Infineon IGP50N60T Low loss igbt in trench and fieldstop technology Datasheet

IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
Low Loss IGBT in Trench and Fieldstop technology
•
•
•
•
•
•
•
•
•
C
Very low VCE(sat) 1.5 V (typ.)
Maximum Junction Temperature 175 °C
Short circuit withstand time – 5µs
Designed for :
- Frequency Converters
- Uninterrupted Power Supply
Trench and Fieldstop technology for 600 V applications offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
- very high switching speed
- low VCE(sat)
Positive temperature coefficient in VCE(sat)
P-TO-220-3-1
Low EMI
(TO-220AB)
Low Gate Charge
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
G
E
P-TO-247-3-1
(TO-220AC)
P-TO-263-3-2 (D²-PAK)
(TO-263AB)
VCE
IC
VCE(sat),Tj=25°C
Tj,max
Marking Code
Package
Ordering Code
IGP50N60T
600 V
50 A
1.5 V
175 °C
G50T60
TO-220
Q67040S4723
IGB50N60T
600 V
50 A
1.5 V
175 °C
G50T60
TO-263
Q67040S4721
IGW50N60T
600 V
50 A
1.5 V
175 °C
G50T60
TO-247
Q67040S4725
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCE
DC collector current, limited by Tjmax
IC
Value
Unit
600
V
A
TC = 25°C
100
TC = 100°C
50
Pulsed collector current, tp limited by Tjmax
ICpuls
150
Turn off safe operating area (VCE ≤ 600V, Tj ≤ 175°C)
-
150
Gate-emitter voltage
VGE
±20
V
tSC
5
µs
Power dissipation TC = 25°C
Ptot
333
W
Operating junction temperature
Tj
-40...+175
°C
Storage temperature
Tstg
-55...+175
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
-
Short circuit withstand time
1)
VGE = 15V, VCC ≤ 400V, Tj ≤ 150°C
1)
260
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
1
Rev. 2.2 Dec-04
IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
0.45
K/W
Characteristic
IGBT thermal resistance,
RthJC
junction – case
Thermal resistance,
RthJA
TO-220-3-1
62
TO-247-3-1
40
TO-263-3-2 (6cm² Cu)
40
junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
600
-
-
T j = 25° C
-
1.5
2.0
T j = 17 5° C
-
1.9
-
4.1
4.9
5.7
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V, I C = 0. 2mA
Collector-emitter saturation voltage
VCE(sat)
Gate-emitter threshold voltage
Zero gate voltage collector current
V
V G E = 15V, I C = 50A
VGE(th)
I C = 0. 8mA, V C E = V G E
ICES
V C E = 600V ,
V G E = 0V
µA
T j = 25° C
-
-
40
T j = 17 5° C
-
-
1000
Gate-emitter leakage current
IGES
V C E = 0V ,V G E = 2 0V
-
-
100
nA
Transconductance
gfs
V C E = 20V, I C = 50A
-
31
-
S
Integrated gate resistor
RGint
-
Ω
Dynamic Characteristic
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
V C C = 4 80V, I C = 50A
V C E = 25V,
-
3140
-
V G E = 0V,
-
200
-
f= 1 M Hz
-
93
-
-
310
-
nC
pF
V G E = 1 5V
Internal emitter inductance
LE
T O -247-3- 1
-
7
-
nH
IC(SC)
V G E = 1 5V,t S C ≤5µs
V C C = 400V,
T j ≤ 150° C
-
458.3
-
A
measured 5mm (0.197 in.) from case
Short circuit collector current1)
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
2
Rev. 2.2 Dec-04
IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
-
26
-
-
29
-
-
299
-
-
29
-
-
1.2
-
-
1.4
-
-
2.6
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j = 25° C,
V C C = 4 00V, I C = 50A,
V G E = 0/ 1 5V ,
RG= 7 Ω,
L σ 1 ) = 103nH,
C σ 1 ) =39pF
Energy losses include
“tail” and diode
reverse recovery.2)
ns
mJ
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
1)
2)
T j = 17 5° C,
V C C = 4 00V, I C = 50A,
V G E = 0/ 1 5V ,
RG= 7 Ω
L σ 1 ) = 103nH,
C σ 1 ) =39pF
Energy losses include
“tail” and diode
2)
reverse recovery.
-
27
-
-
33
-
-
341
-
-
55
-
-
1.8
-
-
1.8
-
-
3.6
-
ns
mJ
Leakage inductance L σ and Stray capacity C σ due to dynamic test circuit in Figure E.
Includes Reverse Recovery Losses from IKW50N60T due to dynamic test circuit in Figure E.
Power Semiconductors
3
Rev. 2.2 Dec-04
IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
140A
t p=2µs
100A
100A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
120A
T C =80°C
80A
T C =110°C
60A
40A
20A
0A
100H z
Ic
Ic
1kH z
10kH z
100kH z
DC
10V
100V
10ms
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤175°C;
VGE=15V)
80A
IC, COLLECTOR CURRENT
POWER DISSIPATION
Ptot,
50µs
1ms
1V
300W
100W
10A
1A
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 175°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 7Ω)
250W
10µs
200W
150W
60A
40A
20A
50W
0W
25°C
50°C
75°C
0A
25°C
100°C 125°C 150°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj ≤ 175°C)
Power Semiconductors
4
75°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≥ 15V, Tj ≤ 175°C)
Rev. 2.2 Dec-04
IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
120A
V GE =20V
100A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
120A
15V
13V
80A
11V
9V
60A
7V
40A
20A
0V
1V
2V
15V
13V
80A
11V
60A
9V
7V
40A
0A
3V
0V
80A
60A
40A
T J = 1 7 5 °C
20A
2 5 °C
0V
2V
4V
6V
8V
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristic
(VCE=20V)
Power Semiconductors
1V
2V
3V
4V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristic
(Tj = 175°C)
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
IC, COLLECTOR CURRENT
V GE =20V
20A
0A
0A
100A
2.5V
IC =100A
2.0V
IC =50A
1.5V
IC =25A
1.0V
0.5V
0.0V
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
5
Rev. 2.2 Dec-04
IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
t d(off)
100ns
t, SWITCHING TIMES
t, SWITCHING TIMES
t d(off)
tr
tf
t d(on)
100ns
tf
tr
t d(on)
10ns
0A
20A
40A
60A
10ns
80A
0Ω
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=175°C,
VCE = 400V, VGE = 0/15V, RG = 7Ω,
Dynamic test circuit in Figure E)
5Ω
10Ω
15Ω
20Ω
25Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ = 175°C,
VCE= 400V, VGE = 0/15V, IC = 50A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
t d(off)
100ns
tf
tr
t d(on)
10ns
25°C
50°C
75°C
6V
m ax.
typ.
5V
4V
m in.
3V
2V
1V
0V
-50°C
100°C 125°C 150°C
TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC = 50A, RG=7Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
7V
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 0.8mA)
6
Rev. 2.2 Dec-04
IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
*) Eon and Ets include losses
due to diode recovery
*) E on a nd E ts include losses
Ets*
Eon*
4.0mJ
Eoff
2.0mJ
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
6.0mJ
0A
20A
40A
60A
80A
5.0m J
4.0m J
3.0m J
E off
2.0m J
E on *
1.0m J
0Ω
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ = 175°C,
VCE = 400V, VGE = 0/15V, RG = 7Ω,
Dynamic test circuit in Figure E)
2.0mJ
Eoff
Eon*
75°C
4m J
E on *
3m J
E ts *
2m J
E off
1m J
0m J
300V
100°C 125°C 150°C
TJ, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC = 50A, RG = 7Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
due to diode recovery
E, SWITCHING ENERGY LOSSES
3.0mJ
50°C
20Ω
*) E on and E ts include losses
Ets*
0.0mJ
25°C
10Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ = 175°C,
VCE = 400V, VGE = 0/15V, IC = 50A,
Dynamic test circuit in Figure E)
*) Eon and Ets include losses
due to diode recovery
E, SWITCHING ENERGY LOSSES
E ts *
0.0m J
0.0mJ
1.0mJ
d ue to diode re co ve ry
6.0m J
8.0mJ
350V
400V
450V
500V
550V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 16. Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ = 175°C,
VGE = 0/15V, IC = 50A, RG = 7Ω,
Dynamic test circuit in Figure E)
7
Rev. 2.2 Dec-04
IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
VGE, GATE-EMITTER VOLTAGE
C iss
1 5V
c, CAPACITANCE
1nF
12 0V
4 80 V
1 0V
C oss
100pF
5V
C rss
0V
0nC
1 00n C
2 00n C
0V
3 00 nC
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC=50 A)
10V
20V
30V
40V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
SHORT CIRCUIT WITHSTAND TIME
700A
600A
500A
400A
300A
200A
tSC,
IC(sc), short circuit COLLECTOR CURRENT
12µs
800A
100A
0A
12V
14V
16V
8µs
6µs
4µs
2µs
0µs
10V
18V
VGE, GATE-EMITTETR VOLTAGE
Figure 19. Typical short circuit collector
current as a function of gateemitter voltage
(VCE ≤ 400V, Tj ≤ 150°C)
Power Semiconductors
10µs
11V
12V
13V
14V
VGE, GATE-EMITETR VOLTAGE
Figure 20. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=600V, start at TJ=25°C,
TJmax<150°C)
8
Rev. 2.2 Dec-04
IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
ZthJC, TRANSIENT THERMAL RESISTANCE
D=0.5
0.2
-1
10 K/W
0.1
R,(K/W)
0.18355
0.12996
0.09205
0.03736
0.00703
0.05
-2
10 K/W
0.02
R1
0.01
τ, (s)
-2
7.425*10
-3
8.34*10
-4
7.235*10
-4
1.035*10
-5
4.45*10
R2
C1= τ1/R1
C2=τ2/R2
single pulse
1µs
10µs 100µs
1ms
10ms 100ms
tP, PULSE WIDTH
Figure 21. IGBT transient thermal resistance
(D = tp / T)
Power Semiconductors
9
Rev. 2.2 Dec-04
IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
Dimensions
TO-220AB
symbol
[mm]
[inch]
min
max
min
max
A
9.70
10.30
0.3819
0.4055
B
14.88
15.95
0.5858
0.6280
C
0.65
0.86
0.0256
0.0339
D
3.55
3.7
0.1398
0.1457
E
2.60
3.00
0.1024
0.1181
0.2677
F
6.00
6.80
0.2362
G
13.00
14.00
0.5118
0.5512
H
4.35
4.75
0.1713
0.1870
K
0.38
0.65
0.0150
0.0256
L
0.95
1.32
0.0374
0.0520
M
2.54 typ.
4.30
4.50
0.1693
0.1772
P
1.17
1.40
0.0461
0.0551
T
2.30
2.72
0.0906
0.1071
dimensions
TO-263AB (D2Pak)
symbol
[inch]
min
max
min
max
9.80
10.20
0.3858
0.4016
B
0.70
1.30
0.0276
0.0512
C
1.00
1.60
0.0394
0.0630
D
1.03
1.07
0.0406
0.0421
F
G
2.54 typ.
0.65
0.85
5.08 typ.
0.1 typ.
0.0256
0.0335
0.2 typ.
H
4.30
4.50
0.1693
K
1.17
1.37
0.0461
0.0539
L
9.05
9.45
0.3563
0.3720
M
2.30
2.50
0.0906
0.0984
N
15 typ.
0.1772
0.5906 typ.
P
0.00
0.20
0.0000
0.0079
Q
4.20
5.20
0.1654
0.2047
R
10
[mm]
A
E
Power Semiconductors
0.1 typ.
N
8° max
8° max
S
2.40
3.00
0.0945
0.1181
T
0.40
0.60
0.0157
0.0236
U
10.80
0.4252
V
1.15
0.0453
W
6.23
0.2453
X
4.60
0.1811
Y
9.40
0.3701
Z
16.15
0.6358
Rev. 2.2 Dec-04
IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
dimensions
TO-247AC
symbol
[mm]
min
max
min
max
A
4.78
5.28
0.1882
0.2079
B
2.29
2.51
0.0902
0.0988
C
1.78
2.29
0.0701
0.0902
D
1.09
1.32
0.0429
0.0520
E
1.73
2.06
0.0681
0.0811
F
2.67
3.18
0.1051
0.1252
G
0.76 max
20.80
21.16
0.8189
0.8331
K
15.65
16.15
0.6161
0.6358
L
5.21
5.72
0.2051
0.2252
M
19.81
20.68
0.7799
0.8142
N
3.560
4.930
0.1402
0.1941
6.22
0.2409
Q
11
0.0299 max
H
∅P
Power Semiconductors
[inch]
3.61
6.12
0.1421
0.2449
Rev. 2.2 Dec-04
IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
IF
tS
QS
Ir r m
tr r
tF
QF
10% Ir r m
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Figure B. Definition of switching losses
Power Semiconductors
12
Rev. 2.2 Dec-04
IGP50N60T, IGB50N60T
TrenchStop Series
IGW50N60T
Published by
Infineon Technologies AG,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 2004
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Power Semiconductors
13
Rev. 2.2 Dec-04
Similar pages