Conversion Memory Register ADC10MEM0 12h ADC10_B Interrupt Enable ADC10IE 1Ah ADC10_B Interrupt Flags ADC10IGH 1Ch ADC10_B Interrupt Vector Word ADC10IV 1Eh Table 42. Comparator_D Registers (Base Address: 08C0h) REGISTER DESCRIPTION REGISTER OFFSET Comparator_D control register 0 CDCTL0 00h Comparator_D control register 1 CDCTL1 02h Comparator_D control register 2 CDCTL2 04h Comparator_D control register 3 CDCTL3 06h Comparator_D interrupt register CDINT 0Ch Comparator_D interrupt vector word CDIV 0Eh 44 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) Voltage applied at VCC to VSS –0.3 V to 4.1 V Voltage applied to any pin (excluding VCORE) (2) –0.3 V to VCC + 0.3 V Diode current at any device pin Storage temperature range, Tstg ±2 mA (3) (4) (5) -55°C to 125°C Maximum junction temperature, TJ (1) (2) (3) (4) (5) 95°C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied. Data retention on FRAM memory cannot be ensured when exceeding the specified maximum storage temperature, Tstg. For soldering during board manufacturing, it is required to follow the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. Programming of devices with user application code should only be performed after reflow or hand soldering. Factory programmed information, such as calibration values, are designed to withstand the temperatures reached in the current JEDEC J-STD-020 specification. Recommended Operating Conditions MIN (1) NOM Supply voltage during program execution and FRAM programming (AVCC = DVCC) VSS Supply voltage (AVSS = DVSS) TA Operating free-air temperature I version -40 85 TJ Operating junction temperature I version -40 85 CVCORE Required capacitor at VCORE CVCC/ CVCORE Capacitor ratio of VCC to VCORE (1) (2) (3) Processor frequency (maximum MCLK frequency) 3.6 0 UNIT V V 470 °C °C nF 10 No FRAM wait states 2 V ≤ VCC ≤ 3.6 V fSYSTEM 2.0 MAX VCC (2) (3) With FRAM wait states NACCESS = {2}, NPRECHG = {1}, 2 V ≤ VCC ≤ 3.6 V , 0 8.0 0 24.0 (3) , MHz It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation. Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet. When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) for recommended settings for common system frequencies. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 45 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Electrical Characteristics Active Mode Supply Current Into VCC Excluding External Current (1) (2) (3) over recommended operating free-air temperature (unless otherwise noted) Frequency (fMCLK = fSMCLK) PARAMETER EXECUTION MEMORY VCC 1 MHz TYP IAM, FRAM_UNI IAM,0% (6) (7) FRAM 3V 0.27 FRAM 0% cache hit ratio 3V 0.42 4 MHz MAX TYP 8 MHz MAX 0.58 0.73 1.2 TYP 16 MHz MAX 1.0 1.6 2.2 TYP (4) (5) MAX 1.53 2.8 2.3 20 MHz TYP (5) MAX 1.9 2.9 2.8 24 MHz TYP (5) 2.2 3.6 3.45 IAM,50% (7) (8) FRAM 50% cache hit ratio 3V 0.31 0.73 1.3 1.75 2.1 2.5 IAM,66% (7) (8) FRAM 66% cache hit ratio 3V 0.27 0.58 1.0 1.55 1.9 2.2 IAM,75% (7) (8) FRAM 75% cache hit ratio 3V 0.25 0.5 0.82 1.3 1.6 1.8 mA 4.3 mA IAM,100% (7) (8) FRAM 100% cache hit ratio 3V 0.2 0.43 0.3 0.55 0.42 0.8 0.73 1.15 0.88 1.3 1.0 1.5 IAM, (8) (9) RAM 3V 0.2 0.4 0.35 0.55 0.55 0.75 1.0 1.25 1.20 1.45 1.45 1.75 (1) (2) (3) (4) RAM UNIT MAX mA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF. Characterized with program executing typical data processing. At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency, fMCLK,eff, decreases. The effective MCLK frequency is also dependent on the cache hit ratio. SMCLK is not affected by the number of wait states or the cache hit ratio. The following equation can be used to compute fMCLK,eff: fMCLK,eff,MHZ= fMCLK,MHZ x 1 / [# of wait states x ((1 - cache hit ratio percent/100)) + 1] (5) (6) (7) (8) (9) 46 MSP430FR573x series only Program and data reside entirely in FRAM. No wait states enabled. DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK. Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 25% ratio implies one of every four accesses is from cache, the remaining are FRAM accesses. For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK. No wait states enabled. For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (fDCO = 16 MHz).MCLK = SMCLK. One wait state enabled. For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (fDCO = 20 MHz).MCLK = SMCLK. Three wait states enabled. For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (fDCO = 24 MHz).MCLK = SMCLK. Three wait states enabled. See Figure 1 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best linear fit using the typical data shown in Active Mode Supply Current Into VCC Excluding External Current. fACLK = 32786 Hz, fMCLK = fSMCLK at specified frequency. No peripherals active. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0. All execution is from RAM. For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK. For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (fDCO = 16 MHz). MCLK = SMCLK. For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (fDCO = 20 MHz). MCLK = SMCLK. For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (fDCO = 24 MHz). MCLK = SMCLK. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Typical Active Mode Supply Current, No Wait States 2.50 IAM,0% (mA) = 0.2541 * (f, MHz) + 0.1724 2.00 IAM,50% (mA) = 0.1415 * (f, MHz) + 0.1669 IAM,66%(mA) = 0.1043 * (f, MHz) + 0.1646 IAM, mA 1.50 IAM,75% (mA) = 0.0814 * (f, MHz) + 0.1708 1.00 0.50 IAM,RAM (mA) = 0.05 * (f, MHz) + 0.150 IAM,100% (mA) = 0.0314 * (f, MHz) + 0.1708 0.00 0 1 2 3 4 5 6 7 8 9 fMCLK = f SMCLK , MHz Figure 1. Typical Active Mode Supply Currents, No Wait States Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 47 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Low-Power Mode Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC -40°C TYP MAX 25°C TYP ILPM0,1MHz Low-power mode 0 (3) (4) 2 V, 3V 166 175 LPM0,8MHz Low-power mode 0 (5) (4) 2 V, 3V 170 177 LPM0,24MHz Low-power mode 0 (6) (4) 2 V, 3V 274 ILPM2 Low-power mode 2 (7) (8) 2 V, 3V ILPM3,XT1LF Low-power mode 3, crystal mode (9) (8) ILPM3,VLO Low-power mode 3, VLO mode (10) (8) ILPM4 Low-power mode 4 ILPM3.5 ILPM4.5 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 48 (1) (2) 60°C MAX TYP MAX 85°C TYP MAX UNIT 190 225 µA 244 195 225 360 µA 285 340 315 340 455 µA 56 61 80 75 110 210 µA 2 V, 3V 3.4 6.4 15 18 48 150 µA 2 V, 3V 3.3 6.3 15 18 48 150 µA (11) (8) 2 V, 3V 2.9 5.9 15 18 48 150 µA Low-power mode 3.5 (12) 2 V, 3V 1.3 1.5 2.2 1.9 2.8 5.0 µA Low-power mode 4.5 (13) 2 V, 3V 0.3 0.32 0.66 0.38 0.57 2.55 µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF. Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 1 MHz. DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz) Current for brownout, high-side supervisor (SVSH) and low-side supervisor (SVSL) included. Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 8 MHz. DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 24 MHz. DCORSEL = 1, DCOFSELx = 3 (fDCO = 24 MHz) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCORSEL = 0, DCOFSELx = 3, DCO bias generator enabled. Current for brownout, high-side supervisor (SVSH) included. Low-side supervisor disabled (SVSL). Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz Internal regulator disabled. No data retention. RTC active. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM3.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz Internal regulator disabled. No data retention. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Schmitt-Trigger Inputs – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup or pulldown resistor For pullup: VIN = VSS For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC VCC MIN 2V 0.80 1.40 3V 1.50 2.10 2V 0.45 1.10 3V 0.75 1.65 2V 0.25 0.8 3V 0.30 1.0 20 TYP 35 MAX 50 5 UNIT V V V kΩ pF Inputs – Ports P1 and P2 (1) (P1.0 to P1.7, P2.0 to P2.7) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER t(int) (1) (2) External interrupt timing TEST CONDITIONS (2) External trigger pulse duration to set interrupt flag VCC 2 V, 3 V MIN MAX 20 UNIT ns Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals shorter than t(int). Leakage Current – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.x) (1) (2) High-impedance leakage current TEST CONDITIONS (1) (2) VCC MIN MAX 2 V, 3 V -50 50 UNIT nA The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 49 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Outputs – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VOH High-level output voltage VOL (1) (2) TEST CONDITIONS Low-level output voltage I(OHmax) = –1 mA (1) I(OHmax) = –3 mA (2) I(OHmax) = –2 mA (1) I(OHmax) = –6 mA (2) I(OLmax) = 1 mA (1) I(OLmax) = 3 mA (2) I(OLmax) = 2 mA (1) I(OLmax) = 6 mA (2) VCC 2V 3V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC UNIT V VSS VSS + 0.25 2V VSS VSS + 0.60 V VSS VSS + 0.25 3V VSS VSS + 0.60 The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified. Output Frequency – General Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fPx.y Port output frequency (with load) Px.y fPort_CLK Clock output frequency ACLK, SMCLK, or MCLK at configured output port, CL = 20 pF, no DC loading (2) (1) (2) 50 (1) (2) MIN MAX 2V 16 3V 24 2V 16 3V 24 UNIT MHz MHz A resistive divider with 2 × 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. CL = 20 pF is connected from the output to VSS. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Typical Characteristics – Outputs over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 16 V CC = 2.0 V Px.y TA = -40 ° C IOL - Typical Low-Level Output Current - mA 14 TA = 25 ° C 12 TA = 85 ° C 10 8 6 4 2 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 V OL Low-Level Output Voltage - V Figure 2. TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 35 IOL - Typical Low-Level Output Current - mA V CC = 3.0 V Px.y TA = -40 ° C 30 TA = 25 ° C TA = 85 ° C 25 20 15 10 5 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 V OL Low-Level Output Voltage - V Figure 3. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 51 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Typical Characteristics – Outputs (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 IOH - Typical High-Level Output Current - mA V CC = 2.0 V Px.y -2 -4 -6 -8 -10 TA = 85 ° C -12 TA = 25 ° C -14 TA = -40 ° C -16 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 V OH High-Level Output Voltage - V Figure 4. TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 IOH - Typical High-Level Output Current - mA V CC = 3.0 V Px.y -5 -10 -15 -20 -25 TA = 85 ° C -30 TA = 25 ° C -35 TA = -40 ° C -40 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 V OH High-Level Output Voltage - V Figure 5. 52 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Crystal Oscillator, XT1, Low-Frequency (LF) Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ΔIVCC.LF TEST CONDITIONS Additional current consumption XT1 LF mode from lowest drive setting 60 fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {2}, TA = 25°C, CL,eff = 9 pF 3V 90 fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {3}, TA = 25°C, CL,eff = 12 pF 3V 140 XTS = 0, XT1BYPASS = 0 fXT1,LF,SW XT1 oscillator logic-level squarewave input frequency, LF mode XTS = 0, XT1BYPASS = 1 fFault,LF tSTART,LF CL,eff (1) (2) (3) (4) (5) (6) (7) (8) (9) Oscillator fault frequency, LF mode (5) Startup time, LF mode (2) (3) 10 210 XTS = 0, XT1BYPASS = 0, XT1DRIVE = {3}, fXT1,LF = 32768 Hz, CL,eff = 12 pF 300 Integrated effective load capacitance, LF mode (8) fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {3}, TA = 25°C, CL,eff = 12 pF (9) XTS = 0 UNIT nA Hz 50 kHz kΩ (6) fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {0}, TA = 25°C, CL,eff = 6 pF (7) 32.768 XTS = 0, XT1BYPASS = 0, XT1DRIVE = {0}, fXT1,LF = 32768 Hz, CL,eff = 6 pF XTS = 0 MAX 32768 XTS = 0, Measured at ACLK, fXT1,LF = 32768 Hz Duty cycle, LF mode TYP 3V XT1 oscillator crystal frequency, LF mode OALF MIN fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {1}, CL,eff = 9 pF, TA = 25°C, fXT1,LF0 Oscillation allowance for LF crystals (4) VCC 30 70 % 10 10000 Hz 1000 3V ms 1000 1 pF To improve EMI on the XT1 oscillator, the following guidelines should be observed. (a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: (a) For XT1DRIVE = {0}, CL,eff ≤ 6 pF. (b) For XT1DRIVE = {1}, 6 pF ≤ CL,eff ≤ 9 pF. (c) For XT1DRIVE = {2}, 6 pF ≤ CL,eff ≤ 10 pF. (d) For XT1DRIVE = {3}, 6 pF ≤ CL,eff ≤ 12 pF. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Includes startup counter of 4096 clock cycles. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Include parasitic bond and package capacitance (approximately 2 pF per pin). Recommended values supported are 6 pF, 9 pF, and 12 pF. Maximum shunt capacitance of 1.6 pF. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 53 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Crystal Oscillator, XT1, High-Frequency (HF) Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS XT1 oscillator crystal current HF mode IVCC,HF VCC MIN TYP fOSC = 4 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {0}, TA = 25°C, CL,eff = 16 pF 175 fOSC = 8 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {1}, TA = 25°C, CL,eff = 16 pF 300 MAX 3V fOSC = 16 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {2}, TA = 25°C, CL,eff = 16 pF UNIT µA 350 fOSC = 24 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {3}, TA = 25°C, CL,eff = 16 pF 550 fXT1,HF0 XT1 oscillator crystal frequency, HF mode 0 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {0} (2) 4 6 MHz fXT1,HF1 XT1 oscillator crystal frequency, HF mode 1 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {1} (3) 6 10 MHz fXT1,HF2 XT1 oscillator crystal frequency, HF mode 2 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {2} (3) 10 16 MHz fXT1,HF3 XT1 oscillator crystal frequency, HF mode 3 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {3} (3) 16 24 MHz fXT1,HF,SW XT1 oscillator logic-level squarewave input frequency, HF mode XTS = 1, XT1BYPASS = 1 1 24 MHz Oscillation allowance for HF crystals (5) OAHF tSTART,HF (1) (2) (3) (4) (5) (6) 54 Startup time, HF mode (6) (4) (3) XTS = 1, XT1BYPASS = 0, XT1DRIVE = {0}, fXT1,HF = 4 MHz, CL,eff = 16 pF 450 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {1}, fXT1,HF = 8 MHz, CL,eff = 16 pF 320 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {2}, fXT1,HF = 16 MHz, CL,eff = 16 pF 200 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {3}, fXT1,HF = 24 MHz, CL,eff = 16 pF 200 fOSC = 4 MHz, XTS = 1, XT2BYPASS = 0, XT2DRIVE = {0}, TA = 25°C, CL,eff = 16 pF 8 fOSC = 24 MHz, XTS = 1, XT2BYPASS = 0, XT2DRIVE = {3}, TA = 25°C, CL,eff = 16 pF Ω 3V ms 2 To improve EMI on the XT1 oscillator the following guidelines should be observed. (a) Keep the traces between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. Maximum frequency of operation of the entire device cannot be exceeded. Maximum frequency of operation of the entire device cannot be exceeded. When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet. Oscillation allowance is based on a safety factor of 5 for recommended crystals. Includes startup counter of 4096 clock cycles. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Crystal Oscillator, XT1, High-Frequency (HF) Mode (1) (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER CL,eff fFault,HF TEST CONDITIONS Integrated effective load capacitance (7) (8) XTS = 1 Duty cycle, HF mode XTS = 1, Measured at ACLK, fXT1,HF2 = 24 MHz Oscillator fault frequency, HF mode (9) XTS = 1 VCC MIN TYP MAX 1 40 (10) 50 145 UNIT pF 60 % 900 kHz (7) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. (8) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. (9) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. (10) Measured with logic-level input frequency but also applies to operation with crystals. Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC TYP MAX 5 8.3 13 UNIT fVLO VLO frequency Measured at ACLK dfVLO/dT VLO frequency temperature drift Measured at ACLK (1) 2 V to 3.6 V 0.5 %/°C dfVLO/dVCC VLO frequency supply voltage drift Measured at ACLK (2) 2 V to 3.6 V 4 %/V fVLO,DC Measured at ACLK (1) (2) Duty cycle 2 V to 3.6 V MIN 2 V to 3.6 V 40 50 60 kHz % Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(2.0 to 3.6 V) – MIN(2.0 to 3.6 V)) / MIN(2.0 to 3.6 V) / (3.6 V – 2 V) Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 55 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com DCO Frequencies over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Measured at ACLK, DCORSEL = 0 fDCO,LO DCO frequency low, trimmed Measured at ACLK, DCORSEL = 1 (1) Measured at ACLK, DCORSEL = 0 fDCO,MID DCO frequency mid, trimmed Measured at ACLK, DCORSEL = 1 (1) Measured at ACLK, DCORSEL = 0 fDCO,HI DCO frequency high, trimmed Measured at ACLK, DCORSEL = 1 (1) fDCO,DC (1) Duty cycle Measured at ACLK, divide by 1, No external divide, all DCO settings VCC TA MIN TYP MAX 2 V to 3.6 V -40°C to 85°C 5.37 ±3.5% 2 V to 3.6 V 0°C to 50°C 5.37 ±2.0% 2 V to 3.6 V -40°C to 85°C 16.2 ±3.5% 2 V to 3.6 V 0°C to 50°C 16.2 ±2.0% 2 V to 3.6 V -40°C to 85°C 6.67 ±3.5% 2 V to 3.6 V 0°C to 50°C 6.67 ±2.0% 2 V to 3.6 V -40°C to 85°C 20 ±3.5% 2 V to 3.6 V 0°C to 50°C 20 ±2.0% 2 V to 3.6 V -40°C to 85°C 8 ±3.5% 2 V to 3.6 V 0°C to 50°C 8 ±2.0% 2 V to 3.6 V -40°C to 85°C 23.8 ±3.5% 2 V to 3.6 V 0°C to 50°C 23.8 ±2.0% UNIT MHz MHz MHz MHz MHz MHz 2 V to 3.6 V -40°C to 85°C 40 50 60 VCC MIN TYP MAX 44 80 µA % MSP40FR573x devices only MODOSC over operating free-air temperature range (unless otherwise noted) PARAMETER IMODOSC Current consumption fMODOSC MODOSC frequency fMODOSC,DC Duty cycle 56 Submit Documentation Feedback TEST CONDITIONS Enabled Measured at ACLK, divide by 1 2 V to 3.6 V UNIT 2 V to 3.6 V 4.5 5.0 5.5 MHz 2 V to 3.6 V 40 50 60 % Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 PMM, Core Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VCORE(AM) Core voltage, active mode 2 V ≤ DVCC ≤ 3.6 V 1.5 V VCORE(LPM) Core voltage, low-current mode 2 V ≤ DVCC ≤ 3.6 V 1.5 V PMM, SVS, BOR over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ISVSH,AM SVSH current consumption, active mode VCC = 3.6 V 5 ISVSH,LPM SVSH current consumption, low power modes VCC = 3.6 V 0.8 1.5 µA VSVSH- SVSH on voltage level, falling supply voltage 1.83 1.88 1.93 V 1.88 1.93 1.98 VSVSH+ SVSH off voltage level, rising supply voltage µA V tPD,SVSH, AM SVSH propagation delay, active mode dVCC/dt = 10 mV/µs 10 µs tPD,SVSH, LPM SVSH propagation delay, low power modes dVCC/dt = 1 mV/µs 30 µs ISVSL SVSL current consumption 0.3 0.5 µA Wake-Up from Low Power Modes over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC TA MIN TYP MAX UNIT tWAKE-UP LPM0 Wake-up time from LPM0 to active mode (1) 2 V, 3 V -40°C to 85°C 0.58 1 µs tWAKE-UP LPM12 Wake-up time from LPM1, LPM2 to active mode (1) 2 V, 3 V -40°C to 85°C 12 25 µs tWAKE-UP LPM34 Wake-up time from LPM3 or LPM4 to active mode (1) 2 V, 3 V -40°C to 85°C 78 120 µs 2 V, 3 V 0°C to 85°C 310 575 µs tWAKE-UP LPMx.5 Wake-up time from LPM3.5 or LPM4.5 to active mode (1) 2 V, 3 V -40°C to 85°C 310 1100 µs 210 µs tWAKE-UP RESET Wake-up time from RST to active mode (2) VCC stable 2 V, 3 V -40°C to 85°C 170 tWAKE-UP BOR Wake-up time from BOR or power-up to active mode dVCC/dt = 2400 V/s 2 V, 3 V -40°C to 85°C 1.6 (1) (2) ms The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first instruction of the user program is executed. The wake-up time is measured from the rising edge of the RST signal until the first instruction of the user program is executed. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 57 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fTA Timer_A input clock frequency Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ± 10% 2 V, 3 V tTA,cap Timer_A capture timing All capture inputs, Minimum pulse duration required for capture 2 V, 3 V (1) MIN TYP MAX UNIT 8 24 (1) 20 MHz ns MSP430FR573x devices only Timer_B over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fTB Timer_B input clock frequency Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ± 10% 2 V, 3 V tTB,cap Timer_B capture timing All capture inputs, Minimum pulse duration required for capture 2 V, 3 V (1) MIN TYP MAX UNIT 8 24 (1) 20 MHz ns MSP430FR573x devices only eUSCI (UART Mode) Recommended Operating Conditions PARAMETER CONDITIONS feUSCI eUSCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 5 MHz UNIT eUSCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC UCGLITx = 0 tt UART receive deglitch time (1) UCGLITx = 1 UCGLITx = 2 UCGLITx = 3 (1) 58 2 V, 3 V MIN TYP MAX 5 15 20 20 45 60 35 80 120 50 110 180 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 eUSCI (SPI Master Mode) Recommended Operating Conditions PARAMETER feUSCI CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK Duty cycle = 50% ± 10% eUSCI input clock frequency MAX UNIT fSYSTEM MHz eUSCI (SPI Master Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tSTE,LEAD tSTE,LAG tSTE,ACC tSTE,DIS TEST CONDITIONS STE lead time, STE active to clock STE lag time, Last clock to STE inactive STE access time, STE active to SIMO data out STE disable time, STE inactive to SIMO high impedance tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (2) tHD,MO SIMO output data hold time (3) (1) (2) (3) VCC MIN (1) TYP MAX UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 1 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 1 UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 1 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 1 UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 55 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 35 UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 40 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 30 UCLK edge to SIMO valid, CL = 20 pF CL = 20 pF UNIT UCxCLK cycles UCxCLK cycles ns ns 2V 35 3V 35 2V 0 3V 0 ns ns 2V 30 3V 30 2V 0 3V 0 ns ns fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)). For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 6 and Figure 7. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 6 and Figure 7. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 59 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tSTE,DIS tVALID,MO tSTE,ACC SIMO Figure 6. SPI Master Mode, CKPH = 0 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,MI tSU,MI SOMI tSTE,ACC tSTE,DIS tVALID,MO SIMO Figure 7. SPI Master Mode, CKPH = 1 60 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 eUSCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS tSTE,LEAD STE lead time, STE active to clock tSTE,LAG STE lag time, Last clock to STE inactive tSTE,ACC STE access time, STE active to SOMI data out tSTE,DIS STE disable time, STE inactive to SOMI high impedance tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (2) tHD,SO SOMI output data hold time (3) (1) (2) (3) UCLK edge to SOMI valid, CL = 20 pF CL = 20 pF VCC MIN 2V 7 3V 7 2V 0 3V 0 (1) TYP MAX ns ns 2V 65 3V 40 2V 40 3V 35 2V 2 3V 2 2V 5 3V 5 30 30 4 4 ns ns 3V 3V ns ns 2V 2V UNIT ns ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)). For the master's parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 8 and Figure 9. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 8 and Figure 9. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 61 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tSU,SIMO tLOW/HIGH tHD,SIMO SIMO tACC tDIS tVALID,SOMI SOMI Figure 8. SPI Slave Mode, CKPH = 0 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,SI tSU,SI SIMO tACC tDIS tVALID,SO SOMI Figure 9. SPI Slave Mode, CKPH = 1 62 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 eUSCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 10) PARAMETER TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 400 kHz feUSCI eUSCI input clock frequency fSCL SCL clock frequency tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time 2 V, 3 V 0 ns tSU,DAT Data setup time 2 V, 3 V 250 ns tSU,STO 2 V, 3 V fSCL = 100 kHz fSCL > 100 kHz fSCL = 100 kHz fSCL > 100 kHz fSCL = 100 kHz Setup time for STOP fSCL > 100 kHz Pulse duration of spikes suppressed by input filter tSP 2 V, 3 V 2 V, 3 V 2 V, 3 V 0 4.0 µs 0.6 4.7 µs 0.6 4.0 µs 0.6 UCGLITx = 0 50 600 ns UCGLITx = 1 25 300 ns 12.5 150 ns 6.25 75 UCGLITx = 2 2 V, 3 V UCGLITx = 3 UCCLTOx = 1 tTIMEOUT Clock low timeout UCCLTOx = 2 2 V, 3 V UCCLTOx = 3 tSU,STA tHD,STA tHD,STA ns 27 ms 30 ms 33 ms tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 10. I2C Mode Timing Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 63 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com 10-Bit ADC, Power Supply and Input Range Conditions over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(Ax) Analog input voltage range All ADC10 pins IADC10_A Operating supply current into AVCC terminal, reference current not included fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0 CI Input capacitance Only one terminal Ax can be selected at one time from the pad to the ADC10_A capacitor array including wiring and pad RI Input MUX ON resistance AVCC ≥ 2 V, 0 V ≤ VAx ≤ AVCC VCC MIN TYP MAX UNIT 2.0 3.6 V 0 AVCC V 2V 90 140 3V 100 160 6 8 pF 36 kΩ 2.2 V µA 10-Bit ADC, Timing Parameters over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS fADC10CLK fADC10OSC tCONVERT VCC MIN TYP MAX UNIT 2 V to 3.6 V 0.45 5 5.5 MHz 2 V to 3.6 V 4.5 4.5 5.5 MHz REFON = 0, Internal oscillator, 12 ADC10CLK cycles, 10-bit mode, fADC10OSC = 4.5 MHz to 5.5 MHz 2 V to 3.6 V 2.18 External fADC10CLK from ACLK, MCLK, or SMCLK, ADC10SSEL ≠ 0 2 V to 3.6 V For specified performance of ADC10 linearity parameters Internal ADC10 oscillator ADC10DIV = 0, fADC10CLK = fADC10OSC (MODOSC) Conversion time tADC10ON Turn on settling time of the ADC The error in a conversion started after tADC10ON is less than ±0.5 LSB, Reference and input signal already settled tSample Sampling time RS = 1000 Ω, RI = 36000 Ω, CI = 3.5 pF, Approximately eight Tau (τ) are required to get an error of less than ±0.5 LSB (1) 2.67 µs (1) 100 2V 1.5 3V 2.0 VCC MIN 1.4 1.6 V < (VeREF+ – VREF–/VeREF–)min ≤ VAVCC 2 V to 3.6 V -1.4 -1.1 1.1 ns µs 12 × ADC10DIV × 1/fADC10CLK 10-Bit ADC, Linearity Parameters over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS 1.4 V ≤ (VeREF+ – VREF–/VeREF–)min ≤ 1.6 V TYP MAX UNIT EI Integral linearity error ED Differential linearity error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–) 2 V to 3.6 V -1 1 LSB EO Offset error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–) 2 V to 3.6 V -6.5 6.5 mV Gain error, external reference (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–) 2 V to 3.6 V -1.2 1.2 LSB -4 4 % -2 2 LSB -4 4 % EG ET (1) 64 Gain error, internal reference (1) Total unadjusted error, external reference (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–) Total unadjusted error, internal reference (1) 2 V to 3.6 V LSB Error is dominated by the internal reference. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 REF, External Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN (1) TYP MAX UNIT VeREF+ Positive external reference voltage input VeREF+ > VeREF– (2) 1.4 AVCC V VeREF– Negative external reference voltage input VeREF+ > VeREF– (3) 0 1.2 V (VeREF+ – VREF–/VeREF–) Differential external reference voltage input VeREF+ > VeREF– (4) 1.4 AVCC V IVeREF+, IVeREF– Static input current CVREF+, CVREF(1) (2) (3) (4) (5) 1.4 V ≤ VeREF+ ≤ VAVCC, VeREF– = 0 V, fADC10CLK = 5 MHz, ADC10SHTx = 1h, Conversion rate 200 ksps 2.2 V, 3 V -6 6 µA 1.4 V ≤ VeREF+ ≤ VAVCC, VeREF– = 0 V, fADC10CLK = 5 MHz, ADC10SHTx = 8h, Conversion rate 20 ksps 2.2 V, 3 V -1 1 µA Capacitance at VREF+ or VREF- terminal 10 (5) µF The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_B. Also see the MSP430FR57xx Family User's Guide (SLAU272). REF, Built-In Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VREF+ Positive built-in reference voltage output VCC MIN TYP MAX REFVSEL = {2} for 2.5 V, REFON = 1 TEST CONDITIONS 3V 2.4 2.5 2.6 REFVSEL = {1} for 2 V, REFON = 1 3V 1.92 2.0 2.08 REFVSEL = {0} for 1.5 V, REFON = 1 3V 1.44 1.5 1.56 REFVSEL = {0} for 1.5 V 2.0 REFVSEL = {1} for 2 V 2.2 REFVSEL = {2} for 2.5 V 2.7 AVCC(min) AVCC minimum voltage, Positive built-in reference active IREF+ Operating supply current into AVCC terminal (1) fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0 TREF+ Temperature coefficient of built-in reference REFVSEL = (0, 1, 2}, REFON = 1 PSRR_DC tSETTLE (1) (2) Power supply rejection ratio (DC) Settling time of reference voltage (2) 3V V V 33 45 ±35 AVCC = AVCC (min) - AVCC(max), TA = 25°C, REFON = 1, REFVSEL = (0} for 1.5 V 1600 AVCC = AVCC (min) - AVCC(max), TA = 25°C, REFON = 1, REFVSEL = (1} for 2 V 1900 AVCC = AVCC (min) - AVCC(max), TA = 25°C, REFON = 1, REFVSEL = (2} for 2.5 V 3600 AVCC = AVCC (min) - AVCC(max), REFVSEL = (0, 1, 2}, REFON = 0 → 1 UNIT 30 µA ppm/ °C µV/V µs The internal reference current is supplied by terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 65 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com REF, Temperature Sensor and Built-In VMID over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VSENSOR See TEST CONDITIONS (1) TCSENSOR VCC MIN ADC10ON = 1, INCH = 0Ah, TA = 0°C 2 V, 3 V ADC10ON = 1, INCH = 0Ah 2 V, 3 V MAX mV 2.55 mV/°C tSENSOR(sample) Sample time required if channel 10 is selected (2) ADC10ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB 3V 30 VMID AVCC divider at channel 11 ADC10ON = 1, INCH = 0Bh, VMID is ~0.5 × VAVCC 2V 0.97 1.0 1.03 3V 1.46 1.5 1.54 tVMID(sample) Sample time required if channel 11 is selected (3) ADC10ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 2 V, 3 V 1000 (2) (3) UNIT 790 2V (1) 30 TYP µs V ns The temperature sensor offset can vary significantly. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. 1050 Typical Temperature Sensor Voltage - mV 1000 950 900 850 800 750 700 650 600 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 Ambient Temperature - Degrees Celsius Figure 11. Typical Temperature Sensor Voltage 66 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Comparator_D over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS Overdrive = 10 mV, VIN- = (VIN+ – 400 mV) to (VIN+ + 10 mV) Propagation delay, AVCC = 2 V to 3.6 V tpd Filter timer added to the propagation delay of the comparator tfilter MIN TYP MAX UNIT 50 100 200 ns Overdrive = 100 mV, VIN- = (VIN+ – 400 mV) to (VIN+ + 100 mV) 80 ns Overdrive = 250 mV, (VIN+ – 400 mV) to (VIN+ + 250 mV) 50 ns CDF = 1, CDFDLY = 00 0.3 0.5 0.9 µs CDF = 1, CDFDLY = 01 0.5 0.9 1.5 µs CDF = 1, CDFDLY = 10 0.9 1.6 2.8 µs CDF = 1, CDFDLY = 11 1.6 3.0 5.5 µs mV Voffset Input offset AVCC = 2 V to 3.6 V -20 20 Vic Common mode input range AVCC = 2 V to 3.6 V 0 AVCC - 1 V Icomp(AVCC) Comparator only CDON = 1, AVCC = 2 V to 3.6 V 29 34 µA Iref(AVCC) Reference buffer and Rladder CDREFLx = 01, AVCC = 2 V to 3.6 V 20 24 µA tenable,comp Comparator enable time CDON = 0 to CDON = 1, AVCC = 2 V to 3.6 V 1.1 2.0 µs tenable,rladder Resistor ladder enable time CDON = 0 to CDON = 1, AVCC = 2 V to 3.6 V 1.1 2.0 µs VCB_REF Reference voltage for a tap VIN = voltage input to the R-ladder, n = 0 to 31 VIN × (n + 1) / 32 VIN × (n + 1.5) / 32 V VIN × (n + 0.5) / 32 FRAM over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER DVCC(WRITE) Write supply voltage tWRITE Word or byte write time tACCESS Read access time tPRECHARGE Precharge time tCYCLE TEST CONDITIONS 2.0 (1) (1) Cycle time, read or write operation (1) Read and write endurance tRetention (1) MIN Data retention duration TYP MAX UNIT 3.6 V 120 ns 60 ns 60 ns 120 ns 1015 cycles TJ = 25°C 100 TJ = 70°C 40 TJ = 85°C 10 years When using manual wait state control, see the MSP430FR57xx Family User's Guide (SLAU272) for recommended settings for common system frequencies. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 67 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2 V, 3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse duration 2 V, 3 V 0.025 15 µs tSBW, Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) 1 µs 35 µs En tSBW,Rst Spy-Bi-Wire return to normal operation time fTCK TCK input frequency, 4-wire JTAG Rinternal Internal pulldown resistance on TEST (1) (2) 68 (2) (1) 2 V, 3 V 19 2V 0 5 MHz 3V 0 10 MHz 2 V, 3 V 20 50 kΩ 35 Tools accessing the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge. fTCK may be restricted to meet the timing requirements of the module selected. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 INPUT/OUTPUT SCHEMATICS Port P1, P1.0 to P1.2, Input/Output With Schmitt Trigger Pad Logic External ADC reference (P1.0, P1.1) To ADC From ADC To Comparator From Comparator CDPD.x P1REN.x P1DIR.x 00 01 10 Direction 0: Input 1: Output 11 P1OUT.x DVSS 0 DVCC 1 1 00 From module 1 01 From module 2 10 DVSS 11 P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREFP1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+ P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2 P1SEL0.x P1SEL1.x P1IN.x EN To modules Bus Keeper D Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 69 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 43. Port P1 (P1.0 to P1.2) Pin Functions PIN NAME (P1.x) P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREF- x (1) 0 FUNCTION P1.0 (I/O) 1 (1) (2) (3) (4) 70 2 P1SEL0.x I: 0; O: 1 0 0 0 1 1 0 X 1 1 I: 0; O: 1 0 0 0 1 1 0 X 1 1 I: 0; O: 1 0 0 0 1 1 0 1 1 0 TA0.1 1 DMAE0 0 RTCCLK 1 (3) P1.1 (I/O) TA0.CCI2A 0 TA0.2 1 TA1CLK 0 CDOUT 1 A1 (2) (3) CD1 (2) (4) VeREF+ (2) P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2 P1SEL1.x TA0.CCI1A A0 (2) (3) CD0 (2) (4) VeREF- (2) P1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+ CONTROL BITS/SIGNALS P1DIR.x P1.2 (I/O) (3) TA1.CCI1A 0 TA1.1 1 TA0CLK 0 CDOUT 1 A2 (2) (3) CD2 (2) (4) X This pin is tied to AVSS for YFF package types. All functions are therefore tied to ground at the pin. Setting P1SEL1.x and P1SEL0.x disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Not available on all devices and package types. Setting the CDPD.x bit of the comparator disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Port P1, P1.3 to P1.5, Input/Output With Schmitt Trigger Pad Logic To ADC From ADC To Comparator From Comparator CDPD.x P1REN.x P1DIR.x 00 01 From module 2 10 Direction 0: Input 1: Output 11 P1OUT.x 00 From module 1 01 From module 2 10 DVSS 11 DVSS 0 DVCC 1 1 P1.3/TA1.2/UCB0STE/A3/CD3 P1.4/TB0.1/UCA0STE/A4/CD4 P1.5/TB0.2/UCA0CLK/A5/CD5 P1SEL0.x P1SEL1.x P1IN.x EN To modules Bus Keeper D Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 71 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 44. Port P1 (P1.3 to P1.5) Pin Functions PIN NAME (P1.x) P1.3/TA1.2/UCB0STE/A3/CD3 x 3 FUNCTION P1.3 (I/O) P1.4 (I/O) 72 1 1 0 X 1 1 I: 0; O: 1 0 0 0 1 1 0 X (1) 0 1 X (5) A4 (2) (3) CD4 (2) (4) X 1 1 P1.5(I/O) I: 0; O: 1 0 0 0 1 1 0 1 1 TB0.CCI2A 0 TB0.2 1 A5 CD5 (5) 0 TB0.1 (2) (3) (2) (4) (3) (4) 0 TB0.CCI1A UCA0CLK (1) (2) 0 1 UCA0STE 5 I: 0; O: 1 TA1.2 A3 CD3 P1.5/TB0.2/UCA0CLK/A5/CD5 P1SEL0.x 0 (2) (3) (2) (4) 4 P1SEL1.x TA1.CCI2A UCB0STE P1.4/TB0.1/UCA0STE/A4/CD4 CONTROL BITS/SIGNALS P1DIR.x X (5) X Direction controlled by eUSCI_B0 module. Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Not available on all devices and package types. Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit Direction controlled by eUSCI_A0 module. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Port P1, P1.6 to P1.7, Input/Output With Schmitt Trigger Pad Logic DVSS P1REN.x P1DIR.x 00 From module 2 10 01 Direction 0: Input 1: Output 11 P1OUT.x DVSS 0 DVCC 1 1 00 From module 1 01 From module 2 10 From module 3 11 P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0 P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0 P1SEL0.x P1SEL1.x P1IN.x Bus Keeper EN To modules D Table 45. Port P1 (P1.6 to P1.7) Pin Functions PIN NAME (P1.x) P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0 x 6 FUNCTION P1.6 (I/O) TB1.CCI1A TB1.1 7 P1SEL1.x P1SEL0.x 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 (1) 1 X (2) TA0.CCI0A 0 TA0.0 1 P1.7 (I/O) TB1.CCI2A TB1.2 I: 0; O: 1 (1) 0 (1) UCB0SOMI/UCB0SCL (1) (2) (3) P1DIR.x I: 0; O: 1 (1) UCB0SIMO/UCB0SDA P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0 CONTROL BITS/SIGNALS 1 X (3) TA1.CCI0A 0 TA1.0 1 Not available on all devices and package types. Direction controlled by eUSCI_B0 module. Direction controlled by eUSCI_A0 module. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 73 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Port P2, P2.0 to P2.2, Input/Output With Schmitt Trigger Pad Logic DVSS P2REN.x P2DIR.x 00 From module 2 10 01 Direction 0: Input 1: Output 11 P2OUT.x DVSS 0 DVCC 1 1 00 From module 1 01 From module 2 10 From module 3 11 P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0 P2.2/TB2.2/UCB0CLK/TB1.0 P2SEL0.x P2SEL1.x P2IN.x Bus Keeper EN D To modules Table 46. Port P2 (P2.0 to P2.2) Pin Functions PIN NAME (P2.x) x P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK 0 FUNCTION P2.0 (I/O) TB2.CCI0A TB2.0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 X (2) 0 ACLK 1 P2.1 (I/O) I: 0; O: 1 (1) 0 (1) 1 X (2) TB0.CCI0A 0 TB0.0 1 P2.2 (I/O) TB2.CCI2A TB2.2 I: 0; O: 1 (1) TB1.CCI0A TB1.0 0 (1) 1 UCB0CLK 74 0 0 1 UCA0RXD/UCA0SOMI (1) (2) (3) 0 TB0CLK TB2.1 2 P2SEL0.x 0 (1) TB2.CCI1A P2.2/TB2.2/UCB0CLK/TB1.0 P2SEL1.x I: 0; O: 1 (1) UCA0TXD/UCA0SIMO P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0 CONTROL BITS/SIGNALS P2DIR.x (1) X (1) (3) 0 1 Not available on all devices and package types. Direction controlled by eUSCI_A0 module. Direction controlled by eUSCI_B0 module. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Port P2, P2.3 to P2.4, Input/Output With Schmitt Trigger Pad Logic To ADC From ADC To Comparator From Comparator CDPD.x P2REN.x P2DIR.x 00 From module 2 10 01 Direction 0: Input 1: Output 11 P2OUT.x DVSS 0 DVCC 1 1 00 From module 1 01 From module 2 10 DVSS 11 P2.3/TA0.0/UCA1STE/A6/CD10 P2.4/TA1.0/UCA1CLK/A7/CD11 P2SEL0.x P2SEL1.x P2IN.x EN To modules Bus Keeper D Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 75 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 47. Port P2 (P2.3 to P2.4) Pin Functions PIN NAME (P2.x) x P2.3/TA0.0/UCA1STE/A6/CD10 3 FUNCTION P2.3 (I/O) P2.4 (I/O) 0 0 1 1 0 X 1 1 I: 0; O: 1 0 0 0 1 1 0 1 1 X (1) TA1.CCI0B 0 TA1.0 1 A7 (2) CD11 76 0 1 UCA1CLK (3) (4) I: 0; O: 1 TA0.0 A6 CD10 (1) (2) P2SEL0.x 0 (2) (3) (2) (4) 4 P2SEL1.x TA0.CCI0B UCA1STE P2.4/TA1.0/UCA1CLK/A7/CD11 CONTROL BITS/SIGNALS P2DIR.x (3) (2) (4) X (1) X Direction controlled by eUSCI_A1 module. Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Not available on all devices and package types. Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Port P2, P2.5 to P2.6, Input/Output With Schmitt Trigger Pad Logic P2REN.x P2DIR.x 00 From module 2 10 01 Direction 0: Input 1: Output 11 P2OUT.x DVSS 0 DVCC 1 1 00 From module 1 01 From module 2 10 DVSS 11 P2.5/TB0.0/UCA1TXD/UCA1SIMO P2.6/TB1.0/UCA1RXD/UCA1SOMI P2SEL0.x P2SEL1.x P2IN.x Bus Keeper EN To modules D Table 48. Port P2 (P2.5 to P2.6) Pin Functions PIN NAME (P2.x) P2.5/TB0.0/UCA1TXD/UCA1SIMO x 5 FUNCTION P2.5(I/O) (1) TB0.CCI0B TB0.0 6 I: 0; O: 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 (1) (1) TB1.CCI0B X (2) I: 0; O: 1 (1) 0 (1) UCA1RXD/UCA1SOMI (1) (2) P2SEL0.x (1) P2.6(I/O) TB1.0 P2SEL1.x (1) UCA1TXD/UCA1SIMO P2.6/TB1.0/UCA1RXD/UCA1SOMI CONTROL BITS/SIGNALS P2DIR.x 1 (1) X (2) Not available on all devices and package types. Direction controlled by eUSCI_A1 module. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 77 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Port P2, P2.7, Input/Output With Schmitt Trigger Pad Logic P2REN.x P2DIR.x 00 01 10 Direction 0: Input 1: Output 11 P2OUT.x DVSS 0 DVCC 1 1 00 DVSS 01 DVSS 10 DVSS 11 P2.7 P2SEL0.x P2SEL1.x P2IN.x Bus Keeper EN To modules D Table 49. Port P2 (P2.7) Pin Functions PIN NAME (P2.x) P2.7 (1) 78 x 7 FUNCTION P2.7(I/O) (1) CONTROL BITS/SIGNALS P2DIR.x P2SEL1.x P2SEL0.x I: 0; O: 1 0 0 Not available on all devices and package types. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Port P3, P3.0 to P3.3, Input/Output With Schmitt Trigger Pad Logic To ADC From ADC To Comparator From Comparator CDPD.x P3REN.x P3DIR.x 00 01 10 Direction 0: Input 1: Output 11 P3OUT.x 00 DVSS 01 DVSS 10 DVSS 11 DVSS 0 DVCC 1 P3.0/A12/CD12 P3.1/A13/CD13 P3.2/A14/CD14 P3.3/A15/CD15 P3SEL0.x P3SEL1.x P3IN.x EN To modules 1 Bus Keeper D Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 79 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 50. Port P3 (P3.0 to P3.3) Pin Functions PIN NAME (P3.x) P3.0/A12/CD12 x 0 FUNCTION P3.0 (I/O) A12 (1) (2) CD12 (1) (3) P3.1/A13/CD13 1 P3.1 (I/O) (1) (2) (1) (3) A13 CD13 P3.2/A14/CD14 2 P3.2 (I/O) (1) (2) (1) (3) A14 CD14 P3.3/A15/CD15 3 P3.3 (I/O) A15 (1) (2) CD15 (1) (3) (1) (2) (3) 80 CONTROL BITS/SIGNALS P3DIR.x P3SEL1.x P3SEL0.x I: 0; O: 1 0 0 X 1 1 I: 0; O: 1 0 0 X 1 1 I: 0; O: 1 0 0 X 1 1 I: 0; O: 1 0 0 X 1 1 Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Not available on all devices and package types. Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Port P3, P3.4 to P3.6, Input/Output With Schmitt Trigger Pad Logic DVSS P3REN.x P3DIR.x 00 01 10 Direction 0: Input 1: Output 11 P3OUT.x DVSS 0 DVCC 1 1 00 From module 1 01 DVSS 10 From module 2 11 P3.4/TB1.1/TB2CLK/SMCLK P3.5/TB1.2/CDOUT P3.6/TB2.1/TB1CLK P3SEL0.x P3SEL1.x P3IN.x Bus Keeper EN To modules D Table 51. Port P3 (P3.4 to P3.6) Pin Functions PIN NAME (P3.x) P3.4/TB1.1/TB2CLK/SMCLK x 4 FUNCTION (1) P3.4 (I/O) TB1.CCI1B TB1.1 (1) SMCLK 5 P3.6/TB2.1/TB1CLK 6 (1) (1) (1) TB1CLK 0 1 1 1 0 0 0 1 1 1 1 I: 0; O: 1 0 0 0 1 1 1 0 I: 0; O: 1 0 1 TB2.CCI1B (1) (1) (1) P3.6 (I/O) TB2.1 0 1 (1) TB1.CCI2B CDOUT P3SEL0.x 0 0 (1) P3.5 (I/O) TB1.2 P3SEL1.x I: 0; O: 1 1 (1) TB2CLK P3.5/TB1.2/CDOUT (1) CONTROL BITS/SIGNALS P3DIR.x (1) 0 1 (1) 0 Not available on all devices and package types. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 81 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Port P3, P3.7, Input/Output With Schmitt Trigger Pad Logic P3REN.x P3DIR.x 00 01 10 Direction 0: Input 1: Output 11 P3OUT.x 00 From module 1 01 DVSS 10 DVSS 11 DVSS 0 DVCC 1 1 P3.7/TB2.2 P3SEL0.x P3SEL1.x P3IN.x Bus Keeper EN To modules D Table 52. Port P3 (P3.7) Pin Functions PIN NAME (P3.x) P3.7/TB2.2 x 7 FUNCTION P3.7 (I/O) (1) TB2.CCI2B TB2.2 (1) 82 (1) (1) CONTROL BITS/SIGNALS P3DIR.x P3SEL1.x P3SEL0.x I: 0; O: 1 0 0 0 1 0 1 Not available on all devices and package types. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Port P4, P4.0, Input/Output With Schmitt Trigger Pad Logic P4REN.x P4DIR.x 00 01 10 Direction 0: Input 1: Output 11 P4OUT.x 00 From module 1 01 DVSS 10 DVSS 11 DVSS 0 DVCC 1 1 P4.0/TB2.0 P4SEL0.x P4SEL1.x P4IN.x Bus Keeper EN To modules D Table 53. Port P4 (P4.0) Pin Functions PIN NAME (P4.x) P4.0/TB2.0 x 0 FUNCTION P4.0 (I/O) (1) TB2.CCI0B TB2.0 (1) (1) (1) CONTROL BITS/SIGNALS P4DIR.x P4SEL1.x P4SEL0.x I: 0; O: 1 0 0 0 1 0 1 Not available on all devices and package types. Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 83 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Port P4, P4.1, Input/Output With Schmitt Trigger Pad Logic P4REN.x P4DIR.x 00 01 10 Direction 0: Input 1: Output 11 P4OUT.x DVSS 0 DVCC 1 1 00 DVSS 01 DVSS 10 DVSS 11 P4.1 P4SEL0.x P4SEL1.x P4IN.x Bus Keeper EN To modules D Table 54. Port P4 (P4.1) Pin Functions PIN NAME (P4.x) P4.1 (1) 84 x 1 FUNCTION P4.1 (I/O) (1) CONTROL BITS/SIGNALS P4DIR.x P4SEL1.x P4SEL0.x I: 0; O: 1 0 0 Not available on all devices and package types. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Port J, J.0 to J.3 JTAG pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output To Comparator From Comparator CDPD.x Pad Logic From JTAG From JTAG From JTAG 1 PJREN.x 0 00 PJDIR.x 1 01 10 DVSS 0 DVCC 1 0 Direction 0: Input 1: Output 11 1 JTAG enable 00 PJOUT.x From module 1 01 1 DVSS 10 0 DVSS 11 PJ.0/TDO/TB0OUTH/SMCLK/CD6 PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7 PJ.2/TMS/TB2OUTH/ACLK/CD8 PJSEL0.x PJSEL1.x PJIN.x Bus Keeper EN D To modules and JTAG To Comparator From Comparator CDPD.x Pad Logic From JTAG From JTAG From JTAG 1 PJREN.x PJDIR.x 0 00 1 01 10 DVSS 0 DVCC 1 0 Direction 0: Input 1: Output 11 1 JTAG enable PJOUT.x 00 DVSS 01 1 DVSS 10 0 DVSS 11 PJ.3/TCK/CD9 PJSEL0.x PJSEL1.x PJIN.x EN To modules and JTAG Bus Keeper D Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 85 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 55. Port PJ (PJ.0 to PJ.3) Pin Functions PIN NAME (PJ.x) PJ.0/TDO/TB0OUTH/SMCLK/CD6 x 0 FUNCTION PJ.0 (I/O) TDO (2) (3) 1 2 (2) TDI/TCLK (3) (4) 86 1 X 1 I: 0; O: 1 0 0 X X X 0 1 1 1 1 X PJ.2 (I/O) (2) I: 0; O: 1 0 0 (3) (4) X X X TB2OUTH 0 ACLK 1 0 1 1 PJ.3 (I/O) CD9 (4) 1 0 TCK (1) (2) (3) 0 MCLK CD8 3 0 X TB1OUTH TMS PJ.3/TCK/CD9 0 X 1 (3) (4) (2) (1) PJSEL0.x X 0 PJ.1 (I/O) PJSEL1.x I: 0; O: 1 SMCLK CD7 PJ.2/TMS/TB2OUTH/ACLK/CD8 PJDIR.x TB0OUTH CD6 PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7 CONTROL BITS/ SIGNALS X 1 I: 0; O: 1 0 0 X X X X 1 1 X = Don't care Default condition The pin direction is controlled by the JTAG module. JTAG mode selection is made by the SYS module or by the Spy-Bi-Wire four-wire entry sequence. PJSEL1.x and PJSEL0.x have no effect in these cases. In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Port PJ, PJ.4 and PJ.5 Input/Output With Schmitt Trigger Pad Logic To XT1 XIN PJREN.4 PJDIR.4 00 01 10 Direction 0: Input 1: Output 11 PJOUT.4 DVSS 0 DVCC 1 1 00 DVSS 01 DVSS 10 DVSS 11 PJ.4/XIN PJSEL0.4 PJSEL1.4 PJIN.4 EN To modules Bus Keeper D Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 87 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Pad Logic To XT1 XOUT PJSEL0.4 XT1BYPASS PJREN.5 PJDIR.5 00 01 10 Direction 0: Input 1: Output 11 PJOUT.5 00 DVSS 01 DVSS 10 DVSS 11 DVSS 0 DVCC 1 1 PJ.5/XOUT PJSEL0.5 PJSEL1.5 PJIN.5 Bus Keeper EN To modules D Table 56. Port PJ (PJ.4 and PJ.5) Pin Functions CONTROL BITS/SIGNALS PIN NAME (P7.x) PJ.4/XIN x 4 FUNCTION PJ.4 (I/O) XIN crystal mode XIN bypass mode PJ.5/XOUT 5 (2) (2) PJ.5 (I/O) XOUT crystal mode (3) PJ.5 (I/O) (1) (2) (3) (4) 88 (4) PJDIR.x PJSEL1.5 I: 0; O: 1 X X X X X (1) PJSEL0.4 XT1 BYPASS 0 0 X 0 1 0 PJSEL0.5 PJSEL1.4 X X X 0 1 1 I: 0; O: 1 0 0 0 0 X X X X 0 1 0 I: 0; O: 1 X X 0 1 1 X = Don't care Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are configured for crystal operation and PJSEL1.5 and PJSEL0.5 are do not care. When XT1BYPASS = 1, PJ.4 is configured for bypass operation and PJ.5 is configured as general-purpose I/O. Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are configured for crystal operation and PJSEL1.5 and PJSEL0.5 are do not care. When XT1BYPASS = 1, PJ.4 is configured for bypass operation and PJ.5 is configured as general-purpose I/O. When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 DEVICE DESCRIPTORS (TLV) The following tables list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type. Table 57. Device Descriptor Table Info Block Die Record FR5737 FR5736 FR5735 Value Value Value Value 01A00h 05h 05h 05h 05h 05h 01A01h 05h 05h 05h 05h 05h 01A02h per unit per unit per unit per unit per unit Info length CRC length 01A03h per unit per unit per unit per unit per unit Device ID 01A04h 03h 02h 01h 77h 76h Device ID 01A05h 81h 81h 81h 81h 81h Hardware revision 01A06h per unit per unit per unit per unit per unit Firmware revision 01A07h per unit per unit per unit per unit per unit Die Record Tag 01A08h 08h 08h 08h 08h 08h Die Record length 01A09h 0Ah 0Ah 0Ah 0Ah 0Ah 01A0Ah per unit per unit per unit per unit per unit 01A0Bh per unit per unit per unit per unit per unit 01A0Ch per unit per unit per unit per unit per unit 01A0Dh per unit per unit per unit per unit per unit 01A0Eh per unit per unit per unit per unit per unit 01A0Fh per unit per unit per unit per unit per unit 01A10h per unit per unit per unit per unit per unit 01A11h per unit per unit per unit per unit per unit 01A12h per unit per unit per unit per unit per unit 01A13h per unit per unit per unit per unit per unit ADC10 Calibration Tag 01A14h 13h 13h 13h 05h 13h ADC10 Calibration length 01A15h 10h 10h 10h 10h 10h 01A16h per unit per unit NA NA per unit 01A17h per unit per unit NA NA per unit 01A18h per unit per unit NA NA per unit Die X position Die Y position Test results ADC Gain Factor ADC Offset (1) FR5738 Value Address Lot/Wafer ID ADC10 Calibration FR5739 Description CRC value (1) 01A19h per unit per unit NA NA per unit ADC 1.5-V Reference Temp. Sensor 30°C 01A1Ah per unit per unit NA NA per unit 01A1Bh per unit per unit NA NA per unit ADC 1.5-V Reference Temp. Sensor 85°C 01A1Ch per unit per unit NA NA per unit 01A1Dh per unit per unit NA NA per unit ADC 2.0-V Reference Temp. Sensor 30°C 01A1Eh per unit per unit NA NA per unit 01A1Fh per unit per unit NA NA per unit ADC 2.0-V Reference Temp. Sensor 85°C 01A20h per unit per unit NA NA per unit 01A21h per unit per unit NA NA per unit ADC 2.5-V Reference Temp. Sensor 30°C 01A22h per unit per unit NA NA per unit 01A23h per unit per unit NA NA per unit NA = Not applicable Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 89 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 57. Device Descriptor Table (1) (continued) REF Calibration FR5739 FR5738 FR5737 FR5736 FR5735 Value Value Value Value Value 01A24h per unit per unit NA NA per unit 01A25h per unit per unit NA NA per unit REF Calibration Tag 01A26h 12h 12h 12h 12h 12h REF Calibration length 01A27h 06h 06h 06h 06h 06h REF 1.5-V Reference 01A28h per unit per unit per unit per unit per unit 01A29h per unit per unit per unit per unit per unit REF 2.0-V Reference 01A2Ah per unit per unit per unit per unit per unit 01A2Bh per unit per unit per unit per unit per unit REF 2.5-V Reference 01A2Ch per unit per unit per unit per unit per unit 01A2Dh per unit per unit per unit per unit per unit Description Address ADC 2.5-V Reference Temp. Sensor 85°C Table 58. Device Descriptor Table Info Block FR5734 FR5733 FR5732 FR5731 FR5730 Value Value Value Value Value 05h 05h 05h 05h 05h 01A01h 05h 05h 05h 05h 05h 01A02h per unit per unit per unit per unit per unit 01A03h per unit per unit per unit per unit per unit Device ID 01A04h 00h 7Fh 75h 7Eh 7Ch Description Address Info length 01A00h CRC length CRC value Die Record Device ID 01A05h 81h 80h 81h 80h 80h Hardware revision 01A06h per unit per unit per unit per unit per unit Firmware revision 01A07h per unit per unit per unit per unit per unit Die Record Tag 01A08h 08h 08h 08h 08h 08h Die Record length Lot/Wafer ID Die X position Die Y position Test results ADC10 Calibration 0Ah 0Ah 0Ah 0Ah 0Ah per unit per unit per unit per unit per unit 01A0Bh per unit per unit per unit per unit per unit 01A0Ch per unit per unit per unit per unit per unit 01A0Dh per unit per unit per unit per unit per unit 01A0Eh per unit per unit per unit per unit per unit 01A0Fh per unit per unit per unit per unit per unit 01A10h per unit per unit per unit per unit per unit 01A11h per unit per unit per unit per unit per unit 01A12h per unit per unit per unit per unit per unit 01A13h per unit per unit per unit per unit per unit 01A14h 13h 13h 13h 05h 13h ADC10 Calibration length 01A15h 10h 10h 10h 10h 10h 01A16h per unit NA NA per unit per unit 01A17h per unit NA NA per unit per unit 01A18h per unit NA NA per unit per unit 01A19h per unit NA NA per unit per unit 01A1Ah per unit NA NA per unit per unit 01A1Bh per unit NA NA per unit per unit ADC Offset ADC 1.5-V Reference Temp. Sensor 30°C 90 01A09h 01A0Ah ADC10 Calibration Tag ADC Gain Factor (1) (1) NA = Not applicable Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Table 58. Device Descriptor Table (1) (continued) REF Calibration FR5734 FR5733 FR5732 FR5731 FR5730 Value Value Value Value Value 01A1Ch per unit NA NA per unit per unit 01A1Dh per unit NA NA per unit per unit ADC 2.0-V Reference Temp. Sensor 30°C 01A1Eh per unit NA NA per unit per unit 01A1Fh per unit NA NA per unit per unit ADC 2.0-V Reference Temp. Sensor 85°C 01A20h per unit NA NA per unit per unit 01A21h per unit NA NA per unit per unit ADC 2.5-V Reference Temp. Sensor 30°C 01A22h per unit NA NA per unit per unit 01A23h per unit NA NA per unit per unit ADC 2.5-V Reference Temp. Sensor 85°C 01A24h per unit NA NA per unit per unit 01A25h per unit NA NA per unit per unit REF Calibration Tag 01A26h 12h 12h 12h 12h 12h REF Calibration length 01A27h 06h 06h 06h 06h 06h REF 1.5-V Reference 01A28h per unit per unit per unit per unit per unit 01A29h per unit per unit per unit per unit per unit REF 2.0-V Reference 01A2Ah per unit per unit per unit per unit per unit 01A2Bh per unit per unit per unit per unit per unit REF 2.5-V Reference 01A2Ch per unit per unit per unit per unit per unit 01A2Dh per unit per unit per unit per unit per unit Description Address ADC 1.5-V Reference Temp. Sensor 85°C Table 59. Device Descriptor Table Info Block FR5728 FR5727 FR5726 FR5725 Value Value Value Value Value 05h 05h 05h 05h 05h Address Info length 01A00h CRC length 01A01h 05h 05h 05h 05h 05h 01A02h per unit per unit per unit per unit per unit 01A03h per unit per unit per unit per unit per unit Device ID 01A04h 7Bh 7Ah 79h 74h 78h Device ID 01A05h 80h 80h 80h 81h 80h Hardware revision 01A06h per unit per unit per unit per unit per unit Firmware revision 01A07h per unit per unit per unit per unit per unit Die Record Tag 01A08h 08h 08h 08h 08h 08h Die Record length 01A09h 0Ah 0Ah 0Ah 0Ah 0Ah 01A0Ah per unit per unit per unit per unit per unit Lot/Wafer ID Die X position Die Y position Test results (1) FR5729 Description CRC value Die Record (1) 01A0Bh per unit per unit per unit per unit per unit 01A0Ch per unit per unit per unit per unit per unit 01A0Dh per unit per unit per unit per unit per unit 01A0Eh per unit per unit per unit per unit per unit 01A0Fh per unit per unit per unit per unit per unit 01A10h per unit per unit per unit per unit per unit 01A11h per unit per unit per unit per unit per unit 01A12h per unit per unit per unit per unit per unit 01A13h per unit per unit per unit per unit per unit NA = Not applicable Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 91 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com Table 59. Device Descriptor Table (1) (continued) ADC10 Calibration FR5728 FR5727 FR5726 FR5725 Value Value Value Value Value 01A14h 13h 13h 13h 05h 13h 01A15h 10h 10h 10h 10h 10h 01A16h per unit per unit NA NA per unit 01A17h per unit per unit NA NA per unit 01A18h per unit per unit NA NA per unit Address ADC10 Calibration Tag ADC10 Calibration length ADC Gain Factor ADC Offset REF Calibration FR5729 Description 01A19h per unit per unit NA NA per unit ADC 1.5-V Reference Temp. Sensor 30°C 01A1Ah per unit per unit NA NA per unit 01A1Bh per unit per unit NA NA per unit ADC 1.5-V Reference Temp. Sensor 85°C 01A1Ch per unit per unit NA NA per unit 01A1Dh per unit per unit NA NA per unit ADC 2.0-V Reference Temp. Sensor 30°C 01A1Eh per unit per unit NA NA per unit 01A1Fh per unit per unit NA NA per unit ADC 2.0-V Reference Temp. Sensor 85°C 01A20h per unit per unit NA NA per unit 01A21h per unit per unit NA NA per unit ADC 2.5-V Reference Temp. Sensor 30°C 01A22h per unit per unit NA NA per unit 01A23h per unit per unit NA NA per unit ADC 2.5-V Reference Temp. Sensor 85°C 01A24h per unit per unit NA NA per unit 01A25h per unit per unit NA NA per unit REF Calibration Tag 01A26h 12h 12h 12h 12h 12h REF Calibration length 01A27h 06h 06h 06h 06h 06h REF 1.5-V Reference 01A28h per unit per unit per unit per unit per unit 01A29h per unit per unit per unit per unit per unit REF 2.0-V Reference 01A2Ah per unit per unit per unit per unit per unit 01A2Bh per unit per unit per unit per unit per unit REF 2.5-V Reference 01A2Ch per unit per unit per unit per unit per unit 01A2Dh per unit per unit per unit per unit per unit Table 60. Device Descriptor Table Info Block (1) 92 FR5724 FR5723 FR5722 FR5721 FR5720 Value Value Value Value Value 05h 05h 05h 05h 05h Description Address Info length 01A00h CRC length 01A01h 05h 05h 05h 05h 05h 01A02h per unit per unit per unit per unit per unit 01A03h per unit per unit per unit per unit per unit Device ID 01A04h 73h 72h 71h 77h 70h Device ID 01A05h 81h 81h 81h 80h 81h Hardware revision 01A06h per unit per unit per unit per unit per unit Firmware revision 01A07h per unit per unit per unit per unit per unit Die Record Tag 01A08h 08h 08h 08h 08h 08h Die Record length 01A09h 0Ah 0Ah 0Ah 0Ah 0Ah CRC value Die Record (1) NA = Not applicable Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated MSP430FR573x MSP430FR572x www.ti.com SLAS639D – JULY 2011 – REVISED AUGUST 2012 Table 60. Device Descriptor Table (1) (continued) FR5724 FR5723 FR5722 FR5721 FR5720 Value Value Value Value Value 01A0Ah per unit per unit per unit per unit per unit 01A0Bh per unit per unit per unit per unit per unit 01A0Ch per unit per unit per unit per unit per unit 01A0Dh per unit per unit per unit per unit per unit 01A0Eh per unit per unit per unit per unit per unit 01A0Fh per unit per unit per unit per unit per unit 01A10h per unit per unit per unit per unit per unit 01A11h per unit per unit per unit per unit per unit 01A12h per unit per unit per unit per unit per unit 01A13h per unit per unit per unit per unit per unit ADC10 Calibration Tag 01A14h 13h 13h 13h 05h 13h ADC10 Calibration length 01A15h 10h 10h 10h 10h 10h 01A16h per unit NA NA per unit per unit 01A17h per unit NA NA per unit per unit 01A18h per unit NA NA per unit per unit Description Lot/Wafer ID Die X position Die Y position Test results ADC10 Calibration ADC Gain Factor ADC Offset REF Calibration Address 01A19h per unit NA NA per unit per unit ADC 1.5-V Reference Temp. Sensor 30°C 01A1Ah per unit NA NA per unit per unit 01A1Bh per unit NA NA per unit per unit ADC 1.5-V Reference Temp. Sensor 85°C 01A1Ch per unit NA NA per unit per unit 01A1Dh per unit NA NA per unit per unit ADC 2.0-V Reference Temp. Sensor 30°C 01A1Eh per unit NA NA per unit per unit 01A1Fh per unit NA NA per unit per unit ADC 2.0-V Reference Temp. Sensor 85°C 01A20h per unit NA NA per unit per unit 01A21h per unit NA NA per unit per unit ADC 2.5-V Reference Temp. Sensor 30°C 01A22h per unit NA NA per unit per unit 01A23h per unit NA NA per unit per unit ADC 2.5-V Reference Temp. Sensor 85°C 01A24h per unit NA NA per unit per unit 01A25h per unit NA NA per unit per unit REF Calibration Tag 01A26h 12h 12h 12h 12h 12h REF Calibration length 01A27h 06h 06h 06h 06h 06h REF 1.5-V Reference 01A28h per unit per unit per unit per unit per unit 01A29h per unit per unit per unit per unit per unit REF 2.0-V Reference 01A2Ah per unit per unit per unit per unit per unit 01A2Bh per unit per unit per unit per unit per unit REF 2.5-V Reference 01A2Ch per unit per unit per unit per unit per unit 01A2Dh per unit per unit per unit per unit per unit Copyright © 2011–2012, Texas Instruments Incorporated Submit Documentation Feedback 93 MSP430FR573x MSP430FR572x SLAS639D – JULY 2011 – REVISED AUGUST 2012 www.ti.com REVISION HISTORY REVISION SLAS639 94 COMMENTS Product Preview release SLAS639A Updated Product Preview release including preliminary electrical specifications SLAS639B Changes throughout for updated Product Preview SLAS639C Production Data release SLAS639D Changed PW package options from Product Preview to Production Data. Added information for YFF package option throughout as Product Preview. Table 26 and Table 27, Changed offset of PxSELC registers. Table 28, Added PJSELC register. Table 29, Removed registers that do no apply (TA0CCTL3,4 and TA0CCR3,4) Absolute Maximum Ratings, Changed low limit of Tstg from -40°C to -55°C. FRAM, Added tRetention MIN values for TJ = 25°C and TJ = 70°C. Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 23-Aug-2012 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins MSP430FR5720IPWR PREVIEW TSSOP PW 28 MSP430FR5720IRGER ACTIVE VQFN RGE 24 MSP430FR5720IRGET ACTIVE VQFN RGE MSP430FR5721IDA PREVIEW TSSOP MSP430FR5721IDAR ACTIVE MSP430FR5721IRHAR Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5721IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5722IPWR PREVIEW TSSOP PW 28 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430FR5722IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5722IRGET ACTIVE VQFN RGE 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5723IDA PREVIEW TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5723IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5723IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5723IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5724IPWR PREVIEW TSSOP PW 28 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430FR5724IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5724IRGET ACTIVE VQFN RGE 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR Addendum-Page 1 Samples (Requires Login) PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 23-Aug-2012 Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) MSP430FR5725IDA PREVIEW TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5725IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5725IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5726IPWR PREVIEW TSSOP PW 28 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430FR5726IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5726IRGET ACTIVE VQFN RGE 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5727IDA PREVIEW TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5727IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5727IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5727IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5728IPWR PREVIEW TSSOP PW 28 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430FR5728IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5728IRGET ACTIVE VQFN RGE 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5729IDA ACTIVE TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5729IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5729IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5730IPW PREVIEW TSSOP PW 28 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430FR5730IRGER ACTIVE VQFN RGE 24 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 3000 Addendum-Page 2 Samples (Requires Login) PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 23-Aug-2012 Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) MSP430FR5730IRGET ACTIVE VQFN RGE 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5731IDA PREVIEW TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5731IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5731IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5731IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5732IPWR PREVIEW TSSOP PW 28 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430FR5732IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5732IRGET ACTIVE VQFN RGE 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5733IDA PREVIEW TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5733IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5733IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5733IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5734IPWR PREVIEW TSSOP PW 28 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430FR5734IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5734IRGET ACTIVE VQFN RGE 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5735IDA ACTIVE TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5735IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5735IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Addendum-Page 3 Samples (Requires Login) PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 23-Aug-2012 Status (1) Package Type Package Drawing Pins MSP430FR5736IPWR PREVIEW TSSOP PW 28 MSP430FR5736IRGER ACTIVE VQFN RGE 24 MSP430FR5736IRGET ACTIVE VQFN RGE MSP430FR5737IDA PREVIEW TSSOP MSP430FR5737IDAR ACTIVE MSP430FR5737IRHAR Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5737IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5738IPWR PREVIEW TSSOP PW 28 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM MSP430FR5738IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5738IRGET ACTIVE VQFN RGE 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5739IDA ACTIVE TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5739IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR MSP430FR5739IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FR5739IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 4 Samples (Requires Login) PACKAGE OPTION ADDENDUM www.ti.com 23-Aug-2012 (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 5 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated