IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T Low Loss IGBT in Trench and Fieldstop technology • • • • • • • • • C Very low VCE(sat) 1.5 V (typ.) Maximum Junction Temperature 175 °C Short circuit withstand time – 5µs Designed for : - Frequency Converters - Uninterrupted Power Supply Trench and Fieldstop technology for 600 V applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior - very high switching speed - low VCE(sat) Positive temperature coefficient in VCE(sat) P-TO-220-3-1 Low EMI (TO-220AB) Low Gate Charge Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type G E P-TO-247-3-1 (TO-220AC) P-TO-263-3-2 (D²-PAK) (TO-263AB) VCE IC VCE(sat),Tj=25°C Tj,max Marking Code Package Ordering Code IGP50N60T 600 V 50 A 1.5 V 175 °C G50T60 TO-220 Q67040S4723 IGB50N60T 600 V 50 A 1.5 V 175 °C G50T60 TO-263 Q67040S4721 IGW50N60T 600 V 50 A 1.5 V 175 °C G50T60 TO-247 Q67040S4725 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current, limited by Tjmax IC Value Unit 600 V A TC = 25°C 100 TC = 100°C 50 Pulsed collector current, tp limited by Tjmax ICpuls 150 Turn off safe operating area (VCE ≤ 600V, Tj ≤ 175°C) - 150 Gate-emitter voltage VGE ±20 V tSC 5 µs Power dissipation TC = 25°C Ptot 333 W Operating junction temperature Tj -40...+175 °C Storage temperature Tstg -55...+175 Soldering temperature, 1.6mm (0.063 in.) from case for 10s - Short circuit withstand time 1) VGE = 15V, VCC ≤ 400V, Tj ≤ 150°C 1) 260 Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 1 Rev. 2.2 Dec-04 IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T Thermal Resistance Parameter Symbol Conditions Max. Value Unit 0.45 K/W Characteristic IGBT thermal resistance, RthJC junction – case Thermal resistance, RthJA TO-220-3-1 62 TO-247-3-1 40 TO-263-3-2 (6cm² Cu) 40 junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - T j = 25° C - 1.5 2.0 T j = 17 5° C - 1.9 - 4.1 4.9 5.7 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V, I C = 0. 2mA Collector-emitter saturation voltage VCE(sat) Gate-emitter threshold voltage Zero gate voltage collector current V V G E = 15V, I C = 50A VGE(th) I C = 0. 8mA, V C E = V G E ICES V C E = 600V , V G E = 0V µA T j = 25° C - - 40 T j = 17 5° C - - 1000 Gate-emitter leakage current IGES V C E = 0V ,V G E = 2 0V - - 100 nA Transconductance gfs V C E = 20V, I C = 50A - 31 - S Integrated gate resistor RGint - Ω Dynamic Characteristic Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate V C C = 4 80V, I C = 50A V C E = 25V, - 3140 - V G E = 0V, - 200 - f= 1 M Hz - 93 - - 310 - nC pF V G E = 1 5V Internal emitter inductance LE T O -247-3- 1 - 7 - nH IC(SC) V G E = 1 5V,t S C ≤5µs V C C = 400V, T j ≤ 150° C - 458.3 - A measured 5mm (0.197 in.) from case Short circuit collector current1) 1) Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 2 Rev. 2.2 Dec-04 IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. Typ. max. - 26 - - 29 - - 299 - - 29 - - 1.2 - - 1.4 - - 2.6 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j = 25° C, V C C = 4 00V, I C = 50A, V G E = 0/ 1 5V , RG= 7 Ω, L σ 1 ) = 103nH, C σ 1 ) =39pF Energy losses include “tail” and diode reverse recovery.2) ns mJ Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. Typ. max. Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets 1) 2) T j = 17 5° C, V C C = 4 00V, I C = 50A, V G E = 0/ 1 5V , RG= 7 Ω L σ 1 ) = 103nH, C σ 1 ) =39pF Energy losses include “tail” and diode 2) reverse recovery. - 27 - - 33 - - 341 - - 55 - - 1.8 - - 1.8 - - 3.6 - ns mJ Leakage inductance L σ and Stray capacity C σ due to dynamic test circuit in Figure E. Includes Reverse Recovery Losses from IKW50N60T due to dynamic test circuit in Figure E. Power Semiconductors 3 Rev. 2.2 Dec-04 IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T 140A t p=2µs 100A 100A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 120A T C =80°C 80A T C =110°C 60A 40A 20A 0A 100H z Ic Ic 1kH z 10kH z 100kH z DC 10V 100V 10ms 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤175°C; VGE=15V) 80A IC, COLLECTOR CURRENT POWER DISSIPATION Ptot, 50µs 1ms 1V 300W 100W 10A 1A f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 175°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 7Ω) 250W 10µs 200W 150W 60A 40A 20A 50W 0W 25°C 50°C 75°C 0A 25°C 100°C 125°C 150°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 175°C) Power Semiconductors 4 75°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≥ 15V, Tj ≤ 175°C) Rev. 2.2 Dec-04 IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T 120A V GE =20V 100A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 120A 15V 13V 80A 11V 9V 60A 7V 40A 20A 0V 1V 2V 15V 13V 80A 11V 60A 9V 7V 40A 0A 3V 0V 80A 60A 40A T J = 1 7 5 °C 20A 2 5 °C 0V 2V 4V 6V 8V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristic (VCE=20V) Power Semiconductors 1V 2V 3V 4V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristic (Tj = 175°C) VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic (Tj = 25°C) IC, COLLECTOR CURRENT V GE =20V 20A 0A 0A 100A 2.5V IC =100A 2.0V IC =50A 1.5V IC =25A 1.0V 0.5V 0.0V 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2.2 Dec-04 IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T t d(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES t d(off) tr tf t d(on) 100ns tf tr t d(on) 10ns 0A 20A 40A 60A 10ns 80A 0Ω IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, TJ=175°C, VCE = 400V, VGE = 0/15V, RG = 7Ω, Dynamic test circuit in Figure E) 5Ω 10Ω 15Ω 20Ω 25Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, TJ = 175°C, VCE= 400V, VGE = 0/15V, IC = 50A, Dynamic test circuit in Figure E) t, SWITCHING TIMES t d(off) 100ns tf tr t d(on) 10ns 25°C 50°C 75°C 6V m ax. typ. 5V 4V m in. 3V 2V 1V 0V -50°C 100°C 125°C 150°C TJ, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/15V, IC = 50A, RG=7Ω, Dynamic test circuit in Figure E) Power Semiconductors VGE(th), GATE-EMITT TRSHOLD VOLTAGE 7V 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.8mA) 6 Rev. 2.2 Dec-04 IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T *) Eon and Ets include losses due to diode recovery *) E on a nd E ts include losses Ets* Eon* 4.0mJ Eoff 2.0mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 6.0mJ 0A 20A 40A 60A 80A 5.0m J 4.0m J 3.0m J E off 2.0m J E on * 1.0m J 0Ω IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, TJ = 175°C, VCE = 400V, VGE = 0/15V, RG = 7Ω, Dynamic test circuit in Figure E) 2.0mJ Eoff Eon* 75°C 4m J E on * 3m J E ts * 2m J E off 1m J 0m J 300V 100°C 125°C 150°C TJ, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/15V, IC = 50A, RG = 7Ω, Dynamic test circuit in Figure E) Power Semiconductors due to diode recovery E, SWITCHING ENERGY LOSSES 3.0mJ 50°C 20Ω *) E on and E ts include losses Ets* 0.0mJ 25°C 10Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, TJ = 175°C, VCE = 400V, VGE = 0/15V, IC = 50A, Dynamic test circuit in Figure E) *) Eon and Ets include losses due to diode recovery E, SWITCHING ENERGY LOSSES E ts * 0.0m J 0.0mJ 1.0mJ d ue to diode re co ve ry 6.0m J 8.0mJ 350V 400V 450V 500V 550V VCE, COLLECTOR-EMITTER VOLTAGE Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, TJ = 175°C, VGE = 0/15V, IC = 50A, RG = 7Ω, Dynamic test circuit in Figure E) 7 Rev. 2.2 Dec-04 IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T VGE, GATE-EMITTER VOLTAGE C iss 1 5V c, CAPACITANCE 1nF 12 0V 4 80 V 1 0V C oss 100pF 5V C rss 0V 0nC 1 00n C 2 00n C 0V 3 00 nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC=50 A) 10V 20V 30V 40V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE=0V, f = 1 MHz) SHORT CIRCUIT WITHSTAND TIME 700A 600A 500A 400A 300A 200A tSC, IC(sc), short circuit COLLECTOR CURRENT 12µs 800A 100A 0A 12V 14V 16V 8µs 6µs 4µs 2µs 0µs 10V 18V VGE, GATE-EMITTETR VOLTAGE Figure 19. Typical short circuit collector current as a function of gateemitter voltage (VCE ≤ 400V, Tj ≤ 150°C) Power Semiconductors 10µs 11V 12V 13V 14V VGE, GATE-EMITETR VOLTAGE Figure 20. Short circuit withstand time as a function of gate-emitter voltage (VCE=600V, start at TJ=25°C, TJmax<150°C) 8 Rev. 2.2 Dec-04 IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T ZthJC, TRANSIENT THERMAL RESISTANCE D=0.5 0.2 -1 10 K/W 0.1 R,(K/W) 0.18355 0.12996 0.09205 0.03736 0.00703 0.05 -2 10 K/W 0.02 R1 0.01 τ, (s) -2 7.425*10 -3 8.34*10 -4 7.235*10 -4 1.035*10 -5 4.45*10 R2 C1= τ1/R1 C2=τ2/R2 single pulse 1µs 10µs 100µs 1ms 10ms 100ms tP, PULSE WIDTH Figure 21. IGBT transient thermal resistance (D = tp / T) Power Semiconductors 9 Rev. 2.2 Dec-04 IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T Dimensions TO-220AB symbol [mm] [inch] min max min max A 9.70 10.30 0.3819 0.4055 B 14.88 15.95 0.5858 0.6280 C 0.65 0.86 0.0256 0.0339 D 3.55 3.7 0.1398 0.1457 E 2.60 3.00 0.1024 0.1181 0.2677 F 6.00 6.80 0.2362 G 13.00 14.00 0.5118 0.5512 H 4.35 4.75 0.1713 0.1870 K 0.38 0.65 0.0150 0.0256 L 0.95 1.32 0.0374 0.0520 M 2.54 typ. 4.30 4.50 0.1693 0.1772 P 1.17 1.40 0.0461 0.0551 T 2.30 2.72 0.0906 0.1071 dimensions TO-263AB (D2Pak) symbol [inch] min max min max 9.80 10.20 0.3858 0.4016 B 0.70 1.30 0.0276 0.0512 C 1.00 1.60 0.0394 0.0630 D 1.03 1.07 0.0406 0.0421 F G 2.54 typ. 0.65 0.85 5.08 typ. 0.1 typ. 0.0256 0.0335 0.2 typ. H 4.30 4.50 0.1693 K 1.17 1.37 0.0461 0.0539 L 9.05 9.45 0.3563 0.3720 M 2.30 2.50 0.0906 0.0984 N 15 typ. 0.1772 0.5906 typ. P 0.00 0.20 0.0000 0.0079 Q 4.20 5.20 0.1654 0.2047 R 10 [mm] A E Power Semiconductors 0.1 typ. N 8° max 8° max S 2.40 3.00 0.0945 0.1181 T 0.40 0.60 0.0157 0.0236 U 10.80 0.4252 V 1.15 0.0453 W 6.23 0.2453 X 4.60 0.1811 Y 9.40 0.3701 Z 16.15 0.6358 Rev. 2.2 Dec-04 IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T dimensions TO-247AC symbol [mm] min max min max A 4.78 5.28 0.1882 0.2079 B 2.29 2.51 0.0902 0.0988 C 1.78 2.29 0.0701 0.0902 D 1.09 1.32 0.0429 0.0520 E 1.73 2.06 0.0681 0.0811 F 2.67 3.18 0.1051 0.1252 G 0.76 max 20.80 21.16 0.8189 0.8331 K 15.65 16.15 0.6161 0.6358 L 5.21 5.72 0.2051 0.2252 M 19.81 20.68 0.7799 0.8142 N 3.560 4.930 0.1402 0.1941 6.22 0.2409 Q 11 0.0299 max H ∅P Power Semiconductors [inch] 3.61 6.12 0.1421 0.2449 Rev. 2.2 Dec-04 IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T i,v tr r =tS +tF diF /dt Qr r =QS +QF IF tS QS Ir r m tr r tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Figure B. Definition of switching losses Power Semiconductors 12 Rev. 2.2 Dec-04 IGP50N60T, IGB50N60T TrenchStop Series IGW50N60T Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2004 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 13 Rev. 2.2 Dec-04