Numonyx M39P0R1080E4ZASF 512 mb or 1 gb (x16, multiple bank, multilevel, burst) flash memory 256 mbit low power sdram, 1.8 v supply, multichip package Datasheet

M39P0R9080E4
M39P0R1080E4
512 Mb or 1 Gb (x16, multiple bank, multilevel, burst) Flash memory
256 Mbit low power SDRAM, 1.8 V supply, multichip package
Features
■
■
Multichip package
– 1 die of 512 Mbit (32 Mb ×16) or 1 Gbit (64
Mb ×16) multiple bank, multilevel, burst)
Flash memory
– 1 die of 256 Mbit (4 banks of 4 Mb x16) low
power synchronous dynamic RAM
Supply voltage
– VDDF = VCCP = VDDQ = 1.7 to 1.95 V
– VPPF = 9 V for fast program
■
Electronic signature
– Manufacturer code: 20h
– 512 Mbit device code: 8819
– 1 Gbit device code: 880F
■
ECOPACK® packages available
FBGA
TFBGA165 (ZAS)
9 x 11 mm
■
Block locking
– All blocks locked at power-up
– Any combination of blocks can be locked
with zero latency
– WPF for block lock-down
– Absolute write protection with VPPF = VSS
■
Security
– 64-bit unique device number
– 2112-bit user programmable OTP cells
■
CFI (Common Flash Interface)
Flash memory
■
■
■
Synchronous/asynchronous read
– Synchronous Burst Read mode:
108 MHz, 66 MHz
– Asynchronous Page Read mode
– Random access: 96 ns
Programming time
– 4.2 µs typical word program time using
Buffer Enhanced Factory Program
command
Memory organization
– Multiple bank memory array:
64 Mbit banks (512 Mb devices)
128 Mbit banks (1Gb devices)
– Four EFA (extended flash array) blocks of
64 Kbits
■
Dual operations
– program/erase in one bank while read in
others
– No delay between read and write
operations
■
100,000 program/erase cycles per block
November 2007
LPSDRAM
■
256 Mbit synchronous dynamic RAM
– Organized as 4 banks of 4 Mwords, each
16 bits wide
■
Synchronous burst read and write
– Fixed burst lengths: 1, 2, 4, 8 words or full
page
– Burst types: sequential and interleaved
– Clock frequency: 133 MHz (7.5 ns speed)
– CAS latency 3 at 133 MHz
■
Automatic and controlled precharge
■
Low power features:
– PASR (partial array self refresh),
– TCSR (automatic temperature
compensated self refresh)
– DS (driver strength)
– Deep Power-Down mode
■
Auto refresh and self refresh
Rev 2
1/23
www.numonyx.com
1
M39P0R9080E4, M39P0R1080E4
Contents
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1
2.2
A bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1
Flash memory address inputs (A-A0-A-Amax) . . . . . . . . . . . . . . . . . . . . 9
2.1.2
Flash memory data Inputs/Outputs (A-DQ0-A-DQ15) . . . . . . . . . . . . . . . 9
2.1.3
Flash memory Chip Enable input (A-E) . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4
Flash memory Output Enable (A-G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5
Flash memory Write Enable (A-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.6
Flash memory Write Protect input (A-WP) . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.7
Flash memory Reset (A-RP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.8
Flash memory Deep Power-Down (A-DPD) . . . . . . . . . . . . . . . . . . . . . 10
2.1.9
Flash memory Latch Enable (A-L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.10
Flash memory Clock (A-K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.11
Flash memory Wait (A-WAIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.12
Flash memory A-VDD supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.13
Flash memory A-VDDQ supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.14
Flash memory A-VPP program supply voltage . . . . . . . . . . . . . . . . . . . . 11
2.1.15
Flash memory A-VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
B bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1
LPSDRAM address Inputs (B-A0-B-A12) . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2
LPSDRAM Bank Select Address Inputs (B-BA0-B-BA1) . . . . . . . . . . . . 11
2.2.3
LPSDRAM Data Inputs/Outputs (B-DQ0-B-DQ15) . . . . . . . . . . . . . . . . 12
2.2.4
LPSDRAM Chip Select (B-E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5
LPSDRAM Column Address Strobe (B-CAS) . . . . . . . . . . . . . . . . . . . . 12
2.2.6
LPSDRAM Row Address Strobe (B-RAS) . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.7
LPSDRAM Write Enable (B-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.8
LPSDRAM Clock Input (B-K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.9
LPSDRAM Clock Enable (B-KE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.10
LPSDRAM Lower/Upper Data Input/Output Mask (B-LDQM/B-UDQM) 12
2.2.11
LPSDRAM B-VDD supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.12
LPSDRAM B-VDDQ supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.13
LPSDRAM B-VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/23
Contents
M39P0R9080E4, M39P0R1080E4
3
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3/23
M39P0R9080E4, M39P0R1080E4
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Operating and AC measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
TFBGA165 9 × 11 mm - 12 × 15 ball array, 0.65 mm pitch, package mechanical data . . . 20
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4/23
List of figures
M39P0R9080E4, M39P0R1080E4
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
5/23
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
TFBGA connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Functional block diagram - A bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Functional block diagram - B bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
TFBGA165 9 × 11 mm - 12 × 15 ball array, 0.65 mm pitch, package outline . . . . . . . . . . . 19
M39P0R9080E4, M39P0R1080E4
1
Description
Description
The M39P0R9080E4 and M39P0R1080E4 combine two memory devices in a multichip
package:
●
a 512-Mbit (M58PR512LE) or 1 Gbit (M58PR001LE) multiple bank Flash memory
●
a 256-Mbit low power synchronous DRAM (the M65KA256Ax)
The purpose of this document is to describe how the two memory components operate with
respect to each other. It should be read in conjunction with the M58PRxxxLE and
M65KA256Ax datasheets, which fully detail all the specifications required to operate the
Flash memory and LPSDRAM components.
The memory is offered in a stacked TFBGA165 package, and is supplied with all the bits
erased (set to ‘1’).
Figure 1.
Logic diagram
A-VDD A-VPP
A-VDDQ
B-VDDQ
B-VDD
16
A-A0-A-Amax
B-A0-B-A12
B-BA0-B-BA1
A-DQ0-A-DQ15
13
2
16
A-E
B-DQ0-B-DQ15
A-G
A-W
A-RP
M39P0R09080E4
M39P0R01080E4
A-WAIT
A-WP
B-UDQM
A-L
B-LDQM
A-K
A-DPD
B-E
B-RAS
B-CAS
B-K
B-KE
B-W
B-VSS
A-VSS
AI13469
1. The Flash memory component is connected to the A bus whereas the LPSDRAM component is on the B
bus.
2. Amax is A-A24 in the M39P0R9080E4 and it is A-A25 in the M39P0R1080E4.
6/23
Description
M39P0R9080E4, M39P0R1080E4
Table 1.
Signal names
Signal
Function
Direction
NC
Not connected internally
N/A
DU
Do not use as internally connected
N/A
Flash memory signals
A-A0-A-Amax(1)
Address Inputs
Input
A-DQ0-A-DQ15
Data Inputs/Outputs
Input/output
A-E
Chip Enable
Input
A-G
Output Enable
Input
A-W
Write Enable
Input
A-RP
Reset
Input
A-WP
Write Protect
Input
A-L
Latch Enable
Input
A-K
Burst Clock
Input
A-WAIT
Wait
Output
A-DPD
Deep Power-Down
Input
A-VDDQ
Power supply for I/O buffers
Power supply
A-VPP
Optional supply voltage for fast program and erase
Power supply
A-VDD
Power supply
Power supply
A-VSS
Ground
N/A
Low Power SDRAM signal
B-A0-B-A12
Address Inputs
Input
B-DQ0-B-DQ15
Data Inputs/Outputs
Input/output
B-E
Chip Enable
Input
B-W
Write Enable
Input
B-K
LPSDRAM Clock
Input
B-KE
LPSDRAM Clock Enable
Input
B-CAS
Column Address Strobe
Input
B-RAS
Row Address Strobe
Input
B-BA0, B-BA1
Bank Select
Input
B-UDQM
Upper Data Input/Output Mask
Input/output
B-LDQM
Lower Data Input/Output Mask
Input/output
B-VDD
Power supply
Power supply
B-VDDQ
Input/output supply voltage
Power supply
B-VSS
Ground
N/A
1. Amax is A24 in the M39P0R9080E4 and it is A25 in the M39P0R1080E4.
7/23
M39P0R9080E4, M39P0R1080E4
Figure 2.
1
A
Description
TFBGA connections (top view through package)
2
3
4
5
6
7
8
9
10
11
DU
B-A2
B-A0
B-BA0
B-A11
B-A12
B-A8
B-A6
B-A4
DU
12
B
DU
A-A15
B-A3
B-A1
B-BA1
B-W
NC
B-A9
B-A7
B-A5
NC
DU
C
A-A13
A-A14
A-A16
A-VSS
NC
NC
B-KE
NC
A-VSS
NC
A-DQ7
A-DQ14
D
A-A12
A-A22
NC
B-A10
B-VDD
B-E
NC
NC
B-K
A-VSS
A-DQ15
A-DQ6
E
A-A11
A-A21
NC
A-DPD
NC
B-RAS
B-CAS
NC
A-WAIT
A-VDDQ
NC
A-DQ13
F
A-A10
A-A20
A-W
A-VSS
NC
A-VSS
A-VDDQ
A-VSS
A-DQ5
G
A-A9
NC
A-WP
NC
NC
B-VDD
NC
A-L
A-DQ12
DQ4
H
A-A8
A-A24
A-A25
A-VSS
A-E
A-VDD
A-VSS
NC
NC
A-K
J
A-A18
A-A19
A-A23
NC
NC
NC
NC
A-G
A-DQ10
A-DQ11
K
A-A7
A-A17
NC
A-VSS
B-VDD
NC
A-VSS
A-VDDQ
A-VSS
A-DQ3
L
A-A5
A-A6
NC
NC
A-VDD
NC
NC
A-VPP
A-RP
A-VDDQ
NC
A-DQ2
M
A-A3
A-A4
NC
B-VDDQ
B-LDQM
B-VDDQ
B-VDDQ
B-UDQM
B-VDDQ
A-VSS
A-DQ1
A-DQ9
N
A-A1
A-A2
B-VSS
NC
B-VSS
A-VSS
B-VSS
NC
B-VSS
NC
A-DQ8
A-DQ0
P
DU
A-A0
B-DQ1
B-DQ3
B-DQ5
B-DQ7
B-DQ8
B-DQ10
B-DQ12
B-DQ14
NC
DU
DU
B-DQ0
B-DQ2
B-DQ4
B-DQ6
B-DQ9
B-DQ11
B-DQ13
B-DQ15
DU
R
AI13470
8/23
Signal descriptions
2
M39P0R9080E4, M39P0R1080E4
Signal descriptions
See Figure 1: Logic diagram and Table 1: Signal names, for a brief overview of the signals
connected to this device.
2.1
A bus
All Flash memory signals are connected to the A bus. They are described below.
2.1.1
Flash memory address inputs (A-A0-A-Amax)
Amax is the highest order Address Input. It is equal to A-A24 in the M39P0R9080E4, and to
A-A25 in the M39P0R1080E4.
The Address Inputs select the cells in the memory array to access during bus read
operations. During bus write operations they control the commands sent to the Command
Interface of the Program/Erase Controller.
2.1.2
Flash memory data Inputs/Outputs (A-DQ0-A-DQ15)
The Data I/O output the data stored at the selected address during a bus read operation or
input a command or the data to be programmed during a bus write operation.
2.1.3
Flash memory Chip Enable input (A-E)
The Chip Enable input activates the memory control logic, input buffers, decoders, and
sense amplifiers. When Chip Enable is at VILand Reset is at VIH the device is in active
mode. When Chip Enable is at VIH the memory is deselected, the outputs are high
impedance, and the power consumption is reduced to the standby level.
2.1.4
Flash memory Output Enable (A-G)
The Output Enable input controls data outputs during the bus read operation of the memory.
2.1.5
Flash memory Write Enable (A-W)
The Write Enable input controls the bus write operation of the Flash memory’s Command
Interface. The data and address inputs are latched on the rising edge of Chip Enable or
Write Enable, whichever occurs first.
2.1.6
Flash memory Write Protect input (A-WP)
Write Protect is an input that gives an additional hardware protection for each block. When
Write Protect is at VIL, the lock-down is enabled and the protection status of the lockeddown blocks cannot be changed. When Write Protect is at VIH, the lock-down is disabled
and the locked-down blocks can be locked or unlocked. (See the M58PRxxxLE datasheet
for details).
9/23
M39P0R9080E4, M39P0R1080E4
2.1.7
Signal descriptions
Flash memory Reset (A-RP)
The Reset input provides a hardware reset of the memory. When Reset is at VIL, the
memory is in reset mode: the outputs are high impedance and the current consumption is
reduced to the Reset Supply Current IDD2. Refer to the M58PRxxxLE datasheet, for the
value of IDD2. After Reset, all blocks are in the locked state and the Configuration Register is
reset. When Reset is at VIH, the device is in normal operation. Exiting reset mode, the
device enters asynchronous read mode, but a negative transition of Chip Enable or Latch
Enable is required to ensure valid data outputs. The Reset pin can be interfaced with 3V
logic without any additional circuitry. It can be tied to VRPH (refer to the M58PRxxxLE
datasheet).
2.1.8
Flash memory Deep Power-Down (A-DPD)
The Deep Power-Down input is used to put the Flash memory in deep power-down mode.
When the Flash memory is in standby mode and the Enhanced Configuration Register bit
ECR15 is set, asserting the Deep Power-Down input causes the memory to enter the deep
power-down mode.
When the device is in the deep power-down mode, the memory cannot be modified and the
data is protected.
The polarity of the A-DPD pin is determined by ECR14. The Deep Power-Down input is
active Low by default.
2.1.9
Flash memory Latch Enable (A-L)
The Latch Enable input latches the address bits on its rising edge. The address latch is
transparent when Latch Enable is at VIL and it is inhibited when Latch Enable is at VIH. Latch
Enable can be kept Low (also at board level) when the Latch Enable function is not required
or supported.
2.1.10
Flash memory Clock (A-K)
The clock input synchronizes the memory to the microcontroller during synchronous read
operations; the address is latched on a Clock edge when Latch Enable is at VIL. Clock is
ignored during asynchronous read and in write operations.
2.1.11
Flash memory Wait (A-WAIT)
Wait is an output signal used during synchronous read to indicate whether the data on the
output bus are valid. This output is high impedance when Chip Enable is at VIH, Output
Enable is at VIH, or Reset is at VIL. It can be configured to be active during the wait cycle or
one data cycle in advance.
2.1.12
Flash memory A-VDD supply voltage
A-VDD provides the power supply to the internal core of the Flash memory component. It is
the main power supply for all operations (read, program and erase).
10/23
Signal descriptions
2.1.13
M39P0R9080E4, M39P0R1080E4
Flash memory A-VDDQ supply voltage
A-VDDQ provides the power supply to the I/O pins and enables all outputs to be powered
independently of A-VDD. A-VDDQ can be tied to A-VDD or can use a separate supply.
A-VDDQ is sampled at the beginning of program/erase operations. If A-VDDQ is lower than
VLKOQ, the device is reset.
2.1.14
Flash memory A-VPP program supply voltage
A-VPP is both a control input and a power supply pin. The two functions are selected by the
voltage range applied to the pin. If A-VPP is kept in a low voltage range (0V to A-VDDQ) AVPP is seen as a control input. In this case a voltage lower than VPPLK gives an absolute
protection against program or erase, while A-VPP > VPP1 enables these functions (see the
M58PRxxxLE datasheet for the relevant values). A-VPP is only sampled at the beginning of
a program or erase operation; a change in its value after the operation has started does not
have any effect and program or erase operations continue. If A-VPP is in the range of VPPH it
acts as a power supply pin. In this condition A-VPP must be stable until the program/erase
algorithm is completed.
2.1.15
Flash memory A-VSS ground
A-VSS ground is the reference for the Flash memory’s core supply. It must be connected to
the system ground.
Note:
Each device in a system should have A-VDD, A-VDDQ and A-VPPF decoupled with a 0.1µF
ceramic capacitor close to the pin (high frequency, inherently low inductance capacitors
should be as close as possible to the package). See Figure 6: AC measurement load circuit.
The PCB track widths should be sufficient to carry the required A-VPP program and erase
currents.
2.2
B bus
All LPSDRAM signals are connected to the B bus. They are described below.
2.2.1
LPSDRAM address Inputs (B-A0-B-A12)
The B-A0-B-A12 Address Inputs are used to select the row or column to be made active. If a
row is selected, all thirteen, B-A0-B-A12 Address Inputs are used. If a column is selected,
only the nine least significant Address Inputs, B-A0-B-A8, are used. In this latter case, BA10 determines whether Auto Precharge is used. If B-A10 is High (set to ‘1’) during read or
write, the read or write operation includes an auto precharge cycle. If B-A10 is Low (set to
‘0’) during read or write, the read or write cycle does not include an auto precharge cycle.
2.2.2
LPSDRAM Bank Select Address Inputs (B-BA0-B-BA1)
The B-BA0 and B-BA1 Banks Select Address Inputs select the bank to be made active.
When selecting the addresses, the device must be enabled, the Row Address Strobe, BRAS, must be Low, VIL, the Column Address Strobe, B-CAS, and B-W must be High, VIH.
The address inputs are latched on the rising edge of the clock signal, B-K.
11/23
M39P0R9080E4, M39P0R1080E4
2.2.3
Signal descriptions
LPSDRAM Data Inputs/Outputs (B-DQ0-B-DQ15)
The Data Inputs/Outputs output the data stored at the selected address during a read
operation, or are used to input the data during a write operation.
2.2.4
LPSDRAM Chip Select (B-E)
The Chip Select input B-E activates the LPSDRAM state machine, address buffers and
decoders when driven Low, VIL. When High, VIH, the device is not selected.
2.2.5
LPSDRAM Column Address Strobe (B-CAS)
The Column Address Strobe, B-CAS, is used in conjunction with Address Inputs B-A8-B-A0
and B-BA1-B-BA0, to select the starting column location prior to a read or write operation.
2.2.6
LPSDRAM Row Address Strobe (B-RAS)
The Row Address Strobe, B-RAS, is used in conjunction with Address Inputs B-A11-B-A0
and B-BA1-B-BA0, to select the starting address location prior to a read or write.
2.2.7
LPSDRAM Write Enable (B-W)
The Write Enable input, B-W, controls writing to the LPSDRAM.
2.2.8
LPSDRAM Clock Input (B-K)
The Clock signal, B-K, is used to clock the read and write cycles. During normal operation,
the Clock Enable pin, B-KE, is High, VIH. The clock signal B-K can be suspended to switch
the device to the self refresh, power-down or deep power-down mode by driving B-KE Low,
VIL.
2.2.9
LPSDRAM Clock Enable (B-KE)
The Clock Enable, B-KE, pin is used to control the synchronizing of the signals to Clock
signal B-K. The signals are clocked when B-KE is High, VIH When B-KE is Low, VIL, the
signals are no longer clocked and data read and write cycles are extended. B-KE is also
involved in switching the device to the self refresh, power-down and deep power-down
modes.
2.2.10
LPSDRAM Lower/Upper Data Input/Output Mask (B-LDQM/B-UDQM)
Lower Data Input/Output Mask and Upper Data Input/Output Mask pins are input signals
used to mask the read or write data. The DQM latency is two clock cycles for read
operations and there is no latency for write operations.
2.2.11
LPSDRAM B-VDD supply voltage
B-VDD provides the power supply to the internal core of the LPSDRAM component. It is the
main power supply for all operations (read and write).
12/23
Signal descriptions
2.2.12
M39P0R9080E4, M39P0R1080E4
LPSDRAM B-VDDQ supply voltage
B-VDDQ provides the power supply to the I/O pins and enables all outputs to be powered
independently of B-VDD. B-VDDQ can be tied to B-VDD or can use a separate supply.
It is recommended to power-up and power-down B-VDD and B-VDDQ together to avoid
certain conditions that would result in data corruption.
2.2.13
LPSDRAM B-VSS ground
Ground, B-VSS, is the reference for the LPSDRAM’s core power supply. It must be
connected to the system ground.
13/23
M39P0R9080E4, M39P0R1080E4
3
Functional description
Functional description
The M39P0R9080E4 and M39P0R1080E4 consist of two distinct buses – the A and B
buses.
The Flash memory component is connected to the A bus and the LPSDRAM component is
connected to the B bus. The connections are shown in Figure 3 and Figure 4. The
components, therefore, have separate signals, separate power supplies, and grounds and
can be operated simultaneously with no risk of bus contention.
Figure 3.
Functional block diagram - A bus
A-VDD A-VDDQ A-VPP
16
A0-Amax
DQ0-DQ15
A-W
A-E
A-G
A-RP
A-WAIT
512 Mbit or
1 Gbit Flash
memory
A-WP
A-L
A-K
A-DPD
A-VSS
AI13471
14/23
Functional description
Figure 4.
M39P0R9080E4, M39P0R1080E4
Functional block diagram - B bus
B-VDD B-VDDQ
13
16
B-A0-B-A12
B-DQ0-B-DQ15
2
BA0-BA1
B-E
B-RAS
B-UDQM
256 Mbit
LPSDRAM
B-LDQM
B-CAS
B-K
B-KE
B-W
B-VSS
AI13472
Main bus operations
AS the Flash memory and LPSDRAM components are connected to separate buses, there
is no limitation to the modes allowed in one of them while the other is active. Refer to the
M58PRxxxLE and M65KA256Ax datasheets for the details of the each memory’s bus
operations.
15/23
M39P0R9080E4, M39P0R1080E4
4
Maximum rating
Maximum rating
Stressing the device above the rating listed in the absolute maximum ratings table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability. Refer to the Numonyx SURE Program and
other relevant quality documents.
Table 2.
Absolute maximum ratings
Value
Symbol
Parameter
Unit
Min
Max
Ambient operating temperature
–25
85
°C
TBIAS
Temperature under bias
–25
85
°C
TSTG
Storage temperature
–55
125
°C
Input or output voltage
–0.5
2.6
V
VDDF
Supply voltage
–1.0
3.0
V
VDDS
LPSDRAM supply voltage
–0.5
2.6
V
VDDQ
Input/output supply voltage
–0.5
2.6
V
VPPF
Program voltage
–1.0
11.5
V
Output short circuit current
100
mA
Time for VPP at VPPH
100
hours
TA
VIO
IO
tVPPH
16/23
DC and AC parameters
5
M39P0R9080E4, M39P0R1080E4
DC and AC parameters
This section summarizes the operating measurement conditions, and the DC and AC
characteristics of the device. The parameters in the DC and AC characteristics tables that
follow, are derived from tests performed under the measurement conditions summarized in
Table 3: Operating and AC measurement conditions. Designers should check that the
operating conditions in their circuit match the operating conditions when relying on the
quoted parameters.
Table 3.
Operating and AC measurement conditions
Parameter(1)(2)
Flash memory
LPSDRAM
Unit
Min
Max
Min
Max
VDDF supply voltage
1.7
1.95
–
–
V
VDDS supply voltage
–
–
1.7
1.95
V
VDDQ supply voltage
1.7
1.95
1.7
1.95
V
VPPF supply voltage (factory environment)
8.5
9.5
–
–
V
VPPF supply voltage (application environment)
–0.9
2.0
–
–
V
Ambient operating temperature
–25
85
–25
85
°C
Impedance output (Z0)
Load capacitance (CL)
30
30
Output circuit protection resistance (R)
3
Input pulse voltages
Input and output timing ref. voltages
0.5
ns
0 to VDDQ
0.2 to 1.6
V
VDDQ/2
0.9
V
1. All voltages are referenced to VSS = 0V.
2. TA = 25°C, f = 1MHz
AC measurement I/O waveform
VDDQ
VDDQ/2
0V
AI06161
17/23
pF
Ω
50
Input rise and fall times
Figure 5.
Ω
50
M39P0R9080E4, M39P0R1080E4
Figure 6.
DC and AC parameters
AC measurement load circuit
VCCQ/2
R
DEVICE
UNDER
TEST
OUT
Z0
CL
AI06162a
Table 4.
Capacitance
Symbol
Parameter
Test condition
Min
Max
Unit
CIN
Input capacitance
VIN = 0V
–
12
pF
COUT
Output capacitance
VOUT = 0V
–
15
pF
1. Sampled only, not 100% tested.
Please refer to the M58PRxxxLE and M65KA256Ax datasheets for further DC and AC
characteristic values and illustrations.
18/23
Package mechanical
6
M39P0R9080E4, M39P0R1080E4
Package mechanical
To meet environmental requirements, Numonyx offers these devices in ECOPACK®
packages. These packages have a lead-free, second-level interconnect. In compliance with
JEDEC Standard JESD97, the category of second-level interconnect is marked on the
package and on the inner box label.
The maximum ratings related to soldering conditions are also marked on the inner box label.
Figure 7.
TFBGA165 9 × 11 mm - 12 × 15 ball array, 0.65 mm pitch, package outline
D
D1
b
E
E1
ddd
BALL "B1"
e
FE
FD
A
SD
e
A1
A2
TFBGA-DX
1. Drawing is not to scale.
19/23
M39P0R9080E4, M39P0R1080E4
Table 5.
Package mechanical
TFBGA165 9 × 11 mm - 12 × 15 ball array, 0.65 mm pitch, package
mechanical data
Millimeters
Inches
Symbol
Typ
Min
A
Max
Typ
Min
1.200
A1
Max
0.0472
0.200
0.0079
A2
0.800
0.0315
b
0.350
0.300
0.400
0.0138
0.0118
0.0157
D
9.000
8.900
9.100
0.3543
0.3504
0.3583
D1
7.150
0.2815
ddd
0.100
10.900
11.100
0.0039
E
11.000
0.4331
E1
9.100
e
0.650
FD
0.925
0.0364
FE
0.950
0.0374
SD
0.325
0.0128
0.4291
0.4370
–
–
0.3583
–
–
0.0256
20/23
Part numbering
M39P0R9080E4, M39P0R1080E4
7
Part numbering
Table 6.
Ordering information scheme
Example:
M39 P
0
R
9
0
8
0
E
4
ZAS
E
Device type
M39 = Multichip package (Flash + LPSDRAM)
Flash 1 architecture
P = Multilevel, multiple bank, large buffer
Flash 2 architecture
0 = No die
Operating voltage
R = VDDF = VDDS = VDDQ = 1.7 to 1.95V
Flash 1 density
9 = 512 Mbits
1 = 1 Gbit
Flash 2 density
0 = No die
RAM 1 density
8 = 256 Mbit
RAM 0 density
0 = No Die
Parameter blocks location
E = Even block flash memory configuration
Product version
4 = 65 nm Flash technology, 96 ns speed; LPSDRAM
Package
ZAS = stacked TFBGA165 S stacked footprint.
Option
E = ECOPACK® package, standard packing
F = ECOPACK® package, tape and reel packing
Note:
21/23
Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of
available options (speed, package, etc.) or for further information on any aspect of this
device, please contact the Numonyx sales office nearest to you.
M39P0R9080E4, M39P0R1080E4
8
Revision history
Revision history
Table 7.
Document revision history
Date
Revision
Changes
28-Sep-2006
0.1
Initial release.
06-Oct-2006
0.2
VDDF, VCCP and VDDQ voltage ranges extended to 1.95V.
28-Jun-2007
1
Changed all references to M65KA256AF to M65KA256Ax. Updated
Figure 7, and removed standard packing option from Table 6.
14-Nov-2007
2
Applied Numonyx branding.
22/23
M39P0R9080E4, M39P0R1080E4
Please Read Carefully:
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.
Numonyx may make changes to specifications and product descriptions at any time, without notice.
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by
visiting Numonyx's website at http://www.numonyx.com.
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.
23/23
Similar pages