PD - 97035A IRFB4227PbF PDP SWITCH Features l Advanced Process Technology l Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch Applications l Low EPULSE Rating to Reduce Power Dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications l Low QG for Fast Response l High Repetitive Peak Current Capability for Reliable Operation l Short Fall & Rise Times for Fast Switching l175°C Operating Junction Temperature for Improved Ruggedness l Repetitive Avalanche Capability for Robustness and Reliability Key Parameters VDS max 200 V VDS (Avalanche) typ. 240 RDS(ON) typ. @ 10V 19.7 V m: IRP max @ TC= 100°C 130 A TJ max 175 °C D D G G S D S TO-220AB G D S Gate Drain Source Description This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications. Absolute Maximum Ratings Max. Units VGS Gate-to-Source Voltage ±30 V ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 65 A ID @ TC = 100°C Parameter Continuous Drain Current, VGS @ 10V 46 IDM Pulsed Drain Current 260 IRP @ TC = 100°C Repetitive Peak Current PD @TC = 25°C Power Dissipation 330 PD @TC = 100°C Power Dissipation 190 Linear Derating Factor 2.2 W/°C TJ Operating Junction and -40 to + 175 °C TSTG Storage Temperature Range c g 130 Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw x 300 W x 10lb in (1.1N m) N Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case f Case-to-Sink, Flat, Greased Surface Junction-to-Ambient f Typ. Max. Units ––– 0.50 ––– 0.45 ––– 62 °C/W Notes through are on page 8 www.irf.com 1 10/12/05 IRFB4227PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Conditions Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 200 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 170 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 19.7 24 mΩ VGS = 10V, ID = 46A e VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 V VDS = VGS, ID = 250µA ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -13 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 200V, VGS = 0V IGSS V mV/°C Reference to 25°C, ID = 1mA ––– ––– 1.0 mA VDS = 200V, VGS = 0V, TJ = 125°C Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V gfs Forward Transconductance 49 ––– ––– S Qg Total Gate Charge ––– 70 98 nC Qgd Gate-to-Drain Charge ––– 23 ––– tst Shoot Through Blocking Time 100 ––– ––– EPULSE VGS = 0V, ID = 250µA Energy per Pulse ––– 570 ––– ––– 910 ––– ns VDS = 25V, ID = 46A VDD = 100V, ID = 46A, VGS = 10Ve VDD = 160V, VGS = 15V, RG= 4.7Ω L = 220nH, C= 0.4µF, VGS = 15V µJ VDS = 160V, RG= 4.7Ω, TJ = 25°C L = 220nH, C= 0.4µF, VGS = 15V VDS = 160V, RG= 4.7Ω, TJ = 100°C VGS = 0V Ciss Input Capacitance ––– 4600 ––– Coss Output Capacitance ––– 460 ––– Crss Reverse Transfer Capacitance ––– 91 ––– ƒ = 1.0MHz, pF VDS = 25V Coss eff. Effective Output Capacitance ––– 360 ––– VGS = 0V, VDS = 0V to 160V LD Internal Drain Inductance ––– 4.5 ––– Between lead, nH LS Internal Source Inductance ––– 7.5 ––– D 6mm (0.25in.) G from package S and center of die contact Avalanche Characteristics Typ. Max. Units EAS Single Pulse Avalanche Energyd ––– 140 mJ EAR Repetitive Avalanche Energy c ––– 33 mJ VDS(Avalanche) Repetitive Avalanche Voltagec 240 ––– V IAS Avalanche Currentd ––– 39 A Parameter Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current Min. Typ. Max. Units ––– ––– (Body Diode) ISM Pulsed Source Current A ––– ––– Conditions MOSFET symbol 65 showing the integral reverse 260 p-n junction diode. (Body Diode)c VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 46A, VGS = 0V e trr Reverse Recovery Time ––– 100 150 ns TJ = 25°C, IF = 46A, VDD = 50V Qrr Reverse Recovery Charge ––– 430 640 nC di/dt = 100A/µs e 2 www.irf.com IRFB4227PbF 1000 VGS 15V 10V 8.0V 7.0V BOTTOM 100 7.0V 10 BOTTOM 100 7.0V 10 ≤ 60µs PULSE WIDTH Tj = 25°C 0.1 1 ≤ 60µs PULSE WIDTH Tj = 175°C 1 10 0.1 VDS , Drain-to-Source Voltage (V) 10 Fig 2. Typical Output Characteristics 4.0 RDS(on) , Drain-to-Source On Resistance 1000.0 VDS = 25V ≤ 60µs PULSE WIDTH 100.0 TJ = 175°C 10.0 1.0 TJ = 25°C 0.1 3.0 4.0 ID = 46A VGS = 10V 3.0 (Normalized) ID, Drain-to-Source Current(Α) 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 5.0 6.0 7.0 2.0 1.0 0.0 8.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 1000 1000 L = 220nH C = 0.4µF 100°C 25°C 800 L = 220nH C = Variable 100°C 25°C 800 Energy per pulse (µJ) 900 Energy per pulse (µJ) VGS 15V 10V 8.0V 7.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 700 600 500 400 300 600 400 200 200 0 100 110 120 130 140 150 160 170 VDS, Drain-to -Source Voltage (V) Fig 5. Typical EPULSE vs. Drain-to-Source Voltage www.irf.com 130 140 150 160 170 180 190 ID, Peak Drain Current (A) Fig 6. Typical EPULSE vs. Drain Current 3 IRFB4227PbF 1400 1000.0 L = 220nH ISD , Reverse Drain Current (A) Energy per pulse (µJ) 1200 C= 0.4µF C= 0.3µF C= 0.2µF 1000 800 600 400 200 100.0 TJ = 175°C 10.0 1.0 TJ = 25°C VGS = 0V 0 25 50 75 100 125 0.1 150 0.2 Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 20 Coss = Cds + Cgd Ciss 4000 Coss 2000 Crss 1 1.2 ID= 46A VDS = 160V 16 VDS = 100V VDS = 40V 12 8 4 10 100 0 1000 20 40 60 80 100 120 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 9. Typical Capacitance vs.Drain-to-Source Voltage Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage 1000 70 ID, Drain-to-Source Current (A) 60 ID , Drain Current (A) 1.0 0 0 50 40 30 20 10 0 OPERATION IN THIS AREA LIMITED BY R DS (on) 1µsec 100 100µsec 10µsec 10 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 25 50 75 100 125 150 175 TC , CaseTemperature (°C) Fig 11. Maximum Drain Current vs. Case Temperature 4 0.8 Fig 8. Typical Source-Drain Diode Forward Voltage VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 6000 0.6 VSD, Source-to-Drain Voltage (V) Fig 7. Typical EPULSE vs.Temperature 8000 0.4 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com 600 0.16 EAS, Single Pulse Avalanche Energy (mJ) RDS (on), Drain-to -Source On Resistance (Ω) IRFB4227PbF ID = 46A 0.12 0.08 TJ = 125°C 0.04 TJ = 25°C ID 8.6A 14A BOTTOM 39A TOP 500 400 300 200 100 0.00 0 5 6 7 8 9 10 25 VGS, Gate-to-Source Voltage (V) 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 13. On-Resistance Vs. Gate Voltage Fig 14. Maximum Avalanche Energy Vs. Temperature 5.0 200 ton= 1µs Duty cycle = 0.25 Half Sine Wave Square Pulse 4.5 4.0 Repetitive Peak Current (A) VGS(th) Gate threshold Voltage (V) 50 ID = 250µA 3.5 3.0 2.5 160 120 80 40 2.0 1.5 0 -75 -50 -25 0 25 50 75 100 125 150 175 25 50 75 TJ , Temperature ( °C ) 100 125 150 175 Case Temperature (°C) Fig 16. Typical Repetitive peak Current vs. Case temperature Fig 15. Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 Ci= τi/Ri Ci τi/Ri R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.08698 0.000074 0.2112 0.001316 0.1506 0.009395 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFB4227PbF D.U.T Driver Gate Drive - - - D.U.T. ISD Waveform Reverse Recovery Current RG P.W. Period * + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + • • • • Period P.W. + VDD + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V tp A 0.01Ω I AS Fig 19a. Unclamped Inductive Test Circuit Fig 19b. Unclamped Inductive Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 20a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 20b. Gate Charge Waveform www.irf.com IRFB4227PbF Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms Fig 21c. EPULSE Test Waveforms www.irf.com 7 IRFB4227PbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN T HE AS S EMBLY LINE "C" Note: "P" in ass embly line position indicates "Lead - Free" INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER DATE CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB packages are not recommended for Surface Mount Application. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.18mH, RG = 25Ω, IAS = 39A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. Half sine wave with duty cycle = 0.25, ton=1µsec. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/05 8 www.irf.com