APA3169 20W Stereo Digital Class-D Audio Power Amplifier with EQ, DRC and 2.1 Mode Features General Description • Operating Voltage: 8.0V-24V for PVDD The APA3169 is a digital input, stereo, high efficiency, • – 3.0V~3.6V for DVDD and AVDD High Efficiency Class D Operation Eliminate the Class-D audio amplifier available in a TQFP7x7-48P package. Need of Heatsinks Digital Serial Audio Input (Stereo Output) The APA3169 accepts the digital serial audio data and using the digital audio processor to convert the audio 2.1 Mode (2SE + 1BTL) 2.0 Mode (2BTL) data becomes the stereo Class-D output speaker amplifier. This provides the seamless integration between Single-Filter PBTL Mode Support I2C Address Selection Pin (Chip Select) the codec and the speaker amplifier. The APA3169 is a slave device receiving clocks from ex- I2C Control Interface Sampling Rate Support from 32kHz to 192kHz ternal source, and the Class-D’s PWM switching frequency is 352.8kHz for the sampling rate 44.1kHz or 384 Separated Volume Control from 24dB to Mute Soft Mute (50% Duty Cycle) kHz for sampling 48kHz, depend on the input signal’s sampling rate. • • • • • • • • • • • • • • • • • • Separate Dynamic Range Control for Satellite and Subchannels 18 Programmable Biquads for Speaker EQ and Other Audio Processing Features Simplified Application Circuit Programmable Coefficients for DRC Filters DC Blocking Filters, De-emphasis Filters Support for 3D Effects Shutdown and Mute Function Thermal and Over-Current Protections with AutoRecovery Space Saving Package TQFP7x7-48P Lead Free and Green Devices Available (RoHS Compliant) Digital Audio Source MCLK LRCLK SCLK SDIN I2C Control SDA SCL A_SEL • • • LCD TV LCSE OUT_B LCSE PVDD PVDD APA3169 Control Input /RESET_N /PDN_N Loop Filter PLL_FLTP PLL_FLTM Applications OUT_A OUT_C LCBTL OUT_D iPod Dock Sound Bar ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 1 www.anpec.com.tw APA3169 48 47 46 45 44 43 42 41 40 39 38 37 PGND_AB PGND_AB OUT_B PVDD_B PVDD_B BS_B BS_C PVDD_C PVDD_C OUT_C PGND_CD PGND_CD Pin Configuration OUT_A 1 PVDD_A 2 PVDD_A 3 BS_A 4 VCLAB 5 TM1 6 TM2 7 PBTL 8 AVSS 9 PLL_FLTM 10 PLL_FLTP 11 VR_ANA 12 OUT_D PVDD_D PVDD_D BS_D 32 31 30 29 28 27 26 25 VCLCD VREG AGND DGND DVSS DVDD TP3 RESET_N AVDD A_SEL MCLK TP1 TP2 VR_DIG PDN_N LRCLK SCLK SDIN SDA SCL 13 14 15 16 17 18 19 20 21 22 23 24 APA3169 36 35 34 33 TQFP7x7-48P (TOP VIEW) Ordering and Marking Information Package Code QCA : TQFP7x7-48P Operating Ambient Temperature Range I : -40 to 85 oC Handling Code TR : Tape & Reel Assembly Material G : Halogen and Lead Free Device APA3169 Assembly Material Handling Code Temperature Range Package Code APA3169 QCA : APA3169 XXXXX XXXXX - Date Code Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight). Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 2 www.anpec.com.tw APA3169 Absolute Maximum Ratings Symbol (Note 1) Parameter Rating Unit VPVDD Supply Voltage (PVDD_X to PGND_XX) -0.3 to 26 VDVDD Supply Voltage (DVDD to DVSS) -0.3 to 6 VAVDD Supply Voltage (AVDD to AVSS) -0.3 to 6 Input Voltage (MCLK to AVSS) -0.5 to 6 Input Voltage (PDN, RESET, LRCLK, SCLK, SDIN, SDA, SCL to DVSS) -0.5 to 6 Input Voltage V Input Voltage (AVSS, DVSS, AGDN to PGND_XX) -0.3 to +0.3 VOUT_X OUT_X to PGND_XX -0.3 to +26 VBS_X BS_X to PGND_XX -0.3 to +31 TJ Maximum Junction Temperature TSTG Storage Temperature Range TSDR Soldering Temperature Range, 10 seconds PD Power Dissipation 150 ο -65 to +150 ο 260 ο C C C Internally Limited W Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Thermal Characteristics Symbol Parameter Junction-to-Ambient Resistance in Free Air θJA Typical Value Unit 25 °C/W (Note 2) TQFP7x7-48P Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad of TQFP7X7-48P is soldered directly on the PCB. Recommended Operating Conditions Symbol Range Parameter Min. Max. VAVDD, VDVDD Analog/Digital Supply Voltage (AVDD,DVDD) 3 3.6 VPVDD Full Bridge Stage Supply Voltage (PVDD_X) 8 24 2 5 0 0.8 PDN, MCLK, LRCLK, SCLK, SDIN, SDA, SCL, RESET PDN, MCLK, LRCLK, SCLK, SDIN, SDA, SCL, RESET VIH High Level Threshold Voltage VIL Low Level Threshold Voltage TA Ambient Temperature Range -40 85 TJ Junction Temperature Range -40 125 Unit V ο C RL(BTL) Speaker Resistance 6 - Ω LO(BTL) Output Low Pass Filter Inductance 10 47 µH Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 3 www.anpec.com.tw APA3169 Electrical Characteristics ο TA=25 C, VPVDD=18V, VAVDD = VDVDD = 3.3V, RL=8Ω, BD Mode, fS=48kHz (unless otherwise noted) Symbol Parameter APA3169 Test Conditions Min. Typ. Unit Max. PWM Operating Conditions 32 kHz Data Rate ±2% fS Output Sample Rate 256 44.1k/88.2k/176.4 kHz Data Rate ±2% 352.8 48k/96k/192 kHz Data Rate ± 2% kHz 384 PLL Input Parameters and External Filter Components fMCLK tr/tf(MCLK) MCLK Frequency 2.8224 - 24.576 MHz MCLK Duty Cycle 40 50 60 % Rise/Fall Time for MCLK - - 5 ns LRCLK Allowable Drift before LRCLK Reset - - 4 MCLKs External PLL Filter Capacitor C1 SMD 0603 Y5V - 47 - External PLL Filter Capacitor C2 SMD 0603 Y5V - 4.7 - - 470 - Ω External PLL Filter Resistor R nF DC CHARACTERISTICS VOH High Level output voltage(A_SEL and SDA) IOH=-4mA, DVDD=AVDD=3V 2.4 - - V VOL Low Level output voltage(A_SEL and SDA) IOL=4mA, DVDD=AVDD=3V - - 0.5 V IIL Low Level Input Current VI<VIL, DVDD=AVDD=3.6V - - 75 µA IIH High Level Input Current VI>VIH, DVDD=AVDD=3.6V - - 75 µA IDD 3.3V Supply Current (AVDD+DVDD) Normal Mode (No LC, No load) - 14 20 Reset (No LC, No load) - 14 20 Full Bridge Stage Supply Current (PVDD_X) Normal Mode (No LC, No load) - 18 36 Reset (No LC, No load) - 0.5 1.6 TJ=25oC, includes metallization resistance - 180 - mΩ IPVDD Drain to source resistance,LS rDS(ON) mA o Drain to source resistance,HS TJ=25 C, includes metallization resistance - 180 - mΩ VUVP Undervoltage protection limit PVDD falling - 6.8 - V VUVP,hyst Undervoltage protection limit PVDD rising V TTP - 7.2 - Thermal Protection Threshold - 150 - Thermal Protection Threshold Hysteresis - 30 - o Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 C 4 www.anpec.com.tw APA3169 Electrical Characteristics (Cont.) ο TA=25 C, VPVDD=18V, VAVDD = VDVDD = 3.3V, RL=8Ω, BD Mode, fS=48kHz (unless otherwise noted) Symbol Parameter APA3169 Test Conditions Unit Min. Typ. Max. DC CHARACTERISTICS (CONT.) OLPC Overload protection counter fPWM=384kHz - 0.63 - ms IOC Overcurrent limit protection Resistor - programmable, max. current - 4.5 - A IOCT Overcurrent response time - 150 - ns - 3 - kΩ 14.5 16 - ROUT Internal pull-down resistance at each OUT_X Ccaopnanceitcoter dchwahrgeen. drivers are tristated to provide bootstrap AC CHARACTERISTICS VPVDD=18V BTL,THD+N=1%, fin=1kHz,RL=8Ω BTL,THD+N=10 %,fin=1kHz,RL=8 Ω PO Output Power PBTL,THD+N=1 %,fin=1kHz,RL=4 Ω PBTL,THD+N=1 0%,fin=1kHz,RL= 4Ω SE,THD+N=1%,fi n=1kHz,RL=4Ω SE,THD+N=10% ,fin=1kHz,RL=4Ω THD+N Vn Total Harmonic Distortion Plus Noise Noise Output Voltage VPVDD=12V 6.5 7.2 - VPVDD=8V 2.9 3.2 - VPVDD=18V - 20 - VPVDD=12V - 9 - VPVDD=8V - 4 - VPVDD=18V - 30.5 - VPVDD=12V - 13.7 - VPVDD=18V - 37.1 - VPVDD=12V - 16.9 - VPVDD=18V - 7.5 - VPVDD=12V - 3.4 - VPVDD=18V - 9.5 - VPVDD=12V - 4.3 - - 0.06 - - 0.13 - - 0.2 - - 200 - VPVDD=18V, Po=1W VPVDD =12V, fin=1kHz,RL=8Ω Po=1W VPVDD=8V, Po=1W With A-Weighting Filter (Volume=0dB) Crosstalk Channel Separation PO=0.25W, RL=8Ω, fin=1kHz - -72 - SNR Signal to Noise Ratio RL=8Ω, Po=16W, A-Weighting Filter (Volume =0dB) - 95 - AttMute Mute Attenuation fin=1kHz, RL=8Ω, VO=1Vrms - -70 - Shutdown Attenuation fin=1kHz, RL=8Ω, VO=1Vrms - -110 - Attshutdown Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 5 W % µVms dB www.anpec.com.tw APA3169 Serial Audio Ports Slave Mode Over recommended operating conditions (unless otherwise noted) Symbol Parameter APA3169 Test Conditions Min. Typ. Max. 1.024 - 12.288 Unit fSCLK Frequency, SCLK 32xfS, 48xfS, 64xfS tSetup1 Setup Time, LRCLK to SCLK Rising Edge 10 - - tHold1 Hold Time, LRCLK to SCLK Rising Edge 10 - - tSetup2 Setup Time, SDIN to SCLK Rising Edge 10 - - Hold Time, SDIN to SCLK Rising Edge 10 - - LRCLK Frequency 32 48 192 LRCLK Duty Cycle 40 50 60 SCLK Duty Cycle 40 50 60 SCLK Rising Edges Between LRCLK Riding Edges 32 - 64 SCLK edges LRCLK Clock Edge With Respect To The Falling Edge of SCLK -1/4 - 1/4 SCLK period - - 8 ns tHold t(edge) tr/tf CL=30pF MHz ns Rise/Fall Time for SCLK/LRCLK kHz % (SCLK/LRCLK) tr tf SCLK (Input) t(edge) th1 tsu1 LRCLK (Input) th2 tsu2 SDIN Figure 1. Slave Mode Serial Data Interface Timing Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 6 www.anpec.com.tw APA3169 I2C Serial Control Port Operation Timing characteristics for I2C Interface signals over recommended operating conditions (unless otherwise noted) Symbol Parameter Test Conditions APA3169 Min. Typ. Max. fSCL Frequency, SCL - - 400 tW(H) Pulse Duration, SCL High No Wait States 0.6 - - tW(L) Pulse Duration, SCL Low 1.3 - - tr Rise Time, SCL and SDA - - 300 tf Fall Time, SCL and SDA - - 300 tsetup1 Setup Time, SCL to SDA 100 - - thold1 Hold Time, SCL to SDA 0 - - t(buf) Bus Free Time Between Stop and Start Condition 1.3 - - tsetup2 Setup Time, SCL to Start Condition 0.6 - - thold2 Hold Time, Start condition to SCL 0.6 - - tsetup3 Setup Time, SCL to Stop Condition 0.6 - - - - 400 Load Capacitance for Each Bus Line CL tw(H) tf tw(L) Unit kHz µs ns µs pF tr SCL tsu1 th1 SDA Figure 2. SCL and SDA Timing SCL tsu2 th2 t(buf) tsu3 SDA Stop Condition Start Condition Figure 2. SCL and SDA Timing Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 7 www.anpec.com.tw APA3169 Reset Timing Control signal parameters over recommended operating conditions (unless otherwise noted). Please refer to “Recommended Use Model” section on usage of all terminals. Symbol tp(RST) td(12C_Ready) Parameter Pulse Duration, RESET Active. Test Conditions No Load Time to Enable I2C APA3169 Min. Typ. Max. Unit 100 - - µs - - 13.5 ms RESET tw(RESET) 2 I2C Active I C Active td(I2C_Ready) Figure 4. Reset Timing Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 8 www.anpec.com.tw APA3169 Typical Operating Characteristics, BTL Configuration THD+N vs. Frequency THD+N vs. Frequency 10 10 Po=0.5W 0.1 PVDD=8V RL=8Ω AUX-0025 AES-17(20kHz) 0.01 0.001 20 50 100 Po=5W 1 THD+N (%) THD+N (%) Po=1W Po=2.5W 1 2k 5k PVDD=12V RL=8Ω AUX-0025 AES-17(20kHz) 0.001 20 20k 50 100 5k 20k 10 Po=5W Po=2.5W Po=1W 0.1 PVDD=18V RL=8Ω AUX-0025 AES-17(20kHz) 0.01 20 50 100 2k 5k 0.001 20 k PVDD=24V RL=8Ω AUX-0025 AES-17(20kHz) 20 50 100 Frequency (Hz) THD+N vs. Output Power 1 THD+N (%) 1 0.1 0.001 10m 100m 1 PVDD=8V RL=8Ω Duty=97.7% AUX-0025 AES-17(20kHz) 2 5k 20 k 5 10 0.1 0.01 PVDD=12V RL=8Ω Duty=97.7% AUX-0025 AES-17(20kHz) Fin=10kHz Fin=1kHz Fin=20Hz 0.001 10m 50 Output Power (W) Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 2k THD+N vs. Output Power 10 Fin=10kHz Fin=1kHz Fin=20Hz 500 1 k Frequency (Hz) 10 0.01 Po=1W 0.1 0.01 500 1 k Po=2.5W Po=5W 1 THD+N (%) 1 THD+N (%) 2k THD+N vs. Frequency THD+N vs. Frequency 10 THD+N (%) 500 1 k Frequency (Hz) Frequency (Hz) 0.001 Po=1W 0.1 0.01 500 1k Po=2.5W 100m 1 2 5 10 50 Output Power (W) 9 www.anpec.com.tw APA3169 Typical Operating Characteristics, BTL Configuration(Cont.) THD+N vs. Output Power THD+N vs. Output Power THD+N (%) 1 10 PVDD=18V RL=8Ω Duty=97.7% AUX-0025 AES-17(20kHz) 0.1 0.1 0.01 0.01 Fin=10kHz Fin=1kHz Fin=20Hz Fin=10kHz Fin=1kHz Fin=20Hz 0.001 10 m 100 m 1 2 5 10 0.001 10m 50 100m Output Power (W) 5 10 50 +0 PVDD=8V Po=1W RL=8Ω AUX-0025 10~22kHz PVDD=12V Po=1W RL=8Ω AUX-0025 10~22kHz - 20 Crosstalk (dB) - 20 Crosstalk (dB) 2 Crosstalk vs. Frequency Crosstalk vs. Frequency - 40 Left to Right Right to Left - 60 - 40 Left to Right Right to Left - 60 - 80 - 80 20 50 100 500 1 k 2k 5k - 100 20 k 20 50 100 Crosstalk vs. Frequency 5k 20 k +0 PVDD=18V Po=1W RL=8Ω AUX-0025 10~22kHz Crosstalk (dB) - 20 - 40 Left to Right Right to Left - 60 - 80 -100 20 2k Crosstalk vs. Frequency +0 - 20 500 1 k Frequency (Hz) Frequency (Hz) Crosstalk (dB) 1 Output Power (W) +0 -100 T PVDD=24V RL=8Ω Duty=97.7% AUX-0025 AES-17(20kHz) 1 THD+N (%) 10 PVDD=24V Po=1W RL=8Ω AUX-0025 10~22kHz - 40 Left to Right Right to Left - 60 - 80 50 100 500 1 k 2k 5k -100 20 20 k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 50 100 500 1 k 2k 5k 20 k Frequency (Hz) 10 www.anpec.com.tw APA3169 Typical Operating Characteristics, BTL Configuration(Cont.) Output Power vs. Supply Voltage Efficiency vs. Output Power 100 RL=8Ω Duty=97.7% 35 90 80 PVDD=24V 30 Efficiency(%) BTL Output Power_OutAB(W) 40 25 20 THD+N=10% 15 PVDD=18V 70 PVDD=12V 60 PVDD=8V 50 40 30 10 20 THD+N=1% 5 RL=8Ω Duty=97.7% 10 0 0 8 10 12 14 16 18 20 22 24 26 0 Supply Voltage(V) Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 2 4 6 8 10 12 14 16 18 20 22 24 OutAB Output Power(W) 11 www.anpec.com.tw APA3169 Typical Operating Characteristics, SE Configuration THD+N vs. Frequency 10 1 1 THD+N (%) THD+N (%) THD+N vs. Frequency 10 0.1 Po=1W Po=2.5W Po=0.5W 0.001 20 50 100 500 1 k 2k 5k 20k PVDD=18V RL=4Ω AUX-0025 AES-17(20kHz) 20 1 1 0.1 Po=1W 0.01 PVDD=24V RL=4Ω AUX-0025 AES-17(20kHz) 0.001 20 50 100 0.1 0.01 500 1 k 2k 2k 500 1k 5k 20k THD+N vs. Output Power 10 THD+N (%) THD+N (%) THD+N vs. Frequency 10 Po=2.5W 50 100 Frequency (Hz) Frequency (Hz) Po=5W Po=1W Po=2.5W Po=5W 0.01 0.01 PVDD=12V RL=4Ω AUX-0025 AES-17(20kHz) 0.001 0.1 5k 0.001 10 m 20k Frequency (Hz) PVDD=24V PVDD=18V PVDD=12V Fin=1kHz PVDD=8V RL=4Ω Duty=97.7% AUX-0025 AES-17(20kHz) 100 m 1 2 5 10 20 50 Output Power (W) Output Power vs. Supply Voltage 22 RL=4Ω Duty=97.7% SE Output Power_OutA(W) 20 18 16 14 12 10 THD+N=10% 8 6 4 THD+N=1% 2 0 8 10 12 14 16 18 20 22 24 26 Supply Voltage(V) Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 12 www.anpec.com.tw APA3169 Typical Operating Characteristics, PBTL Configuration THD+N vs. Frequency THD+N vs. Frequency 10 10 Po=1W 0.1 0.001 20 50 100 500 1 k 2k 5k 0.001 20 k PVDD=12V RL=4Ω AUX-0025 AES-17(20kHz) 20 50 100 500 1 k Frequency (Hz) Po=1W 0.001 50 100 500 1 k 2k 5k PVDD=24V RL=4Ω AUX-0025 AES-17(20kHz) 20k 20 50 100 2k 5k 20k THD+N vs. Output Power THD+N vs. Output Power 10 10 PVDD=12V RL=4Ω Duty=97.7% 1 AUX-0025 AES-17(20kHz) THD+N (%) PVDD=8V RL=4Ω Duty=97.7% 1 AUX-0025 AES-17(20kHz) THD+N (%) 500 1 k Frequency (Hz) Frequency (Hz) 0.1 0.01 0.1 0.01 Fin=1kHz Fin=10kHz Fin=1kHz Fin=20Hz 0.001 10 m Po=1W 0.1 0.01 0.01 PVDD=18V RL=4Ω AUX-0025 AES-17(20kHz) Po=2W Po=5W 1 0.1 0.001 20 20k THD+N vs. Frequency THD+N (%) THD+N (%) Po=2W 5k 10 10 Po=5W 2k Frequency (Hz) THD+N vs. Frequency 1 Po=1W 1 0.01 0.01 PVDD=8V RL=4Ω AUX-0025 AES-17(20kHz) Po=2W Po=5W 1 THD+N (%) THD+N (%) Po=2W Po=5W 1 Fin=10kHz Fin=20Hz 100 m 1 2 5 10 0.001 10 m 50 Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 100 m 1 2 5 10 50 Output Power (W) Output Power (W) 13 www.anpec.com.tw APA3169 Typical Operating Characteristics, PBTL Configuration(Cont.) THD+N vs. Output Power THD+N vs. Output Power 10 10 THD+N (%) THD+N (%) PVDD=18V RL=4Ω Duty=97.7% 1 AUX-0025 AES-17(20kHz) 0.1 0.01 PVDD=24V RL=4Ω Duty=97.7% 1 AUX-0025 AES-17(20kHz) 0.1 0.01 Fin=1kHz Fin=10kHz 0.001 10 m Fin=10kHz Fin=1kHz Fin=20Hz Fin=20Hz 100 m 1 2 5 0.001 10 m 10 20 50 100 m 1 2 5 10 20 50 Output Power (W) Output Power (W) Output Power vs. Supply Voltage PBTL Output Power_OutABCD(W) 60 50 40 30 20 10 0 8 10 12 14 16 18 20 22 24 26 Supply Voltage(V) Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 14 www.anpec.com.tw APA3169 Pin Description PIN FUNCTION I/O/P NO. NAME 1 OUT_A 2,3 PVDD_A P Power supply input 4 BS_A P High-side bootstrap supply for half-bridge A 5 VCLAB P internal 3.3V reference voltage 6 TM1 I Test mode input 7 TM2 I Test mode input 8 PBTL I low means BTL or SE mode;high means PBTL mode O Output,half-bridge A 9 AVSS P analog 3.3V supply ground 10 PLL_FLTM O PLL negative loop filter 11 PLL_FLTP O PLL postive loop filter 12 VR_ANA P analog regulator 13 AVDD P 3.3V amalog power supply 14 A_SEL I/O 15 MCLK I Master clock input 16 TP1 I/O Test mode probe 17 TP2 I/O 18 VR_DIG P digital regulator 19 PDN_N I Power down,active low 20 LRCLK I input serial audio data left/right clock 21 SCLK I Serial audio data clock. 22 SDIN I Serial audio data input 23 SDA I/O 24 SCL I I2C serial control clock input 25 RESET_N I Reset,active low 26 TP3 I/O Test mode probe 27 DVDD P 3.3V digital power supply 28 DVSS P Digital ground 29 DGND P digital ground for power stage 30 AGND P analog ground for power stage 31 VREG P Not to be used for powering external circuitry 32 VCLCD P internal 3.3V reference voltage 33 BS_D P High-side bootstrap supply for half-bridge D 34,35 PVDD_D P Power supply input 36 OUT_D O output,half bridge D 37,38 PGND_CD P Power ground for half-bridge C and D 39 OUT_C O output,half-bridge C input: device address, output : fault Test mode probe I2C serial control data interface input/output Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 15 www.anpec.com.tw APA3169 Pin Description PIN I/O/P FUNCTION NO. NAME 40,41 PVDD_C 42 BS_C P High-side bootstrap supply for half-bridge C 43 BS_B P High-side bootstrap supply for half-bridge B 44,45 PVDD_B P Power supply input 46 OUT_B O output ,half bridge B 47,48 PGND_AB P Power ground for half-bridge A and B Power supply input TP1 TP2 TP3 OutA OutB OutC OutD Block Diagram IIS Test Out REGULATOR OutC OutD Valid Error_B OTW OutA OutB Power Stage Output-map Register DAP FIR CKG R L LFE Interpolation PWM Processor SDM PWR_SEQ PCM to PWM PLL P PRE_DIV MCLK TM2 TM1 IIC Serial Control SDA SCL A_SEL R SDIN SCLK LRCLK RESETN PDN IIS Serial Audio Port L FIFO Figure 5. Block Diagram Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 16 www.anpec.com.tw APA3169 L R Sub_channel Block Diagram Mix0 Mixer Mix1 Mix0 Mix2 Mixer Mix1 Mix0 Mix1 Mix2 Mixer 0x60 0x52 0x51 Post_scale DRC1 DRC1 Master_Vol Ch3_vol 0x5E~5F 0x55 Mix1 Mix2 Mix0 1BQ 0x5B 0x5A 0x31 Mix3 1BQ 0x54 1BQ 0x32~34 3BQ De_emphasis De_emphasis DC_Blocking DC_Blocking Mix1 Mixer Mix0 0x30 1BQ Mix1 Mix0 Mixer 0x61 0x54 Mix1 1BQ 0x29 Mix0 Mixer Mixer Mixer Mix2 0x2A 1BQ Mix3 0x53 0x5C~5D 2BQ 0x58~59 0x2B~2D 3BQ 2BQ 0x53 Mix2 Mixer Ch4_vol 2BQ Ch2_vol Ch1_vol L R Pre_scale Figure 6. DAP Block Diagram Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 17 www.anpec.com.tw APA3169 Typical Application Circuit 2.0 Channel AVDD 10kO 470 O 470 O JP1 0.047 µF 4700pF 0. 047µF 2200 pF 1µF 4700 pF VR_ANA PLL_FLTP PLL_FLTM AVSS PBTL TM2 TM1 22.1kO VCLAB BS_A PVDD_A PVDD_A OUT_A AVDD 10µ F 0.1µF 0.1µ F /PDN LRCK SCLK SDIN SDA SCL 0.1µ F 22µH 0. 68µF 220µ F AVDD A_SEL 10kO MCLK 18. 2kO TP1 TP2 10kO VR_DIG /PDN_N LRCLK SCLK SDIN SDA SCL 13 14 15 16 17 18 19 20 21 22 23 24 0. 68µF 48 47 46 45 44 43 42 41 40 39 38 37 APA3169 PGND_AB PGND_AB OUT_B PVDD_B PVDD_B BS_B BS_C PVDD_C PVDD_C OUT_C PGND_CD PGND_CD 22µH 0.033µ F 0.033µ F 0.1µ F PVDD 0.1µ F 22µH 0.68µF /RESET_N TP3 DVDD DVSS DGND AGND VRE G VCLCD BS_D PVDD_D PVDD_D O UT_D 25 26 27 28 29 30 31 32 33 34 35 36 4.7µ F AVDD PVDD 12 11 10 9 8 7 6 5 4 3 2 1 0O A_SEL MCLK 0.033µ F /RESET DVDD 10µ F Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 0.1µF PVDD 0.68µF 0.1µ F 220µ F 22µH 0.1µ F 1µF 18 0.033 µF www.anpec.com.tw APA3169 Typical Application Circuit 2.1 Channel AVDD VDD 10kO 470 O 10kO 0.047 µF 220µ F 10kO 4700pF 0.047µF 470 O JP1 1µF 4700 pF 0.1µF 0.1µ F /PDN LRCK SCLK SDIN SDA SCL 0.1µ F 22µH AVDD A_SEL 10kO MCLK 18. 2kO TP1 TP2 10kO VR_DIG /PDN_N LRCLK SCLK SDIN SDA SCL 13 14 15 16 17 18 19 20 21 22 23 24 0.68µF 220µ F 10kO 220µ F 0.68µF 48 47 46 45 44 43 42 41 40 39 38 37 APA3169 VDD PGND_AB PGND_AB OUT_B PVDD_B PVDD_B BS_B BS_C PVDD_C PVDD_C OUT_C PGND_CD PGND_CD 10kO 220µ F 22µH 0.033µ F 0.033µ F 0.1µ F PVDD 0.1µ F 22µH 0.68µF /RESET_N TP3 DVDD DVSS DGND AGND VRE G VCLCD BS_D PVDD_D PVDD_D O UT_D 25 26 27 28 29 30 31 32 33 34 35 36 4.7µ F AVDD PVDD 12 11 10 9 8 7 6 5 4 3 2 1 0O A_SEL MCLK 0.033µ F VR_ANA PLL_FLTP PLL_FLTM AVSS PBTL TM2 TM1 22.1kO VCLAB BS_A PVDD_A PVDD_A OUT_A AVDD 10µ F 220µ F 2200 pF /RESET DVDD 10µ F 0.1µF Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 PVDD 0.68µF 0. 1µ F 220µ F 22µH 0.1µ F 1µF 0.033 µF 19 www.anpec.com.tw APA3169 Typical Application Circuit PBTL AVDD 10kO 470 O 4700pF 0.047µF 470 O JP1 0.047 µF 2200 pF 1µF 4700 pF VR_ANA PLL_FLTP PLL_FLTM AVSS PBTL TM2 TM1 22.1kO VCLAB BS_A PVDD_A PVDD_A OUT_A AVDD 10µ F 0.033µ F 0.1µF A_SEL MCLK 0.1µ F /PDN LRCK SCLK SDIN SDA SCL 0.68µ F 220µ F AVDD A_SEL 10kO MCLK 18. 2kO TP1 TP2 10kO VR_DIG /PDN_N LRCLK SCLK SDIN SDA SCL 13 14 15 16 17 18 19 20 21 22 23 24 48 47 46 45 44 43 42 41 40 39 38 37 APA3169 PGND_AB PGND_AB OUT_B PVDD_B PVDD_B BS_B BS_C PVDD_C PVDD_C OUT_C PGND_CD PGND_CD 0.033µ F 0.033µ F 0.1µ F PVDD 0.1µ F /RESET_N TP3 DVDD DVSS DGND AGND VRE G VCLCD BS_D PVDD_D PVDD_D O UT_D 25 26 27 28 29 30 31 32 33 34 35 36 4.7µ F AVDD 0.1µ F 22µH 12 11 10 9 8 7 6 5 4 3 2 1 0O PVDD /RESET DVDD 10µ F Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 0.1µF PVDD 0.68µ F 0. 1µ F 220µ F 22µ H 0.1µ F 1µF 20 0.033 µF www.anpec.com.tw APA3169 Function Description POWER SUPPLY To facilitate system design, the APA3169 needs only a 3.3-V supply in addition to the (typical) 18-V power-stage supply. An internal voltage regulator provides suitable voltage levels for the gate drive circuitry. Additionally, all circuitry requiring a floating voltage supply, e.g., the high-side gate drive, is accommodated by built-in bootstrap circuitry requiring only a few external capacitors. In order to provide good electrical and acoustical characteristics, the PWM signal path for the output stage is designed as identical, independent half-bridges. For this reason, each half-bridge has separate bootstrap pins (BS_x), and power-stage supply pins (PVDD_x). The gate drive voltages (VCLAB and VCLCD) are derived from the PVDD voltage. Special attention should be paid to placing all decoupling capacitors as close to their associated pins as possible. In general, inductance between the power-supply pins and decoupling capacitors must be avoided. For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin (BS_x) to the power-stage output pin (OUT_x). When the power-stage output is low, the bootstrap capacitor is charged through an internal diode connected between the gate-drive regulator output pin (VCL_x) and the bootstrap pin. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output potential and thus provides a suitable voltage supply for the high-side gate driver. In an application with PWM switching frequencies in the range from 256 kHz to 384 kHz, it is recommended to use 33-nF 50-V X7R capacitors, size 0603 or 0805, for the bootstrap supply. These 33-nF capacitors ensure sufficient energy storage, even during minimal PWM duty cycles, to keep the high-side power stage FET (LDMOS) fully turned on during the remaining part of the PWM cycle. Special attention should be paid to the power-stage power supply; this includes component selection, PCB placement, and routing. As indicated, each half-bridge has independent power-stage supply pins (PVDD_x). For optimal electrical performance, EMC compliance, and system reliability, it is important that each PVDD_x pin is decoupled with a 100-nF ceramic capacitor placed as close as possible to each supply pin. The APA3169 is fully protected against erroneous power-stage turnon due to parasitic gate charging. DEVICE PROTECTION SYSTEM Overcurrent (OC) Protection With Current Limiting The device has independent, fast-reacting current detectors on all high-side and low-side power-stage FETs. The detector outputs are closely monitored by two protection systems. The first protection system controls the power stage in order to prevent the output current further increasing, i.e., it performs a cycle-by-cycle current-limiting function, rather than prematurely shutting down during combinations of high-level music transients and extreme speaker load impedance drops. If the high-current condition situation persists, i.e., the power stage is being overloaded, a second protection system triggers a latching shutdown, resulting in the power stage being set in the high-impedance (Hi-Z) state. The device returns to normal operation once the fault condition (i.e., a short circuit on the output) is removed. Current limiting and overcurrent protection are not independent for half-bridges. That is, if the bridge-tied load between half-bridges A and B causes an overcurrent fault, half-bridges A, B, C, and D are shut down. Overtemperature Protection The APA3169 has over temperature-protection system. If the device junction temperature exceeds 150OC (nominal), the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the high-impedance (Hi-Z) state and /FAULT being asserted low. The APA3169 recovers automatically once the temperature drops approximately 30 oC Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 21 www.anpec.com.tw PWM Section APA3169 Function Description (Cont.) Undervoltage Protection (UVP) and Power-On Reset (POR) The UVP and POR circuits of the APA3169 fully protect the device in any power-up/down and brownout situation. While powering up, the POR circuit resets the overload circuit and ensures that all circuits are fully operational when the PVDD and AVDD supply voltages reach 7.6 V and 2.7 V, respectively. Although PVDD and AVDD are independently monitored, a supply voltage drop below the UVP threshold on AVDD or either PVDD pin results in all half-bridge outputs immediately being set in the high-impedance (Hi-Z) state and /FAULT being asserted low. SERIAL DATAINTERFACE Serial data is input on SDIN. The PWM outputs are derived from SDIN. The APA3169 DAP accepts serial data in 16-, 20-, or 24-bit left-justified, right-justified, and I2S serial data formats. PWM Section The APA3169 DAP device uses noise-shaping to achieve high power efficiency and high-performance digital audio reproduction. The DAP uses a fourth-order noise shaper to increase dynamic range and SNR in the audio band. The PWM section accepts PCM data from the DAP and outputs two BTL PWM audio output channels. The PWM section has individual channel dc blocking filters that can be enabled and disabled. The filter cutoff frequency is less than 1 Hz. Individual channel de-emphasis filters are included and can be enabled and disabled. Finally, the PWM section has an adjustable maximum modulation limit of 93.8% to 98.4%. SERIAL INTERFACE CONTROL AND TIMING The I2S mode is set by writing to register 0x04. I2S Timing I2S timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. LRCLK is low for the left channel and high for the right channel. A bit clock running at 32, 48, or 64xfs is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal changes state to the first bit of data on the data lines. The data is written MSB first and is valid on the rising edge of bit clock. The DAP masks unused trailing data bit positions. 32 Clks 32 Clks LRCLK (Note Reversed Phase) Left Channel Right Channel SCLK SCLK MSB 24-Bit Mode 23 22 LSB 9 8 5 4 1 0 23 22 20-Bit Mode 19 18 LSB 9 8 5 4 5 4 1 0 1 0 1 0 20-Bit Mode 5 4 1 0 19 18 16-Bit Mode 16-Bit Mode 15 14 MSB 24-Bit Mode 1 0 15 14 Figure 7. I2S 64 fS Format Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 22 www.anpec.com.tw APA3169 Function Description (Cont.) 24 Clks 24 Clks LRCLK (Note Reversed Phase) Left Channel Right Channel SCLK SCLK MSB 24-Bit Mode 23 22 LSB 17 16 9 8 5 4 3 2 LSB MSB 24-Bit Mode 1 0 20-Bit Mode 23 22 17 16 9 8 5 4 13 12 5 4 1 0 1 0 3 2 1 20-Bit Mode 19 18 13 12 5 4 1 0 19 18 16-Bit Mode 15 14 16-Bit Mode 9 8 1 0 15 14 9 8 Figure 8. I2S 48 fS Format 16 Clks 16Clks LRCLK (Note Reversed Phase) Right Channel Left Channel SCLK SCLK MSB 16-Bit Mode LSB 15 14 13 12 11 10 9 8 5 4 3 2 LSB MSB 16-Bit Mode 1 0 15 14 13 12 11 10 9 8 5 4 3 2 1 Figure 9. I2S 32 fS Format Left-Justified Left-justified (LJ) timing uses LRCLK to define the data for the left channel and the right channel when the data being transmitted. For the left channel, the LRCLK is high; for the right channel, the LRCLK is low. A bit clock running at 32, 48, or 64 × fS is used to clock in the data. The first bit of data appears on the data lines when LRCLK toggles. The data is written MSB first and is valid on the rising edge of the bit clock. The DAP masks unused trailing data bit positions. 32Clks LRCLK 32Clks Right Channel Left Channel SCLK SCLK MSB 24-Bit Mode 23 22 LSB 9 8 5 4 1 0 MSB 24-Bit Mode 23 22 20-Bit Mode 19 18 9 8 5 4 5 4 1 0 1 0 1 0 20-Bit Mode 5 4 1 0 19 18 16-Bit Mode 16-Bit Mode 15 14 LSB 1 0 15 14 Figure 10. Left-Justified 64 fS Format Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 23 www.anpec.com.tw APA3169 Function Description (Cont.) 24Clks LRCLK 24 Clks Left Channel Right Channel SCLK SCLK MSB 24-Bit Mode 23 22 LSB 17 16 9 8 5 4 3 2 1 0 23 22 20-Bit Mode 19 18 17 16 9 8 5 4 13 12 5 4 1 0 9 1 0 3 2 1 20-Bit Mode 13 12 5 4 1 0 19 18 16-Bit Mode 15 14 LSB MSB 24-Bit Mode 16-Bit Mode 9 8 1 0 15 14 8 Figure 11. Left-Justified 48 fS Format 16 Clks LRCLK 16Clks Left Channel Right Channel SCLK SCLK MSB 16-Bit Mode LSB MSB 16-Bit Mode 15 14 13 12 11 10 9 8 5 4 3 2 1 0 LSB 15 14 13 12 11 10 9 8 5 4 3 2 1 0 Figure 12. Left-Justified 32 fS Format Right-Justified Right-justified (RJ) timing uses LRCLK to define the data for the left channel and the right channel when the data being transmitted. For the left channel, the LRCLK is high; for the right channel, the LRCLK low. A bit clock running at 32, 48, or 64 × fS is used to clock in the data. After LRCLK toggles, for 24bit data, the first bit of data appears on the data 8 bit-clock. In RJ mode, the LSB of data is always clocked by the last bit clock before LRCLK transitions. The data is written MSB first and is valid on the rising edge of bit clock. The DAP masks unused leading data bit positions. 32 Clks LRCLK 32 Clks Right Channel Left Channel SCLK SCLK MSB 24-Bit Mode LSB 23 22 19 18 15 14 1 MSB 24-Bit Mode 0 LSB 23 22 19 18 15 14 1 0 19 18 15 14 1 0 15 14 1 0 20-Bit Mode 20-Bit Mode 19 18 15 14 1 0 16-Bit Mode 16-Bit Mode 15 14 1 0 Figure 13. Right-Justified 64 fS Format Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 24 www.anpec.com.tw APA3169 Function Description (Cont.) 24 Clks LRCLK 24 Clks Right Channel Left Channel SCLK SCLK LS B MSB 24-Bit Mode 23 22 20-Bit Mode 19 18 15 14 19 18 15 14 16-Bit Mode 15 14 6 6 6 5 2 5 2 5 2 1 1 1 LS B MSB 24-Bit Mode 0 23 22 20-Bit Mode 0 19 18 15 14 6 5 2 1 0 19 18 15 14 6 5 2 1 0 15 14 6 5 2 1 0 16-Bit Mode 0 Figure 14. Right-Justified 48 fS Format 16 Clks LRCLK 16Clks Left Channel Right Channel SCLK SCLK MSB 16-Bit Mode 15 14 13 12 11 10 LSB MSB 16-Bit Mode 9 8 5 4 3 2 1 0 15 14 13 12 11 10 LSB 9 8 5 4 3 2 1 0 Figure 15. Right-Justified 32 fS Format I2C Serial Control Interface The APA3169 DAP has a bidirectional I2C interface that compatible with the I2C (Inter IC) bus protocol. Besides, it provides both 100kHz and 400kHz data transfer rates to single and multiple bytes write and read operations. This is a slave only device, and it doesn’t support a multi-master bus environment or wait state insertion. The function of the control interface is to read device status and to program the registers of the device. The DAP supports the standard-mode I2C bus operation (100kHz maximum) and the fast I2C bus operation (400kHz maximum). Without I2C wait cycles, the DAP performs I2C operations. General I2C Operation The I2C bus uses SDA (data) and SCL (clock) to communicate between integrated circuits in a system. Data is transferred on the bus serially one bit at a time. With the most significant bit (MSB) transferred first, the address and data can be transferred in byte (8bit) format. In addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus and ends with the master device driving a stop condition on the bus. The bus uses transitions on the SDA when the clock is high to indicate start and stop conditions. A high-to-low transition on SDA indicates a start, and a low-to-high transition indicates a stop. Normal data bit transitions must occur within the low time of the clock. These conditions are shown in Figure 10. The master generates the 7bit slave address and the read/write (R/W) bit to open communication with another device and then waits for an acknowledge condition. The APA3169 holds SDA low during the acknowledge clock to indicate an acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each device is addressed by a unique 7bit slave address plus R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-AND connection. An external pull-up resistor must be used for the SDA and SCL signals to set the high level for the bus. Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 25 www.anpec.com.tw APA3169 Function Description (Cont.) SDA 7-Bit Slave Address R/ W 7 6 5 4 3 2 1 0 A 8-Bit Register Address (N) A 7 6 5 4 3 2 1 0 8-Bit Register Data for Address (N) 7 6 5 4 3 2 1 0 A 8-Bit Register Data for Address (N) A 7 6 5 4 3 2 1 0 SCL Start Stop Figure 16. Typical I2C Sequence There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last word transfers, the master generates a stop condition to release the bus. A generic data transfer sequence is shown in Figure 16. Pin A_SEL defines the I2C device address. An external 15kΩ pulldown on this pin gives a device address of 0x34 and a 15kΩ pullup gives a device address of 0x36. The 7-bit address is 0011 010 (0x34) or 0011 011 (0x36). Single- and Multiple-Byte Transfers The serial control interface supports single-byte and multiple-byte (R/W) operations for sub-addresses 0x00 to 0x1F. However, for the sub-addresses 0x20 to 0xFF, the serial control interface supports only multiple-byte read/write operations (in multiples of 4 bytes). During multiple-byte read operations, the DAP responds with data, a byte at a time, starting at the sub-address assigned, as long as the master device continues to respond with acknowledges. If a particular sub-address does not contain 32 bits, the unused bits are read as logic 0. During multiple-byte write operations, the DAP compares the number of bytes transmitted to the number of bytes that are required for each specific sub-address. Supplying a sub-address for each sub-address transaction is referred to as random I2C addressing. The APA3169 also supports sequential I2C addressing. For write transactions, if a sub-address is issued and followed by data for that sub-address and the 15 sub-addresses that follow, a sequential I2C write transaction has taken place, and the data for all 16 sub-addresses is successfully received by the APA3169. For I2C sequential write transactions, the subaddress then serves as the start address, and the amount of data subsequently transmitted, before a stop or start is transmitted, determines how many sub-addresses are written. As was true for random addressing, sequential addressing requires that a complete set of data be transmitted. If only a partial set of data is written to the last subaddress, the data for the last sub-address is discarded. However, if all other data written is accepted, only the incomplete data is discarded. Single-Byte Write As shown in Figure 17, a single-byte data write transfer begins with the master device transmitting a start condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of the data transfer. For a write data transfer, the read/write bit will be a 0. After receiving the correct I2C device address and the read/write bit, the DAP responds with an acknowledge bit. Next, the master transmits the address byte or bytes corresponding to the APA3169 internal memory address being accessed. After receiving the address byte, the APA3169 again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to the memory address being accessed. After receiving the data byte, the APA3169 again responds with an acknowledge bit. Finally, the master device transmits a stop condition to complete the single-byte data write transfer. Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 26 www.anpec.com.tw APA3169 Function Description (Cont.) Start Condition Acknowledge Acknowledge Acknowledge A6 A5 A4 A3 A2 A1 A0 R/W ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK I2C Device Address and Read/ Write Bit Stop Condition Data Byte Sub-address Figure 17. Single-Byte Write Transfer Multiple-Byte Write A multiple-byte data write transfer is identical to a single-byte data write transfer except that multiple data bytes are transmitted by the master device to the DAP as shown in Figure 18. After receiving each data byte, the APA3169 responds with an acknowledge bit. Start Condition Acknowledge A6 A5 A1 A0 R/W ACK A7 A6 I2C Device Address and Read/ Write Bit A2 A1 Acknowledge Acknowledge A0 ACK D7 D0 ACK D7 Sub-address First Data Byte Acknowledge Acknowledge D0 ACK D7 Other Data Bytes D0 ACK Last Data Byte Stop Condition Figure 18. Multiple-Byte Write Transfer Single-Byte Read As shown in Figure 19, a single-byte data read transfer begins with the master device transmitting a start condition followed by the I2C device address and the R/W bit. For the data read transfer, both a write followed by a read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal memory address to be read. As a result, the R/W bit becomes a 0. After receiving the APA3169 address and the read/write bit, APA3169 responds with an acknowledge bit. Besides, after sending the internal memory address byte or bytes, the master device transmits another start condition followed by the APA3169 address and the read/write bit again. This time the read/ write bit becomes a 1, indicating a read transfer. After receiving the address and the read/write bit, the APA3169 again responds with an acknowledge bit. And then, the APA3169 transmits the data byte from the memory address being read. After receiving the data byte, the master device transmits a not acknowledge followed by a stop condition to complete the single byte data read transfer. Start Condition Acknowledge A6 A5 Acknowledge A1 A0 R/W ACK A7 A6 I2C Device Address and Read/ Write Bit A1 A0 ACK Sub-address Acknowledge A6 A5 Repeat Start Condition Not Acknowledge A1 A0 R/W ACK D7 D6 I2C Device Address and Read/ Write Bit D1 D0 ACK Data Byte Stop Condition Figure 19. Single-Byte Read Transfer Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 27 www.anpec.com.tw APA3169 Function Description (Cont.) Multiple-Byte Read A multiple-byte data read transfer is identical to a single-byte data read transfer except that multiple data bytes are transmitted by the APA3169 to the master device as shown in Figure 20. Except for the last data byte, the master device responds with an acknowledge bit after receiving each data byte. Start Condition Repeat Start Condition Acknowledge Acknowledge A6 A0 R/WACK A7 A6 I2C Device Address and Read/ Write Bit A1 A0 ACK A6 Acknowledge A0 R/WACK D7 I2C Device Address and Read/ Write Bit Subaddress Acknowledge Acknowledge Not Acknowledge D0 ACK D7 First Data Byte D0 ACK D7 Other Data Bytes D0 ACK Last Data Byte Stop Condition Figure 20. Multiple-Byte Read Transfer Output Mode and MUX Selection PWM1 CH1_audio 2.0 BTL BD PWM2 Reg Setting 0x05 (2) = 0 PWM3 CH2_audio PWM4 PWM1 CH1_audio PWM2 2.1 SE,BTL- BD CH2_audio Reg Setting 0x05 (2) = 1 PWM3 CH3_audio PWM4 Figure 21. Output Mode and MUX Selection Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 28 www.anpec.com.tw APA3169 Function Description (Cont.) 2.1-Mode Support The APA3169 supports 2.0-mode and 2.1-mode operation.To enable 2.1 mode, register 0x05 bit D2 must be set to 1. Single-Filter PBTL-Mode Support The APA3169 supports parallel BTL (PBTL) mode with OUT_A/OUT_B (and OUT_C/OUT_D) connected before the LC filter. In order to put the part in PBTL configuration, drive PBTL (pin 8) HIGH. This synchronizes the turnoff of halfbridges A and B (and similarly C/D) if an overcurrent condition is detected in either half-bridge. There is a pulldown resistor on the PBTL pin that configures the part in BTL mode if the pin is left floating. PWM output multiplexers should be updated to set the device in PBTL mode. Output Mux Register (0x25) should be written with a value of 0x01 10 32 45. Dynamic Range Control (DRC) The DRC scheme has a single threshold, offset, and slope (all programmable). There is one ganged DRC for the left/ Output Level (dB) right channels. The DRC input/output diagram is shown in Figure 22. Professional-quality dynamic range compression automatically adjusts volume to flatten volume level. • The DRC has adjustable threshold, offset, and compression levels. K O T Input Level (dB) 1:1 Transfer Function Implemented Transfer Function Figure 22. Dynamic Range Control BiQuad Structure All biquads use a 2nd order IIR filter structure as shown below. Each biquad has 3 coefficients on the direct path (b0, b1, b2) and 2 coefficients on feedback path (a1 and a2) which is shown in the diagram. b0 x(n) Magnitude Trunction Σ y(n) Z-1 b1 a1 Z-1 Z-1 b2 a2 Z-1 Figure 24. Biquad Filter Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 29 www.anpec.com.tw APA3169 Function Description (Cont.) 26Bit 3.23 Number Format All mixer gain coefficients are 26 bit coefficients and use a 3.23 number format. Numbers formatted as 3.23 numbers means that there are 3 bits to the left of the decimal point and 23 bits to the right of the decimal point. This is shown in Figure 18. 2-23 Bit 2-5 Bit 2-1 Bit 20 Bit 21 Bit Sign Bit S_xx.xxxx_xxxx_xxxx_xxxx_xxxx_xxx Figure 25. 3.23 Format The decimal value of a 3.23 format number can be found by following the weighting and is shown in Figure 25. If the MSB is logic 0, the number is a positive number, and the weighting shown yields the correct number. If the MSB is a logic 1, and then the number is a negative number. In this case, every bit must be inverted, a 1 added to the result, and then the weighting shown in Figure 26 applied to obtain the magnitude of the negative number. 21 Bit 20 Bit 2-1 Bit 2-4 Bit 2-23 Bit (1 or 0) x21+ (1 or 0) x20+ (1 or 0) x2 -1+ (1 or 0) x2-4+ (1 or 0) x2-23 Figure 26. Conversion Weighting Facroes 3.23 Format to Floating Point Gain coefficients, entered via the I2C bus, must be entered as 32 bit binary numbers. The format of the 32 bit number (4 byte or 8 digit hexadecimal number) is shown in Figure 27. Sign Bit Integer Digit 1 u u u u Coefficient digit 8 u u S x Coefficient digit 7 Fraction Digit 1 x x x x Coefficient digit 6 Fraction Digit 2 x x x x Coefficient digit 5 Fraction Digit 3 x x x x Coefficient digit 4 Fraction Digit 4 x x x x Coefficient digit 3 Fraction Digit 5 x x x x Coefficient digit 2 Fraction Digit 6 x x x x 0 Coefficient digit 1 Figure 27. Alignment of 3.23 Coefficient in 32Bit I2C Word Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 30 www.anpec.com.tw APA3169 Function Description (Cont.) Sample Calculation for 3.23 Format dB Linear Decimal Hex (3.23 Format) 0 1 8388608 00800000 5 1.7782794 14917288 00E39EA8 -5 0.5623413 4717260 0047FACC X L = 10(X/20) D = 8388608 × L H = dec2hex (D, 8) dB Linear Decimal Hex (9.17 Format) 0 1 131072 00020000 5 1.7782794 233082.6 00038E7A -5 0.5623413 X L = 10 Sample Calculation for 9.17 Format (X/20) 73707.2 00011FEB D = 131072 × L H = dec2hex (D, 8) Recommended Use Model Normal Operation Intialization Power Down Shutdown AVDD/DVDD 3V 3V tDL-VDDH tVDDH-DL SD tPOR I2S MCLK LRCLK SCLK SDIN I2C SCL SDA tPOR Clock Errors and Rate Changes OK Stable and Valid Clocks texitSD Trim tautodetect DAP Config Other Config Stable and Valid Clocks tautodetect Volume and Mute Commands Reconfigure DAP After Shutdown Reconfigure DAP After Shutdown Exit SD tenterSD Enter SD tRL-DV tDV-RH tRH-I2C RST tVDD-PVCCL PVDD/AVCC tRL-PVCCH tPVCCH-I2C tPVCCL-VDDH 10V 7.5V 10V 7.5V Figure 28. Recommended Command Sequence Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 31 www.anpec.com.tw APA3169 Function Description (Cont.) Recommended Use Model (Cont.) 3V AVDD/DVDD /PDN SCL SDA I2C /RESET PVDD Figure 29. Power Loss Sequence Recommended Command Sequences The DAP has two groups of commands. One set is for configuration and is intended for use only during initialization. The other set has built-in click and pop protection and may be used during normal operation while audio is streaming. The following supported command sequences illustrate how to initialize, operate, and shutdown the device. Initialization Sequence Use the following sequence to power-up and initialize the device: 1. Hold all digital inputs low and ramp up AVDD/DVDD to at least 3V. 2. Initialize digital inputs and PVDD supply as follows: • Drive RESET=0, PDN=1, and other digital inputs to their desired state while ensuring that all are never more than 2.5V above AVDD/DVDD. Drive RESET =1. • Ramp up PVDD to at least 8V. 2 3. Configure the DAP via I C. 4. Configure remaining registers. 5. Exit shutdown. Normal Operation The following are the only events supported during normal operation: (a) Writes to master/channel volume registers (b) Writes to soft mute register (c) Enter and exit shutdown Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 32 www.anpec.com.tw APA3169 Function Description (Cont.) Shutdown Sequence Enter: 1. Write 0x40 to register 0x05. 2. If desired, reconfigure by returning to step 4 of initialization sequence. Exit: 1. Write 0x00 to register 0x05. 2. Proceed with normal operation. Power-down Sequence Use the following sequence to power-down the device and its supplies: 1. If time permits, enter shutdown ; else, in case of sudden power loss, assert PDN=0. 2. Assert RESET=0. 3. Drive digital inputs low and ramp down PVDD supply as follows: • Drive all digital inputs low after RESET has been low. • Ramp down PVDD while ensuring that it remains above 8V until RESET has been low. 4. Ramp down AVDD/DVDD while ensuring that it remains above 3V until PVDD is below 6V and that it is never more than 2.5V below the digital inputs. Table 1. Serial Control Interface Register Summary Sub Address Register Name No. of Bytes Contents Initialization Values 0x00 Clock control register 1 Description shown in subsequent section 0x6C 0x01 Device ID register 1 Description shown in subsequent section 0x69 0x02 Error status register 1 Description shown in subsequent section 0x00 0x03 System control register 1 1 Description shown in subsequent section 0x80 0x04 Serial data interface 1 Description shown in subsequent section 0x05 A u indicates unused bits. 0x05 1 Description shown in subsequent section 0x4C 0x06 Soft mute register 1 Description shown in subsequent section 0x00 0x07 Master volume 1 Description shown in subsequent section 0xFF (mute) 0x08 Channel 1 vol 1 Description shown in subsequent section 0x30 (0dB) 0x09 Channel 2 vol 1 Description shown in subsequent section 0x30 (0dB) 0x0A Channel 3 vol 1 Description shown in subsequent section 0x30 (0dB) 0x0B - 0X0D 0x0E Reserved Volume configuration register 0x0F 0x10 Modulation limit register 0x11-0x19 0x1A Start/stop period register 0x1B-0x1F (1) 1 Description shown in subsequent section 1 Reserved(1) 1 Description shown in subsequent section 1 Reserved(1) 1 Description shown in subsequent section 1 Reserved(1) 0x91 0x02 0x0F 0x20 Input MUX register 4 Description shown in subsequent section 0x0089 7772 0x21 CH4 Source select register 4 Description shown in subsequent section 0x0000 4303 1 Reserved(1) 0x22-0x24 Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 33 www.anpec.com.tw APA3169 Function Description (Cont.) Table 1. Serial Control Interface Register Summary (Cont.) Sub Address 0x25 Register Name PWM output MUX register 0x26-0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x2F ch1_bq[0] ch1_bq[1] ch1_bq[2] ch1_bq[3] ch1_bq[4] ch1_bq[5] ch1_bq[6] Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 No. of Bytes Contents 4 Description shown in subsequent section 4 Reserved(1) 20 20 20 20 20 20 20 Initialization Values 0x0102 1345 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 34 www.anpec.com.tw APA3169 Function Description (Cont.) Table 1. Serial Control Interface Register Summary (Cont.) Sub Address 0x30 0x31 0x32 0x33 0x34 0x35 0x36 Register Name ch2_bq[0] ch2_bq[1] ch2_bq[2] ch2_bq[3] ch2_bq[4] ch2_bq[5] ch2_bq[6] Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 No. of Bytes 20 20 20 20 20 20 20 Contents Initialization Values u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 35 www.anpec.com.tw APA3169 Function Description (Cont.) Table 1. Serial Control Interface Register Summary (Cont.) Sub Address Register Name No. of Bytes 0x37~ 0x3F Contents Initialization Values Reserved(1) 0x40 DRC1-T 4 T[31:0] (9.23 format) 0x007F FFFF 0x41 DRC1-K 4 u[31:26], K[25:0] 0x0080 0000 0x42 DRC1-O 4 u[31:26], O[25:0] 0x0080 0000 0x43 DRC2-T 4 T[31:0] (9.23 format) 0x007F FFFF 0x44 DRC2-K 4 u[31:26], K[25:0] 0x0080 0000 0x45 DRC2-O 4 u[31:26], O[25:0] 0x0080 0000 0x46 DRC control 4 Description shown in subsequent section 0x0000 0000 0x47–0x4F Reserved(1) 0x50 EQ Control 4 0x51 Ch1 output mixer 12 0x52 0x53 0x54 0x55 Ch2 output mixer Ch1 input mixer Ch2 input mixer Ch3 input mixer 12 16 16 12 Description shown in subsequent section 0x0000 0000 ch1_output_mixer2 0x0707 0707 ch1_output_mixer1 0x0707 0707 ch1_output_mixer0 0x0707 0707 ch2_output_mixer2 0x0707 0707 ch2_output_mixer1 0x0707 0707 ch2_output_mixer0 0x0707 0707 ch1_input_mixer3 0x0808 0808 ch1_input_mixer2 0x0808 0808 ch1_input_mixer1 0x0808 0808 ch1_input_mixer0 0x0808 0808 ch2_input_mixer3 0x0808 0808 ch2_input_mixer2 0x0808 0808 ch2_input_mixer1 0x0808 0808 ch2_input_mixer0 0x0808 0808 ch3_input_mixer2 0x0707 0707 ch3_input_mixer1 0x0707 0707 ch3_input_mixer0 0x0707 0707 0x56 Output Post scale 4 9.17 format 0x0002 0000 0x57 Input Pre scale 4 Description shown in subsequent section 0x0080 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 0x58 ch1_bq[7] Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 20 36 www.anpec.com.tw APA3169 Function Description (Cont.) Table 1. Serial Control Interface Register Summary (Cont.) Sub Address 0x59 0x5A 0x5B 0x5C 0x5D 0x5E Register Name ch1_bq[8] subchannel bq[0] subchannel bq[1] ch2_bq[7] ch2_bq[8] pseudo_ch2_bq[0] Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 No. of Bytes 20 20 20 20 20 20 Contents Initialization Values u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 37 www.anpec.com.tw APA3169 Function Description (Cont.) Table 1. Serial Control Interface Register Summary (Cont.) Sub Address 0x5F Register Name No. of Bytes pseudo_ch2_bq[1] 0x60 20 Ch4 output mixer 0x61 8 Ch4 input mixer 8 0x62-0xF0 Contents Initialization Values u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 ch4_output_mixer1 0x0000 0000 ch4_output_mixer0 0x0080 0000 ch4_input_mixer1 0x0040 0000 ch4_input_mixer0 0x0040 0000 Reserved(1) Note (1): Reserved register should not be accessed All DAP coefficients are 3.23 format unless specified otherwise. Clock Control Register (0x00) The clocks and data rates are automatically determined by the APA3169. The clock control register contains the autodetected clock status. Bits D7-D5 reflect the sample rate. Bits D4-D2 reflect the MCLK frequency. Table 2. Clock Control Register (0x00) D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION 0 0 0 - - - - - fS=32kHz sample rate 0 0 1 - - - - - fS=88.2/96kHz sample rate 0 1 0 - - - - - fS=176.4/192kHz sample rate 0 1 1 - - - - - fS=44.1/48kHz sample rate (2) 1 0 0 - - - - - Reserved 1 0 1 - - - - - Reserved(1) 1 1 0 - - - - - Reserved(1) 1 1 1 - - - - - Reserved(1) - - - 0 0 0 - - MCLK frequency=64xfS (3) - - - 0 0 1 - - MCLK frequency=128xfS (3) - - - 0 1 0 - - MCLK frequency=192xfS (4) - - - 0 1 1 - - MCLK frequency=256xfS (2) - - - 1 0 0 - - MCLK frequency=384xfS - - - 1 0 1 - - MCLK frequency=512xfS - - - 1 1 0 - - Reserved (1) - - - 1 1 1 - - Reserved (1) - - - - - - 0 - Reserved (1) - - - - - - - 0 Reserved (1) (1) Note (1): Reserved registers should not be accessed. Note (2): Default values are in bold Note (3): Only available for 44.1kHz and 48kHz rates. Note (4): Rate only available for 32/44.1/48kHz sample rates. Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 38 www.anpec.com.tw APA3169 Function Description (Cont.) Device Id Register (0x01) The Anpec ID register contains the ID code for the firmware revision. Table 3. General Status Register (0x01) D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 0 1 0 0 1 FUNCTION Identification code Error Status Register (0x02) The error bits are sticky and are not cleared by the hardware. This means that the software must clear the register (write zeroes) and then read them to determine if they are persistent errors. Error Definitions: MCLK Error : MCLK frequency is changing. The number of MCLKs per LRCLK is changing. SCLK Error: The number of SCLKs per LRCLK is changing. LRCLK Error: LRCLK frequency is changing. Table 4. Error Status Register (0x02) D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION 1 - - - - - - - MCLK error - 1 - - - - - - PLL auto clock error - - 1 - - - - - SCLK error - - - 1 - - - - LRCLK error - - - - 0 - - - Reserved - - - - - 0 - - Reserved - - - - - - 1 - Over Current, Over Temperature, Over Voltage or Under Voltage errors - - - - - - - 1 Over temperature warning (sets around 150OC) 0 0 0 0 0 0 0 0 No errors Note: Default values are in bold. System Control Register 1 (0x03) The system control register 1 has several functions: Bit D7: If 0, the dc-blocking filter for each channel is disabled. If 1, the dc-blocking filter ( -3dB cutoff < 1Hz ) for each channel is enabled (default). Bit D5: If 0, use soft unmute on recovery from clock error. This is a slow recovery. Unmute takes same time as volume ramp defined in reg 0x0E. If 1, use hard unmute on recovery from clock error (default). This is a fast recovery, a single step volume ramp Bits D1-D0: Select de-emphasis. Table 5. System Control Register 1 (0x03) D7 D6 D5 D4 D3 D2 D1 D0 0 - - - - - - - PWM high-pass (dc blocking) disenabled 1 - - - - - - - PWM high-pass (dc blocking) enabled - 0 0 0 0 0 - - Reserved - - - - - - 0 0 No de-emphasis - - - - - - 0 1 De-emphasis for fS=32kHz Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 FUNCTION 39 www.anpec.com.tw APA3169 Function Description (Cont.) D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION - - - - - - 1 0 De-emphasis for fS=44.1kHz - - - - - - 1 1 De-emphasis for fS=48kHz Note: Default values are in bold. Serial Data Interface Register (0x04) As shown in Table 6, the APA3169 supports 9 serial data modes. The default is 24bit, I2S mode. Table 6. Serial Data Interface Control Register (0x04) Format D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 - - - - Word Length Receive Serial Data Interface Format - - - - 0 0 0 0 16 Right-justified - - - - 0 0 0 1 20 Right-justified - - - - 0 0 1 0 24 Right-justified - - - - 0 0 1 1 16 I2S - - - - 0 1 0 0 20 I2S - - - - 0 1 0 0 24 I2S - - - - 0 1 1 0 16 Left-justified - - - - 0 Reserved 1 1 20 Left-justified 1 0 0 0 24 Left-justified - - - - 1 0 0 1 Reserved - - - - 1 0 1 0 Reserved - - - - 1 0 1 1 Reserved - - - - 1 1 0 0 Reserved - - - - 1 1 0 1 Reserved - - - - 1 1 1 0 Reserved - - - - 1 1 1 1 Reserved Note: Default values are in bold. System Control Register 2 (0x05) When bit D6 is set low, the system exits all channel shutdown and starts playing audio; otherwise, the outputs are shut down (hard mute). Table 7. System Control Register 2 (0x05) D7 D6 D5 D4 D3 D2 D1 D0 0 - - - - - - - Reserved - 1 - - - - - - Enter all channel shut down (hard mute) - 0 - - - - - - Exit all channel shut down (Normal operation) - - 0 0 1 - - - Reserved - - - - - 0 - - 2.0 mode (2 BTL) - - - - - 1 - - 2.1 mode (2 SE + 1 BTL) Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 FUNCTION 40 www.anpec.com.tw APA3169 Function Description (Cont.) D7 D6 D5 D4 D3 D2 D1 D0 - - - - - - 0 - A_SEL configured as input - - - - - - 1 - A_SEL configured as FAULT output - - - - - - - 0 Reserved FUNCTION Note: Default values are in bold. Soft Mute Register (0x06) Writing a 1 to any of the following bits sets the output of the respective channel to 50% duty cycle (soft mute). Table 8. Soft Mute Register (0x06) D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION 0 0 0 0 0 - - - Reserved - - - - - 1 - - Soft mute channel 3 - - - - - 0 - - Soft un-mute channel 3 - - - - - - 1 - Soft mute channel 2 - - - - - - 0 - Soft un-mute channel 2 - - - - - - - 1 Soft mute channel 1 - - - - - - - 0 Soft un-mute channel 1 Note: Default values are in bold. Volume Registers (0x07, 0x08, 0x09) Step size is 0.5 dB. Master volume - 0x07 (default is mute) Channel-1 volume - 0x08 (default is 0 dB) Channel-2 volume - 0x09 (default is 0 dB) Channel-3 volume - 0x0A (default is 0 dB) Table 9. Volume Registers (0x07, 0x08, 0x09) D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION 0 0 0 0 0 0 0 0 24dB 0 0 1 1 0 0 0 0 0dB 1 1 1 1 1 1 1 0 -103dB 1 1 1 1 1 1 1 1 MUTE (default for master volume) Note: Default values are in bold. Volume Configuration Register (0x0E) Bits Volume slew rate (Used to control volume change and MUTE ramp rates). These bits control the D2-D0: number of steps in a volume ramp. Volume steps occur at a rate that depends on the sample rate of the I2S data as follows. Sample Rate (kHz) Approximate Ramp Rate 8/16/32 125µs/step 11.025/22.05/44.1 90.7µs/step 12/24/48 83.3µs/step Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 41 www.anpec.com.tw APA3169 Function Description (Cont.) Table 10. Volume Control Register (0x0E) D7 D6 D5 D4 D3 D2 D1 D0 1 - - 1 0 - - - 0 FUNCTION Reserved Subchannel (ch4) volume = ch1 volume (default) 1 Subchannel volume = register 0x.A 0 Ch3 volume = ch2_volume (default) 1 Ch3 volume = register 0x.A - - - - - 0 0 0 Volume slew 512 steps (43ms volume ramp time at 48kHz) - - - - - 0 0 1 Volume slew 1024 steps (43ms volume ramp time at 48kHz) - - - - - 0 1 0 Volume slew 2048 steps (43ms volume ramp time at 48kHz) - - - - - 0 1 1 Volume slew 256 steps (43ms volume ramp time at 48kHz) - - - - - 1 0 0 Reserved 1 0 1 Reserved 1 1 0 Reserved 1 1 1 Volume slew 0 step (Disable) Note: Default values are in bold. Modulation Limit Register (0x10) The modulation limit is the maximum duty cycle of the PWM output waveform. Table 11. Modulation Limit Register (0x10) D7 D6 D5 D4 D3 D2 D1 D0 MODULATION LIMIT 0 0 0 0 0 – – – Reserved - - - - - 0 0 0 Reserved - - - - - 0 0 1 98.4% - - - - - 0 1 0 97.7% - - - - - 1 0 0 96.9% - - - - - 0 1 1 96.1% - - - - - 1 0 1 95.3% - - - - - 1 1 0 94.5% - - - - - 1 1 1 93.8% Note: Default values are in bold. Start/Stop Period Register (0x1A) This register is used to control the soft-start and soft-stop period following an enter/exit all channel shut down command or change in the PDN state. This helps reduce pops and clicks at start-up and shutdown. The times are only approximate and vary depending on device activity level and I2S clock stability. Table 12. Start/Stop Period Register (0x1A) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 - - - - - - 0 - - - - - Reserved 0 0 - - - No 50% duty cycle start/stop period 1 0 0 0 16.5ms 50% duty cycle start/stop period Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 FUNCTION 42 www.anpec.com.tw APA3169 Function Description (Cont.) D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION - - - 0 1 0 0 1 23.9ms 50% duty cycle start/stop period - - - 0 1 0 1 0 31.4ms 50% duty cycle start/stop period - - - 0 1 0 1 1 40.4ms 50% duty cycle start/stop period - - - 0 1 1 0 0 53.9ms 50% duty cycle start/stop period - - - 0 1 1 0 1 70.3ms 50% duty cycle start/stop period - - - 0 1 1 1 0 94.2ms 50% duty cycle start/stop period - - - 0 1 1 1 1 125.7ms 50% duty cycle start/stop period - - - 1 0 0 0 0 164.6ms 50% duty cycle start/stop period - - - 1 0 0 0 1 239.4ms 50% duty cycle start/stop period - - - 1 0 0 1 0 314.2ms 50% duty cycle start/stop period - - - 1 0 0 1 1 403.9ms 50% duty cycle start/stop period - - - 1 0 1 0 0 538.6ms 50% duty cycle start/stop period - - - 1 0 1 0 1 703.4ms 50% duty cycle start/stop period - - - 1 0 1 1 0 942.5ms 50% duty cycle start/stop period - - - 1 0 1 1 1 1256.6ms 50% duty cycle start/stop period - - - 1 1 0 0 0 1728.1ms 50% duty cycle start/stop period - - - 1 1 0 0 1 2513.6ms 50% duty cycle start/stop period - - - 1 1 0 1 0 3299.1ms 50% duty cycle start/stop period - - - 1 1 0 1 1 4241.7ms 50% duty cycle start/stop period - - - 1 1 1 0 0 5655.6ms 50% duty cycle start/stop period - - - 1 1 1 0 1 7383.7ms 50% duty cycle start/stop period - - - 1 1 1 1 0 9897.3ms 50% duty cycle start/stop period - - - 1 1 1 1 0 13196.4ms 50% duty cycle start/stop period Note: Default values are in bold. Input Multiplexer Register (0x20) This register controls the routing of I2S audio to the internal channels. Table 13. Input Multiplexer Register (0x20) D31 D30 D29 D28 D27 D26 D25 D24 0 0 0 0 0 0 0 0 D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION Reserved FUNCTION 1 - - - - - - - Reserved - 0 0 0 - - - - SDIN-L to Channel 1 - 0 0 1 - - - - SDIN-R to Channel 1 - 0 1 0 - - - - Reserved - 0 1 1 - - - - Reserved - 1 0 0 - - - - Reserved - 1 0 1 - - - - Reserved - 1 1 0 - - - - Ground (0) to channel 1 Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 43 www.anpec.com.tw APA3169 Function Description (Cont.) D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION - 1 1 1 - - - - Reserved - - - - 1 - - - Reserved - - - - - 0 0 0 SDIN-L to Channel 2 - - - - - 0 0 1 SDIN-R to Channel 2 - - - - - 0 1 0 Reserved - - - - - 0 1 1 Reserved - - - - - 1 0 0 Reserved - - - - - 1 0 1 Reserved - - - - - 1 1 0 Ground (0) to channel 2 - - - - - 1 1 1 Reserved D15 D14 D13 D12 D11 D10 D9 D8 0 1 1 1 0 1 1 1 D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 0 0 1 0 FUNCTION Reserved FUNCTION Reserved Note: Default values are in bold. CHANNEL 4 SOURCE SELECT REGISTER (0x21) This register selects the channel 4 source. Table 14. Subchannel Control Register (0x21) D31 D30 D29 D28 D27 D26 D25 D24 0 0 0 0 0 0 0 0 D23 D22 D21 D20 D19 D18 D17 D16 0 0 0 0 0 0 0 0 D15 D14 D13 D12 D11 D10 D9 D8 0 1 0 0 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 1 1 FUNCTION Reserved FUNCTION Reserved FUNCTION Reserved FUNCTION Reserved Note: Default values are in bold. Pwm Output Mux Register (0x25) This DAP output mux selects which internal PWM channel is output to the external pins. Any channel can be output to any external output pin. Bits D21-D20: Selects which PWM channel is output to OUT_A Bits D17-D16: Selects which PWM channel is output to OUT_B Bits D13-D12: Selects which PWM channel is output to OUT_C Bits D09-D08: Selects which PWM channel is output to OUT_D Note that channels are enclosed so that channel 1=0x00, channel 2=0x01, channel 1=0x02, and channel 2=0x03. Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 44 www.anpec.com.tw APA3169 Function Description (Cont.) Table 15. PWM Output Mux Register (0x25) D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION 0 0 0 0 0 0 0 0 D23 D22 D21 D20 D19 D18 D17 D16 0 0 - - - - - - Reserved - - 0 0 - - - - Multiplex channel 1 to OUT_A - - 0 1 - - - - Multiplex channel 2 to OUT_A - - 1 0 - - - - Multiplex channel 1 to OUT_A - - 1 1 - - - - Multiplex channel 2 to OUT_A - - - - 0 0 - - Reserved - - - - - - 0 0 Multiplex channel 1 to OUT_B - - - - - - 0 1 Multiplex channel 2 to OUT_B - - - - - - 1 0 Multiplex channel 1 to OUT_B - - - - - - 1 1 Multiplex channel 2 to OUT_B D15 D14 D13 D12 D11 D10 D9 D8 0 0 - - - - - - Reserved - - 0 0 - - - - Multiplex channel 1 to OUT_C - - 0 1 - - - - Multiplex channel 2 to OUT_C - - 1 0 - - - - Multiplex channel 1 to OUT_C - - 1 1 - - - - Multiplex channel 2 to OUT_C - - - - 0 0 - - Reserved - - - - - - 0 0 Multiplex channel 1 to OUT_D - - - - - - 0 1 Multiplex channel 2 to OUT_D - - - - - - 1 0 Multiplex channel 1 to OUT_D - - - - - - 1 1 Multiplex channel 2 to OUT_D D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 0 1 Reserved FUNCTION FUNCTION FUNCTION Reserved Note: Default values are in bold. DRC Control (0x46) Each DRC can be enabled independently using the DRC control register. The DRCs are disabled by default. Table 16. DRC Control Register D31 D30 D29 D28 D27 D26 D25 D24 0 0 0 0 0 0 0 0 D23 D22 D21 D20 D19 D18 D17 D16 0 0 0 0 0 0 0 0 D15 D14 D13 D12 D11 D10 D9 D8 0 0 0 0 0 0 0 0 Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 FUNCTION Reserved FUNCTION Reserved FUNCTION Reserved 45 www.anpec.com.tw APA3169 Function Description (Cont.) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 - - - - - - - - - - - - - - - FUNCTION 0 - - Reserved - 0 - DRC2 turned OFF - - 1 - DRC2 turned ON - - - - 0 DRC1 turned OFF - - - - 1 DRC1 turned ON Note: Default values are in bold. EQ Control (0x50) Table 1. EQ Control Register D31 D30 D29 D28 D27 D26 D25 D24 0 0 0 0 0 0 0 0 D23 D22 D21 D20 D19 D18 D17 D16 0 0 0 0 0 0 0 0 D15 D14 D13 D12 D11 D10 D9 D8 0 0 0 0 0 0 0 0 D7 D6 D5 D4 D3 D2 D1 D0 0 - - - - - - - FUNCTION Reserved FUNCTION Reserved FUNCTION Reserved FUNCTION EQ ON 1 - - - - - - - EQ OFF - 0 0 0 0 0 0 0 Reserved Note: Default values are in bold. Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 46 www.anpec.com.tw APA3169 Application Information Land Pattern Recommendation 5.5mm Via diameter =0.3mm X16 1.7mm 0.28mm 5.0mm 0.5mm Exposed for thermal PAD connected Ground plane for ThermalPAD TQFP7X7-48 Land Pattern Recommendation Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 47 www.anpec.com.tw APA3169 Application Information (Cont.) Layout Recommendation AVDD Power stage block, please use high voltage -bearing component . 10kO 470O 0.047µ F 4700 pF 0.047µ F 470O 2200 pF 1µ F 4700 pF 0.1µ F 0.1µF /PDN LRCK SCLK SDIN SDA SCL 0.1µF 22µ H 0.68µ F 220µF AVDD A_SEL 10kO MCLK 18.2kO TP1 TP2 10kO VR_DIG /PDN_N LRCLK SCLK SDIN SDA SCL 13 14 15 16 17 18 19 20 21 22 23 24 0.68µ F 48 47 46 45 44 43 42 41 40 39 38 37 APA3169 PGND_AB PGND_AB OUT_B PVDD_B PVDD_B BS_B BS_C PVDD_C PVDD_C OUT_C PGND_CD PGND_CD 22µ H 0. 033µF 0. 033µF 0.1µF PVDD 0.1µF 22µ H 0.68µ F /RESET_N TP3 DVDD DVSS DGND AGND VREG VCLCD BS_D PVDD_D PVDD_D OUT_D 25 26 27 28 29 30 31 32 33 34 35 36 4. 7µ F AV DD PVDD 12 11 10 9 8 7 6 5 4 3 2 1 0O A_SEL MCLK 0.033 µF VR_ANA PLL_FLTP PLL_FLTM AVSS PBTL TM2 TM1 22.1kO VCLA B BS_A PVDD_A PVDD_A OUT_A AVDD 10µ F Output & VDD traces width =40mil, should be as short as they can, and symmetric. JP1 /RESET DVDD 10µF AVDD cap. & DVDD cap. should be close to the chip . 0.68µ F 0.1µF 220 µF 22µ H 0.1µF 1µ F 0.1µ F Thermal pad should be soldered on ground plane of the PCB . Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 PVDD 48 0.033µ F PVDD cap. and bootstrap cap . should be close to the chip . www.anpec.com.tw APA3169 Package Information TQFP7x7-48P D 0.25 E E2 EXPOSED PAD E1 c A1 D2 A A2 D1 L b S Y M B O L 0 GAUGE PLANE SEATING PLANE e TQFP7x7-48P MILLIMETERS MIN. INCHES MIN. MAX. A MAX. 0.047 1.20 A1 0.05 0.15 0.002 0.006 A2 0.95 1.05 0.037 0.041 b 0.17 0.27 0.007 0.011 c 0.09 0.20 0.004 0.008 D 8.80 9.20 0.346 0.362 0.280 D1 6.90 7.10 0.272 D2 3.00 5.50 0.118 0.177 E 8.80 9.20 0.346 0.362 E1 6.90 7.10 0.272 0.280 E2 3.00 5.50 0.118 0.177 0.75 0.018 e L 0.50 BSC 0.45 0 o 0.020 BSC o o 7 0 0.030 7o Note : 1. Followed from JEDEC MS-026 ABC. 2. Dimension "D1" and "E1" do not include mold protrusions. Allowable protrusions is 0.25 mm per side. "D1" and "E1" are maximun plasticbody size dimensions including mold mismatch. Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 49 www.anpec.com.tw APA3169 Carrier Tape & Reel Dimensions P0 P2 P1 A B0 W F E1 OD0 K0 A0 A OD1 B B T SECTION A-A SECTION B-B H A d T1 Application TQFP7x7-48P A H T1 C d D W E1 F 330.0±2.00 50 MIN. 16.4+2.00 -0.00 13.0+0.50 -0.20 1.5 MIN. 20.2 MIN. 16.0±0.30 1.75±0.10 7.5±0.10 P0 P1 P2 D0 D1 T A0 B0 K0 2.0±0.10 1.5+0.10 -0.00 1.5 MIN. 0.6+0.00 -0.40 9.4±0.20 9.4±0.20 1.8±0.20 4.0±0.10 12.0±0.10 (mm) Devices Per Unit Package Type Unit Quantity TQFP7x7-48P Tape & Reel 2500 Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 50 www.anpec.com.tw APA3169 Taping Direction Information TQFP7x7-48P USER DIRECTION OF FEED Classification Profile Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 51 www.anpec.com.tw APA3169 Classification Reflow Profiles Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly 100 °C 150 °C 60-120 seconds 150 °C 200 °C 60-120 seconds 3 °C/second max. 3°C/second max. 183 °C 60-150 seconds 217 °C 60-150 seconds See Classification Temp in table 1 See Classification Temp in table 2 Time (tP)** within 5°C of the specified classification temperature (Tc) 20** seconds 30** seconds Average ramp-down rate (Tp to Tsmax) 6 °C/second max. 6 °C/second max. 6 minutes max. 8 minutes max. Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts) Average ramp-up rate (Tsmax to TP) Liquidous temperature (TL) Time at liquidous (tL) Peak (Tp)* package body Temperature Time 25°C to peak temperature * Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum. Table 1. SnPb Eutectic Process – Classification Temperatures (Tc) 3 Package Thickness <2.5 mm Volume mm <350 235 °C Volume mm ≥350 220 °C ≥2.5 mm 220 °C 220 °C 3 Table 2. Pb-free Process – Classification Temperatures (Tc) Package Thickness <1.6 mm 1.6 mm – 2.5 mm ≥2.5 mm Volume mm <350 260 °C 260 °C 250 °C 3 Volume mm 350-2000 260 °C 250 °C 245 °C 3 Volume mm >2000 260 °C 245 °C 245 °C 3 Reliability Test Program Test item SOLDERABILITY HOLT PCT TCT HBM MM Latch-Up Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 Method JESD-22, B102 JESD-22, A108 JESD-22, A102 JESD-22, A104 MIL-STD-883-3015.7 JESD-22, A115 JESD 78 52 Description 5 Sec, 245°C 1000 Hrs, Bias @ Tj=125°C 168 Hrs, 100%RH, 2atm, 121°C 500 Cycles, -65°C~150°C VHBM≧2KV VMM≧200V 10ms, 1tr≧100mA www.anpec.com.tw APA3169 Customer Service Anpec Electronics Corp. Head Office : No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan Tel : 886-3-5642000 Fax : 886-3-5642050 Taipei Branch : 2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan Tel : 886-2-2910-3838 Fax : 886-2-2917-3838 Copyright ANPEC Electronics Corp. Rev. A.4 - Jan., 2013 53 www.anpec.com.tw