IRF IRF6631TRPBF Directfet power mosfet Datasheet

PD - 97217
IRF6631PbF
IRF6631TRPbF
DirectFET™ Power MOSFET ‚
RoHs Compliant 
l Lead-Free (Qualified up to 260°C Reflow)
l Application Specific MOSFETs
l Ideal for CPU Core DC-DC Converters
l Low Switching and Conduction Losses
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques 
l
Typical values (unless otherwise specified)
VDSS
VGS
RDS(on)
RDS(on)
30V max ±20V max 6.0mΩ@ 10V 8.3mΩ@ 4.5V
Qg
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
4.4nC
1.1nC
10nC
7.3nC
1.8V
tot
12nC
DirectFET™ ISOMETRIC
SQ
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
MP
Description
The IRF6631PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a Micro-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual
sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6631PbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to
reduce both conduction and switching losses. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6631PbF has been optimized for parameters that
are critical in synchronous buck converter’s CtrlFET sockets.
Absolute Maximum Ratings
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
E AS
IAR
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
Typical RDS(on) (mΩ)
ID = 13A
15
T J = 125°C
5
T J = 25°C
0
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
Units
30
±20
13
10
57
100
13
10
V
h
20
10
Max.
e
e
f
VGS, Gate-to-Source Voltage (V)
V DS
A
mJ
A
12.0
ID= 10A
10.0
8.0
VDS= 24V
VDS= 15V
6.0
4.0
2.0
0.0
0
5
10
15
20
25
30
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.24mH, RG = 25Ω, IAS = 10A.
1
05/29/06
IRF6631PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
23
Static Drain-to-Source On-Resistance
–––
6.0
–––
8.3
V
VGS = 0V, ID = 250µA
VGS(th)
Gate Threshold Voltage
1.35
1.8
mV/°C Reference to 25°C, ID = 1mA
7.8
mΩ VGS = 10V, ID = 13A i
VGS = 4.5V, ID = 10A i
10.8
VDS = VGS, ID = 25µA
2.35
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-5.2
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
gfs
Qg
–––
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
32
–––
–––
Total Gate Charge
–––
12
18
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 15V, ID = 10A
VDS = 15V
Qgs1
Pre-Vth Gate-to-Source Charge
–––
3.4
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.1
–––
Qgd
Gate-to-Drain Charge
–––
4.4
–––
ID = 10A
Qgodr
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
3.1
–––
See Fig. 15
Qsw
–––
5.5
–––
Qoss
Output Charge
–––
7.3
–––
nC
RG
Gate Resistance
–––
1.6
3.0
Ω
td(on)
Turn-On Delay Time
–––
15
–––
tr
Rise Time
–––
18
–––
td(off)
Turn-Off Delay Time
–––
18
–––
tf
Fall Time
–––
4.9
–––
Ciss
Input Capacitance
–––
1450
–––
Coss
Output Capacitance
–––
310
–––
Crss
Reverse Transfer Capacitance
–––
170
–––
Min.
Typ. Max. Units
–––
–––
nC
VGS = 4.5V
VDS = 16V, VGS = 0V
VDD = 16V, VGS = 4.5Vi
ID = 10A
ns
Clamped Inductive Load
See Fig. 16 & 17
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
ISM
Pulsed Source Current
MOSFET symbol
42
(Body Diode)
A
–––
–––
100
Conditions
showing the
integral reverse
VSD
Diode Forward Voltage
–––
–––
1.2
V
p-n junction diode.
TJ = 25°C, IS = 10A, VGS = 0V i
trr
Reverse Recovery Time
–––
11
17
ns
TJ = 25°C, IF = 10A
Qrr
Reverse Recovery Charge
–––
10
15
nC
di/dt = 500A/µs i See Fig. 18
(Body Diode)d
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6631PbF
Absolute Maximum Ratings
e
e
f
Max.
Units
2.2
1.4
42
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
em
km
lm
fm
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
Typ.
Max.
Units
–––
12.5
20
–––
1.4
58
–––
–––
3.0
–––
°C/W
0.017
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
R2
R2
R3
R3
R4
R4
R5
R5
τA
τ2
τ1
τ2
τ3
τ3
τ4
τ4
τ5
τ5
Ci= τi/Ri
Ci= τi/Ri
0.1
0.01
R1
R1
τJ
τ1
SINGLE PULSE
( THERMAL RESPONSE )
τA
Ri (°C/W)
τi (sec)
1.6195
0.000126
2.14056
0.001354
22.2887
0.375850
20.0457
7.41
11.9144
99
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
Notes:
‰ Used double sided cooling , mounting pad.
Š Mounted on minimum footprint full size board with metalized
‹ Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
‰ Mounted to a PCB with
small clip heatsink (still air)
Š Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6631PbF
1000
1000
ID, Drain-to-Source Current (A)
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
1
≤60µs PULSE WIDTH
Tj = 25°C
0.1
100
BOTTOM
10
2.5V
1
≤60µs PULSE WIDTH
2.5V
Tj = 150°C
0.01
0.1
0.1
1
10
100
0.1
10
100
Fig 5. Typical Output Characteristics
1000
2.0
VDS = 10V
≤60µs PULSE WIDTH
ID = 13A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
100
T J = 150°C
T J = 25°C
10
T J = -40°C
1
0.1
V GS = 10V
V GS = 4.5V
1.5
1.0
0.5
1
2
3
4
5
-60 -40 -20 0
Fig 6. Typical Transfer Characteristics
10000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 7. Normalized On-Resistance vs. Temperature
50
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
T = 25°C
J
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
40
Typical RDS(on) ( mΩ)
C oss = C ds + C gd
C, Capacitance(pF)
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
Ciss
1000
Coss
30
20
10
Crss
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
0
20
40
60
80
100
120
ID, Drain Current (A)
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
www.irf.com
IRF6631PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
T J = 150°C
T J = 25°C
T J = -40°C
100
OPERATION IN THIS AREA
LIMITED BY R DS(on)
10
1
100µsec
1msec
10
10msec
1
VGS = 0V
T A = 25°C
T J = 150°C
Single Pulse
0.1
0
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.0
1.1
Fig 10. Typical Source-Drain Diode Forward Voltage
1.0
10
100
Fig 11. Maximum Safe Operating Area
2.5
Typical VGS(th) Gate threshold Voltage (V)
60
50
ID, Drain Current (A)
0.1
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
40
30
20
10
2.0
ID = 50µA
1.5
1.0
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
EAS , Single Pulse Avalanche Energy (mJ)
60
ID
TOP
3.1A
4.5A
BOTTOM 10A
50
40
30
20
10
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6631PbF
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
+
V
- DS
D.U.T.
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6631PbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
„
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
RG
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

•
•
•
•
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, SQ Outline ƒ
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
G
D
www.irf.com
S
D
7
IRF6631PbF
DirectFET™ Outline Dimension, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
MAX
CODE MIN
4.85
A
4.75
3.95
B
3.70
2.85
C
2.75
0.45
D
0.35
0.52
E
0.48
0.82
F
0.78
0.92
G
0.88
0.82
H
0.78
0.97
K
0.93
2.10
L
2.00
M
0.616 0.676
R
0.020 0.080
0.17
P
0.08
IMPERIAL
MIN
MAX
0.187
0.191
0.146
0.156
0.108
0.112
0.014
0.018
0.019
0.020
0.031
0.032
0.035
0.036
0.031
0.032
0.037
0.038
0.079
0.083
0.0235 0.0274
0.0008 0.0031
0.003
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6631PbF
DirectFET™ Tape & Reel Dimension
(Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6631TRPBF). For 1000 parts on 7"
reel, order IRF6631TR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
METRIC
IMPERIAL
METRIC
MIN
MAX
MIN
CODE
MAX
MIN
MIN
MAX
MAX
12.992
6.9
A
N.C
N.C
177.77 N.C
330.0
N.C
0.795
B
0.75
N.C
N.C
19.06
20.2
N.C
N.C
0.504
C
0.53
0.50
13.5
12.8
0.520
13.2
12.8
0.059
D
0.059
N.C
N.C
1.5
1.5
N.C
N.C
3.937
E
2.31
58.72
100.0
N.C
N.C
N.C
N.C
N.C
F
N.C
N.C
N.C
0.53
0.724
18.4
13.50
G
0.488
0.47
11.9
12.4
N.C
0.567
14.4
12.01
H
0.469
0.47
11.9
11.9
N.C
0.606
15.4
12.01
Loaded Tape Feed Direction
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
0.311
0.319
7.90
8.10
0.154
3.90
0.161
4.10
0.469
11.90
0.484
12.30
0.215
0.219
5.45
5.55
0.158
4.00
0.165
4.20
0.197
0.205
5.00
5.20
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/06
www.irf.com
9
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages