IRLZ14S, IRLZ14L, SiHLZ14S, SiHLZ14L Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Halogen-free According to IEC 61249-2-21 Definition • Advanced Process Technology • Surface Mount (IRLZ14S, SiHLZ14S) • Low-Profile Through-Hole (IRLZ14L, SiHLZ14L) • 175 °C Operating Temperature • Fast Switching • Compliant to RoHS Directive 2002/95/EC 60 RDS(on) () VGS = 5 V 0.20 Qg (Max.) (nC) 8.4 Qgs (nC) 3.5 Qgd (nC) 6.0 Configuration Single DESCRIPTION D I2PAK D2PAK (TO-262) G G D S Third generation Power MOSFETs from Vishay utilize advanced processing techniques to achieve extermely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that Power MOSFETs are well known for, provides the designer with an extremely efficient reliable device for use in a wide variety of applications. The D2PAK is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and lowest possible on-resistance in any existing surface mount package. The D2PAK is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0 W in a typical surface mount application. The through-hole version (IRLZ44L, SiHLZ44L) is available for low-profile applications. (TO-263) G D S S N-Channel MOSFET ORDERING INFORMATION Package Lead (Pb)-free and Halogen-free Lead (Pb)-free D2PAK (TO-263) SiHLZ14S-GE3 IRLZ14SPbF SiHLZ14S-E3 D2PAK (TO-263) SiHLZ14STRL-GE3a - D2PAK (TO-263) SiHLZ14STRR-GE3a IRLZ14STRRPbFa SiHLZ14STR-E3 I2PAK (TO-262) IRLZ14LPbF SiHLZ14L-E3 Note a. See device orientation. ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted) PARAMETER SYMBOL LIMIT VDS VGS 60 ± 10 10 7.2 40 0.29 68 43 3.7 4.5 - 55 to + 175 300d Drain-Source Voltagee Gate-Source Voltage Continuous Drain Current VGS at 5 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta, e Linear Derating Factor Single Pulse Avalanche Energyb, e Maximum Power Dissipation Peak Diode Recovery dV/dtc, e Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) ID IDM EAS TC = 25 °C TA = 25 °C PD dV/dt TJ, Tstg for 10 s UNIT V A W/°C mJ W V/ns °C Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 25 V, starting TJ = 25 °C, L = 790 μH, Rg = 25 , IAS = 10 A (see fig. 12). c. ISD 10 A, dI/dt 90 A/μs, VDD VDS, TJ 175 °C. d. 1.6 mm from case. e. Uses IRLZ14, SiHLZ14 data and test conditions. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 90414 S11-1044-Rev. C, 30-May-11 www.vishay.com 1 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRLZ14S, IRLZ14L, SiHLZ14S, SiHLZ14L Vishay Siliconix THERMAL RESISTANCE RATINGS SYMBOL TYP. MAX. Maximum Junction-to-Ambient (PCB Mount)a PARAMETER RthJA - 40 Maximum Junction-to-Case (Drain) RthJC - 3.5 UNIT °C/W Note a. When mounted on 1" square PCB (FR-4 or G-10 material). SPECIFICATIONS (TJ = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0, ID = 250 μA 60 - - V VDS/TJ Reference to 25 °C, ID = 1 mA - 0.07 - V/°C VGS(th) VDS = VGS, ID = 250 μA 1.0 - 2.0 V Gate-Source Leakage IGSS VGS = ± 10 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 60 V, VGS = 0 V - - 25 VDS = 48 V, VGS = 0 V, TJ = 150 °C - - 250 Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs VGS = 5 V ID = 6.0 Ab - - 0.2 VGS = 4 V ID = 5.0 Ab - - 0.28 3.5 - - - 400 - VDS = 25 V, ID = 6.0 A μA S Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Total Gate Charge Qg Gate-Source Charge Qgs VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 VGS = 5 V ID = 10 A, VDS = 48 V, see fig. 6 and 13b - 170 - - 42 - - - 8.4 - - 3.5 Gate-Drain Charge Qgd - - 6.0 Turn-On Delay Time td(on) - 9.3 - - 110 - - 17 - - 26 - Rise Time Turn-Off Delay Time tr td(off) VDD = 30 V, ID = 10 A, Rg = 12 , RD = 2.8 , see fig. 10b pF nC ns Fall Time tf Internal Source Inductance LS Between lead, and center of die contact - 7.5 - IS MOSFET symbol showing the integral reverse p - n junction diode - - 10 - - 40 - - 1.6 - 93 130 ns - 340 650 nC nH Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton D A G S TJ = 25 °C, IS = 10 A, VGS = 0 Vb TJ = 25 °C, IF = 10 A, dI/dt = 100 A/μsb V Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width 300 μs; duty cycle 2 %. www.vishay.com 2 Document Number: 90414 S11-1044-Rev. C, 30-May-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRLZ14S, IRLZ14L, SiHLZ14S, SiHLZ14L Vishay Siliconix TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) Fig. 1 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics Fig. 4 - Normalized On-Resistance vs. Temperature Document Number: 90414 S11-1044-Rev. C, 30-May-11 www.vishay.com 3 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRLZ14S, IRLZ14L, SiHLZ14S, SiHLZ14L Vishay Siliconix Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 8 - Maximum Safe Operating Area Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 Document Number: 90414 S11-1044-Rev. C, 30-May-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRLZ14S, IRLZ14L, SiHLZ14S, SiHLZ14L Vishay Siliconix RD VDS VGS D.U.T. Rg + - VDD 5V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit VDS 90 % 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature tr td(off) tf Fig. 10b - Switching Time Waveforms Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Document Number: 90414 S11-1044-Rev. C, 30-May-11 www.vishay.com 5 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRLZ14S, IRLZ14L, SiHLZ14S, SiHLZ14L Vishay Siliconix L VDS VDS Vary tp to obtain required IAS tp VDD Rg D.U.T. + - I AS V DD VDS 5V 0.01 Ω tp Fig. 12a - Unclamped Inductive Test Circuit IAS Fig. 12b - Unclamped Inductive Waveforms Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 90414 S11-1044-Rev. C, 30-May-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRLZ14S, IRLZ14L, SiHLZ14S, SiHLZ14L Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - Rg • • • • + dV/dt controlled by Rg Driver same type as D.U.T. ISD controlled by duty factor “D” D.U.T. - device under test + - VDD Driver gate drive P.W. Period D= P.W. Period VGS = 10 Va D.U.T. lSD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Inductor current VDD Body diode forward drop Ripple ≤ 5 % ISD Note a. VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?90414. Document Number: 90414 S11-1044-Rev. C, 30-May-11 www.vishay.com 7 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information Vishay Siliconix TO-263AB (HIGH VOLTAGE) A (Datum A) 3 A 4 4 L1 B A E c2 H Gauge plane 4 0° to 8° 5 D B Detail A Seating plane H 1 2 C 3 C L L3 L4 Detail “A” Rotated 90° CW scale 8:1 L2 B A1 B A 2 x b2 c 2xb E 0.010 M A M B ± 0.004 M B 2xe Plating 5 b1, b3 Base metal c1 (c) D1 4 5 (b, b2) Lead tip MILLIMETERS DIM. MIN. MAX. View A - A INCHES MIN. 4 E1 Section B - B and C - C Scale: none MILLIMETERS MAX. DIM. MIN. INCHES MAX. MIN. MAX. A 4.06 4.83 0.160 0.190 D1 6.86 - 0.270 - A1 0.00 0.25 0.000 0.010 E 9.65 10.67 0.380 0.420 6.22 - 0.245 - b 0.51 0.99 0.020 0.039 E1 b1 0.51 0.89 0.020 0.035 e b2 1.14 1.78 0.045 0.070 H 14.61 15.88 0.575 0.625 b3 1.14 1.73 0.045 0.068 L 1.78 2.79 0.070 0.110 2.54 BSC 0.100 BSC c 0.38 0.74 0.015 0.029 L1 - 1.65 - 0.066 c1 0.38 0.58 0.015 0.023 L2 - 1.78 - 0.070 c2 1.14 1.65 0.045 0.065 L3 D 8.38 9.65 0.330 0.380 L4 0.25 BSC 4.78 5.28 0.010 BSC 0.188 0.208 ECN: S-82110-Rev. A, 15-Sep-08 DWG: 5970 Notes 1. Dimensioning and tolerancing per ASME Y14.5M-1994. 2. Dimensions are shown in millimeters (inches). 3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A. 4. Thermal PAD contour optional within dimension E, L1, D1 and E1. 5. Dimension b1 and c1 apply to base metal only. 6. Datum A and B to be determined at datum plane H. 7. Outline conforms to JEDEC outline to TO-263AB. Document Number: 91364 Revision: 15-Sep-08 www.vishay.com 1 Legal Disclaimer Notice Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 11-Mar-11 www.vishay.com 1