PD - 97217 IRF6631PbF IRF6631TRPbF DirectFET Power MOSFET RoHs Compliant l Lead-Free (Qualified up to 260°C Reflow) l Application Specific MOSFETs l Ideal for CPU Core DC-DC Converters l Low Switching and Conduction Losses l Low Profile (<0.7mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques l Typical values (unless otherwise specified) VDSS VGS RDS(on) RDS(on) 30V max ±20V max 6.0mΩ@ 10V 8.3mΩ@ 4.5V Qg Qgd Qgs2 Qrr Qoss Vgs(th) 4.4nC 1.1nC 10nC 7.3nC 1.8V tot 12nC DirectFET ISOMETRIC SQ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MP Description The IRF6631PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a Micro-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6631PbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6631PbF has been optimized for parameters that are critical in synchronous buck converter’s CtrlFET sockets. Absolute Maximum Ratings Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM E AS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g Typical RDS(on) (mΩ) ID = 13A 15 T J = 125°C 5 T J = 25°C 0 3 4 5 6 7 8 9 10 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com Units 30 ±20 13 10 57 100 13 10 V h 20 10 Max. e e f VGS, Gate-to-Source Voltage (V) V DS A mJ A 12.0 ID= 10A 10.0 8.0 VDS= 24V VDS= 15V 6.0 4.0 2.0 0.0 0 5 10 15 20 25 30 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.24mH, RG = 25Ω, IAS = 10A. 1 05/29/06 IRF6631PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 23 Static Drain-to-Source On-Resistance ––– 6.0 ––– 8.3 V VGS = 0V, ID = 250µA VGS(th) Gate Threshold Voltage 1.35 1.8 mV/°C Reference to 25°C, ID = 1mA 7.8 mΩ VGS = 10V, ID = 13A i VGS = 4.5V, ID = 10A i 10.8 VDS = VGS, ID = 25µA 2.35 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -5.2 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 IGSS Gate-to-Source Forward Leakage ––– ––– 100 gfs Qg ––– Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 32 ––– ––– Total Gate Charge ––– 12 18 VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 15V, ID = 10A VDS = 15V Qgs1 Pre-Vth Gate-to-Source Charge ––– 3.4 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.1 ––– Qgd Gate-to-Drain Charge ––– 4.4 ––– ID = 10A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 3.1 ––– See Fig. 15 Qsw ––– 5.5 ––– Qoss Output Charge ––– 7.3 ––– nC RG Gate Resistance ––– 1.6 3.0 Ω td(on) Turn-On Delay Time ––– 15 ––– tr Rise Time ––– 18 ––– td(off) Turn-Off Delay Time ––– 18 ––– tf Fall Time ––– 4.9 ––– Ciss Input Capacitance ––– 1450 ––– Coss Output Capacitance ––– 310 ––– Crss Reverse Transfer Capacitance ––– 170 ––– Min. Typ. Max. Units ––– ––– nC VGS = 4.5V VDS = 16V, VGS = 0V VDD = 16V, VGS = 4.5Vi ID = 10A ns Clamped Inductive Load See Fig. 16 & 17 VGS = 0V pF VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current ISM Pulsed Source Current MOSFET symbol 42 (Body Diode) A ––– ––– 100 Conditions showing the integral reverse VSD Diode Forward Voltage ––– ––– 1.2 V p-n junction diode. TJ = 25°C, IS = 10A, VGS = 0V i trr Reverse Recovery Time ––– 11 17 ns TJ = 25°C, IF = 10A Qrr Reverse Recovery Charge ––– 10 15 nC di/dt = 500A/µs i See Fig. 18 (Body Diode)d Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6631PbF Absolute Maximum Ratings e e f Max. Units 2.2 1.4 42 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter em km lm fm RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e Typ. Max. Units ––– 12.5 20 ––– 1.4 58 ––– ––– 3.0 ––– °C/W 0.017 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 τJ R2 R2 R3 R3 R4 R4 R5 R5 τA τ2 τ1 τ2 τ3 τ3 τ4 τ4 τ5 τ5 Ci= τi/Ri Ci= τi/Ri 0.1 0.01 R1 R1 τJ τ1 SINGLE PULSE ( THERMAL RESPONSE ) τA Ri (°C/W) τi (sec) 1.6195 0.000126 2.14056 0.001354 22.2887 0.375850 20.0457 7.41 11.9144 99 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6631PbF 1000 1000 ID, Drain-to-Source Current (A) 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 1 ≤60µs PULSE WIDTH Tj = 25°C 0.1 100 BOTTOM 10 2.5V 1 ≤60µs PULSE WIDTH 2.5V Tj = 150°C 0.01 0.1 0.1 1 10 100 0.1 10 100 Fig 5. Typical Output Characteristics 1000 2.0 VDS = 10V ≤60µs PULSE WIDTH ID = 13A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 100 T J = 150°C T J = 25°C 10 T J = -40°C 1 0.1 V GS = 10V V GS = 4.5V 1.5 1.0 0.5 1 2 3 4 5 -60 -40 -20 0 Fig 6. Typical Transfer Characteristics 10000 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 7. Normalized On-Resistance vs. Temperature 50 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T = 25°C J Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 40 Typical RDS(on) ( mΩ) C oss = C ds + C gd C, Capacitance(pF) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V Ciss 1000 Coss 30 20 10 Crss 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 20 40 60 80 100 120 ID, Drain Current (A) Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage www.irf.com IRF6631PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 T J = 150°C T J = 25°C T J = -40°C 100 OPERATION IN THIS AREA LIMITED BY R DS(on) 10 1 100µsec 1msec 10 10msec 1 VGS = 0V T A = 25°C T J = 150°C Single Pulse 0.1 0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 1.1 Fig 10. Typical Source-Drain Diode Forward Voltage 1.0 10 100 Fig 11. Maximum Safe Operating Area 2.5 Typical VGS(th) Gate threshold Voltage (V) 60 50 ID, Drain Current (A) 0.1 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 40 30 20 10 2.0 ID = 50µA 1.5 1.0 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 60 ID TOP 3.1A 4.5A BOTTOM 10A 50 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6631PbF Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6631PbF D.U.T Driver Gate Drive + + D.U.T. ISD Waveform Reverse Recovery Current + RG di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * • • • • D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, SQ Outline (Small Size Can, Q-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D G D www.irf.com S D 7 IRF6631PbF DirectFET Outline Dimension, SQ Outline (Small Size Can, Q-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC MAX CODE MIN 4.85 A 4.75 3.95 B 3.70 2.85 C 2.75 0.45 D 0.35 0.52 E 0.48 0.82 F 0.78 0.92 G 0.88 0.82 H 0.78 0.97 K 0.93 2.10 L 2.00 M 0.616 0.676 R 0.020 0.080 0.17 P 0.08 IMPERIAL MIN MAX 0.187 0.191 0.146 0.156 0.108 0.112 0.014 0.018 0.019 0.020 0.031 0.032 0.035 0.036 0.031 0.032 0.037 0.038 0.079 0.083 0.0235 0.0274 0.0008 0.0031 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6631PbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6631TRPBF). For 1000 parts on 7" reel, order IRF6631TR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL METRIC IMPERIAL METRIC MIN MAX MIN CODE MAX MIN MIN MAX MAX 12.992 6.9 A N.C N.C 177.77 N.C 330.0 N.C 0.795 B 0.75 N.C N.C 19.06 20.2 N.C N.C 0.504 C 0.53 0.50 13.5 12.8 0.520 13.2 12.8 0.059 D 0.059 N.C N.C 1.5 1.5 N.C N.C 3.937 E 2.31 58.72 100.0 N.C N.C N.C N.C N.C F N.C N.C N.C 0.53 0.724 18.4 13.50 G 0.488 0.47 11.9 12.4 N.C 0.567 14.4 12.01 H 0.469 0.47 11.9 11.9 N.C 0.606 15.4 12.01 Loaded Tape Feed Direction CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MIN MAX MAX 0.311 0.319 7.90 8.10 0.154 3.90 0.161 4.10 0.469 11.90 0.484 12.30 0.215 0.219 5.45 5.55 0.158 4.00 0.165 4.20 0.197 0.205 5.00 5.20 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/06 www.irf.com 9 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/