ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com 11.3 Gbps Limiting Transimpedance Amplifier With RSSI Check for Samples: ONET8541T FEATURES 1 • • • • • • • • • 9 GHz Bandwidth 4 kΩ Differential Small Signal Transimpedance -20dBm Sensitivity 0.95 µARMS Input Referred Noise 2.5 mAPP Input Overload Current Received Signal Strength Indication (RSSI) 90 mW Typical Power Dissipation CML Data Outputs with On-Chip 50Ω Back-Termination On Chip Supply Filter Capacitor • • Single 3.3 V Supply Die Size: 870 µm × 1036 μm APPLICATIONS • • • • • • 10G Ethernet 8G and 10G Fibre Channel 10G EPON SONET OC-192 6G CPRI and OBSAI PIN Preamplifier Receivers DESCRIPTION The ONET8541T is a high-speed, high gain, limiting transimpedance amplifier used in optical receivers with data rates up to 11.3Gbps. It features low input referred noise, 9GHz bandwidth, 4kΩ small signal transimpedance, and a received signal strength indicator (RSSI). The ONET8541T is available in die form, includes an on-chip VCC bypass capacitor and is optimized for packaging in a TO can. The ONET8541T requires a single 3.3V ±10% supply and its power efficient design typically dissipates less than 90mW. The device is characterized for operation from –40°C to 100°C case (IC back side) temperature. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2011, Texas Instruments Incorporated ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. BLOCK DIAGRAM A simplified block diagram of the ONET8541T is shown in Figure 1. The ONET8541T consists of the signal path, supply filters, a control block for dc input bias, automatic gain control (AGC) and received signal strength indication (RSSI). The RSSI provides the bias for the TIA stage and the control for the AGC. The signal path consists of a transimpedance amplifier stage, a voltage amplifier, and a CML output buffer. The on-chip filter circuit provides a filtered VCC for the PIN photodiode and for the transimpedance amplifier. The dc input bias circuit and automatic gain control use internal low pass filters to cancel the dc current on the input and to adjust the transimpedance amplifier gain. Furthermore, circuitry is provided to monitor the received signal strength. VCC_OUT To Voltage Amplifier and Output Buffer To TIA VCC_IN GND 220 W FILTER1/2 RSSI_IB AGC and DC Offset Cancellation RF OUT+ IN OUTTIA Voltage Amplifier CML Output Buffer RSSI_EB Figure 1. Simplified Block Diagram of the ONET8541T 2 Copyright © 2011, Texas Instruments Incorporated ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com BOND PAD ASSIGNMENT GND GND The ONET8541T is available in die form. The locations of the bondpads are shown in Figure 2. 18 17 8541T M 2 15 OUT– GND 3 14 GND VCC_OUT 4 13 RSSI_EB VCC_IN 5 12 RSSI_IB 7 8 9 10 11 NC 6 GND OUT+ FILTER2 GND IN 16 FILTER1 1 GND GND Figure 2. Bond Pad Assignment of ONET8541T PIN FUNCTIONS PIN NAME NO. GND 1, 3, 6, 10 14, 16 – 18 OUT+ TYPE DESCRIPTION Supply Circuit ground. All GND pads are connected on die. Bonding all pads is optional; however, for optimum performance a good ground connection is mandatory. 2 Analog output Non-inverted CML data output. On-chip 50Ω back-terminated to VCC. VCC_OUT 4 Supply 2.97V–3.63V supply voltage for the voltage and CML amplifiers. VCC_IN 5 Supply 2.97V–3.63V supply voltage for input TIA stage. FILTER 7, 9 Analog Bias voltage for photodiode cathode. These pads are internally connected to an 220Ω resistor to VCC and a filter capacitor to ground (GND). IN 8 Analog input Data input to TIA (photodiode anode). NC 11 No Connect Do not connect 12 Analog output Analog output current proportional to the input data amplitude. Indicates the strength of the received signal (RSSI) if the photo diode is biased from the TIA. Connected to an external resistor to ground (GND). For proper operation, ensure that the voltage at the RSSI pad does not exceed VCC – 0.65V. If the RSSI feature is not used this pad should be left open. RSSI_EB 13 Analog output Optional use when operated with external PD bias (e.g. APD). Analog output current proportional to the input data amplitude. Indicates the strength of the received signal (RSSI).Connected to an external resistor to ground (GND). For proper operation, ensure that the voltage at the RSSI pad does not exceed VCC – 0.65V. If the RSSI feature is not used this pad should be left open. OUT– 15 Analog output Inverted CML data output. On-chip 50Ω back-terminated to VCC. RSSI_IB Copyright © 2011, Texas Instruments Incorporated 3 ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) (2) MIN MAX UNIT –0.3 4.0 V VCC_IN, VCC_OUT Supply voltage VFILTER1, VFILTER2, VOUT+, VOUT–, VRSSI_IB, VRSSI_EB Voltage at FILTER1, FILTER2, OUT+, OUT–, RSSI_IB, RSSI_EB (2) –0.3 4.0 V IIN Current into IN –0.7 3.5 mA IFILTER Current into FILTER1, FILTER2 –8 8 mA IOUT+, IOUT- Continuous current at outputs –8 8 ESD rating at all pins except input IN 2 ESD TJ,max (1) (2) ESD rating at input IN mA kV (HBM) 0.5 Maximum junction temperature kV(HBM) °C 125 Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal. RECOMMENDED OPERATING CONDITIONS MIN NOM MAX VCC Supply voltage PARAMETER 2.97 3.3 3.63 V TA Operating backside die temperature –40 100 (1) °C LFILTER, LIN Wire-bond inductor at pins FILTER and IN 0.3 0.5 nH CPD Photodiode capacitance 0.2 (1) CONDITIONS UNIT pF 105°C maximum junction temperature DC ELECTRICAL CHARACTERISTICS over recommended operating conditions (unless otherwise noted). Typical values are at VCC = 3.3 V and TA = 25°C PARAMETER VCC IVCC Supply current VIN Input bias voltage ROUT Output resistance RFILTER Photodiode filter resistance (1) 4 TEST CONDITIONS Supply voltage MIN TYP MAX UNIT 2.97 3.3 3.63 V 27 (1) Input current iIN < 1000 μAPP 0.75 Single-ended to VCC 40 45 (1) Input current iIN < 2500 μAPP 40 mA 0.85 0.98 V 50 60 Ω 220 Ω Including RSSI current Copyright © 2011, Texas Instruments Incorporated ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com AC ELECTRICAL CHARACTERISTICS over recommended operating conditions (unless otherwise noted). Typical values are at VCC = +3.3 V and TA = 25°C PARAMETER Small signal transimpedance Z21 TEST CONDITIONS Differential output; Input current iIN = 20 μAPP (1) fHSS,3dB Small signal bandwidth iIN = 16 μAPP fL,3dB Low frequency –3 dB bandwidth 16 μA < iIN < 2000 μAPP iN,IN Input referred RMS noise SUS Unstressed sensitivity DJ Deterministic jitter DJOL Overload deterministic jitter MIN TYP 2500 4000 7 MAX Ω 9 GHz 30 100 10 GHz bandwidth (2) 0.95 1.4 10.3125 Gbps, PRBS31 pattern, 1310 nm, BER 10–12 –20 kHz μA dBm 25 μAPP < iIN < 500 μAPP (10.3125 Gbps, K28.5 pattern) 6 12 500 μAPP < iIN < 2000 μAPP (10.3125 Gbps, K28.5 pattern) 6 14 2000 μAPP < iIN < 2500 μAPP (10.3125 Gbps, K28.5 pattern) UNIT psPP 7 16 psPP VOUT,D,MAX Maximum differential output voltage Input current iIN = 500 μAPP 180 300 420 mVPP ARSSI_IB Resistive load to GND (3) 0.48 0.5 0.52 A/A 2 7 16 μA 0.6 A/A RSSI gain internal bias RSSI internal bias output offset current (no light) (4) ARSSI_EB RSSI gain external bias Resistive load to GND (3) RSSI external bias output offset current (no light) PSNR (1) (2) (3) (4) (5) Power supply noise rejection F < 10 MHz (5), Supply filtering according to SFF8431 0.43 25 μA –15 dB The small signal bandwidth is specified over process corners, temperature, and supply voltage variation. The assumed photodiode capacitance is 0.2 pF and the bond-wire inductance is 0.3 nH. The small signal bandwidth strongly depends on environmental parasitics. Careful attention to layout parasitics and external components is necessary to achieve optimal performance. Input referred RMS noise is (RMS output noise)/ (gain at 100 MHz). The RSSI output is a current output, which requires a resistive load to ground (GND). The voltage gain can be adjusted for the intended application by choosing the external resistor; however, for proper operation, ensure that the voltage at RSSI does not exceed VCC – 0.65V. Offset is added to improve accuracy below 5μA. When measured without input current (no light) the offset can be subtracted as a constant offset from RSSI measurements. PSNR is the differential output amplitude divided by the voltage ripple on supply; no input current at IN. Copyright © 2011, Texas Instruments Incorporated 5 ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com DETAILED DESCRIPTION SIGNAL PATH The first stage of the signal path is a transimpedance amplifier which converts the photodiode current into a voltage. If the input signal current exceeds a certain value, the transimpedance gain is reduced by means of a nonlinear AGC circuit to limit the signal amplitude. The second stage is a limiting voltage amplifier that provides additional limiting gain and converts the single ended input voltage into a differential data signal. The output stage provides CML outputs with an on-chip 50Ω back-termination to VCC. FILTER CIRCUITRY The FILTER pins provide a filtered VCC for a PIN photodiode bias. The on-chip low pass filter for the photodiode is implemented using a filter resistor of 220Ω and a capacitor. The corresponding corner frequency is below 5MHz. The supply voltages for the transimpedance amplifier are filtered by means of on-chip capacitors, thus avoiding the necessity to use an external supply filter capacitor. The input stage has a separate VCC supply (VCC_IN) which is not connected on chip to the supply of the limiting and CML stages (VCC_OUT). AGC AND RSSI The voltage drop across the internal photodiode supply-filter resistor is monitored by the bias and RSSI control circuit block in the case where a PIN diode is biased using the FILTER pins. If the dc input current exceeds a certain level then it is partially cancelled by means of a controlled current source. This keeps the transimpedance amplifier stage within sufficient operating limits for optimum performance. The automatic gain control circuitry adjusts the voltage gain of the AGC amplifier to ensure limiting behavior of the complete amplifier. Finally this circuit block senses the current through the filter resistor and generates a mirrored current that is proportional to the input signal strength. The mirrored current is available at the RSSI_IB output and can be sunk to ground (GND) using an external resistor. For proper operation, ensure that the voltage at the RSSI_IB pad does not exceed VCC – 0.65V. If an APD or PIN photodiode is used with an external bias then the RSSI_EB pin should be used. However, for greater accuracy under external photo diode biasing conditions, it is recommended to derive the RSSI from the external bias circuitry. 6 Copyright © 2011, Texas Instruments Incorporated ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com TYPICAL OPERATION CHARACTERISTICS Typical operating condition is at VCC = 3.3 V and TA = 25°C (unless otherwise noted) TRANSIMPEDANCE vs INPUT CURRENT SMALL SIGNAL TRANSIMPENDANCE vs AMBIENT TEMPERATURE 4.5 8000 4.0 7000 6000 Transimpedance - W Transimpedance - kW 3.5 3.0 2.5 2.0 1.5 5000 4000 3000 1.0 2000 0.5 1000 0 0 200 400 600 800 IIN - Input Current - mAPP 0 -40 1000 -20 0 20 40 60 80 TA - Ambient Temperature - °C Figure 3. Figure 4. SMALL SIGNAL TRANSFER CHARACTERISTICS SMALL SIGNAL BANDWIDTH vs AMBIENT TEMPERATURE 100 14 6 3 12 0 10 Bandwidth - GHz Gain - dB -3 -6 -9 -12 8 6 4 -15 2 -18 -21 0.1 1 10 f - Frequency - GHz Figure 5. Copyright © 2011, Texas Instruments Incorporated 100 0 -40 -20 0 20 40 60 80 TA - Ambient Temperature - °C 100 Figure 6. 7 ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com TYPICAL OPERATION CHARACTERISTICS (continued) Typical operating condition is at VCC = 3.3 V and TA = 25°C (unless otherwise noted) OUTPUT VOLTAGE vs INPUT CURRENT DETERMINISTIC JITTER vs INPUT CURRENT 10 250 8 Deterministic Jitter - ps Differential Output Voltage - mVPP 300 200 150 100 0 0 200 400 600 800 IIN - Input Current - mAPP 1000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 IIN - Input Current - mAPP Figure 7. Figure 8. INPUT REFERRED NOISE vs TEMPERATURE RSSI_IB OUTPUT CURRENT vs AVERAGE INPUT CURRENT 2.00 1000 900 1.75 800 RSSI_IB Output Current - mA Input Referred Noise - mArms 4 2 50 0 1.50 1.25 1.00 0.75 0.50 0.25 0 -40 700 600 500 400 300 200 100 -20 0 20 40 60 80 TA - Ambient Temperature - °C Figure 9. 8 6 100 0 0 200 400 600 800 1000 1200 Average Input Current - mA Figure 10. Copyright © 2011, Texas Instruments Incorporated ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com TYPICAL OPERATION CHARACTERISTICS (continued) Typical operating condition is at VCC = 3.3 V and TA = 25°C (unless otherwise noted) OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND 20 μAPP INPUT CURRENT 25 mVdiv 20 ps/div OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND 100 μAPP INPUT CURRENT 20 ps/div 60 mV/div Figure 11. Figure 12. OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND 500 μAPP INPUT CURRENT OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND 2 mAPP INPUT CURRENT 60 mV/div 20 ps/div Figure 13. Copyright © 2011, Texas Instruments Incorporated 60 mV/div 20 ps/div Figure 14. 9 ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com APPLICATION INFORMATION Figure 15 shows the ONET8541T used in a typical fiber optic receiver using the internal photodiode bias. The ONET8541T converts the electrical current generated by the PIN photodiode into a differential output voltage. The FILTER inputs provide a dc bias voltage for the PIN that is low pass filtered by the combination of an internal 220Ω resistor and a capacitor. Because the voltage drop across the 220Ω resistor is sensed and used by the bias circuit, the photodiode must be connected to the FILTER pads for the bias to function correctly. The RSSI output is used to mirror the photodiode output current and can be connected via a resistor to GND. The voltage gain can be adjusted for the intended application by choosing the external resistor; however, for proper operation of the ONET8541T, ensure that the voltage at RSSI never exceeds VCC – 0.65V. If the RSSI output is not used while operating with internal PD bias, it should be left open. The OUT+ and OUT– pins are internally terminated by 50Ω pull-up resisters to VCC. The outputs must be ac coupled, for example by using 0.1μF capacitors, to the succeeding device. VCC_OUT VCC_IN 0.1μF OUT+ 0.1μF OUT- 1 RSSI R RSSI GND Figure 15. Basic Application Circuit for PIN Receivers ASSEMBLY RECOMMENDATIONS Careful attention to assembly parasitics and external components is necessary to achieve optimal performance. Recommendations that optimize performance include: 1. Minimize the total capacitance on the IN pad by using a low capacitance photodiode and paying attention to stray capacitances. Place the photodiode close to the ONET8541T die in order to minimize the bond wire length and thus the parasitic inductance. 2. Use identical termination and symmetrical transmission lines at the ac coupled differential output pins OUT+ 10 Copyright © 2011, Texas Instruments Incorporated ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com and OUT–. 3. Use short bond wire connections for the supply terminals VCC_IN, VCC_OUT, and GND. Supply voltage filtering is provided on chip but filtering may be improved by using an additional external capacitor. CHIP DIMENSIONS AND PAD LOCATIONS 1036μm 18 17 8541T M 1 16 2 15 3 14 4 13 5 12 y 8 7 6 9 10 11 870μm x Die Thickness: 203 ± 13 μm Pad Dimensions: 105 µm × 65 μm Die Size: 870 ± 40 μm × 1036 ± 40 μm PAD COORDINATES (referenced to pad 1) SYMBOL TYPE DESCRIPTION x (μm) y (μm) 1 0 0 GND Supply Circuit ground 2 0 -115 OUT+ Analog output Non-inverted data output 3 0 -230 GND Supply Circuit ground 4 0 -460 VCC_OUT Supply 3.3V supply voltage 5 0 -575 VCC_IN Supply 3.3V supply voltage 6 115.5 -728 GND Supply Circuit ground 7 225.5 -728 FILTER1 Analog Bias voltage for photodiode 8 335.5 -728 IN Analog input Data input to TIA 9 445.5 -728 FILTER2 Analog Bias voltage for photodiode 10 555.5 -728 GND Supply Circuit ground 11 665.5 -728 NC No connect Do not connect 12 671 -575 RSSI_IB Analog output RSSI output signal for internally biased receivers 13 671 -460 RSSI_EB Analog output RSSI output signal for externally biased receivers 14 671 -230 GND Supply Circuit ground 15 671 -115 OUT– Analog output Inverted data output 16 671 0 GND Supply Circuit ground 17 393 109 GND Supply Circuit ground Copyright © 2011, Texas Instruments Incorporated 11 ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 PAD 18 COORDINATES (referenced to pad 1) x (μm) y (μm) 278 109 www.ti.com SYMBOL GND TYPE Supply DESCRIPTION Circuit ground TO46 LAYOUT EXAMPLE An example for a layout using a ground-signal-ground (GSG) type pin photodiode in a 5 pin TO46 can is shown in Figure 16. Figure 17 shows an example with a PIN photodiode having two contacts on the topside. OUT+ OUT– VCC RSSI Figure 16. TO46 5 Pin Layout Using the ONET8541T with a GSG PIN Diode 12 Copyright © 2011, Texas Instruments Incorporated ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com OUT+ OUT– VCC RSSI Figure 17. TO46 5 Pin Layout Using the ONET8541T with a Two Contact PIN Diode Copyright © 2011, Texas Instruments Incorporated 13 ONET8541T SLLSE85A – JULY 2011 – REVISED AUGUST 2011 www.ti.com REVISION HISTORY Changes from Original (July 2011) to Revision A Page • Changed die size .................................................................................................................................................................. 1 • Changed die size ................................................................................................................................................................ 11 14 Copyright © 2011, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 9-Sep-2011 PACKAGING INFORMATION Orderable Device ONET8541TY Status (1) ACTIVE Package Type Package Drawing DIESALE Y Pins Package Qty 0 360 Eco Plan (2) Green (RoHS & no Sb/Br) Lead/ Ball Finish Call TI MSL Peak Temp (3) Samples (Requires Login) N / A for Pkg Type (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connctivity www.ti.com/wirelessconnectivity TI E2E Community Home Page www.ti.com/video e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated