NBSG72A 2.5V/3.3VSiGe Differential 2 x 2 Crosspoint Switch with Output Level Select The NBSG72A is a high−bandwidth fully differential 2 X 2 crosspoint switch with Output Level Select (OLS) capabilities. This is a part of the GigaComm™ family of high performance Silicon Germanium products. The device is housed in a low profile 3 X 3 mm 16−pin QFN package. Differential inputs incorporate internal 50 W termination resistors and accept NECL (Negative ECL), PECL (Positive ECL), LVCMOS/LVTTL, CML, or LVDS. The OLS input is used to program the peak−to−peak output amplitude between 0 mV and 800 mV in five discrete steps. The SELECT inputs are single−ended and can be driven with either LVECL or LVCMOS/LVTTL input levels. http://onsemi.com MARKING DIAGRAM* ÇÇ ÇÇ 16 1 1 QFN−16 MN SUFFIX CASE 485G SG 72A ALYWG G Features • • • • • • • Maximum Input Clock Frequency > 7 GHz Typical Maximum Input Data Rate > 7 Gb/s Typical 200 ps Typical Propagation Delay (OLS = FLOAT) 55/45 ps Typical Rise/Fall Times (OLS = FLOAT) Selectable Swing PECL Output with Operating Range: VCC = 2.375 V to 3.465 V with VEE = 0 V Selectable Swing NECL Output with NECL Inputs with Operating Range: VCC = 0 V with VEE = −2.375 V to −3.465 V Selectable Output Levels (0 mV, 200 mV, 400 mV, 600 mV or 800 mV Peak−to−Peak Output) 50 W Internal Input Termination Resistors • • Single−Ended LVECL or LVCMOS/LVTTL Select Inputs • A = Assembly Location L = Wafer Lot Y = Year W = Work Week G = Pb−Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet. (SELA, SELB) Pb−Free Packages are Available © Semiconductor Components Industries, LLC, 2006 November, 2006 − Rev. 5 1 Publication Order Number: NBSG72A/D NBSG72A VTD0 1 D0 2 VCC Q0 Q0 OLS 16 15 14 13 Exposed Pad (EP) 12 VCC 11 Q1 NBSG72A D0 3 10 Q1 SELA 4 9 5 6 7 VEE D1 D1 SELB 8 VTD1 Figure 1. QFN−16 Pinout (Top View) Table 1. PIN DESCRIPTION Pin No. Name I/O 1 VTD0 − 2 D0 LVDS, CML, ECL, LVTTL, LVCMOS Input Inverted Differential Input 0. 3 D0 LVDS, CML, ECL, LVTTL, LVCMOS Input Noninverted Differential Input 0. 4 SELA LVECL, LVCMOS Input Select Logic Input A. Internal 75 kW Pulldown to VEE. ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ 5 VEE − 6 D1 LVDS, CML, ECL, LVTTL, LVCMOS Input 7 D1 LVDS, CML, ECL, LVTTL, LVCMOS Input 8 VTD1 − 9 SELB LVECL, LVCMOS Input 10 Q1 RSECL Output 11 Q1 RSECL Output 12 VCC − 13 OLS (Note 2) Input 14 Q0 RSECL Output 15 Q0 RSECL Output 16 VCC − − EP − Description Common Internal 50 W Termination Pin for D0 and D0 Input. See Table 4. (Note 1) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Negative Supply. All VEE Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. Inverted Differential Input 1. Noninverted Differential Input 1. Common Internal 50 W Termination Pin for D1 and D1 Input. See Table 4. (Note 1) Select Logic Input B. Internal 75 kW Pulldown to VEE. Noninverted Differential Output. Inverted Differential Output. Positive Supply. All VCC Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. Input Pin for Output Level Select (OLS) See Table 3. Noninverted Differential Output Typically Terminated with 50 W Resistor to VTT = VCC − 2.0 V. Inverted Differential Output Typically Terminated with 50 W Resistor to VTT = VCC − 2.0 V. Positive Supply. All VCC Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. Exposed Pad. The thermally exposed pad on package bottom (see case drawing) must be attached to a heat−sinking conduit. 1. In the differential configuration when the input termination pins (VTD0, VTD1) are connected to a common termination voltage, and if no signal is applied then the device will be susceptible to self−oscillation. 2. When an output level of 400 mV is desired and VCC − VEE > 3.0 V, 2 kW resistor should be connected from OLS pin to VEE. http://onsemi.com 2 NBSG72A VTD0 D0 50 W 50 W 2 2 D0 2 D1 2 Q0 2 Q0 D1 + 50 W VTD1 50 W VCC 2 SELA Table 2. TRUTH TABLE VEE 2 75 kW 2 Q1 2 Q1 SELA SELB Q0 Q1 LOW LOW D0 D0 HIGH LOW D1 D0 LOW HIGH D0 D1 HIGH HIGH D1 D1 2 SELB 75 kW OLS Figure 2. Logic/Block Diagram Table 3. OUTPUT LEVEL SELECT (OLS) OLS Output Amplitude (VOUTPP) OLS Sensitivity VCC 800 mV OLS − 75 mV VCC − 0.4 V 200 mV OLS ± 150 mV VCC − 0.8 V 600 mV OLS ± 100 mV VCC − 1.2 V 0 OLS ± 75 mV VEE (Note 3) 400 mV OLS ± 100 mV FLOAT 600 mV N/A 3. When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. Table 4. INTERFACING OPTIONS Interfacing Options Connections CML Connect VTD0 and VTD1 to VCC LVDS VTD0 and VTD1 Should Be Left Floating. AC−COUPLED RSECL, PECL, NECL LVCMOS / LVTTL Bias VTD0 and VTD1 Inputs within Common Mode Range (VIHCMR) Standard ECL Termination Techniques The external voltage should be applied to the unused complementary differential input. Nominal voltage is 1.5 V for LVTTL and VCC/2 for LVCMOS Inputs. http://onsemi.com 3 NBSG72A Table 5. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor (SELA, SELB) 75 kW ESD Protection Human Body Model Machine Model Charged Device Model > 2 kV > 50 V > 1 kV Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Moisture Sensitivity (Note 1) Flammability Rating Level 1 Transistor Count 436 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. Table 6. MAXIMUM RATINGS Rating Units VCC Symbol Positive Power Supply Parameter VEE = 0 V Condition 1 3.6 V VEE Negative Power Supply VCC = 0 V −3.6 V VI Positive Input Negative Input VEE = 0 V VCC = 0 V 3.6 −3.6 V V VINPP Differential Input Voltage |DX − DX| VEE − VCC w 2.8 V VEE − VCC t 2.8 V 2.8 |VCC − VEE| V Iout Output Current Continuous Surge 25 50 mA mA IIN Input Current Through RT (50 W Resistor) Static Surge 45 80 mA mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction−to−Ambient) (Note 2) 0 lfpm 500 lfpm QFN−16 QFN−16 42 35 °C/W °C/W qJC Thermal Resistance (Junction−to−Case) (Note 2) QFN−16 4 °C/W Tsol Wave Solder < 3 sec @ 260°C < 3 sec @ 260°C 265 265 °C Pb Pb−Free Condition 2 VI VCC VI VEE Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 2. JEDEC standard multilayer board − 1S2P (1 signal, 2 power). http://onsemi.com 4 NBSG72A Table 7. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT VCC = 2.5 V; VEE = 0 V (Note 3) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 40 55 65 40 55 65 40 55 65 mA 1460 1510 1560 1490 1540 1590 1515 1565 1615 mV 555 1235 775 1455 1005 705 1295 895 1505 1095 855 1385 1015 1585 1215 595 1270 810 1490 1040 745 1330 930 1540 1130 895 1420 1050 1620 1250 625 1295 840 1510 1065 775 1355 960 1560 1155 925 1445 1080 1640 1275 670 125 510 0 325 800 215 615 5 415 660 120 505 0 320 795 210 610 0 410 655 120 500 0 320 790 210 605 5 410 IEE Negative Power Supply Current VOH Output HIGH Voltage (Note 4) VOL Output LOW Voltage (Note 4) VOUTPP Output Voltage Amplitude VIH Input HIGH Voltage (Single−Ended) (Note 6) D0, D0, D1, D1 VEE + 1275 VCC − 1000* VCC VEE + 1275 VCC − 1000* VCC VEE + 1275 VCC− 1000* VCC mV VIL Input LOW Voltage (Single−Ended) (Note 7) D0, D0, D1, D1 VEE VCC− 1400* VIH− 150 VEE VCC− 1400* VIH− 150 VEE VCC− 1400* VIH− 150 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5) 1.2 2.5 1.2 2.5 1.2 2.5 V RTIN Internal Input Termination Resistor 45 50 55 45 50 55 45 50 55 W IIH Input HIGH Current (@VIH) 35 100 35 100 35 100 mA IIL Input LOW Current (@VIL) 20 100 20 100 20 100 mA (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) mV mV NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. *Typicals used for testing purposes. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to −0.965 V. 4. All loading with 50 W to VCC − 2.0 V. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 6. VIH cannot exceed VCC. 7. VIL always w VEE. http://onsemi.com 5 NBSG72A Table 8. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT VCC = 3.3 V; VEE = 0 V (Note 8) −40°C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 40 55 65 40 55 65 40 55 65 mA 2260 2310 2360 2290 2340 2390 2315 2365 2415 mV 1320 2030 1550 2260 1785 1470 2090 1670 2310 1875 1620 2180 1790 2390 1995 1360 2065 1585 2290 1820 1510 2125 1705 2340 1910 1660 2215 1825 2420 2030 1390 2090 1615 2315 1850 1540 2150 1735 2365 1940 1690 2240 1855 2445 2060 705 130 535 0 345 815 220 640 0 435 695 125 530 0 340 805 215 635 0 430 690 125 525 0 335 800 215 630 0 425 Input HIGH Voltage (Single−Ended) (Note 11) D0, D0, D1, D1 VEE + 1275 VCC − 1000* VCC VEE + 1275 VCC − 1000* VCC VEE + 1275 VCC − 1000* VCC mV VIL Input LOW Voltage (Single−Ended) (Note 12) D0, D0, D1, D1 VIH− 2600 VCC− 1400* VIH− 150 VIH− 2600 VCC− 1400* VIH− 150 VIH− 2600 VCC− 1400* VIH− 150 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10) 1.2 3.3 1.2 3.3 1.2 3.3 V RTIN Internal Input Termination Resistor 45 50 55 45 50 55 45 50 55 W IIH Input HIGH Current (@VIH) 35 100 35 100 35 100 mA IIL Input LOW Current (@VIL) 20 100 20 100 20 100 mA Symbol Characteristic IEE Negative Power Supply Current VOH Output HIGH Voltage (Note 9) VOL Output LOW Voltage (Note 9) VOUTPP Output Amplitude Voltage VIH (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) mV mV NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. *Typicals used for testing purposes. **When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. 8. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to −0.165 V. 9. All loading with 50 W to VCC − 2.0 V. 10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 11. VIH cannot exceed VCC. 12. VIL always w VEE. http://onsemi.com 6 NBSG72A Table 9. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT VCC = 0 V; VEE = −3.465 V to −2.375 V (Note 13) −40°C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 40 55 65 40 55 65 40 55 65 mA VOH Output HIGH Voltage (Note 14) −1040 −990 −940 −1010 −960 −910 −985 −935 −885 mV VOL Output LOW Voltage (Note 14) −3.465 V v VEE v −3.0 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS =FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) −3.0 V < VEE v −2.375 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS =FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) Symbol VOUTPP Characteristic Output Voltage Amplitude −3.465 V v VEE v −3.0 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) −3.0 V < VEE v −2.375 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS =FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) mV −1980 −1270 −1750 −1040 −1515 −1830 −1210 −1630 −990 −1425 −1680 −1120 −1510 −910 −1305 −1940 −1235 −1715 −1010 −1480 −1790 −1175 −1595 −960 −1390 −1640 −1085 −1475 −880 −1270 −1910 −1210 −1685 −985 −1450 −1760 −1150 −1565 −935 −1360 −1610 −1060 −1445 −855 −1240 −1945 −1265 −1725 −1045 −1495 −1795 −1205 −1605 −995 −1405 −1645 −1115 −1485 −915 −1285 −1905 −1230 −1690 −1010 −1460 −1755 −1170 −1570 −960 −1370 −1605 −1080 −1450 −880 −1250 −1875 −1205 −1660 −990 −1435 −1725 −1145 −1540 −940 −1345 −1575 −1055 −1420 −860 −1225 mV 705 130 535 0 345 815 220 640 0 435 695 125 530 0 340 805 215 635 0 430 690 125 525 0 335 800 215 630 0 425 670 125 510 0 325 800 215 615 5 415 660 120 505 0 320 795 210 610 0 410 655 120 500 0 320 790 210 605 5 410 VIH Input HIGH Voltage (Single−Ended) (Note 16) D0, D0, D1, D1 VEE + 1275 VCC − 1000* VCC VEE + 1275 VCC − 1000* VCC VEE + 1275 VCC − 1000* VCC mV VIL Input LOW Voltage (Single−Ended) (Note 17) D0, D0, D1, D1 VIH− 2600 VCC− 1400* VIH− 150 VIH− 2600 VCC− 1400* VIH− 150 VIH− 2600 VCC− 1400* VIH− 150 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 15) 0.0 V RTIN Internal Input Termination Resistor 50 55 50 55 50 55 W IIH Input HIGH Current (@VIH) 35 100 35 100 35 100 mA IIL Input LOW Current (@VIL) 20 100 20 100 20 100 mA IOLS OLS Input Current (See Figure 9) (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) −3.0 V < VEE v −2.375 V (OLS = VEE) −3.465 V v VEE v −3.0 V *(OLS = VEE) 900 300 100 −300 300 100 5 −100 900 300 100 −300 300 100 5 −100 900 300 100 −300 300 100 5 −100 −1000 −400 −1000 −400 −1000 −400 −1500 −600 −1500 −600 −1500 −600 VEE+1.2 45 0.0 VEE+1.2 45 0.0 VEE+1.2 45 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. *Typicals used for testing purposes. **When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. 13. Input and output parameters vary 1:1 with VCC. 14. All loading with 50 W to VCC − 2.0 V. 15. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 16. VIH cannot exceed VCC. 17. VIL always w VEE. http://onsemi.com 7 NBSG72A Table 10. AC CHARACTERISTICS VCC = 0 V; VEE = −3.465 V to −2.375 V or VCC = 2.375 V to 3.465 V; VEE = 0 V (Note 18) −40°C Min Typ fin < 5 GHz 400 fin v 7 GHz tPLH 25°C Min Typ 590 450 200 250 Propagation Delay to Output Differential D0, D1 → Q0, Q1 SELA, SELB → Q0, Q1 170 190 205 265 tPHL Propagation Delay to Output Differential D0, D1 → Q0, Q1 SELA, SELB → Q0, Q1 170 150 tSKEW Duty Cycle Skew (Note 19) Within−Device Skew Device−to−Device Skew tJITTER RMS Random Clock Jitter (Note 20) v 1 GHz OLS = VCC v 5 GHz OLS = VCC v 6.5 GHz OLS = VCC v 1 GHz OLS = VCC − 400 mV v 5 GHz OLS = VCC − 400 mV v 6.5 GHz OLS = VCC − 400 mV v 1 GHz OLS = VCC − 800 mV v 5 GHz OLS = VCC − 800 mV v 6.5 GHz OLS = VCC − 800 mV v 1 GHz OLS = VEE v 5 GHz OLS = VEE v 6.5 GHz OLS = VEE Peak−to−Peak Data Dependent Jitter (Note 21) fin v 7 Gb/s Symbol VOUTPP Characteristic Output Voltage Amplitude (Note 18) VINPP Input Voltage Swing/Sensitivity (Differential Configuration) (Note 22) tr tf Output Rise/Fall Times (20% − 80%) @ 1 GHz (Q0, Q1) tr tf Min Typ 590 440 590 180 250 130 250 255 350 170 190 205 265 255 350 170 190 210 265 260 350 205 215 255 270 170 150 205 215 255 270 170 150 210 215 260 270 5.0 5.0 15 25 25 50 5.0 5.0 15 25 25 50 5.0 5.0 15 25 25 50 0.16 0.14 0.21 0.23 0.18 0.2 0.17 0.14 0.2 0.18 0.16 0.18 0.3 0.4 0.5 0.4 0.5 0.5 0.3 0.4 0.5 0.3 0.6 0.5 0.17 0.16 0.31 0.23 0.19 0.25 0.18 0.16 0.27 0.19 0.17 0.24 0.3 0.4 0.7 0.4 0.5 0.6 0.3 0.3 0.7 0.3 0.4 0.6 0.18 0.19 0.44 0.25 0.23 0.32 0.19 0.2 0.38 0.2 0.2 0.34 0.4 0.4 0.9 0.4 0.5 0.7 0.3 0.3 0.9 0.3 0.4 0.8 12 18 12 18 12 18 75 40 30 55 45 Max 85°C 2600 75 70 55 40 30 55 45 Max 2600 75 70 55 40 30 Max mV 2600 55 45 Unit 70 55 ps ps ps ps mV ps NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 18. Measured using a 75 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. OLS = FLOAT. Input edge rates 40 ps (20% − 80%). 19. tSKEW = |tPLH − tPHL| for a nominal 50% differential clock input waveform. 20. Additive RMS jitter with 50% Duty Cycle clock signal. 21. Additive Peak−to−Peak data dependent jitter with NRZ PRBS 231−1 data at 7 Gb/s. 22. Input Voltage Swing is a single−ended measurement operating in differential mode. VINPP (max) cannot exceed VCC − VEE. http://onsemi.com 8 NBSG72A OUTPUT VOLTAGE AMPLITUDE (mV) 900 OLS = VCC 800 700 OLS = VCC − 0.8 V = FLOAT 600 500 *OLS = VEE 400 300 OLS = VCC − 0.4 V 200 100 0 1 2 3 4 5 6 7 8 9 INPUT FREQUENCY (GHz) Figure 3. Output Voltage Amplitude (VOUTPP) vs. Input Clock Frequency (fin) @ Ambient Temperature (Typical) *When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. D0 Input Signal D0 Q0 Signal Path Selected Q0 Output 20 NBSG72A D1 SELA Logic Low SELB 0 dB 0 Q1 Yscale = 10 dB/div Non−Driven Input D1 Measured Q1 Non−Driven Output (VNA) Logic High −80 Q Q 1 Xscale = 1 GHz/div 8 Figure 4. Channel−to−Channel Crosstalk Isolation at Ambient Temperature (D0 to Q0 Signal Path Selected; SelA = Low, SelB = High) D0 Non−Driven Input NBSG72A D0 Q0 20 Selected Q0 Output 0 Q1 D1 Input Signal SELA Logic High SELB 0 dB Yscale = 10 dB/div D1 Measured Non−Driven Output Q1 (VNA) Q Q Logic Low −80 1 Xscale = 1 GHz/div Figure 5. Channel−to−Channel Crosstalk Isolation at Ambient Temperature (D1 to Q0 Signal Path Selected; SelA = High, SelB = Low) http://onsemi.com 9 8 NBSG72A D0 D0 Q0 Signal Path D1 Input Signal D1 Non−Driven Q0 Selected Output 20 NBSG72A SELA Logic Low SELB 0dB 0 Q1 Yscale = 10 dB/div Non−Driven Input Measured Output Q1 (VNA) Logic Low −80 1 Q Q Xscale = 1 GHz/div 8 Figure 6. Channel−to−Channel Crosstalk Isolation at Ambient Temperature (D0 to Q0 and Q1 Signal Path Selected; SelA = Low, SelB = Low) Input Signal Non−Driven Input NBSG72A Measured Output Q0 (VNA) D0 D1 D1 Q0 20 SELA Logic High 0dB 0 Q1 Signal Path Yscale = 10 dB/div D0 Non−Driven Q1 Selected Output SELB Logic High −80 1 Q Q Xscale = 1 GHz/div Figure 7. Channel−to−Channel Crosstalk Isolation at Ambient Temperature (D1 to Q0 and Q1 Signal Path Selected; SelA = High, SelB = High) http://onsemi.com 10 8 NBSG72A Y = 75 mv/div Total System Jitter = 17.2 ps Input Generator Jitter = 10 ps Device Jitter = 6.8 ps X = 60 ps/div Y = 80 mV/div Figure 8. Eye Diagram at 3.2 Gb/s (VCC − VEE = 3.3 V, OLS = FLOAT @ 255C with input pattern of 231−1 PRBS, 5000 Waveforms) Total System Jitter = 17.2 ps Input Generator Jitter = 10 ps Device Jitter = 7.2 ps X = 21 ps/div Figure 9. Eye Diagram at 7 Gb/s/s (VCC − VEE = 3.3 V, OLS = FLOAT @ 255C with input pattern of 231−1 PRBS, 5000 Waveforms) 300 200 100 IOLS (mA) 0 −100 −200 −300 −400 −500 −600 −700 VCC VCC − 400 VCC − 800 VCC − 1200 VEE VOLS (mV) Figure 10. Typical OLS Input Current vs. OLS Input Voltage (VCC − VEE = 3.3 V @ 255C) http://onsemi.com 11 NBSG72A 1000 VOUTPP (mV) 800 VCC − 75 VCC − 700 VCC − 900 600 VEE + 100 400 VCC − 250 200 0 VCC − 550 VCC − 1125 VCC VCC − 400 VCC − 800 VCC − 1275 VCC − 1200 VEE OLS (mV) Figure 11. OLS Operating Area D VINPP = VIH(D) − VIL(D) D Q VOUTPP = VOH(Q) − VOL(Q) Q tPHL tPLH Figure 12. AC Reference Measurement Q Zo = 50 W D Receiver Device Driver Device Q D Zo = 50 W 50 W 50 W VTT VTT = VCC − 2.0 V Figure 13. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices.) http://onsemi.com 12 NBSG72A ORDERING INFORMATION Package Shipping † QFN−16 123 Units / Rail NBSG72AMNG QFN−16 (Pb−Free) 123 Units / Rail NBSG72AMNR2 QFN−16 3000 / Tape & Reel QFN−16 (Pb−Free) 3000 / Tape & Reel Device NBSG72AMN NBSG72AMNR2G Board Description NBSG72AMNEVB NBSG72AMN Evaluation Board †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Resource Reference of Application Notes AN1405/D − ECL Clock Distribution Techniques AN1406/D − Designing with PECL (ECL at +5.0 V) AN1503/D − ECLinPSt I/O SPiCE Modeling Kit AN1504/D − Metastability and the ECLinPS Family AN1568/D − Interfacing Between LVDS and ECL AN1672/D − The ECL Translator Guide AND8001/D − Odd Number Counters Design AND8002/D − Marking and Date Codes AND8020/D − Termination of ECL Logic Devices AND8066/D − Interfacing with ECLinPS AND8090/D − AC Characteristics of ECL Devices http://onsemi.com 13 NBSG72A PACKAGE DIMENSIONS 16 PIN QFN CASE 485G−01 ISSUE C PIN 1 LOCATION ÇÇ ÇÇ ÇÇ 0.15 C D NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. 5. Lmax CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP AND FLAG A B E DIM A A1 A3 b D D2 E E2 e K L TOP VIEW 0.15 C (A3) 0.10 C A 16 X 0.08 C SIDE VIEW MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.20 REF 0.18 0.30 3.00 BSC 1.65 1.85 3.00 BSC 1.65 1.85 0.50 BSC 0.18 TYP 0.30 0.50 SEATING PLANE A1 C D2 16X L 5 NOTE 5 e 4 16X 9 E2 K 12 1 16 16X e 13 b 0.10 C A B 0.05 C EXPOSED PAD 8 BOTTOM VIEW NOTE 3 GigaComm is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 14 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NBSG72A/D