TI1 ADC12D800RF Adc12d800/500rf 12-bit, 1.6/1.0 gsps rf sampling adc Datasheet

ADC12D500RF,ADC12D800RF
ADC12D800/500RF 12-Bit, 1.6/1.0 GSPS RF Sampling ADC
Literature Number: SNAS502C
ADC12D800/500RF
12-Bit, 1.6/1.0 GSPS RF Sampling ADC
1.0 General Description
3.0 Applications
The 12-bit 1.6/1.0 GSPS ADC12D800/500RF is an RF-sampling GSPS ADC that can directly sample input frequencies
up to and above 2.7 GHz. The ADC12D800/500RF augments
the very large Nyquist zone of National’s GSPS ADCs with
excellent noise and linearity performance at RF frequencies,
extending its usable range beyond the 7th Nyquist zone
The ADC12D800/500RF provides a flexible LVDS interface
which has multiple SPI programmable options to facilitate
board design and FPGA/ASIC data capture. The LVDS outputs are compatible with IEEE 1596.3-1996 and supports
programmable common mode voltage. The product is packaged in a lead-free 292-ball thermally enhanced BGA package over the rated industrial temperature range of -40°C to
+85°C.
■ 3G/4G Wireless Basestation
4.0 Key Specifications
2.0 Features
■ Excellent noise and linearity up to and above fIN = 2.7 GHz
■ Configurable to either 1.6/1.0 GSPS interleaved or
800/500 MSPS dual ADC
■ New DESCLKIQ Mode for high bandwidth, high sampling
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
— Receive Path
— DPD Path
Wideband Microwave Backhaul
RF Sampling Software Defined Radio
Military Communications
SIGINT
RADAR / LIDAR
Wideband Communications
Consumer RF
Test and Measurement
rate apps
Pin-compatible with ADC1xD1x00
AutoSync feature for multi-chip synchronization
Internally terminated, buffered, differential analog inputs
Interleaved timing automatic and manual skew adjust
Test patterns at output for system debug
Time Stamp feature to capture external trigger
Programmable gain, offset, and tAD adjust feature
1:1 non-demuxed or 1:2 demuxed LVDS outputs
■ Resolution
12 Bits
Interleaved 1.6/1.0 GSPS ADC
-63/-61 dBc (typ)
■ IMD3 (Fin = 2.7GHz @ -13dBFS)
-71/-69 dBc (typ)
■ IMD3 (Fin = 2.7GHz @ -16dBFS)
-152.2/-150.5 dBm/Hz (typ)
■ Noise Floor
50.4/50.7 dB (typ)
■ Noise Power Ratio
2.50/2.02 W (typ)
■ Power
Dual 800/500 MSPS ADC, Fin = 498 MHz
9.5/9.6 Bits (typ)
■ ENOB
59.7/59.7 dB (typ)
■ SNR
71.2/72 dBc (typ)
■ SFDR
1.25/1.01 W (typ)
■ Power per Channel
5.0 Block Diagram
30128611
© 2011 National Semiconductor Corporation
301286
www.national.com
ADC12D800RF/ADC12D500RF 12-Bit, 1.6/1.0 GSPS RF Sampling ADC
August 12, 2011
-50
IMD3 (dBFS)
-60
-7dBFS
-10dBFS
-13dBFS
-16dBFS
-70
-80
-90
-100
0.0
0.5
1.0
1.5
2.0
2.5
FREQUENCY (GHz)
3.0
30128698
ADC12D800RF DES Mode IMD3
0
Fin = 2.7GHz
MAGNITUDE (dB)
ADC12D800RF/ADC12D500RF
6.0 RF Performance
-30
-60
-90
-120
470 475 480 485 490 495 500 505
FREQUENCY (MHz)
30128614
ADC12D800RF DES Mode FFT
CW Blocker: Fin = 2710.47MHz; Total Power = -13dBFS
WCDMA Blocker: Fc = 2700MHz; Bandwidth = 3.84MHz; Total Power = -13dBFS
IMD3 Product Power = -73dBFS
www.national.com
2
ADC12D800RF/ADC12D500RF
7.0 Connection Diagram
30128601
FIGURE 1. ADC12D800/500RF Connection Diagram
The center ground pins are for thermal dissipation and must be soldered to a ground plane to ensure rated performance.
See Section 18.5 SUPPLY/GROUNDING, LAYOUT AND THERMAL RECOMMENDATIONS for more information.
8.0 Ordering Information
Industrial Temperature Range (-40°C < TA < +85°C)
NS Package
ADC12D800/500RFIUT/NOPB
Lead-free 292-Ball BGA Thermally Enhanced Package
ADC12D800/500RFIUT
Leaded 292-Ball BGA Thermally Enhanced Package
ADC12D800RFRB
Reference Board
If Military/Aerospace specified devices are required, please contract the National Semiconductor Sales Office/Distributors
for availability and specifications. IBIS models are available at: http://www.national.com/analog/adc/ibis_models.
3
www.national.com
ADC12D800RF/ADC12D500RF
Table of Contents
1.0 General Description ......................................................................................................................... 1
2.0 Features ........................................................................................................................................ 1
3.0 Applications .................................................................................................................................... 1
4.0 Key Specifications ........................................................................................................................... 1
5.0 Block Diagram ................................................................................................................................ 1
6.0 RF Performance .............................................................................................................................. 2
7.0 Connection Diagram ........................................................................................................................ 3
8.0 Ordering Information ....................................................................................................................... 3
9.0 Ball Descriptions and Equivalent Circuits ............................................................................................ 7
10.0 Absolute Maximum Ratings ........................................................................................................... 16
11.0 Operating Ratings ....................................................................................................................... 16
12.0 Converter Electrical Characteristics ................................................................................................ 17
13.0 Specification Definitions ................................................................................................................ 28
14.0 Transfer Characteristic ................................................................................................................. 30
15.0 Timing Diagrams ......................................................................................................................... 31
16.0 Typical Performance Plots ............................................................................................................ 34
17.0 Functional Description .................................................................................................................. 44
17.1 OVERVIEW ......................................................................................................................... 44
17.2 CONTROL MODES .............................................................................................................. 44
17.2.1 Non-Extended Control Mode ........................................................................................ 44
17.2.1.1 Dual Edge Sampling Pin (DES) ........................................................................... 44
17.2.1.2 Non-Demultiplexed Mode Pin (NDM) ................................................................... 44
17.2.1.3 Dual Data Rate Phase Pin (DDRPh) .................................................................... 45
17.2.1.4 Calibration Pin (CAL) ......................................................................................... 45
17.2.1.5 Calibration Delay Pin (CalDly) ............................................................................ 45
17.2.1.6 Power Down I-channel Pin (PDI) ......................................................................... 45
17.2.1.7 Power Down Q-channel Pin (PDQ) ...................................................................... 45
17.2.1.8 Test Pattern Mode Pin (TPM) ............................................................................. 45
17.2.1.9 Full-Scale Input Range Pin (FSR) ....................................................................... 45
17.2.1.10 AC/DC-Coupled Mode Pin (VCMO) ..................................................................... 45
17.2.1.11 LVDS Output Common-mode Pin (VBG) ............................................................. 45
17.2.2 Extended Control Mode ............................................................................................... 46
17.2.2.1 The Serial Interface ........................................................................................... 46
17.3 FEATURES ......................................................................................................................... 48
17.3.1 Input Control and Adjust .............................................................................................. 49
17.3.1.1 AC/DC-coupled Mode ........................................................................................ 49
17.3.1.2 Input Full-Scale Range Adjust ............................................................................ 49
17.3.1.3 Input Offset Adjust ............................................................................................ 49
17.3.1.4 DES/Non-DES Mode ......................................................................................... 49
17.3.1.5 DES Timing Adjust ............................................................................................ 49
17.3.1.6 Sampling Clock Phase Adjust ............................................................................. 50
17.3.2 Output Control and Adjust ............................................................................................ 50
17.3.2.1 SDR / DDR Clock ............................................................................................. 50
17.3.2.2 LVDS Output Differential Voltage ........................................................................ 50
17.3.2.3 LVDS Output Common-Mode Voltage ................................................................. 50
17.3.2.4 Output Formatting ............................................................................................. 50
17.3.2.5 Demux/Non-demux Mode .................................................................................. 50
17.3.2.6 Test Pattern Mode ............................................................................................ 50
17.3.2.7 Time Stamp ..................................................................................................... 51
17.3.3 Calibration Feature ..................................................................................................... 51
17.3.3.1 Calibration Control Pins and Bits ......................................................................... 51
17.3.3.2 How to Execute a Calibration .............................................................................. 51
17.3.3.3 Power-on Calibration ......................................................................................... 51
17.3.3.4 On-command Calibration ................................................................................... 52
17.3.3.5 Calibration Adjust .............................................................................................. 52
17.3.3.6 Read/Write Calibration Settings .......................................................................... 52
17.3.3.7 Calibration and Power-Down .............................................................................. 52
17.3.3.8 Calibration and the Digital Outputs ...................................................................... 52
17.3.4 Power Down .............................................................................................................. 52
18.0 Applications Information ............................................................................................................... 53
18.1 THE ANALOG INPUTS ......................................................................................................... 53
18.1.1 Acquiring the Input ...................................................................................................... 53
18.1.2 Driving the ADC in DES Mode ...................................................................................... 53
18.1.3 FSR and the Reference Voltage ................................................................................... 53
www.national.com
4
53
54
54
54
54
54
54
55
55
55
55
55
55
55
55
55
55
56
56
57
57
57
57
57
58
59
59
60
61
61
61
61
62
63
70
List of Figures
FIGURE 1. ADC12D800/500RF Connection Diagram ........................................................................................ 3
FIGURE 2. LVDS Output Signal Levels ......................................................................................................... 28
FIGURE 3. Input / Output Transfer Characteristic ............................................................................................ 30
FIGURE 4. Clocking in 1:2 Demux Non-DES Mode* ......................................................................................... 31
FIGURE 5. Clocking in Non-Demux Non-DES Mode* ........................................................................................ 31
FIGURE 6. Clocking in 1:4 Demux DES Mode* ............................................................................................... 32
FIGURE 7. Clocking in Non-Demux Mode DES Mode* ...................................................................................... 32
FIGURE 8. Data Clock Reset Timing (Demux Mode) ........................................................................................ 33
FIGURE 9. Power-on and On-Command Calibration Timing ................................................................................ 33
FIGURE 10. Serial Interface Timing ............................................................................................................. 33
FIGURE 11. Serial Data Protocol - Read Operation .......................................................................................... 46
FIGURE 12. Serial Data Protocol - Write Operation .......................................................................................... 47
FIGURE 13. DDR DCLK-to-Data Phase Relationship ........................................................................................ 50
FIGURE 14. SDR DCLK-to-Data Phase Relationship ........................................................................................ 50
FIGURE 15. Driving DESIQ Mode ............................................................................................................... 53
FIGURE 16. AC-coupled Differential Input ..................................................................................................... 54
FIGURE 17. Single-Ended to Differential Conversion Using a Balun ...................................................................... 54
FIGURE 18. Differential Input Clock Connection .............................................................................................. 54
FIGURE 19. AutoSync Example ................................................................................................................. 56
FIGURE 20. Power and Grounding Example .................................................................................................. 58
FIGURE 21. HSBGA Conceptual Drawing ..................................................................................................... 58
FIGURE 22. Power-on with Control Pins set by Pull-up/down Resistors .................................................................. 60
FIGURE 23. Power-on with Control Pins set by FPGA pre Power-on Cal ................................................................ 60
FIGURE 24. Power-on with Control Pins set by FPGA post Power-on Cal ............................................................... 60
FIGURE 25. Supply and DCLK Ramping ....................................................................................................... 61
FIGURE 26. Typical Temperature Sensor Application ....................................................................................... 61
List of Tables
TABLE 1. Analog Front-End and Clock Balls ................................................................................................... 7
5
www.national.com
ADC12D800RF/ADC12D500RF
18.1.4 Out-Of-Range Indication ..............................................................................................
18.1.5 Maximum Input Range ................................................................................................
18.1.6 AC-coupled Input Signals ............................................................................................
18.1.7 DC-coupled Input Signals ............................................................................................
18.1.8 Single-Ended Input Signals ..........................................................................................
18.2 THE CLOCK INPUTS ...........................................................................................................
18.2.1 CLK Coupling .............................................................................................................
18.2.2 CLK Frequency ..........................................................................................................
18.2.3 CLK Level ..................................................................................................................
18.2.4 CLK Duty Cycle ..........................................................................................................
18.2.5 CLK Jitter ..................................................................................................................
18.2.6 CLK Layout ................................................................................................................
18.3 THE LVDS OUTPUTS ...........................................................................................................
18.3.1 Common-mode and Differential Voltage .........................................................................
18.3.2 Output Data Rate ........................................................................................................
18.3.3 Terminating Unused LVDS Output Pins .........................................................................
18.4 SYNCHRONIZING MULTIPLE ADC12D800/500RFS IN A SYSTEM ...........................................
18.4.1 AutoSync Feature .......................................................................................................
18.4.2 DCLK Reset Feature ...................................................................................................
18.5 SUPPLY/GROUNDING, LAYOUT AND THERMAL RECOMMENDATIONS .................................
18.5.1 Power Planes .............................................................................................................
18.5.2 Bypass Capacitors ......................................................................................................
18.5.3 Ground Planes ...........................................................................................................
18.5.4 Power System Example ...............................................................................................
18.5.5 Thermal Management .................................................................................................
18.6 SYSTEM POWER-ON CONSIDERATIONS .............................................................................
18.6.1 Power-on, Configuration, and Calibration .......................................................................
18.6.2 Power-on and Data Clock (DCLK) .................................................................................
18.7 RECOMMENDED SYSTEM CHIPS ........................................................................................
18.7.1 Temperature Sensor ...................................................................................................
18.7.2 Clocking Device .........................................................................................................
18.7.3 Amplifiers for the Analog Input ......................................................................................
18.7.4 Balun Recommendations for Analog Input ......................................................................
19.0 Register Definitions ......................................................................................................................
20.0 Physical Dimensions ....................................................................................................................
ADC12D800RF/ADC12D500RF
TABLE 2. Control and Status Balls ..............................................................................................................
TABLE 3. Power and Ground Balls ..............................................................................................................
TABLE 4. High-Speed Digital Outputs ..........................................................................................................
TABLE 5. Package Thermal Resistance ........................................................................................................
TABLE 6. Static Converter Characteristics .....................................................................................................
TABLE 7. Dynamic Converter Characteristics ................................................................................................
TABLE 8. Analog Input/Output and Reference Characteristics .............................................................................
TABLE 9. I-Channel to Q-Channel Characteristics ............................................................................................
TABLE 10. Sampling Clock Characteristics ...................................................................................................
TABLE 11. AutoSync Feature Characteristics ................................................................................................
TABLE 12. Digital Control and Output Pin Characteristics ...................................................................................
TABLE 13. Power Supply Characteristics ......................................................................................................
TABLE 14. AC Electrical Characteristics .......................................................................................................
TABLE 15. Serial Port Interface ..................................................................................................................
TABLE 16. Calibration .............................................................................................................................
TABLE 17. Non-ECM Pin Summary .............................................................................................................
TABLE 18. Serial Interface Pins ..................................................................................................................
TABLE 19. Command and Data Field Definitions .............................................................................................
TABLE 20. Features and Modes ................................................................................................................
TABLE 21. Supported Demux, Data Rate Modes .............................................................................................
TABLE 22. Test Pattern by Output Port in Demux Mode ....................................................................................
TABLE 23. Test Pattern by Output Port in Non-Demux Mode ..............................................................................
TABLE 24. Calibration Pins .......................................................................................................................
TABLE 25. Unused Analog Input Recommended Termination .............................................................................
TABLE 26. Unused AutoSync and DCLK Reset Pin Recommendation ...................................................................
TABLE 27. Temperature Sensor Recommendation ..........................................................................................
TABLE 28. Amplifier Recommendations ........................................................................................................
TABLE 29. Balun Recommendations ............................................................................................................
TABLE 30. Register Addresses ..................................................................................................................
www.national.com
6
10
13
14
16
17
17
21
22
22
22
23
24
24
25
26
44
46
46
48
50
51
51
51
53
56
61
62
62
63
TABLE 1. Analog Front-End and Clock Balls
Ball No.
Name
H1/J1
N1/M1
VinI+/VinQ+/-
U2/V1
V2/W1
Equivalent Circuit
Description
Differential signal I- and Q-inputs. In the Non-Dual Edge Sampling (Non-DES) Mode, each I- and
Q-input is sampled and converted by its respective channel with each positive transition of the
CLK input. In Non-ECM (Non-Extended Control
Mode) and DES Mode, both channels sample the
I-input. In Extended Control Mode (ECM), the Qinput may optionally be selected for conversion
in DES Mode by the DEQ Bit (Addr: 0h, Bit 6).
Each I- and Q-channel input has an internal common mode bias that is disabled when DC-coupled Mode is selected. Both inputs must be either
AC- or DC-coupled. The coupling mode is selected by the VCMO Pin.
In Non-ECM, the full-scale range of these inputs
is determined by the FSR Pin; both I- and Qchannels have the same full-scale input range. In
ECM, the full-scale input range of the I- and Qchannel inputs may be independently set via the
Control Register (Addr: 3h and Addr: Bh). Note
that the high and low full-scale input range setting
in Non-ECM corresponds to the mid and minimum full-scale input range in ECM.
The input offset may also be adjusted in ECM.
CLK+/-
Differential Converter Sampling Clock. In the
Non-DES Mode, the analog inputs are sampled
on the positive transitions of this clock signal. In
the DES Mode, the selected input is sampled on
both transitions of this clock. This clock must be
AC-coupled.
DCLK_RST+/-
Differential DCLK Reset. A positive pulse on this
input is used to reset the DCLKI and DCLKQ
outputs of two or more ADC12D800/500RFs in
order to synchronize them with other
ADC12D800/500RFs in the system. DCLKI and
DCLKQ are always in phase with each other,
unless one channel is powered down, and do not
require a pulse from DCLK_RST to become
synchronized. The pulse applied here must meet
timing relationships with respect to the CLK input.
Although supported, this feature has been
superseded by AutoSync. (Note 18)
7
www.national.com
ADC12D800RF/ADC12D500RF
9.0 Ball Descriptions and Equivalent Circuits
ADC12D800RF/ADC12D500RF
Ball No.
C2
B1
C3/D3
C1/D2
E2/F3
www.national.com
Name
Equivalent Circuit
Description
VCMO
Common Mode Voltage Output or Signal
Coupling Select. If AC-coupled operation at the
analog inputs is desired, this pin should be held
at logic-low level. This pin is capable of sourcing/
sinking up to 100 µA. For DC-coupled operation,
this pin should be left floating or terminated into
high-impedance. In DC-coupled Mode, this pin
provides an output voltage which is the optimal
common-mode voltage for the input signal and
should be used to set the common-mode voltage
of the driving buffer.
VBG
Bandgap Voltage Output or LVDS Commonmode Voltage Select. This pin provides a
buffered version of the bandgap output voltage
and is capable of sourcing/sinking 100 uA and
driving a load of up to 80 pF. Alternately, this pin
may be used to select the LVDS digital output
common-mode voltage. If tied to logic-high, the
1.2V LVDS common-mode voltage is selected;
0.8V is the default.
Rext+/-
External Reference Resistor terminals. A 3.3 kΩ
±0.1% resistor should be connected between
Rext+/-. The Rext resistor is used as a reference
to trim internal circuits which affect the linearity of
the converter; the value and precision of this
resistor should not be compromised.
Rtrim+/-
Input Termination Trim Resistor terminals. A 3.3
kΩ ±0.1% resistor should be connected between
Rtrim+/-. The Rtrim resistor is used to establish
the calibrated 100Ω input impedance of VinI,
VinQ and CLK. These impedances may be fine
tuned by varying the value of the resistor by a
corresponding percentage; however, the tuning
range and performance is not guaranteed for
such an alternate value.
Tdiode+/-
Temperature Sensor Diode Positive (Anode) and
Negative (Cathode) Terminals. This set of pins is
used for die temperature measurements. It has
not been fully characterized.
8
Y4/W5
Y5/U6
V6/V7
Name
Equivalent Circuit
Description
RCLK+/-
Reference Clock Input. When the AutoSync
feature is active, and the ADC12D800/500RF is
in Slave Mode, the internal divided clocks are
synchronized with respect to this input clock. The
delay on this clock may be adjusted when
synchronizing multiple ADCs. This feature is
available in ECM via Control Register (Addr: Eh).
(Note 18)
RCOut1+/RCOut2+/-
Reference Clock Output 1 and 2. These signals
provide a reference clock at a rate of CLK/4,
when enabled, independently of whether the
ADC is in Master or Slave Mode. They are used
to drive the RCLK of another
ADC12D800/500RF, to enable automatic
synchronization for multiple ADCs (AutoSync
feature). The impedance of each trace from
RCOut1 and RCOut2 to the RCLK of another
ADC12D800/500RF should be 100Ω differential.
Having two clock outputs allows the autosynchronization to propagate as a binary tree.
Use the DOC Bit (Addr: Eh, Bit 1) to enable/
disable this feature; default is disabled.
(Note 18)
9
www.national.com
ADC12D800RF/ADC12D500RF
Ball No.
ADC12D800RF/ADC12D500RF
TABLE 2. Control and Status Balls
Ball No.
Name
Equivalent Circuit
Description
DES
Dual Edge Sampling (DES) Mode select. In the
Non-Extended Control Mode (Non-ECM), when
this input is set to logic-high, the DES Mode of
operation is selected, meaning that the VinI input
is sampled by both channels in a time-interleaved
manner. The VinQ input is ignored. When this
input is set to logic-low, the device is in Non-DES
Mode, i.e. the I- and Q-channels operate
independently. In the Extended Control Mode
(ECM), this input is ignored and DES Mode
selection is controlled through the Control
Register by the DES Bit (Addr: 0h, Bit 7); default
is Non-DES Mode operation.
CalDly
Calibration Delay select. By setting this input
logic-high or logic-low, the user can select the
device to wait a longer or shorter amount of time,
respectively, before the automatic power-on selfcalibration is initiated. This feature is pincontrolled only and is always active during ECM
and Non-ECM.
D6
CAL
Calibration cycle initiate. The user can command
the device to execute a self-calibration cycle by
holding this input high a minimum of tCAL_H after
having held it low a minimum of tCAL_L. If this input
is held high at the time of power-on, the automatic
power-on calibration cycle is inhibited until this
input is cycled low-then-high. This pin is active in
both ECM and Non-ECM. In ECM, this pin is
logically OR'd with the CAL Bit (Addr: 0h, Bit 15)
in the Control Register. Therefore, both pin and
bit must be set low and then either can be set high
to execute an on-command calibration.
B5
CalRun
V5
V4
www.national.com
Calibration Running indication. This output is
logic-high while the calibration sequence is
executing. This output is logic-low otherwise.
10
U3
V3
A4
A5
Name
Equivalent Circuit
Description
PDI
PDQ
Power Down I- and Q-channel. Setting either
input to logic-high powers down the respective Ior Q-channel. Setting either input to logic-low
brings the respective I- or Q-channel to a
operational state after a finite time delay. This pin
is active in both ECM and Non-ECM. In ECM,
each Pin is logically OR'd with its respective Bit.
Therefore, either this pin or the PDI and PDQ Bit
in the Control Register can be used to powerdown the I- and Q-channel (Addr: 0h, Bit 11 and
Bit 10), respectively.
TPM
Test Pattern Mode select. With this input at logichigh, the device continuously outputs a fixed,
repetitive test pattern at the digital outputs. In the
ECM, this input is ignored and the Test Pattern
Mode can only be activated through the Control
Register by the TPM Bit (Addr: 0h, Bit 12).
NDM
Non-Demuxed Mode select. Setting this input to
logic-high causes the digital output bus to be in
the 1:1 Non-Demuxed Mode. Setting this input to
logic-low causes the digital output bus to be in the
1:2 Demuxed Mode. This feature is pin-controlled
only and remains active during ECM and NonECM.
Y3
FSR
W4
DDRPh
Full-Scale input Range select. In Non-ECM,
when this input is set to logic-low or logic-high,
the full-scale differential input range for both Iand Q-channel inputs is set to the lower or higher
FSR value, respectively. In the ECM, this input is
ignored and the full-scale range of the I- and Qchannel inputs is independently determined by
the setting of Addr: 3h and Addr: Bh, respectively. Note that the high (lower) FSR value in NonECM corresponds to the mid (min) available
selection in ECM; the FSR range in ECM is
greater.
DDR Phase select. This input, when logic-low,
selects the 0° Data-to-DCLK phase relationship.
When logic-high, it selects the 90° Data-to-DCLK
phase relationship, i.e. the DCLK transition
indicates the middle of the valid data outputs.
This pin only has an effect when the chip is in 1:2
Demuxed Mode, i.e. the NDM pin is set to logiclow. In ECM, this input is ignored and the DDR
phase is selected through the Control Register by
the DPS Bit (Addr: 0h, Bit 14); the default is 0°
Mode.
11
www.national.com
ADC12D800RF/ADC12D500RF
Ball No.
ADC12D800RF/ADC12D500RF
Ball No.
Name
Equivalent Circuit
Description
ECE
Extended Control Enable bar. Extended feature
control through the SPI interface is enabled when
this signal is asserted (logic-low). In this case,
most of the direct control pins have no effect.
When this signal is de-asserted (logic-high), the
SPI interface is disabled, all SPI registers are
reset to their default values, and all available
settings are controlled via the control pins.
SCS
Serial Chip Select bar. In ECM, when this signal
is asserted (logic-low), SCLK is used to clock in
serial data which is present on SDI and to source
serial data on SDO. When this signal is deasserted (logic-high), SDI is ignored and SDO is
in tri-stated.
C5
SCLK
Serial Clock. In ECM, serial data is shifted into
and out of the device synchronously to this clock
signal. This clock may be disabled and held logiclow, as long as timing specifications are not
violated when the clock is enabled or disabled.
B4
SDI
Serial Data-In. In ECM, serial data is shifted into
the device on this pin while SCS signal is
asserted (logic-low).
A3
SDO
Serial Data-Out. In ECM, serial data is shifted out
of the device on this pin while SCS signal is
asserted (logic-low). This output is tri-stated
when SCS is de-asserted.
D1, D7, E3, F4,
W3, U7
DNC
NONE
Do Not Connect. These pins are used for internal
purposes and should not be connected, i.e. left
floating. Do not ground.
C7
NC
NONE
Not Connected. This pin is not bonded and may
be left floating or connected to any potential.
B3
C4
www.national.com
12
Ball No.
Name
Equivalent Circuit
A2, A6, B6, C6,
D8, D9, E1, F1,
H4, N4, R1, T1,
U8, U9, W6, Y2,
Y6
VA
NONE
Power Supply for the Analog circuitry. This
supply is tied to the ESD ring. Therefore, it must
be powered up before or with any other supply.
G1, G3, G4, H2,
J3, K3, L3, M3,
N2, P1, P3, P4,
R3, R4
VTC
NONE
Power Supply for the Track-and-Hold and Clock
circuitry.
A11, A15, C18,
D11, D15, D17,
J17, J20, R17,
R20, T17, U11,
U15, U16, Y11,
Y15
VDR
NONE
Power Supply for the Output Drivers.
A8, B9, C8, V8,
W9, Y8
VE
NONE
Power Supply for the Digital Encoder.
NONE
Bias Voltage I-channel. This is an externally
decoupled bias voltage for the I-channel. Each
pin should individually be decoupled with a 100
nF capacitor via a low resistance, low inductance
path to GND.
J4, K2
VbiasI
Description
L2, M4
VbiasQ
NONE
Bias Voltage Q-channel. This is an externally
decoupled bias voltage for the Q-channel. Each
pin should individually be decoupled with a 100
nF capacitor via a low resistance, low inductance
path to GND.
A1, A7, B2, B7,
D4, D5, E4, K1,
L1, T4, U4, U5,
W2, W7, Y1, Y7,
H8:N13
GND
NONE
Ground Return for the Analog circuitry.
F2, G2, H3, J2,
K4, L4, M2, N3,
P2, R2, T2, T3, U1
GNDTC
NONE
Ground Return for the Track-and-Hold and Clock
circuitry.
A13, A17, A20,
D13, D16, E17,
F17, F20, M17,
M20, U13, U17,
V18, Y13, Y17,
Y20
GNDDR
NONE
Ground Return for the Output Drivers.
A9, B8, C9, V9,
W8, Y9
GNDE
NONE
Ground Return for the Digital Encoder.
13
www.national.com
ADC12D800RF/ADC12D500RF
TABLE 3. Power and Ground Balls
ADC12D800RF/ADC12D500RF
TABLE 4. High-Speed Digital Outputs
Ball No.
K19/K20
L19/L20
K17/K18
L17/L18
www.national.com
Name
Equivalent Circuit
Description
DCLKI+/DCLKQ+/-
Data Clock Output for the I- and Q-channel data
bus. These differential clock outputs are used to
latch the output data and, if used, should always
be terminated with a 100Ω differential resistor
placed as closely as possible to the differential
receiver. Delayed and non-delayed data outputs
are supplied synchronously to this signal. In 1:2
Demux Mode or Non-Demux Mode, this signal is
at ¼ or ½ the sampling clock rate, respectively.
DCLKI and DCLKQ are always in phase with
each other, unless one channel is powered down,
and do not require a pulse from DCLK_RST to
become synchronized.
ORI+/ORQ+/-
Out-of-Range Output for the I- and Q-channel.
This differential output is asserted logic-high
while the over- or under-range condition exists,
i.e. the differential signal at each respective
analog input exceeds the full-scale value. Each
OR result refers to the current Data, with which it
is clocked out. If used, each of these outputs
should always be terminated with a 100Ω
differential resistor placed as closely as possible
to the differential receiver.
14
Name
Equivalent Circuit
J18/J19
H19/H20
H17/H18
G19/G20
G17/G18
F18/F19
E19/E20
D19/D20
D18/E18
C19/C20
B19/B20
B18/C17
·
M18/M19
N19/N20
N17/N18
P19/P20
P17/P18
R18/R19
T19/T20
U19/U20
U18/T18
V19/V20
W19/W20
W18/V17
DI11+/DI10+/DI9+/DI8+/DI7+/DI6+/DI5+/DI4+/DI3+/DI2+/DI1+/DI0+/·
DQ11+/DQ10+/DQ9+/DQ8+/DQ7+/DQ6+/DQ5+/DQ4+/DQ3+/DQ2+/DQ1+/DQ0+/-
I- and Q-channel Digital Data Outputs. In NonDemux Mode, this LVDS data is transmitted at
the sampling clock rate. In Demux Mode, these
outputs provide ½ the data at ½ the sampling
clock rate, synchronized with the delayed data,
i.e. the other ½ of the data which was sampled
one clock cycle earlier. Compared with the DId
and DQd outputs, these outputs represent the
later time samples. If used, each of these outputs
should always be terminated with a 100Ω
differential resistor placed as closely as possible
to the differential receiver.
A18/A19
B17/C16
A16/B16
B15/C15
C14/D14
A14/B14
B13/C13
C12/D12
A12/B12
B11/C11
C10/D10
A10/B10
·
Y18/Y19
W17/V16
Y16/W16
W15/V15
V14/U14
Y14/W14
W13/V13
V12/U12
Y12/W12
W11/V11
V10/U10
Y10/W10
DId11+/DId10+/DId9+/DId8+/DId7+/DId6+/DId5+/DId4+/DId3+/DId2+/DId1+/DId0+/·
DQd11+/DQd10+/DQd9+/DQd8+/DQd7+/DQd6+/DQd5+/DQd4+/DQd3+/DQd2+/DQd1+/DQd0+/-
Delayed I- and Q-channel Digital Data Outputs.
In Non-Demux Mode, these outputs are tristated. In Demux Mode, these outputs provide ½
the data at ½ the sampling clock rate,
synchronized with the non-delayed data, i.e. the
other ½ of the data which was sampled one clock
cycle later. Compared with the DI and DQ
outputs, these outputs represent the earlier time
samples. If used, each of these outputs should
always be terminated with a 100Ω differential
resistor placed as closely as possible to the
differential receiver.
15
Description
www.national.com
ADC12D800RF/ADC12D500RF
Ball No.
ADC12D800RF/ADC12D500RF
10.0 Absolute Maximum Ratings
11.0 Operating Ratings
(Note 1, Note 2)
(Note 1, Note 2)
Supply Voltage (VA, VTC, VDR, VE)
Supply Difference
max(VA/TC/DR/E)min(VA/TC/DR/E)
Voltage on Any Input Pin
(except VIN+/-)
0V to 100 mV
−0.15V to
(VA + 0.15V)
VIN+/- Voltage Range
-0.5V to 2.5V
Ground Difference
max(GNDTC/DR/E)
-min(GNDTC/DR/E)
Input Current at Any Pin (Note 3)
ADC12D800/500RF Package Power
Dissipation at TA ≤ 85°C (Note 3)
ESD Susceptibility (Note 4)
Human Body Model
Charged Device Model
Machine Model
Storage Temperature
ADC12D800/500RF Ambient
Temperature Range (Standard
JEDEC thermal model)
Junction Temperature Range
2.2V
Supply Voltage (VA, VTC, VE)
VIN+/- Voltage Range (Note 15)
VIN+/- Differential Voltage
(Note 15)
0V to 100 mV
±50 mA
VIN+/- Current Range (Note 15)
2500V
1000V
250V
−65°C to +150°C
TJ ≤ 135°C
+1.8V to +2.0V
+1.8V to VA
Driver Supply Voltage (VDR)
3.45 W
−40°C ≤ TA ≤ 85°C
VIN+/- Power
-0.4V to 2.4V (DC)
1.0V (d.c.-coupled
@ 100% duty cycle)
2.0V (d.c.-coupled
@ 20% duty cycle)
2.8V (d.c.-coupled
@ 10% duty cycle)
±50 mA
(a.c.-coupled)
15.3 dBm
(maintaining
common mode
voltage, a.c.coupled)
17.1 dBm
(not maintaining
common-mode
voltage, a.c.coupled)
Ground Difference
max(GNDTC/DR/E)
-min(GNDTC/DR/E)
0V
0V to VA
CLK+/- Voltage Range
Differential CLK Amplitude
0.4VP-P to 2.0VP-P
Common Mode Input Voltage
VCMO - 150 mV <
VCMI < VCMO +150 mV
TABLE 5. Package Thermal Resistance
Package
θJA
292-Ball BGA Thermally 16°C/W
Enhanced Package
θJC1
θJC2
2.9°C/W 2.5°C/W
Soldering
process
must
comply
with
National
Semiconductor’s Reflow Temperature Profile specifications.
Refer to www.national.com/packaging. (Note 5)
www.national.com
16
Unless otherwise specified, the following apply after calibration for VA = VDR = VTC = VE = +1.9V; I- and Q-channels, AC-coupled,
unused channel terminated to AC ground, FSR Pin = High; CL = 10 pF; Differential, AC coupled Sine Wave Sampling Clock,
fCLK = 800/500 MHz at 0.5 VP-P with 50% duty cycle (as specified); VBG = Floating; Non-Extended Control Mode; Rext = Rtrim =
3300Ω ± 0.1%; Analog Signal Source Impedance = 100Ω Differential; Non-Demux Non-DES Mode; Duty Cycle Stabilizer on.
Boldface limits apply for TA = TMIN to TMAX. All other limits TA = 25°C, unless otherwise noted. (Note 6, Note 7, Note 8)
TABLE 6. Static Converter Characteristics
Symbol
Parameter
Conditions
ADC12D800RF ADC12D500RF
Typ
Resolution with No Missing Codes
Lim
Typ
12
Lim
Units
(Limits)
12
bits
INL
Integral Non-Linearity
(Best fit)
1 MHz DC-coupled over-ranged
sine wave
±2.5
±7.25
±2.5
±7.25
LSB (max)
DNL
Differential Non-Linearity
1 MHz DC-coupled over-ranged
sine wave
±0.4
±0.95
±0.4
±0.95
LSB (max)
VOFF
Offset Error
VOFF_ADJ
Input Offset Adjustment Range
Extended Control Mode
PFSE
Positive Full-Scale Error
(Note 9)
±30
±30
mV (max)
NFSE
Negative Full-Scale Error
(Note 9)
±30
±30
mV (max)
4095
4095
0
0
5
5
±45
Out-of-Range Output Code (Note (VIN+) − (VIN−) > + Full Scale
10)
(VIN+) − (VIN−) < − Full Scale
LSB
±45
mV
TABLE 7. Dynamic Converter Characteristics
(Note 11)
Symbol
Parameter
Bandwidth
Conditions
ADC12D800RF ADC12D500RF
Typ
Lim
Typ
Lim
Units
(Limits)
Non-DES Mode, DESCLKIQ Mode
-3dB (Note 16)
2.7
2.7
GHz
-6dB
3.1
3.1
GHz
-9dB
3.5
3.5
GHz
-12dB
4.0
4.0
GHz
-3dB (Note 16)
1.2
1.2
GHz
-6dB
2.3
2.3
GHz
-9dB
2.7
2.7
GHz
-12dB
3.0
3.0
GHz
-3dB (Note 16)
1.75
1.75
GHz
-6dB
2.7
2.7
GHz
DESI, DESQ Mode
DESIQ Mode
17
www.national.com
ADC12D800RF/ADC12D500RF
12.0 Converter Electrical Characteristics
ADC12D800RF/ADC12D500RF
Symbol
Parameter
Gain Flatness
Conditions
ADC12D800RF ADC12D500RF
Typ
Lim
Typ
Lim
Units
(Limits)
Non-DES Mode
D.C. to Fs/2
±0.1
±0.02
dB
D.C. to Fs
±0.3
±0.3
dB
D.C. to 3Fs/2
±0.5
±0.3
dB
D.C. to Fs/2
±0.7
±0.6
dB
D.C. to Fs
±2.2
±1.0
dB
D.C. to 3Fs/2
±3.4
±1.8
dB
D.C. to Fs/2
±0.6
±0.3
dB
D.C. to Fs
±1.1
±0.7
dB
D.C. to 3Fs/2
±2.0
±1.1
dB
D.C. to Fs/2
±0.4
±0.2
dB
D.C. to Fs
±0.7
±0.5
dB
D.C. to 3Fs/2
±1.0
±0.7
dB
10-18
10-18
Error/
Sample
50.4
50.7
dB
FIN = 2670MHz ± 2.5MHz @
-13dBFS
-76
-74
dBFS
-63
-61
dBc
FIN = 2070MHz ± 2.5MHz @
-13dBFS
-80
-79
dBFS
-67
-66
dBc
FIN = 2670MHz ± 2.5MHz @
-16dBFS
-87
-85
dBFS
-71
-69
dBc
FIN = 2070MHz ± 2.5MHz @
-16dBFS
-85
-84
dBFS
-69
-68
dBc
-152.2
-150.5
dBm/Hz
-151.2
-149.6
dBFS/Hz
DESI, DESQ Mode
DESIQ Mode
DESCLKIQ Mode
CER
Code Error Rate
NPR
Noise Power Ratio
DES Mode, fc,notch = Fs/4,
Notch width = 5% of Fs/2
IMD3
3rd order Intermodulation
Distortion
DES Mode
Noise Floor Density
www.national.com
50Ω single-ended input
termination, DES Mode
18
Parameter
ADC12D800RF ADC12D500RF
Typ
Lim
Typ
Lim
Units
(Limits)
AIN = 125 MHz @ -0.5 dBFS
9.6
9.1
9.7
9.1
bits (min)
AIN = 248 MHz @ -0.5 dBFS
9.5
9.7
bits
AIN = 498 MHz @ -0.5 dBFS
9.5
9.6
bits
AIN = 998 MHz @ -0.5 dBFS
9.2
9.3
bits
AIN = 1498 MHz @ -0.5 dBFS
8.9
9.2
bits
AIN = 125 MHz @ -0.5 dBFS
59.7
60.0
dB
AIN = 248 MHz @ -0.5 dBFS
58.7
59.9
dB
AIN = 498 MHz @ -0.5 dBFS
58.8
59.4
dB
AIN = 998 MHz @ -0.5 dBFS
57.1
58.0
dB
AIN = 1498 MHz @ -0.5 dBFS
55.1
AIN = 125 MHz @ -0.5 dBFS
60.2
AIN = 248 MHz @ -0.5 dBFS
59.8
60.3
dB
AIN = 498 MHz @ -0.5 dBFS
59.7
59.7
dB
AIN = 998 MHz @ -0.5 dBFS
58.4
58.7
dB
AIN = 1498 MHz @ -0.5 dBFS
56.4
57.3
dB
AIN = 125 MHz @ -0.5 dBFS
-69.0
AIN = 248 MHz @ -0.5 dBFS
-65.1
-70.3
dB
AIN = 498 MHz @ -0.5 dBFS
-66.0
-70.4
dB
AIN = 998 MHz @ -0.5 dBFS
-63.2
-66.5
dB
AIN = 1498 MHz @ -0.5 dBFS
-60.8
-67.4
dB
AIN = 125 MHz @ -0.5 dBFS
80.1
80.5
dBc
AIN = 248 MHz @ -0.5 dBFS
78.5
77.0
dBc
AIN = 498 MHz @ -0.5 dBFS
77.9
85.7
dBc
AIN = 998 MHz @ -0.5 dBFS
67.9
81.0
dBc
AIN = 1498 MHz @ -0.5 dBFS
63.1
76.5
dBc
AIN = 125 MHz @ -0.5 dBFS
76.3
77.6
dBc
AIN = 248 MHz @ -0.5 dBFS
66.5
73.8
dBc
AIN = 498 MHz @ -0.5 dBFS
73.2
74.4
dBc
AIN = 998 MHz @ -0.5 dBFS
66.8
68.5
dBc
AIN = 1498 MHz @ -0.5 dBFS
68.8
AIN = 125 MHz @ -0.5 dBFS
73.4
AIN = 248 MHz @ -0.5 dBFS
66.5
73.8
dBc
AIN = 498 MHz @ -0.5 dBFS
71.2
72.0
dBc
AIN = 998 MHz @ -0.5 dBFS
66.8
68.5
dBc
AIN = 1498 MHz @ -0.5 dBFS
63.1
70.5
dBc
Conditions
Non-DES Mode (Note 12, Note 14, Note 19)
ENOB
SINAD
SNR
THD
2nd Harm
3rd Harm
SFDR
Effective Number of Bits
Signal-to-Noise Plus Distortion
Ratio
Signal-to-Noise Ratio
Total Harmonic Distortion
Second Harmonic Distortion
Third Harmonic Distortion
Spurious-Free Dynamic Range
19
56.9
57.5
-62.5
60.4
-71.4
dB
57.5
-62.5
70.3
62.5
74.3
dB (min)
dB (max)
dBc
62.5
dBc (min)
www.national.com
ADC12D800RF/ADC12D500RF
Symbol
ADC12D800RF/ADC12D500RF
Symbol
Parameter
Conditions
ADC12D800RF ADC12D500RF
Typ
Lim
Typ
Lim
Units
(Limits)
DES Mode (Note 12, Note 13)
ENOB
SINAD
SNR
THD
2nd Harm
3rd Harm
SFDR
www.national.com
Effective Number of Bits
Signal-to-Noise Plus Distortion
Ratio
Signal-to-Noise Ratio
Total Harmonic Distortion
Second Harmonic Distortion
Third Harmonic Distortion
Spurious-Free Dynamic Range
AIN = 125 MHz @ -0.5 dBFS
9.4
9.6
bits
AIN = 248 MHz @ -0.5 dBFS
9.3
9.5
bits
AIN = 498 MHz @ -0.5 dBFS
9.3
9.5
bits
AIN = 998 MHz @ -0.5 dBFS
9
9.2
bits
AIN = 1498 MHz @ -0.5 dBFS
8.7
8.7
bits
AIN = 125 MHz @ -0.5 dBFS
58.6
59.6
dB
AIN = 248 MHz @ -0.5 dBFS
57.8
59.0
dB
AIN = 498 MHz @ -0.5 dBFS
57.9
59.0
dB
AIN = 998 MHz @ -0.5 dBFS
55.8
57.3
dB
AIN = 1498 MHz @ -0.5 dBFS
54.0
53.5
dB
AIN = 125 MHz @ -0.5 dBFS
59.1
60.0
dB
AIN = 248 MHz @ -0.5 dBFS
58.5
59.6
dB
AIN = 498 MHz @ -0.5 dBFS
58.3
59.4
dB
AIN = 998 MHz @ -0.5 dBFS
56.2
58.1
dB
AIN = 1498 MHz @ -0.5 dBFS
54.3
53.8
dB
AIN = 125 MHz @ -0.5 dBFS
-68.3
-70.5
dB
AIN = 248 MHz @ -0.5 dBFS
-65.9
-67.8
dB
AIN = 498 MHz @ -0.5 dBFS
-68.5
-69.2
dB
AIN = 998 MHz @ -0.5 dBFS
-66.2
-64.5
dB
AIN = 1498 MHz @ -0.5 dBFS
-65.3
-64.6
dB
AIN = 125 MHz @ -0.5 dBFS
80.3
81.3
dBc
AIN = 248 MHz @ -0.5 dBFS
83.2
78.0
dBc
AIN = 498 MHz @ -0.5 dBFS
80.5
79.5
dBc
AIN = 998 MHz @ -0.5 dBFS
80.2
69.5
dBc
AIN = 1498 MHz @ -0.5 dBFS
71.8
75.1
dBc
AIN = 125 MHz @ -0.5 dBFS
72.5
75.1
dBc
AIN = 248 MHz @ -0.5 dBFS
68.8
72.4
dBc
AIN = 498 MHz @ -0.5 dBFS
76.1
73.8
dBc
AIN = 998 MHz @ -0.5 dBFS
68.1
67.8
dBc
AIN = 1498 MHz @ -0.5 dBFS
73.2
66.2
dBc
AIN = 125 MHz @ -0.5 dBFS
71.9
74.3
dBc
AIN = 248 MHz @ -0.5 dBFS
67.6
70.4
dBc
AIN = 498 MHz @ -0.5 dBFS
68.8
70.3
dBc
AIN = 998 MHz @ -0.5 dBFS
66.2
67.3
dBc
AIN = 1498 MHz @ -0.5 dBFS
63.9
56.7
dBc
20
Symbol
Parameter
Conditions
ADC12D800RF ADC12D500RF
Typ
Lim
Typ
Lim
Units
(Limits)
Analog Inputs
VIN_FSR
Analog Differential Input Full Scale Non-Extended Control Mode
Range
FSR Pin Low
530
mVP-P
(min)
670
670
mVP-P
(max)
730
730
mVP-P
(min)
870
mVP-P
(max)
530
600
FSR Pin High
600
800
800
870
Extended Control Mode
CIN
RIN
FM(14:0) = 0000h
600
600
mVP-P
FM(14:0) = 4000h (default)
800
800
mVP-P
FM(14:0) = 7FFFh
1000
1000
mVP-P
Analog Input Capacitance,
Non-DES Mode (Note 10)
Differential
0.02
0.02
pF
Each input pin to ground
1.6
1.6
pF
Analog Input Capacitance,
DES Mode (Note 10)
Differential
0.08
0.08
pF
Each input pin to ground
2.2
2.2
pF
100
100
Ω
Differential Input Resistance
Common Mode Output
VCMO
Common Mode Output Voltage
ICMO = ±100 µA
TC_VCMO
Common Mode Output Voltage
Temperature Coefficient
ICMO = ±100 µA (Note 11)
VCMO_LVL
VCMO input threshold to set
DC-coupling Mode
CL_VCMO
Maximum VCMO Load Capacitance (Note 10)
1.25
1.15
1.35
1.25
1.15
V (min)
1.35
V (max)
38
38
ppm/°C
0.63
0.63
V
80
80
pF
1.15
V (min)
1.35
V (max)
Bandgap Reference
VBG
Bandgap Reference Output
Voltage
IBG = ±100 µA
TC_VBG
Bandgap Reference Voltage
Temperature Coefficient
IBG = ±100 µA (Note 11)
CL_VBG
Maximum Bandgap Reference
load Capacitance
(Note 10)
1.25
1.15
1.35
32
32
80
21
1.25
ppm/°C
80
pF
www.national.com
ADC12D800RF/ADC12D500RF
TABLE 8. Analog Input/Output and Reference Characteristics
ADC12D800RF/ADC12D500RF
TABLE 9. I-Channel to Q-Channel Characteristics
Symbol
X-TALK
Parameter
Conditions
ADC12D800RF ADC12D500RF
Typ
Lim
Typ
Lim
Units
(Limits)
Offset Match
(Note 11)
2
2
LSB
Positive Full-Scale Match
Zero offset selected in
Control Register
2
2
LSB
Negative Full-Scale Match
Zero offset selected in
Control Register
2
2
LSB
Phase Matching (I, Q)
fIN = 1.0 GHz (Note 10)
<1
<1
Degree
Crosstalk from I-channel
Aggressor = 867 MHz F.S.
(Aggressor) to Q-channel (Victim) Victim = 100 MHz F.S. (Note 11)
-70
-70
dB
Crosstalk from Q-channel
(Aggressor) to I-channel (Victim)
-70
-70
dB
Aggressor = 867 MHz F.S.
Victim = 100 MHz F.S. (Note 11)
TABLE 10. Sampling Clock Characteristics
Symbol
VIN_CLK
CIN_CLK
RIN_CLK
Parameter
Differential Sampling Clock Input
Level (Note 11)
Conditions
Typ
Sine Wave Clock
Differential Peak-to-Peak
0.6
Square Wave Clock
Differential Peak-to-Peak
0.6
Sampling Clock Input Capacitance Differential
(Note 10)
Each input to ground
Sampling Clock Differential Input
Resistance
ADC12D800RF ADC12D500RF
D.C.
Lim
0.4
2.0
0.4
2.0
Typ
0.6
0.6
Lim
Units
(Limits)
0.4
VP-P (min)
2.0
VP-P (max)
0.4
VP-P (min)
2.0
VP-P (max)
0.1
0.1
pF
1
1
pF
100
100
Ω
TABLE 11. AutoSync Feature Characteristics
(Note 17)
Symbol
Parameter
Conditions
ADC12D800RF ADC12D500RF
Typ
Lim
Typ
Lim
Units
(Limits)
VIN_RCLK
Differential RCLK Input Level
Differential Peak-to-Peak
360
360
mVP-P
CIN_RCLK
RCLK Input Capacitance
Differential
0.1
0.1
pF
1
1
pF
Each input to ground
RIN_RCLK
RCLK Differential Input
Resistance
100
100
Ω
IIH_RCLK
Input Leakage Current;
VIN = VA
22
22
µA
IIL_RCLK
Input Leakage Current;
VIN = GND
-33
-33
µA
VO_RCOUT
Differential RCOut Output Voltage
360
360
mVP-P
www.national.com
22
Symbol
Parameter
Conditions
ADC12D800RF ADC12D500RF
Typ
Lim
Typ
Lim
Units
(Limits)
Digital Control Pins (DES, CalDly, CAL, PDI, PDQ, TPM, NDM, FSR, DDRPh, ECE, SCLK, SDI, SCS)
VIH
Logic High Input Voltage
0.7×VA
0.7×VA
V (min)
VIL
Logic Low Input Voltage
0.3×VA
0.3×VA
V (max)
IIH
Input Leakage Current;
VIN = VA
IIL
Input Leakage Current;
VIN = GND
0.02
0.02
μA
-0.02
-0.02
μA
SCS, SCLK, SDI
-17
-17
μA
PDI, PDQ, ECE
-38
-38
μA
FSR, CalDly, CAL, NDM, TPM,
DDRPh, DES
Digital Output Pins (Data, DCLKI, DCLKQ, ORI, ORQ)
VOD
LVDS Differential Output Voltage VBG = Floating, OVS = High
400
mVP-P
(min)
800
800
mVP-P
(max)
230
230
mVP-P
(min)
630
mVP-P
(max)
400
630
VBG = Floating, OVS = Low
630
460
460
630
VBG = VA, OVS = High (Note 11)
670
670
mVP-P
VBG = VA, OVS = Low (Note 11)
500
500
mVP-P
±1
±1
mV
VBG = Floating (Note 11)
0.8
0.8
V
VBG = VA (Note 11)
1.2
1.2
V
±1
±1
mV
ΔVO DIFF
Change in LVDS Output Swing
Between Logic Levels
VOS
Output Offset Voltage
ΔVOS
Output Offset Voltage Change
Between Logic Levels
(Note 11)
IOS
Output Short Circuit Current
VBG = Floating;
D+ and D− connected to 0.8V
(Note 11)
±4
±4
mA
ZO
Differential Output Impedance
(Note 11)
100
100
Ω
VOH
Logic High Output Level
CalRun, IOH = −100 µA,
SDO, IOH = −400 µA (Note 11)
1.65
1.65
V
VOL
Logic Low Output Level
CalRun, IOL = 100 µA,
SDO, IOL = 400 µA (Note 11)
0.15
0.15
V
1.25
1.25
V
VIN_CLK
VIN_CLK
VP-P
100
100
Ω
Differential DCLK Reset Pins (DCLK_RST) (Note 17)
VCMI_DRST
DCLK_RST Common Mode Input
Voltage
VID_DRST
Differential DCLK_RST Input
Voltage
RIN_DRST
Differential DCLK_RST Input
Resistance
(Note 10)
23
www.national.com
ADC12D800RF/ADC12D500RF
TABLE 12. Digital Control and Output Pin Characteristics
ADC12D800RF/ADC12D500RF
TABLE 13. Power Supply Characteristics
Symbol
IA
Parameter
Analog Supply Current
ITC
IDR
PC
Typ
Lim
Typ
Lim
Units
(Limits)
755
589
mA
PDI = Low; PDQ = High
422
340
mA
PDI = High; PDQ = Low
422
340
mA
PDI = PDQ = High
2.4
2.4
mA
Track-and-Hold and Clock Supply PDI = PDQ = Low
Current
PDI = Low; PDQ = High
343
295
mA
213
184
mA
PDI = High; PDQ = Low
213
184
mA
PDI = PDQ = High
560
560
µA
PDI = PDQ = Low
161
148
mA
PDI = Low; PDQ = High
90
81
mA
PDI = High; PDQ = Low
90
81
mA
PDI = PDQ = High
4
4
µA
PDI = PDQ = Low
55
30
mA
PDI = Low; PDQ = High
30
14
mA
PDI = High; PDQ = Low
30
14
mA
PDI = PDQ = High
2.1
2.1
µA
1:2 Demux Mode
PDI = PDQ = Low
1415
1208
mA
Non-Demux Mode
PDI = PDQ = Low
1314
1670
1062
1359
mA (max)
PDI = PDQ = Low
2.50
3.17
2.02
2.58
W (max)
PDI = Low; PDQ = High
1.43
1.18
PDI = High; PDQ = Low
1.43
1.18
W
PDI = PDQ = High
5.6
5.6
mW
2.69
2.30
W
Digital Encoder Supply Current
ITOTAL
ADC12D800RF ADC12D500RF
PDI = PDQ = Low
Output Driver Supply Current
IE
Conditions
Total Supply Current
Power Consumption
Non-Demux Mode
W
1:2 Demux Mode
PDI = PDQ = Low
TABLE 14. AC Electrical Characteristics
Symbol
Parameter
Conditions
ADC12D800RF ADC12D500RF
Typ
Lim
Units
(Limits)
800
500
MHz
Lim
Typ
Sampling Clock (CLK)
fCLK (max)
Maximum Sampling Clock
Frequency
fCLK (min)
Minimum Sampling Clock
Frequency
Non-DES Mode (Note 11)
150
150
MHz
DES Mode (Note 11)
200
200
MHz
Sampling Clock Duty Cycle
fCLK(min) ≤ fCLK ≤ fCLK(max)
(Note 11)
50
20
80
50
20
% (min)
80
% (max)
tCL
Sampling Clock Low Time
(Note 10)
625
250
1000
400
ps (min)
tCH
Sampling Clock High Time
(Note 10)
625
250
1000
400
ps (min)
Data Clock (DCLKI, DCLKQ)
DCLK Duty Cycle
(Note 10)
50
45
55
50
45
% (min)
55
% (max)
tSR
Setup Time DCLK_RST±
(Note 11)
45
45
ps
tHR
Hold Time DCLK_RST±
(Note 11)
45
45
ps
www.national.com
24
tPWR
tSYNC_DLY
Parameter
Pulse Width DCLK_RST±
DCLK Synchronization Delay
Conditions
ADC12D800RF ADC12D500RF
Typ
Lim
Typ
Lim
(Note 10)
90° Mode (Note 10)
0° Mode (Note 10)
5
5
4
4
5
5
Units
(Limits)
Sampling
Clock
Cycles
(min)
Sampling
Clock
Cycles
tLHT
Differential Low-to-High Transition 10%-to-90%, CL = 2.5 pF
Time
(Note 11)
220
220
ps
tHLT
Differential High-to-Low Transition 10%-to-90%, CL = 2.5 pF
Time
(Note 11)
220
220
ps
tSU
Data-to-DCLK Setup Time
DDR 90° Mode (Note 11)
525
900
ps
tH
DCLK-to-Data Hold Time
DDR 90° Mode (Note 11)
525
900
ps
tOSK
DCLK-to-Data Output Skew
50% of DCLK transition to 50% of
Data transition
DDR 0° Mode, SDR Mode
(Note 11)
±50
±50
ps
Data Input-to-Output
tAD
Aperture Delay
Sampling CLK+ Rise to
Acquisition of Data (Note 11)
1.22
1.22
ns
tAJ
Aperture Jitter
(Note 11)
0.2
0.2
ps (rms)
tOD
Sampling Clock-to Data Output
Delay (in addition to Latency)
50% of Sampling Clock transition
to 50% of Data transition
(Note 11)
3.15
3.15
ns
Latency in 1:2 Demux Non-DES
Mode (Note 10)
DI, DQ Outputs
tLAT
tORR
tWU
17.5
DId, DQd Outputs
17.5
18
18
Latency in 1:4 Demux DES Mode DI Outputs
(Note 10)
DQ Outputs
17.5
17.5
18
18
DId Outputs
18.5
18.5
DQd Outputs
19
19
Latency in Non-Demux Non-DES DI Outputs
Mode (Note 10)
DQ Outputs
17
17
17
17
Latency in Non-Demux DES Mode DI Outputs
(Note 10)
DQ Outputs
17
17
17.5
17.5
Over Range Recovery Time
Wake-Up Time (PDI/PDQ low to
Rated Accuracy Conversion)
Differential VIN step from ±1.2V to
0V to accurate conversion
(Note 10)
Non-DES Mode (Note 10)
DES Mode (Note 10)
Sampling
Clock
Cycles
1
1
Sampling
Clock
Cycle
500
500
ns
1
1
µs
TABLE 15. Serial Port Interface
Symbol
fSCLK
Parameter
Serial Clock Frequency
Conditions
(Note 10)
ADC12D800RF ADC12D500RF
Typ
Lim
15
Typ
Lim
15
Units
(Limits)
MHz
Serial Clock Low Time
30
30
ns (min)
Serial Clock High Time
30
30
ns (min)
tSSU
Serial Data-to-Serial Clock Rising (Note 10)
Setup Time
2.5
2.5
ns (min)
tSH
Serial Data-to-Serial Clock Rising (Note 10)
Hold Time
1
1
ns (min)
25
www.national.com
ADC12D800RF/ADC12D500RF
Symbol
ADC12D800RF/ADC12D500RF
Symbol
Parameter
ADC12D800RF ADC12D500RF
Conditions
Typ
Lim
Typ
Lim
Units
(Limits)
tSCS
SCS-to-Serial Clock Rising Setup
Time
2.5
2.5
ns
tHCS
SCS-to-Serial Clock Falling Hold
Time
1.5
1.5
ns
tBSU
Bus turn-around time
10
10
ns
TABLE 16. Calibration
Symbol
tCAL
Parameter
Calibration Cycle Time
ADC12D800RF ADC12D500RF
Conditions
Typ
Lim
tCAL_L
CAL Pin Low Time
(Note 10)
tCAL_H
CAL Pin High Time
(Note 10)
Calibration delay determined by
CalDly Pin
Lim
(Note 10)
2·107
tCalDly
Typ
CalDly = Low (Note 10)
Units
(Limits)
Sampling
Clock
Cycles
2·107
640
640
640
640
223
223
229
229
CalDly = High (Note 10)
Sampling
Clock
Cycles
(min)
Sampling
Clock
Cycles
(max)
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. There is no guarantee of operation at the Absolute Maximum
Ratings. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications
and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics
may degrade when the device is not operated under the listed test conditions.
Note 2: All voltages are measured with respect to GND = GNDTC = GNDDR = GNDE = 0V, unless otherwise specified.
Note 3: When the input voltage at any pin exceeds the power supply limits, i.e. less than GND or greater than VA, the current at that pin should be limited to 50
mA. In addition, over-voltage at a pin must adhere to the maximum voltage limits. Simultaneous over-voltage at multiple pins requires adherence to the maximum
package power dissipation limits. These dissipation limits are calculated using JEDEC JESD51-7 thermal model. Higher dissipation may be possible based on
specific customer thermal situation and specified package thermal resistances from junction to case.
Note 4: Human body model is 100 pF capacitor discharged through a 1.5 kΩ resistor. Machine model is 220 pF discharged through 0Ω. Charged device model
simulates a pin slowly acquiring charge (such as from a device sliding down the feeder in an automated assembler) then rapidly being discharged.
Note 5: Reflow temperature profiles are different for lead-free and non-lead-free packages.
Note 6: The analog inputs, labeled "I/O", are protected as shown below. Input voltage magnitudes beyond the Absolute Maximum Ratings may damage this
device.
30128604
Note 7: To guarantee accuracy, it is required that VA, VTC, VE and VDR be well-bypassed. Each supply pin must be decoupled with separate bypass capacitors.
Note 8: Typical figures are at TA = 25°C, and represent most likely parametric norms. Test limits are guaranteed to National's AOQL (Average Outgoing Quality
Level).
Note 9: Calculation of Full-Scale Error for this device assumes that the actual reference voltage is exactly its nominal value. Full-Scale Error for this device,
therefore, is a combination of Full-Scale Error and Reference Voltage Error. See Figure 3. For relationship between Gain Error and Full-Scale Error, see
Specification Definitions for Gain Error.
Note 10: This parameter is guaranteed by design and is not tested in production.
Note 11: This parameter is guaranteed by design and/or characterization and is not tested in production.
www.national.com
26
Note 13: These measurements were taken in Extended Control Mode (ECM) with the DES Timing Adjust feature enabled (Addr: 7h). This feature is used to
reduce the interleaving timing spur amplitude, which occurs at Fs/2-Fin, and thereby increase the SFDR, SINAD and ENOB.
Note 14: The Fs/2 spur was removed from all the dynamic performance spectifications.
Note 15: Proper common mode voltage must be maintained to ensure proper output codes, especially during input overdrive.
Note 16: The -3dB point is the traditional Full-Power Bandwidth (FPBW) specification. Although the insertion loss is approximately half at this frequency, the
dynamic performance of the ADC does not necessarily begin to degrade to a level below which it may be effectively used in an application. The ADC may be
used at input frequencies above the -3dB FPBW point, for example, into the 5th and 6th Nyquist zones. Depending on system requirements, it is only necessary
to compensate for the insertion loss.
Note 17: This feature functionality is not tested in production test; performance is tested in the specified/default mode only.
Note 18: This pin/bit functionality is not tested in production test; performance is tested in the specified/default mode only.
Note 19: Typical dynamic performance at Fin = 248 MHz, 498 MHz, 998 MHz, and 1498 MHz is guaranteed by design and/or characterization and is not tested
in production.
27
www.national.com
ADC12D800RF/ADC12D500RF
Note 12: The Dynamic Specifications are guaranteed for room to hot ambient temperature only (25°C to 85°C). Refer to the plots of the dynamic performance
vs. temperature in the Typical Performance Plots to see typical performance from cold to room temperature (-40°C to 25°C).
ADC12D800RF/ADC12D500RF
Ground. VOD peak is VOD,P= (VD+ - VD-) and VOD peak-to-peak
is VOD,P-P= 2*(VD+ - VD-); for this product, the VOD is measured
peak-to-peak.
13.0 Specification Definitions
APERTURE (SAMPLING) DELAY is the amount of delay,
measured from the sampling edge of the CLK input, after
which the signal present at the input pin is sampled inside the
device.
APERTURE JITTER (tAJ) is the variation in aperture delay
from sample-to-sample. Aperture jitter can be effectively considered as noise at the input.
CODE ERROR RATE (CER) is the probability of error and is
defined as the probable number of word errors on the ADC
output per unit of time divided by the number of words seen
in that amount of time. A CER of 10-18 corresponds to a statistical error in one word about every 31.7 years for the
ADC12D800RF.
CLOCK DUTY CYCLE is the ratio of the time that the clock
waveform is at a logic high to the total time of one clock period.
DIFFERENTIAL NON-LINEARITY (DNL) is the measure of
the maximum deviation from the ideal step size of 1 LSB. It is
measured at the relevant sample rate, fCLK, with fIN = 1MHz
sine wave.
EFFECTIVE NUMBER OF BITS (ENOB, or EFFECTIVE
BITS) is another method of specifying Signal-to-Noise and
Distortion Ratio, or SINAD. ENOB is defined as (SINAD −
1.76) / 6.02 and states that the converter is equivalent to a
perfect ADC of this many (ENOB) number of bits.
GAIN ERROR is the deviation from the ideal slope of the
transfer function. It can be calculated from Offset and FullScale Errors. The Positive Gain Error is the Offset Error minus
the Positive Full-Scale Error. The Negative Gain Error is the
Negative Full-Scale Error minus the Offset Error. The Gain
Error is the Negative Full-Scale Error minus the Positive FullScale Error; it is also equal to the Positive Gain Error plus the
Negative Gain Error.
GAIN FLATNESS is a measure of the variation in gain over
the specified bandwidth. For example, for the ADC12D800RF, from D.C. to Fs/2 is to 400 MHz for the NonDES Mode and from D.C to Fs/2 is to 800 MHz for the DES
Mode.
INTEGRAL NON-LINEARITY (INL) is a measure of worst
case deviation of the ADC transfer function from an ideal
straight line drawn through the ADC transfer function. The
deviation of any given code from this straight line is measured
from the center of that code value step. The best fit method
is used.
INSERTION LOSS is the loss in power of a signal due to the
insertion of a device, e.g. the ADC12D800/500RF, expressed
in dB.
INTERMODULATION DISTORTION (IMD) is measure of the
near-in 3rd order distortion products (2f2 - f1, 2f1 - f2) which
occur when two tones which are close in frequency (f1, f2) are
applied to the ADC input. It is measured from the input tones
power of the higher of the two distortion products (dBFS). The
input tones are typically -7dBFS.
LSB (LEAST SIGNIFICANT BIT) is the bit that has the smallest value or weight of all bits. This value is
30128646
FIGURE 2. LVDS Output Signal Levels
LVDS OUTPUT OFFSET VOLTAGE (VOS) is the midpoint
between the D+ and D- pins output voltage with respect to
ground; i.e., [(VD+) +( VD-)]/2. See Figure 2.
MISSING CODES are those output codes that are skipped
and will never appear at the ADC outputs. These codes cannot be reached with any input value.
MSB (MOST SIGNIFICANT BIT) is the bit that has the largest
value or weight. Its value is one half of full scale.
NEGATIVE FULL-SCALE ERROR (NFSE) is a measure of
how far the first code transition is from the ideal 1/2 LSB above
a differential −VIN/2 with the FSR pin low. For the
ADC12D800/500RF the reference voltage is assumed to be
ideal, so this error is a combination of full-scale error and reference voltage error.
NOISE FLOOR DENSITY is a measure of the power density
of the noise floor, espressed in dBFS/Hz and dBm/Hz. '0
dBFS' is defined as the power of a sinusoid which precisely
uses the full-scale range of the ADC.
NOISE POWER RATIO (NPR) is the ratio of the sum of the
power inside the notched bins to the sum of the power in an
equal number of bins outside the notch, expressed in dB.
OFFSET ERROR (VOFF) is a measure of how far the midscale point is from the ideal zero voltage differential input.
Offset Error = Actual Input causing average of 8k samples to
result in an average code of 2047.5.
OUTPUT DELAY (tOD) is the time delay (in addition to Latency) after the rising edge of CLK+ before the data update is
present at the output pins.
OVER-RANGE RECOVERY TIME is the time required after
the differential input voltages goes from ±1.2V to 0V for the
converter to recover and make a conversion with its rated accuracy.
PIPELINE DELAY (LATENCY) is the number of input clock
cycles between initiation of conversion and when that data is
presented to the output driver stage. The data lags the conversion by the Latency plus the tOD.
POSITIVE FULL-SCALE ERROR (PFSE) is a measure of
how far the last code transition is from the ideal 1-1/2 LSB
below a differential +VIN/2. For the ADC12D800/500RF the
reference voltage is assumed to be ideal, so this error is a
combination of full-scale error and reference voltage error.
SIGNAL TO NOISE RATIO (SNR) is the ratio, expressed in
dB, of the rms value of the fundamental for a single-tone to
the rms value of the sum of all other spectral components
below one-half the sampling frequency, not including harmonics or DC.
VFS / 2N
where VFS is the differential full-scale amplitude VIN_FSR as set
by the FSR input and "N" is the ADC resolution in bits, which
is 10 for the ADC12D800/500RF.
LOW VOLTAGE DIFFERENTIAL SIGNALING (LVDS)
DIFFERENTIAL OUTPUT VOLTAGE (VID and VOD) is two
times the absolute value of the difference between the VD+
and VD- signals; each signal measured with respect to
www.national.com
28
where Af1 is the RMS power of the fundamental (output) frequency and Af2 through Af10 are the RMS power of the first 9
harmonic frequencies in the output spectrum.
– Second Harmonic Distortion (2nd Harm) is the difference, expressed in dB, between the RMS power in the input
frequency seen at the output and the power in its 2nd harmonic level at the output.
– Third Harmonic Distortion (3rd Harm) is the difference
expressed in dB between the RMS power in the input frequency seen at the output and the power in its 3rd harmonic
level at the output.
θJA is the thermal resistance between the junction to ambient.
θJC1 represents the thermal resistance between the die and
the exposed metal area on the top of the HSBGA package.
θJC2 represents the thermal resistance between the die and
the center group of balls on the bottom of the HSBGA package.
TOTAL HARMONIC DISTORTION (THD) is the ratio expressed in dB, of the rms total of the first nine harmonic levels
at the output to the level of the fundamental at the output. THD
is calculated as
29
www.national.com
ADC12D800RF/ADC12D500RF
SIGNAL TO NOISE PLUS DISTORTION (S/(N+D) or
SINAD) is the ratio, expressed in dB, of the rms value of the
fundamental for a single-tone to the rms value of all of the
other spectral components below half the input clock frequency, including harmonics but excluding DC.
SPURIOUS-FREE DYNAMIC RANGE (SFDR) is the difference, expressed in dB, between the rms values of the input
signal at the output and the peak spurious signal, where a
spurious signal is any signal present in the output spectrum
that is not present at the input, excluding DC.
ADC12D800RF/ADC12D500RF
14.0 Transfer Characteristic
30128622
FIGURE 3. Input / Output Transfer Characteristic
www.national.com
30
ADC12D800RF/ADC12D500RF
15.0 Timing Diagrams
30128659
FIGURE 4. Clocking in 1:2 Demux Non-DES Mode*
30128660
FIGURE 5. Clocking in Non-Demux Non-DES Mode*
31
www.national.com
ADC12D800RF/ADC12D500RF
30128699
FIGURE 6. Clocking in 1:4 Demux DES Mode*
30128696
FIGURE 7. Clocking in Non-Demux Mode DES Mode*
* The timing for these figures is shown for the one input only (I or Q). However, both I- and Q-inputs may be used. For this case,
the I-channel functions precisely the same as the Q-channel, with VinI, DCLKI, DId and DI instead of VinQ, DCLKQ, DQd and DQ.
Both I- and Q-channel use the same CLK.
www.national.com
32
FIGURE 8. Data Clock Reset Timing (Demux Mode)
30128625
FIGURE 9. Power-on and On-Command Calibration Timing
30128619
FIGURE 10. Serial Interface Timing
33
www.national.com
ADC12D800RF/ADC12D500RF
30128620
VA = VDR = VTC = VE = 1.9V, fCLK = 800 MHz / 500 MHz for the ADC12D800RF / ADC12D500RF, respectively, fIN = 498 MHz,
TA= 25°C, I-channel, Non-Demux Non-DES Mode, unless otherwise stated.
INL vs. CODE (ADC12D500RF)
4
4
3
3
2
2
1
1
INL (LSB)
INL (LSB)
INL vs. CODE (ADC12D800RF)
0
-1
0
-1
-2
-2
-3
-3
-4
-4
0
OUTPUT CODE
4095
0
OUTPUT CODE
4095
30128638
30128649
INL vs. TEMPERATURE (ADC12D500RF)
1.5
1.5
1.0
1.0
0.5
0.5
INL (LSB)
INL (LSB)
INL vs. TEMPERATURE (ADC12D800RF)
0.0
-0.5
0.0
-0.5
-1.0
-1.0
+INL
-INL
-1.5
-50
0
50
TEMPERATURE (°C)
+INL
-INL
-1.5
100
-50
0
50
TEMPERATURE (°C)
30128640
DNL vs. CODE (ADC12D500RF)
0.8
0.6
0.6
0.4
0.4
0.2
0.2
DNL (LSB)
0.8
0.0
-0.2
0.0
-0.2
-0.4
-0.4
-0.6
-0.6
-0.8
-0.8
0
OUTPUT CODE
4095
0
30128639
www.national.com
100
30128650
DNL vs. CODE (ADC12D800RF)
DNL (LSB)
ADC12D800RF/ADC12D500RF
16.0 Typical Performance Plots
OUTPUT CODE
4095
30128651
34
0.4
0.2
0.2
DNL (LSB)
DNL (LSB)
DNL vs. TEMPERATURE (ADC12D500RF)
0.4
0.0
-0.2
0.0
-0.2
+INL
-INL
-0.4
-50
0
50
TEMPERATURE (°C)
+INL
-INL
-0.4
100
-50
0
50
TEMPERATURE (°C)
30128641
ENOB vs. TEMPERATURE (ADC12D500RF)
10
10
9
9
ENOB
ENOB
100
30128652
ENOB vs. TEMPERATURE (ADC12D800RF)
8
7
8
7
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
6
6
-50
0
50
TEMPERATURE (°C)
100
-50
0
50
TEMPERATURE (°C)
30128676
100
30128654
ENOB vs. SUPPLY VOLTAGE (ADC12D800RF)
ENOB vs. SUPPLY VOLTAGE (ADC12D500RF)
10
10
9
9
ENOB
ENOB
ADC12D800RF/ADC12D500RF
DNL vs. TEMPERATURE (ADC12D800RF)
8
7
8
7
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
6
6
1.8
1.9
2.0
VA (V)
2.1
2.2
1.8
30128677
1.9
2.0
VA (V)
2.1
2.2
30128655
35
www.national.com
10
10
9
9
ENOB
ENOB
ENOB vs. CLOCK FREQUENCY (ADC12D500RF)
8
7
8
7
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
6
6
0
200
400
600
CLOCK FREQUENCY (MHz)
800
0
100
200
300
400
CLOCK FREQUENCY (MHz)
30128678
10
10
9
9
ENOB
ENOB
ENOB vs. INPUT FREQUENCY (ADC12D500RF)
8
7
8
7
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
6
6
0
750
1500
2250
INPUT FREQUENCY (MHz)
3000
0
750
1500
2250
INPUT FREQUENCY (MHz)
30128679
ENOB vs. VCMI (ADC12D500RF)
10
9
9
ENOB
10
8
7
8
7
NON-DES MODE
DES MODE
6
0.50
3000
30128657
ENOB vs. VCMI (ADC12D800RF)
0.75
1.00 1.25 1.50
VCMI (V)
1.75
NON-DES MODE
DES MODE
6
2.00
0.50
30128642
www.national.com
500
30128656
ENOB vs. INPUT FREQUENCY (ADC12D800RF)
ENOB
ADC12D800RF/ADC12D500RF
ENOB vs. CLOCK FREQUENCY (ADC12D800RF)
0.75
1.00 1.25 1.50
VCMI (V)
1.75
2.00
30128658
36
65
60
60
55
55
SNR (dB)
SNR (dB)
SNR vs. TEMPERATURE (ADC12D500RF)
65
50
45
50
45
NON-DES MODE
DES MODE
40
NON-DES MODE
DES MODE
40
-50
0
50
TEMPERATURE (°C)
100
-50
0
50
TEMPERATURE (°C)
30128668
SNR vs. SUPPLY VOLTAGE (ADC12D500RF)
65
65
60
60
SNR (dB)
SNR (dB)
100
30128616
SNR vs. SUPPLY VOLTAGE (ADC12D800RF)
55
50
55
50
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
45
45
1.8
1.9
2.0
VA (V)
2.1
2.2
1.8
1.9
2.0
VA (V)
2.1
30128669
SNR vs. CLOCK FREQUENCY (ADC12D500RF)
65
60
60
55
55
SNR (dB)
65
50
45
2.2
30128636
SNR vs. CLOCK FREQUENCY (ADC12D800RF)
SNR (dB)
ADC12D800RF/ADC12D500RF
SNR vs. TEMPERATURE (ADC12D800RF)
50
45
NON-DES MODE
DES MODE
40
NON-DES MODE
DES MODE
40
0
200
400
600
CLOCK FREQUENCY (MHz)
800
0
30128670
100
200
300
400
CLOCK FREQUENCY (MHz)
500
30128632
37
www.national.com
SNR vs. INPUT FREQUENCY (ADC12D500RF)
65
65
60
55
SNR (dB)
SNR (dB)
60
50
55
50
45
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
40
45
0
1000
2000
INPUT FREQUENCY (MHz)
3000
0
1000
2000
INPUT FREQUENCY (MHz)
3000
30128671
30128617
THD vs. TEMPERATURE (ADC12D500RF)
-40
-40
-50
-50
THD (dBc)
THD (dBc)
THD vs. TEMPERATURE (ADC12D800RF)
-60
-70
-60
-70
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
-80
-50
-80
0
50
TEMPERATURE (°C)
100
-50
0
50
TEMPERATURE (°C)
30128672
THD vs. SUPPLY VOLTAGE (ADC12D500RF)
-40
-50
-50
THD (dBc)
-40
-60
-70
-60
-70
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
-80
1.8
-80
1.9
2.0
VA (V)
2.1
2.2
1.8
30128673
www.national.com
100
30128618
THD vs. SUPPLY VOLTAGE (ADC12D800RF)
THD (dBc)
ADC12D800RF/ADC12D500RF
SNR vs. INPUT FREQUENCY (ADC12D800RF)
1.9
2.0
VA (V)
2.1
2.2
30128621
38
-40
-40
-50
-50
THD (dBc)
THD (dBc)
THD vs. CLOCK FREQUENCY (ADC12D500RF)
-60
-70
-60
-70
NON-DES MODE
DES-MODE
NON-DES MODE
DES-MODE
-80
-80
0
200
400
600
CLOCK FREQUENCY (MHz)
800
0
100
200
300
400
CLOCK FREQUENCY (MHz)
30128674
30128695
THD vs. INPUT FREQUENCY (ADC12D500RF)
-40
-40
-50
-50
THD (dBc)
THD (dBc)
THD vs. INPUT FREQUENCY (ADC12D800RF)
-60
-70
-60
-70
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
-80
-80
0
1000
2000
INPUT FREQUENCY (MHz)
3000
0
1000
2000
INPUT FREQUENCY (MHz)
30128675
SFDR vs. TEMPERATURE (ADC12D500RF)
80
70
70
SFDR (dBc)
80
60
50
60
50
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
40
-50
3000
30128623
SFDR vs. TEMPERATURE (ADC12D800RF)
SFDR (dBc)
500
40
0
50
TEMPERATURE (°C)
100
-50
30128685
0
50
TEMPERATURE (°C)
100
30128624
39
www.national.com
ADC12D800RF/ADC12D500RF
THD vs. CLOCK FREQUENCY (ADC12D800RF)
80
80
70
70
SFDR (dBc)
SFDR (dBc)
SFDR vs. SUPPLY VOLTAGE (ADC12D500RF)
60
50
60
50
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
40
40
1.8
1.9
2.0
VA (V)
2.1
2.2
1.8
1.9
2.0
VA (V)
2.1
30128684
80
80
70
70
SFDR (dBc)
SFDR (dBc)
SFDR vs. CLOCK FREQUENCY (ADC12D500RF)
60
50
60
50
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
40
40
0
200
400
600
CLOCK FREQUENCY (MHz)
800
0
100
200
300
400
CLOCK FREQUENCY (MHz)
30128682
500
30128661
SFDR vs. INPUT FREQUENCY (ADC12D800RF)
SFDR vs. INPUT FREQUENCY (ADC12D500RF)
80
70
70
SFDR (dBc)
80
60
50
60
50
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
40
40
0
1000
2000
INPUT FREQUENCY (MHz)
3000
0
30128683
www.national.com
2.2
30128628
SFDR vs. CLOCK FREQUENCY (ADC12D800RF)
SFDR (dBc)
ADC12D800RF/ADC12D500RF
SFDR vs. SUPPLY VOLTAGE (ADC12D800RF)
1000
2000
INPUT FREQUENCY (MHz)
3000
30128662
40
0
NON-DES MODE
-20
AMPLITUDE (dBFS)
AMPLITUDE (dBFS)
0
-40
-60
-20
-40
-60
-80
-80
-100
-100
0
100
200
300
FREQUENCY (MHz)
NON-DES MODE
400
0
50
100
150
200
FREQUENCY (MHz)
30128687
250
30128667
SPECTRAL RESPONSE AT FIN = 498 MHz (ADC12D800RF) SPECTRAL RESPONSE AT FIN = 498 MHz (ADC12D500RF)
0
DES MODE
-20
AMPLITUDE (dBFS)
AMPLITUDE (dBFS)
0
-40
-60
-80
DES MODE
-20
-40
-60
-80
-100
-100
0
200
400
600
FREQUENCY (MHz)
800
0
100
200
300
400
FREQUENCY (MHz)
30128688
30128686
CROSSTALK vs. SOURCE FREQUENCY (ADC12D800RF)
-40
CROSSTALK vs. SOURCE FREQUENCY (ADC12D500RF)
-40
NON-DES MODE
NON-DES MODE
-50
CROSSTALK (dBFS)
-50
CROSSTALK (dBFS)
500
-60
-70
-80
-60
-70
-80
-90
-90
-100
-100
0
1000
2000
3000
AGGRESSOR INPUT FREQUENCY (MHz)
0
1000
2000
3000
AGGRESSOR INPUT FREQUENCY (MHz)
30128663
30128633
41
www.national.com
ADC12D800RF/ADC12D500RF
SPECTRAL RESPONSE AT FIN = 498 MHz (ADC12D800RF) SPECTRAL RESPONSE AT FIN = 498 MHz (ADC12D500RF)
0
-3
-3
SIGNAL GAIN (dB)
SIGNAL GAIN (dB)
INSERTION LOSS (ADC12D500RF)
0
-6
-9
NON-DES
DESI
DESIQ
DESCLKIQ
-12
-15
0
1000
2000
INPUT FREQUENCY (MHz)
-6
-9
NON-DES
DESI
DESIQ
DESCLKIQ
-12
-15
3000
0
1000
2000
INPUT FREQUENCY (MHz)
30128648
3.0
3.0
2.5
2.5
POWER (W)
POWER (W)
POWER CONSUMPTION vs. CLOCK FREQUENCY
(ADC12D500RF)
2.0
1.5
2.0
1.5
DEMUX
NON-DEMUX
DEMUX
NON-DEMUX
1.0
1.0
0
200
400
600
CLOCK FREQUENCY (MHz)
800
0
100
200
300
400
CLOCK FREQUENCY (MHz)
30128681
NPR vs. RMS NOISE LOADING LEVEL (ADC12D500RF)
60
50
50
NPR (dB)
60
40
30
40
30
NON-DES
DES
NON-DES
DES
20
-40
500
30128691
NPR vs. RMS NOISE LOADING LEVEL (ADC12D800RF)
20
-30
-20
-10
VRMS LOADING LEVEL (dB)
0
-40
30128631
www.national.com
3000
30128689
POWER CONSUMPTION vs. CLOCK FREQUENCY
(ADC12D800RF)
NPR (dB)
ADC12D800RF/ADC12D500RF
INSERTION LOSS (ADC12D800RF)
-30
-20
-10
VRMS LOADING LEVEL (dB)
0
30128645
42
0
DES MODE
-20
AMPLITUDE (dBFS)
AMPLITUDE (dBFS)
0
NPR SPECTRAL RESPONSE (ADC12D500RF)
-40
-60
-20
-40
-60
-80
-80
-100
-100
0
200
400
600
FREQUENCY (MHz)
800
DES MODE
0
30128653
100
200
300
400
FREQUENCY (MHz)
500
30128680
43
www.national.com
ADC12D800RF/ADC12D500RF
NPR SPECTRAL RESPONSE (ADC12D800RF)
ADC12D800RF/ADC12D500RF
for AC/DC-coupled Mode selection and LVDS output common-mode voltage selection. See Table 17 for a summary.
17.0 Functional Description
The ADC12D800/500RF is a versatile A/D converter with an
innovative architecture which permits very high speed operation. The controls available ease the application of the device to circuit solutions. Optimum performance requires
adherence to the provisions discussed here and in the Applications Information Section. This section covers an overview,
a description of control modes (Extended Control Mode and
Non-Extended Control Mode), and features.
TABLE 17. Non-ECM Pin Summary
Pin
Name
Logic-High
Floating
Dedicated Control Pins
17.1 OVERVIEW
The ADC12D800/500RF uses a calibrated folding and interpolating architecture that achieves a high Effective Number
of Bits (ENOB). The use of folding amplifiers greatly reduces
the number of comparators and power consumption. Interpolation reduces the number of front-end amplifiers required,
minimizing the load on the input signal and further reducing
power requirements. In addition to correcting other non-idealities, on-chip calibration reduces the INL bow often seen
with folding architectures. The result is an extremely fast, high
performance, low power converter.
The analog input signal (which is within the converter's input
voltage range) is digitized to twelve bits at speeds of 200/200
MSPS to 1.6/1.0 GSPS, typical. Differential input voltages
below negative full-scale will cause the output word to consist
of all zeroes. Differential input voltages above positive fullscale will cause the output word to consist of all ones. Either
of these conditions at the I- or Q-input will cause the Out-ofRange I-channel or Q-channel output (ORI or ORQ), respectively, to output a logic-high signal.
In ECM, an expanded feature set is available via the Serial
Interface. The ADC12D800/500RF builds upon previous architectures, introducing a new DES Mode timing adjust feature, AutoSync feature for multi-chip synchronization and
increasing to 15-bit for gain and 12-bit plus sign for offset the
independent programmable adjustment for each channel.
Each channel has a selectable output demultiplexer which
feeds two LVDS buses. If the 1:2 Demux Mode is selected,
the output data rate is reduced to half the input sample rate
on each bus. When Non-Demux Mode is selected, the output
data rate on each channel is at the same rate as the input
sample clock and only one 12-bit bus per channel is active.
DES
Non-DES
Mode
DES
Mode
Not valid
NDM
Demux
Mode
Non-Demux
Mode
Not valid
DDRPh
0° Mode /
Falling Mode
90° Mode /
Rising Mode
Not valid
CAL
See Section 17.2.1.4
Calibration Pin (CAL)
Not valid
CalDly
Shorter delay
Longer delay
Not valid
PDI
I-channel
active
Power Down
I-channel
Power Down
I-channel
PDQ
Q-channel
active
Power Down
Q-channel
Power Down
Q-channel
TPM
Non-Test
Pattern Mode
Test Pattern
Mode
Not valid
FSR
Lower FS input
Range
Higher FS
input Range
Not valid
Dual-purpose Control Pins
VCMO
AC-coupled
operation
Not allowed
DC-coupled
operation
VBG
Not allowed
Higher LVDS
commonmode voltage
Lower LVDS
commonmode voltage
17.2.1.1 Dual Edge Sampling Pin (DES)
The Dual Edge Sampling (DES) Pin selects whether the
ADC12D800/500RF is in DES Mode (logic-high) or Non-DES
Mode (logic-low). DES Mode means that a single analog input
is sampled by both I- and Q-channels in a time-interleaved
manner. One of the ADCs samples the input signal on the
rising sampling clock edge (duty cycle corrected); the other
ADC samples the input signal on the falling sampling clock
edge (duty cycle corrected). In Non-ECM, only the I-input may
be used for DES Mode, a.k.a. DESI Mode. In ECM, the Qinput may be selected via the DEQ Bit (Addr: 0h, Bit: 6), a.k.a.
DESQ Mode. In ECM, both the I- and Q-inputs may be selected, a.k.a. DESIQ Mode.
To use this feature in ECM, use the DES bit in the Configuration Register (Addr: 0h; Bit: 7). See Section 17.3.1.4 DES/
Non-DES Mode for more information.
17.2 CONTROL MODES
The ADC12D800/500RF may be operated in one of two control modes: Non-extended Control Mode (Non-ECM) or Extended Control Mode (ECM). In the simpler Non-ECM (also
sometimes referred to as Pin Control Mode), the user affects
available configuration and control of the device through the
control pins. The ECM provides additional configuration and
control options through a serial interface and a set of 16 registers, most of which are available to the customer.
17.2.1.2 Non-Demultiplexed Mode Pin (NDM)
The Non-Demultiplexed Mode (NDM) Pin selects whether the
ADC12D800/500RF is in Demux Mode (logic-low) or NonDemux Mode (logic-high). In Non-Demux Mode, the data from
the input is produced at the sampled rate at a single 12-bit
output bus. In Demux Mode, the data from the input is produced at half the sampled rate at twice the number of output
buses. For Non-DES Mode, each I- or Q-channel will produce
its data on one or two buses for Non-Demux or Demux Mode,
respectively. For DES Mode, the selected channel will produce its data on two or four buses for Non-Demux or Demux
Mode, respectively. If Non-Demux Mode is selected, the de-
17.2.1 Non-Extended Control Mode
In Non-extended Control Mode (Non-ECM), the Serial Interface is not active and all available functions are controlled via
various pin settings. Non-ECM is selected by setting the
ECE Pin to logic-high. Note that, for the control pins, "logichigh" and "logic-low" refer to VA and GND, respectively. Nine
dedicated control pins provide a wide range of control for the
ADC12D800/500RF and facilitate its operation. These control
pins provide DES Mode selection, Demux Mode selection,
DDR Phase selection, execute Calibration, Calibration Delay
setting, Power Down I-channel, Power Down Q-channel, Test
Pattern Mode selection, and Full-Scale Input Range selection. In addition to this, two dual-purpose control pins provide
www.national.com
Logic-Low
44
to power-down the I-channel. See Section 17.3.4 Power
Down for more information.
17.2.1.7 Power Down Q-channel Pin (PDQ)
The Power Down Q-channel (PDQ) Pin selects whether the
Q-channel is powered down (logic-high) or active (logic-low).
This pin functions similarly to the PDI pin, except that it applies
to the Q-channel. The PDI and PDQ pins function independently of each other to control whether each I- or Q-channel
is powered down or active.
This pin remains active in ECM. In ECM, either this pin or the
PDQ bit (Addr: 0h; Bit: 10) in the Control Register may be
used to power-down the Q-channel. See Section 17.3.4 Power Down for more information.
17.2.1.3 Dual Data Rate Phase Pin (DDRPh)
The Dual Data Rate Phase (DDRPh) Pin selects whether the
ADC12D800/500RF is in 0° Mode (logic-low) or 90° Mode
(logic-high) for DDR Mode. If the device is in SDR Mode, then
the DDRPh Pin selects whether the ADC12D800/500RF is in
Falling Mode (logic-low) or Rising Mode (logic-high). For DDR
Mode, the Data may transition either with the DCLK transition
(0° Mode) or halfway between DCLK transitions (90° Mode).
The DDRPh Pin selects the mode for both the I-channel: DIand DId-to-DCLKI phase relationship and for the Q-channel:
DQ- and DQd-to-DCLKQ phase relationship.
To use this feature in ECM, use the DPS bit in the Configuration Register (Addr: 0h; Bit: 14). See Section 17.3.2.1 SDR /
DDR Clock for more information.
17.2.1.8 Test Pattern Mode Pin (TPM)
The Test Pattern Mode (TPM) Pin selects whether the
output of the ADC12D800/500RF is a test pattern (logic-high)
or the converted analog input (logic-low). The
ADC12D800/500RF can provide a test pattern at the four output buses independently of the input signal to aid in system
debug. In TPM, the ADC is disengaged and a test pattern
generator is connected to the outputs, including ORI and
ORQ. SeeSection 17.3.2.6 Test Pattern Mode for more information.
17.2.1.4 Calibration Pin (CAL)
The Calibration (CAL) Pin may be used to execute an oncommand calibration or to disable the power-on calibration.
The effect of calibration is to maximize the dynamic performance. To initiate an on-command calibration via the CAL
pin, bring the CAL pin high for a minimum of tCAL_H input clock
cycles after it has been low for a minimum of tCAL_L input clock
cycles. Holding the CAL pin high upon power-on will prevent
execution of the power-on calibration. In ECM, this pin remains active and is logically OR'd with the CAL bit.
To use this feature in ECM, use the CAL bit in the Configuration Register (Addr: 0h; Bit: 15). See Section 17.3.3 Calibration Feature for more information.
17.2.1.9 Full-Scale Input Range Pin (FSR)
The Full-Scale Input Range (FSR) Pin selects whether the
full-scale input range for both the I- and Q-channel is higher
(logic-high) or lower (logic-low). The input full-scale range is
specified as VIN_FSR in Table 8. In Non-ECM, the full-scale
input range for each I- and Q-channel may not be set independently, but it is possible to do so in ECM. The device must
be calibrated following a change in FSR to obtain optimal
performance.
To use this feature in ECM, use the Configuration Registers
(Addr: 3h and Bh). See Section 17.3.1 Input Control and Adjust for more information.
17.2.1.5 Calibration Delay Pin (CalDly)
The Calibration Delay (CalDly) Pin selects whether a shorter
or longer delay time is present, after the application of power,
until the start of the power-on calibration. The actual delay
time is specified as tCalDly and may be found in Table 16. This
feature is pin-controlled only and remains active in ECM. It is
recommended to select the desired delay time prior to poweron and not dynamically alter this selection.
See Section 17.3.3 Calibration Feature for more information.
17.2.1.10 AC/DC-Coupled Mode Pin (VCMO)
The VCMO Pin serves a dual purpose. When functioning as an
output, it provides the optimal common-mode voltage for the
DC-coupled analog inputs. When functioning as an input, it
selects whether the device is AC-coupled (logic-low) or DCcoupled (floating). This pin is always active, in both ECM and
Non-ECM.
17.2.1.6 Power Down I-channel Pin (PDI)
The Power Down I-channel (PDI) Pin selects whether the Ichannel is powered down (logic-high) or active (logic-low).
The digital data output pins, DI and DId, (both positive and
negative) are put into a high impedance state when the Ichannel is powered down. Upon return to the active state, the
pipeline will contain meaningless information and must be
flushed. The supply currents (typicals and limits) are available
for the I-channel powered down or active and may be found
in Table 13. The device should be recalibrated following a
power-cycle of PDI (or PDQ).
This pin remains active in ECM. In ECM, either this pin or the
PDI bit (Addr: 0h; Bit: 11) in the Control Register may be used
17.2.1.11 LVDS Output Common-mode Pin (VBG)
The VBG Pin serves a dual purpose. When functioning as an
output, it provides the bandgap reference. When functioning
as an input, it selects whether the LVDS output commonmode voltage is higher (logic-high) or lower (floating). The
LVDS output common-mode voltage is specified as V OS and
may be found in Table 12. This pin is always active, in both
ECM and Non-ECM.
45
www.national.com
ADC12D800RF/ADC12D500RF
fault is DDR Mode. If Demux Mode is selected, the default is
SDR Mode.
This feature is pin-controlled only and remains active during
both Non-ECM and ECM. See Section 17.3.2.5 Demux/Nondemux Mode for more information.
ADC12D800RF/ADC12D500RF
17.2.2.1 The Serial Interface
The ADC12D800/500RF offers a Serial Interface that allows
access to the sixteen control registers within the device. The
Serial Interface is a generic 4-wire (optionally 3-wire) synchronous interface that is compatible with SPI type interfaces
that are used on many micro-controllers and DSP controllers.
Each serial interface access cycle is exactly 24 bits long. A
register-read or register-write can be accomplished in one
cycle. The signals are defined in such a way that the user can
opt to simply join SDI and SDO signals in his system to accomplish a single, bidirectional SDI/O signal. A summary of
the pins for this interface may be found in Table 18. See Figure 10 for the timing diagram and Table 15 for timing specification details. Control register contents are retained when the
device is put into power-down mode. If this feature is unused,
the SCLK, SDI, and SCS pins may be left floating because
they each have an internal pull-up.
asserted. For a write operation, if the SCS is asserted longer
than 24 clocks, data write will occur normally through the SDI
input upon the 24th clock. Setup and hold times, tSCS and
tHCS, with respect to the SCLK must be observed. SCS must
be toggled in between register access cycles.
SCLK: This signal is used to register the input data (SDI) on
the rising edge; and to source the output data (SDO) on the
falling edge. The user may disable the clock and hold it at
logic-low. There is no minimum frequency requirement for
SCLK; see fSCLK in Table 15 for more details.
SDI: Each register access requires a specific 24-bit pattern at
this input, consisting of a command field and a data field. If
the SDI and SDO wires are shared (3-wire mode), then during
read operations, it is necessary to tri-state the master which
is driving SDI while the data field is being output by the ADC
on SDO. The master must be tri-stated before the falling edge
of the 8th clock. If SDI and SDO are not shared (4-wire mode),
then this is not necessary. Setup and hold times, tSH and
tSSU, with respect to the SCLK must be observed.
SDO: This output is normally tri-stated and is driven only
when SCS is asserted, the first 8 bits of command data have
been received and it is a READ operation. The data is shifted
out, MSB first, starting with the 8th clock's falling edge. At the
end of the access, when SCS is de-asserted, this output is tristated once again. If an invalid address is accessed, the data
sourced will consist of all zeroes. If it is a read operation, there
will be a bus turnaround time, tBSU, from when the last bit of
the command field was read in until the first bit of the data field
is written out.
Table 19 shows the Serial Interface bit definitions.
TABLE 18. Serial Interface Pins
TABLE 19. Command and Data Field Definitions
17.2.2 Extended Control Mode
In Extended Control Mode (ECM), most functions are controlled via the Serial Interface. In addition to this, several of
the control pins remain active. See Table 20 for details. ECM
is selected by setting the ECE Pin to logic-low. If the ECE Pin
is set to logic-high (Non-ECM), then the registers are reset to
their default values. So, a simple way to reset the registers is
by toggling the ECE pin. Four pins on the
ADC12D800/500RF control the Serial Interface: SCS, SCLK,
SDI and SDO. This section covers the Serial Interface. The
Register Definitions are located at the end of the datasheet
so that they are easy to find, see Section 19.0 Register Definitions.
Pin
Bit No.
Name
C4
SCS (Serial Chip Select bar)
C5
SCLK (Serial Clock)
B4
SDI (Serial Data In)
A3
SDO (Serial Data Out)
1
SCS: Each assertion (logic-low) of this signal starts a new
register access, i.e. the SDI command field must be ready on
the following SCLK rising edge. The user is required to deassert this signal after the 24th clock. If the SCS is deasserted before the 24th clock, no data read/write will occur.
For a read operation, if the SCS is asserted longer than 24
clocks, the SDO output will hold the D0 bit until SCS is de-
Name
Comments
1b indicates a read operation
Read/Write (R/W)
0b indicates a write operation
2-3
Reserved
Bits must be set to 10b
4-7
A<3:0>
16 registers may be addressed.
The order is MSB first
8
X
This is a "don't care" bit
D<15:0>
Data written to or read from
addressed register
9-24
The serial data protocol is shown for a read and write operation in Figure 11 and Figure 12, respectively.
30128692
FIGURE 11. Serial Data Protocol - Read Operation
www.national.com
46
ADC12D800RF/ADC12D500RF
30128693
FIGURE 12. Serial Data Protocol - Write Operation
47
www.national.com
ADC12D800RF/ADC12D500RF
Table 20 is a summary of the features available, as well as
details for the control mode chosen. "N/A" means "Not Applicable."
17.3 FEATURES
The ADC12D800/500RF offers many features to make the
device convenient to use in a wide variety of applications.
TABLE 20. Features and Modes
Feature
Control Pin
Active in ECM
Non-ECM
ECM
Default ECM State
Input Control and Adjust
AC/DC-coupled Mode
Selection
Selected via VCMO
(Pin C2)
Yes
Not available
N/A
Input Full-scale Range
Adjust
Selected via FSR
(Pin Y3)
No
Selected via the Config Reg
(Addr: 3h and Bh)
Mid FSR value
Input Offset Adjust Setting
Not available
N/A
Selected via the Config Reg
(Addr: 2h and Ah)
Offset = 0 mV
DES / Non-DES Mode
Selection
Selected via DES
(Pin V5)
No
Selected via the DES Bit
(Addr: 0h; Bit: 7)
Non-DES Mode
DES Mode Input Selection
Not available
N/A
Selected via the DEQ, DIQ
Bits
(Addr: 0h; Bits: 6:5)
N/A
DESCLKIQ Mode
(Note 17)
Not available
N/A
Selected via the DCK Bit
(Addr: Eh; Bit: 6)
N/A
DES Timing Adjust
(Note 17)
Not available
N/A
Selected via the DES Timing
Adjust Reg
(Addr: 7h)
Mid skew offset
Sampling Clock Phase
Adjust
Not available
N/A
Selected via the Config Reg
(Addr: Ch and Dh)
tAD adjust disabled
Output Control and Adjust
Selected via DDRPh
DDR Clock Phase Selection
(Pin W4)
No
Selected via the DPS Bit
(Addr: 0h; Bit: 14)
0° Mode
DDR / SDR DCLK Selection
Not available
N/A
Selected via the SDR Bit
(Addr: 0h; Bit: 2)
DDR Mode
SDR Rising / Falling DCLK
Selection (Note 17)
Not available
N/A
Selected via the DPS Bit
(Addr: 0h; Bit: 14)
N/A
LVDS Differential Voltage
Amplitude Selection
Higher amplitude
only
N/A
Selected via the OVS Bit
(Addr: 0h; Bit: 13)
Higher amplitude
LVDS Common-Mode
Voltage Amplitude
Selection (Note 17)
Selected via VBG
(Pin B1)
Yes
Not available
N/A
Output Formatting
Selection (Note 17)
Offset Binary only
N/A
Selected via the 2SC Bit
(Addr: 0h; Bit: 4)
Offset Binary
Test Pattern Mode at Output
Selected via TPM
(Pin A4)
No
Selected via the TPM Bit
(Addr: 0h; Bit: 12)
TPM disabled
Demux/Non-Demux Mode
Selection
Selected via NDM
(Pin A5)
Yes
Not available
N/A
AutoSync
(Note 17)
Not available
N/A
Selected via the Config Reg
(Addr: Eh)
Master Mode,
RCOut1/2 disabled
DCLK Reset
(Note 17)
Not available
N/A
Selected via the Config Reg
(Addr: Eh; Bit: 0)
DCLK Reset disabled
Time Stamp
(Note 17)
Not available
N/A
Selected via the TSE Bit
(Addr: 0h; Bit: 3)
Time Stamp disabled
On-command Calibration
Selected via CAL
(Pin D6)
Yes
Selected via the CAL Bit
(Addr: 0h; Bit: 15)
N/A
(CAL = 0)
Yes
Not available
N/A
Calibration
Power-on Calibration Delay Selected via CalDly
Selection
(Pin V4)
www.national.com
48
Non-ECM
Control Pin
Active in ECM
ECM
Default ECM State
Calibration Adjust
(Note 17)
Not available
N/A
Selected via the Config Reg
(Addr: 4h)
tCAL
Read/Write Calibration
Settings (Note 17)
Not available
N/A
Selected via the SSC Bit
(Addr: 4h; Bit: 7)
R/W calibration values
disabled
Power down I-channel
Selected via PDI
(Pin U3)
Yes
Selected via the PDI Bit
(Addr: 0h; Bit: 11)
I-channel operational
Power down Q-channel
Selected via PDQ
(Pin V3)
Yes
Selected via the PDQ Bit
(Addr: 0h; Bit: 10)
Q-channel operational
Power-Down
i.e. DESIQ Mode, by using the DIQ bit (Addr: 0h, Bit 5). See
Section 18.1 THE ANALOG INPUTS for more information
about how to drive the ADC in DES Mode.
In DESCLKIQ Mode, the I- and Q-channels sample their inputs 180° out-of-phase with respect to one another, similar to
the other DES Modes. DESCLKIQ Mode is similar to the DESIQ Mode, except that the I- and Q-channels remain electrically separate internal to the ADC12D800/500RF. For this
reason, both I- and Q-inputs must be externally driven for the
DESCLKIQ Mode. The DCK Bit (Addr: Eh, Bit: 6) is used to
select the 180° sampling clock mode.
The DESCLKIQ Mode results in the best bandwidth for the
interleaved modes. In general, the bandwidth decreases from
Non-DES Mode to DES Mode (specifically, DESI or DESQ)
because both channels are sampling off the same input signal
and non-ideal effects introduced by interleaving the two channels lower the bandwidth. Driving both I- and Q-channels
externally (DESIQ Mode and DESCLKIQ Mode) results in
better bandwidth because each channel is being driven,
which reduces routing losses. The DESCLKIQ Mode has better bandwidth than the DESIQ Mode because the routing
internal to the ADC12D800/500 is simpler, which results in
less insertion loss.
In the DES Mode, the outputs must be carefully interleaved
in order to reconstruct the sampled signal. If the device is
programmed into the 1:4 Demux DES Mode, the data is effectively demultiplexed by 1:4. If the sampling clock is
800/500 MHz, the effective sampling rate is doubled to 1.6/1.0
GSPS and each of the 4 output buses has an output rate of
400/250 MSPS. All data is available in parallel. To properly
reconstruct the sampled waveform, the four bytes of parallel
data that are output with each DCLK must be correctly interleaved. The sampling order is as follows, from the earliest to
the latest: DQd, DId, DQ, DI. See Figure 6. If the device is
programmed into the Non-Demux DES Mode, two bytes of
parallel data are output with each edge of the DCLK in the
following sampling order, from the earliest to the latest: DQ,
DI. See Figure 7.
17.3.1 Input Control and Adjust
There are several features and configurations for the input of
the ADC12D800/500RF so that it may be used in many different applications. This section covers AC/DC-coupled
Mode, input full-scale range adjust, input offset adjust, DES/
Non-DES Mode, and sampling clock phase adjust.
17.3.1.1 AC/DC-coupled Mode
The analog inputs may be AC or DC-coupled. See Section 17.2.1.10 AC/DC-Coupled Mode Pin (VCMO) for information on how to select the desired mode and Section 18.1.7
DC-coupled Input Signals and Section 18.1.6 AC-coupled Input Signals for applications information.
17.3.1.2 Input Full-Scale Range Adjust
The input full-scale range for the ADC12D800/500RF may be
adjusted via Non-ECM or ECM. In Non-ECM, a control pin
selects a higher or lower value; see Section 17.2.1.9 FullScale Input Range Pin (FSR). In ECM, the input full-scale
range may be adjusted with 15-bits of precision. See
VIN_FSR in Table 8 for electrical specification details. Note that
the higher and lower full-scale input range settings in NonECM correspond to the mid and min full-scale input range
settings in ECM. It is necessary to execute an on-command
calibration following a change of the input full-scale range.
See Section 19.0 Register Definitions for information about
the registers.
17.3.1.3 Input Offset Adjust
The input offset adjust for the ADC12D800/500RF may be
adjusted with 12-bits of precision plus sign via ECM. See
Section 19.0 Register Definitions for information about the
registers.
17.3.1.4 DES/Non-DES Mode
The ADC12D800/500RF can operate in Dual-Edge Sampling
(DES) or Non-DES Mode. The DES Mode allows for a single
analog input to be sampled by both I- and Q-channels. One
channel samples the input on the rising edge of the sampling
clock and the other samples the same input signal on the
falling edge of the sampling clock. A single input is thus sampled twice per clock cycle, resulting in an overall sample rate
of twice the sampling clock frequency, e.g. 1.6/1.0 GSPS with
a 800/500 MHz sampling clock. Since DES Mode uses both
I- and Q-channels to process the input signal, both channels
must be powered up for the DES Mode to function properly.
In Non-ECM, only the I-input may be used for the DES Mode
input. See Section 17.2.1.1 Dual Edge Sampling Pin (DES)
for information on how to select the DES Mode. In ECM, either
the I- or Q-input may be selected by first using the DES bit
(Addr: 0h, Bit 7) to select the DES Mode. The DEQ Bit (Addr:
0h, Bit: 6) is used to select the Q-input, but the I-input is used
by default. Also, both I- and Q-inputs may be driven externally,
17.3.1.5 DES Timing Adjust
The performance of the ADC12D800/500RF in DES Mode
depends on how well the two channels are interleaved, i.e.
that the clock samples either channel with precisely a 50%
duty-cycle, each channel has the same offset (nominally code
2047/2048), and each channel has the same full-scale range.
The ADC12D800/500RF includes an automatic clock phase
background adjustment in DES Mode to automatically and
continuously adjust the clock phase of the I- and Q-channels.
In addition to this, the residual fixed timing skew offset may
be further manually adjusted, and further reduce timing spurs
for specific applications. See the DES Timing Adjust (Addr:
7h). As the DES Timing Adjust is programmed from 0d to
49
www.national.com
ADC12D800RF/ADC12D500RF
Feature
ADC12D800RF/ADC12D500RF
127d, the magnitude of the Fs/2-Fin timing interleaving spur
will decrease to a local minimum and then increase again. The
default, nominal setting of 64d may or may not coincide with
this local minimum. The user may manually skew the global
timing to achieve the lowest possible timing interleaving spur.
17.3.1.6 Sampling Clock Phase Adjust
The sampling clock (CLK) phase may be delayed internally to
the ADC up to 825 ps in ECM. This feature is intended to help
the system designer remove small imbalances in clock distribution traces at the board level when multiple ADCs are used,
or to simplify complex system functions such as beam steering for phase array antennas.
Additional delay in the clock path also creates additional jitter
when using the sampling clock phase adjust. Because the
sampling clock phase adjust delays all clocks, including the
DCLKs and output data, the user is strongly advised to use
the minimal amount of adjustment and verify the net benefit
of this feature in his system before relying on it.
30128615
FIGURE 14. SDR DCLK-to-Data Phase Relationship
17.3.2.2 LVDS Output Differential Voltage
The ADC12D800/500RF is available with a selectable higher
or lower LVDS output differential voltage. This parameter is
VOD and may be found in Table 12. The desired voltage may
be selected via the OVS Bit (Addr: 0h, Bit 13). For many applications, in which the LVDS outputs are very close to an
FPGA on the same board, for example, the lower setting is
sufficient for good performance; this will also reduce the possibility for EMI from the LVDS outputs to other signals on the
board. See Section 19.0 Register Definitions for more information.
17.3.2 Output Control and Adjust
There are several features and configurations for the output
of the ADC12D800/500RF so that it may be used in many
different applications. This section covers DDR clock phase,
LVDS output differential and common-mode voltage, output
formatting, Demux/Non-demux Mode, Test Pattern Mode,
and Time Stamp.
17.3.2.3 LVDS Output Common-Mode Voltage
The ADC12D800/500RF is available with a selectable higher
or lower LVDS output common-mode voltage. This parameter
is VOS and may be found in Table 12. See Section 17.2.1.11
LVDS Output Common-mode Pin (VBG) for information on
how to select the desired voltage.
17.3.2.1 SDR / DDR Clock
The ADC12D800/500RF output data can be delivered in Double Data Rate (DDR) or Single Data Rate (SDR). For DDR,
the DCLK frequency is half the data rate and data is sent to
the outputs on both edges of DCLK; see Figure 13. The
DCLK-to-Data phase relationship may be either 0° or 90°. For
0° Mode, the Data transitions on each edge of the DCLK. Any
offset from this timing is tOSK; see Table 14 for details. For 90°
Mode, the DCLK transitions in the middle of each Data cell.
Setup and hold times for this transition, tSU and tH, may also
be found in Table 14. The DCLK-to-Data phase relationship
may be selected via the DDRPh Pin in Non-ECM (see Section 17.2.1.3 Dual Data Rate Phase Pin (DDRPh)) or the DPS
bit in the Configuration Register (Addr: 0h; Bit: 14) in ECM.
Note that for DDR Mode, the 1:2 Demux Mode is not available.
17.3.2.4 Output Formatting
The formatting at the digital data outputs may be either offset
binary or two's complement. The default formatting is offset
binary, but two's complement may be selected via the 2SC
Bit (Addr: 0h, Bit 4); see Section 19.0 Register Definitions for
more information.
17.3.2.5 Demux/Non-demux Mode
The ADC12D800/500RF may be in one of two demultiplex
modes: Demux Mode or Non-Demux Mode (also sometimes
referred to as 1:1 Demux Mode). In Non-Demux Mode, the
data from the input is simply output at the sampling rate on
one 12-bit bus. In Demux Mode, the data from the input is
output at half the sampling rate, on twice the number of buses.
Demux/Non-Demux Mode may only be selected by the NDM
pin. In Non-DES Mode, the output data from each channel
may be demultiplexed by a factor of 1:2 (1:2 Demux Non-DES
Mode) or not demultiplexed (Non-Demux Non-DES Mode). In
DES Mode, the output data from both channels interleaved
may be demultiplexed (1:4 Demux DES Mode) or not demultiplexed (Non-Demux DES Mode).
Note that for 1:2 Demux Mode, the Dual Data Rate (DDR) is
not available. See Table 21 for a selection of available modes.
30128694
FIGURE 13. DDR DCLK-to-Data Phase Relationship
TABLE 21. Supported Demux, Data Rate Modes
For SDR, the DCLK frequency is the same as the data rate
and data is sent to the outputs on a single edge of DCLK; see
Figure 14. The Data may transition on either the rising or
falling edge of DCLK. Any offset from this timing is tOSK; see
Table 14 for details. The DCLK rising / falling edge may be
selected via the SDR bit in the Configuration Register (Addr:
0h; Bit: 2) in ECM only.
www.national.com
Non-Demux Mode
1:2 Demux Mode
DDR
0° Mode / 90° Mode
Not Available
SDR
Rising / Falling Mode
Rising / Falling Mode
17.3.2.6 Test Pattern Mode
The ADC12D800/500RF can provide a test pattern at the four
output buses independently of the input signal to aid in system
debug. In Test Pattern Mode, the ADC is disengaged and a
50
17.3.3 Calibration Feature
The ADC12D800/500RF calibration must be run to achieve
specified performance. The calibration procedure is exactly
the same regardless of how it was initiated or when it is run.
Calibration trims the analog input differential termination resistors, the CLK input resistor, and sets internal bias currents
which affect the linearity of the converter. This minimizes fullscale error, offset error, DNL and INL, which results in the
maximum dynamic performance, as measured by: SNR,
THD, SINAD (SNDR) and ENOB.
TABLE 22. Test Pattern by Output Port in
Demux Mode
Time
Qd
Id
Q
I
ORQ ORI Comments
T0
FF7h FEFh 008h 010h
1b
1b
T1
FF7h FEFh 008h 010h
1b
1b
T2
008h 010h FF7h FEFh
1b
1b
T3
008h 010h FF7h FEFh
1b
1b
T4
008h 010h 008h 010h
0b
0b
T5
FF7h FEFh 008h 010h
1b
1b
T6
FF7h FEFh 008h 010h
1b
1b
T7
008h 010h FF7h FEFh
1b
1b
T8
008h 010h FF7h FEFh
1b
1b
T9
008h 010h 008h 010h
0b
0b
T10 FF7h FEFh 008h 010h
1b
1b
T11 FF7h FEFh 008h 010h
1b
1b
T12 008h 010h FF7h FEFh
1b
1b
T13
...
...
...
...
...
...
17.3.3.1 Calibration Control Pins and Bits
Table 24 is a summary of the pins and bits used for calibration.
See Section 9.0 Ball Descriptions and Equivalent Circuits for
complete pin information and Figure 9 for the timing diagram.
Pattern
Sequence
n
TABLE 24. Calibration Pins
Pattern
Sequence
n+1
Pattern
Sequence
n+2
Pin (Bit)
Name
Function
D6
(Addr: 0h;
Bit 15)
CAL
(Calibration)
Initiate calibration
V4
CalDly
(Calibration
Delay)
Select power-on
calibration delay
(Addr: 4h) Calibration Adjust
B5
When the part is programmed into the Non-Demux Mode, the
test pattern’s order is described in Table 23.
TABLE 23. Test Pattern by Output Port in
Non-Demux Mode
Time
Q
I
ORQ
ORI
T0
008h
010h
0b
0b
T1
FF7h
FEFh
1b
1b
T2
008h
010h
0b
0b
T3
FF7h
FEFh
1b
1b
T4
008h
010h
0b
0b
T5
008h
010h
0b
0b
T6
FF7h
FEFh
1b
1b
T7
008h
010h
0b
0b
T8
FF7h
FEFh
1b
1b
T9
008h
010h
0b
0b
T10
008h
010h
0b
0b
T11
FF7h
FEFh
1b
1b
T12
008h
010h
0b
0b
T13
FF7h
FEFh
1b
1b
T14
...
...
...
...
C1/D2
Comments
C3/D3
Pattern Sequence
n
CalRun
(Calibration
Running)
Adjust calibration
sequence
Indicates while
calibration is running
Rtrim+/External resistor used to
(Input termination
calibrate analog and
trim resistor)
CLK inputs
Rext+/(External
Reference
resistor)
External resistor used to
calibrate internal linearity
17.3.3.2 How to Execute a Calibration
Calibration may be initiated by holding the CAL pin low for at
least tCAL_L clock cycles, and then holding it high for at least
another tCAL_H clock cycles, as defined in Table 16. The minimum tCAL_L and tCAL_H input clock cycle sequences are required to ensure that random noise does not cause a
calibration to begin when it is not desired. The time taken by
the calibration procedure is specified as tCAL. The CAL Pin is
active in both ECM and Non-ECM. However, in ECM, the CAL
Pin is logically OR'd with the CAL Bit, so both the pin and bit
are required to be set low before executing another calibration
via either pin or bit.
Pattern Sequence
n+1
Pattern Sequence
n+2
17.3.3.3 Power-on Calibration
For standard operation, power-on calibration begins after a
time delay following the application of power, as determined
by the setting of the CalDly Pin and measured by tCalDly (see
Table 16). This delay allows the power supply to come up and
stabilize before the power-on calibration takes place. The
best setting (short or long) of the CalDly Pin depends upon
the settling time of the power supply.
It is strongly recommended to set CalDly Pin (to either logichigh or logic-low) before powering the device on since this pin
affects the power-on calibration timing. This may be accomplished by setting CalDly via an external 1kΩ resistor connected to GND or VA. If the CalDly Pin is toggled while the
17.3.2.7 Time Stamp
The Time Stamp feature enables the user to capture the timing of an external trigger event, relative to the sampled signal.
When enabled via the TSE Bit (Addr: 0h; Bit: 3), the LSB of
the digital outputs (DQd, DQ, DId, DI) captures the trigger information. In effect, the 12-bit converter becomes an 11-bit
converter and the LSB acts as a 1-bit converter with the same
latency as the 11-bit converter. The trigger should be applied
to the DCLK_RST input. It may be asynchronous to the ADC
sampling clock.
51
www.national.com
ADC12D800RF/ADC12D500RF
test pattern generator is connected to the outputs, including
ORI and ORQ. The test pattern output is the same in DES
Mode or Non-DES Mode. Each port is given a unique 12-bit
word, alternating between 1's and 0's. When the part is programmed into the Demux Mode, the test pattern’s order is
described in Table 22. If the I- or Q-channel is powered down,
the test pattern will not be output for that channel.
ADC12D800RF/ADC12D500RF
device is powered-on, it can execute a calibration even
though the CAL Pin/Bit remains logic-low.
The power-on calibration will be not be performed if the CAL
pin is logic-high at power-on. In this case, the calibration cycle
will not begin until the on-command calibration conditions are
met. The ADC12D800/500RF will function with the CAL pin
held high at power up, but no calibration will be done and
performance will be impaired.
If it is necessary to toggle the CalDly Pin before the system
power up sequence, then the CAL Pin/Bit must be set to logichigh during the toggling and afterwards for 109 Sampling
Clock cycles. This will prevent the power-on calibration, so an
on-command calibration must be executed or the performance will be impaired.
can be used to load a previously determined set of values.
For the calibration values to be valid, the ADC must be operating under the same conditions, including temperature, at
which the calibration values were originally determined by the
ADC.
To read calibration values from the SPI, do the following:
1. Set ADC to desired operating conditions.
2. Set SSC (Addr: 4h, Bit 7) to 1.
3. Power down both I- and Q-channels.
4. Read exactly 184 times the Calibration Values register
(Addr: 5h). The register values are R0, R1, R2... R183 where
R0 is a dummy value. The contents of R<183:0> should be
stored.
5. Power up I- and Q-channels to original setting.
6. Set SSC (Addr: 4h, Bit 7) to 0.
7. Continue with normal operation.
To write calibration values to the SPI, do the following:
1. Set ADC to operating conditions at which Calibration Values were previously read.
2. Set SSC (Addr: 4h, Bit 7) to 1.
3. Power down both I- and Q-channels.
4. Write exactly 185 times the Calibration Values register (Addr: 5h). The registers should be written with stored register
values R1, R2... R183, dummy1, dummy2.
5. Power up I- and Q-channels to original setting.
6. Set SSC (Addr: 4h, Bit 7) to 0.
7. Continue with normal operation.
17.3.3.4 On-command Calibration
In addition to the power-on calibration, it is recommended to
execute an on-command calibration whenever the settings or
conditions to the device are altered significantly, in order to
obtain optimal parametric performance. Some examples include: changing the FSR via either ECM or Non-ECM, powercycling either channel, and switching into or out of DES Mode.
For best performance, it is also recommended that an oncommand calibration be run 20 seconds or more after application of power and whenever the operating temperature
changes significantly, relative to the specific system performance requirements.
Due to the nature of the calibration feature, it is recommended
to avoid unnecessary activities on the device while the calibration is taking place. For example, do not read or write to
the Serial Interface or use the DCLK Reset feature while calibrating the ADC. Doing so will impair the performance of the
device until it is re-calibrated correctly. Also, it is recommended to not apply a strong narrow-band signal to the analog
inputs during calibration because this may impair the accuracy of the calibration; broad spectrum noise is acceptable.
17.3.3.7 Calibration and Power-Down
If PDI and PDQ are simultaneously asserted during a calibration cycle, the ADC12D800/500RF will immediately power
down. The calibration cycle will continue when either or both
channels are powered back up, but the calibration will be
compromised due to the incomplete settling of bias currents
directly after power up. Therefore, a new calibration should
be executed upon powering the ADC12D800/500RF back up.
In general, the ADC12D800/500RF should be recalibrated
when either or both channels are powered back up, or after
one channel is powered down. For best results, this should
be done after the device has stabilized to its operating temperature.
17.3.3.5 Calibration Adjust
The sequence of the calibration event itself may be adjusted.
This feature can be used if a shorter calibration time than the
default is required; see tCAL in Table 16. However, the performance of the device, when using this feature is not guaranteed.
The calibration sequence may be adjusted via CSS (Addr:
4h, Bit 14). The default setting of CSS = 1b executes both
RIN and RIN_CLK Calibration (using Rtrim) and internal linearity
Calibration (using Rext). Executing a calibration with CSS =
0b executes only the internal linearity Calibration. The first
time that Calibration is executed, it must be with CSS = 1b to
trim RIN and RIN_CLK. However, once the device is at its operating temperature and RIN has been trimmed at least one
time, it will not drift significantly. To save time in subsequent
calibrations, trimming RIN and RIN_CLK may be skipped, i.e. by
setting CSS = 0b.
17.3.3.8 Calibration and the Digital Outputs
During calibration, the digital outputs (including DI, DId, DQ,
DQd and OR) are set logic-low, to reduce noise. The DCLK
runs continuously during calibration. After the calibration is
completed and the CalRun signal is logic-low, it takes an additional 60 Sampling Clock cycles before the output of the
ADC12D800/500RF is valid converted data from the analog
inputs. This is the time it takes for the pipeline to flush, as well
as for other internal processes.
17.3.4 Power Down
On the ADC12D800/500RF, the I- and Q-channels may be
powered down individually. This may be accomplished via the
control pins, PDI and PDQ, or via ECM. In ECM, the PDI and
PDQ pins are logically OR'd with the Control Register setting.
See Section 17.2.1.6 Power Down I-channel Pin (PDI)
andSection 17.2.1.7 Power Down Q-channel Pin (PDQ) for
more information.
17.3.3.6 Read/Write Calibration Settings
When the ADC performs a calibration, the calibration constants are stored in an array which is accessible via the
Calibration Values register (Addr: 5h). To save the time which
it takes to execute a calibration, tCAL, or to allow re-use of a
previous calibration result, these values can be read from and
written to the register at a later time. For example, if an application requires the same input impedance, RIN, this feature
www.national.com
52
ADC12D800RF/ADC12D500RF
18.0 Applications Information
18.1 THE ANALOG INPUTS
The ADC12D800/500RF will continuously convert any signal
which is present at the analog inputs, as long as a CLK signal
is also provided to the device. This section covers important
aspects related to the analog inputs including: acquiring the
input, driving the ADC in DES Mode, the reference voltage
and FSR, out-of-range indication, AC/DC-coupled signals,
and single-ended input signals.
18.1.1 Acquiring the Input
The Aperture Delay, tAD, is the amount of delay, measured
from the sampling edge of the clock input, after which signal
present at the input pin is sampled inside the device. Data is
acquired at the rising edge of CLK+ in Non-DES Mode and
both the falling and rising edges of CLK+ in DES Mode. In
Non-DES Mode, the I- and Q-channels always sample data
on the rising edge of CLK+. In DES Mode, i.e. DESI, DESQ,
DESIQ, and DESCLKIQ, the I-channel samples data on the
rising edge of CLK+ and the Q-channel samples data on the
falling edge of CLK+. The digital equivalent of that data is
available at the digital outputs a constant number of sampling
clock cycles later for the DI, DQ, DId and DQd output buses,
a.k.a. Latency, depending on the demultiplex mode which is
selected. In addition to the Latency, there is a constant output
delay, tOD, before the data is available at the outputs. See
tOD in the Timing Diagrams. See tLAT, tAD, and tODin Table
14.
30128613
FIGURE 15. Driving DESIQ Mode
In the case that only one channel is used in Non-DES Mode
or that the ADC is driven in DESI or DESQ Mode, the unused
analog input should be terminated to reduce any noise coupling into the ADC. See Table 25 for details.
TABLE 25. Unused Analog Input Recommended
Termination
Mode
18.1.2 Driving the ADC in DES Mode
The ADC12D800/500RF can be configured as either a 2channel, 800/500 GSPS device (Non-DES Mode) or a 1channel 1.6/1.0 GSPS device (DES Mode). When the device
is configured in DES Mode, there is a choice for with which
input to drive the single-channel ADC. These are the 3 options:
DES – externally driving the I-channel input only. This is the
default selection when the ADC is configured in DES Mode.
It may also be referred to as “DESI” for added clarity.
DESQ – externally driving the Q-channel input only.
DESIQ, DESCLKIQ – externally driving both the I- and Qchannel inputs. VinI+ and VinQ+ should be driven with the
exact same signal. VinI- and VinQ- should be driven with the
exact same signal, which is the differential compliment to the
one driving VinI+ and VinQ+.
The input impedance for each I- and Q-input is 100Ω differential (or 50Ω single-ended), so the trace to each VinI+, VinI-,
VinQ+, and VinQ- should always be 50Ω single-ended. If a
single I- or Q-input is being driven, then that input will present
a 100Ω differential load. For example, if a 50Ω single-ended
source is driving the ADC, then a 1:2 balun will transform the
impedance to 100Ω differential. However, if the ADC is being
driven in DESIQ Mode, then the 100Ω differential impedance
from the I-input will appear in parallel with the Q-input for a
composite load of 50Ω differential and a 1:1 balun would be
appropriate. See Figure 15 for an example circuit driving the
ADC in DESIQ Mode. A recommended part selection is using
the Mini-Circuits TC1-1-13MA+ balun with Ccouple = 0.22µF.
Power Coupling
Down
Recommended
Termination
Non-DES
Yes
AC/DC
Tie Unused+ and
Unused- to Vbg
DES/
Non-DES
No
DC
Tie Unused+ and
Unused- to Vbg
DES/
Non-DES
No
AC
Tie Unused+ to Unused-
18.1.3 FSR and the Reference Voltage
The full-scale analog differential input range (VIN_FSR) of the
ADC12D800/500RF is derived from an internal bandgap reference. In Non-ECM, this full-scale range has two settings
controlled by the FSR Pin; see Section 17.2.1.9 Full-Scale
Input Range Pin (FSR). The FSR Pin operates on both I- and
Q-channels. In ECM, the full-scale range may be independently set for each channel via Addr:3h and Bh with 15 bits
of precision; see Section 19.0 Register Definitions. The best
SNR is obtained with a higher full-scale input range, but better
distortion and SFDR are obtained with a lower full-scale input
range. It is not possible to use an external analog reference
voltage to modify the full-scale range, and this adjustment
should only be done digitally, as described.
A buffered version of the internal bandgap reference voltage
is made available at the VBG Pin for the user. The VBG pin can
drive a load of up to 80 pF and source or sink up to 100 μA.
It should be buffered if more current than this is required. This
pin remains as a constant reference voltage regardless of
what full-scale range is selected and may be used for a system reference. VBG is a dual-purpose pin and it may also be
used to select a higher LVDS output common-mode voltage;
see Section 17.2.1.11 LVDS Output Common-mode Pin
(VBG).
18.1.4 Out-Of-Range Indication
Differential input signals are digitized to 12 bits, based on the
full-scale range. Signal excursions beyond the full-scale
range, i.e. greater than +VIN_FSR/2 or less than -VIN_FSR/2, will
be clipped at the output. An input signal which is above the
53
www.national.com
ADC12D800RF/ADC12D500RF
voltage of the driving device should track this change. Fullscale distortion performance falls off as the input common
mode voltage deviates from VCMO. Therefore, it is recommended to keep the input common-mode voltage within 100
mV of VCMO (typical), although this range may be extended to
±150 mV (maximum). See VCMI in Table 8 and ENOB vs.
VCMI in Section 16.0 Typical Performance Plots . Performance
in AC- and DC-coupled Mode are similar, provided that the
input common mode voltage at both analog inputs remains
within 100 mV of VCMO.
FSR will result in all 1's at the output and an input signal which
is below the FSR will result in all 0's at the output. When the
conversion result is clipped for the I-channel input, the Outof-Range I-channel (ORI) output is activated such that ORI+
goes high and ORI- goes low while the signal is out of range.
This output is active as long as accurate data on either or both
of the buses would be outside the range of 000h to FFFh. The
Q-channel has a separate ORQ which functions similarly.
18.1.5 Maximum Input Range
The recommended operating and absolute maximum input
range may be found in Section 11.0 Operating Ratings and
Section 10.0 Absolute Maximum Ratings, respectively. Under
the stated allowed operating conditions, each Vin+ and Vininput pin may be operated in the range from 0V to 2.15V if the
input is a continuous 100% duty cycle signal and from 0V to
2.5V if the input is a 10% duty cycle signal. The absolute
maximum input range for Vin+ and Vin- is from -0.15V to 2.5V.
These limits apply only for input signals for which the input
common mode voltage is properly maintained.
18.1.8 Single-Ended Input Signals
The analog inputs of the ADC12D800/500RF are not designed to accept single-ended signals. The best way to handle single-ended signals is to first convert them to differential
signals before presenting them to the ADC. The easiest way
to accomplish single-ended to differential signal conversion is
with an appropriate balun-transformer, as shown in Figure
17.
18.1.6 AC-coupled Input Signals
The ADC12D800/500RF analog inputs require a precise
common-mode voltage. This voltage is generated on-chip
when AC-coupling Mode is selected. See Section 17.2.1.10
AC/DC-Coupled Mode Pin (VCMO) for more information about
how to select AC-coupled Mode.
In AC-coupled Mode, the analog inputs must of course be ACcoupled. For an ADC12D800/500RF used in a typical application, this may be accomplished by on-board capacitors, as
shown in Figure 16. For the ADC12D800RFRB, the SMA inputs on the Reference Board are directly connected to the
analog inputs on the ADC12D800RF, so this may be accomplished by DC blocks (included with the hardware kit).
When the AC-coupled Mode is selected, an analog input
channel that is not used (e.g. in DES Mode) should be connected to AC ground, e.g. through capacitors to ground . Do
not connect an unused analog input directly to ground.
30128643
FIGURE 17. Single-Ended to Differential Conversion
Using a Balun
When selecting a balun, it is important to understand the input
architecture of the ADC. The impedance of the analog source
should be matched to the ADC12D800/500RF's on-chip
100Ω differential input termination resistor. The range of this
termination resistor is specified as RIN in Table 8.
18.2 THE CLOCK INPUTS
The ADC12D800/500RF has a differential clock input, CLK+
and CLK-, which must be driven with an AC-coupled, differential clock signal. This provides the level shifting necessary
to allow for the clock to be driven with LVDS, PECL, LVPECL,
or CML levels. The clock inputs are internally terminated to
100Ω differential and self-biased. This section covers coupling, frequency range, level, duty-cycle, jitter, and layout
considerations.
18.2.1 CLK Coupling
The clock inputs of the ADC12D800/500RF must be capacitively coupled to the clock pins as indicated in Figure 18.
30128644
FIGURE 16. AC-coupled Differential Input
The analog inputs for the ADC12D800/500RF are internally
buffered, which simplifies the task of driving these inputs and
the RC pole which is generally used at sampling ADC inputs
is not required. If the user desires to place an amplifier circuit
before the ADC, care should be taken to choose an amplifier
with adequate noise and distortion performance, and adequate gain at the frequencies used for the application.
18.1.7 DC-coupled Input Signals
In DC-coupled Mode, the ADC12D800/500RF differential inputs must have the correct common-mode voltage. This voltage is provided by the device itself at the VCMO output pin. It
is recommended to use this voltage because the VCMO output
potential will change with temperature and the common-mode
www.national.com
30128647
FIGURE 18. Differential Input Clock Connection
54
It is good practice to keep the ADC input clock line as short
as possible, tightly coupled, keep it well away from any other
signals, and treat it as a transmission line. Otherwise, other
signals can introduce jitter into the input clock signal. Also, the
clock signal can introduce noise into the analog path if it is not
properly isolated.
18.2.2 CLK Frequency
Although the ADC12D800/500RF is tested and its performance is guaranteed with a differential 1.0/1.6 GHz sampling
clock, it will typically function well over the input clock frequency range; see fCLK(min) and fCLK(max) in Table 14. Operation up to fCLK(max) is possible if the maximum ambient
temperatures indicated are not exceeded. Operating at sample rates above fCLK(max) for the maximum ambient temperature may result in reduced device reliability and product
lifetime. This is due to the fact that higher sample rates results
in higher power consumption and die temperatures.
18.3 THE LVDS OUTPUTS
The Data, ORI, ORQ, DCLKI and DCLKQ outputs are LVDS.
The electrical specifications of the LVDS outputs are compatible with typical LVDS receivers available on ASIC and
FPGA chips; but they are not IEEE or ANSI communications
standards compliant due to the low +1.9V supply used on this
chip. These outputs should be terminated with a 100Ω differential resistor placed as closely to the receiver as possible. If
the 100Ω differential resistance is built in to the receiver, then
an externally placed resistor is not necessary. This section
covers common-mode and differential voltage, and data rate.
18.2.3 CLK Level
The input clock amplitude is specified as VIN_CLK in Table
10. Input clock amplitudes above the max VIN_CLK may result
in increased input offset voltage. This would cause the converter to produce an output code other than the expected
2047/2048 when both input pins are at the same potential.
Insufficient input clock levels will result in poor dynamic performance. Both of these results may be avoided by keeping
the clock input amplitude within the specified limits of
VIN_CLK.
18.3.1 Common-mode and Differential Voltage
The LVDS outputs have selectable common-mode and differential voltage, VOS and VOD; see Table 12. See Section 17.3.2 Output Control and Adjust for more information.
Selecting the higher VOS will also increase VOD slightly. The
differential voltage, VOD, may be selected for the higher or
lower value. For short LVDS lines and low noise systems,
satisfactory performance may be realized with the lower
VOD. This will also result in lower power consumption. If the
LVDS lines are long and/or the system in which the
ADC12D800/500RF is used is noisy, it may be necessary to
select the higher VOD.
18.2.4 CLK Duty Cycle
The duty cycle of the input clock signal can affect the performance of any A/D converter. The ADC12D800/500RF features a duty cycle clock correction circuit which can maintain
performance over the 20%-to-80% specified clock duty-cycle
range. This feature is enabled by default and provides improved ADC clocking, especially in the Dual-Edge Sampling
(DES) Mode.
18.3.2 Output Data Rate
The data is produced at the output at the same rate it is sampled at the input. The minimum recommended input clock rate
for this device is fCLK(MIN); see Table 14. However, it is possible to operate the device in 1:2 Demux Mode and capture data
from just one 12-bit bus, e.g. just DI (or DId) although both DI
and DId are fully operational. This will decimate the data by
two and effectively halve the data rate.
18.2.5 CLK Jitter
High speed, high performance ADCs such as the
ADC12D800/500RF require a very stable input clock signal
with minimum phase noise or jitter. ADC jitter requirements
are defined by the ADC resolution (number of bits), maximum
ADC input frequency and the input signal amplitude relative
to the ADC input full scale range. The maximum jitter (the sum
of the jitter from all sources) allowed to prevent a jitter-induced
reduction in SNR is found to be
18.3.3 Terminating Unused LVDS Output Pins
If the ADC is used in Non-Demux Mode, then only the DI and
DQ data outputs will have valid data present on them. The
DId and DQd data outputs may be left not connected; if unused, they are internally tri-stated.
Similarly, if the Q-channel is powered-down (i.e. PDQ is logichigh), the DQ data output pins, DCLKQ and ORQ may be left
not connected.
tJ(MAX) = ( VIN(P-P)/ VFSR) x (1/(2(N+1) x π x fIN))
where tJ(MAX) is the rms total of all jitter sources in seconds,
VIN(P-P) is the peak-to-peak analog input signal, VFSR is the
full-scale range of the ADC, "N" is the ADC resolution in bits
and fIN is the maximum input frequency, in Hertz, at the ADC
analog input.
tJ(MAX) is the square root of the sum of the squares (RSS) of
the jitter from all sources, including: the ADC input clock, system, input signals and the ADC itself. Since the effective jitter
added by the ADC is beyond user control, it is recommended
to keep the sum of all other externally added jitter to a minimum.
18.4 SYNCHRONIZING MULTIPLE ADC12D800/500RFS
IN A SYSTEM
The ADC12D800/500RF has two features to assist the user
with synchronizing multiple ADCs in a system; AutoSync and
DCLK Reset. The AutoSync feature is new and designates
one ADC12D800/500RF as the Master ADC and other
ADC12D800/500RFs in the system as Slave ADCs. The
DCLK Reset feature performs the same function as the AutoSync feature, but is the first generation solution to synchronizing multiple ADCs in a system; it is disabled by default. For
the application in which there are multiple Master and Slave
ADC12D800/500RFs in a system, AutoSync may be used to
synchronize the Slave ADC12D800/500RF(s) to each respective Master ADC12D800/500RF and the DCLK Reset
may be used to synchronize the Master ADC12D800/500RFs
to each other.
18.2.6 CLK Layout
The ADC12D800/500RF clock input is internally terminated
with a trimmed 100Ω resistor. The differential input clock line
pair should have a characteristic impedance of 100Ω and
(when using a balun), be terminated at the clock source in that
(100Ω) characteristic impedance.
55
www.national.com
ADC12D800RF/ADC12D500RF
The choice of capacitor value will depend on the clock frequency, capacitor component characteristics and other system economic factors. For example, on the ADC12D800RFRB, the capacitors have the value Ccouple = 4.7 nF which
yields a highpass cutoff frequency, fc = 677.2 kHz.
ADC12D800RF/ADC12D500RF
may be used to synchronize the DCLK and data outputs of
one or more Slave ADC12D800/500RFs to one Master
ADC12D800/500RF. Several advantages of this feature include: no special synchronization pulse required, any upset
in synchronization is recovered upon the next DCLK cycle,
and the Master/Slave ADC12D800/500RFs may be arranged
as a binary tree so that any upset will quickly propagate out
of the system.
An example system is shown below in Figure 19 which consists of one Master ADC and two Slave ADCs. For simplicity,
only one DCLK is shown; in reality, there is DCLKI and
DCLKQ, but they are always in phase with one another.
If the AutoSync or DCLK Reset feature is not used, see Table
26 for recommendations about terminating unused pins.
TABLE 26. Unused AutoSync and DCLK Reset Pin
Recommendation
Pin(s)
Unused termination
RCLK+/-
Do not connect.
RCOUT1+/-
Do not connect.
RCOUT2+/-
Do not connect.
DCLK_RST+
Connect to GND via 1kΩ resistor.
DCLK_RST-
Connect to VA via 1kΩ resistor.
18.4.1 AutoSync Feature
AutoSync is a new feature which continuously synchronizes
the outputs of multiple ADC12D800/500RFs in a system. It
30128603
FIGURE 19. AutoSync Example
In order to synchronize the DCLK (and Data) outputs of multiple ADCs, the DCLKs must transition at the same time, as
well as be in phase with one another. The DCLK at each ADC
is generated from the CLK after some latency, plus tOD minus
tAD. Therefore, in order for the DCLKs to transition at the same
time, the CLK signal must reach each ADC at the same time.
To tune out any differences in the CLK path to each ADC, the
tAD adjust feature may be used. However, using the tAD adjust
feature will also affect when the DCLK is produced at the output. If the device is in Demux Mode, then there are four
possible phases which each DCLK may be generated on because the typical CLK = 1GHz and DCLK = 250 MHz for this
case. The RCLK signal controls the phase of the DCLK, so
that each Slave DCLK is on the same phase as the Master
DCLK.
The AutoSync feature may only be used via the Control Registers. For more information, see AN-2132.
The DCLK_RST signal can be asserted asynchronously to
the input clock. If DCLK_RST is asserted, the DCLK output is
held in a designated state (logic-high) in Demux Mode; in
Non-Demux Mode, the DCLK continues to function normally.
Depending upon when the DCLK_RST signal is asserted,
there may be a narrow pulse on the DCLK line during this
reset event. When the DCLK_RST signal is de-asserted,
there are tSYNC_DLY CLK cycles of systematic delay and the
next CLK rising edge synchronizes the DCLK output with
those of other ADC12D800/500RFs in the system. For 90°
Mode (DDRPh = logic-high), the synchronizing edge occurs
on the rising edge of CLK, 4 cycles after the first rising edge
of CLK after DCLK_RST is released. For 0° Mode (DDRPh =
logic-low), this is 5 cycles instead. The DCLK output is enabled again after a constant delay of tOD.
For both Demux and Non-Demux Modes, there is some uncertainty about how DCLK comes out of the reset state for the
first DCLK_RST pulse. For the second (and subsequent)
DCLK_RST pulses, the DCLK will come out of the reset state
in a known way. Therefore, if using the DCLK Reset feature,
it is recommended to apply one "dummy" DCLK_RST pulse
before using the second DCLK_RST pulse to synchronize the
outputs. This recommendation applies each time the device
or channel is powered-on.
When using DCLK_RST to synchronize multiple
ADC12D800/500RFs, it is required that the Select Phase bits
in the Control Register (Addr: Eh, Bits 3,4) be the same for
each Master ADC12D800/500RF.
18.4.2 DCLK Reset Feature
The DCLK reset feature is available via ECM, but it is disabled
by default. DCLKI and DCLKQ are always synchronized, by
design, and do not require a pulse from DCLK_RST to become synchronized.
The DCLK_RST signal must observe certain timing requirements, which are shown in Figure 8 of the Timing Diagrams.
The DCLK_RST pulse must be of a minimum width and its
deassertion edge must observe setup and hold times with respect to the CLK input rising edge. These timing specifications are listed as tPWR, tSR and tHR and may be found in Table
14.
www.national.com
56
18.5.1 Power Planes
All supply buses for the ADC should be sourced from a common linear voltage regulator. This ensures that all power
buses to the ADC are turned on and off simultaneously. This
single source will be split into individual sections of the power
plane, with individual decoupling and connection to the different power supply buses of the ADC. Due to the low voltage
but relatively high supply current requirement, the optimal solution may be to use a switching regulator to provide an
intermediate low voltage, which is then regulated down to the
final ADC supply voltage by a linear regulator. Please refer to
the documentation provided for the ADC12D800RFRB for
additional details on specific regulators that are recommended for this configuration.
Power for the ADC should be provided through a broad plane
which is located on one layer adjacent to the ground plane(s).
Placing the power and ground planes on adjacent layers will
provide low impedance decoupling of the ADC supplies, especially at higher frequencies. The output of a linear regulator
should feed into the power plane through a low impedance
multi-via connection. The power plane should be split into individual power peninsulas near the ADC. Each peninsula
should feed a particular power bus on the ADC, with decoupling for that power bus connecting the peninsula to the
ground plane near each power/ground pin pair. Using this
technique can be difficult on many printed circuit CAD tools.
To work around this, zero ohm resistors can be used to con-
18.5.2 Bypass Capacitors
The general recommendation is to have one 100nF capacitor
for each power/ground pin pair. The capacitors should be
surface mount multi-layer ceramic chip capacitors similar to
Panasonic part number ECJ-0EB1A104K.
18.5.3 Ground Planes
Grounding should be done using continuous full ground
planes to minimize the impedance for all ground return paths,
and provide the shortest possible image/return path for all
signal traces.
18.5.4 Power System Example
The ADC12D800RFRB uses continuous ground planes (except where clear areas are needed to provide appropriate
impedance management for specific signals), see Figure 20.
Power is provided on one plane, with the 1.9V ADC supply
being split into multiple zones or peninsulas for the specific
power buses of the ADC. Decoupling capacitors are connected between these power bus peninsulas and the adjacent
ground planes using vias. The capacitors are located as close
to the individual power/ground pin pairs of the ADC as possible. In most cases, this means the capacitors are located on
the opposite side of the PCB to the ADC.
57
www.national.com
ADC12D800RF/ADC12D500RF
nect the power source net to the individual nets for the different ADC power buses. As a final step, the zero ohm resistors
can be removed and the plane and peninsulas can be connected manually after all other error checking is completed.
18.5 SUPPLY/GROUNDING, LAYOUT AND THERMAL
RECOMMENDATIONS
ADC12D800RF/ADC12D500RF
30128602
FIGURE 20. Power and Grounding Example
attached to the substrate top with exposed metal in the center
top area of the package. This results in a 20% improvement
(typical) in thermal performance over the standard plastic
BGA package.
18.5.5 Thermal Management
The Heat Slug Ball Grid Array (HSBGA) package is a modified
version of the industry standard plastic BGA (Ball Grid Array)
package. Inside the package, a copper heat spreader cap is
30128609
FIGURE 21. HSBGA Conceptual Drawing
The center balls are connected to the bottom of the die by vias
in the package substrate, Figure 21. This gives a low thermal
resistance between the die and these balls. Connecting these
balls to the PCB ground planes with a low thermal resistance
www.national.com
path is the best way dissipate the heat from the ADC. These
pins should also be connected to the ground plane via a low
impedance path for electrical purposes. The direct connection
to the ground planes is an easy method to spread heat away
58
temperature. For more complex systems, thermal modeling
software can be used to evaluate the printed circuit board
system and determine the expected junction temperature given the total system dissipation and ambient temperature.
18.6 SYSTEM POWER-ON CONSIDERATIONS
There are a couple important topics to consider associated
with the system power-on event including configuration and
calibration, and the Data Clock.
18.6.1 Power-on, Configuration, and Calibration
Following the application of power to the ADC12D800/500RF,
several events must take place before the output from the
ADC12D800/500RF is valid and at full performance; at least
one full calibration must be executed with the device configured in the desired mode.
Following the application of power to the ADC12D800/500RF,
there is a delay of tCalDly and then the Power-on Calibration is
executed. This is why it is recommended to set the CalDly Pin
via an external pull-up or pull-down resistor. This ensures that
the state of that input will be properly set at the same time that
power is applied to the ADC and tCalDly will be a known quantity. For the purpose of this section, it is assumed that CalDly
is set as recommended.
The Control Bits or Pins must be set or written to configure
the ADC12D800/500RF in the desired mode. This must take
place via either Extended Control Mode or Non-ECM (Pin
Control Mode) before subsequent calibrations will yield an
output at full performance in that mode. Some examples of
modes include DES/Non-DES Mode, Demux/Non-demux
Mode, and Full-Scale Range.
The simplest case is when device is in Non-ECM and the
Control Pins are set by pull-up/down resistors, see Figure
22. For this case, the settings to the Control Pins ramp concurrently to the ADC voltage. Following the delay of tCalDly and
the calibration execution time, tCAL, the output of the
ADC12D800/500RF is valid and at full performance. If it takes
longer than tCalDly for the system to stabilize at its operating
temperature, it is recommended to execute an on-command
calibration at that time.
Another case is when the FPGA configures the Control Pins
(Non-ECM) or writes to the SPI (ECM), see Figure 23. It is
always necessary to comply with the Operating Ratings and
Absolute Maximum ratings, i.e. the Control Pins may not be
driven below the ground or above the supply, regardless of
what the voltage currently applied to the supply is. Therefore,
it is not recommended to write to the Control Pins or SPI before power is applied to the ADC12D800/500RF. As long as
the FPGA has completed writing to the Control Pins or SPI,
the Power-on Calibration will result in a valid output at full
performance. Once again, if it takes longer than tCalDly for the
system to stabilize at its operating temperature, it is recommended to execute an on-command calibration at that time.
Due to system requirements, it may not be possible for the
FPGA to write to the Control Pins or SPI before the Power-on
Calibration takes place, see Figure 24. It is not critical to configure the device before the Power-on Calibration, but it is
critical to realize that the output for such a case is not at its
full performance. Following an On-command Calibration, the
device will be at its full performance.
59
www.national.com
ADC12D800RF/ADC12D500RF
from the ADC. Along with the ground plane, the parallel power
planes will provide additional thermal dissipation.
The center ground balls should be soldered down to the recommended ball pads (See AN-1126). These balls will have
wide traces which in turn have vias which connect to the internal ground planes, and a bottom ground pad/pour if possible. This ensures a good ground is provided for these balls,
and that the optimal heat transfer will occur between these
balls and the PCB ground planes.
In spite of these package enhancements, analysis using the
standard JEDEC JESD51-7 four-layer PCB thermal model
shows that ambient temperatures must be limited to 70/77°C
to ensure a safe operating junction temperature for the
ADC12D800/500RF. However, most applications using the
ADC12D800/500RF will have a printed circuit board which is
more complex than that used in JESD51-7. Typical circuit
boards will have more layers than the JESD51-7 (eight or
more), several of which will be used for ground and power
planes. In those applications, the thermal resistance parameters of the ADC12D800/500RF and the circuit board can be
used to determine the actual safe ambient operating temperature up to a maximum of 85°C.
Three key parameters are provided to allow for modeling and
calculations. Because there are two main thermal paths between the ADC die and external environment, the thermal
resistance for each of these paths is provided. θJC1 represents
the thermal resistance between the die and the exposed metal area on the top of the HSBGA package. θJC2 represents the
thermal resistance between the die and the center group of
balls on the bottom of the HSBGA package. The final parameter is the allowed maximum junction temperature, TJ.
In other applications, a heat sink or other thermally conductive
path can be added to the top of the HSBGA package to remove heat. In those cases, θJC1 can be used along with the
thermal parameters for the heat sink or other thermal coupling
added. Representative heat sinks which might be used with
the ADC12D800/500RF include the Cool Innovations p/n
3-1212XXG and similar products from other vendors. In many
applications, the printed circuit board will provide the primary
thermal path conducting heat away from the ADC package.
In those cases, θJC2 can be used in conjunction with printed
circuit board thermal modeling software to determine the allowed operating conditions that will maintain the die temperature below the maximum allowable limit. Additional dissipation can be achieved by coupling a heat sink to the copper
pour area on the bottom side of the printed circuit board.
Typically, dissipation will occur through one predominant
thermal path. In these cases, the following calculations can
be used to determine the maximum safe ambient operating
temperature for the ADC12D500RF, for example:
TJ = TA + PD × (θJC+θCA)
TJ = TA + PC(MAX) × (θJC+θCA)
For θJC, the value for the primary thermal path in the given
application environment should be used (θJC1 or θJC2). θCA is
the thermal resistance from the case to ambient, which would
typically be that of the heat sink used. Using this relationship
and the desired ambient temperature, the required heat sink
thermal resistance can be found. Alternately, the heat sink
thermal resistance can be used to find the maximum ambient
ADC12D800RF/ADC12D500RF
30128664
FIGURE 22. Power-on with Control Pins set by Pull-up/down Resistors
30128665
FIGURE 23. Power-on with Control Pins set by FPGA pre Power-on Cal
30128666
FIGURE 24. Power-on with Control Pins set by FPGA post Power-on Cal
plitude continues to track with the supply. Much below the low
end of operating supply range of the ADC12D800/500RF, the
DCLK is already fully operational.
18.6.2 Power-on and Data Clock (DCLK)
Many applications use the DCLK output for a system clock.
For the ADC12D800/500RF, each I- and Q-channel has its
own DCLKI and DCLKQ, respectively. The DCLK output is
always active, unless that channel is powered-down or the
DCLK Reset feature is used while the device is in Demux
Mode. As the supply to the ADC12D800/500RF ramps, the
DCLK also comes up, see this example from the ADC12D800RFRB: Figure 25. While the supply is too low, there
is no output at DCLK. As the supply continues to ramp, DCLK
functions intermittently with irregular frequency, but the am-
www.national.com
60
Number of External
Devices Monitored
Recommended Temperature
Sensor
1
LM95235
2
LM95213
4
LM95214
The temperature sensor (LM95235/13/14) is an 11-bit digital
temperature sensor with a 2-wire System Management Bus
(SMBus) interface that can monitor the temperature of one,
two, or four remote diodes as well as its own temperature. It
can be used to accurately monitor the temperature of up to
one, two, or four external devices such as the
ADC12D800/500RF, a FPGA, other system components, and
the ambient temperature.
The temperature sensor reports temperature in two different
formats for +127.875°C/-128°C range and 0°/255°C range. It
has a Sigma-Delta ADC core which provides the first level of
noise immunity. For improved performance in a noisy environment, the temperature sensor includes programmable digital filters for Remote Diode temperature readings. When the
digital filters are invoked, the resolution for the Remote Diode
readings increases to 0.03125°C. For maximum flexibility and
best accuracy, the temperature sensor includes offset registers that allow calibration for other types of diodes.
Diode fault detection circuitry in the temperature sensor can
detect the absence or fault state of a remote diode: whether
D+ is shorted to the power supply, D- or ground, or floating.
In the following typical application, the LM95213 is used to
monitor the temperature of an ADC12D800/500RF as well as
an FPGA, see Figure 26. If this feature is unused, the Tdiode
+/- pins may be left floating.
30128690
FIGURE 25. Supply and DCLK Ramping
18.7 RECOMMENDED SYSTEM CHIPS
National recommends these other chips including temperature sensors, clocking devices, and amplifiers in order to
support the ADC12D800/500RF in a system design.
18.7.1 Temperature Sensor
The ADC12D800/500RF has an on-die temperature diode
connected to pins Tdiode+/- which may be used to monitor
the die temperature. National also provides a family of temperature sensors for this application which monitor different
numbers of external devices, see Table 27.
30128697
FIGURE 26. Typical Temperature Sensor Application
poses are the LMK01XXX, LMK02XXX, LMK03XXX and
LMK04XXX product families.
18.7.2 Clocking Device
The clock source can be a PLL/VCO device such as the
LMX2531LQxxxx family of products. The specific device
should be selected according to the desired ADC sampling
clock frequency. The ADC12D800RFRB uses the
LMX2531LQ1570E, with the ADC clock source provided by
the Aux PLL output. Other devices which may be considered
based on clock source, jitter cleaning, and distribution pur-
18.7.3 Amplifiers for the Analog Input
The following amplifiers can be used for ADC12D800/500RF
applications which require DC coupled input or signal gain,
neither of which can be provided with a transformer coupled
input circuit:
61
www.national.com
ADC12D800RF/ADC12D500RF
TABLE 27. Temperature Sensor Recommendation
ADC12D800RF/ADC12D500RF
some important qualities to consider are phase error and
magnitude error.
TABLE 28. Amplifier Recommendations
Amplifier
Bandwidth
Brief features
LMH6552
1.5 GHz
Configurable gain
LMH6553
900 MHz
Output clamp and
configurable gain
LMH6554
2.8 GHz
Configurable gain
LMH6555
1.2 GHz
Fixed gain
TABLE 29. Balun Recommendations
18.7.4 Balun Recommendations for Analog Input
The following baluns are recommended for the
ADC12D800/500RF for applications which require no gain.
When evaluating a balun for the application of driving an ADC,
www.national.com
62
Balun
Bandwidth
Mini Circuits
TC1-1-13MA+
4.5 - 3000MHz
Anaren
B0430J50100A00
400 - 3000 MHz
Mini Circuits
ADTL2-18
30 - 1800 MHz
Ten read/write registers provide several control and configuration options in the Extended Control Mode. These registers have no
effect when the device is in the Non-extended Control Mode. Each register description below also shows the Power-On Reset
(POR) state of each control bit. See Table 30 for a summary.
TABLE 30. Register Addresses
A3
A2
A1
A0
Hex
Register Addressed
0
0
0
0
0h
Configuration Register 1
0
0
0
1
1h
Reserved
0
0
1
0
2h
I-channel Offset Adjust
0
0
1
1
3h
I-channel Full-Scale Range Adjust
0
1
0
0
4h
Calibration Adjust
0
1
0
1
5h
Calibration Values
0
1
1
0
6h
Reserved
0
1
1
1
7h
DES Timing Adjust
1
0
0
0
8h
Reserved
1
0
0
1
9h
Reserved
1
0
1
0
Ah
Q-channel Offset Adjust
1
0
1
1
Bh
Q-channel Full-Scale Range Adjust
1
1
0
0
Ch
Aperture Delay Coarse Adjust
1
1
0
1
Dh
Aperture Delay Fine Adjust
1
1
1
0
Eh
AutoSync
1
1
1
1
Fh
Reserved
63
www.national.com
ADC12D800RF/ADC12D500RF
19.0 Register Definitions
ADC12D800RF/ADC12D500RF
Configuration Register 1
Addr: 0h (0000b)
Bit
15
Name CAL
POR
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bits 1:0
www.national.com
0
POR state: 2000h
14
13
12
11
10
9
8
7
6
5
4
3
2
DPS
OVS
TPM
PDI
PDQ
Res
Res
DES
DEQ
DIQ
2SC
TSE
SDR
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
Res
0
0
CAL: Calibration Enable. When this bit is set to 1b, an on-command calibration is initiated. This bit is not reset
automatically upon completion of the calibration. Therefore, the user must reset this bit to 0b and then set it to
1b again to execute another calibration. This bit is logically OR'd with the CAL Pin; both bit and pin must be set
to 0b before either is used to execute a calibration. (Note 18)
DPS: DCLK Phase Select. In DDR, set this bit to 0b to select the 0° Mode DDR Data-to-DCLK phase relationship
and to 1b to select the 90° Mode. Note that for 1:2 Demux Mode, the Dual Data Rate (DDR) is not available. In
SDR, set this bit to 0b to transition the data on the Rising edge of DCLK; set this bit to 1b to transition the data
on the Falling edge of DCLK. (Note 18)
OVS: Output Voltage Select. This bit sets the differential voltage level for the LVDS outputs including Data, OR,
and DCLK. 0b selects the lower level and 1b selects the higher level. See VOD in Table 12 for details.
TPM: Test Pattern Mode. When this bit is set to 1b, the device will continually output a fixed digital pattern at the
digital Data and OR outputs. When set to 0b, the device will continually output the converted signal, which was
present at the analog inputs. See Section 17.3.2.6 Test Pattern Mode for details about the TPM pattern.
PDI: Power-down I-channel. When this bit is set to 0b, the I-channel is fully operational; when it is set to 1b, the
I-channel is powered-down. The I-channel may be powered-down via this bit or the PDI Pin, which is active, even
in ECM.
PDQ: Power-down Q-channel. When this bit is set to 0b, the Q-channel is fully operational; when it is set to
1b, the Q-channel is powered-down. The Q-channel may be powered-down via this bit or the PDQ Pin, which is
active, even in ECM.
Reserved. Must be set as shown.
Reserved. Must be set as shown.
DES: Dual-Edge Sampling Mode select. When this bit is set to 0b, the device will operate in the Non-DES Mode;
when it is set to 1b, the device will operate in the DES Mode. See Section 17.3.1.4 DES/Non-DES Mode for more
information.
DEQ: DES Q-input select, a.k.a. DESQ Mode. When the device is in DES Mode, this bit selects the input that
the device will operate on. The default setting of 0b selects the I-input and 1b selects the Q-input.
DIQ: DES I- and Q-input, a.k.a. DESIQ Mode. When in DES Mode, setting this bit to 1b shorts the I- and Q-inputs
internally to the device. If the bit is left at its default 0b, the I- and Q-inputs remain electrically separate. In this
mode, both the I- and Q-inputs must be externally driven; see Section 17.3.1.4 DES/Non-DES Mode for more
information. (Note 18)
The allowed DES Modes settings are shown below. For DESCLKIQ Mode, see Addr Eh.
Mode
Addr 0h, Bit<7:5>
Addr Eh, Bit<6>
Non-DES Mode
000b
0b
DESI Mode
100b
0b
DESQ Mode
110b
0b
DESIQ Mode
101b
0b
DESCLKIQ Mode
000b
1b
2SC: Two's Complement output. For the default setting of 0b, the data is output in Offset Binary format; when
set to 1b, the data is output in Two's Complement format. (Note 18)
TSE: Time Stamp Enable. For the default setting of 0b, the Time Stamp feature is not enabled; when set to
1b, the feature is enabled. See Section 17.3.2 Output Control and Adjust for more information about this feature.
(Note 18)
SDR: Single Data Rate. For the default setting of 0b, the data is clocked in Dual Data Rate; when set to 1b, the
data is clocked in Single Data Rate. See Section 17.3.2 Output Control and Adjust for more information about
this feature. Note that for DDR Mode, the 1:2 Demux Mode is not available. See Table 21 for a selection of
available modes.
Reserved. Must be set as shown.
64
Addr: 1h (0001b)
Bit
POR state: 2907h
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
1
0
1
0
0
1
0
0
0
0
0
1
1
1
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
Res
Name
POR
Bits 15:0 Reserved. Must be set as shown.
I-channel Offset Adjust
Addr: 2h (0010b)
Bit
15
13
Res
Name
POR
POR state: 0000h
14
0
0
12
11
OS
0
0
OM(11:0)
0
0
0
0
0
0
0
Bits 15:13 Reserved. Must be set to 0b.
Bit 12
OS: Offset Sign. The default setting of 0b incurs a positive offset of a magnitude set by Bits 11:0 to the ADC
output. Setting this bet to 1b incurs a negative offset of the set magnitude.
Bits 11:0 OM(11:0): Offset Magnitude. These bits determine the magnitude of the offset set at the ADC output (straight
binary coding). The range is from 0 mV for OM(11:0) = 0d to 45 mV for OM(11:0) = 4095d in steps of ~11 µV.
Monotonicity is guaranteed by design only for the 9 MSBs.
Code
Offset [mV]
0000 0000 0000 (default)
0
1000 0000 0000
22.5
1111 1111 1111
45
I-channel Full Scale Range Adjust
Addr: 3h (0011b)
Bit
15
Name
Res
POR
0
POR state: 4000h
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
FM(14:0)
1
0
0
0
0
0
0
0
Bit 15
Reserved. Must be set to 0b.
Bits 14:0 FM(14:0): FSR Magnitude. These bits increase the ADC full-scale range magnitude (straight binary coding.) The
range is from 600 mV (0d) to 1000 mV (32767d) with the default setting at 800 mV (16384d). Monotonicity is
guaranteed by design only for the 9 MSBs. The mid-range (low) setting in ECM corresponds to the nominal (low)
setting in Non-ECM. A greater range of FSR values is available in ECM, i.e. FSR values above 800 mV. See
VIN_FSR in Table 8 for characterization details.
Code
000 0000 0000 0000
100 0000 0000 0000 (default)
111 1111 1111 1111
FSR [mV]
600
800
1000
65
www.national.com
ADC12D800RF/ADC12D500RF
Reserved
ADC12D800RF/ADC12D500RF
Calibration Adjust
(Note 17)
Addr: 4h (0100b)
POR state: DB4Bh
Bit
15
14
Name
Res
CSS
POR
1
1
Bit 15
Bit 14
Bits 13:8
Bit 7
Bits 6:0
13
12
11
0
1
1
10
9
8
0
1
1
Res
7
6
5
4
1
0
0
SSC
0
3
2
1
0
0
1
1
Res
1
Reserved. Must be set as shown.
CSS: Calibration Sequence Select. The default 1b selects the following calibration sequence: reset all previously
calibrated elements to nominal values, do RIN Calibration, do internal linearity Calibration. Setting CSS = 0b
selects the following calibration sequence: do not reset RIN to its nominal value, skip RIN calibration, do internal
linearity Calibration. The calibration must be completed at least one time with CSS = 1b to calibrate RIN.
Subsequent calibrations may be run with CSS = 0b (skip RIN calibration) or 1b (full RIN and internal linearity
Calibration).
Reserved. Must be set as shown.
SSC: SPI Scan Control. Setting this control bit to 1b allows the calibration values, stored in Addr: 5h, to be read/
written. When not reading/writing the calibration values, this control bit should left at its default 0b setting. See
Section 17.3.3 Calibration Feature for more information.
Reserved. Must be set as shown.
Calibration Values
(Note 17)
Addr: 5h (0101b)
Bit
15
POR state: XXXXh
14
13
12
11
10
9
Bits 15:0
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
SS(15:0)
Name
POR
8
X
X
X
X
X
X
X
X
X
SS(15:0): SPI Scan. When the ADC performs a self-calibration, the values for the calibration are stored in this
register and may be read from/ written to it. Set SSC (Addr: 4h, Bit 7) to read/write. See Section 17.3.3 Calibration
Feature for more information.
Reserved - ADC12D800RF
Addr: 6h (0110b)
Bit
POR state: 1C2Eh
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
1
1
1
0
0
0
0
1
0
1
1
1
0
10
9
8
7
6
5
4
3
2
1
0
0
1
1
0
1
1
1
0
Res
Name
POR
Bits 15:0
Reserved. Must be set as shown.
Reserved - ADC12D500RF
Addr: 6h (0110b)
Bit
15
POR state: 1C6Eh
14
13
12
11
Res
Name
POR
Bits 15:0
www.national.com
0
0
0
1
1
1
0
0
Reserved. Must be set as shown. Although Bits 6 and 5 may be written to / read from the Control Registers, its
final internal value is set in hardware.
66
(Note 17)
Addr: 7h (0111b)
Bit
POR state: 8142h
15
14
13
1
0
0
Bits 15:9
Bits 8:0
11
10
9
8
7
6
5
0
0
0
1
0
1
0
DTA(6:0)
Name
POR
12
0
4
3
2
1
0
0
0
1
0
Res
0
DTA(6:0): DES Mode Timing Adjust. In the DES Mode, the time at which the falling edge sampling clock samples
relative to the rising edge of the sampling clock may be adjusted; the automatic duty cycle correction continues
to function. See Section 17.3.1 Input Control and Adjust for more information. The nominal step size is 30fs.
Reserved. Must be set as shown.
Reserved
Addr: 8h (1000b)
Bit
15
POR state: 0F0Fh
14
13
12
11
10
9
8
POR
Bits 15:0
7
6
5
4
3
2
1
0
1
1
1
Res
Name
0
0
0
0
1
1
1
1
0
0
0
0
1
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Reserved. Must be set as shown.
Reserved
Addr: 9h (1001b)
Bit
POR state: 0000h
15
14
13
12
11
10
9
8
0
0
0
0
0
0
0
0
Res
Name
POR
Bits 15:0
Reserved. Must be set as shown.
Q-channel Offset Adjust
Addr: Ah (1010b)
Bit
15
13
Res
Name
POR
14
POR state: 0000h
0
0
12
11
10
9
8
7
OS
0
0
6
5
4
3
2
1
0
0
0
0
0
0
OM(11:0)
0
0
0
0
0
0
0
Bits 15:13 Reserved. Must be set to 0b.
Bit 12
OS: Offset Sign. The default setting of 0b incurs a positive offset of a magnitude set by Bits 11:0 to the ADC
output. Setting this bet to 1b incurs a negative offset of the set magnitude.
Bits 11:0 OM(11:0): Offset Magnitude. These bits determine the magnitude of the offset set at the ADC output (straight
binary coding). The range is from 0 mV for OM(11:0) = 0d to 45 mV for OM(11:0) = 4095d in steps of ~11 µV.
Monotonicity is guaranteed by design only for the 9 MSBs.
Code
Offset [mV]
0000 0000 0000 (default)
0
1000 0000 0000
22.5
1111 1111 1111
45
67
www.national.com
ADC12D800RF/ADC12D500RF
DES Timing Adjust
ADC12D800RF/ADC12D500RF
Q-channel Full-Scale Range Adjust
Addr: Bh (1011b)
Bit
15
Name
Res
POR
0
POR state: 4000h
14
13
12
11
10
9
8
1
0
0
0
0
0
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
FM(14:0)
0
Bit 15
Reserved. Must be set to 0b.
Bits 14:0 FM(14:0): FSR Magnitude. These bits increase the ADC full-scale range magnitude (straight binary coding.) The
range is from 600 mV (0d) to 1000 mV (32767d) with the default setting at 800 mV (16384d). Monotonicity is
guaranteed by design only for the 9 MSBs. The mid-range (low) setting in ECM corresponds to the nominal (low)
setting in Non-ECM. A greater range of FSR values is available in ECM, i.e. FSR values above 800 mV. See
VIN_FSR in Table 8 for characterization details.
Code
000 0000 0000 0000
100 0000 0000 0000 (default)
111 1111 1111 1111
FSR [mV]
600
800
1000
Aperture Delay Coarse Adjust
Addr: Ch (1100b)
Bit
15
14
POR state: 0004h
13
12
11
Bits 15:4
Bit 3
Bit 2
Bits 1:0
9
8
7
6
5
4
CAM(11:0)
Name
POR
10
0
0
0
0
0
0
0
0
0
0
0
3
2
STA
DCC
0
1
0
1
0
Res
0
0
CAM(11:0): Coarse Adjust Magnitude. This 12-bit value determines the amount of delay that will be applied to
the input CLK signal. The range is 0 ps delay for CAM(11:0) = 0d to a maximum delay of 825 ps for
CAM(11:0) = 2431d (±95 ps due to PVT variation) in steps of ~340 fs. For code CAM(11:0) = 2432d and above,
the delay saturates and the maximum delay applies. Additional, finer delay steps are available in register Dh.
Either STA (Bit 3) or SA (Addr: Dh, Bit 8) must be selected to enable this function.
STA: Select tAD Adjust. Set this bit to 1b to enable the tAD adjust feature, which will make both coarse and fine
adjustment settings, i.e. CAM(11:0) and FAM(5:0), available.
DCC: Duty Cycle Correct. This bit can be set to 0b to disable the automatic duty-cycle stabilizer feature of the
chip. This feature is enabled by default.
Reserved. Must be set to 0b.
Aperture Delay Fine Adjust
Addr: Dh (1101b)
Bit
15
14
0
0
12
11
10
0
0
FAM(5:0)
Name
POR
POR state: 0000h
13
0
0
9
8
Res
SA
0
0
7
6
5
4
0
0
0
0
3
2
1
0
0
0
0
0
Res
Bits 15:10 FAM(5:0): Fine Aperture Adjust Magnitude. This 6-bit value determines the amount of additional delay that will
be applied to the input CLK when the Clock Phase Adjust feature is enabled via STA (Addr: Ch, Bit 3) or SA
(Addr: Dh, Bit 8). The range is straight binary from 0 ps delay for FAM(5:0) = 0d to 2.3 ps delay for
FAM(5:0) = 63d (±300 fs due to PVT variation) in steps of ~36 fs.
Bit 9
Reserved. Must be set to 0b.
Bit 8
SA: Select tAD Adjust. Set this bit to 1b to enable the tAD adjust feature. This bit is the same as STA (Addr: Ch,
Bit 3), except that if SA is enabled, then the value of the STA bit is ignored.
Bits 7:0
Reserved. Must be set as shown.
www.national.com
68
(Note 17)
Addr: Eh (1110b)
Bit
POR state: 0003h
15
14
13
12
0
0
0
0
Bits 15:7
Bit 6
Bit 5
Bits 4:3
Bit 2
Bit 1
Bit 0
10
9
8
7
0
0
0
0
DRC(8:0)
Name
POR
11
0
6
5
DCK
Res
0
0
4
3
SP(1:0)
0
0
2
1
0
ES
DOC
DR
0
1
1
DRC(8:0): Delay Reference Clock (8:0). These bits may be used to increase the delay on the input reference
clock when synchronizing multiple ADCs. The delay may be set from a minimum of 0s (0d) to a maximum of
1200 ps (319d). The delay remains the maximum of 1200 ps for any codes above or equal to 319d. See
Section 18.4 SYNCHRONIZING MULTIPLE ADC12D800/500RFS IN A SYSTEM for more information.
DCK: DESCLKIQ Mode. Set this bit to 1b to enable Dual-Edge Sampling, in which the Sampling Clock samples
the I- and Q-channels 180º out of phase with respect to one another, i.e. the DESCLKIQ Mode. To select the
DESCLKIQ Mode, Addr: 0h, Bits <7:5> must also be set to 000b. See Section 17.3.1 Input Control and Adjust
for more information. (Note 17)
Reserved. Must be set as shown.
SP(1:0): Select Phase. These bits select the phase of the reference clock which is latched. The codes correspond
to the following phase shift:
00 = 0°
01 = 90°
10 = 180°
11 = 270°
ES: Enable Slave. Set this bit to 1b to enable the Slave Mode of operation. In this mode, the internal divided
clocks are synchronized with the reference clock coming from the master ADC. The master clock is applied on
the input pins RCLK. If this bit is set to 0b, then the device is in Master Mode.
DOC: Disable Output reference Clocks. Setting this bit to 0b sends a CLK/4 signal on RCOut1 and RCOut2. The
default setting of 1b disables these output drivers. This bit functions as described, regardless of whether the
device is operating in Master or Slave Mode, as determined by ES (Bit 2).
DR: Disable Reset. The default setting of 1b leaves the DCLK_RST functionality disabled. Set this bit to 0b to
enable DCLK_RST functionality.
Reserved
Addr: Fh (1111b)
Bit
POR state: 001Dh
15
14
13
12
11
10
9
8
0
0
0
0
0
0
0
0
Bits 15:0
6
5
4
3
2
1
0
0
0
0
1
1
1
0
1
Res
Name
POR
7
Reserved. This address is read only.
69
www.national.com
ADC12D800RF/ADC12D500RF
AutoSync
ADC12D800RF/ADC12D500RF
20.0 Physical Dimensions inches (millimeters) unless otherwise noted
NOTES: UNLESS OTHERWISE SPECIFIED
REFERENCE JEDEC REGISTRATION MS-034, VARIATION BAL-2.
292-Ball BGA Thermally Enhanced Package
Order Number ADC12D800/500RFUIT
NS Package Number UFH292A
www.national.com
70
ADC12D800RF/ADC12D500RF
Notes
71
www.national.com
ADC12D800RF/ADC12D500RF 12-Bit, 1.6/1.0 GSPS RF Sampling ADC
Notes
For more National Semiconductor product information and proven design tools, visit the following Web sites at:
www.national.com
Products
Design Support
Amplifiers
www.national.com/amplifiers
WEBENCH® Tools
www.national.com/webench
Audio
www.national.com/audio
App Notes
www.national.com/appnotes
Clock and Timing
www.national.com/timing
Reference Designs
www.national.com/refdesigns
Data Converters
www.national.com/adc
Samples
www.national.com/samples
Interface
www.national.com/interface
Eval Boards
www.national.com/evalboards
LVDS
www.national.com/lvds
Packaging
www.national.com/packaging
Power Management
www.national.com/power
Green Compliance
www.national.com/quality/green
Switching Regulators
www.national.com/switchers
Distributors
www.national.com/contacts
LDOs
www.national.com/ldo
Quality and Reliability
www.national.com/quality
LED Lighting
www.national.com/led
Feedback/Support
www.national.com/feedback
Voltage References
www.national.com/vref
Design Made Easy
www.national.com/easy
www.national.com/powerwise
Applications & Markets
www.national.com/solutions
Mil/Aero
www.national.com/milaero
PowerWise® Solutions
Serial Digital Interface (SDI) www.national.com/sdi
Temperature Sensors
www.national.com/tempsensors SolarMagic™
www.national.com/solarmagic
PLL/VCO
www.national.com/wireless
www.national.com/training
PowerWise® Design
University
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other
brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright© 2011 National Semiconductor Corporation
For the most current product information visit us at www.national.com
National Semiconductor
Americas Technical
Support Center
Email: [email protected]
Tel: 1-800-272-9959
www.national.com
National Semiconductor Europe
Technical Support Center
Email: [email protected]
National Semiconductor Asia
Pacific Technical Support Center
Email: [email protected]
National Semiconductor Japan
Technical Support Center
Email: [email protected]
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Communications and Telecom www.ti.com/communications
Amplifiers
amplifier.ti.com
Computers and Peripherals
www.ti.com/computers
Data Converters
dataconverter.ti.com
Consumer Electronics
www.ti.com/consumer-apps
DLP® Products
www.dlp.com
Energy and Lighting
www.ti.com/energy
DSP
dsp.ti.com
Industrial
www.ti.com/industrial
Clocks and Timers
www.ti.com/clocks
Medical
www.ti.com/medical
Interface
interface.ti.com
Security
www.ti.com/security
Logic
logic.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Power Mgmt
power.ti.com
Transportation and Automotive www.ti.com/automotive
Microcontrollers
microcontroller.ti.com
Video and Imaging
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity
TI E2E Community Home Page
www.ti.com/video
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated
Similar pages