ON MC74VHC1G32DTT1G Single 2-input or gate Datasheet

MC74VHC1G32
Single 2-Input OR Gate
The MC74VHC1G32 is an advanced high speed CMOS 2−input OR
gate fabricated with silicon gate CMOS technology.
The internal circuit is composed of multiple stages, including a
buffer output which provides high noise immunity and stable output.
The MC74VHC1G32 input structure provides protection when
voltages up to 7 V are applied, regardless of the supply voltage. This
allows the MC74VHC1G32 to be used to interface 5 V circuits to 3 V
circuits.
http://onsemi.com
MARKING
DIAGRAMS
Features
High Speed: tPD = 3.7 ns (Typ) at VCC = 5 V
Low Power Dissipation: ICC = 1 mA (Max) at TA = 25°C
5
SC−88A / SOT−353 / SC−70
DF SUFFIX
CASE 419A
Power Down Protection Provided on Inputs
Balanced Propagation Delays
M
•
•
•
•
•
•
•
•
V4 M G
G
1
Pin and Function Compatible with Other Standard Logic Families
Chip Complexity: FETs = 60
These Devices are Pb−Free and are RoHS Compliant
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
V4
M
G
IN B
1
IN A
2
= Device Code
= Date Code*
= Pb−Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may
vary depending upon manufacturing location.
VCC
5
V4 MG
G
TSOP−5 / SOT−23 / SC−59
DT SUFFIX
CASE 483
PIN ASSIGNMENT
GND
4
3
OUT Y
1
Figure 1. Pinout (Top View)
IN B
2
IN A
3
GND
4
OUT Y
5
VCC
FUNCTION TABLE
IN A
IN B
≥1
OUT Y
Inputs
Figure 2. Logic Symbol
Output
A
B
Y
L
L
H
H
L
H
L
H
L
H
H
H
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 4 of this data sheet.
© Semiconductor Components Industries, LLC, 2014
April, 2014 − Rev. 20
1
Publication Order Number:
MC74VHC1G32/D
MC74VHC1G32
MAXIMUM RATINGS
Symbol
Parameter
VCC
DC Supply Voltage
VIN
DC Input Voltage
VOUT
DC Output Voltage
Value
Unit
*0.5 to )7.0
V
−0.5 to +7.0
V
*0.5 to VCC )0.5
V
IIK
DC Input Diode Current
−20
mA
IOK
DC Output Diode Current
$20
mA
IOUT
DC Output Sink Current
$12.5
mA
ICC
DC Supply Current per Supply Pin
$25
mA
*65 to )150
°C
260
°C
)150
°C
SC70−5/SC−88A (Note 1)
TSOP−5
350
230
°C/W
SC70−5/SC−88A
TSOP−5
150
200
mW
TSTG
Storage Temperature Range
TL
Lead Temperature, 1 mm from Case for 10 Seconds
TJ
Junction Temperature Under Bias
qJA
Thermal Resistance
PD
Power Dissipation in Still Air at 85°C
MSL
Moisture Sensitivity
FR
Flammability Rating
VESD
Level 1
Oxygen Index: 28 to 34
Human Body Model (Note 2)
Machine Model (Note 3)
Charged Device Model (Note 4)
u2000
u200
N/A
V
Above VCC and Below GND at 125°C (Note 5)
$500
mA
ESD Withstand Voltage
ILATCHUP
Latchup Performance
UL 94 V−0 @ 0.125 in
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Measured with minimum pad spacing on an FR4 board, using 10 mm−by−1 inch, 2−ounce copper trace with no air flow.
2. Tested to EIA/JESD22−A114−A.
3. Tested to EIA/JESD22−A115−A.
4. Tested to JESD22−C101−A.
5. Tested to EIA/JESD78.
RECOMMENDED OPERATING CONDITIONS
Symbol
Min
Max
Unit
VCC
DC Supply Voltage
2.0
5.5
V
VIN
DC Input Voltage
0.0
5.5
V
0.0
VCC
V
Operating Temperature Range
−55
+125
°C
0
0
100
20
ns/V
VCC = 3.3 V ± 0.3 V
VCC = 5.0 V ± 0.5 V
Input Rise and Fall Time
Time, Years
80
1,032,200
117.8
90
419,300
47.9
100
178,700
20.4
110
79,600
9.4
120
37,000
4.2
130
17,800
2.0
140
8,900
1.0
TJ = 80 ° C
Time, Hours
TJ = 90 ° C
Junction
Temperature °C
FAILURE RATE OF PLASTIC = CERAMIC
UNTIL INTERMETALLICS OCCUR
TJ = 100 ° C
Device Junction Temperature versus
Time to 0.1% Bond Failures
TJ = 130 ° C
NORMALIZED FAILURE RATE
tr , tf
DC Output Voltage
TJ = 110° C
TA
TJ = 120° C
VOUT
Characteristics
1
1
10
100
TIME, YEARS
Figure 3. Failure Rate vs. Time
Junction Temperature
http://onsemi.com
2
1000
MC74VHC1G32
DC ELECTRICAL CHARACTERISTICS
Symbol
Parameter
Test Conditions
Min
1.5
2.1
3.15
3.85
VIH
Minimum High−Level
Input Voltage
2.0
3.0
4.5
5.5
VIL
Maximum Low−Level
Input Voltage
2.0
3.0
4.5
5.5
VOH
Minimum High−Level
Output Voltage
VIN = VIH or VIL
VOL
Maximum Low−Level
Output Voltage
VIN = VIH or VIL
TA v 855C
TA = 255C
VCC
(V)
Typ
Max
Min
1.5
2.1
3.15
3.85
0.5
0.9
1.35
1.65
VIN = VIH or VIL
IOH = *50 mA
2.0
3.0
4.5
1.9
2.9
4.4
VIN = VIH or VIL
IOH = *4 mA
IOH = *8 mA
3.0
4.5
2.58
3.94
VIN = VIH or VIL
IOL = 50 mA
2.0
3.0
4.5
VIN = VIH or VIL
IOL = 4 mA
IOL = 8 mA
Max
2.0
3.0
4.5
0.0
0.0
0.0
*555C to 1255C
Min
Max
1.5
2.1
3.15
3.85
0.5
0.9
1.35
1.65
V
0.5
0.9
1.35
1.65
1.9
2.9
4.4
1.9
2.9
4.4
2.48
3.80
2.34
3.66
Unit
V
V
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
3.0
4.5
0.36
0.36
0.44
0.44
0.52
0.52
V
IIN
Maximum Input
Leakage Current
VIN = 5.5 V or GND
0 to
5.5
$0.1
$1.0
$1.0
mA
ICC
Maximum Quiescent
Supply Current
VIN = VCC or GND
5.5
1.0
10
40
mA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
AC ELECTRICAL CHARACTERISTICS Cload = 50 pF, Input tr = tf = 3.0 ns
TA ≤ 85°C
TA = 25°C
Symbol
tPLH,
tPHL
CIN
Parameter
Maximum Propagation
Delay,
Input A or B to Y
Min
Test Conditions
Typ
Max
Min
Max
−55 ≤ TA ≤ 125°C
Min
Max
Unit
ns
VCC = 3.3 ± 0.3 V
CL = 15 pF
CL = 50 pF
4.8
6.1
7.9
11.4
9.5
13.0
11.5
15.5
VCC = 5.0 ± 0.5 V
CL = 15 pF
CL = 50 pF
3.7
4.4
5.5
7.5
6.5
8.5
8.0
10.0
5.5
10
10
10
Maximum Input
Capacitance
pF
Typical @ 25°C, VCC = 5.0 V
CPD
11
Power Dissipation Capacitance (Note 6)
pF
6. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no−load dynamic
power consumption; PD = CPD VCC2 fin + ICC VCC.
http://onsemi.com
3
MC74VHC1G32
Input A or B
50%
50% VCC
GND
tPLH
tPHL
VOH
Output Y
50% VCC
VOL
Figure 4. Switching Waveforms
INPUT
OUTPUT
CL*
*Includes all probe and jig capacitance.
A 1−MHz square input wave is recommended
for propagation delay tests.
Figure 5. Test Circuit
ORDERING INFORMATION
Device
Package
Shipping†
MC74VHC1G32DFT1G
NLVVHC1G32DFT1G*
MC74VHC1G32DFT2G
SC70−5/SC−88A/SOT−353
(Pb−Free)
3000 / Tape & Reel
NLVVHC1G32DFT2G*
MC74VHC1G32DTT1G
SOT23−5/TSOP−5/SC59−5
(Pb−Free)
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
http://onsemi.com
4
MC74VHC1G32
PACKAGE DIMENSIONS
SC−88A (SC−70−5/SOT−353)
CASE 419A−02
ISSUE K
A
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A−01 OBSOLETE. NEW STANDARD
419A−02.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
G
5
4
−B−
S
1
2
DIM
A
B
C
D
G
H
J
K
N
S
3
D 5 PL
0.2 (0.008)
M
B
M
N
J
C
H
K
http://onsemi.com
5
INCHES
MIN
MAX
0.071
0.087
0.045
0.053
0.031
0.043
0.004
0.012
0.026 BSC
--0.004
0.004
0.010
0.004
0.012
0.008 REF
0.079
0.087
MILLIMETERS
MIN
MAX
1.80
2.20
1.15
1.35
0.80
1.10
0.10
0.30
0.65 BSC
--0.10
0.10
0.25
0.10
0.30
0.20 REF
2.00
2.20
MC74VHC1G32
PACKAGE DIMENSIONS
TSOP−5
CASE 483−02
ISSUE H
NOTE 5
2X
0.10 T
2X
0.20 T
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES
LEAD FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS
OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
5. OPTIONAL CONSTRUCTION: AN
ADDITIONAL TRIMMED LEAD IS ALLOWED
IN THIS LOCATION. TRIMMED LEAD NOT TO
EXTEND MORE THAN 0.2 FROM BODY.
D 5X
0.20 C A B
M
5
1
4
2
3
B
S
K
L
DETAIL Z
G
A
DIM
A
B
C
D
G
H
J
K
L
M
S
DETAIL Z
J
C
0.05
SEATING
PLANE
H
T
MILLIMETERS
MIN
MAX
3.00 BSC
1.50 BSC
0.90
1.10
0.25
0.50
0.95 BSC
0.01
0.10
0.10
0.26
0.20
0.60
1.25
1.55
0_
10 _
2.50
3.00
SOLDERING FOOTPRINT*
0.95
0.037
1.9
0.074
2.4
0.094
1.0
0.039
0.7
0.028
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
6
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC74VHC1G32/D
Similar pages