IRF IRFP4137PBF High efficiency synchronous rectification in smp Datasheet

IRFP4137PbF
Application
 High Efficiency Synchronous Rectification in SMPS
 Uninterruptible Power Supply
High Speed Power Switching
 Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
D
VDSS
300V
RDS(on) typ.
56m
G
69m
max
S
ID
38A
Benefits
Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
Fully Characterized Capacitance and Avalanche SOA
Enhanced body diode dV/dt and dI/dt Capability
Lead-Free, RoHS Compliant




S
D
G
TO-247AC
Base part number
Package Type
IRFP4137PbF
TO-247AC
G
D
S
Gate
Drain
Source
Standard Pack
Form
Quantity
Tube
25
Orderable Part Number
IRFP4137PbF
Parameter
Continuous Drain Current, VGS @ 10V
Max.
38
Units
ID @ TC = 25°C
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
27
A
IDM
Pulsed Drain Current 
152
PD @TC = 25°C
Maximum Power Dissipation
341
W
Linear Derating Factor
2.3
W/°C
VGS
dv/dt
TJ
TSTG
Gate-to-Source Voltage
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
± 20
8.9
V
V/ns
Mounting Torque, 6-32 or M3 Screw
-55 to + 175
°C
300
10 lbf·in (1.1 N·m)
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy 
mJ
541
Thermal Resistance
Parameter
Junction-to-Case 
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient 
RJC
RCS
RJA
1
www.irf.com
© 2012 International Rectifier
Typ.
–––
0.24
–––
Max.
0.44
–––
40
Units
°C/W
October 30, 2012
IRFP4137PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
300
–––
–––
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient
–––
0.24
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
56
69
VGS(th)
Gate Threshold Voltage
3.0
–––
5.0
IDSS
Drain-to-Source Leakage Current
–––
–––
20
–––
–––
250
–––
–––
–––
–––
–––
1.3
100
-100
–––
Drain-to-Source Breakdown Voltage
V(BR)DSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Gate Resistance
IGSS
RG
V
Conditions
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 3.5mA
m VGS = 10V, ID = 24A 
V
µA
nA
VDS = VGS, ID = 250µA
VDS =300 V, VGS = 0V
VDS =300V,VGS = 0V,TJ =125°C
VGS = 20V
VGS = -20V

Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
VDS = 50V, ID =24A
ID = 24A
nC VDS = 150V
VGS = 10V
VDD = 195V
ID = 24A
ns
RG= 2.2
VGS = 10V
gfs
Qg
Qgs
Qgd
td(on)
tr
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain Charge
Turn-On Delay Time
Rise Time
45
–––
–––
–––
–––
–––
–––
83
28
26
18
23
–––
125
42
39
–––
–––
S
td(off)
Turn-Off Delay Time
–––
34
–––
tf
Ciss
Coss
Fall Time
Input Capacitance
Output Capacitance
–––
–––
–––
20
5168
300
–––
–––
–––
Crss
Reverse Transfer Capacitance
–––
77
–––
Coss eff.(ER)
Effective Output Capacitance (Energy Related)
–––
196
–––
Coss eff.(TR)
Output Capacitance (Time Related)
–––
265
–––
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Min.
Typ. Max. Units
–––
–––
40
–––
–––
160
VSD
Diode Forward Voltage
–––
–––
1.3
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
–––
–––
–––
–––
–––
302
379
1739
2497
13
–––
–––
–––
–––
–––
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
pF
VGS = 0V, VDS = 0V to 240V
See Fig.11
VGS = 0V, VDS = 0V to 240V
Diode Characteristics
IS
ISM
A
V
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
D
G
S
TJ = 25°C,IS = 24A,VGS = 0V 
TJ = 25°C
VDD = 255V
TJ = 125°C
IF = 24A,
TJ = 25°C di/dt = 100A/µs 
nC
TJ = 125°C
A TJ = 25°C 
ns
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Recommended max EAS limit, starting TJ = 25°C, L = 2.05mH, RG = 50, IAS = 24A, VGS =10V.
ISD 24A, di/dt 1771A/µs, VDD V(BR)DSS, TJ  175°C.
Pulse width 400µs; duty cycle  2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques
refer to application note #AN-994
Ris measured at TJ approximately 90°C








2
www.irf.com
© 2012 International Rectifier
October 30, 2012
IRFP4137PbF
1000
1000
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.0V
100
1
5.0V
0.1
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.0V
10
5.0V
1
60µs PULSE WIDTH
60µs PULSE WIDTH
Tj = 25°C
Tj = 175°C
0.01
0.1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
3.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current(A)
100
Fig 2. Typical Output Characteristics
1000
100
TJ = 175°C
TJ = 25°C
10
1
VDS = 50V
60µs PULSE WIDTH
ID = 24A
VGS = 10V
3.0
2.5
2.0
1.5
1.0
0.5
0.1
2
4
6
8
10
12
-60
14
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
Ciss
1000
Coss
Crss
100
60
100
140
180
14.0
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
10000
20
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
-20
TJ , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
10
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
ID = 24A
12.0
VDS = 240V
VDS = 150V
10.0
VDS= 60V
8.0
6.0
4.0
2.0
0.0
10
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
3
1
www.irf.com
© 2012 International Rectifier
0
20
40
60
80
100
120
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
October 30, 2012
IRFP4137PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
TJ = 175°C
100
TJ = 25°C
10
1
OPERATION IN THIS AREA
LIMITED BY R
(on)
DS
100
100µsec
10
1msec
10msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1
1.6
10
42
ID, Drain Current (A)
35
28
21
14
7
0
50
75
100
125
150
175
370
360
Id = 3.5mA
350
340
330
320
310
300
290
280
270
-60
-20
TC , Case Temperature (°C)
20
60
100
140
180
TJ , Temperature ( °C )
Fig 10. Drain-to–Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
9.0
6.0
VGS(th), Gate threshold Voltage (V)
8.0
7.0
6.0
Energy (µJ)
1000
Fig 8. Maximum Safe Operating Area
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
25
100
VDS , Drain-to-Source Voltage (V)
VSD , Source-to-Drain Voltage (V)
5.0
4.0
3.0
2.0
1.0
0.0
5.0
4.0
3.0
ID = 250µA
ID = 1.0mA
ID = 1.0A
2.0
1.0
-50
0
50
100 150 200 250 300 350
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical Coss Stored Energy
4
DC
www.irf.com
© 2012 International Rectifier
-75
-25
25
75
125
175
225
TJ , Temperature ( °C )
Fig 12. Threshold Voltage vs. Temperature
October 30, 2012
IRFP4137PbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
60
50
IF = 16A
VR = 255V
IRRM (A)
IRRM (A)
50
TJ = 25°C
TJ = 125°C
40
IF = 24A
VR = 255V
30
20
TJ = 25°C
TJ = 125°C
40
30
20
10
10
0
200
400
600
800
0
1000
200
600
800
1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig 14. Typical Recovery Current vs. dif/dt
Fig 15. Typical Recovery Current vs. dif/dt
5000
3500
IF = 16A
VR = 255V
3000
IF = 24A
VR = 255V
4500
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
4000
2500
QRR (nC)
QRR (nC)
400
2000
3500
3000
2500
2000
1500
1500
1000
1000
0
200
400
600
800
1000
diF /dt (A/µs)
Fig 16. Typical Stored Charge vs. dif/dt
5
www.irf.com
© 2012 International Rectifier
0
200
400
600
800
1000
diF /dt (A/µs)
Fig 17. Typical Stored Charge vs. dif/dt
October 30, 2012
IRFP4137PbF
Fig 18. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
L
VDS
D.U.T
RG
IAS
20V
tp
DRIVER
+
V
- DD
A
I AS
0.01
Fig 19a. Unclamped Inductive Test Circuit
Fig 19b. Unclamped Inductive Waveforms
Fig 20a. Switching Time Test Circuit
Fig 20b. Switching Time Waveforms
Id
Vds
Vgs
Vgs(th)
Qgs1 Qgs2
Fig 21a. Gate Charge Test Circuit
6
www.irf.com
© 2012 International Rectifier
Qgd
Qgodr
Fig 21b. Gate Charge Waveform
October 30, 2012
IRFP4137PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
E
Q
A
A
E2/2
"A"
A2
E2
2X
D
B
L1
"A"
L
SEE
VIEW"B"
2x b2
3x b
Ø .010
BA
c
b4
e
A1
2x
LEAD TIP
ØP
Ø.010
B A
-A-
S
D1
VIEW: "B"
THERMAL PAD
PLATING
BASEMETAL
E1
Ø.010
(c)
B A
VIEW: "A" - "A"
(b, b2, b4)
SECTION: C-C, D-D, E-E
TO-247AC Part Marking Information
Notes: This part marking information applies to devices produced after 02/26/2001
EXAMPLE: THIS IS AN IRFPE30
WITH ASSEMBLY
LOT CODE 5657
ASSEMBLED ON WW 35, 2001
IN THE ASSEMBLY LINE "H"
Note: "P" in assembly line position
indicates "Lead-Free"
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFPE30
56
135H
57
ASSEMBLY
LOT CODE
DATE CODE
YEAR 1 = 2001
WEEK 35
LINE H
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
7
www.irf.com
© 2012 International Rectifier
October 30, 2012
IRFP4137PbF
Qualification Information†
Industrial
Qualification Level
(per JEDEC JESD47F) ††
Moisture Sensitivity Level
TO-247AC
N/A
Yes
RoHS Compliant
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
††
Applicable version of JEDEC standard at the time of product release.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
8
www.irf.com
© 2012 International Rectifier
October 30, 2012
Similar pages