IRF IRFB4227PBF Pdp switch Datasheet

PD - 97035A
IRFB4227PbF
PDP SWITCH
Features
l Advanced Process Technology
l Key Parameters Optimized for PDP Sustain,
Energy Recovery and Pass Switch Applications
l Low EPULSE Rating to Reduce Power
Dissipation in PDP Sustain, Energy Recovery
and Pass Switch Applications
l Low QG for Fast Response
l High Repetitive Peak Current Capability for
Reliable Operation
l Short Fall & Rise Times for Fast Switching
l175°C Operating Junction Temperature for
Improved Ruggedness
l Repetitive Avalanche Capability for Robustness
and Reliability
Key Parameters
VDS max
200
V
VDS (Avalanche) typ.
240
RDS(ON) typ. @ 10V
19.7
V
m:
IRP max @ TC= 100°C
130
A
TJ max
175
°C
D
D
G
G
S
D
S
TO-220AB
G
D
S
Gate
Drain
Source
Description
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch
applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C
operating junction temperature and high repetitive peak current capability. These features combine to
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.
Absolute Maximum Ratings
Max.
Units
VGS
Gate-to-Source Voltage
±30
V
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
65
A
ID @ TC = 100°C
Parameter
Continuous Drain Current, VGS @ 10V
46
IDM
Pulsed Drain Current
260
IRP @ TC = 100°C
Repetitive Peak Current
PD @TC = 25°C
Power Dissipation
330
PD @TC = 100°C
Power Dissipation
190
Linear Derating Factor
2.2
W/°C
TJ
Operating Junction and
-40 to + 175
°C
TSTG
Storage Temperature Range
c
g
130
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
x
300
W
x
10lb in (1.1N m)
N
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case
f
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
f
Typ.
Max.
Units
–––
0.50
–––
0.45
–––
62
°C/W
Notes  through † are on page 8
www.irf.com
1
10/12/05
IRFB4227PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Conditions
Min.
Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
200
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
170
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
19.7
24
mΩ
VGS = 10V, ID = 46A e
VGS(th)
Gate Threshold Voltage
3.0
–––
5.0
V
VDS = VGS, ID = 250µA
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-13
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 200V, VGS = 0V
IGSS
V
mV/°C Reference to 25°C, ID = 1mA
–––
–––
1.0
mA
VDS = 200V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage
–––
–––
100
nA
VGS = 20V
Gate-to-Source Reverse Leakage
–––
–––
-100
VGS = -20V
gfs
Forward Transconductance
49
–––
–––
S
Qg
Total Gate Charge
–––
70
98
nC
Qgd
Gate-to-Drain Charge
–––
23
–––
tst
Shoot Through Blocking Time
100
–––
–––
EPULSE
VGS = 0V, ID = 250µA
Energy per Pulse
–––
570
–––
–––
910
–––
ns
VDS = 25V, ID = 46A
VDD = 100V, ID = 46A, VGS = 10Ve
VDD = 160V, VGS = 15V, RG= 4.7Ω
L = 220nH, C= 0.4µF, VGS = 15V
µJ
VDS = 160V, RG= 4.7Ω, TJ = 25°C
L = 220nH, C= 0.4µF, VGS = 15V
VDS = 160V, RG= 4.7Ω, TJ = 100°C
VGS = 0V
Ciss
Input Capacitance
–––
4600
–––
Coss
Output Capacitance
–––
460
–––
Crss
Reverse Transfer Capacitance
–––
91
–––
ƒ = 1.0MHz,
pF
VDS = 25V
Coss eff.
Effective Output Capacitance
–––
360
–––
VGS = 0V, VDS = 0V to 160V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
nH
LS
Internal Source Inductance
–––
7.5
–––
D
6mm (0.25in.)
G
from package
S
and center of die contact
Avalanche Characteristics
Typ.
Max.
Units
EAS
Single Pulse Avalanche Energyd
–––
140
mJ
EAR
Repetitive Avalanche Energy c
–––
33
mJ
VDS(Avalanche)
Repetitive Avalanche Voltagec
240
–––
V
IAS
Avalanche Currentd
–––
39
A
Parameter
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
Min.
Typ. Max. Units
–––
–––
(Body Diode)
ISM
Pulsed Source Current
A
–––
–––
Conditions
MOSFET symbol
65
showing the
integral reverse
260
p-n junction diode.
(Body Diode)c
VSD
Diode Forward Voltage
–––
–––
1.3
V
TJ = 25°C, IS = 46A, VGS = 0V e
trr
Reverse Recovery Time
–––
100
150
ns
TJ = 25°C, IF = 46A, VDD = 50V
Qrr
Reverse Recovery Charge
–––
430
640
nC
di/dt = 100A/µs e
2
www.irf.com
IRFB4227PbF
1000
VGS
15V
10V
8.0V
7.0V
BOTTOM
100
7.0V
10
BOTTOM
100
7.0V
10
≤ 60µs PULSE WIDTH
Tj = 25°C
0.1
1
≤ 60µs PULSE WIDTH
Tj = 175°C
1
10
0.1
VDS , Drain-to-Source Voltage (V)
10
Fig 2. Typical Output Characteristics
4.0
RDS(on) , Drain-to-Source On Resistance
1000.0
VDS = 25V
≤ 60µs PULSE WIDTH
100.0
TJ = 175°C
10.0
1.0
TJ = 25°C
0.1
3.0
4.0
ID = 46A
VGS = 10V
3.0
(Normalized)
ID, Drain-to-Source Current(Α)
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
5.0
6.0
7.0
2.0
1.0
0.0
8.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
1000
1000
L = 220nH
C = 0.4µF
100°C
25°C
800
L = 220nH
C = Variable
100°C
25°C
800
Energy per pulse (µJ)
900
Energy per pulse (µJ)
VGS
15V
10V
8.0V
7.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
700
600
500
400
300
600
400
200
200
0
100
110
120
130
140
150
160
170
VDS, Drain-to -Source Voltage (V)
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage
www.irf.com
130
140
150
160
170
180
190
ID, Peak Drain Current (A)
Fig 6. Typical EPULSE vs. Drain Current
3
IRFB4227PbF
1400
1000.0
L = 220nH
ISD , Reverse Drain Current (A)
Energy per pulse (µJ)
1200
C= 0.4µF
C= 0.3µF
C= 0.2µF
1000
800
600
400
200
100.0
TJ = 175°C
10.0
1.0
TJ = 25°C
VGS = 0V
0
25
50
75
100
125
0.1
150
0.2
Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
20
Coss = Cds + Cgd
Ciss
4000
Coss
2000
Crss
1
1.2
ID= 46A
VDS = 160V
16
VDS = 100V
VDS = 40V
12
8
4
10
100
0
1000
20
40
60
80
100
120
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage
1000
70
ID, Drain-to-Source Current (A)
60
ID , Drain Current (A)
1.0
0
0
50
40
30
20
10
0
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1µsec
100
100µsec
10µsec
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
25
50
75
100
125
150
175
TC , CaseTemperature (°C)
Fig 11. Maximum Drain Current vs. Case Temperature
4
0.8
Fig 8. Typical Source-Drain Diode Forward Voltage
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
6000
0.6
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical EPULSE vs.Temperature
8000
0.4
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 12. Maximum Safe Operating Area
www.irf.com
600
0.16
EAS, Single Pulse Avalanche Energy (mJ)
RDS (on), Drain-to -Source On Resistance (Ω)
IRFB4227PbF
ID = 46A
0.12
0.08
TJ = 125°C
0.04
TJ = 25°C
ID
8.6A
14A
BOTTOM 39A
TOP
500
400
300
200
100
0.00
0
5
6
7
8
9
10
25
VGS, Gate-to-Source Voltage (V)
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 13. On-Resistance Vs. Gate Voltage
Fig 14. Maximum Avalanche Energy Vs. Temperature
5.0
200
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
Square Pulse
4.5
4.0
Repetitive Peak Current (A)
VGS(th) Gate threshold Voltage (V)
50
ID = 250µA
3.5
3.0
2.5
160
120
80
40
2.0
1.5
0
-75
-50
-25
0
25
50
75
100 125 150 175
25
50
75
TJ , Temperature ( °C )
100
125
150
175
Case Temperature (°C)
Fig 16. Typical Repetitive peak Current vs.
Case temperature
Fig 15. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.1
0.10
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
Ci= τi/Ri
Ci τi/Ri
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.08698 0.000074
0.2112
0.001316
0.1506
0.009395
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFB4227PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
-
-
„
D.U.T. ISD Waveform
Reverse
Recovery
Current

RG
P.W.
Period
*
+
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
•
•
•
•
Period
P.W.
+
VDD
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
A
0.01Ω
I AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 19b. Unclamped Inductive Waveforms
Id
Vds
Vgs
L
DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Fig 20a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 20b. Gate Charge Waveform
www.irf.com
IRFB4227PbF
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms
Fig 21c. EPULSE Test Waveforms
www.irf.com
7
IRFB4227PbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010
LOT CODE 1789
AS S EMBLED ON WW 19, 2000
IN T HE AS S EMBLY LINE "C"
Note: "P" in ass embly line position
indicates "Lead - Free"
INT ERNATIONAL
RECTIFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DATE CODE
YEAR 0 = 2000
WEEK 19
LINE C
TO-220AB packages are not recommended for Surface Mount Application.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.18mH, RG = 25Ω, IAS = 39A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
Half sine wave with duty cycle = 0.25, ton=1µsec.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/05
8
www.irf.com
Similar pages