ON MC14538BFELG Dual precision retriggerable/resettable monostable multivibrator Datasheet

MC14538B
Dual Precision
Retriggerable/Resettable
Monostable Multivibrator
The MC14538B is a dual, retriggerable, resettable monostable
multivibrator. It may be triggered from either edge of an input pulse,
and produces an accurate output pulse over a wide range of widths, the
duration and accuracy of which are determined by the external timing
components, CX and RX. Output Pulse Width T = RX @ CX (secs)
RX = W
CX = Farads
Features
•
•
•
•
•
•
•
•
•
•
Unlimited Rise and Fall Time Allowed on the A Trigger Input
Pulse Width Range = 10 ms to 10 s
Latched Trigger Inputs
Separate Latched Reset Inputs
3.0 Vdc to 18 Vdc Operational Limits
Triggerable from Positive (A Input) or Negative−Going Edge (B−Input)
Capable of Driving Two Low−Power TTL Loads or One Low−Power
Schottky TTL Load Over the Rated Temperature Range
Pin−for−pin Compatible with MC14528B and CD4528B (CD4098)
Use the MC54/74HC4538A for Pulse Widths Less Than 10 ms with
Supplies Up to 6 V
Pb−Free Packages are Available*
http://onsemi.com
MARKING
DIAGRAMS
PDIP−16
P SUFFIX
CASE 648
16
MC14538BCP
AWLYYWWG
1
16
SOIC−16
D SUFFIX
CASE 751B
14538BG
AWLYWW
1
16
SOIC−16
DW SUFFIX
CASE 751G
14538BG
AWLYYWW
1
MAXIMUM RATINGS (Voltages Referenced to VSS)
Symbol
Value
Unit
−0.5 to +18.0
V
−0.5 to VDD + 0.5
V
Input or Output Current
(DC or Transient) per Pin
±10
mA
PD
Power Dissipation, per Package
(Note 1)
500
mW
TA
Operating Temperature Range
−55 to +125
°C
Tstg
Storage Temperature Range
−65 to +150
°C
TL
Lead Temperature
(8−Second Soldering)
260
°C
VDD
Vin, Vout
Iin, Iout
Parameter
DC Supply Voltage Range
Input or Output Voltage Range
(DC or Transient)
16
This device contains protection circuitry to guard against damage due to high
static voltages or electric fields. However, precautions must be taken to avoid
applications of any voltage higher than maximum rated voltages to this
high−impedance circuit. For proper operation, Vin and Vout should be constrained
to the range VSS v (Vin or Vout) v VDD.
Unused inputs must always be tied to an appropriate logic voltage level
(e.g., either VSS or VDD). Unused outputs must be left open.
August, 2005 − Rev. 7
14
538B
ALYW
1
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
1. Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C
© Semiconductor Components Industries, LLC, 2005
16
TSSOP−16
DT SUFFIX
CASE 948F
1
SOEIAJ−16
F SUFFIX
CASE 966
MC14538B
ALYWG
1
A
WL, L
YY, Y
WW, W
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Indicator
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
*For additional information on our Pb−Free strategy
and soldering details, please download the
ON Semiconductor Soldering and Mounting
Techniques Reference Manual, SOLDERRM/D.
Publication Order Number:
MC14538B/D
MC14538B
PIN ASSIGNMENT
BLOCK DIAGRAM
CX
VSS
1
16
VDD
CX/RXA
2
15
VSS
RESET A
3
14
CX/RXB
AA
4
13
RESET B
BA
5
12
AB
QA
6
11
BB
QA
7
10
QB
VSS
8
9
QB
4
5
11
10 ms
100 ms
1 ms
10 ms
B
2
Q1
6
Q1
RESET
7
CX
12
1 ms
1
A
VDD
3
ONE−SHOT SELECTION GUIDE
100 ns
MC14528B
MC14536B
MC14538B
RX
100 ms
1s
15
A
5 MIN.
MC14541B
MC4538A*
VDD
14
Q2
B
Q2
RESET
10 s
23 HR
RX
10
9
13
RX AND CX ARE EXTERNAL COMPONENTS.
VDD = PIN 16
VSS = PIN 8, PIN 1, PIN 15
*LIMITED OPERATING VOLTAGE (2 − 6 V)
TOTAL OUTPUT PULSE WIDTH RANGE
RECOMMENDED PULSE WIDTH RANGE
ORDERING INFORMATION
Package
Shipping †
MC14538BCP
PDIP−16
500 Units / Rail
MC14538BCPG
PDIP−16
(Pb−Free)
500 Units / Rail
MC14538BD
SOIC−16
48 Units / Rail
MC14538BDG
SOIC−16
(Pb−Free)
48 Units / Rail
MC14538BDR2
SOIC−16
2500 Units / Tape & Reel
MC14538BDR2G
SOIC−16
(Pb−Free)
2500 Units / Tape & Reel
Device
MC14538BDW
SOIC−16 WB
47 Units / Rail
MC14538BDWR2
SOIC−16 WB
1000 Units / Tape & Reel
MC14538BDWR2G
SOIC−16 WB
(Pb−Free)
1000 Units / Tape & Reel
MC14538BDTR2
TSSOP−16*
2500 Units / Tape & Reel
MC14538BF
SOEIAJ−16
50 Units / Rail
MC14538BFG
SOEIAJ−16
(Pb−Free)
50 Units / Rail
MC14538BFEL
SOEIAJ−16
2000 Units / Tape & Reel
MC14538BFELG
SOEIAJ−16
(Pb−Free)
2000 Units / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
2
MC14538B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
Symbol
Characteristic
Output Voltage
Vin = VDD or 0
VDD
Vdc
− 55_C
25_C
125_C
Min
Max
Min
Typ
(Note 2)
Max
Min
Max
Unit
“0” Level
VOL
5.0
10
15
−
−
−
0.05
0.05
0.05
−
−
−
0
0
0
0.05
0.05
0.05
−
−
−
0.05
0.05
0.05
Vdc
“1” Level
VOH
5.0
10
15
4.95
9.95
14.95
−
−
−
4.95
9.95
14.95
5.0
10
15
−
−
−
4.95
9.95
14.95
−
−
−
Vdc
Input Voltage
“0” Level
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
VIL
5.0
10
15
−
−
−
1.5
3.0
4.0
−
−
−
2.25
4.50
6.75
1.5
3.0
4.0
−
−
−
1.5
3.0
4.0
“1” Level
VIH
5.0
10
15
3.5
7.0
11
−
−
−
3.5
7.0
11
2.75
5.50
8.25
−
−
−
3.5
7.0
11
−
−
−
5.0
5.0
10
15
– 3.0
– 0.64
– 1.6
– 4.2
−
−
−
−
– 2.4
– 0.51
– 1.3
– 3.4
– 4.2
– 0.88
– 2.25
– 8.8
−
−
−
−
– 1.7
– 0.36
– 0.9
– 2.4
−
−
−
−
IOL
5.0
10
15
0.64
1.6
4.2
−
−
−
0.51
1.3
3.4
0.88
2.25
8.8
−
−
−
0.36
0.9
2.4
−
−
−
mAdc
Iin
15
−
± 0.05
−
± 0.00001
± 0.05
−
± 0.5
mAdc
Input Current, Other Inputs
Iin
15
−
± 0.1
−
± 0.00001
± 0.1
−
± 1.0
mAdc
Input Capacitance, Pin 2 or 14
Cin
−
−
−
−
25
−
−
−
pF
Input Capacitance, Other Inputs
(Vin = 0)
Cin
−
−
−
−
5.0
7.5
−
−
pF
Quiescent Current
(Per Package)
Q = Low, Q = High
IDD
5.0
10
15
−
−
−
5.0
10
20
−
−
−
0.005
0.010
0.015
5.0
10
20
−
−
−
150
300
600
mAdc
Quiescent Current, Active State
(Both) (Per Package)
Q = High, Q = Low
IDD
5.0
10
15
−
−
−
2.0
2.0
2.0
−
−
−
0.04
0.08
0.13
0.20
0.45
0.70
−
−
−
2.0
2.0
2.0
mAdc
IT
5.0
10
Vin = 0 or VDD
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
Output Drive Current
(VOH = 2.5 Vdc)
(VOH = 4.6 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
Vdc
Vdc
IOH
Source
(VOL = 0.4 Vdc)
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
Sink
Input Current, Pin 2 or 14
Total Supply Current at an external
load capacitance (CL) and at
external timing network (RX, CX)
(Note 3)
mAdc
IT = (3.5 x 10–2) RXCXf + 4CXf + 1 x 10–5 CLf
IT = (8.0 x 10–2) RXCXf + 9CXf + 2 x 10–5 CLf
IT = (1.25 x 10–1) RXCXf + 12CXf + 3 x 10–5 CLf
where: IT in mA (one monostable switching only),
where: CX in mF, CL in pF, RX in k ohms, and
where: f in Hz is the input frequency.
2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
3. The formulas given are for the typical characteristics only at 25_C.
http://onsemi.com
3
mAdc
MC14538B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS (Note 4) (CL = 50 pF, TA = 25_C)
All Types
Characteristic
Symbol
Output Rise Time
tTLH = (1.35 ns/pF) CL + 33 ns
tTLH = (0.60 ns/pF) CL + 20 ns
tTLH = (0.40 ns/pF) CL + 20 ns
tTLH
Output Fall Time
tTHL = (1.35 ns/pF) CL + 33 ns
tTHL = (0.60 ns/pF) CL + 20 ns
tTHL = (0.40 ns/pF) CL + 20 ns
tTHL
Propagation Delay Time
A or B to Q or Q
tPLH, tPHL = (0.90 ns/pF) CL + 255 ns
tPLH, tPHL = (0.36 ns/pF) CL + 132 ns
tPLH, tPHL = (0.26 ns/pF) CL + 87 ns
tPLH,
tPHL
VDD
Vdc
Min
Typ
(Note 5)
Max
5.0
10
15
−
−
−
100
50
40
200
100
80
5.0
10
15
−
−
−
100
50
40
200
100
80
Unit
ns
ns
ns
5.0
10
15
−
−
−
300
150
100
600
300
220
5.0
10
15
−
−
−
250
125
95
500
250
190
5
10
15
−
−
−
−
−
−
15
5
4
ms
B Input
5
10
15
−
−
−
300
1.2
0.4
1.0
0.1
0.05
ms
A Input
5
10
15
Reset to Q or Q
tPLH, tPHL = (0.90 ns/pF) CL + 205 ns
tPLH, tPHL = (0.36 ns/pF) CL + 107 ns
tPLH, tPHL = (0.26 ns/pF) CL + 82 ns
Input Rise and Fall Times
Reset
Input Pulse Width
A, B, or Reset
ns
tr, tf
−
No Limit
tWH,
tWL
5.0
10
15
170
90
80
85
45
40
−
−
−
ns
Retrigger Time
trr
5.0
10
15
0
0
0
−
−
−
−
−
−
ns
Output Pulse Width — Q or Q
Refer to Figures 8 and 9
CX = 0.002 mF, RX = 100 kW
T
ms
5.0
10
15
198
200
202
210
212
214
230
232
234
CX = 0.1 mF, RX = 100 kW
5.0
10
15
9.3
9.4
9.5
9.86
10
10.14
10.5
10.6
10.7
ms
CX = 10 mF, RX = 100 kW
5.0
10
15
0.91
0.92
0.93
0.965
0.98
0.99
1.03
1.04
1.06
s
5.0
10
15
−
−
−
± 1.0
± 1.0
± 1.0
± 5.0
± 5.0
± 5.0
%
Pulse Width Match between circuits in
the same package.
CX = 0.1 mF, RX = 100 kW
100
[(T1 – T2)/T1]
4. The formulas given are for the typical characteristics only at 25_C.
5. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OPERATING CONDITIONS
External Timing Resistance
RX
−
5.0
−
(Note 6)
kW
External Timing Capacitance
CX
−
0
−
No Limit
(Note 7)
mF
6. The maximum usable resistance RX is a function of the leakage of the capacitor CX, leakage of the MC14538B, and leakage due to board
layout and surface resistance. Susceptibility to externally induced noise signals may occur for RX > 1 MW..
7. If CX > 15 mF, use discharge protection diode per Fig. 11.
http://onsemi.com
4
MC14538B
VDD
VDD
P1
RX
2 (14)
CX
+
C1
−
Vref1
1 (15)
ENABLE
+
C2
−
Vref2
ENABLE
N1
A
B
RESET
VSS
4 (12)
6(10)
R
Q
OUTPUT
LATCH
S
Q
7(9)
CONTROL
5 (11)
QR
S
3 (13)
QR
R
RESET LATCH
NOTE: Pins 1, 8 and 15 must
be externally grounded
Figure 1. Logic Diagram
(1/2 of DevIce Shown)
VDD
500 pF
0.1 mF
CERAMIC
ID
RX
VSS
R X′
CX
Vin
C X′
VSS
CX/RX
A
B
Q
RESET
Q
A′
Q′
B′
Q′
RESET′
20 ns
CL
20 ns
VDD
90%
CL
CL
10%
Vin
CL
0V
VSS
Figure 2. Power Dissipation Test Circuit and Waveforms
VDD
INPUT CONNECTIONS
RX
VSS
PULSE
GENERATOR
PULSE
GENERATOR
PULSE
GENERATOR
R X′
CX
A
Characteristics
*CL = 50 pF
C X′
VSS
CX/RX
B
Q
RESET
Q
A′
Q′
B′
Q′
RESET′
VSS
CL
CL
CL
CL
Reset
A
B
tPLH, tPHL, tTLH, tTHL,
T, tWH, tWL
VDD
PG1
VDD
tPLH, tPHL, tTLH, tTHL,
T, tWH, tWL
VDD
VSS
PG2
tPLH(R), tPHL(R),
tWH, tWL
PG3
PG1
PG2
*Includes capacitance of probes,
wiring, and fixture parasitic.
NOTE: Switching test waveforms
for PG1, PG2, PG3 are shown
In Figure 4.
Figure 3. Switching Test Circuit
http://onsemi.com
5
PG1 =
PG2 =
PG3 =
MC14538B
90%
10%
tTHL
50%
A
tTLH
tWH
50%
tTHL
B
tTLH
90%
10%
50%
tWL
tTHL
RESET
tPLH
50%
Q
50%
tPHL
Q
tTHL
tPLH
50%
tWL
tTHL
tPLH
90%
10%
50%
trr
tPHL
50%
tTLH
tPHL
VDD
50%
tTLH
90%
10%
50%
VDD
tPHL
90%
10%
T
VDD
50%
50%
1.0
TA = 25°C
RX = 100 kW
CX = 0.1 mF
NORMALIZED PULSE WIDTH CHANGE
WITH RESPECT TO VALUE AT VDD = 10 V (%)
RELATIVE FREQUENCY OF OCCURRENCE
Figure 4. Switching Test Waveforms
0% POINT PULSE WIDTH
VDD = 5.0 V, T = 9.8 ms
VDD = 10 V, T = 10 ms
VDD = 15 V, T = 10.2 ms
0.8
0.6
0.4
0.2
0
−4
−2
0
2
4
T, OUTPUT PULSE WIDTH (%)
RX = 100 kW
CX = 0.1 mF
2
1
0
1
2
5
Figure 5. Typical Normalized Distribution
of Units for Output Pulse Width
6
7
8
9
10
11
12
VDD, SUPPLY VOLTAGE (VOLTS)
TOTAL SUPPLY CURRENT (μA)
FUNCTION TABLE
Inputs
RX = 100 kW, CL = 50 pF
ONE MONOSTABLE SWITCHING ONLY
Reset
VDD = 15 V
10
5.0 V
10 V
1.0
0.1
0.001
14
Figure 6. Typical Pulse Width Variation as
a Function of Supply Voltage VDD
1000
100
13
0.1
1.0
10
H
H
L
H
H
H
H
H
L
100
OUTPUT DUTY CYCLE (%)
Figure 7. Typical Total Supply Current
versus Output Duty Cycle
http://onsemi.com
6
A
Outputs
B
Q
Q
H
L
Not Triggered
Not Triggered
L, H,
L
H
L, H,
Not Triggered
Not Triggered
X
X
X
X
L
H
Not Triggered
15
RX = 100 kW
CX = 0.1 mF
2
VDD = 15 V
1
VDD = 10 V
0
VDD = 5 V
−1
TYPICAL NORMALIZED ERROR
WITH RESPECT TO 25°C VALUE AT VDD = 10 V (%)
TYPICAL NORMALIZED ERROR
WITH RESPECT TO 25°C VALUE AT VDD = 10 V (%)
MC14538B
3.0
2.0
1.0
0
−1.0
−2
RX = 100 kW
CX = .002 mF
VDD = 15 V
VDD = 10 V
−2.0
VDD = 5.0 V
−3.0
−60
−40
−20
0
20
40
60
80 100
TA, AMBIENT TEMPERATURE (°C)
120
140
−60
−40
Figure 8. Typical Error of Pulse Width
Equation versus Temperature
−20
0
20
40
60
80 100
TA, AMBIENT TEMPERATURE (°C)
Figure 9. Typical Error of Pulse Width
Equation versus Temperature
THEORY OF OPERATION
1
3
4
A
2
B
5
RESET
CX/RX
Vref2
Vref2
Vref1
Vref2
Vref2
Vref1
Vref1
Vref1
Q
T
120 140
T
T
1
Positive edge trigger
4
Positive edge re−trigger (pulse lengthening)
2
Negative edge trigger
5
Positive edge re−trigger (pulse lengthening)
3
Positive edge trigger
Figure 10. Timing Operation
http://onsemi.com
7
MC14538B
TRIGGER OPERATION
on Reset sets the reset latch and causes the capacitor to be
fast charged to VDD by turning on transistor P1 ➄. When the
voltage on the capacitor reaches Vref 2, the reset latch will
clear, and will then be ready to accept another pulse. It the
Reset input is held low, any trigger inputs that occur will be
inhibited and the Q and Q outputs of the output latch will not
change. Since the Q output is reset when an input low level
is detected on the Reset input, the output pulse T can be made
significantly shorter than the minimum pulse width
specification.
The block diagram of the MC14538B is shown in
Figure 1, with circuit operation following.
As shown in Figure 1 and 10, before an input trigger
occurs, the monostable is in the quiescent state with the Q
output low, and the timing capacitor CX completely charged
to V DD. When the trigger input A goes from V SS to V DD
(while inputs B and Reset are held to VDD) a valid trigger is
recognized, which turns on comparator C1 and N−channel
transistor N1 ➀. At the same time the output latch is set. With
transistor N1 on, the capacitor CX rapidly discharges toward
V SS until Vref1 is reached. At this point the output of
comparator C1 changes state and transistor N1 turns off.
Comparator C1 then turns off while at the same time
comparator C2 turns on. With transistor N1 off, the capacitor
CX begins to charge through the timing resistor, RX, toward
V DD. When the voltage across CX equals Vref 2, comparator
C2 changes state, causing the output latch to reset (Q goes
low) while at the same time disabling comparator C2 ➁. This
ends at the timing cycle with the monostable in the quiescent
state, waiting for the next trigger.
In the quiescent state, CX is fully charged to VDD causing
the current through resistor RX to be zero. Both comparators
are “off” with total device current due only to reverse
junction leakages. An added feature of the MC14538B is
that the output latch is set via the input trigger without regard
to the capacitor voltage. Thus, propagation delay from
trigger to Q is independent of the value of CX, RX, or the duty
cycle of the input waveform.
POWER−DOWN CONSIDERATIONS
Large capacitance values can cause problems due to the
large amount of energy stored. When a system containing
the MC14538B is powered down, the capacitor voltage may
discharge from VDD through the standard protection diodes
at pin 2 or 14. Current through the protection diodes should
be limited to 10 mA and therefore the discharge time of the
V DD supply must not be faster than (V DD). (C)/(10 mA).
For example, if VDD = 10 V and CX = 10 mF, the VDD supply
should discharge no faster than (10 V) x (10 mF)/(10 mA)
= 10 ms. This is normally not a problem since power
supplies are heavily filtered and cannot discharge at this rate.
When a more rapid decrease of VDD to zero volts occurs,
the MC14538B can sustain damage. To avoid this possibility
use an external clamping diode, DX, connected as shown in
Fig. 11.
Dx
RETRIGGER OPERATION
VSS
The MC14538B is retriggered if a valid trigger occurs ➂
followed by another valid trigger ➃ before the Q output has
returned to the quiescent (zero) state. Any retrigger, after the
timing node voltage at pin 2 or 14 has begun to rise from
Vref 1, but has not yet reached Vref 2, will cause an increase
in output pulse width T. When a valid retrigger is initiated
➃, the voltage at CX/RX will again drop to Vref 1 before
progressing along the RC charging curve toward VDD. The
Q output will remain high until time T, after the last valid
retrigger.
Cx
Rx VDD
VDD
Q
Q
RESET
Figure 11. Use of a Diode to Limit
Power Down Current Surge
RESET OPERATION
The MC14538B may be reset during the generation of the
output pulse. In the reset mode of operation, an input pulse
http://onsemi.com
8
MC14538B
TYPICAL APPLICATIONS
CX
RX
RISING−EDGE
TRIGGER
CX
RX
VDD
A
Q
B
Q
VDD
RISING−EDGE
A
TRIGGER
B
Q
Q
B = VDD
RESET = VDD
CX
RESET = VDD
CX
RX
VDD
VDD
A = VSS
Q
B
FALLING−EDGE
TRIGGER
RX
Q
A
Q
FALLING−EDGE
TRIGGER
B
Q
RESET = VDD
RESET = VDD
Figure 12. Retriggerable
Monostables Circuitry
Figure 13. Non−Retriggerable
Monostables Circuitry
NC
A
B
CD
VDD
Q
NC
Q
NC
VDD
Figure 14. Connection of Unused Sections
http://onsemi.com
9
MC14538B
PACKAGE DIMENSIONS
PDIP−16
P SUFFIX
PLASTIC DIP PACKAGE
CASE 648−08
ISSUE T
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE
MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
−A−
16
9
1
8
B
F
C
L
DIM
A
B
C
D
F
G
H
J
K
L
M
S
S
−T−
SEATING
PLANE
K
H
G
D
M
J
16 PL
0.25 (0.010)
T A
M
M
INCHES
MIN
MAX
0.740 0.770
0.250 0.270
0.145 0.175
0.015 0.021
0.040
0.70
0.100 BSC
0.050 BSC
0.008 0.015
0.110 0.130
0.295 0.305
0_
10 _
0.020 0.040
MILLIMETERS
MIN
MAX
18.80 19.55
6.35
6.85
3.69
4.44
0.39
0.53
1.02
1.77
2.54 BSC
1.27 BSC
0.21
0.38
2.80
3.30
7.50
7.74
0_
10 _
0.51
1.01
SOIC−16
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B−05
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
−A−
16
9
−B−
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
S
http://onsemi.com
10
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
MC14538B
PACKAGE DIMENSIONS
SOIC−16 WB
DW SUFFIX
PLASTIC SOIC PACKAGE
CASE 751G−03
ISSUE C
A
D
q
9
h X 45 _
E
0.25
H
8X
M
B
M
16
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INLCUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 TOTAL IN
EXCESS OF THE B DIMENSION AT MAXIMUM
MATERIAL CONDITION.
1
MILLIMETERS
DIM MIN
MAX
A
2.35
2.65
A1 0.10
0.25
B
0.35
0.49
C
0.23
0.32
D 10.15 10.45
E
7.40
7.60
e
1.27 BSC
H 10.05 10.55
h
0.25
0.75
L
0.50
0.90
q
0_
7_
8
B
B
16X
M
T A
14X
e
S
B
S
L
A
0.25
A1
SEATING
PLANE
C
T
TSSOP−16
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948F−01
ISSUE A
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
K
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
8
1
N
0.15 (0.006) T U
S
0.25 (0.010)
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
M
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
H
D
DETAIL E
G
http://onsemi.com
11
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
MC14538B
PACKAGE DIMENSIONS
SOEIAJ−16
F SUFFIX
PLASTIC EIAJ SOIC PACKAGE
CASE 966−01
ISSUE O
16
LE
9
Q1
M_
E HE
1
8
L
DETAIL P
Z
D
e
VIEW P
A
DIM
A
A1
b
c
D
E
e
HE
L
LE
M
Q1
Z
A1
b
0.13 (0.005)
c
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
M
0.10 (0.004)
MILLIMETERS
MIN
MAX
−−−
2.05
0.05
0.20
0.35
0.50
0.18
0.27
9.90
10.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
10 _
0_
0.70
0.90
−−−
0.78
INCHES
MIN
MAX
−−− 0.081
0.002
0.008
0.014
0.020
0.007
0.011
0.390
0.413
0.201
0.215
0.050 BSC
0.291
0.323
0.020
0.033
0.043
0.059
10 _
0_
0.028
0.035
−−− 0.031
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
12
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
MC14538B/D
Similar pages