MGA-633P8 Ultra Low Noise, High Linearity Active Bias Low Noise Amplifier Data Sheet Description Features Avago Technologies’ MGA-633P8 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA). The LNA has low noise and high linearity achieved through the use of Avago Technologies’ proprietary 0.25um GaAs Enhancement-mode pHEMT process. It is housed in a miniature 2.0 x 2.0 x 0.75mm3 8-pin Quad-Flat-Non-Lead (QFN) package. It is designed for optimum use from 450MHz up to 2GHz. The compact footprint and low profile coupled with low noise, high gain and high linearity make the MGA-633P8 an ideal choice as a low noise amplifier for cellular infrastructure for GSM and CDMA. For optimum performance at higher frequency from 1.5GHz to 2.3GHz, the MGA-634P8 is recommended, and from 2.3GHz to 4GHz, the MGA-635P8 is recommended. Both MGA-634P8 and MGA-635P8 share the same package and pinout as MGA-633P8 Ultra Low noise Figure High linearity performance GaAs E-pHEMT Technology [1] Low cost small package size: 2.0 x 2.0 x 0.75 mm3 Excellent uniformity in product specifications Tape-and-Reel packaging option available Specifications 900MHz; 5V, 54mA 18 dB Gain 0.37 dB Noise Figure 15dB Input Return Loss 37 dBm Output IP3 Pin Configuration and Package Marking 22 dBm Output Power at 1dB gain compression 2.0 x 2.0 x 0.75 mm3 8-lead QFN Applications [1] [2] [3] [4] 33X Top View Pin1 Pin2 Pin3 Pin4 – – – – Vbias RFinput Not Used Not Used [8] [7] [6] [5] [8] [7] [6] [5] [1] [2] [3] [4] Low noise amplifier for cellular infrastructure for GSM and CDMA. Other ultra low noise application. Simplified Schematic Bottom View Vdd Pin5 – Not Used Pin6 – Not Used Pin7 – RFoutput / Vdd Pin8 – Not Used Centre tab - Ground Note: Package marking provides orientation and identification “33” = Device Code “X” = Month Code Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model = 90 V (Class A) ESD Human Body Model = 600 V (Class 1B) Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control. Rbias C3 RFin C1 C6 R2 R1 C5 L1 L2 [1] [2] [3] [4] bias [8] [7] C4 C2 RFout [6] [5] Notes: The schematic is shown with the assumption that similar PCB is used for all MGA-633P8, MGA-634P8 and MGA-635P8. Detail of the components needed for this product is shown in Table 1. Enhancement mode technology employs positive gate voltage, thereby eliminating the need of negative gate voltage associated with conventional depletion mode devices. Good RF practice requires all unused pins to be earthed. Absolute Maximum Rating[1] TA=25°C Thermal Resistance Symbol Parameter Units Absolute Max. Vdd Device Voltage, RF output to ground V 5.5 Idd Drain Current mA 90 Pmax CW RF Input Power (Vdd = 5.0 V, Idd = 54 mA) dBm +20 Pdiss Total Power Dissipation [3] W 0.495 Tj Junction Temperature °C 150 TSTG Storage Temperature °C -65 to 150 Thermal Resistance [2] (Vdd = 5.0 V, Idd = 54 mA), jc = 72°C/W Notes: 1. Operation of this device in excess of any of these limits may cause permanent damage. 2. Thermal resistance measured using InfraRed Measurement Technique. 3. Power dissipation with unit turned on. Board temperature TB is 25°C. Derate at 13.89mW/°C for TB>114°C. Electrical Specifications[1, 4] RF performance at TA = 25°C, Vdd =5V, Rbias=6.8kOhm, 900MHz, measured on demo board in Figure 5 with component list in Table1 for 900 MHz matching. Symbol Parameter and Test Condition Units Min. Typ. Max. Idd Drain Current mA 39 54 67 Gain Gain dB 16.5 18 19.5 OIP3 [2] Output Third Order Intercept Point dBm 34 37 NF [3] Noise Figure dB 0.37 OP1dB Output Power at 1dB Gain Compression dBm 22 IRL Input Return Loss, 50 source dB 15 ORL Output Return Loss, 50 load dB 21 REV ISOL Reverse Isolation dB 21 0.6 Notes: 1. Measurements at 900 MHz obtained using demo board described in Figure 1. 2. OIP3 test condition: FRF1 = 900 MHz, FRF2 = 901 MHz with input power of -15dBm per tone. 3. For NF data, board losses of the input have not been de-embedded. 4. Use proper bias, heatsink and derating to ensure maximum device temperature is not exceeded. See absolute maximum ratings and application note for more details. 2 Product Consistency Distribution Charts[1, 2] LSL USL USL Id Max:67 Min:39 Mean:54 Noise Figure Max:0.6 Mean:0.37 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 0.3 Figure 1. Id @ 900MHz, 5V, 54mA Mean = 54 Figure 2. Noise Figure @ 900MHz, 5V, 54mA Mean = 0.37 LSL 0.4 0.6 LSL OIP3 Min:34 Mean:37 34 0.5 35 USL Gain Max:19.5 Min:16.5 Mean:18 36 Figure 3. OIP3 @ 900MHz, 5V, 54mA Mean = 37 37 38 39 16.5 17 17.5 18 17.5 19 19.5 Figure 4. Gain @ 900MHz, 5V, 54mA Mean = 18 Notes: 1. Distribution data samples are 500 samples taken from 3 different wafers. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits. 2. Circuit Losses have not been de-embedded from the actual measurements. 3 Demo Board Layout Demo Board Schematic Vdd Rbias C3 RFin L1 C1 C6 R2 R1 C5 L2 [1] [2] bias [3] [4] [8] [7] C4 C2 RFout [6] [5] Figure 5. Demo Board Layout Diagram Figure 6. Demo Board Schematic Diagram – Recommended PCB material is 10 mils Rogers RO4350. – Suggested component values may vary according to layout and PCB material. Note: The schematic is shown with the assumption that similar PCB is used for all MGA-633P8, MGA-634P8 and MGA-635P8. Detail of the components needed for this product is shown in Table 1. Table 1. Component list for 900 MHz matching Part Size Value Detail Part Number C1, C2 0402 100pF (Murata) GRM1555C1H101JD01E L1, L2 0402 33nH (Toko) LL1005-FHL33NJ C4 0402 33pF (Koacera) CM05CH330J50AH C3, C6 0402 4.7uF (Murata) GRM155R60E475ME760 R1 R2 0402 0402 0 Ohm (Kamaya) 10 Ohm (Koa) RMC1/16S-JPTH RM73B1ETTP100J Note: C1, C2 are DC Blocking capacitors; L1 input match for NF; L2 output match for OIP3; C3, C4, C6 are bypass capacitors; R2 is stabilizing resistor; Rbias is the biasing resistor; R1, C5 are not use for this product 4 MGA-633P8 Typical Performance 0.5 0.5 0.4 0.4 Fmin (dB) Fmin (dB) RF performance at TA = 25°C, Vdd = 5V, Id = 54mA, measured using 50ohm input and output board, unless otherwise stated. OIP3 test condition: FRF1 = 900 MHz, FRF2 = 901 MHz with input power of -10dBm per tone. 0.3 0.2 0.1 0 0.2 0.1 40 50 55 Idd (mA) 70 0 80 Figure 7. Fmin vs Idd at 5V at 700MHz 20 20 19 19 18 18 17 16 15 40 50 55 Idd (mA) 16 40 55 70 15 80 40 55 55 OIP3(dBm) 80 Figure 11. Gain vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 900MHz OIP3(dBm) 40 70 Idd(mA) Figure 10. Gain vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 700MHz 70 80 Idd(mA) Figure 12. OIP3 vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 700MHz 5 80 17 Idd(mA) 45 44 43 42 41 40 39 38 37 36 35 70 Figure 8. Fmin vs Idd at 5V at 900MHz Gain (dB) Gain (dB) 0.3 45 44 43 42 41 40 39 38 37 36 35 40 55 70 80 Idd(mA) Figure 13. OIP3 vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 900MHz OP1dB (dBm) OP1dB (dBm) 25 24 23 22 21 20 19 18 17 16 15 40 55 70 80 25 24 23 22 21 20 19 18 17 16 15 40 55 Figure 14. OP1dB vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 700MHz 0.7 0.5 OIP3(dBm) Fmin (dB) 0.6 0.4 0.3 0.2 40mA 55mA 80mA 0.1 500 650 700 750 800 900 Frequency (MHz) 1700 1900 Gain(dB) Figure 16. Fmin vs Frequency and Idd at 5V 22 20 18 16 14 12 10 8 6 4 2 0 700 750 800 900 Frequency (MHz) 1700 1900 Figure 18. Gain vs Frequency and Temperature for Optimum OIP3 and Fmin at 5V 54mA 6 50 45 40 35 30 25 20 15 10 5 0 40°C 25°C 85°C 500 700 750 800 900 Frequency (MHz) 1700 1900 Figure 17. OIP3 vs Frequency and Temperature for Optimum OIP3 and Fmin at 5V 54mA 40°C 25°C 85°C 500 80 Figure 15. OP1dB vs Idd at 5V Tuned for Optimum OIP3 and Fmin at 900MHz 0.8 0 70 Idd(mA) Idd(mA) 40°C 25°C 85°C OP1dB(dBm) Fmin (dB) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 500 700 750 800 900 Frequency (MHz) 1700 1900 Figure 19. Fmin vs Frequency and Temperature for Optimum OIP3 and Fmin at 5V 54mA 26 24 22 20 18 16 14 12 10 8 6 4 2 0 40°C 25°C 85°C 500 700 750 800 900 Frequency (MHz) 1700 1900 Figure 20. OP1dB vs Frequency and Temperature for Optimum OIP3 and Fmin at 5V 54mA Below is the table showing the MGA-633P8 Reflection Coefficient Parameters tuned for Maximum OIP3, Vdd = 5V, Idd = 54mA. Gamma Load position Frequency (GHz) Magnitude Angle OIP3 (dBm) OP1dB (dBm) 0.50 0.53 122 36.2 22.96 0.70 0.49 115 41.9 21.67 0.75 0.539 113 42.7 20.87 0.80 0.659 123 41.2 21.52 0.90 0.635 145 42.1 20.79 1.70 0.342 -120 41 22.63 1.90 0.333 -74 41.2 23.63 RFinput Reference Plane RFoutput Reference Plane [1] Bias [8] [2] [7] [3] [6] [4] [5] Figure 21. Notes: 1. The Maximum OIP3 values are calculated based on Load pull measurements on approximately 100 different impedances using Maury’s Load pull test system. 2. Measurements are conducted on 0.010 inch thick ROGER 4350. The input reference plane is at the end of the RFin pin and the output reference plane is at the end of the RFout pin as shown in Figure 21. 3. Gamma Load for maximum OIP3 with biasing of 3V 54mA, 3.5V 54mA, 4V 54mA, 4.5V 54mA, 5V 40mA, 5V 54mA and 5V 70mA from 800 MHz to 1.9GHz are available upon request. 7 MGA-633P8 Typical Performance in Demoboard RF performance at TA = 25°C, Vdd = 5V, Rbias = 6.8kOhm, measured on demo board in Figure.5 with component list in Table1 for 900 MHz matching, unless otherwise stated. 0.8 25 -40°C 25°C 85°C 0.7 20 0.5 Gain (dB) NF (dB) 0.6 0.4 0.3 0.2 -40°C 25°C 85°C 0.1 0 0 500 15 10 5 1000 Frequency (MHz) 1500 0 2000 Figure 22. NF vs Frequency vs Temperature 0 500 1000 Frequency (MHz) 1500 2000 Figure 23. Gain vs Frequency vs Temperature 42 23 40 OP1dB (dBm) OIP3 (dBm) 22.5 38 36 34 30 0 500 1000 Frequency (MHz) 1500 K-factor IRL,ORL,Gain,Rev Isol(dB) IRL ORL Gain Rev Isol 0 1000 2000 3000 4000 Frequency (MHz) 0 500 1000 Frequency (MHz) 1500 2000 Figure 25. OP1dB vs Frequency vs Temperature 5000 6000 Figure 26. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs Frequency 8 21 2000 Figure 24. OIP3 vs Frequency vs Temperature 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40°C 25°C 85°C 21.5 -40°C 25°C 85°C 32 22 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 -40°C 25°C 85°C 0 2 4 6 8 10 12 Frequency (GHz) Figure 27. K-factor vs Frequency vs Temperature 14 16 18 20 MGA-633P8 Typical Performance in Demoboard 85 80 75 70 65 60 55 50 45 40 35 Idd (mA) Idd (mA) RF performance at TA = 25 °C, Vdd =5V, Rbias=6.8kOhm, measured on demo board in Figure.5 with component list in Table1 for 900 MHz matching, unless otherwise stated. 3 4 5 6 7 8 Rbias (Kohm) 9 10 11 Figure 28. Idd vs Rbias 100 90 80 70 60 50 40 30 20 10 0 -40°C 25°C 85°C 0 2 4 Vdd (V) 6 Figure 29. Idd vs Vdd vs Temperature 0.8 25 40mA 54mA 70mA 0.7 20 0.6 0.5 Gain (dB) NF (dB) 8 0.4 0.3 0.2 40mA 54mA 70mA 0.1 500 1000 Frequency (MHz) 1500 10 5 0 0 15 0 2000 Figure 30. NF vs Frequency vs Idd 0 500 1000 Frequency (MHz) 1500 2000 Figure 31. Ga vs Frequency vs Idd 23.5 44 42 23 OP1dB (dBm) OIP3 (dBm) 40 38 36 34 32 40mA 54mA 70mA 30 28 0 500 1000 Frequency (MHz) Figure 32. OIP3 vs Frequency vs Idd 9 1500 2000 22.5 22 40mA 54mA 70mA 21.5 21 0 500 1000 Frequency (MHz) Figure 33. OP1dB vs Frequency vs Idd 1500 2000 MGA-633P8 Typical Scattering Parameters, Vdd = 5V, Idd = 54mA S11 S21 S12 S22 Freq GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. 0.1 0.73 -45.42 28.96 28.06 145.48 0.02 62.09 0.27 -43.62 0.5 0.25 -95.49 22.03 12.64 108.20 0.05 59.34 0.10 -4.56 0.9 0.16 -119.26 18.08 8.02 89.72 0.08 60.53 0.14 -16.96 1.0 0.15 -124.97 17.27 7.30 86.35 0.09 60.46 0.15 -18.82 1.5 0.10 -142.55 14.10 5.07 70.97 0.12 56.12 0.19 -39.65 1.9 0.07 -158.30 12.17 4.06 60.60 0.15 51.25 0.19 -56.21 2.0 0.07 -162.64 11.74 3.86 58.17 0.16 49.92 0.19 -60.31 2.5 0.05 177.70 9.88 3.12 46.59 0.20 43.20 0.21 -79.41 3.0 0.03 162.14 8.36 2.62 35.95 0.23 36.08 0.23 -95.09 4.0 0.01 -41.60 6.00 2.00 16.45 0.30 22.04 0.25 -118.55 5.0 0.03 -64.06 4.27 1.64 -1.63 0.36 7.61 0.25 -144.60 6.0 0.04 -129.24 2.96 1.41 -18.89 0.42 -7.19 0.24 -170.64 7.0 0.07 -152.03 1.85 1.24 -35.43 0.47 -22.36 0.26 165.84 8.0 0.12 -154.39 0.87 1.11 -50.92 0.52 -37.15 0.29 150.25 9.0 0.18 -161.44 0.05 1.01 -65.12 0.56 -51.58 0.33 138.58 10.0 0.21 -177.23 -0.57 0.94 -78.96 0.60 -66.28 0.35 124.74 11.0 0.21 156.03 -1.03 0.89 -93.28 0.63 -81.96 0.33 104.27 12.0 0.22 124.49 -1.53 0.84 -108.35 0.66 -98.72 0.33 78.81 13.0 0.26 104.45 -2.13 0.78 -122.84 0.66 -115.13 0.38 62.57 14.0 0.33 95.24 -2.66 0.74 -135.50 0.66 -129.75 0.42 60.19 15.0 0.39 84.99 -2.96 0.71 -146.69 0.66 -143.01 0.43 60.20 16.0 0.42 67.14 -3.10 0.70 -159.52 0.67 -157.83 0.40 50.25 17.0 0.43 44.98 -3.53 0.67 -175.16 0.66 -175.42 0.40 27.20 18.0 0.49 28.99 -4.50 0.60 169.61 0.60 167.43 0.48 10.68 19.0 0.57 17.18 -5.59 0.53 156.86 0.53 152.94 0.56 7.82 20.0 0.62 5.97 -6.14 0.49 145.85 0.50 140.18 0.60 6.77 RFinput Reference Plane RFoutput Reference Plane [1] Figure 34 10 Bias [8] [2] [7] [3] [6] [4] [5] Typical Noise Parameters, Vdd = 5V, Idd = 54mA Part Number Ordering Information Freq GHz Fmin dB opt Mag. opt Ang. Part Number No. of Devices Container Rn/50 MGA-633P8-BLKG 100 Antistatic Bag 0.5 0.46 0.169 -37 0.051 MGA-633P8-TR1G 3000 7 inch Reel 0.7 0.38 0.15 -17 0.0586 0.75 0.36 0.144 -15 0.0532 0.8 0.35 0.136 -13 0.0478 0.9 0.33 0.129 -7 0.0446 1.7 0.46 0.048 80.5 0.0644 1.9 0.51 0.028 98.7 0.0498 Notes: 1. The Fmin values are based on noise figure measurements at 100 different impedances using Focus source pull test system. From these measurements a true Fmin is calculated. 2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 30. 3. S2P file with scattering and noise parameters for biasing 3V 54mA, 3.5V 54mA, 4V 54mA, 4.5V 54mA, 5V 40mA, 5V 54mA and 5V 70mA are available upon request. SLP2X2 Package PIN 1 DOT BY MARKING 2.00±0.050 0.203 Ref. 2.00±0.050 33X 0.000–0.05 0.75±0.05 Top View Side View 0.60±0.050 Exp. DAP PIN #1 IDENTIFICATION R0.100 0.35±0.050 1.20±0.050 Exp. DAP 0.50 Bsc 0.25±0.050 Bottom View 11 1.50 Ref. Notes: 1. All dimensions are in millimeters. 2. Dimensions are inclusive of plating. 3. Dimensions are exclusive of mold flash and metal burr. Recommended PCB Land Pattern and Stencil Design 2.20 2.16 1.75 0.56 0.50 1.75 0.00 0.80 0.50 0.50 1.50 0.22 0.25 0.170 0.45 0.40 0.05 (all SM gaps) 0.30 R0.15 Stencil Opening Land Pattern 1.75 0.56 0.50 0.50 Metal surface 0.21 1.50 Soldermask Open R0.15 0.17 Combination of Land Pattern and Stencil Opening Note: 1. Recommended Land Pattern and Stencil Opening 2. Stencil thickness is 0.1mm (4 mils) 3. All dimension are in mm unless otherwise specified 12 1.72 1.50 1.20 0.50 0.48 0.21 Device Orientation REEL 4 mm 8 mm 33X CARRIER TAPE USER FEED DIRECTION 33X COVER TAPE Tape Dimensions D P0 P P2 E F W + + D1 Tt t1 K0 10° Max 10° Max A0 DESCRIPTION Bo SYMBOL SIZE (mm) SIZE (inches) CAVITY LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER A0 B0 K0 P1 D 2.30 ± 0.05 2.30 ± 0.05 1.00 ± 0.05 4.00 ± 0.10 1.00 + 0.25 0.091 ± 0.004 0.091 ± 0.004 0.039 ± 0.002 0.157 ± 0.004 0.039 + 0.002 PERFORATION DIAMETER PITCH POSITION D P0 E 1.50 ± 0.10 4.00 ± 0.10 1.75 ± 0.10 0.060 ± 0.004 0.157 ± 0.004 0.069 ± 0.004 CARRIER TAPE WIDTH W THICKNESS t1 8.00 + 0.30 8.00 ± 0.10 0.254 ± 0.02 0.315 ± 0.012 0.315 ± 0.004 0.010 ± 0.0008 COVER TAPE WIDTH TAPE THICKNESS C Tt 5.4 ± 0.10 0.062 ± 0.001 0.205 ± 0.004 0.0025 ± 0.004 DISTANCE CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION) F 3.50 ± 0.05 0.138 ± 0.002 P2 2.00 ± 0.05 0.079 ± 0.002 13 33X 33X Reel Dimensions – 7 inch 6.25mm EMBOSSED LETTERS LETTERING THICKNESS: 1.6mm SLOT HOLE "a" SEE DETAIL "X" Ø178.0±0.5 SLOT HOLE "b" FRONT BACK 6 PS SLOT HOLE(2x) 180° APART. 6 PS RECYCLE LOGO SLOT HOLE "a": 3.0±0.5mm(1x) SLOT HOLE "b": 2.5±0.5mm(1x) FRONT VIEW 45° +0.5 Ø13.0 -0.2 Ø20.2 MIN. ° R10.65 120 65° 1.5 MIN. 7.9 - 10.9** +1.5* 8.4 -0.0 R5.2 FRONT BACK DETAIL "X" SLOT HOLE ‘a’ EMBOSSED RIBS RAISED: 0.25mm, WIDTH: 1.25mm 14.4 * MAX. Ø51.2±0.3 BACK VIEW For product information and a complete list of distributors, please go to our web site: SEE DETAIL "Y" www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. AV02-2329EN - May 25, 2012 3.5 DETAIL "Y" (Slot Hole) 1.0 Ø55.0±0.5 60° Ø178.0±1.0 SLOT HOLE ‘b’