TI MSP430F413IRTDR Mixed signal microcontroller Datasheet

MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
D Low Supply-Voltage Range, 1.8 V to 3.6 V
D Ultralow Power Consumption
D
D
D
D
D
D
D
D
D
− Active Mode: 200 μA at 1 MHz, 2.2 V
− Standby Mode: 0.7 μA
− Off Mode (RAM Retention): 0.1 μA
Five Power-Saving Modes
Wake-Up From Standby Mode in
Less Than 6 μs
Frequency-Locked Loop (FLL+)
16-Bit RISC Architecture, 125-ns
Instruction Cycle Time
16-Bit Timer_A With Three or Five†
Capture/Compare Registers
Integrated LCD Driver for 96 Segments
On-Chip Comparator
Brownout Detector
Supply Voltage Supervisor/Monitor −
Programmable Level Detection on
MSP430F415/417 Devices Only
†
D Serial Onboard Programming,
D
D
D
D
No External Programming Voltage Needed,
Programmable Code Protection by Security
Fuse
Bootstrap Loader in Flash Devices
Family Members Include:
− MSP430C412: 4KB ROM, 256B RAM
− MSP430C413: 8KB ROM, 256B RAM
− MSP430F412: 4KB + 256B Flash
256B RAM
− MSP430F413: 8KB + 256B Flash
256B RAM
− MSP430F415: 16KB + 256B Flash
512B RAM
− MSP430F417: 32KB + 256B Flash
1KB RAM
Available in 64-Pin QFP (PM) and
64-Pin QFN (RTD/RGC) Packages
For Complete Module Descriptions,See the
MSP430x4xx Family User’s Guide,
Literature Number SLAU056
Timer_A5 in ’F415 and ’F417 devices only
description
The Texas Instruments MSP430 family of ultra-low-power microcontrollers consists of several devices featuring
different sets of peripherals targeted for various applications. The architecture, combined with five low power
modes, is optimized to achieve extended battery life in portable measurement applications. The device features
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less
than 6 μs.
The MSP430x41x series are microcontroller configurations with one or two built-in 16-bit timers, a comparator,
96 LCD segment drive capability, and 48 I/O pins.
Typical applications include sensor systems that capture analog signals, convert them to digital values, and
process the data and transmit them to a host system. The comparator and timer make the configurations ideal
for industrial meters, counter applications, handheld meters, etc.
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range
from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage
because very small parametric changes could cause the device not to meet its published specifications. These devices have limited
built-in ESD protection.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright © 2008, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
PLASTIC 64-PIN QFP (PM)
PLASTIC 64-PIN QFN (RTD/RGC)
MSP430C412IPM
MSP430C413IPM
MSP430F412IPM
MSP430F413IPM
MSP430F415IPM
MSP430F417IPM
MSP430C412IRGC
MSP430C413IRGC
MSP430F412IRTD
MSP430F413IRTD
MSP430F415IRTD
MSP430F417IRTD
−40°C to 85°C
AVCC
DVSS
AVSS
P6.2
P6.1
P6.0
RST/NMI
TCK
TMS
TDI/TCLK
TDO/TDI
P1.0/TA0
P1.1/TA0/MCLK
P1.2/TA1
P1.3/SVSOUT
P1.4
pin designation − MSP430x412, MSP430x413
1
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
2
47
3
46
4
45
5
44
6
43
7
42
8
MSP430x412
MSP430x413
9
41
40
10
39
11
38
12
37
13
36
14
35
15
34
16
33
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P1.5/TACLK/ACLK
P1.6/CA0
P1.7/CA1
P2.0/TA2
P2.1
P5.7/R33
P5.6/R23
P5.5/R13
R03
P5.4/COM3
P5.3/COM2
P5.2/COM1
COM0
P2.2/S23
P2.3/S22
P2.4/S21
P4.4/S5
P4.3/S6
P4.2/S7
P4.1/S8
P4.0/S9
P3.7/S10
P3.6/S11
P3.5/S12
P3.4/S13
P3.3/S14
P3.2/S15
P3.1/S16
P3.0/S17
P2.7/S18
P2.6/CAOUT/S19
P2.5/S20
DVCC
P6.3
P6.4
P6.5
P6.6
P6.7
NC
XIN
XOUT
NC
NC
P5.1/S0
P5.0/S1
P4.7/S2
P4.6/S3
P4.5/S4
NC − No internal connection. External connection to VSS recommended.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
AVCC
DVSS
AVSS1
P6.2
P6.1
P6.0
RST/NMI
TCK
TMS
TDI/TCLK
TDO/TDI
P1.0/TA0.0
P1.1/TA0.0/MCLK
P1.2/TA0.1
P1.3/TA1.0/SVSOUT
P1.4/TA1.0
pin designation − MSP430x415, MSP430x417
1
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
2
47
3
46
4
45
5
44
6
43
7
42
8
MSP430x415
MSP430x417
9
41
40
10
39
11
38
12
37
13
36
14
35
15
34
16
33
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P1.5/TA0CLK/ACLK
P1.6/CA0
P1.7/CA1
P2.0/TA0.2
P2.1/TA1.1
P5.7/R33
P5.6/R23
P5.5/R13
R03
P5.4/COM3
P5.3/COM2
P5.2/COM1
COM0
P2.2/TA1.2/S23
P2.3/TA1.3/S22
P2.4/TA1.4/S21
P4.4/S5
P4.3/S6
P4.2/S7
P4.1/S8
P4.0/S9
P3.7/S10
P3.6/S11
P3.5/S12
P3.4/S13
P3.3/S14
P3.2/S15
P3.1/S16
P3.0/S17
P2.7/S18
P2.6/CAOUT/S19
P2.5/TA1CLK/S20
DVCC
P6.3
P6.4
P6.5
P6.6
P6.7
NC
XIN
XOUT
AVSS2
NC
P5.1/S0
P5.0/S1
P4.7/S2
P4.6/S3
P4.5/S4
NC − No internal connection. External connection to VSS recommended.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
functional block diagram − MSP430x412, MSP430x413
DVCC
XIN XOUT
DVSS
AVCC
AVSS
P1
P4
P3
P2
8
8
Port 1
Port 2
8 I/O
Interrupt
Capability
8 I/O
Interrupt
Capability
P5
P6
8
8
8
8
Port 3
Port 4
Port 5
Port 6
8 I/O
8 I/O
8 I/O
6 I/O
P5
P6
ACLK
Oscillators
FLL+
SMCLK
Flash−F41x
ROM−C41x
8KB
4KB
MCLK
8 MHz
CPU
incl. 16
Registers
RAM
256B
MAB
MDB
Emulation
Module
(F versions
only)
POR/
SVS/
Brownout
Watchdog
WDT
Timer_A3
15/16-Bit
3 CC Reg
Comparator_
A
JTAG
Interface
Basic
Timer 1
1 Interrupt
Vector
LCD
96
Segments
1,2,3,4 MUX
fLCD
RST/NMI
functional block diagram − MSP430x415, MSP430x417
DVCC
XIN XOUT
DVSS
AVCC
AVSS
P1
P2
P4
P3
8
8
Port 1
Port 2
8 I/O
Interrupt
Capability
8 I/O
Interrupt
Capability
Watchdog
WDT
Timer0_A3
Timer1_A5
15/16-Bit
3 CC Reg
5 CC Reg
8
8
8
8
Port 3
Port 4
Port 5
Port 6
8 I/O
8 I/O
8 I/O
6 I/O
ACLK
Oscillators
FLL+
Flash
SMCLK
32KB
16KB
MCLK
8 MHz
CPU
incl. 16
Registers
Emulation
Module
(F versions
only)
RAM
1KB
512B
MAB
MDB
POR/
SVS/
Brownout
Comparator
_A
JTAG
Interface
Basic
Timer 1
1 Interrupt
Vector
LCD
96
Segments
1,2,3,4 MUX
fLCD
RST/NMI
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
Terminal Functions − MSP430x412, MSP430x413
TERMINAL
NAME
NO.
I/O
DESCRIPTION
AVCC
64
Positive terminal that supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive
divider circuitry; must not power up prior to DVCC.
AVSS
62
Negative terminal that supplies SVS, brownout, oscillator, comparator_A. Needs to be externally
connected to DVSS.
DVCC
1
Digital supply voltage, positive terminal. Supplies all parts, except those which are supplied via AVCC.
DVSS
63
Digital supply voltage, negative terminal. Supplies all digital parts, except those which are supplied via
AVCC/AVSS.
NC
7, 10, 11
Not internally connected. Connection to VSS recommended.
P1.0/TA0
53
I/O
General-purpose digital I/O / Timer_A, Capture: CCI0A input, compare: Out0 output/BSL transmit
P1.1/TA0/MCLK
52
I/O
General-purpose digital I/O / Timer_A, Capture: CCI0B input/MCLK output. Note: TA0 is only an input
on this pin/BSL receive.
P1.2/TA1
51
I/O
General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output
P1.3/SVSOUT
50
I/O
General-purpose digital I/O / SVS: output of SVS comparator
P1.4
49
I/O
General-purpose digital I/O
P1.5/TACLK/ ACLK
48
I/O
General-purpose digital I/O / Input of Timer_A clock/output of ACLK
P1.6/CA0
47
I/O
General-purpose digital I/O / Comparator_A input
P1.7/CA1
46
I/O
General-purpose digital I/O / Comparator_A input
P2.0/TA2
45
I/O
General-purpose digital I/O / Timer_A capture: CCI2A input, compare: Out2 output
P2.1
44
I/O
General-purpose digital I/O
P2.2/S23
35
I/O
General-purpose digital I/O / LCD segment output 23 (see Note 1)
P2.3/S22
34
I/O
General-purpose digital I/O / LCD segment output 22 (see Note 1)
P2.4/S21
33
I/O
General-purpose digital I/O / LCD segment output 21 (see Note 1)
P2.5/S20
32
I/O
General-purpose digital I/O / LCD segment output 20 (see Note 1)
P2.6/CAOUT/S19
31
I/O
General-purpose digital I/O / Comparator_A output/LCD segment output 19 (see Note 1)
P2.7/S18
30
I/O
General-purpose digital I/O / LCD segment output 18 (see Note 1)
P3.0/S17
29
I/O
General-purpose digital I/O / LCD segment output 17 (see Note 1)
P3.1/S16
28
I/O
General-purpose digital I/O / LCD segment output 16 (see Note 1)
P3.2/S15
27
I/O
General-purpose digital I/O / LCD segment output 15 (see Note 1)
P3.3/S14
26
I/O
General-purpose digital I/O / LCD segment output 14 (see Note 1)
P3.4/S13
25
I/O
General-purpose digital I/O / LCD segment output 13 (see Note 1)
P3.5/S12
24
I/O
General-purpose digital I/O / LCD segment output 12 (see Note 1)
P3.6/S11
23
I/O
General-purpose digital I/O / LCD segment output 11 (see Note 1)
P3.7/S10
22
I/O
General-purpose digital I/O / LCD segment output 10 (see Note 1)
NOTE 1: LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
Terminal Functions − MSP430x412, MSP430x413 (Continued)
TERMINAL
NAME
NO.
I/O
DESCRIPTION
P4.0/S9
21
I/O
General-purpose digital I/O / LCD segment output 9 (see Note 1)
P4.1/S8
20
I/O
General-purpose digital I/O / LCD segment output 8 (see Note 1)
P4.2/S7
19
I/O
General-purpose digital I/O / LCD segment output 7 (see Note 1)
P4.3/S6
18
I/O
General-purpose digital I/O / LCD segment output 6 (see Note 1)
P4.4/S5
17
I/O
General-purpose digital I/O / LCD segment output 5 (see Note 1)
P4.5/S4
16
I/O
General-purpose digital I/O / LCD segment output 4 (see Note 1)
P4.6/S3
15
I/O
General-purpose digital I/O / LCD segment output 3 (see Note 1)
P4.7/S2
14
I/O
General-purpose digital I/O / LCD segment output 2 (see Note 1)
P5.0/S1
13
I/O
General-purpose digital I/O / LCD segment output 1 (see Note 1)
P5.1/S0
12
I/O
General-purpose digital I/O / LCD segment output 0 (see Note 1)
COM0
36
O
Common output. COM0−3 are used for LCD backplanes
P5.2/COM1
37
I/O
General-purpose digital I/O / Common output. COM0−3 are used for LCD backplanes.
P5.3/COM2
38
I/O
General-purpose digital I/O / Common output. COM0−3 are used for LCD backplanes.
P5.4/COM3
39
I/O
General-purpose digital I/O / Common output. COM0−3 are used for LCD backplanes.
R03
40
I
P5.5/R13
41
I/O
General-purpose digital I/O / Input port of third most positive analog LCD level (V4 or V3)
P5.6/R23
42
I/O
General-purpose digital I/O / Input port of second most positive analog LCD level (V2)
P5.7/R33
43
I/O
General-purpose digital I/O / Output port of most positive analog LCD level (V1)
P6.0
59
I/O
General-purpose digital I/O
P6.1
60
I/O
General-purpose digital I/O
P6.2
61
I/O
General-purpose digital I/O
P6.3
2
I/O
General-purpose digital I/O
P6.4
3
I/O
General-purpose digital I/O
P6.5
4
I/O
General-purpose digital I/O
P6.6
5
I/O
General-purpose digital I/O
P6.7
6
I/O
General-purpose digital I/O
RST/NMI
58
I
Reset input / Nonmaskable interrupt input
TCK
57
I
Test clock. TCK is the clock input port for device programming and test.
TDI/TCLK
55
I
Test data input / Test clock input. The device protection fuse is connected to TDI.
TDO/TDI
54
I/O
TMS
56
I
Test mode select. TMS is used as an input port for device programming and test.
XIN
8
I
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT
9
O
Output terminal of crystal oscillator XT1.
NA
NA
QFN Pad
Input port of fourth positive (lowest) analog LCD level (V5)
Test data output port. TDO/TDI data output or programming data input terminal.
QFN package pad connection to VSS recommended.
NOTE 2: LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
Terminal Functions − MSP430x415, MSP430x417
TERMINAL
NAME
NO.
I/O
DESCRIPTION
AVCC
64
Positive terminal that supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive
divider circuitry; must not power up prior to DVCC.
AVSS1
62
Negative terminal that supplies SVS, brownout, oscillator, comparator_A. Needs to be externally
connected to DVSS.
DVCC
1
Digital supply voltage, positive terminal. Supplies all parts, except those which are supplied via AVCC.
DVSS
63
Digital supply voltage, negative terminal. Supplies all digital parts, except those which are supplied via
AVCC/AVSS.
AVSS2
10
Negative terminal that supplies SVS, brownout, oscillator, comparator_A. Needs to be externally
connected to DVSS.
NC
7, 11
Not internally connected. Connection to VSS recommended.
P1.0/TA0.0
53
I/O
General-purpose digital I/O / Timer0_A. Capture: CCI0A input, compare: Out0 output/BSL transmit
P1.1/TA0.0/MCLK
52
I/O
General-purpose digital I/O / Timer0_A. Capture: CCI0B input/MCLK output. Note: TA0 is only an input
on this pin/BSL receive
P1.2/TA0.1
51
I/O
General-purpose digital I/O / Timer0_A, capture: CCI1A input, compare: Out1 output
P1.3/TA1.0/
SVSOUT
50
I/O
General-purpose digital I/O / Timer1_A, capture: CCI0B input/SVS: output of SVS comparator
P1.4/TA1.0
49
I/O
General-purpose digital I/O / Timer1_A, capture: CCI0A input, compare: Out0 output
P1.5/TA0CLK/
ACLK
48
I/O
General-purpose digital I/O / input of Timer0_A clock/output of ACLK
P1.6/CA0
47
I/O
General-purpose digital I/O / Comparator_A input
P1.7/CA1
46
I/O
General-purpose digital I/O / Comparator_A input
P2.0/TA0.2
45
I/O
General-purpose digital I/O / Timer0_A capture: CCI2A input, compare: Out2 output
P2.1/TA1.1
44
I/O
General-purpose digital I/O / Timer1_A, capture: CCI1A input, compare: Out1 output
P2.2/TA1.2/S23
35
I/O
General-purpose digital I/O / Timer1_A, capture: CCI2A input, compare: Out2 output/LCD segment
output 23 (see Note 1)
P2.3/TA1.3/S22
34
I/O
General-purpose digital I/O / Timer1_A, capture: CCI3A input, compare: Out3 output/LCD segment
output 22 (see Note 1)
P2.4/TA1.4/S21
33
I/O
General-purpose digital I/O / Timer1_A, capture: CCI4A input, compare: Out4 output/LCD segment
output 21 (see Note 1)
P2.5/TA1CLK/S20
32
I/O
General-purpose digital I/O / input of Timer1_A clock/LCD segment output 20 (see Note 1)
P2.6/CAOUT/S19
31
I/O
General-purpose digital I/O / Comparator_A output/LCD segment output 19 (see Note 1)
P2.7/S18
30
I/O
General-purpose digital I/O / LCD segment output 18 (see Note 1)
P3.0/S17
29
I/O
General-purpose digital I/O / LCD segment output 17 (see Note 1)
P3.1/S16
28
I/O
General-purpose digital I/O / LCD segment output 16 (see Note 1)
P3.2/S15
27
I/O
General-purpose digital I/O / LCD segment output 15 (see Note 1)
P3.3/S14
26
I/O
General-purpose digital I/O / LCD segment output 14 (see Note 1)
P3.4/S13
25
I/O
General-purpose digital I/O / LCD segment output 13 (see Note 1)
P3.5/S12
24
I/O
General-purpose digital I/O / LCD segment output 12 (see Note 1)
P3.6/S11
23
I/O
General-purpose digital I/O / LCD segment output 11 (see Note 1)
P3.7/S10
22
I/O
General-purpose digital I/O / LCD segment output 10 (see Note 1)
NOTE 3: LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
Terminal Functions − MSP430x415, MSP430x417 (Continued)
TERMINAL
NAME
NO.
I/O
DESCRIPTION
P4.0/S9
21
I/O
General-purpose digital I/O / LCD segment output 9 (see Note 1)
P4.1/S8
20
I/O
General-purpose digital I/O / LCD segment output 8 (see Note 1)
P4.2/S7
19
I/O
General-purpose digital I/O / LCD segment output 7 (see Note 1)
P4.3/S6
18
I/O
General-purpose digital I/O / LCD segment output 6 (see Note 1)
P4.4/S5
17
I/O
General-purpose digital I/O / LCD segment output 5 (see Note 1)
P4.5/S4
16
I/O
General-purpose digital I/O / LCD segment output 4 (see Note 1)
P4.6/S3
15
I/O
General-purpose digital I/O / LCD segment output 3 (see Note 1)
P4.7/S2
14
I/O
General-purpose digital I/O / LCD segment output 2 (see Note 1)
P5.0/S1
13
I/O
General-purpose digital I/O / LCD segment output 1 (see Note 1)
P5.1/S0
12
I/O
General-purpose digital I/O / LCD segment output 0 (see Note 1)
COM0
36
O
Common output. COM0−3 are used for LCD backplanes.
P5.2/COM1
37
I/O
General-purpose digital I/O / common output. COM0−3 are used for LCD backplanes.
P5.3/COM2
38
I/O
General-purpose digital I/O / common output. COM0−3 are used for LCD backplanes.
P5.4/COM3
39
I/O
General-purpose digital I/O / common output. COM0−3 are used for LCD backplanes.
R03
40
I
P5.5/R13
41
I/O
General-purpose digital I/O / input port of third most positive analog LCD level (V4 or V3)
P5.6/R23
42
I/O
General-purpose digital I/O / input port of second most positive analog LCD level (V2)
P5.7/R33
43
I/O
General-purpose digital I/O / output port of most positive analog LCD level (V1)
P6.0
59
I/O
General-purpose digital I/O
P6.1
60
I/O
General-purpose digital I/O
P6.2
61
I/O
General-purpose digital I/O
P6.3
2
I/O
General-purpose digital I/O
P6.4
3
I/O
General-purpose digital I/O
P6.5
4
I/O
General-purpose digital I/O
P6.6
5
I/O
General-purpose digital I/O
P6.7/SVSIN
6
I/O
General-purpose digital I/O / SVS, analog input
RST/NMI
58
I
Reset input / Nonmaskable interrupt input port
TCK
57
I
Test clock. TCK is the clock input port for device programming and test.
TDI/TCLK
55
I
Test data input / Test clock input. The device protection fuse is connected to TDI.
TDO/TDI
54
I/O
TMS
56
I
Test mode select. TMS is used as an input port for device programming and test.
XIN
8
I
Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT
9
O
Output terminal of crystal oscillator XT1.
NA
NA
QFN Pad
Input port of fourth positive (lowest) analog LCD level (V5)
Test data output port. TDO/TDI data output or programming data input terminal.
QFN package pad connection to VSS recommended
NOTE 4: LCD function selected automatically when applicable LCD module control bits are set, not with PxSEL bits.
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
short-form description
CPU
The MSP430 CPU has a 16-bit RISC architecture
that is highly transparent to the application. All
operations, other than program-flow instructions,
are performed as register operations in
conjunction with seven addressing modes for
source operand and four addressing modes for
destination operand.
Program Counter
PC/R0
Stack Pointer
SP/R1
Status Register
SR/CG1/R2
Constant Generator
The CPU is integrated with 16 registers that
provide reduced instruction execution time. The
register-to-register operation execution time is
one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as
program counter, stack pointer, status register,
and constant generator, respectively. The
remaining registers are general-purpose
registers.
Peripherals are connected to the CPU using data,
address, and control buses, and can be handled
with all instructions.
instruction set
The instruction set consists of 51 instructions with
three formats and seven address modes. Each
instruction can operate on word and byte data.
Table 1 shows examples of the three types of
instruction formats; the address modes are listed
in Table 2.
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
General-Purpose Register
R10
General-Purpose Register
R11
General-Purpose Register
R12
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
Table 1. Instruction Word Formats
Dual operands, source-destination
e.g. ADD R4,R5
R4 + R5 −−−> R5
Single operands, destination only
e.g. CALL
PC −−>(TOS), R8−−> PC
Relative jump, un/conditional
e.g. JNE
R8
Jump-on-equal bit = 0
Table 2. Address Mode Descriptions
ADDRESS MODE
S D
Indirect
D
D
D
D
D
Indirect
autoincrement
Register
Indexed
Symbolic (PC relative)
Absolute
Immediate
NOTE: S = source
D
D
D
D
SYNTAX
EXAMPLE
MOV Rs,Rd
MOV R10,R11
MOV X(Rn),Y(Rm)
MOV 2(R5),6(R6)
MOV EDE,TONI
OPERATION
R10
−−> R11
M(2+R5)−−> M(6+R6)
M(EDE) −−> M(TONI)
MOV &MEM,&TCDAT
M(MEM) −−> M(TCDAT)
MOV @Rn,Y(Rm)
MOV @R10,Tab(R6)
M(R10) −−> M(Tab+R6)
D
MOV @Rn+,Rm
MOV @R10+,R11
M(R10) −−> R11
R10 + 2−−> R10
D
MOV #X,TONI
MOV #45,TONI
#45
−−> M(TONI)
D = destination
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
operating modes
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt
event can wake up the device from any of the five low-power modes, service the request and restore back to
the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
D Active mode (AM)
−
All clocks are active.
D Low-power mode 0 (LPM0)
−
CPU is disabled.
−
ACLK and SMCLK remain active, MCLK is available to modules.
−
FLL+ loop control remains active.
D Low-power mode 1 (LPM1)
−
CPU is disabled.
−
ACLK and SMCLK remain active. MCLK is available to modules.
−
FLL+ loop control is disabled.
D Low-power mode 2 (LPM2)
−
CPU is disabled.
−
MCLK, FLL+ loop control, and DCOCLK are disabled.
−
DCO’s dc generator remains enabled.
−
ACLK remains active.
D Low-power mode 3 (LPM3)
−
CPU is disabled.
−
MCLK, FLL+ loop control, and DCOCLK are disabled.
−
DCO’s dc generator is disabled.
−
ACLK remains active.
D Low-power mode 4 (LPM4)
10
−
CPU is disabled.
−
ACLK is disabled.
−
MCLK, FLL+ loop control, and DCOCLK are disabled.
−
DCO’s dc generator is disabled.
−
Crystal oscillator is stopped.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
interrupt vector addresses
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFE0h.
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM INTERRUPT
WORD ADDRESS
PRIORITY
Power-up
External reset
Watchdog
Flash memory
WDTIFG
KEYV
(see Note 1)
Reset
0FFFEh
15, highest
NMI
Oscillator fault
Flash memory access violation
NMIIFG (see Notes 1 and 3)
OFIFG (see Notes 1 and 3)
ACCVIFG (see Notes 1 and 3)
(Non)maskable
(Non)maskable
(Non)maskable
0FFFCh
14
Timer1_A5 (see Note 4)
TA1CCR0 CCIFG (see Note 2)
Maskable
0FFFAh
13
Timer1_A5 (see Note 4)
TA1CCR1 to TA1CCR4
CCIFGs and TA1CTL TAIFG
(see Notes 1 and 2)
Maskable
0FFF8h
12
Comparator_A
CMPAIFG
Maskable
0FFF6h
11
Watchdog timer
WDTIFG
Maskable
0FFF4h
10
0FFF2h
9
0FFF0h
8
Timer_A3/Timer0_A3
TACCR0/TA0CCR0 CCIFG
(see Note 2)
0FFEEh
7
Maskable
0FFECh
6
Timer_A3/Timer0_A3
TACCR1/TA0CCR1,
TACCR2/TA0CCR2 CCIFGs
and TACLT/TA0CTL TAIFG
(see Notes 1 and 2)
Maskable
0FFEAh
5
I/O port P1 (eight flags)
P1IFG.0 to P1IFG.7
(see Notes 1 and 2)
Maskable
0FFE8h
4
0FFE6h
3
0FFE4h
2
I/O port P2 (eight flags)
P2IFG.0 to P2IFG.7
(see Notes 1 and 2)
Maskable
0FFE2h
1
Basic Timer1
BTIFG
Maskable
0FFE0h
0, lowest
NOTES: 1.
2.
3.
4.
Multiple source flags
Interrupt flags are located in the module.
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt-enable cannot.
Implemented in MSP430x415 and MSP430x417 devices only
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
special function registers
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits
that are not allocated to a functional purpose are not physically present in the device. Simple software access
is provided with this arrangement.
interrupt enable 1 and 2
7
Address
6
0h
5
4
ACCVIE
NMIIE
rw-0
7
Address
1h
6
3
2
rw-0
5
1
0
OFIE
WDTIE
rw-0
4
3
2
rw-0
1
0
BTIE
rw-0
WDTIE:
Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is
configured in interval timer mode.
OFIE:
Oscillator fault interrupt enable
NMIIE:
Nonmaskable interrupt enable
ACCVIE:
Flash access violation interrupt enable
BTIE:
Basic Timer1 interrupt enable
interrupt flag register 1 and 2
7
Address
6
5
02h
4
3
2
NMIIFG
OFIFG
rw-0
7
Address
3h
6
5
1
rw-1
4
3
2
0
WDTIFG
rw-(0)
1
0
BTIFG
rw-0
WDTIFG:
Set on watchdog-timer overflow (in watchdog mode) or security key violation. Reset with VCC power-up,
or a reset condition at the RST/NMI pin in reset mode.
OFIFG:
Flag set on oscillator fault
NMIIFG:
Set via RST/NMI pin
BTIFG:
Basic Timer1 interrupt flag
module enable registers 1 and 2
Address
7
6
5
4
3
04h/05h
Legend: rw−0,1:
rw−(0,1):
12
Bit Can Be Read and Written. It Is Reset or Set by PUC.
Bit Can Be Read and Written. It Is Reset or Set by POR.
SFR Bit Not Present in Device.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2
1
0
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
memory organization
MSP430F412
MSP430F413
MSP430F415
MSP430F417
Size
Flash
Flash
4KB
0FFFFh to 0FFE0h
0FFFFh to 0F000h
8KB
0FFFFh to 0FFE0h
0FFFFh to 0E000h
16KB
0FFFFh to 0FFE0h
0FFFFh to 0C000h
32KB
0FFFFh to 0FFE0h
0FFFFh to 08000h
Information memory
Size
Flash
256 Byte
010FFh to 01000h
256 Byte
010FFh to 01000h
256 Byte
010FFh to 01000h
256 Byte
010FFh to 01000h
Boot memory
Size
ROM
1KB
0FFFh to 0C00h
1KB
0FFFh to 0C00h
1KB
0FFFh to 0C00h
1KB
0FFFh to 0C00h
Size
256 Byte
02FFh to 0200h
256 Byte
02FFh to 0200h
512 Byte
03FFh to 0200h
1 KB
05FFh to 0200h
16-bit
8-bit
8-bit SFR
01FFh to 0100h
0FFh to 010h
0Fh to 00h
01FFh to 0100h
0FFh to 010h
0Fh to 00h
01FFh to 0100h
0FFh to 010h
0Fh to 00h
01FFh to 0100h
0FFh to 010h
0Fh to 00h
Memory
Interrupt vector
Code memory
RAM
Peripherals
MSP430C412
MSP430C413
Size
ROM
ROM
4KB
0FFFFh to 0FFE0h
0FFFFh to 0F000h
8KB
0FFFFh to 0FFE0h
0FFFFh to 0E000h
Information memory
Size
NA
NA
Boot memory
Size
NA
NA
Size
256 Byte
02FFh to 0200h
256 Byte
02FFh to 0200h
16-bit
8-bit
8-bit SFR
01FFh to 0100h
0FFh to 010h
0Fh to 00h
01FFh to 0100h
0FFh to 010h
0Fh to 00h
Memory
Interrupt vector
Code memory
RAM
Peripherals
bootstrap loader (BSL)
The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access
to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the
features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap
Loader, literature number SLAA089.
BSL FUNCTION
PM, RTD, RGC PACKAGE PINS
Data Transmit
53 - P1.0
Data Receive
52 - P1.1
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
flash memory
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128
bytes each. Each segment in main memory is 512 bytes in size.
D Segments 0 to n may be erased in one step, or each segment may be individually erased.
D Segments A and B can be erased individually, or as a group with segments 0 to n.
Segments A and B are also called information memory.
D New devices may have some bytes programmed in the information memory (needed for test during
manufacturing). The user should perform an erase of the information memory prior to the first use.
4KB
0FFFFh
8KB
16KB
0FFFFh 0FFFFh
32KB
0FFFFh
0FE00h 0FE00h 0FE00h 0FE00h
0FDFFh 0FDFFh 0FDFFh 0FDFFh
Segment 0
With Interrupt Vectors
Segment 1
0FC00h 0FC00h 0FC00h 0FC00h
0FBFFh 0FBFFh 0FBFFh 0FBFFh
Segment 2
0FA00h
0F9FFh
0FA00h
0F9FFh
0FA00h
0F9FFh
0FA00h
0F9FFh
Main Memory
08400h
0F3FFh
0E400h 0C400h
0E3FFh 0C3FFh
083FFh
0F200h
0F1FFh
0E200h 0C200h
0E1FFh 0C1FFh
08200h
081FFh
0F000h
010FFh
0E000h
010FFh
0C000h
010FFh
08000h
010FFh
01080h
0107Fh
01080h
0107Fh
01080h
0107Fh
01080h
0107Fh
0F400h
Segment n−1
Segment n
Segment A
Information Memory
Segment B
01000h
14
01000h
01000h
01000h
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all
instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number
SLAU056.
oscillator and system clock
The clock system in the MSP430x41x family of devices is supported by the FLL+ module that includes support
for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO), and a high-frequency
crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low
power consumption. The FLL+ features a digital frequency locked loop (FLL) hardware which in conjunction
with a digital modulator stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency.
The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 μs. The FLL+ module
provides the following clock signals:
D
D
D
D
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.
Main clock (MCLK), the system clock used by the CPU.
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules.
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8.
brownout, supply voltage supervisor
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on
and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a fixed
level or user selectable level (MSP430x415 & MSP430x417 only) and supports both supply voltage supervision
(the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset).
The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not
have ramped to VCC(min) at that time. The user must ensure the default FLL+ settings are not changed until VCC
reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min).
digital I/O
There are six 8-bit I/O ports implemented—ports P1 through P6.
D
D
D
D
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt conditions is possible.
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
Read/write access to port-control registers is supported by all instructions.
Basic Timer1
Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers
can be read and written by software. Basic Timer1 can be used to generate periodic interrupts and clock for the
LCD module.
LCD driver
The LCD driver generates the segment and common signals required to drive an LCD display. The LCD
controller has dedicated data memory to hold segment drive information. Common and segment signals are
generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
watchdog timer (WDT)
The primary function of the WDT module is to perform a controlled system restart after a software problem
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed
in an application, the module can be configured as an interval timer and can generate interrupts at selected time
intervals.
comparator_A
The primary function of the comparator_A module is to support precision slope analog-to-digital conversions,
battery−voltage supervision, and monitoring of external analog signals.
Timer_A3/Timer0_A3
Timer_A3/Timer0_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3/Timer0_A3 can
support multiple capture/compares, PWM outputs, and interval timing. Timer_A3/Timer0_A3 also has extensive
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of
the capture/compare registers.
TIMER_A3/TIMER0_A3 SIGNAL CONNECTIONS
INPUT PIN
NUMBER
DEVICE INPUT
SIGNAL
MODULE INPUT
NAME
48 - P1.5
TACLK/TA0CLK
TACLK
ACLK
ACLK
SMCLK
SMCLK
48 - P1.5
TACLK/TA0CLK
INCLK
53 - P1.0
TA0/TA0.0
CCI0A
52 - P1.1
TA0/TA0.0
CCI0B
DVSS
GND
51 - P1.2
45 - P2.0
16
DVCC
VCC
TA1/TA0.1
CCI1A
CAOUT (internal)
CCI1B
DVSS
GND
DVCC
VCC
TA2/TA0.2
CCI2A
ACLK (internal)
CCI2B
DVSS
GND
DVCC
VCC
POST OFFICE BOX 655303
MODULE BLOCK
MODULE OUTPUT
SIGNAL
Timer
NA
OUTPUT PIN
NUMBER
53 - P1.0
CCR0
TA0/TA0 0
TA0/TA0.0
51 - P1.2
CCR1
TA1/TA0 1
TA1/TA0.1
45 - P2.0
CCR2
• DALLAS, TEXAS 75265
TA2/TA0 2
TA2/TA0.2
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
Timer1_A5 (MSP430x415 and MSP430x417 only)
Timer1_A5 is a 16-bit timer/counter with five capture/compare registers. Timer1_A5 can support multiple
capture/compares, PWM outputs, and interval timing. Timer1_A5 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
TIMER1_A5 SIGNAL CONNECTIONS
INPUT PIN
NUMBER
DEVICE INPUT
SIGNAL
MODULE INPUT
NAME
32 - P2.5
TA1CLK
TACLK
ACLK
ACLK
SMCLK
SMCLK
32 - P2.5
TA1CLK
INCLK
49 - P1.4
TA1.0
CCI0A
50 - P1.3
TA1.0
CCI0B
DVSS
GND
44 - P2.1
35 - P2.2
34 - P2.3
33 - P2.4
DVCC
VCC
TA1.1
CCI1A
CAOUT (internal)
CCI1B
DVSS
GND
DVCC
VCC
TA1.2
CCI2A
Not Connected
CCI2B
DVSS
GND
DVCC
VCC
TA1.3
CCI3A
Not Connected
CCI3B
DVSS
GND
DVCC
VCC
TA1.4
CCI4A
Not Connected
CCI4B
DVSS
GND
DVCC
VCC
POST OFFICE BOX 655303
MODULE BLOCK
MODULE OUTPUT
SIGNAL
Timer
NA
OUTPUT PIN
NUMBER
49 - P1.4
CCR0
TA1 0
TA1.0
44 - P2.1
CCR1
TA1 1
TA1.1
35 - P2.2
CCR2
TA1 2
TA1.2
34 - P2.3
CCR3
TA1 3
TA1.3
33 - P2.4
CCR4
• DALLAS, TEXAS 75265
TA1 4
TA1.4
17
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
peripheral file map
PERIPHERALS WITH WORD ACCESS
Watchdog
Watchdog Timer control
WDTCTL
0120h
Timer1_A5
_
(MSP430x415 and
MSP430x417 only)
Timer1_A interrupt vector
TA1IV
011Eh
Timer1_A control
TA1CTL
0180h
Capture/compare control 0
TA1CCTL0
0182h
Capture/compare control 1
TA1CCTL1
0184h
Capture/compare control 2
TA1CCTL2
0186h
Capture/compare control 3
TA1CCTL3
0188h
Capture/compare control 4
TA1CCTL4
018Ah
Reserved
018Ch
Reserved
018Eh
Timer1_A register
TA1R
0190h
Capture/compare register 0
TA1CCR0
0192h
Capture/compare register 1
TA1CCR1
0194h
Capture/compare register 2
TA1CCR2
0196h
Capture/compare register 3
TA1CCR3
0198h
Capture/compare register 4
TA1CCR4
019Ah
Reserved
019Ch
Reserved
Timer_A3/Timer0_A3
_
_
019Eh
Timer_A/Timer0_A interrupt vector
TAIV/TA0IV
012Eh
Timer_A/Timer0_A control
TACTL/TA0CTL
0160h
Capture/compare control 0
TACCTL0/TA0CCTL0
0162h
Capture/compare control 1
TACCTL1/TA0CCTL1
0164h
Capture/compare control 2
TACCTL2/TA0CCTL2
0166h
Reserved
0168h
Reserved
016Ah
Reserved
016Ch
Reserved
016Eh
Timer_A/Timer0_A register
TAR/TA0R
0170h
Capture/compare register 0
TACCR0/TA0CCR0
0172h
Capture/compare register 1
TACCR1/TA0CCR1
0174h
Capture/compare register 2
TACCR2/TA0CCR2
0176h
Reserved
0178h
Reserved
017Ah
Reserved
017Ch
Reserved
Flash
18
017Eh
Flash control 3
FCTL3
012Ch
Flash control 2
FCTL2
012Ah
Flash control 1
FCTL1
0128h
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS
LCD
Comparator_A
p
_
LCD memory 20
LCDM20
0A4h
:
:
:
LCD memory 16
LCDM16
0A0h
LCD memory 15
LCDM15
09Fh
:
:
:
LCD memory 1
LCDM1
091h
LCD control and mode
LCDCTL
090h
Comparator_A port disable
CAPD
05Bh
Comparator_A control2
CACTL2
05Ah
Comparator_A control1
CACTL1
059h
Brownout, SVS
SVS control register
SVSCTL
056h
FLL+ Clock
FLL+ Control1
FLL_CTL1
054h
FLL+ Control0
FLL_CTL0
053h
System clock frequency control
SCFQCTL
052h
System clock frequency integrator
SCFI1
051h
System clock frequency integrator
SCFI0
050h
BT counter2
BTCNT2
047h
BT counter1
BTCNT1
046h
BT control
BTCTL
040h
Port P6 selection
P6SEL
037h
Port P6 direction
P6DIR
036h
Port P6 output
P6OUT
035h
Port P6 input
P6IN
034h
Port P5 selection
P5SEL
033h
Port P5 direction
P5DIR
032h
Port P5 output
P5OUT
031h
Port P5 input
P5IN
030h
Port P4 selection
P4SEL
01Fh
Port P4 direction
P4DIR
01Eh
Port P4 output
P4OUT
01Dh
Port P4 input
P4IN
01Ch
Port P3 selection
P3SEL
01Bh
Port P3 direction
P3DIR
01Ah
Port P3 output
P3OUT
019h
Port P3 input
P3IN
018h
Port P2 selection
P2SEL
02Eh
Port P2 interrupt enable
P2IE
02Dh
Port P2 interrupt-edge select
P2IES
02Ch
Port P2 interrupt flag
P2IFG
02Bh
Port P2 direction
P2DIR
02Ah
Port P2 output
P2OUT
029h
Port P2 input
P2IN
028h
Basic Timer1
Port P6
Port P5
Port P4
Port P3
Port P2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS (CONTINUED)
Port P1
Special
p
Functions
Port P1 selection
P1SEL
026h
Port P1 interrupt enable
P1IE
025h
Port P1 interrupt-edge select
P1IES
024h
Port P1 interrupt flag
P1IFG
023h
Port P1 direction
P1DIR
022h
Port P1 output
P1OUT
021h
Port P1 input
P1IN
020h
SFR module enable 2
ME2
005h
SFR module enable 1
ME1
004h
SFR interrupt flag2
IFG2
003h
SFR interrupt flag1
IFG1
002h
SFR interrupt enable2
IE2
001h
SFR interrupt enable1
IE1
000h
absolute maximum ratings†
Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to + 4.1 V
Voltage applied to any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA
Storage temperature:
Unprogrammed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C
Programmed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage
is applied to the TDI/TCLK pin when blowing the JTAG fuse.
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
recommended operating conditions
PARAMETER
MIN
Supply voltage during program execution,
VCC (AVCC = DVCC = VCC) (see Note 1)
Supply voltage during program execution, SVS enabled and PORON = 1,
VCC (AVCC = DVCC = VCC) (see Note 1 and Note 2)
Supply voltage during programming of flash memory,
VCC (AVCC = DVCC = VCC)
3.6
MSP430x412/413
2.2
3.6
MSP430x415/417
2.0
3.6
MSP430F41x
2.7
3.6
V
0
0
V
−40
LF selected, XTS_FLL=0
Watch crystal
XT1 selected, XTS_FLL=1
Ceramic resonator
XT1 selected, XTS_FLL=1
Crystal
Processor frequency (signal MCLK),
MCLK) f(System)
UNITS
1.8
MSP430x41x
LFXT1 crystal
t l frequency,
f
f(LFXT1)
(see Note 3)
MAX
MSP430x41x
Supply voltage, VSS (AVSS/1/2 = DVSS = VSS)
Operating free-air temperature range, TA
NOM
85
32768
V
V
°C
Hz
450
8000
1000
8000
VCC = 1.8 V
DC
4.15
VCC = 3.6 V
DC
8
kHz
MHz
f(System) − Maximum Processor Frequency − MHz
NOTES: 1. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can
be tolerated during power up and operation.
2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing supply voltage.
POR is going inactive when the supply voltage is raised above minimum supply voltage plus the hysteresis of the SVS circuitry.
3. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.
f (MHz)
Supply Voltage Range
During Programming of
the Flash Memory
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
8 MHz
Supply Voltage Range, x41x
During Program Execution
4.15 MHz
1.8 V
2.7 V
3V
3.6 V
VCC − Supply Voltage − V
Figure 1. Frequency vs Supply Voltage
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
supply current into AVCC + DVCC excluding external current (see Note 1)
PARAMETER
TEST CONDITIONS
Active mode,
f(MCLK) = f(SMCLK) = f(DCO) = 1 MHz,
f(ACLK) = 32,768 Hz, XTS_FLL = 0
(F41x: Program executes in flash)
I(AM)
I(LPM2)
MAX
160
200
3V
240
300
2.2 V
200
250
3V
300
350
2.2 V
32
45
3V
55
70
2.2 V
57
70
3V
92
100
2.2 V
11
14
3V
17
22
0.95
1.4
0.8
1.3
0.7
1.2
TA = 60°C
0.95
1.4
C41x
40°C to 85°C
TA = −40°C
F41x
Low-power mode (LPM0)
f(MCLK) = f(SMCLK) = f(DCO) = 0.5 MHz,
f(ACLK) = 32,768 Hz, XTS_FLL = 0
FN_8=FN_4=FN_3=FN_2=0 (see Note 3)
I(LPM0)
TYP
2.2 V
Low-power mode (LPM0)
f(MCLK) = f(SMCLK) = f(DCO) = 1 MHz,
f(ACLK) = 32,768 Hz, XTS_FLL = 0
FN_8=FN_4=FN_3=FN_2=0 (see Note 3)
C41x
F41x
Low power mode (LPM2) (see Note 3)
Low-power
VCC
40°C to 85°C
TA = −40°C
TA = −10°C
TA = 25°C
Low power mode (LPM3) (see Note 2 and Note 3)
Low-power
2.2 V
TA = 85°C
1.6
2.3
TA = −40°C
1.1
1.7
TA = −10°C
1.0
1.6
TA = 25°C
0.9
1.5
TA = 60°C
1.1
1.7
TA = 85°C
2.0
2.6
0.1
0.5
0.1
0.5
0.8
2.5
3V
TA = −40°C
I(LPM4)
Low-power
Low
power mode (LPM4) (see Note 3)
TA = 25°C
TA = 85°C
UNIT
A
μA
μA
A
TA = −40°C
40°C to 85°C
TA = −40°C
I(LPM3)
MIN
2.2 V/3 V
A
μA
μA
A
μA
NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. The current consumption is measured with active Basic
Timer1 and LCD (ACLK selected).
The current consumption of the Comparator_A and the SVS module are specified in the respective sections.
2. The LPM3 currents are characterized with a KDS Daishinku DT−38 (6 pF) crystal.
3. Current for brownout included.
current consumption of active mode versus system frequency
I(AM) = I(AM) [1 MHz] × f(System) [MHz]
current consumption of active mode versus supply voltage
I(AM) = I(AM) [3 V] + 140 μA/V × (VCC – 3 V)
22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
Schmitt-trigger inputs − ports P1, P2, P3, P4, P5, and P6
PARAMETER
VIT+
Positive going input threshold voltage
Positive-going
VIT−
Negative going input threshold voltage
Negative-going
Vhys
Input voltage hysteresis (VIT+ − VIT−)
VCC
MIN
MAX
2.2 V
1.1
1.5
3V
1.5
1.9
2.2 V
0.4
0.9
3V
0.9
1.3
2.2 V
0.3
1.1
3V
0.45
1
VCC
MIN
MAX
UNIT
V
V
V
standard inputs − RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI)
PARAMETER
VIL
Low-level input voltage
VIH
High-level input voltage
2 2 V/3 V
2.2
UNIT
VSS
VSS+0.6
V
0.8×VCC
VCC
V
MAX
UNIT
inputs Px.x, TAx/TAx.x
PARAMETER
t(int)
TEST CONDITIONS
Port P1, P2: P1.x to P2.x, External
trigger
gg signal
g
for the interrupt
p flag
g
(
(see
Note
N
1))
External interrupt
p timing
g
t(cap)
(
)
Timer A capture timing
Timer_A,
TAx/TAx
y
TAx/TAx.y
f(TAext)
Timer_A clock frequency externally applied
to pin
TACLK/TAxCLK,
TACLK/TAxCLK INCLK t(H) = t(L)
f(TAint)
Timer A clock frequency
Timer_A
SMCLK or ACLK signal selected
VCC
MIN
2.2 V/3 V
1.5
2.2 V
62
3V
50
2.2 V
62
3V
50
cycle
ns
ns
2.2 V
8
3V
10
2.2 V
8
3V
10
MHz
MHz
NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) cycle and time parameters are met. It may be set even with
trigger signals shorter than t(int). Both the cycle and timing specifications must be met to ensure the flag is set. t(int) is measured in
MCLK cycles.
leakage current (see Note 1)
PARAMETER
TEST CONDITIONS
VCC
MIN
MAX
Ilkg(P1.x)
Port P1
V(P1.x) (see Note 2)
±50
Ilkg(P2.x)
Port P2
V(P2.x) (see Note 2)
±50
Ilkg(P3.x)
Port P3
V(P3.x) (see Note 2)
Port P4
V(P4.x) (see Note 2)
Ilkg(P5.x)
Port P5
V(P5.x) (see Note 2)
±50
Ilkg(P6.x)
Port P6
V(P6.x) (see Note 2)
±50
Ilkg(P4.x)
Leakage current
2 2 V/3 V
2.2
±50
±50
UNIT
nA
NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
2. The port pin must be selected as an input.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
outputs − ports P1, P2, P3, P4, P5, and P6
PARAMETER
VOH
VOL
TEST CONDITIONS
High level output voltage
High-level
VCC
MIN
MAX
IOH(max) = −1.5 mA, See Note 1
2.2 V
VCC−0.25
VCC
IOH(max) = −6 mA, See Note 2
2.2 V
VCC−0.6
VCC
3V
VCC−0.25
VCC
IOH(max) = −6 mA, See Note 2
3V
VCC−0.6
VCC
IOL(max) = 1.5 mA, See Note 1
2.2 V
VSS
VSS+0.25
IOL(max) = 6 mA, See Note 2
IOH(max) = −1.5 mA, See Note 1
Low level output voltage
Low-level
2.2 V
VSS
VSS+0.6
IOL(max) = 1.5 mA, See Note 1
3V
VSS
VSS+0.25
IOL(max) = 6 mA, See Note 2
3V
VSS
VSS+0.6
UNIT
V
V
NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum
specified voltage drop.
2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±24 mA to satisfy the maximum
specified voltage drop.
output frequency
PARAMETER
TEST CONDITIONS
fPx.y
6 0 ≤ y ≤ 7)
(1 ≤ x ≤ 6,
CL = 20 pF,
IL = ± 1.5mA
fACLK,
fMCLK,
fSMCLK
P1 1/TA0/MCLK P1.5/TACLK/ACLK
P1.1/TA0/MCLK,
P1 5/TACLK/ACLK
CL = 20 pF
VCC = 3 V
DC
12
UNIT
MHz
8
MHz
Duty cycle of output frequency
POST OFFICE BOX 655303
MAX
10
VCC = 3 V
P1.1/TA0/MCLK,
CL = 20 pF,
pF
VCC = 2.2 V / 3 V
24
TYP
DC
VCC = 2.2 V
P1.5/TACLK/ACLK,
CL = 20 pF
VCC = 2.2 V / 3 V
tXdc
MIN
VCC = 2.2 V
12
fACLK = fLFXT1 = fXT1
40%
60%
fACLK = fLFXT1 = fLF
30%
70%
fACLK = fLFXT1/n
50%
fMCLK = fLFXT1/n
50%−
15 ns
50%
50%+
15 ns
fMCLK = fDCOCLK
50%−
15 ns
50%
50%+
15 ns
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
MSP430x412, MSP430x413 outputs − ports P1, P2, P3, P4, P5, and P6 (see Note A)
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
25
TA = 25°C
VCC = 2.2 V
P1.0
14
12
IOL − Typical Low-Level Output Current − mA
IOL − Typical Low-Level Output Current − mA
16
TA = 85°C
10
8
6
4
2
0
0.0
0.5
1.0
1.5
2.0
VCC = 3 V
P1.0
20
TA = 85°C
15
10
5
0
0.0
2.5
TA = 25°C
0.5
VOL − Low-Level Output Voltage − V
1.0
Figure 2
3.0
3.5
0
VCC = 2.2 V
P1.0
IOH − Typical High-Level Output Current − mA
IOH − Typical High-Level Output Current − mA
2.5
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0
−4
−6
−8
−10
TA = 85°C
−12
TA = 25°C
−14
0.0
2.0
Figure 3
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
−2
1.5
VOL − Low-Level Output Voltage − V
0.5
1.0
1.5
2.0
2.5
VCC = 3 V
P1.0
−5
−10
−15
−20
TA = 85°C
−25
−30
0.0
TA = 25°C
0.5
VOH − High-Level Output Voltage − V
1.0
1.5
2.0
2.5
3.0
3.5
VOH − High-Level Output Voltage − V
Figure 4
Figure 5
NOTE A: One output loaded at a time
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
MSP430x415, MSP430x417 outputs − ports P1, P2, P3, P4, P5, and P6 (see Note A)
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
40
TA = 25°C
VCC = 2.2 V
P2.4
IOL − Typical Low-Level Output Current − mA
IOL − Typical Low-Level Output Current − mA
25
20
TA = 85°C
15
10
5
0
0.0
0.5
1.0
1.5
2.0
VCC = 3 V
P2.4
35
TA = 85°C
30
25
20
15
10
5
0
0.0
2.5
TA = 25°C
0.5
VOL − Low-Level Output Voltage − V
1.0
Figure 6
IOH − Typical High-Level Output Current − mA
IOH − Typical High-Level Output Current − mA
3.0
3.5
0
VCC = 2.2 V
P2.4
−5
−10
−15
TA = 85°C
TA = 25°C
0.5
1.0
1.5
2.0
2.5
−5
VCC = 3 V
P2.4
−10
−15
−20
−25
−30
−35
TA = 85°C
−40
−45
TA = 25°C
−50
0.0
VOH − High-Level Output Voltage − V
0.5
1.0
1.5
2.0
Figure 9
NOTE B: One output loaded at a time
POST OFFICE BOX 655303
2.5
3.0
VOH − High-Level Output Voltage − V
Figure 8
26
2.5
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0
−25
0.0
2.0
Figure 7
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
−20
1.5
VOL − Low-Level Output Voltage − V
• DALLAS, TEXAS 75265
3.5
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
wake-up LPM3
PARAMETER
TEST CONDITIONS
MIN
MAX
f = 1 MHz
td(LPM3)
6
f = 2 MHz
Delay time
UNIT
6
VCC = 2.2 V/3 V
f = 3 MHz
μs
6
RAM (see Note 1)
PARAMETER
TEST CONDITIONS
VRAMh
MIN
CPU halted (see Note 1)
MAX
1.6
UNIT
V
NOTE 1: This parameter defines the minimum supply voltage when the data in the program memory RAM remain unchanged. No program
execution should take place during this supply voltage condition.
LCD
PARAMETER
V(33)
V(23)
V(13)
TEST CONDITIONS
Voltage at P5.5/R13
Voltage at R33/R03
I(R03)
R03 = VSS
Input
p leakage
g
P5.5/R13 = VCC/3
P5.6/R23 = 2 × VCC/3
I(R23)
TYP
2.5
MAX
VCC = 3 V
V
(V(33)−V(03)) × 1/3 + V(03)
2.5
VCC + 0.2
±20
No load at all
segment and
common lines
lines,
VCC = 3 V
±20
V(03)
V(03) − 0.1
V(Sxx1)
V(13)
V(13) − 0.1
V(23)
V(23) − 0.1
V(33)
V(33) + 0.1
Segment line
voltage
I(Sxx) = −3
3 μA,
A
VCC = 3 V
V(Sxx3)
POST OFFICE BOX 655303
nA
±20
V(Sxx0)
V(Sxx2)
UNIT
VCC +0.2
(V33−V03) × 2/3 + V03
Voltage at P5.6/R23
Analog voltage
V(33) − V(03)
I(R13)
MIN
Voltage at P5.7/R33
• DALLAS, TEXAS 75265
V
27
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
Comparator_A (see Note 1)
PARAMETER
TEST CONDITIONS
I(CC)
CAON = 1
1, CARSEL = 0
0, CAREF = 0
I(Refladder/RefDiode)
CAON = 1, CARSEL = 0,
CAREF = 1/2/3
1/2/3,
No load at P1.6/CA0 and P1.7/CA1
VCC
MIN
TYP
MAX
2.2 V
25
40
3V
45
60
2.2 V
30
50
3V
45
71
UNIT
μA
A
μA
A
V(Ref025)
Voltage @ 0.25 V CC node PCA0 = 1, CARSEL = 1, CAREF = 1,
No load at P1.6/CA0 and P1.7/CA1
V CC
2.2 V / 3 V
0.23
0.24
0.25
V(Ref050)
Voltage @ 0.5 V CC node
PCA0 = 1, CARSEL = 1, CAREF = 2,
No load at P1.6/CA0 and P1.7/CA1
2.2V / 3 V
0.47
0.48
0.50
See Figure 10 and
Figure 11
PCA0 = 1, CARSEL = 1, CAREF = 3,
P1 6/CA0 and P1.7/CA1;
P1 7/CA1;
No load at P1.6/CA0
TA = 85°C
2.2 V
390
480
540
V(RefVT)
3V
400
490
550
V(IC)
Common-mode input
voltage range
CAON = 1
2. 2 V/3 V
0
VCC−1.0
V(offset)
Offset voltage
See Note 2
2.2 V/3 V
−30
30
mV
Vhys
Input hysteresis
CAON = 1
2.2 V/3 V
mV
t(response LH)
t(response HL)
V CC
mV
0
0.7
1.4
TA = 25
25°C,
C,
Overdrive 10 mV, Without filter: CAF = 0
2.2 V
160
210
300
3V
80
150
240
TA = 25
25°C
C
Overdrive 10 mV, With filter: CAF = 1
2.2 V
1.4
1.9
3.4
3V
0.9
1.5
2.6
TA = 25
25°C
C
Overdrive 10 mV, Without filter: CAF = 0
2.2 V
130
210
300
3V
80
150
240
TA = 25
25°C,
C,
Overdrive 10 mV, With filter: CAF = 1
2.2 V
1.4
1.9
3.4
3V
0.9
1.5
2.6
V
ns
μss
ns
μss
NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification.
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.
The two successive measurements are then summed together.
28
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
650
650
VCC = 2.2 V
V(RefVT) − Reference Voltage − mV
V(RefVT) − Reference Voltage − mV
VCC = 3 V
600
Typical
550
500
450
400
−45
−25
−5
15
35
55
75
600
Typical
550
500
450
400
−45
95
−25
−5
0
35
55
75
95
Figure 11
Figure 10
0V
15
TA − Free-Air Temperature − °C
TA − Free-Air Temperature − °C
VCC
CAF
1
CAON
Low Pass Filter
V+
V−
+
_
0
0
1
1
To Internal
Modules
CAOUT
Set CAIFG
Flag
τ ≈ 2 μs
Figure 12. Comparator_A Module Block Diagram
VCAOUT
Overdrive
V−
400 mV
V+
t(response)
Figure 13. Overdrive Definition
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
POR brownout, reset (see Notes 1 and 2)
PARAMETER
TEST CONDITIONS
MIN
TYP
td(BOR)
dVCC/dt ≤ 3 V/s (see Figure 14)
VCC(start)
V(B_IT−)
Brownout
MAX
UNIT
2000
μs
0.7 × V(B_IT−)
dVCC/dt ≤ 3 V/s (see Figure 14, Figure 15, Figure 16)
Vhys(B_IT−)
dVCC/dt ≤ 3 V/s (see Figure 14)
70
t(reset)
Pulse length needed at RST/NMI pin to accepted reset internally,
VCC = 2.2 V/3 V
2
130
V
1.71
V
180
mV
μs
NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level
V(B_IT−) + Vhys(B_IT−) is ≤ 1.8 V.
2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT−) + Vhys(B_IT−). The default FLL+
settings must not be changed until VCC ≥ VCC(min). See the MSP430x4xx Family User’s Guide (SLAU056) for more information on
the brownout/SVS circuit.
VCC
Vhys(B_IT−)
V(B_IT−)
VCC(start)
1
0
td(BOR)
Figure 14. POR/Brownout Reset (BOR) vs Supply Voltage
30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
VCC
2
VCC (drop) − V
tpw
3V
V cc = 3 V
Typical Conditions
1.5
1
VCC(drop)
0.5
0
0.001
1
1000
1 ns
tpw − Pulse Width − μs
1 ns
tpw − Pulse Width − μs
Figure 15. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal
VCC
VCC (drop) − V
2
1.5
tpw
3V
V cc = 3 V
Typical Conditions
1
VCC(drop)
0.5
tf = tr
0
0.001
1
1000
tf
tr
tpw − Pulse Width − μs
tpw − Pulse Width − μs
Figure 16. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
SVS (supply voltage supervisor/monitor) (MSP430x412, MSP430x413 only) (see Notes 1 and 2)
PARAMETER
TEST CONDITIONS
MIN
dVCC/dt > 30 V/ms (see Note 2)
td(SVSR)
TYP
5
dVCC/dt ≤ 30 V/ms (see Note 2)
td(SVSon)
SVSon, switch from 0 to 1, VCC = 3 V (see Note 2)
V(SVSstart)
dVCC/dt ≤ 3 V/s (see Figure 17)
SVS
20
1.55
MAX
UNIT
150
μs
2000
μs
150
μs
1.7
V
dVCC/dt ≤ 3 V/s (see Figure 17)
1.8
1.95
2.2
V
Vhys(SVS_IT−)
dVCC/dt ≤ 3 V/s (see Figure 17)
70
100
155
mV
ICC(SVS)
(see Note 1)
VLD ≠ 0 (VLD bits are in SVSCTL register), VCC = 2.2 V/3 V
10
15
μA
V(SVS_IT−)
NOTES: 1. The current consumption of the SVS module is not included in the ICC current consumption data.
2. The SVS is not active at power up.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
SVS (supply voltage supervisor/monitor) (MSP430x415, MSP430x417 only) (see Notes 1 and 2)
PARAMETER
td(SVSR)
TEST CONDITIONS
MIN
dVCC/dt > 30 V/ms (see Figure 17)
MAX
150
dVCC/dt ≤ 30 V/ms
2000
td(SVSon)
SVSon, switch from VLD=0 to VLD ≠ 0, VCC = 3 V
tsettle
VLD ≠ 0‡
V(SVSstart)
VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 17)
20
1.55
VLD = 1
VCC/dt ≤ 3 V/s (see Figure 17)
Vhys(SVS_IT−)
VCC/dt ≤ 3 V/s (see Figure 17),
External voltage applied on SVSIN
VCC/dt ≤ 3 V/s (see Figure 17)
V(SVS_IT−)
(SVS IT )
VCC/dt ≤ 3 V/s (see Figure 17),
External voltage applied on SVSIN
ICC(SVS)
(see Note 1)
NOM
5
VLD = 2 to 14
VLD = 15
70
120
μs
12
μs
1.7
V
155
mV
V(SVS_IT−)
× 0.004
V(SVS_IT−)
× 0.008
4.4
10.4
1.8
1.9
2.05
VLD = 2
1.94
2.1
2.25
VLD = 3
2.05
2.2
2.37
VLD = 4
2.14
2.3
2.48
VLD = 5
2.24
2.4
2.6
VLD = 6
2.33
2.5
2.71
VLD = 7
2.46
2.65
2.86
VLD = 8
2.58
2.8
3
VLD = 9
2.69
2.9
3.13
VLD = 10
2.83
3.05
3.29
VLD = 11
2.94
3.2
3.42
VLD = 12
3.11
3.35
3.61†
VLD = 13
3.24
3.5
3.76†
VLD = 14
3.43
3.7†
3.99†
VLD = 15
1.1
1.2
1.3
10
15
†
μs
150
VLD = 1
VLD ≠ 0, VCC = 2.2 V/3 V
UNIT
mV
V
μA
The recommended operating voltage range is limited to 3.6 V.
tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere
between 2 and 15. The overdrive is assumed to be > 50 mV.
NOTES: 1. The current consumption of the SVS module is not included in the ICC current consumption data.
2. The SVS is not active at power up.
‡
32
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
Software Sets VLD>0:SVS is Active
VCC
V
Vhys(SVS_IT−)
(SVS_IT−)
V(SVSstart)
Vhys(B_IT−)
V(B_IT−)
VCC(start)
Brownout
Brownout
Region
Brownout
Region
1
0
td(BOR)
SVS out
td(BOR)
SVS Circuit is Active From VLD > to VCC < V(B_IT−)
1
0
td(SVSon)
Set POR
1
td(SVSR)
Undefined
0
Figure 17. SVS Reset (SVSR) vs Supply Voltage
VCC
tpw
3V
2
Rectangular Drop
VCC(drop)
VCC(drop) − V
1.5
Triangular Drop
1
1 ns
1 ns
VCC
0.5
tpw
3V
0
1
10
100
1000
tpw − Pulse Width − μs
VCC(drop)
tf = tr
tf
tr
t − Pulse Width − μs
Figure 18. VCC(drop) With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
33
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
DCO
PARAMETER
TEST CONDITIONS
VCC
f(DCOCLK)
N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2,
DCOPLUS = 0, fCrystal = 32.768 kHz
f(DCO=2)
FN 8 = FN
FN_8
FN_4
4 = FN
FN_3
3 = FN
FN_2
2=0
0, DCOPLUS = 1
f(DCO=27)
FN 8 = FN
FN_8
FN_4
4 = FN
FN_3
3 = FN
FN_2
2=0
0, DCOPLUS = 1
f(DCO=2)
FN 8 = FN
FN_8
FN_4
4 = FN
FN_3
3=0
0, FN
FN_2
2=1
1, DCOPLUS = 1
f(DCO=27)
FN 8 = FN
4 = FN
3=0
2=1
FN_8
FN_4
FN_3
0, FN
FN_2
1, DCOPLUS = 1
f(DCO=2)
FN 8 = FN
FN_8
FN_4
4=0
0, FN
FN_3
3=1
1, FN
FN_2
2 = xx, DCOPLUS = 1
f(DCO=27)
FN 8 = FN
FN_8
FN_4
4=0
0, FN
FN_3
3=1
1, FN
FN_2
2 = x; DCOPLUS = 1
f(DCO=2)
FN 8 = 0
FN_8
0, FN
FN_4
4=1
1, FN
FN_3
3 = FN
FN_2
2 = xx, DCOPLUS = 1
f(DCO=27)
FN 8 = 0
FN_8
0, FN
FN_4
4=1
1, FN
FN_3
3 = FN
FN_2
2 =x,
x DCOPLUS = 1
f(DCO=2)
FN 8 = 1
4 = FN
3 = FN
2 x DCOPLUS = 1
FN_8
1, FN
FN_4
FN_3
FN_2=x,
f(DCO=27)
FN 8 = 1
FN_8
1,FN_4
FN 4 = FN
FN_3
3 = FN
FN_2
2 = xx, DCOPLUS = 1
Sn
Step size between adjacent DCO taps:
Sn = fDCO(Tap n+1) / fDCO(Tap n)
(see Figure 20 for taps 21 to 27)
Dt
Temperature drift, N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0,
D = 2, DCOPLUS = 0
DV
Drift with VCC variation, N(DCO) = 01Eh,
FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0
MIN
2.2 V/3 V
f
f
(DCO)
f
(DCO3V)
UNIT
MHz
2.2 V
0.3
0.65
1.25
3V
0.3
0.7
1.3
2.2 V
2.5
5.6
10.5
3V
2.7
6.1
11.3
2.2 V
0.7
1.3
2.3
3V
0.8
1.5
2.5
2.2 V
5.7
10.8
18
3V
6.5
12.1
20
2.2 V
1.2
2
3
3V
1.3
2.2
3.5
9
15.5
25
3V
10.3
17.9
28.5
2.2 V
1.8
2.8
4.2
3V
2.1
3.4
5.2
2.2 V
13.5
21.5
33
3V
16
26.6
41
2.2 V
2.8
4.2
6.2
3V
4.2
6.3
9.2
2.2 V
21
32
46
3V
30
46
70
1 < TAP ≤ 20
1.06
1.11
TAP = 27
1.07
1.17
2.2 V
–0.2
–0.3
–0.4
3V
–0.2
–0.3
–0.4
0
5
15
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
%/_C
%/V
(DCO)
(DCO205C)
1.0
1.0
0
1.8
2.4
3.0
3.6
VCC − V
−40
−20
0
20
40
60
Figure 19. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature
34
MAX
1
2.2 V
f
TYP
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
85
TA − °C
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
Sn - Stepsize Ratio between DCO Taps
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
1.17
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
Max
1.11
1.07
1.06
Min
1
20
27
DCO Tap
Figure 20. DCO Tap Step Size
f(DCO)
Legend
Tolerance at Tap 27
DCO Frequency
Adjusted by Bits
29 to 25 in SCFI1 {N{DCO}}
Tolerance at Tap 2
Overlapping DCO Ranges:
Uninterrupted Frequency Range
FN_2=0
FN_3=0
FN_4=0
FN_8=0
FN_2=1
FN_3=0
FN_4=0
FN_8=0
FN_2=x
FN_3=1
FN_4=0
FN_8=0
FN_2=x
FN_3=x
FN_4=1
FN_8=0
FN_2=x
FN_3=x
FN_4=x
FN_8=1
Figure 21. Five Overlapping DCO Ranges Controlled by FN_x Bits
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
35
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
crystal oscillator, LFXT1 oscillator (see Notes 1 and 2)
PARAMETER
CXIN
Integrated load capacitance
TEST CONDITIONS
VCC
MIN
OSCCAPx = 0h
0
OSCCAPx = 1h
10
OSCCAPx = 2h
2 2 V/3 V
2.2
Integrated load capacitance
0
OSCCAPx = 1h
10
2 2 V/3 V
2.2
VIH
Input levels at XIN
see Note 3
pF
pF
14
OSCCAPx = 3h
VIL
UNIT
18
OSCCAPx = 0h
OSCCAPx = 2h
MAX
14
OSCCAPx = 3h
CXOUT
TYP
18
2.2 V/3 V
VSS
0.2×VCC
2.2 V/3 V
0.8×VCC
VCC
V
NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2pF. The effective load capacitor for the crystal is
(CXIN × CXOUT) / (CXIN + CXOUT). It is independent of XTS_FLL.
2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines must be
observed:
• Keep the trace between the MSP430x41x and the crystal as short as possible.
• Design a good ground plane around oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
• Avoid running PCB traces underneath or adjacent to XIN an XOUT pins.
• Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
• If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
• Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation.
This signal is no longer required for the serial programming adapter.
3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator.
4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h.
36
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
flash memory
TEST
CONDITIONS
PARAMETER
VCC(PGM/
VCC
Program and erase supply voltage
MIN
TYP
2.7
MAX
UNIT
3.6
V
476
kHz
5
mA
7
mA
10
ms
ERASE)
fFTG
Flash timing generator frequency
IPGM
Supply current from DVCC during program
257
IERASE
Supply current from DVCC during erase
tCPT
Cumulative program time
See Note 1
2.7 V/ 3.6 V
tCMErase
Cumulative mass erase time
See Note 2
2.7 V/ 3.6 V
2.7 V/ 3.6 V
3
2.7 V/ 3.6 V
3
200
104
Program/erase endurance
TJ = 25°C
ms
105
tRetention
Data retention duration
tWord
Word or byte program time
35
tBlock, 0
Block program time for 1st byte or word
30
tBlock, 1-63
Block program time for each additional byte or word
tBlock, End
Block program end-sequence wait time
tMass Erase
Mass erase time
5297
tSeg Erase
Segment erase time
4819
cycles
100
years
21
See Note 3
tFTG
6
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming
methods: individual word/byte write and block write modes.
2. The mass erase duration generated by the flash timing generator is at least 11.1 ms ( = 5297x1/fFTG,max = 5297x1/476kHz). To
achieve the required cumulative mass erase time the flash controller’s mass erase operation can be repeated until this time is met.
(A worst case minimum of 19 cycles are required).
3. These values are hardwired into the flash controller’s state machine (tFTG = 1/fFTG).
JTAG interface
TEST
CONDITIONS
PARAMETER
fTCK
TCK input frequency
see Note 1
RInternal
Internal pull-up resistance on TMS, TCK, TDI/TCLK
see Note 2
VCC
MIN
2.2 V
3V
2.2 V/ 3 V
25
TYP
MAX
UNIT
0
5
MHz
0
10
MHz
60
90
kΩ
MIN
MAX
NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected.
2. TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions.
JTAG fuse (see Note 1)
TEST
CONDITIONS
PARAMETER
VCC(FB)
Supply voltage during fuse-blow condition
VFB
Voltage level on TDI/TCLK for fuse
fuse-blow
blow
IFB
Supply current into TDI/TCLK during fuse blow
tFB
Time to blow fuse
UNIT
TA = 25°C
2.5
MSP430C41x
3.5
3.9
V
V
MSP430F41x
6
7
V
100
mA
1
ms
NOTES: 1. Once the fuse is blown, no further access to the MSP430 via JTAG/Test is possible. The JTAG block is switched to bypass mode.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
37
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
input/output schematics
Port P1, P1.0 to P1.5, input/output with Schmitt trigger
Pad Logic
CAPD.x
P1SEL.x
0: Input
1: Output
0
P1DIR.x
Direction Control
From Module
P1OUT.x
1
0
P1.x
1
Module X OUT
Bus
keeper
MSP430x412,
MSP430x413 only
P1.0/TA0
P1.1/TA0/MCLK
P1.2/TA1
P1.3/SVSOUT
P1.4
P1.5/TACLK/ACLK
P1IN.x
EN
D
Module X IN
P1IE.x
P1IRQ.x
P1IFG.x
Q
EN
MSP430x415,
MSP430x417 only
P1.0/TA0.0
P1.1/TA0.0/MCLK
P1.2/TA0.1
P1.3/TA1.0/SVSOUT
P1.4/TA1.0
P1.5/TA0CLK/ACLK
Interrupt
Edge
Select
Set
P1IES.x
P1SEL.x
NOTE: 0 ≤ x ≤ 5.
Port Function is Active if CAPD.x = 0
PnSEL.x
PnDIR.x
Direction
Control
From Module
PnOUT.x
Module X
OUT
PnIN.x
Module X IN
PnIE.x
PnIFG.x
PnIES.x
P1SEL.0
P1DIR.0
P1DIR.0
P1OUT.0
Out0 Sig.†
P1IN.0
CCI0A†
P1IE.0
P1IFG.0
P1IES.0
P1SEL.1
P1DIR.1
P1DIR.1
P1OUT.1
MCLK
P1IN.1
CCI0B†
P1IE.1
P1IFG.1
P1IES.1
P1SEL.2
P1DIR.2
P1DIR.2
P1OUT.2
Out1 Sig.†
P1IN.2
CCI1A†
P1IE.2
P1IFG.2
P1IES.2
P1SEL.3
P1DIR.3
P1DIR.3
P1OUT.3
SVSOUT
P1IN.3
Unused
P1IE.3
P1IFG.3
P1IES.3
P1IN.4
Unused§
CCI0A‡
P1IE.4
P1IFG.4
P1IES.4
P1IN.5
TACLK†
P1IE.5
P1IFG.5
P1IES.5
P1SEL.4
P1DIR.4
P1DIR.4
P1OUT.4
DVSS §
Out0 Sig.‡
P1SEL.5
P1DIR.5
P1DIR.5
P1OUT.5
ACLK
†
Timer_A3/Timer0_A3
Timer1_A5 (MSP430x415, MSP430x417 only)
§ MSP430x412, MSP430x413 only
‡
38
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
Port P1, P1.6, P1.7 input/output with Schmitt trigger
Pad Logic
Note: Port Function Is Active if CAPD.6 = 0
CAPD.6
P1SEL.6
0: Input
1: Output
0
P1DIR.6
1
P1DIR.6
P1.6/
CA0
0
P1OUT.6
1
DVSS
Bus
Keeper
P1IN.6
EN
D
unused
P1IE.7
EN
P1IRQ.07
Interrupt
Edge
Select
Q
P1IFG.7
Set
P1IES.x
P1SEL.x
Comparator_A
P2CA
AVcc
CAREF
CAEX
CA0
CAF
CCI1B
+
to Timer_Ax
−
CA1
2
Reference Block
CAREF
Pad Logic
Note: Port Function Is Active if CAPD.7 = 0
CAPD.7
P1SEL.7
0: Input
1: Output
0
P1DIR.7
1
P1.7/
CA1
P1DIR.7
0
P1OUT.7
1
DVSS
Bus
Keeper
P1IN.7
EN
unused
D
P1IE.7
EN
P1IRQ.07
Q
P1IFG.7
Set
Interrupt
Edge
Select
P1IES.7
P1SEL.7
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
39
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
port P2, P2.0 to P2.7, input/output with Schmitt trigger
P2.0, P2.1
LCDM.5
LCDM.6
P2.2 to P2.5
LCDM.7
0: Port Active
1: Segment xx
Function Active
P2.6, P2.7
Pad Logic
Segment xx
P2SEL.x
0: Input
1: Output
0
P2DIR.x
Direction Control
From Module
P2OUT.x
1
0
P2.x
1
Module X OUT
MSP430x412,
MSP430x413 only
P2.0/TA2
P2.1
P2.2/S23
P2.3/S22
P2.4/S21
P2.5/S20
P2.6/CAOUT/S19
P2.7/S18
Bus
keeper
P2IN.x
EN
Module X IN
D
P2IE.x
P2IRQ.x
P2IFG.x
Q
EN
Set
Interrupt
Edge
Select
P2IES.x
NOTE: 0 ≤ x ≤ 7
MSP430x415,
MSP430x417 only
P2.0/TA0.2
P2.1/TA1.1
P2.2/TA1.2/S23
P2.3/TA1.3/S22
P2.4/TA1.4/S21
P2.5/TA1CLK/S20
P2.6/CAOUT/S19
P2.7/S18
P2SEL.x
PnSEL.x
PnDIR.x
Direction
Control
From Module
PnOUT.x
Module X
OUT
PnIN.x
Module X IN
PnIE.x
PnIFG.x
PnIES.x
P2SEL.0
P2DIR.0
P2DIR.0
P2OUT.0
Out2 Sig.†
P2IN.0
CCI2A†
P2IE.0
P2IFG.0
P2IES.0
P2SEL.1
P2DIR.1
P2DIR.1
P2OUT.1
P2IN.1
Unused§
CCI1A‡
P2IE.1
P2IFG.1
P2IES.1
P2SEL.2
P2DIR.2
P2DIR.2
P2OUT.2
DVSS§
Out1 Sig.‡
DVSS§
Out2 Sig.‡
P2IN.2
Unused§
CCI2A‡
P2IE.2
P2IFG.2
P2IES.2
P2IE.3
P2IFG.3
P2IES.3
P2SEL.3
P2DIR.3
P2DIR.3
P2OUT.3
DVSS§
Out3 Sig.‡
P2IN.3
Unused§
CCI3A‡
P2SEL.4
P2DIR.4
P2DIR.4
P2OUT.4
DVSS§
Out4 Sig.‡
P2IN.4
Unused§
CCI4A‡
P2IE.4
P2IFG.4
P2IES.4
P2SEL.5
P2DIR.5
P2DIR.5
P2OUT.5
DVSS
P2IN.5
Unused§
TA1CLK‡
P2IE.5
P2IFG.5
P2IES.5
P2SEL.6
P2DIR.6
P2DIR.6
P2OUT.6
CAOUT
P2IN.6
Unused
P2IE.6
P2IFG.6
P2IES.6
P2SEL.7
P2DIR.7
P2DIR.7
P2OUT.7
DVSS
P2IN.7
Unused
P2IE.7
P2IFG.7
P2IES.7
†
Timer_A3/Timer0_A3
Timer1_A5 (MSP430x415, MSP430x417 only)
§ MSP430x412, MSP430x413 only
‡
40
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
port P3, P3.0 to P3.7, input/output with Schmitt trigger
LCDM.5
LCDM.6
LCDM.7
P3.2 to P3.7
P3.0, P3.1
0: Port Active
1: Segment xx
Function Active
Pad Logic
Segment xx
P3SEL.x
0: Input
1: Output
0
P3DIR.x
Direction Control
From Module
P3OUT.x
1
0
1
Module X OUT
P3.x
Bus
keeper
P3.0/S17
P3.1/S16
P3.2/S15
P3.3/S14
P3.4/S13
P3.5/S12
P3.6/S11
P3.7/S10
P3IN.x
EN
D
Module X IN
NOTE: 0 ≤ x ≤ 7
PnSEL.x
PnDIR.x
Direction
Control
From Module
PnOUT.x
Module X
OUT
PnIN.x
Module X IN
P3SEL.0
P3DIR.0
P3DIR.0
P3OUT.0
DVSS
P3IN.0
Unused
P3SEL.1
P3DIR.1
P3DIR.1
P3OUT.1
DVSS
P3IN.1
Unused
P3SEL.2
P3DIR.2
P3DIR.2
P3OUT.2
DVSS
P3IN.2
Unused
P3SEL.3
P3DIR.3
P3DIR.3
P3OUT.3
DVSS
P3IN.3
Unused
P3SEL.4
P3DIR.4
P3DIR.4
P3OUT.4
DVSS
P3IN.4
Unused
P3SEL.5
P3DIR.5
P3DIR.5
P3OUT.5
DVSS
P3IN.5
Unused
P3SEL.6
P3DIR.6
P3DIR.6
P3OUT.6
DVSS
P3IN.6
Unused
P3SEL.7
P3DIR.7
P3DIR.7
P3OUT.7
DVSS
P3IN.7
Unused
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
41
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
port P4, P4.0 to P4.7, input/output with Schmitt trigger
LCDM.5
LCDM.6
LCDM.7
0: Port Active
1: Segment xx
Function Active
Pad Logic
Segment xx
P4SEL.x
0: Input
1: Output
0
P4DIR.x
Direction Control
From Module
P4OUT.x
1
0
1
Module X OUT
P4.x
Bus
keeper
P4.0/S9
P4.1/S8
P4.2/S7
P4.3/S6
P4.4/S5
P4.5/S4
P4.6/S3
P4.7/S2
P4IN.x
EN
D
Module X IN
NOTE: 0 ≤ x ≤ 7
42
PnSEL.x
PnDIR.x
Direction
Control
From Module
PnOUT.x
Module X
OUT
PnIN.x
Module X IN
P4SEL.0
P4DIR.0
P4DIR.0
P4OUT.0
DVSS
P4IN.0
Unused
P4SEL.1
P4DIR.1
P4DIR.1
P4OUT.1
DVSS
P4IN.1
Unused
P4SEL.2
P4DIR.2
P4DIR.2
P4OUT.2
DVSS
P4IN.2
Unused
P4SEL.3
P4DIR.3
P4DIR.3
P4OUT.3
DVSS
P4IN.3
Unused
P4SEL.4
P4DIR.4
P4DIR.4
P4OUT.4
DVSS
P4IN.4
Unused
P4SEL.5
P4DIR.5
P4DIR.5
P4OUT.5
DVSS
P4IN.5
Unused
P4SEL.6
P4DIR.6
P4DIR.6
P4OUT.6
DVSS
P4IN.6
Unused
P4SEL.7
P4DIR.7
P4DIR.7
P4OUT.7
DVSS
P4IN.7
Unused
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
port P5, P5.0, P5.1, input/output with Schmitt trigger
LCDM.5
LCDM.6
LCDM.7
0: Port Active
1: Segment
Function Active
Pad Logic
Segment xx or
COMx or Rxx
P5SEL.x
0: Input
1: Output
0
P5DIR.x
Direction Control
From Module
P5OUT.x
1
0
1
Module X OUT
P5.x
Bus
keeper
P5.0/S1
P5.1/S0
P5IN.x
EN
D
Module X IN
NOTE: x = 0, 1
PnSEL.x
PnDIR.x
Direction
Control
From Module
PnOUT.x
Module X
OUT
PnIN.x
Module X IN
Segment
P5SEL.0
P5DIR.0
P5DIR.0
P5OUT.0
DVSS
P5IN.0
Unused
S1
P5SEL.1
P5DIR.1
P5DIR.1
P5OUT.1
DVSS
P5IN.1
Unused
S0
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
43
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
port P5, P5.2 to P5.4, input/output with Schmitt trigger
0: Port Active
1: COMx Function
Active
Pad Logic
COMx
P5SEL.x
0: Input
1: Output
0
P5DIR.x
Direction Control
From Module
P5OUT.x
1
0
1
Module X OUT
P5.x
Bus
keeper
P5.2/COM1
P5.3/COM2
P5.4/COM3
P5IN.x
EN
D
Module X IN
NOTE: 2 ≤ x ≤ 4
PnSEL.x
PnDIR.x
Direction
Control
From Module
PnOUT.x
Module X
OUT
PnIN.x
Module X IN
COMx
P5SEL.2
P5DIR.2
P5DIR.2
P5OUT.2
DVSS
P5IN.2
Unused
COM1
P5SEL.3
P5DIR.3
P5DIR.3
P5OUT.3
DVSS
P5IN.3
Unused
COM2
P5SEL.4
P5DIR.4
P5DIR.4
P5OUT.4
DVSS
P5IN.4
Unused
COM3
NOTE:
The direction control bits P5SEL.2, P5SEL.3, and P5SEL.4 are used to distinguish between port
and common functions. Note that a 4MUX LCD requires all common signals COM3 to COM0, a
3MUX LCD requires COM2 to COM0, 2MUX LCD requires COM1 to COM0, and a static LCD
requires only COM0.
44
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
port P5, P5.5 to P5.7, input/output with Schmitt trigger
0: Port Active
1: Rxx Function
Active
Pad Logic
Rxx
P5SEL.x
0: Input
1: Output
0
P5DIR.x
Direction Control
From Module
P5OUT.x
1
0
1
Module X OUT
P5.x
Bus
keeper
P5.5/R13
P5.6/R23
P5.7/R33
P5IN.x
EN
D
Module X IN
NOTE: 5 ≤ x ≤ 7
PnSEL.x
PnDIR.x
Direction
Control
From Module
PnOUT.x
Module X
OUT
PnIN.x
Module X IN
Rxx
P5SEL.5
P5DIR.5
P5DIR.5
P5OUT.5
DVSS
P5IN.5
Unused
R13
P5SEL.6
P5DIR.6
P5DIR.6
P5OUT.6
DVSS
P5IN.6
Unused
R23
P5SEL.7
P5DIR.7
P5DIR.7
P5OUT.7
DVSS
P5IN.7
Unused
R33
NOTE:
The direction control bits P5SEL.5, P5SEL.6, and P5SEL.7 are used to distinguish between port
and LCD analog level functions. Note that 4MUX and 3MUX LCDs require all Rxx signals R33 to
R03, a 2MUX LCD requires R33, R13, and R03, and a static LCD requires only R33 and R03.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
45
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
port P6, P6.0 to P6.6, input/output with Schmitt trigger
P6SEL.x
0: Input
1: Output
0
P6DIR.x
Direction Control
From Module
P6OUT.x
1
0
1
Module X OUT
P6.x
P6.
P6.0
P6.
P6.1
P6.2
P6.3
P6.
P6.4
P6.
P6.5
P6.
P6.6
P6IN.x
EN
Module X IN
D
NOTE: 0 ≤ x ≤ 6
46
PnSEL.x
PnDIR.x
Direction
Control
From Module
PnOUT.x
Module X
OUT
PnIN.x
Module X IN
P6SEL.0
P6DIR.0
P6DIR.0
P6OUT.0
DVSS
P6IN.0
Unused
P6SEL.1
P6DIR.1
P6DIR.1
P6OUT.1
DVSS
P6IN.1
Unused
P6SEL.2
P6DIR.2
P6DIR.2
P6OUT.2
DVSS
P6IN.2
Unused
P6SEL.3
P6DIR.3
P6DIR.3
P6OUT.3
DVSS
P6IN.3
Unused
P6SEL.4
P6DIR.4
P6DIR.4
P6OUT.4
DVSS
P6IN.4
Unused
P6SEL.5
P6DIR.5
P6DIR.5
P6OUT.5
DVSS
P6IN.5
Unused
P6SEL.6
P6DIR.6
P6DIR.6
P6OUT.6
DVSS
P6IN.6
Unused
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
port P6, P6.7 input/output with Schmitt trigger (MSP430x412/413 only)
P6SEL.7
0: Input
1: Output
0
P6DIR.7
Direction Control
From Module
P6OUT.7
1
0
1
Module X OUT
P6.x
P6.7
P6IN.7
EN
Module X IN
D
PnSEL.x
PnDIR.x
Direction
Control
From Module
PnOUT.x
Module X
OUT
PnIN.x
Module X IN
P6SEL.7
P6DIR.7
P6DIR.7
P6OUT.7
DVSS
P6IN.7
Unused
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
47
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
port P6, P6.7 input/output with Schmitt trigger (MSP430F415/417 only)
SVS VLDx=15
P6SEL.7
P6DIR.7
0
1
0: Input
1: Output
Pad Logic
0
P6OUT.7
DVss
P6.7/SVSIN
1
Bus Keeper
P6IN.7
EN
Module X IN
D
SVS VLDx=15
1
To SVS
NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if
the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the
gate. For MSP430, it is approximately 100 μA.
Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, if an analog signal is applied to the pin.
48
SVS VLDx = 15
P6SEL.7
P6DIR.7
Port Function
0
0
0
P6.7 Input
0
0
1
P6.7 Output
0
1
X
Undefined
1
X
X
SVSIN
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
JTAG pins (TMS, TCK, TDI/TCLK, TDO/TDI), input/output with Schmitt trigger or output
TDO
Controlled by JTAG
Controlled by JTAG
TDO/TDI
JTAG
Controlled
by JTAG
DVCC
TDI
Burn and Test
Fuse
TDI/TCLK
DVCC
TMS
Test and
Emulation Module
(F versions only)
TMS
DVCC
TCK
TCK
RST/NMI
Tau ~ 50 ns
Brownout
TCK
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
G
D
U
S
G
D
U
S
49
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
APPLICATION INFORMATION
JTAG fuse check mode
MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check
current, ITF , of 1.8 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be
taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the
fuse check mode has the potential to be activated.
The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see
Figure 22). Therefore, the additional current flow can be prevented by holding the TMS pin high (default
condition).
The JTAG pins are terminated internally, and therefore do not require external termination.
Time TMS Goes Low After POR
TMS
ITDI/TCLK
ITF
Figure 22. Fuse Check Mode Current, MSP430C41x, MSP430F41x
50
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
Data Sheet Revision History
Literature
Number
Summary
SLAS340H
Updated functional block diagrams (page 4)
Clarified test conditions in recommended operating conditions table (page 21)
Split Supply voltage during program execution for MSP430x412/413 and MSP430x415/417 (page 21)
Clarified test conditions for I(LPM0) in supply current into AVCC + DVCC table (page 22)
Added P2−P5 to leakage current table (page 23)
Changed tCPT maximum value from 4 ms to 10 ms in Flash memory table (page 37)
SLAS340I
Changed all RTD package options for MSP430C41x to RGC package.
NOTE: Page and figure numbers refer to the respective document revision.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
51
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
MECHANICAL DATA
52
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
53
MSP430x41x
MIXED SIGNAL MICROCONTROLLER
SLAS340J − MAY 2001 − REVISED DECEMBER 2008
54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
5-May-2010
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
Lead/Ball Finish
MSL Peak Temp (3)
MSP430C413CY
ACTIVE
TBD
Call TI
MSP430F412IPM
ACTIVE
LQFP
PM
64
160
Green (RoHS &
no Sb/Br)
CU NIPDAU
Call TI
Level-3-260C-168 HR
MSP430F412IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F412IRTDR
ACTIVE
VQFN
RTD
64
2500 Green (RoHS &
no Sb/Br)
CU SN
Level-3-260C-168 HR
MSP430F412IRTDT
ACTIVE
VQFN
RTD
64
250
Green (RoHS &
no Sb/Br)
CU SN
Level-3-260C-168 HR
MSP430F413CY
ACTIVE
Green (RoHS &
no Sb/Br)
Call TI
N / A for Pkg Type
MSP430F413IPM
ACTIVE
LQFP
PM
64
160
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F413IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F413IRTDR
ACTIVE
VQFN
RTD
64
2500 Green (RoHS &
no Sb/Br)
CU SN
Level-3-260C-168 HR
MSP430F413IRTDT
ACTIVE
VQFN
RTD
64
250
Green (RoHS &
no Sb/Br)
CU SN
Level-3-260C-168 HR
Call TI
MSP430F415CY
ACTIVE
TBD
Call TI
MSP430F415IPM
ACTIVE
LQFP
PM
64
160
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F415IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F415IRTDR
ACTIVE
VQFN
RTD
64
2500 Green (RoHS &
no Sb/Br)
CU SN
Level-3-260C-168 HR
MSP430F415IRTDT
ACTIVE
VQFN
RTD
64
250
Green (RoHS &
no Sb/Br)
CU SN
Level-3-260C-168 HR
MSP430F417CY
ACTIVE
Green (RoHS &
no Sb/Br)
Call TI
N / A for Pkg Type
MSP430F417IPM
ACTIVE
LQFP
PM
64
160
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F417IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
MSP430F417IRTDR
ACTIVE
VQFN
RTD
64
2500 Green (RoHS &
no Sb/Br)
CU SN
Level-3-260C-168 HR
MSP430F417IRTDT
ACTIVE
VQFN
RTD
64
250
CU SN
Level-3-260C-168 HR
Green (RoHS &
no Sb/Br)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
5-May-2010
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
7-May-2011
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
MSP430F412IPMR
LQFP
PM
64
1000
330.0
24.4
12.3
12.3
2.5
16.0
24.0
Q2
MSP430F413IPMR
LQFP
PM
64
1000
330.0
24.4
12.3
12.3
2.5
16.0
24.0
Q2
MSP430F415IPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F415IPMR
LQFP
PM
64
1000
330.0
24.4
12.3
12.3
2.5
16.0
24.0
Q2
MSP430F417IPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F417IPMR
LQFP
PM
64
1000
330.0
24.4
12.3
12.3
2.5
16.0
24.0
Q2
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
7-May-2011
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
MSP430F412IPMR
LQFP
PM
64
1000
333.2
345.9
41.3
MSP430F413IPMR
LQFP
PM
64
1000
333.2
345.9
41.3
MSP430F415IPMR
LQFP
PM
64
1000
346.0
346.0
41.0
MSP430F415IPMR
LQFP
PM
64
1000
333.2
345.9
41.3
MSP430F417IPMR
LQFP
PM
64
1000
346.0
346.0
41.0
MSP430F417IPMR
LQFP
PM
64
1000
333.2
345.9
41.3
Pack Materials-Page 2
MECHANICAL DATA
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996
PM (S-PQFP-G64)
PLASTIC QUAD FLATPACK
0,27
0,17
0,50
0,08 M
33
48
49
32
64
17
0,13 NOM
1
16
7,50 TYP
Gage Plane
10,20
SQ
9,80
12,20
SQ
11,80
0,25
0,05 MIN
0°– 7°
0,75
0,45
1,45
1,35
Seating Plane
0,08
1,60 MAX
4040152 / C 11/96
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Falls within JEDEC MS-026
May also be thermally enhanced plastic with leads connected to the die pads.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Communications and Telecom www.ti.com/communications
Amplifiers
amplifier.ti.com
Computers and Peripherals
www.ti.com/computers
Data Converters
dataconverter.ti.com
Consumer Electronics
www.ti.com/consumer-apps
DLP® Products
www.dlp.com
Energy and Lighting
www.ti.com/energy
DSP
dsp.ti.com
Industrial
www.ti.com/industrial
Clocks and Timers
www.ti.com/clocks
Medical
www.ti.com/medical
Interface
interface.ti.com
Security
www.ti.com/security
Logic
logic.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Power Mgmt
power.ti.com
Transportation and
Automotive
www.ti.com/automotive
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
Wireless
www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions
www.ti.com/lprf
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated
Similar pages