TI MSP430F2012 Mixed signal microcontroller Datasheet

 SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
D Low Supply Voltage Range 1.8 V to 3.6 V
D Ultralow-Power Consumption
D
D
D
D
D
D
D
D
D
− Active Mode: 220 µA at 1 MHz, 2.2 V
− Standby Mode: 0.5 µA
− Off Mode (RAM Retention): 0.1 µA
Five Power-Saving Modes
Ultrafast Wake-Up From Standby Mode in
less than 1 µs
16-Bit RISC Architecture, 62.5 ns
Instruction Cycle Time
Basic Clock Module Configurations:
− Internal Frequencies up to 16MHz with
4 Calibrated Frequencies to ±1%
− Internal Very Low Power LF oscillator
− 32-kHz Crystal
− External Digital Clock Source
16-Bit Timer_A With Two Capture/Compare
Registers
On-Chip Comparator for Analog Signal
Compare Function or Slope A/D
(MSP430x20x1 only)
10-Bit, 200-ksps A/D Converter with Internal
Reference, Sample-and-Hold, and
Autoscan. (MSP430x20x2 only)
16-Bit Sigma-Delta A/D Converter with
Differential PGA Inputs, and Internal
Reference (MSP430x20x3 only)
Universal Serial Interface (USI), supporting
SPI and I2C
(MSP430x20x2 and MSP430x20x3 only)
D Brownout Detector
D Serial Onboard Programming,
D
D
D
D
No External Programming Voltage Needed
Programmable Code Protection by
Security Fuse
On-Chip Emulation Logic with Spy-Bi-Wire
Interface
Family Members Include:
MSP430F2001†: 1KB + 256B Flash Memory
128B RAM
MSP430F2011†: 2KB + 256B Flash Memory
128B RAM
MSP430F2002†: 1KB + 256B Flash Memory
128B RAM
MSP430F2012†: 2KB + 256B Flash Memory
128B RAM
MSP430F2003: 1KB + 256B Flash Memory
128B RAM
MSP430F2013: 2KB + 256B Flash Memory
128B RAM
Available in a 14-Pin Plastic Small-Outline
Thin Package (TSSOP), 14-Pin Plastic Dual
Inline Package (PDIP), and 16-Pin QFN
For Complete Module Descriptions, Refer
to the MSP430x2xx Family User’s Guide
† Product Preview
description
The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring
different sets of peripherals targeted for various applications. The architecture, combined with five low power
modes is optimized to achieve extended battery life in portable measurement applications. The device features
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1µs.
The MSP430x20xx series is an ultralow-power mixed signal microcontroller with a built-in 16-bit timer, and ten
I/O pins. In addition the MSP430x20x1 has a versatile analog comparator. The MSP430x20x2 and
MSP430x20x3 have built-in communication capability using synchronous protocols (SPI or I2C), and a 10-bit
A/D converter (MSP430x20x2) or a 16-bit sigma-delta A/D converter (MSP430x20x3).
Typical applications include sensor systems that capture analog signals, convert them to digital values, and then
process the data for display or for transmission to a host system. Stand alone RF sensor front end is another
area of application.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2005 Texas Instruments Incorporated
! "#$ ! %#&'" ($)
(#"! " !%$""! %$ *$ $! $! !#$!
!(( +,) (#" %"$!!- ($! $"$!!', "'#($
$!- '' %$$!)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
AVAILABLE OPTIONS
PACKAGED DEVICES
PLASTIC
14-PIN TSSOP
(PW)
PLASTIC
14-PIN DIP†
(N)
PLASTIC
16-PIN QFN
(RSA)
MSP430F2001IPW†
MSP430F2011IPW†
MSP430F2002IPW†
MSP430F2012IPW†
MSP430F2003IPW
MSP430F2013IPW
MSP430F2001IN†
MSP430F2011IN†
MSP430F2002IN†
MSP430F2012IN†
MSP430F2003IN†
MSP430F2013IN†
MSP430F2001IRSA†
MSP430F2011IRSA†
MSP430F2002IRSA†
MSP430F2012IRSA†
MSP430F2003IRSA†
MSP430F2013IRSA†
TA
−40°C to 85°C
† Product Preview
device pinout, MSP430x20x1
PW or N PACKAGE
(TOP VIEW)
VCC
P1.0/TACLK/ACLK/CA0
1
14
2
13
VSS
XIN/P2.6/TA1
P1.1/TA0/CA1
3
12
XOUT/P2.7
P1.2/TA1/CA2
4
11
TEST/SBWTCK
P1.3/CAOUT/CA3
5
10
P1.4/SMCLK/CA4/TCK
P1.5/TA0/CA5/TMS
6
9
RST/NMI/SBWTDIO
P1.7/CAOUT/CA7/TDO/TDI
7
8
P1.6/TA1/CA6/TDI/TCLK
NC
VSS
15 14
2
11
XOUT/P2.7
P1.2/TA1/CA2
3
10
TEST/SBWTCK
P1.3/CAOUT/CA3
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6
7
9
P1.7/CAOUT/CA7/TDO/TDI
P1.1/TA0/CA1
P1.6/TA1/CA6/TDI/TCLK
XIN/P2.6/TA1
1
P1.5/TA0/CA5/TMS
12
P1.0/TACLK/ACLK/CA0
P1.4/SMCLK/CA4/TCK
2
NC
VCC
RSA PACKAGE
(TOP VIEW)
RST/NMI/SBWTDIO
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
device pinout, MSP430x20x2
PW or N PACKAGE
(TOP VIEW)
VCC
P1.0/TACLK/ACLK/A0
1
14
2
13
VSS
XIN/P2.6/TA1
P1.1/TA0/A1
3
12
XOUT/P2.7
P1.2/TA1/A2
4
11
TEST/SBWTCK
P1.3/ADC10CLK/A3/VREF−/VeREF−
5
10
P1.4/SMCLK/A4/VREF+/VeREF+/TCK
P1.5/TA0/A5/SCLK/TMS
6
9
RST/NMI/SBWTDIO
P1.7/A7/SDI/SDA/TDO/TDI
7
8
P1.6/TA1/A6/SDO/SCL/TDI/TCLK
15 14
AVSS
DVSS
AVCC
DVCC
RSA PACKAGE
(TOP VIEW)
2
11
XOUT/P2.7
P1.2/TA1/A2
3
10
TEST/SBWTCK
P1.3/ADC10CLK/A3/VREF−/VeREF−
4
9
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6
7
RST/NMI/SBWTDIO
P1.7/A7/SDI/SDA/TDO/TDI
P1.4/SMCLK/A4/VREF+/VeREF+/TCK
P1.1/TA0/A1
P1.6/TA1/A6/SDO/SCL/TDI/TCLK
XIN/P2.6/TA1
1
P1.5/TA0/A5/SCLK/TMS
12
P1.0/TACLK/ACLK/A0
3
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
device pinout, MSP430x20x3
PW or N PACKAGE
(TOP VIEW)
VCC
P1.0/TACLK/ACLK/A0+
1
14
2
13
VSS
XIN/P2.6/TA1
P1.1/TA0/A0−/A4+
3
12
XOUT/P2.7
P1.2/TA1/A1+/A4−
4
11
TEST/SBWTCK
P1.3/VREF/A1−
5
10
P1.4/SMCLK/A2+/TCK
P1.5/TA0/A2−/SCLK/TMS
6
9
RST/NMI/SBWTDIO
P1.7/A3−/SDI/SDA/TDO/TDI
7
8
P1.6/TA1/A3+/SDO/SCL/TDI/TCLK
AVSS
DVSS
15 14
11
XOUT/P2.7
P1.2/TA1/A1+/A4−
3
10
TEST/SBWTCK
P1.3/VREF/A1−
4
9
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
6
7
P1.7/A3−/SDI/SDA/TDO/TDI
2
P1.1/TA0/A0−/A4+
P1.5/TA0/A2−/SCLK/TMS
XIN/P2.6/TA1
1
P1.6/TA1/A3+/SDO/SCL/TDI/TCLK
12
P1.0/TACLK/ACLK/A0+
P1.4/SMCLK/A2+/TCK
4
AVCC
DVCC
RSA PACKAGE
(TOP VIEW)
RST/NMI/SBWTDIO
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
functional block diagram, MSP430x20x1
VCC
VSS
P1.x & JTAG
8
P2.x &
XIN/XOUT
2
XOUT
XIN
Basic Clock
System+
ACLK
SMCLK
MCLK
Flash
RAM
2kB
1kB
128B
128B
Comparator
_A+
8 channel
input mux
Port P1
Port P2
8 I/O
Interrupt
capability,
pull−up/down
resistors
2 I/O
Interrupt
capability,
pull−up/down
resistors
MAB
16MHz
CPU
incl. 16
Registers
MDB
Emulation
(2BP)
JTAG
Interface
Watchdog
WDT+
Brownout
Protection
15/16−Bit
Timer_A2
2 CC
Registers
Spy−Bi Wire
RST/NMI
NOTE: See port schematics section for detailed I/O information.
functional block diagram, MSP430x20x2
VCC
VSS
P1.x & JTAG
8
P2.x &
XIN/XOUT
2
XOUT
XIN
Basic Clock
System+
ADC10
ACLK
SMCLK
MCLK
16MHz
CPU
incl. 16
Registers
Flash
RAM
2kB
1kB
128B
128B
10−bit
8 Channels
Autoscan
DTC
Port P1
Port P2
8 I/O
Interrupt
capability,
pull−up/down
resistors
2 I/O
Interrupt
capability,
pull−up/down
resistors
MAB
MDB
Emulation
(2BP)
JTAG
Interface
USI
Watchdog
WDT+
Brownout
Protection
15/16−Bit
Timer_A2
2 CC
Registers
Spy−Bi Wire
Universal
Serial
Interface
SPI, I2C
RST/NMI
NOTE: See port schematics section for detailed I/O information.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
functional block diagram, MSP430x20x3
VCC
VSS
P1.x & JTAG
8
XOUT
XIN
Basic Clock
System+
16MHz
CPU
incl. 16
Registers
Port P1
Port P2
8 I/O
Interrupt
capability,
pull−up/down
resistors
2 I/O
Interrupt
capability,
pull−up/down
resistors
SD16_A
ACLK
SMCLK
MCLK
Flash
RAM
2kB
1kB
128B
128B
16−bit
Sigma−
Delta A/D
Converter
MAB
MDB
Emulation
(2BP)
JTAG
Interface
USI
Watchdog
WDT+
Brownout
Protection
15/16−Bit
Timer_A2
2 CC
Registers
Spy−Bi Wire
RST/NMI
NOTE: See port schematics section for detailed I/O information.
6
P2.x &
XIN/XOUT
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
Universal
Serial
Interface
SPI, I2C
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Terminal Functions, MSP430x20x1
TERMINAL
PW, or N
RSA
NO.
NO.
P1.0/TACLK/ACLK/CA0
2
1
I/O
General-purpose digital I/O pin
Timer_A, clock signal TACLK input
ACLK signal ouput
Comparator_A+, CA0 input
P1.1/TA0/CA1
3
2
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI0A input, compare: Out0 output
Comparator_A+, CA1 input
P1.2/TA1/CA2
4
3
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI1A input, compare: Out1 output
Comparator_A+, CA2 input
P1.3/CAOUT/CA3
5
4
I/O
General-purpose digital I/O pin
Comparator_A+, output / CA3 input
P1.4/SMCLK/C4/TCK
6
5
I/O
General-purpose digital I/O pin
SMCLK signal output
Comparator_A+, CA4 input
JTAG test clock, input terminal for device programming and test
P1.5/TA0/CA5/TMS
7
6
I/O
General-purpose digital I/O pin
Timer_A, compare: Out0 output
Comparator_A+, CA5 input
JTAG test mode select, input terminal for device programming and test
P1.6/TA1/CA6/TDI/TCLK
8
7
I/O
General-purpose digital I/O pin
Timer_A, compare: Out1 output
Comparator_A+, CA6 input
JTAG test data input or test clock input during programming and test
P1.7/CAOUT/CA7/TDO/TDI†
9
8
I/O
General-purpose digital I/O pin
Comparator_A+, output / CA7 input
JTAG test data output terminal or test data input during programming and
test
XIN/P2.6/TA1
13
12
I/O
Input terminal of crystal oscillator
General-purpose digital I/O pin
Timer_A, compare: Out1 output
XOUT/P2.7
12
11
I/O
Output terminal of crystal oscillator
General-purpose digital I/O pin
RST/NMI/SBWTDIO
10
9
I
Reset or nonmaskable interrupt input
Spy-Bi-Wire test data input/output during programming and test
TEST/SBWTCK
11
10
I
Selects test mode for JTAG pins on Port1. The device protection fuse is
connected to TEST.
Spy-Bi-Wire test clock input during programming and test
VCC
VSS
1
16
Supply voltage
14
14
Ground reference
NC
NA
13, 15
QFN Pad
NA
Package
Pad
NAME
DESCRIPTION
I/O
Not connected
NA
QFN package pad connection to VSS recommended.
† TDO or TDI is selected via JTAG instruction.
NOTE: If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection
to this pad after reset.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Terminal Functions, MSP430x20x2
TERMINAL
PW, or N
RSA
NO.
NO.
P1.0/TACLK/ACLK/A0
2
1
I/O
General-purpose digital I/O pin
Timer_A, clock signal TACLK input
ACLK signal ouput
ADC10 analog input A0
P1.1/TA0/A1
3
2
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI0A input, compare: Out0 output
ADC10 analog input A1
P1.2/TA1/A2
4
3
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI1A input, compare: Out1 output
ADC10 analog input A2
P1.3/ADC10CLK/
A3/VREF−/VeREF−
5
4
I/O
General-purpose digital I/O pin
ADC10 conversion clock output
ADC10 analog input A3
Input for negative external reference voltage/negative internal reference
voltage output
P1.4/SMCLK/A4/VREF+/VeREF+/
TCK
6
5
I/O
General-purpose digital I/O pin
SMCLK signal output
ADC10 analog input A4
Input for positive external reference voltage/positive internal reference
voltage output
JTAG test clock, input terminal for device programming and test
P1.5/TA0/A5/SCLK/TMS
7
6
I/O
General-purpose digital I/O pin
Timer_A, compare: Out0 output
ADC10 analog input A5
USI: external clock input in SPI or I2C mode; clock output in SPI mode
JTAG test mode select, input terminal for device programming and test
P1.6/TA1/A6/SDO/SCL/TDI/TCLK
8
7
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI1B input, compare: Out1 output
ADC10 analog input A6
USI: Data output in SPI mode; I2C clock in I2C mode
JTAG test data input or test clock input during programming and test
P1.7/A7/SDI/SDA/TDO/TDI†
9
8
I/O
General-purpose digital I/O pin
ADC10 analog input A7
USI: Data input in SPI mode; I2C data in I2C mode
JTAG test data output terminal or test data input during programming and
test
XIN/P2.6/TA1
13
12
I/O
Input terminal of crystal oscillator
General-purpose digital I/O pin
Timer_A, compare: Out1 output
XOUT/P2.7
12
11
I/O
Output terminal of crystal oscillator
General-purpose digital I/O pin
RST/NMI/SBWTDIO
10
9
I
Reset or nonmaskable interrupt input
Spy-Bi-Wire test data input/output during programming and test
TEST/SBWTCK
11
10
I
Selects test mode for JTAG pins on Port1. The device protection fuse is
connected to TEST.
Spy-Bi-Wire test clock input during programming and test
VCC
VSS
1
NA
Supply voltage
14
NA
Ground reference
NAME
8
DESCRIPTION
I/O
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Terminal Functions, MSP430x20x2 (Continued)
TERMINAL
PW, or N
RSA
NO.
NO.
DVCC
NA
16
Digital supply voltage
AVCC
DVSS
NA
15
Analog supply voltage
NA
14
Digital ground reference
AVSS
QFN Pad
NA
13
NA
Package
Pad
NAME
DESCRIPTION
I/O
Analog ground reference
NA
QFN package pad connection to VSS recommended.
† TDO or TDI is selected via JTAG instruction.
NOTE: If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection
to this pad after reset.
Terminal Functions, MSP430x20x3
TERMINAL
PW, or N
RSA
NO.
NO.
P1.0/TACLK/ACLK/A0+
2
1
I/O
General-purpose digital I/O pin
Timer_A, clock signal TACLK input
ACLK signal ouput
SD16_A positive analog input A0
P1.1/TA0/A0−/A4+
3
2
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI0A input, compare: Out0 output
SD16_A negative analog input A0
SD16_A positive analog input A4
P1.2/TA1/A1+/A4−
4
3
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI1A input, compare: Out1 output
SD16_A positive analog input A1
SD16_A negative analog input A4
P1.3/VREF/A1−
5
4
I/O
General-purpose digital I/O pin
Input for an external reference voltage/internal reference voltage output
(can be used as mid-voltage)
SD16_A negative analog input A1
P1.4/SMCLK/A2+/TCK
6
5
I/O
General-purpose digital I/O pin
SMCLK signal output
SD16_A positive analog input A2
JTAG test clock, input terminal for device programming and test
P1.5/TA0/A2−/SCLK/TMS
7
6
I/O
General-purpose digital I/O pin
Timer_A, compare: Out0 output
SD16_A negative analog input A2
USI: external clock input in SPI or I2C mode; clock output in SPI mode
JTAG test mode select, input terminal for device programming and test
P1.6/TA1/A3+/SDO/SCL/TDI/TCLK
8
7
I/O
General-purpose digital I/O pin
Timer_A, capture: CCI1B input, compare: Out1 output
SD16_A positive analog input A3
USI: Data output in SPI mode; I2C clock in I2C mode
JTAG test data input or test clock input during programming and test
P1.7/A3−/SDI/SDA/TDO/TDI†
9
8
I/O
General-purpose digital I/O pin
SD16_A negative analog input A3
USI: Data input in SPI mode; I2C data in I2C mode
JTAG test data output terminal or test data input during programming and
test
NAME
DESCRIPTION
I/O
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Terminal Functions, MSP430x20x3 (Continued)
TERMINAL
PW, or N
RSA
NO.
NO.
XIN/P2.6/TA1
13
12
I/O
Input terminal of crystal oscillator
General-purpose digital I/O pin
Timer_A, compare: Out1 output
XOUT/P2.7
12
11
I/O
Output terminal of crystal oscillator
General-purpose digital I/O pin
RST/NMI/SBWTDIO
10
9
I
Reset or nonmaskable interrupt input
Spy-Bi-Wire test data input/output during programming and test
TEST/SBWTCK
11
10
I
Selects test mode for JTAG pins on Port1. The device protection fuse is
connected to TEST.
Spy-Bi-Wire test clock input during programming and test
VCC
VSS
1
NA
Supply voltage
14
NA
Ground reference
DVCC
NA
16
Digital supply voltage
AVCC
DVSS
NA
15
Analog supply voltage
NA
14
Digital ground reference
AVSS
QFN Pad
NA
13
Analog ground reference
NA
Package
Pad
NAME
DESCRIPTION
I/O
NA
QFN package pad connection to VSS recommended.
† TDO or TDI is selected via JTAG instruction.
NOTE: If XOUT/P2.7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection
to this pad after reset.
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
short-form description
CPU
The MSP430 CPU has a 16-bit RISC architecture
that is highly transparent to the application. All
operations, other than program-flow instructions,
are performed as register operations in
conjunction with seven addressing modes for
source operand and four addressing modes for
destination operand.
Program Counter
PC/R0
Stack Pointer
SP/R1
SR/CG1/R2
Status Register
Constant Generator
The CPU is integrated with 16 registers that
provide reduced instruction execution time. The
register-to-register operation execution time is
one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as
program counter, stack pointer, status register,
and constant generator respectively. The
remaining registers are general-purpose
registers.
Peripherals are connected to the CPU using data,
address, and control buses, and can be handled
with all instructions.
instruction set
The instruction set consists of 51 instructions with
three formats and seven address modes. Each
instruction can operate on word and byte data.
Table 1 shows examples of the three types of
instruction formats; the address modes are listed
in Table 2.
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
General-Purpose Register
R10
General-Purpose Register
R11
General-Purpose Register
R12
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
Table 1. Instruction Word Formats
Dual operands, source-destination
e.g. ADD R4,R5
R4 + R5 −−−> R5
Single operands, destination only
e.g. CALL
PC −−>(TOS), R8−−> PC
Relative jump, un/conditional
e.g. JNE
R8
Jump-on-equal bit = 0
Table 2. Address Mode Descriptions
ADDRESS MODE
S D
SYNTAX
EXAMPLE
OPERATION
Register
F F
MOV Rs,Rd
MOV R10,R11
Indexed
F F
MOV X(Rn),Y(Rm)
MOV 2(R5),6(R6)
Symbolic (PC relative)
F F
MOV EDE,TONI
M(EDE) −−> M(TONI)
Absolute
F F
MOV &MEM,&TCDAT
M(MEM) −−> M(TCDAT)
R10
−−> R11
M(2+R5)−−> M(6+R6)
Indirect
F
MOV @Rn,Y(Rm)
MOV @R10,Tab(R6)
M(R10) −−> M(Tab+R6)
Indirect
autoincrement
F
MOV @Rn+,Rm
MOV @R10+,R11
M(R10) −−> R11
R10 + 2−−> R10
F
MOV #X,TONI
MOV #45,TONI
Immediate
NOTE: S = source
#45
−−> M(TONI)
D = destination
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
operating modes
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt
event can wake up the device from any of the five low-power modes, service the request and restore back to
the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
D Active mode AM;
−
All clocks are active
D Low-power mode 0 (LPM0);
−
CPU is disabled
ACLK and SMCLK remain active. MCLK is disabled
D Low-power mode 1 (LPM1);
−
CPU is disabled
ACLK and SMCLK remain active. MCLK is disabled
DCO’s dc-generator is disabled if DCO not used in active mode
D Low-power mode 2 (LPM2);
−
CPU is disabled
MCLK and SMCLK are disabled
DCO’s dc-generator remains enabled
ACLK remains active
D Low-power mode 3 (LPM3);
−
CPU is disabled
MCLK and SMCLK are disabled
DCO’s dc-generator is disabled
ACLK remains active
D Low-power mode 4 (LPM4);
−
12
CPU is disabled
ACLK is disabled
MCLK and SMCLK are disabled
DCO’s dc-generator is disabled
Crystal oscillator is stopped
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
interrupt vector addresses
The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh−0FFC0h.
The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.
If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g. flash is not programmed) the CPU will
go into LPM4 immediately after power-up.
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM INTERRUPT
WORD ADDRESS
PRIORITY
Power-up
External reset
Watchdog Timer+
Flash key violation
PC out-of-range (see Note 1)
PORIFG
RSTIFG
WDTIFG
KEYV
(see Note 2)
Reset
0FFFEh
31, highest
NMI
Oscillator fault
Flash memory access violation
NMIIFG
OFIFG
ACCVIFG
(see Notes 2 & 4)
(non)-maskable,
(non)-maskable,
(non)-maskable
0FFFCh
30
0FFFAh
29
0FFF8h
28
Comparator_A+ (MSP430x20x1 only)
CAIFG (see Note 3)
maskable
0FFF6h
27
Watchdog Timer+
WDTIFG
maskable
0FFF4h
26
Timer_A2
TACCR0 CCIFG (see Note 3)
maskable
0FFF2h
25
Timer_A2
TACCR1 CCIFG.
TAIFG (see Notes 2 & 3)
maskable
0FFF0h
24
0FFEEh
23
0FFECh
22
0FFEAh
21
ADC10 (MSP430x20x2 only)
ADC10IFG (see Note 3)
maskable
SD16_A (MSP430x20x3 only)
SD16CCTL0 SD16OVIFG,
SD16CCTL0 SD16IFG
(see Notes 2 & 3)
maskable
USI
(MSP430x20x2, MSP430x20x3 only)
USIIFG, USISTTIFG
(see Notes 2 & 3)
maskable
0FFE8h
20
I/O Port P2
(two flags)
P2IFG.6 to P2IFG.7
(see Notes 2 & 3)
maskable
0FFE6h
19
I/O Port P1
(eight flags)
P1IFG.0 to P1IFG.7
(see Notes 2 & 3)
maskable
0FFE4h
18
0FFE2h
17
0FFE0h
16
0FFDEh ... 0FFC0h
15 ... 0, lowest
(see Note 5)
NOTES: 1.
2.
3.
4.
5.
A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h−01FFh).
Multiple source flags
Interrupt flags are located in the module
(non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.
The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if
necessary.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
special function registers
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits
not allocated to a functional purpose are not physically present in the device. Simple software access is provided
with this arrangement.
interrupt enable 1 and 2
Address
7
6
0h
5
4
ACCVIE
NMIIE
rw-0
WDTIE:
OFIE:
NMIIE:
ACCVIE:
Address
3
2
1
OFIE
rw-0
0
WDTIE
rw-0
rw-0
Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer
is configured in interval timer mode.
Oscillator fault enable
(Non)maskable interrupt enable
Flash access violation interrupt enable
7
6
5
6
5
4
3
2
1
0
01h
interrupt flag register 1 and 2
Address
7
02h
4
3
2
1
NMIIFG
RSTIFG
PORIFG
OFIFG
rw-0
WDTIFG:
OFIFG:
RSTIFG:
PORIFG:
NMIIFG:
Address
rw-(0)
7
6
5
4
3
rw:
rw-0,1:
rw-(0,1):
Bit can be read and written.
Bit can be read and written. It is Reset or Set by PUC.
Bit can be read and written. It is Reset or Set by POR.
SFR bit is not present in device
14
rw-(0)
Set on Watchdog Timer overflow (in watchdog mode) or security key violation.
Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode.
Flag set on oscillator fault
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC
power-up
Power-On Reset interrupt flag. Set on VCC power-up.
Set via RST/NMI-pin
03h
Legend
rw-1
rw-(1)
0
WDTIFG
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2
1
0
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
memory organization
MSP430F200x
MSP430F201x
Memory
Main: interrupt vector
Main: code memory
Size
Flash
Flash
1KB Flash
0FFFFh−0FFC0h
0FFFFh−0FC00h
2KB Flash
0FFFFh−0FFC0h
0FFFFh−0F800h
Information memory
Size
Flash
256 Byte
010FFh − 01000h
256 Byte
010FFh − 01000h
Size
128 Byte
027Fh − 0200h
128 Byte
027Fh − 0200h
16-bit
8-bit
8-bit SFR
01FFh − 0100h
0FFh − 010h
0Fh − 00h
01FFh − 0100h
0FFh − 010h
0Fh − 00h
RAM
Peripherals
flash memory
The flash memory can be programmed via the Spy-Bi-Wire/JTAG port, or in-system by the CPU. The CPU can
perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
D Flash memory has n segments of main memory and four segments of information memory (A to D) of 64
bytes each. Each segment in main memory is 512 bytes in size.
D Segments 0 to n may be erased in one step, or each segment may be individually erased.
D Segments A to D can be erased individually, or as a group with segments 0−n.
Segments A to D are also called information memory.
D Segment A contains calibration data. After reset segment A is protected against programming and erasing.
It can be unlocked but care should be taken not to erase this segment if the device-specific calibration data
is required.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
peripherals
Peripherals are connected to the CPU through data, address, and control busses and can be handled using
all instructions. For complete module descriptions, refer to the MSP430x2xx Family User’s Guide.
oscillator and system clock
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal
oscillator, an internal very low power, low frequency oscillator and an internal digitally-controlled oscillator
(DCO). The basic clock module is designed to meet the requirements of both low system cost and low-power
consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic
clock module provides the following clock signals:
D Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator.
D Main clock (MCLK), the system clock used by the CPU.
D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.
DCO Calibration Data (provided from factory in flash info memory segment A)
DCO Frequency
Calibration Register
Size
1 MHz
CALBC1_1MHz
byte
010FFh
CALDCO_1MHz
byte
010FEh
8 MHz
12 MHz
16 MHz
Address
CALBC1_8MHz
byte
010FDh
CALDCO_8MHz
byte
010FCh
CALBC1_12MHz
byte
010FBh
CALDCO_12MHz
byte
010FAh
CALBC1_16MHz
byte
010F9h
CALDCO_16MHz
byte
010F8h
brownout
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on
and power off.
digital I/O
There is one 8-bit I/O port implemented—port P1—and two bits of I/O port P2:
D
D
D
D
D
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt condition is possible.
Edge-selectable interrupt input capability for all the eight bits of port P1 and the two bits of port P2.
Read/write access to port-control registers is supported by all instructions.
Each I/O has an individually programmable pull-up/pull-down resistor.
WDT+ watchdog timer
The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog
function is not needed in an application, the module can be disabled or configured as an interval timer and can
generate interrupts at selected time intervals.
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
timer_A2
Timer_A2 is a 16-bit timer/counter with two capture/compare registers. Timer_A2 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_A2 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Timer_A2 Signal Connections (MSP43020x1 only)
Input
Pin Number
PW, N
RSA
2 - P1.0
1 - P1.0
Device
Input Signal
Module
Input Name
TACLK
TACLK
ACLK
ACLK
SMCLK
SMCLK
Module
Block
Timer
Module
Output Signal
Output
Pin Number
PW, N
RSA
NA
2 - P1.0
1 - P1.0
TACLK
INCLK
3 - P1.1
2 - P1.1
TA0
CCI0A
3 - P1.1
2 - P1.1
ACLK (internal)
CCI0B
7 - P1.5
6 - P1.5
4 - P1.2
3 - P1.2
4 - P1.2
3 - P1.2
VSS
VCC
TA1
GND
VCC
CCI1A
CAOUT (internal)
CCI1B
VSS
VCC
GND
CCR0
CCR1
TA0
TA1
8 - P1.6
7 - P1.6
13 - P2.6
12 - P2.6
VCC
Timer_A2 Signal Connections (MSP430F20x2, MSP430F20x3)
Input
Pin Number
PW, N
RSA
2 - P1.0
1 - P1.0
Device
Input Signal
Module
Input Name
TACLK
TACLK
ACLK
ACLK
SMCLK
SMCLK
TACLK
INCLK
Module
Block
Timer
Module
Output Signal
Output
Pin Number
PW, N
RSA
NA
2 - P1.0
1 - P1.0
3 - P1.1
2 - P1.1
TA0
CCI0A
3 - P1.1
2 - P1.1
7 - P1.5
6 - P1.5
ACLK (internal)
CCI0B
7 - P1.5
6 - P1.5
VSS
VCC
GND
4 - P1.2
3 - P1.2
4 - P1.2
3 - P1.2
8 - P1.6
7 - P1.6
TA1
VCC
CCI1A
TA1
CCI1B
VSS
VCC
GND
CCR0
CCR1
TA0
TA1
8 - P1.6
7 - P1.6
13 - P2.6
12 - P2.6
VCC
comparator_A+ (MSP430x20x1 only)
The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions,
battery-voltage supervision, and monitoring of external analog signals.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
USI (MSP430x20x2 and MSP430x20x3 only)
The universal serial interface (USI) module is used for serial data communication and provides the basic
hardware for synchronous communication protocols like SPI and I2C.
ADC10 (MSP430x20x2 only)
The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR
core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion
result handling allowing ADC samples to be converted and stored without any CPU intervention.
SD16_A (MSP430x20x3 only)
The SD16_A module supports 16-bit analog-to-digital conversions. The module implements a 16-bit
sigma-delta core and reference generator. In addition to external analog inputs, an internal VCC sense and
temperature sensor are also available.
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
peripheral file map
PERIPHERALS WITH WORD ACCESS
ADC10 (MSP430x20x2 only)
ADC control 0
ADC control 1
ADC memory
ADC10CTL0
ADC10CTL0
ADC10MEM
01B0h
01B2h
01B4h
SD16_A (MSP430x20x3 only)
General Control
Channel 0 Control
Interrupt vector word register
Channel 0 conversion memory
SD16CTL
SD16CCTL0
SD16IV
SD16MEM0
0100h
0102h
0110h
0112h
Timer_A
Capture/compare register
Capture/compare register
Timer_A register
Capture/compare control
Capture/compare control
Timer_A control
Timer_A interrupt vector
TACCR1
TACCR0
TAR
TACCTL1
TACCTL0
TACTL
TAIV
0174h
0172h
0170h
0164h
0162h
0160h
012Eh
Flash Memory
Flash control 3
Flash control 2
Flash control 1
FCTL3
FCTL2
FCTL1
012Ch
012Ah
0128h
Watchdog Timer+
Watchdog/timer control
WDTCTL
0120h
PERIPHERALS WITH BYTE ACCESS
ADC10 (MSP430x20x2 only)
Analog enable
ADC10AE
04Ah
SD16_A (MSP430x20x3 only)
Channel 0 Input Control
Analog Enable
SD16INCTL0
SD16AE
0B0h
0B7h
USI
(MSP430x20x2 and
MSP430x20x3 only)
USI control 0
USI control 1
USI clock control
USI bit counter
USI shift register
USICTL0
USICTL1
USICKCTL
USICNT
USISR
078h
079h
07Ah
07Bh
07Ch
Comparator_A+
(MSP430x20x1 only)
Comparator_A+ port disable
Comparator_A+ control 2
Comparator_A+ control 1
CAPD
CACTL2
CACTL1
05Bh
05Ah
059h
Basic Clock System+
Basic clock system control 3
Basic clock system control 2
Basic clock system control 1
DCO clock frequency control
BCSCTL3
BCSCTL2
BCSCTL1
DCOCTL
053h
058h
057h
056h
Port P2
Port P2 resistor enable
Port P2 selection
Port P2 interrupt enable
Port P2 interrupt edge select
Port P2 interrupt flag
Port P2 direction
Port P2 output
Port P2 input
P2REN
P2SEL
P2IE
P2IES
P2IFG
P2DIR
P2OUT
P2IN
02Fh
02Eh
02Dh
02Ch
02Bh
02Ah
029h
028h
Port P1
Port P1 resistor enable
Port P1 selection
Port P1 interrupt enable
Port P1 interrupt edge select
Port P1 interrupt flag
Port P1 direction
Port P1 output
Port P1 input
P1REN
P1SEL
P1IE
P1IES
P1IFG
P1DIR
P1OUT
P1IN
027h
026h
025h
024h
023h
022h
021h
020h
Special Function
SFR interrupt flag 2
SFR interrupt flag 1
SFR interrupt enable 2
SFR interrupt enable 1
IFG2
IFG1
IE2
IE1
003h
002h
001h
000h
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
absolute maximum ratings†
Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V
Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC+0.3 V
Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA
Storage temperature, Tstg (unprogrammed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C
Storage temperature, Tstg (programmed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C
NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended
operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.
2. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage
is applied to the TEST pin when blowing the JTAG fuse.
3. Higher temperature may be applied during board soldering process according to the current JEDEC J−STD−020 specification with
peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.
recommended operating conditions
MIN
NOM
MAX
UNITS
Supply voltage during program execution, VCC
1.8
3.6
V
Supply voltage during program/erase flash memory, VCC
2.2
3.6
V
Supply voltage, VSS
0
Operating free-air temperature range, TA
Processor frequency fSYSTEM (Maximum MCLK frequency)
V
−40
85
VCC = 1.8 V,
Duty Cycle = 50% ±10%
dc
6
VCC = 2.7 V,
Duty Cycle = 50% ±10%
dc
12
VCC ≥ 3.3 V,
Duty Cycle = 50% ±10%
dc
16
°C
MHz
NOTES: 1. The MSP430 CPU is clocked directly with MCLK.
Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.
2. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this
datasheet.
System Frequency −MHz
16 MHz
12 MHz
6 MHz
1.8 V
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏ
2.2 V
2.7 V
3.3 V
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
Legend:
Supply voltage range,
during flash memory
programming
Supply voltage range,
during program execution
3.6 V
Supply Voltage −V
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V.
Figure 1. Save Operating Area
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
active mode supply current (into VCC) excluding external current (see Notes 1 and 2)
PARAMETER
IAM, 1MHz
IAM, 1MHz
IAM, 4kHz
IAM,100kHz
TEST CONDITIONS
Active mode (AM)
current (1MHz)
Active mode (AM)
current (1MHz)
Active mode (AM)
current (4kHz)
Active mode (AM)
current (100kHz)
VCC
fDCO = fMCLK = fSMCLK = 1MHz, fACLK = 32,768Hz,
Program executes in flash,
BCSCTL1 = CALBC1_1MHz,
DCOCTL = CALDCO_1MHz,
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0
MIN
TYP
MAX
2.2 V
220
270
3V
300
370
2.2 V
190
UNIT
µA
fDCO = fMCLK = fSMCLK = 1MHz, fACLK = 32,768Hz,
Program executes in RAM,
BCSCTL1 = CALBC1_1MHz,
DCOCTL = CALDCO_1MHz,
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0
µA
fMCLK = fSMCLK = fACLK = 32,768Hz/8 = 4,096Hz,
fDCO = 0Hz,
Program executes in flash,
SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11,
CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0
3V
260
2.2 V
1.2
3
3V
1.6
4
2.2 V
37
50
3V
40
55
µA
fMCLK = fSMCLK = fDCO(0, 0) ≈ 100kHz, fACLK = 0Hz,
Program executes in flash,
RSELx = 0, DCOx = 0,
CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 1
µA
NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.
2. The currents are characterized with a Micro Crystal CC4V−T1A SMD cyrstal with a load capacitance of 9 pF.
The internal and external load capacitance is chosen to closely match the required 9pF.
typical characteristics − active mode supply current (into VCC)
4.0
fDCO = 16 MHz
4.0
Active Mode Current − mA
Active Mode Current − mA
5.0
3.0
fDCO = 12 MHz
2.0
1.0
fDCO = 8 MHz
TA = 25 °C
2.0
2.0
2.5
3.0
3.5
4.0
TA = 25 °C
1.0
VCC = 2.2 V
0.0
0.0
VCC − Supply Voltage − V
Figure 2. Active mode current vs VCC, TA = 25°C
POST OFFICE BOX 655303
VCC = 3 V
TA = 85 °C
fDCO = 1 MHz
0.0
1.5
TA = 85 °C
3.0
4.0
8.0
12.0
16.0
fDCO − DCO Frequency − MHz
Figure 3. Active mode current vs DCO frequency
• DALLAS, TEXAS 75265
21
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
low power mode supply currents (into VCC) excluding external current (see Notes 1 and 2)
PARAMETER
TEST CONDITIONS
VCC
Low-power mode
0 (LPM0) current,
see Note 3
fMCLK = 0MHz,
fSMCLK = fDCO = 1MHz,
fACLK = 32,768Hz,
BCSCTL1 = CALBC1_1MHz,
DCOCTL = CALDCO_1MHz,
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0
Low-power mode
ILPM0,100kHz 0 (LPM0) current,
see Note 3
fMCLK = 0MHz,
fSMCLK = fDCO(0, 0) ≈ 100kHz,
fACLK = 0Hz,
RSELx = 0, DCOx = 0,
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 1
Low-power mode
1 (LPM2) current,
see Note 4
fMCLK = fSMCLK = 0MHz, fDCO = 1MHz,
fACLK = 32,768Hz,
BCSCTL1 = CALBC1_1MHz,
DCOCTL = CALDCO_1MHz,
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0
ILPM0, 1MHz
ILPM2
Low-power mode
3 (LPM3) current,
ILPM3,LFXT1
see Note 4
ILPM3,VLO
ILPM4
Low-power mode
3 current, (LPM3)
see Note 4
Low-power mode
4 (LPM4) current,
see Note 5
fDCO = fMCLK = fSMCLK = 0MHz,
fACLK = 32,768Hz,
CPUOFF = 1, SCG0 = 1, SCG1 = 1,
OSCOFF = 0
fDCO = fMCLK = fSMCLK = 0MHz,
fACLK from internal LF oscillator (VLO),
CPUOFF = 1, SCG0 = 1, SCG1 = 1,
OSCOFF = 0
fDCO = fMCLK = fSMCLK = 0MHz,
fACLK = 32,768Hz,
CPUOFF = 1, SCG0 = 1, SCG1 = 1,
OSCOFF = 1
TA = −40°C
TA = 25°C
2.2 V
TA = −40°C
TA = 25°C
TA = 85°C
65
80
85
100
2.2 V
37
48
3V
41
52
2.2 V
22
29
3V
25
32
0.7
1.2
0.7
1.0
1.4
2.3
0.9
1.2
0.9
1.2
1.6
2.8
0.4
0.7
0.5
0.7
1.0
1.6
0.5
0.9
0.6
0.9
1.3
1.8
0.1
0.5
0.1
0.5
0.8
1.5
µA
2.2 V
3V
2.2 V
3V
2.2 V/3 V
NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.
2. The currents are characterized with a Micro Crystal CC4V−T1A SMD crystal with a load capacitance of 9 pF.
The internal and external load capacitance is chosen to closely match the required 9pF.
3. Current for brownout and WDT clocked by SMCLK included.
4. Current for brownout and WDT clocked by ACLK included.
5. Current for brownout included.
22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
µA
TA = −40°C
TA = 25°C
MAX
3V
TA = 85°C
TA = −40°C
TA = 25°C
TA = 85°C
TYP
µA
TA = 85°C
TA = −40°C
TA = 25°C
TA = 85°C
MIN
µA
µA
µA
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
Schmitt-trigger inputs − Ports P1 and P2
PARAMETER
VIT+
VIT−
TEST CONDITIONS
Positive-going input threshold
voltage
Negative-going input threshold
voltage
Vhys
Input voltage hysteresis (VIT+ −
VIT−)
RPull
Pull-up/pull-down resistor
For pull-up: VIN = VSS;
For pull-down: VIN = VCC
CI
Input Capacitance
VIN = VSS or VCC
VCC
MIN
TYP
MAX
UNIT
VCC
0.45
0.75
2.2 V
1.00
1.65
3V
1.35
2.25
0.25
0.55
2.2 V
0.55
1.20
3V
0.75
1.65
2.2 V
0.2
1.0
3V
0.3
1.0
20
35
50
5
V
VCC
V
V
kW
pF
inputs − Ports P1 and P2
PARAMETER
t(int)
External interrupt timing
TEST CONDITIONS
Port P1, P2: P1.x to P2.x, External
trigger puls width to set interrupt
flag, (see Note 1)
VCC
2.2 V/3 V
MIN
TYP
MAX
20
UNIT
ns
NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t(int) is met. It may be set even with trigger signals
shorter than t(int).
leakage current − Ports P1 and P2
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
Ilkg(Px.x)
High-impedance leakage current
see Notes 1 and 2
2.2 V/3 V
±50
nA
NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pull-up/pull-down resistor is
disabled.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
outputs − Ports P1 and P2
PARAMETER
VOH
VOL
High-level output
voltage
Low-level output
voltage
TEST CONDITIONS
VCC
MIN
I(OHmax) = −1.5 mA (see Notes 1)
I(OHmax) = −6 mA (see Notes 2)
2.2 V
VCC−0.25
VCC−0.6
VCC
VCC
I(OHmax) = −1.5 mA (see Notes 1)
I(OHmax) = −6 mA (see Notes 2)
3V
VCC−0.25
VCC−0.6
VCC
VCC
VSS+0.25
VSS+0.6
VSS+0.25
2.2 V
3V
I(OLmax) = 1.5 mA (see Notes 1)
I(OLmax) = 6 mA (see Notes 2)
2.2 V
2.2 V
VSS
VSS
I(OLmax) = 1.5 mA (see Notes 1)
3V
VSS
TYP
MAX
UNIT
V
V
I(OLmax) = 6 mA (see Notes 2)
3V
VSS
VSS+0.6
NOTES: 1. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±12 mA to hold the maximum
voltage drop specified.
2. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±48 mA to hold the maximum
voltage drop specified.
output frequency − Ports P1 and P2
PARAMETER
fPx.y
fPort_CLK
Port output frequency
(with load)
Clock output frequency
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
P1.4/SMCLK, CL = 20 pF, RL = 1 kOhm
(see Note 1 and 2)
2.2 V
10
MHz
3V
12
MHz
P2.0/ACLK, P1.4/SMCLK, CL = 20 pF
(see Note 2)
2.2 V
12
MHz
3V
16
MHz
NOTES: 1. A resistive divider with 2 times 0.5 kW between VCC and VSS is used as load. The output is connected to the center tap of the divider.
2. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
24
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
typical characteristics − outputs
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
50.0
VCC = 2.2 V
P1.7
TA = 25°C
25.0
TA = 85°C
20.0
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
I OL − Typical Low-Level Output Current − mA
I OL − Typical Low-Level Output Current − mA
30.0
VCC = 3 V
P1.7
40.0
TA = 85°C
30.0
20.0
10.0
0.0
0.0
2.5
0.5
VOL − Low-Level Output Voltage − V
1.5
2.0
2.5
3.0
3.5
Figure 5
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0
I OH − Typical High-Level Output Current − mA
0.0
I OH − Typical High-Level Output Current − mA
1.0
VOL − Low-Level Output Voltage − V
Figure 4
VCC = 2.2 V
P1.7
−5.0
−10.0
−15.0
TA = 85°C
−20.0
−25.0
0.0
TA = 25°C
TA = 25°C
0.5
1.0
1.5
2.0
2.5
VOH − High-Level Output Voltage − V
VCC = 3 V
P1.7
−10.0
−20.0
−30.0
TA = 85°C
−40.0
TA = 25°C
−50.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOH − High-Level Output Voltage − V
Figure 6
Figure 7
NOTE: One output loaded at a time.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
POR/brownout reset (BOR) (see Notes 1 and 2)
PARAMETER
TEST CONDITIONS
VCC(start)
(see Figure 8)
dVCC/dt ≤ 3 V/s
V(B_IT−)
Vhys(B_IT−)
(see Figure 8 through Figure 10)
dVCC/dt ≤ 3 V/s
dVCC/dt ≤ 3 V/s
td(BOR)
(see Figure 8)
t(reset)
Pulse length needed at RST/NMI pin
to accepted reset internally
(see Figure 8)
VCC
MIN
TYP
MAX
0.7 × V(B_IT−)
70
2.2 V/3 V
2
130
UNIT
V
1.71
V
180
mV
2000
µs
µs
NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT−)
+ Vhys(B_IT−) is ≤ 1.8V.
2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT−) + Vhys(B_IT−). The default
DCO settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired
operating frequency.
VCC
Vhys(B_IT−)
V(B_IT−)
VCC(start)
1
0
t d(BOR)
Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage
26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
typical characteristics − POR/brownout reset (BOR)
VCC
3V
2
VCC(drop) − V
VCC = 3 V
Typical Conditions
t pw
1.5
1
VCC(drop)
0.5
0
0.001
1
1000
1 ns
tpw − Pulse Width − µs
1 ns
tpw − Pulse Width − µs
Figure 9. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal
VCC
VCC(drop) − V
2
1.5
t pw
3V
VCC = 3 V
Typical Conditions
1
VCC(drop)
0.5
0
0.001
tf = tr
1
1000
tf
tr
tpw − Pulse Width − µs
tpw − Pulse Width − µs
Figure 10. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
main DCO characteristics
D All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14
overlaps RSELx = 15.
D DCO control bits DCOx have a step size as defined by parameter SDCO.
D Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal
to:
f average +
MOD
32 f DCO(RSEL,DCO) f DCO(RSEL,DCO)1)
f DCO(RSEL,DCO))(32*MOD) f DCO(RSEL,DCO)1)
DCO frequency
PARAMETER
Vcc
Supply voltage range
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
RSELx < 14
1.8
3.6
V
RSELx = 14
2.2
3.6
V
RSELx = 15
3.0
3.6
V
fDCO(0,0)
fDCO(0,3)
DCO frequency (0, 0)
RSELx = 0, DCOx = 0, MODx = 0
2.2 V/3 V
0.06
0.14
MHz
DCO frequency (0, 3)
RSELx = 0, DCOx = 3, MODx = 0
2.2 V/3 V
0.07
0.17
MHz
fDCO(1,3)
fDCO(2,3)
DCO frequency (1, 3)
RSELx = 1, DCOx = 3, MODx = 0
2.2 V/3 V
0.10
0.20
MHz
DCO frequency (2, 3)
RSELx = 2, DCOx = 3, MODx = 0
2.2 V/3 V
0.14
0.28
MHz
fDCO(3,3)
fDCO(4,3)
DCO frequency (3, 3)
RSELx = 3, DCOx = 3, MODx = 0
2.2 V/3 V
0.20
0.40
MHz
DCO frequency (4, 3)
RSELx = 4, DCOx = 3, MODx = 0
2.2 V/3 V
0.28
0.54
MHz
fDCO(5,3)
fDCO(6,3)
DCO frequency (5, 3)
RSELx = 5, DCOx = 3, MODx = 0
2.2 V/3 V
0.39
0.77
MHz
DCO frequency (6, 3)
RSELx = 6, DCOx = 3, MODx = 0
2.2 V/3 V
0.54
1.06
MHz
fDCO(7,3)
fDCO(8,3)
DCO frequency (7, 3)
RSELx = 7, DCOx = 3, MODx = 0
2.2 V/3 V
0.80
1.50
MHz
DCO frequency (8, 3)
RSELx = 8, DCOx = 3, MODx = 0
2.2 V/3 V
1.10
2.10
MHz
fDCO(9,3)
fDCO(10,3)
DCO frequency (9, 3)
RSELx = 9, DCOx = 3, MODx = 0
2.2 V/3 V
1.60
3.00
MHz
DCO frequency (10, 3)
RSELx = 10, DCOx = 3, MODx = 0
2.2 V/3 V
2.50
4.30
MHz
fDCO(11,3)
fDCO(12,3)
DCO frequency (11, 3)
RSELx = 11, DCOx = 3, MODx = 0
2.2 V/3 V
3.00
5.50
MHz
DCO frequency (12, 3)
RSELx = 12, DCOx = 3, MODx = 0
2.2 V/3 V
4.30
7.30
MHz
fDCO(13,3)
fDCO(14,3)
DCO frequency (13, 3)
RSELx = 13, DCOx = 3, MODx = 0
2.2 V/3 V
6.00
9.60
MHz
DCO frequency (14, 3)
RSELx = 14, DCOx = 3, MODx = 0
2.2 V/3 V
8.60
13.9
MHz
fDCO(15,3)
fDCO(15,7)
DCO frequency (15, 3)
RSELx = 15, DCOx = 3, MODx = 0
3V
12.0
18.5
MHz
DCO frequency (15, 7)
RSELx = 15, DCOx = 7, MODx = 0
3V
16.0
26.0
MHz
SRSEL
Frequency step between
range RSEL and RSEL+1
SRSEL
f =
/fDCO(RSEL,DCO)
DCO(RSEL+1,DCO)
2.2 V/3 V
SDCO
Frequency step between
tap DCO and DCO+1
SDCO
f=
/fDCO(RSEL,DCO)
DCO(RSEL,DCO+1)
2.2 V/3 V
1.05
1.08
1.12
Measured at P1.4/SMCLK
2.2 V/3 V
40
50
60
Duty Cycle
28
1.55
ratio
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
%
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
calibrated DCO frequencies − tolerance at calibration
PARAMETER
TEST CONDITIONS
Frequency tolerance at calibration
TA
25°C
VCC
MIN
TYP
MAX
UNIT
3V
−1
±0.2
+1
25°C
3V
0.990
1
1.010
MHz
%
fCAL(1MHz)
1MHz calibration value
BCSCTL1= CALBC1_1MHz;
DCOCTL = CALDCO_1MHz
Gating time: 5ms
fCAL(8MHz)
8MHz calibration value
BCSCTL1= CALBC1_8MHz;
DCOCTL = CALDCO_8MHz
Gating time: 5ms
25°C
3V
7.920
8
8.080
MHz
fCAL(12MHz)
12MHz calibration value
BCSCTL1= CALBC1_12MHz;
DCOCTL = CALDCO_12MHz
Gating time: 5ms
25°C
3V
11.88
12
12.12
MHz
fCAL(16MHz)
16MHz calibration value
BCSCTL1= CALBC1_16MHz;
DCOCTL = CALDCO_16MHz
Gating time: 2ms
25°C
3V
15.84
16
16.16
MHz
VCC
MIN
MAX
UNIT
calibrated DCO frequencies − tolerance over temperature 0°C − +85°C
PARAMETER
1 MHz tolerance over temperature
TA
0°C − +85°C
3.0 V
−2.5
±0.5
+2.5
%
8 MHz tolerance over temperature
0°C − +85°C
3.0 V
−2.5
±1.0
+2.5
%
12 MHz tolerance over temperature
0°C − +85°C
3.0 V
−2.5
±1.0
+2.5
%
16 MHz tolerance over temperature
0°C − +85°C
3.0 V
−3.0
±2.0
+3.0
%
2.2 V
0.970
1
1.030
MHz
3.0 V
0.975
1
1.025
MHz
3.6 V
0.970
1
1.030
MHz
2.2 V
7.760
8
8.400
MHz
3.0 V
7.800
8
8.200
MHz
3.6 V
7.600
8
8.240
MHz
2.2 V
11.70
12
12.30
MHz
3.0 V
11.70
12
12.30
MHz
3.6 V
11.70
12
12.30
MHz
3.0 V
15.52
16
16.48
MHz
3.6 V
15.00
16
16.48
MHz
fCAL(1MHz)
fCAL(8MHz)
fCAL(12MHz)
fCAL(16MHz)
1MHz calibration value
8MHz calibration value
12MHz calibration value
16MHz calibration value
TEST CONDITIONS
BCSCTL1= CALBC1_1MHz;
DCOCTL = CALDCO_1MHz
Gating time: 5ms
BCSCTL1= CALBC1_8MHz;
DCOCTL = CALDCO_8MHz
Gating time: 5ms
0°C
0
C − +85
+85°C
C
0°C
0
C − +85
+85°C
C
BCSCTL1= CALBC1_12MHz;
DCOCTL = CALDCO_12MHz
Gating time: 5ms
0°C
0
C − +85
+85°C
C
BCSCTL1= CALBC1_16MHz;
DCOCTL = CALDCO_16MHz
Gating time: 2ms
0°C − +85°C
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TYP
29
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
calibrated DCO frequencies − tolerance over supply voltage VCC
PARAMETER
TEST CONDITIONS
1 MHz tolerance over VCC
TA
25°C
VCC
MIN
TYP
MAX
UNIT
1.8 V − 3.6 V
−2.5
±2
+2.5
%
8 MHz tolerance over VCC
25°C
1.8 V − 3.6 V
−2.5
±2
+2.5
%
12 MHz tolerance over VCC
25°C
2.2 V − 3.6 V
−2.5
±2
+2.5
%
16 MHz tolerance over VCC
25°C
3.0 V − 3.6 V
−3
±2
+3
%
25°C
1.8 V − 3.6 V
0.970
1
1.030
MHz
fCAL(1MHz)
1MHz calibration value
BCSCTL1= CALBC1_1MHz;
DCOCTL = CALDCO_1MHz
Gating time: 5ms
fCAL(8MHz)
8MHz calibration value
BCSCTL1= CALBC1_8MHz;
DCOCTL = CALDCO_8MHz
Gating time: 5ms
25°C
1.8 V − 3.6 V
7.760
8
8.240
MHz
fCAL(12MHz)
12MHz calibration value
BCSCTL1= CALBC1_12MHz;
DCOCTL = CALDCO_12MHz
Gating time: 5ms
25°C
2.2 V − 3.6 V
11.64
12
12.36
MHz
fCAL(16MHz)
16MHz calibration value
BCSCTL1= CALBC1_16MHz;
DCOCTL = CALDCO_16MHz
Gating time: 2ms
25°C
3.0 V − 3.6 V
15.00
16
16.48
MHz
VCC
MIN
MAX
UNIT
1 MHz tolerance overall
TA
−40°C − +85°C
1.8 V − 3.6 V
−5
±2
+5
%
8 MHz tolerance overall
−40°C − +85°C
1.8 V − 3.6 V
−5
±2
+5
%
12 MHz tolerance overall
−40°C − +85°C
2.2 V − 3.6 V
−5
±2
+5
%
16 MHz tolerance overall
−40°C − +85°C
3.0 V − 3.6 V
−6
±3
+6
%
−40°C − +85°C
1.8 V − 3.6 V
0.950
1
1.050
MHz
calibrated DCO frequencies − overall tolerance
PARAMETER
TEST CONDITIONS
TYP
fCAL(1MHz)
1MHz calibration value
BCSCTL1= CALBC1_1MHz;
DCOCTL = CALDCO_1MHz
Gating time: 5ms
fCAL(8MHz)
8MHz calibration value
BCSCTL1= CALBC1_8MHz;
DCOCTL = CALDCO_8MHz
Gating time: 5ms
−40°C − +85°C
1.8 V − 3.6 V
7.600
8
8.400
MHz
fCAL(12MHz)
12MHz calibration value
BCSCTL1= CALBC1_12MHz;
DCOCTL = CALDCO_12MHz
Gating time: 5ms
−40°C − +85°C
2.2 V − 3.6 V
11.40
12
12.60
MHz
fCAL(16MHz)
16MHz calibration value
BCSCTL1= CALBC1_16MHz;
DCOCTL = CALDCO_16MHz
Gating time: 2ms
−40°C − +85°C
3.0 V − 3.6 V
15.00
16
17.00
MHz
30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
typical characteristics − calibrated 1MHz DCO frequency
1.03
1.02
VCC = 1.8 V
Frequency − MHz
1.01
VCC = 2.2 V
1.00
VCC = 3.0 V
0.99
VCC = 3.6 V
0.98
0.97
−50.0
−25.0
0.0
25.0
50.0
75.0
100.0
TA − Temperature − °C
Figure 11. Calibrated 1 MHz Frequency vs. Temperature
1.03
Frequency − MHz
1.02
1.01
TA = 85 °C
1.00
TA = 25 °C
0.99
TA = −40 °C
0.98
0.97
1.5
2.0
2.5
3.0
3.5
4.0
VCC − Supply Voltage − V
Figure 12. Calibrated 1 MHz Frequency vs. VCC
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
wake-up from lower power modes (LPM3/4)
PARAMETER
TEST CONDITIONS
DCO clock wake-up time from
tDCO,LPM3/4 LPM3/4
(see Note 1)
VCC
MIN
TYP
MAX
BCSCTL1= CALBC1_1MHz;
DCOCTL = CALDCO_1MHz
2.2 V/3 V
2
BCSCTL1= CALBC1_8MHz;
DCOCTL = CALDCO_8MHz
2.2 V/3 V
1.5
BCSCTL1= CALBC1_12MHz;
DCOCTL = CALDCO_12MHz
2.2 V/3 V
1
BCSCTL1= CALBC1_16MHz;
DCOCTL = CALDCO_16MHz
3V
1
UNIT
µss
1/fMCLK +
tClock,LPM3/4
NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g. port interrupt) to the first clock edge
observable externally on a clock pin (MCLK or SMCLK).
2. Parameter applicable only if DCOCLK is used for MCLK.
tCPU,LPM3/4
CPU wake-up time from LPM3/4
(see Note 2)
typical characteristics − DCO clock wake-up time from LPM3/4
DCO Wake Time − us
10.00
RSELx = 0...11
RSELx = 12...15
1.00
0.10
0.10
1.00
10.00
DCO Frequency − MHz
Figure 13. Clock wake-up time from LPM3 vs DCO frequency
32
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
crystal oscillator, LFXT1, low frequency modes (see Note 4)
PARAMETER
fLFXT1,LF
LFXT1 oscillator crystal
frequency, LF mode 0, 1
LFXT1 oscillator logic level
fLFXT1,LF,logic square wave input frequency,
LF mode
OALF
CL,eff
Oscillation Allowance for LF
crystals
Integrated effective Load
Capacitance, LF mode
(see Note 1)
TEST CONDITIONS
VCC
XTS = 0, LFXT1Sx = 0 or 1
1.8 V − 3.6 V
XTS = 0, LFXT1Sx = 3
1.8 V − 3.6 V
MIN
TYP
MAX
32,768
10,000
XTS = 0, LFXT1Sx = 0;
fLFXT1,LF = 32,768 kHz,
CL,eff = 6 pF
XTS = 0, LFXT1Sx = 0;
fLFXT1,LF = 32,768 kHz,
CL,eff = 12 pF
32,768
UNIT
Hz
50,000
Hz
500
kW
200
kW
XTS = 0, XCAPx = 0
1
pF
XTS = 0, XCAPx = 1
5.5
pF
XTS = 0, XCAPx = 2
8.5
pF
XTS = 0, XCAPx = 3
11
pF
Duty Cycle
LF mode
XTS = 0, Measured at
P1.4/ACLK, fLFXT1,LF = 32,768
Hz
2.2 V/3 V
30
fFault,LF
Osc. fault frequency threshold,
LF mode (see Note 3)
XTS = 0, LFXT1Sx = 3
(see Note 2)
2.2 V/3 V
10
50
70
%
10,000
Hz
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a
correct setup the effective load capacitance should always match the specification of the used crystal.
2. Measured with logic level input frequency but also applies to operation with crystals.
3. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag.
Frequencies in between might set the flag.
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.
− Keep as short of a trace as possible between the device and the crystal.
− Design a good ground plane around the oscillator pins.
− Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
− Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
− Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
− If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
− Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other
documentation. This signal is no longer required for the serial programming adapter.
internal very low power, low frequency oscillator (VLO)
PARAMETER
fVLO
dfVLO/dT
dfVLO/dVCC
TEST CONDITIONS
VLO frequency
VCC
2.2 V/3 V
VLO frequency temperature drift
(see Note 1)
2.2 V/3 V
VLO frequency supply voltage
drift
TA = 25°C (see Note 2)
1.8V...3.6V
MIN
4
TYP
MAX
12
20
UNIT
kHz
0.5
%/°C
4
%/V
NOTES: 1. Calculated using the box method: (MAX(−40...85_C) − MIN(−40...85_C))/MIN(−40...85_C)/(85_C − (−40_C))
2. Calculated using the box method: (MAX(1.8...3.6V) − MIN(1.8...3.6V))/MIN(1.8...3.6V)/(3.6V − 1.8V)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
33
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
Timer_A
PARAMETER
TEST CONDITIONS
fTA
Timer_A clock frequency
tTA,cap
Timer_A, capture timing
VCC
Internal: SMCLK, ACLK;
External: TACLK, INCLK;
Duty Cycle = 50% ±10%
MIN
TYP
MAX
2.2 V
10
3V
16
UNIT
MHz
TA0, TA1
2.2 V/3 V
20
ns
USI, Universal Serial Interface (MSP430x20x2, MSP430x20x3 only)
PARAMETER
TEST CONDITIONS
VCC
External: SCLK;
Duty Cycle = 50% ±10%;
SPI Slave Mode
fUSI
USI clock frequency
VOL,I2C
Low-level output voltage on SDA
and SCL
MIN
TYP
MAX
2.2 V
10
3V
16
UNIT
MHz
USI module in I2C mode
I(OLmax) = 1.5 mA
2.2 V/3 V
VSS
VSS+0.4
V
typical characteristics − USI low-level output voltage on SDA and SCL (MSP430x20x2, MSP430x20x3 only)
5.0
5.0
3.0
TA = 85°C
2.0
1.0
0.2
0.4
0.6
0.8
1.0
I OL − Low-Level Output Current − mA
I OL − Low-Level Output Current − mA
TA = 25°C
4.0
0.0
0.0
4.0
Figure 14. USI Low-Level Output Voltage vs.
Output Current
POST OFFICE BOX 655303
TA = 85°C
3.0
2.0
1.0
0.0
0.0
0.2
0.4
0.6
0.8
VOL − Low-Level Output Voltage − V
VOL − Low-Level Output Voltage − V
34
TA = 25°C
VCC = 3 V
VCC = 2.2 V
Figure 15. USI Low-Level Output Voltage vs.
Output Current
• DALLAS, TEXAS 75265
1.0
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
MSP430x20x1 electrical characteristics over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted)
Comparator_A+ (see Note 1, MSP430x20x1 only)
PARAMETER
TEST CONDITIONS
I(DD)
CAON=1, CARSEL=0, CAREF=0
I(Refladder/RefDiode)
CAON=1, CARSEL=0,
CAREF=1/2/3,
no load at P1.0/CA0 and P1.1/CA1
V(IC)
V(Ref025)
V(Ref050)
Common-mode input
voltage
Voltage @ 0.25 V
CC
V
Voltage @ 0.5V
V
CC
CC
node
CC
MIN
TYP
MAX
2.2 V
25
40
3V
45
60
2.2 V
30
50
3V
45
71
CAON=1
2.2 V/3 V
0
VCC−1
PCA0=1, CARSEL=1, CAREF=1,
no load at P1.0/CA0 and P1.1/CA1
2.2 V/3 V
0.23
0.24
0.25
PCA0=1, CARSEL=1, CAREF=2,
no load at P1.0/CA0 and P1.1/CA1
2.2 V/3 V
0.47
0.48
0.5
2.2 V
390
480
540
490
550
UNIT
µA
µA
V
3V
400
Offset voltage
PCA0=1, CARSEL=1, CAREF=3,
no load at P1.0/CA0 and P1.1/CA1,
TA = 85°C
See Note 2
2.2 V/3 V
−30
30
mV
Input hysteresis
CAON=1
2.2 V/3 V
0
0.7
1.4
mV
2.2 V
80
165
300
3V
70
120
240
V(RefVT)
(see Figure 19 and Figure 20)
V(offset)
Vhys
t(response)
node
VCC
Response time
(low−high and high−low)
TA = 25°C, Overdrive 10 mV,
Without filter: CAF=0
(see Note 3, Figure 16 and
Figure 17)
mV
ns
TA = 25°C, Overdrive 10 mV,
2.2 V
1.4
1.9
2.8
With filter: CAF=1
µs
(see Note 3, Figure 16 and
3V
0.9
1.5
2.2
Figure 17)
NOTES: 1. The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.x) specification.
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements.
The two successive measurements are then summed together.
3. Response time measured at P1.3/CAOUT.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
35
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
MSP430x20x1 electrical characteristics over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted) (continued)
0 V VCC
0
1
CAF
CAON
To Internal
Modules
Low Pass Filter
+
_
V+
V−
0
0
1
1
CAOUT
Set CAIFG
Flag
τ ≈ 2.0 µs
Figure 16. Block Diagram of Comparator_A+ Module
VCAOUT
Overdrive
V−
400 mV
t(response)
V+
Figure 17. Overdrive Definition
CASHORT
CA0
CA1
1
VIN
+
−
IOUT = 10µA
Comparator_A+
CASHORT = 1
Figure 18. Comparator_A+ Short Resistance Test Condition
36
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
MSP430x20x1 electrical characteristics over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted) (continued)
typical characteristics − Comparator_A+ (MSP430x20x1 only)
650
650
VCC = 2.2 V
V(REFVT) − Reference Volts −mV
600
Typical
550
500
450
400
−45
−25
−5
15
35
55
75
600
Typical
550
500
450
400
−45
95
−25
−5
15
35
55
75
95
TA − Free-Air Temperature − °C
TA − Free-Air Temperature − °C
Figure 20. V(RefVT) vs Temperature, VCC = 2.2 V
Figure 19. V(RefVT) vs Temperature, VCC = 3 V
100.00
Short Resistance − kOhms
V(REFVT) − Reference Volts −mV
VCC = 3 V
VCC = 1.8V
VCC = 2.2V
VCC = 3.0V
10.00
VCC = 3.6V
1.00
0.0
0.2
0.4
0.6
0.8
1.0
VIN/VCC − Normalized Input Voltage − V/V
Figure 21. Short Resistance vs VIN/VCC
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
37
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted) (continued)
10-bit ADC, power supply and input range conditions (see Note 1, MSP430x20x2 only)
PARAMETER
TEST CONDITIONS
VCC
TYP
MAX
VCC
Analog supply voltage range
VAx
Analog input voltage range
(see Note 2)
fADC10CLK = 5.0 MHz
ADC10ON = 1, REFON = 0
ADC10SHT0 = 1, ADC10SHT1 = 0,
ADC10DIV = 0
2.2 V
0.52
1.05
IADC10
ADC10 supply current
(see Note 3)
3V
0.6
1.2
Reference supply current,
reference buffer disabled
(see Note 4)
fADC10CLK = 5.0 MHz REF2_5V=0
ADC10ON = 0,
REFON = 1,
REF2_5V=1
REFOUT = 0
2.2 V/3 V
0.25
0.4
Reference buffer supply current
(see Note 4)
fADC10CLK = 5.0 MHz
ADC10SR=0
ADC10ON = 0,
REFON = 1,
REF2_5V = 0
ADC10SR=1
REFOUT = 1
IREF+
IREFB
CI
RI
NOTES: 1.
2.
3.
4.
38
Input capacitance
VSS = 0 V
All Ax terminals.
Analog inputs selected in ADC10AE
register.
MIN
Only one terminal Ax selected at a
time
UNIT
2.2
3.6
V
0
VCC
V
mA
mA
mA
3V
2.2 V/3 V
1.1
1.4
mA
2.2 V/3 V
0.46
0.55
mA
27
pF
Input MUX ON resistance
0V ≤ VAx ≤ VCC
2.2 V/3 V
2000
Ω
The leakage current is defined in the leakage current table with Px.x/Ax parameter.
The analog input voltage range must be within the selected reference voltage range VR+ to VR− for valid conversion results.
The internal reference supply current is not included in current consumption parameter IADC10.
The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted) (continued)
10-bit ADC, built-in voltage reference (MSP430x20x2 only)
PARAMETER
VCC,REF+
TEST CONDITIONS
Positive built-in reference analog
supply voltage range
VREF+
Positive built-in reference voltage
ILD,VREF+
Maximum VREF+ load current
VCC
IVREF+ ≤ 1mA, REF2_5V=0
IVREF+ ≤ 0.5mA, REF2_5V=1
VREF+ load regulation response time
TYP
2.2
VREF++0.15
VREF++0.15
MAX
UNIT
VCC
VCC
V
IVREF+ ≤ 1mA, REF2_5V=1
IVREF+ ≤ IVREF+max, REF2_5V=0
2.2 V/3 V
1.41
1.5
VCC
1.59
V
IVREF+ ≤ IVREF+max, REF2_5V=1
3V
2.35
2.5
2.65
V
2.2 V
VREF+ load regulation
MIN
±0.5
3V
±1
mA
IVREF+ = 500 µA +/− 100 µA
Analog input voltage VAx ≈ 0.75 V;
REF2_5V=0
2.2 V/3 V
±2
LSB
IVREF+ = 500 µA ± 100 µA
Analog input voltage VAx ≈ 1.25 V;
REF2_5V=1
3V
±2
LSB
3V
400
IVREF+ =
100µA→900µA,
VAx ≈ 0.5 x VREF+
Error of conversion
result ≤ 1 LSB
ADC10SR=0
ns
ADC10SR=1
3V
2000
100
CVREF+
Max. capacitance at pin VREF+
(see Note 1)
IVREF+ ≤ ±1mA,
REFON=1, REFOUT=1
2.2 V/3 V
TCREF+
Temperature coefficient
IVREF+ = const. with
0 mA ≤ IVREF+ ≤ 1 mA
2.2 V/3 V
tREFON
Settling time of internal reference
voltage (see Note 2)
IVREF+ = 0.5 mA, REF2_5V=0
REFON = 0 → 1
tREFBURST
Settling time of reference buffer
(see Note 2)
IVREF+ = 0.5 mA,
REF2_5V=0,
REFON = 1,
REFBURST = 1
pF
±100 ppm/°C
3.6 V
30
ADC10SR=0
2.2 V
1
ADC10SR=1
2.2 V
2.5
µs
NOTES: 1. The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA2/A4/VREF+/VeREF+ (REFOUT=1),
must be limited; the reference buffer may become unstable otherwise.
2. The condition is that the error in a conversion started after tREFON or tRefBuf is less than ±0.5 LSB.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
39
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted) (continued)
10-bit ADC, external reference (see Note 1, MSP430x20x2 only)
PARAMETER
VeREF+
TEST CONDITIONS
Positive external reference input
voltage range (see Note 2)
TYP
MAX
UNIT
1.4
VCC
V
VeREF− ≤ VeREF+ ≤ VCC − 0.15V
SREF1 = 1, SREF0 = 1 (see Note 3)
1.4
3.0
V
0
1.2
V
1.4
VCC
V
Negative external reference input
voltage range (see Note 4)
VeREF+ > VeREF−
∆VeREF
Differential external reference input
voltage range
∆VeREF = VeREF+ − VeREF−
VeREF+ > VeREF− (see Note 5)
Static input current into VeREF+
MIN
VeREF+ > VeREF−
SREF1 = 1, SREF0 = 0
VeREF−
IVeREF+
VCC
0V ≤ VeREF+ ≤ VCC,
SREF1 = 1, SREF0 = 0
2.2 V/3 V
±1
µA
0V ≤VeREF+ ≤ VCC − 0.15V ≤ 3V
SREF1 = 1, SREF0 = 1 (see Note 3)
2.2 V/3 V
0
µA
IVeREF−
Static input current into VeREF−
0V ≤ VeREF− ≤ VCC
2.2 V/3 V
±1
µA
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
3. Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer
supply current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1.
4. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
5. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied
with reduced accuracy requirements.
40
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted) (continued)
10-bit ADC, timing parameters (MSP430x20x2 only)
PARAMETER
fADC10CLK
fADC10OSC
tCONVERT
TEST CONDITIONS
For specified
performance of
ADC10 linearity
parameters
ADC10 input clock frequency
ADC10 built-in oscillator frequency
Conversion time
VCC
MIN
TYP
MAX
UNIT
ADC10SR=0
2.2 V/3 V
0.45
6.3
ADC10SR=1
2.2 V/3 V
0.45
1.5
ADC10DIVx=0, ADC10SSELx = 0
fADC10CLK = fADC10OSC
2.2 V/3 V
3.7
6.3
MHz
ADC10 built-in oscillator,
ADC10SSELx = 0
fADC10CLK = fADC10OSC
2.2 V/3 V
2.06
3.51
µs
MHz
13×
ADC10DIV×
1/fADC10CLK
fADC10CLK from ACLK, MCLK or
SMCLK: ADC10SSELx ≠ 0
µs
tADC10ON
Turn on settling time of the ADC
(see Note 1)
100
ns
NOTES: 1. The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already
settled.
10-bit ADC, linearity parameters (MSP430x20x2 only)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
EI
ED
Integral linearity error
2.2 V/3 V
±1
LSB
Differential linearity error
2.2 V/3 V
±1
LSB
EO
Offset error
±1
LSB
EG
Gain error
2.2 V/3 V
±1.1
±2
LSB
ET
Total unadjusted error
2.2 V/3 V
±2
±5
LSB
Source impedance RS < 100 Ω,
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2.2 V/3 V
41
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
MSP430x20x2 electrical characteristics over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted) (continued)
10-bit ADC, temperature sensor and built-in VMID (MSP430x20x2 only)
PARAMETER
ISENSOR
Temperature sensor supply
current (see Note 1)
TEST CONDITIONS
REFON = 0, INCHx = 0Ah,
TA = 25_C
TCSENSOR†
ADC10ON = 1, INCHx = 0Ah
(see Notes 2, 3)
VOffset,Sensor Sensor offset voltage
ADC10ON = 1, INCHx = 0Ah
(see Notes 2, 3)
VSensor
Sensor output voltage
(see Note 4)
Sample time required if
tSensor(sample) channel 10 is selected (see
Note 5)
VCC
MIN
TYP
MAX
2.2 V
40
120
3V
60
160
3.55
3.66
mV/°C
100
mV
2.2 V/3 V
3.44
−100
Temperature sensor voltage
at TA = 85°C
2.2 V/3 V
TBD
TBD
TBD
Temperature sensor voltage
at TA = 25°C
2.2 V/3 V
TBD
TBD
TBD
Temperature sensor voltage
at TA = 0°C (see Note 2)
2.2 V/3 V
935
985
1035
ADC10ON = 1, INCHx = 0Ah,
Error of conversion result ≤ 1 LSB
2.2 V/3 V
30
IVMID
Current into divider at channel
11 (see Note 6)
ADC10ON = 1, INCHx = 0Bh,
VMID
VCC divider at channel 11
ADC10ON = 1, INCHx = 0Bh,
VMID is ≈0.5 x VCC
UNIT
µA
A
mV
µs
2.2 V
NA
3V
NA
2.2 V
1.06
1.1
1.14
3V
1.46
1.5
1.54
µA
A
V
Sample time required if
2.2 V
1400
ADC10ON = 1, INCHx = 0Bh,
tVMID(sample) channel 11 is selected (see
ns
Error of conversion result ≤ 1 LSB
3V
1220
Note 7)
† Not production tested, limits characterized
NOTES: 1. The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON=1 and INCH=0Ah and sample signal
is high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature
sensor input (INCH = 0Ah).
2. Not production tested, limits characterized.
3. The following formula can be used to calculate the temperature sensor output voltage:
VSensor,typ = TCSensor ( 273 + T [°C] ) + VOffset,sensor [mV] or
VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV]
4. Results based on characterization and/or production test, not TCSensor or VOffset,sensor.
5. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on).
6. No additional current is needed. The VMID is used during sampling.
7. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
42
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
MSP430x20x3 electrical characteristics over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted)
SD16_A, power supply and recommended operating conditions (MSP430x20x3 only)
PARAMETER
AVCC
ISD16
fSD16
TEST CONDITIONS
VCC
AVCC = DVCC = VCC
AVSS = DVSS = VSS = 0V
Analog supply voltage range
Analog supply current
including internal reference
SD16 input clock frequency
MIN
TYP
2.5
MAX
3.6
SD16LP = 0,
fSD16 = 1 MHz,
SD16OSR = 256
GAIN: 1,2
3V
730
1050
GAIN: 4,8,16
3V
810
1150
GAIN: 32
3V
1160
1700
SD16LP = 1,
fSD16 = 0.5 MHz,
SD16OSR = 256
GAIN: 1
3V
720
1030
GAIN: 32
3V
810
1150
1.1
SD16LP = 0
(Low power mode disabled)
3V
0.03
1
SD16LP = 1
(Low power mode enabled)
3V
0.03
0.5
UNIT
V
µA
MHz
SD16_A, input range (MSP430x20x3 only)
PARAMETER
VID,FSR
VID
TEST CONDITIONS
Differential full scale input voltage
range (see Note 1)
Differential input voltage range
for specified performance
(see Note 1)
VCC
Bipolar Mode, SD16UNI = 0
Unipolar Mode, SD16UNI = 1
SD16REFON=1
MIN
TYP
MAX
UNIT
−(VREF/2)/
GAIN
+(VREF/2)/
GAIN
mV
0
+(VREF/2)/
GAIN
mV
SD16GAINx=1
±500
SD16GAINx=2
±250
SD16GAINx=4
±125
SD16GAINx=8
±62
SD16GAINx=16
±31
mV
±15
SD16GAINx=32
SD16GAINx=1
3V
200
SD16GAINx=32
3V
75
SD16GAINx=1
3V
300
400
SD16GAINx=32
3V
100
150
ZI
Input impedance
(one input pin to AVSS)
fSD16 = 1MHz
ZID
Differential Input impedance
(IN+ to IN−)
fSD16 = 1MHz
VI
Absolute input voltage range
AVSS
-0.1V
AVCC
V
VIC
Common-mode input voltage
range
AVSS
-0.1V
AVCC
V
kΩ
kΩ
NOTES: 1. The analog input range depends on the reference voltage applied to VREF. If VREF is sourced externally, the full-scale range
is defined by VFSR+ = +(VREF/2)/GAIN and VFSR− = −(VREF/2)/GAIN. The analog input range should not exceed 80% of
VFSR+ or VFSR−.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
43
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
MSP430x20x3 electrical characteristics over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted) (continued)
SD16_A, SINAD performance (fSD16 = 1MHz, SD16OSRx = 1024, SD16REFON = 1, MSP430x20x3 only)
PW, or N
PARAMETER
TEST CONDITIONS
SD16GAINx = 1,
Signal Amplitude: VIN = 500mV,
Signal Frequency: fIN = 100Hz
SD16GAINx = 2,
Signal Amplitude: VIN = 250mV,
Signal Frequency: fIN = 100Hz
SINAD1024
Signal-to-Noise + Distortion Ratio
(OSR = 1024)
SD16GAINx = 4,
Signal Amplitude: VIN = 125mV,
Signal Frequency: fIN = 100Hz
SD16GAINx = 8,
Signal Amplitude: VIN = 62mV,
Signal Frequency: fIN = 100Hz
SD16GAINx = 16,
Signal Amplitude: VIN = 31mV,
Signal Frequency: fIN = 100Hz
SD16GAINx = 32,
Signal Amplitude: VIN = 15mV,
Signal Frequency: fIN = 100Hz
VCC
MIN
RSA
TYP
MIN
TYP
3V
84
85
TBD
TBD
3V
82
83
TBD
TBD
3V
78
79
TBD
TBD
UNIT
dB
3V
73
74
TBD
TBD
3V
68
69
TBD
TBD
3V
62
63
TBD
TBD
SD16_A, SINAD performance (fSD16 = 1MHz, SD16OSRx = 256, SD16REFON = 1, MSP430x20x3 only)
PW, or N
PARAMETER
TEST CONDITIONS
SD16GAINx = 1,
Signal Amplitude: VIN = 500mV,
Signal Frequency: fIN = 100Hz
SD16GAINx = 2,
Signal Amplitude: VIN = 250mV,
Signal Frequency: fIN = 100Hz
SINAD256
Signal-to-Noise + Distortion Ratio
(OSR = 256)
SD16GAINx = 4,
Signal Amplitude: VIN = 125mV,
Signal Frequency: fIN = 100Hz
SD16GAINx = 8,
Signal Amplitude: VIN = 62mV,
Signal Frequency: fIN = 100Hz
SD16GAINx = 16,
Signal Amplitude: VIN = 31mV,
Signal Frequency: fIN = 100Hz
SD16GAINx = 32,
Signal Amplitude: VIN = 15mV,
Signal Frequency: fIN = 100Hz
44
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
VCC
MIN
RSA
TYP
MIN
TYP
3V
80
81
TBD
TBD
3V
74
75
TBD
TBD
3V
69
70
TBD
TBD
UNIT
dB
3V
63
64
TBD
TBD
3V
58
59
TBD
TBD
3V
52
53
TBD
TBD
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
MSP430x20x3 electrical characteristics over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted) (continued)
typical characteristics − SD16_A SINAD performance over OSR (MSP430x20x3 only)
100.0
95.0
90.0
SINAD − dB
85.0
80.0
75.0
70.0
65.0
60.0
PW, or N
55.0
50.0
10.00
100.00
1000.00
OSR
Figure 22. SINAD performance over OSR, fSD16 = 1MHz, SD16REFON = 1, SD16GAINx = 1
SD16_A, performance (fSD16 = 1MHz, SD16OSRx = 256, SD16REFON = 1, MSP430x20x3 only)
PARAMETER
G
Nominal Gain (see Note 1)
TEST CONDITIONS
1.02
SD16GAINx = 2
3V
1.90
1.96
2.02
SD16GAINx = 4
3V
3.76
3.86
3.96
SD16GAINx = 8
3V
7.36
7.62
7.84
SD16GAINx = 16
3V
14.56
15.04
15.52
SD16GAINx = 32
3V
27.20
28.35
29.76
3V
dG/dVCC
Gain Supply Voltage Drift
SD16GAINx = 1; VCC = 2.5V - 3.6V
(see Note 3)
EOS
Offset Error (see Note 1)
dEOS/dT
Offset Error Temperature
Coefficient (see Note 1)
Power Supply Rejection Ratio
MAX
1.00
SD16GAINx = 1 (see Note 2)
PSRR
TYP
0.97
Gain Temperature Drift
Common-Mode Rejection Ratio
MIN
3V
dG/dT
CMRR
VCC
SD16GAINx = 1
2.5V-3.6V
15
UNIT
ppm/_C
0.35
%/V
SD16GAINx = 1
3V
±0.2
SD16GAINx = 32
3V
±1.5
%FSR
SD16GAINx = 1
3V
±4
±20
SD16GAINx = 32
3V
±20
±100
ppm
FSR/_C
3V
>90
SD16GAINx = 1,
Common-mode input signal:
VID = 500 mV, fIN = 50 Hz, 100 Hz
SD16GAINx = 32,
Common-mode input signal:
VID = 16 mV, fIN = 50 Hz, 100 Hz
SD16GAINx = 1
dB
3V
>75
3V
>80
dB
NOTES: 1. Not production tested, limits characterized.
2. Calculated using the box method: (MAX(−40...85_C) − MIN(−40...85_C))/MIN(−40...85_C)/(85_C − (−40_C))
3. Calculated using the box method: (MAX(2.5...3.6V) − MIN(2.5...3.6V))/MIN(2.5...3.6V)/(3.6V − 2.5V)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
45
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
MSP430x20x3 electrical characteristics over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted) (continued)
SD16_A, temperature sensor (MSP430x20x3 only)
PARAMETER
TEST CONDITIONS
TCSensor
Sensor temperature coefficient
VOffset,Sensor Sensor offset voltage
VSensor
Sensor output voltage
(see Note 3)
VCC
MIN
See Note 1
1.18
See Note 1
−100
TYP
1.32
MAX
1.46
mV/K
100
mV
Temperature sensor voltage
at TA = 85°C
3V
435
475
515
Temperature sensor voltage
at TA = 25°C
3V
355
395
435
320
360
400
Temperature sensor voltage
3V
at TA = 0°C (see Note 1)
NOTES: 1. Not production tested, limits characterized.
2. The following formula can be used to calculate the temperature sensor output voltage:
VSensor,typ = TCSensor ( 273 + T [°C] ) + VOffset,sensor [mV] or
VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV]
3. Results based on characterization and/or production test, not TCSensor or VOffset,sensor.
UNIT
mV
SD16_A, built-in voltage reference (MSP430x20x3 only)
PARAMETER
TEST CONDITIONS
VCC
MIN
MAX
UNIT
VREF
IREF
Internal reference voltage
SD16REFON = 1, SD16VMIDON = 0
3V
1.20
1.26
V
Reference supply current
SD16REFON = 1, SD16VMIDON = 0
3V
190
280
µA
TC
Temperature coefficient
SD16REFON = 1, SD16VMIDON = 0
3V
18
50
ppm/K
CREF
VREF load capacitance
SD16REFON = 1, SD16VMIDON = 0
(see Note 1)
ILOAD
VREF(I) maximum load current
SD16REFON = 1; SD16VMIDON = 0
tON
Turn on time
PSRR
Line regulation
SD16REFON = 0 → 1;
SD16VMIDON = 0;
CREF = 100nF
SD16REFON = 1; SD16VMIDON = 0
1.14
TYP
100
nF
±200
3V
nA
3V
5
ms
3V
10
uV/V
NOTES: 1. There is no capacitance required on VREF. However, a capacitance of at least 100nF is recommended to reduce any reference
voltage noise.
SD16_A, reference output buffer (MSP430x20x3 only)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
VREF,BUF
Reference buffer output voltage
SD16REFON = 1, SD16VMIDON = 1
3V
1.2
IREF,BUF
Reference Supply + Reference
output buffer quiescent current
SD16REFON = 1, SD16VMIDON = 1
3V
385
CREF(O)
Required load capacitance
on VREF
SD16REFON = 1, SD16VMIDON = 1
ILOAD,Max
Maximum load current on VREF
Maximum voltage variation vs. load current
tON
Turn on time
MAX
V
600
470
SD16REFON = 1, SD16VMIDON = 1
3V
|ILOAD| = 0 to 1mA
3V
SD16REFON = 0 → 1;
SD16VMIDON = 1;
CREF = 470nF
3V
UNIT
µA
nF
−15
±1
mA
+15
mV
µs
100
SD16_A, external reference input (MSP430x20x3 only)
PARAMETER
VREF(I)
IREF(I)
46
TEST CONDITIONS
VCC
Input voltage range
SD16REFON = 0
3V
Input current
SD16REFON = 0
3V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MIN
1.0
TYP
1.25
MAX
UNIT
1.5
V
50
nA
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
Flash Memory
PARAMETER
VCC(PGM/
ERASE)
TEST CONDITIONS
VCC
Program and Erase supply voltage
MIN
TYP
2.2
fFTG
IPGM
Flash Timing Generator frequency
Supply current from VCC during program
2.2 V/3.6 V
257
1
IERASE
tCPT
Supply current from VCC during erase
2.2 V/3.6 V
1
Cumulative program time (see Note 1)
2.2 V/3.6 V
tCMErase
Cumulative mass erase time
2.2 V/3.6 V
Program/Erase endurance
tRetention
Data retention duration
TJ = 25°C
tWord
tBlock, 0
Word or byte program time
Block program time for 1st byte or word
tBlock, 1-63
tBlock, End
Block program time for each additional byte or word
tMass Erase
tSeg Erase
Mass erase time
Block program end-sequence wait time
20
104
MAX
UNIT
3.6
V
476
kHz
5
mA
7
mA
10
ms
ms
105
cycles
100
years
30
25
18
see Note 2
tFTG
6
10593
Segment erase time
4819
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming
methods: individual word/byte write and block write modes.
2. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG).
RAM
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
V(RAMh)
RAM retention supply voltage (see Note 1)
CPU halted
1.6
V
NOTE 1: This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should
happen during this supply voltage condition.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
47
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
JTAG and Spy-Bi-Wire Interface
TEST
CONDITIONS
PARAMETER
fSBW
tSBW,Low
VCC
MIN
TYP
MAX
UNIT
Spy-Bi-Wire input frequency
2.2 V / 3 V
0
20
MHz
Spy-Bi-Wire low clock pulse length
2.2 V / 3 V
0.025
15
us
tSBW,En
Spy-Bi-Wire enable time
(TEST high to acceptance of first clock edge, see
Note 1)
2.2 V/ 3 V
1
us
tSBW,Ret
Spy-Bi-Wire return to normal operation time
2.2 V/ 3 V
15
100
2.2 V
0
5
MHz
3V
0
10
MHz
fTCK
TCK input frequency − 4-wire JTAG (see Note 2)
us
RInternal
Internal pull-down resistance on TEST
2.2 V/ 3 V
25
60
90
kΩ
NOTES: 1. Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high
before appling the first SBWCLK clock edge.
2. fTCK may be restricted to meet the timing requirements of the module selected.
JTAG Fuse (see Note 1)
TEST
CONDITIONS
PARAMETER
VCC(FB)
VFB
Supply voltage during fuse-blow condition
IFB
tFB
Supply current into TEST during fuse blow
TA = 25°C
Voltage level on TEST for fuse-blow
VCC
MIN
MAX
2.5
6
Time to blow fuse
TYP
UNIT
V
7
V
100
mA
1
ms
NOTES: 1. Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible and JTAG is switched
to bypass mode.
48
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
APPLICATION INFORMATION, MSP430x20x1
Port P1 (P1.0 to P1.3) pin functions, MSP430x20x1
PIN NAME (P1.X)
P1.0/TACLK/ACLK/
CA0
P1.1/TA0/CA1
P1.2/TA1/CA2
CONTROL BITS / SIGNALS
X
FUNCTION
0 P1.0† Input/Output
Timer_A2.TACLK/INCLK
P1SEL.x
CAPD.x
0/1
0
0
0
1
0
ACLK
1
1
0
CA0 (see Note 3)
X
X
1
0/1
0
0
Timer_A2.CCI0A
0
1
0
Timer_A2.TA0
1
1
0
CA1 (see Note 3)
X
X
1
0/1
0
0
0
1
0
1 P1.1† Input/Output
2 P1.2† Input/Output
Timer_A2.CCI1A
P1.3/CAOUT/CA3
P1DIR.x
Timer_A2.TA1
1
1
0
CA2 (see Note 3)
X
X
1
0/1
0
0
N/A
0
1
0
CAOUT
1
1
0
CA3 (see Note 3)
X
X
3 P1.3† Input/Output
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the CAPD.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying
analog signals. Selecting the CAx input pin to the comparator multiplexer with the P2CAx bits automatically disables the input buffer
for that pin, regardless of the state of the associated CAPD.x bit.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
49
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.0 to P1.3) pin schematics, MSP430x20x1
Pad Logic
To Comparator_A+
From Comparator_A+
CAPD.x
P1REN.x
P1DIR.x
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P1OUT.x
DVSS
P1.0/TACLK/ACLK/CA0
P1.1/TA0/CA1
P1.2/TA1/CA2
P1.3/CAOUT/CA3
Bus
Keeper
P1SEL.x
EN
P1IN.x
EN
Module X IN
D
P1IE.x
EN
P1IRQ.x
Q
P1IFG.x
P1SEL.x
P1IES.x
Set
Interrupt
Edge
Select
Control signal “From Comparator_A+”
SIGNAL “FROM COMPARATOR_A+” = 1
PIN NAME
FUNCTION
P2CA4
P2CA0
P2CA3
P2CA2
P2CA1
N/A
N/A
N/A
P1.0/TACLK/ACLK/CA0
CA0
0
1
P1.1/TA0/CA1
CA1
1
0
0
0
1
P1.2/TA1/CA2
CA2
1
1
0
1
0
P1.3/CAOUT/CA3
CA3
N/A
N/A
0
1
1
NOTES: 1. N/A: Not available or not applicable.
50
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
OR
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.4 to P1.7) pin functions, MSP430x20x1
PIN NAME (P1.X)
P1.4/SMCLK/CA4/
TCK
CONTROL BITS / SIGNALS
X
FUNCTION
P1DIR.x
P1SEL.x
CAPD.x
JTAG Mode
0/1
0
0
0
N/A
0
1
0
0
SMCLK
1
1
0
0
CA4 (see Note 3)
X
X
1
0
4 P1.4† Input/Output
TCK (see Note 4)
P1.5/TA0/CA5/
TMS
P1.6/TA1/CA6/
TDI
P1.7/CAOUT/CA7/
TDO/TDI
5 P1.5† Input/Output
N/A
X
X
X
1
0/1
0
0
0
0
1
0
0
Timer_A2.TA0
1
1
0
0
CA5 (see Note 3)
X
X
1
0
TMS (see Note 4)
X
X
X
1
6 P1.6† Input/Output
0/1
0
0
0
N/A
0
1
0
0
Timer_A2.TA1
1
1
0
0
CA6 (see Note 3)
X
X
1
0
TDI (see Note 4)
X
X
X
1
7 P1.7† Input/Output
0/1
0
0
0
N/A
0
1
0
0
CAOUT
1
1
0
0
CA7 (see Note 3)
X
X
1
0
TDO/TDI (see Notes 4, 5)
X
X
X
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the CAPD.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying
analog signals. Selecting the CAx input pin to the comparator multiplexer with the P2CAx bits automatically disables the input buffer
for that pin, regardless of the state of the associated CAPD.x bit.
4. In JTAG mode the internal pull-up/down resistors are disabled.
5. Function controlled by JTAG
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
51
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.4 to P1.6) pin schematics, MSP430x20x1
Pad Logic
To Comparator_A+
From Comparator_A+
CAPD.x
P1REN.x
P1DIR.x
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P1OUT.x
DVSS
P1.4/SMCLK/CA4/TCK
P1.5/TA0/CA5/TMS
P1.6/TA1/CA6/TDI
Bus
Keeper
P1SEL.x
EN
P1IN.x
EN
Module X IN
D
P1IE.x
P1IRQ.x
EN
Q
P1IFG.x
P1SEL.x
P1IES.x
Set
Interrupt
Edge
Select
To JTAG
From JTAG
Control signal “From Comparator_A+”
SIGNAL “FROM COMPARATOR_A+” = 1
PIN NAME
FUNCTION
P2CA3
P2CA2
P2CA1
P1.4/SMCLK/CA4/TCK
CA4
1
0
0
P1.5/TA0/CA5/TMS
CA5
1
0
1
P1.6/TA1/CA6/TDI
CA6
1
1
0
NOTES: 1. N/A: Not available or not applicable.
52
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.7) pin schematics, MSP430x20x1
Pad Logic
To Comparator_A+
From Comparator_A+
CAPD.7
P1REN.7
P1DIR.7
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P1OUT.7
DVSS
P1.7/CAOUT/CA7/TDO/TDI
Bus
Keeper
P1SEL.7
EN
P1IN.7
EN
Module X IN
D
P1IE.7
P1IRQ.7
EN
Q
P1IFG.7
P1SEL.7
P1IES.7
Set
Interrupt
Edge
Select
To JTAG
From JTAG
From JTAG
From JTAG (TDO)
Control signal “From Comparator_A+”
SIGNAL “FROM COMPARATOR_A+” = 1
PIN NAME
FUNCTION
P1.7/CAOUT/CA7/TDO/TDI
CA7
P2CA3
P2CA2
P2CA1
1
1
1
NOTES: 1. N/A: Not available or not applicable.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
53
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P2 (P2.6) pin schematics, MSP430x20x1
LFXT1 Oscillator
BCSCTL3.LFXT1Sx = 11
P2.7/XOUT
LFXT1 off
0
LFXT1CLK
1
P2SEL.7
Pad Logic
P2REN.6
P2DIR.6
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P2OUT.6
DVSS
P2.6/XIN/TA1
Bus
Keeper
P2SEL.6
EN
P2IN.6
EN
Module X IN
D
P2IE.6
P2IRQ.6
EN
Q
P2IFG.6
P2SEL.6
P2IES.6
Set
Interrupt
Edge
Select
Port P2 (P2.6) pin functions, MSP430x20x1
PIN NAME (P2.X)
P2.6/XIN/TA1
CONTROL BITS / SIGNALS
X
FUNCTION
P2DIR.x
P2SEL.x
0/1
0
XIN† (see Note 3)
0
1
Timer_A2.TA1
1
1
6 P2.6 Input/Output
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. XIN is used as digital clock input if the bits LFXT1Sx in register BCSCTL3 are set to 11.
54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P2 (P2.7) pin schematics, MSP430x20x1
LFXT1 Oscillator
BCSCTL3.LFXT1Sx = 11
LFXT1 off
0
LFXT1CLK
From P2.6/XIN
1
P2.6/XIN/TA1
Pad Logic
P2SEL.6
P2REN.7
P2DIR.7
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P2OUT.7
DVSS
P2.7/XOUT
Bus
Keeper
P2SEL.7
EN
P2IN.7
EN
Module X IN
D
P2IE.7
P2IRQ.7
EN
Q
P2IFG.7
Set
Interrupt
Edge
Select
P2SEL.7
P2IES.7
Port P2 (P2.7) pin functions, MSP430x20x1
PIN NAME (P2.X)
P2.7/XOUT
CONTROL BITS / SIGNALS
X
FUNCTION
7 P2.7 Input/Output
P2DIR.x
P2SEL.x
0/1
0
DVSS
0
1
XOUT† (see Note 3)
1
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. If the pin P2.7/XOUT is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection
to this pin after reset.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
55
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
APPLICATION INFORMATION, MSP430x20x2
Port P1 (P1.0 to P1.2) pin functions, MSP430x20x2
PIN NAME (P1.X)
P1.0/TACLK/ACLK/A0
CONTROL BITS / SIGNALS
X
FUNCTION
0 P1.0† Input/Output
Timer_A2.TACLK/INCLK
P1.1/TA0/A1
P1.2/TA1/A2
P1DIR.x
P1SEL.x
ADC10AE.x
INCHx
0/1
0
0
N/A
0
1
0
N/A
N/A
ACLK
1
1
0
A0 (see Note 3)
X
X
1
0
1 P1.1† Input/Output
0/1
0
0
N/A
Timer_A2.CCI0A
0
1
0
N/A
Timer_A2.TA0
1
1
0
N/A
A1 (see Note 3)
X
X
1
1
2 P1.2† Input/Output
0/1
0
0
N/A
0
1
0
N/A
N/A
Timer_A2.CCI1A
Timer_A2.TA1
1
1
0
A2 (see Note 3)
X
X
1
2
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the ADC10AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
56
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.0 to P1.2) pin schematics, MSP430x20x2
Pad Logic
To ADC 10
INCHx = x
ADC10AE.x
P1REN.x
P1DIR.x
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P1OUT.x
DVSS
Bus
Keeper
P1SEL.x
P1.0/TACLK/ACLK/A0
P1.1/TA0/A1
P1.2/TA1/A2
EN
P1IN.x
EN
Module X IN
D
P1IE.x
P1IRQ.x
EN
Q
P1IFG.x
P1SEL.x
P1IES.x
Set
Interrupt
Edge
Select
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
57
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.3) pin schematics, MSP430x20x2
SREF2
VSS
0
To ADC 10 VR−
Pad Logic
1
A3
INCHx = 3
ADC10AE.3
P1REN.3
P1DIR.3
0
P1OUT.3
0
1
0
1
1
Direction
0: Input
1: Output
1
Module X OUT
DVSS
DVCC
P1.3/ADC10CLK/
A3/VREF−/VeREF−
Bus
Keeper
P1SEL.3
EN
P1IN.3
EN
Module X IN
D
P1IE.3
P1IRQ.3
EN
Q
P1IFG.3
Set
Interrupt
Edge
Select
P1SEL.3
P1IES.3
Port P1 (P1.0 to P1.3) pin functions, MSP430x20x2
PIN NAME (P1.X)
P1.3/ADC10CLK/
A3/VREF−/VeREF−
CONTROL BITS / SIGNALS
X
FUNCTION
3 P1.3† Input/Output
N/A
P1DIR.x
P1SEL.x
ADC10AE.x
INCHx
0/1
0
0
N/A
0
1
0
N/A
N/A
ADC10CLK
1
1
0
A3 (see Note 3)
X
X
1
3
VREF−/VeREF− (see Notes 3, 4)
X
X
1
N/A
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the ADC10AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
4. An applied voltage is used as negative reference if bit SREF3 in register ADC10CTL0 is set.
58
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.4 to P1.7) pin functions, MSP430x20x2
CONTROL BITS / SIGNALS
PIN NAME (P1.X)
P1.4/SMCLK/A4/
VREF+/VeREF+/
TCK
X
FUNCTION
4 P1.4† Input/Output
N/A
P1.6/TA1/SDO/SCL/A6/
TDI
P1.7/SDI/SDA/A7/
TDO/TDI
INCHx
JTAG
Mode
0
0
N/A
0
1
0
N/A
0
0
N/A
0
1
4
0
1
N/A
0
P1SEL.x
0/1
0
SMCLK
1
1
A4 (see Note 3)
X
X
VREF+/VeREF+
(see Notes 3, 4)
X
X
TCK (see Note 5)
P1.5/TA0/SCLK/A5/
TMS
ADC10AE.x
P1DIR.x
5 P1.5† Input/Output
N/A
USIP.x
N/A
X
X
X
X
1
0/1
0
X
0
N/A
0
0
1
X
0
N/A
0
Timer_A2.TA0
1
1
X
0
N/A
0
SCLK
X
X
1
0
N/A
0
A5 (see Note 3)
X
X
X
1
5
0
TMS (see Note 5)
X
X
X
X
X
1
0/1
0
X
0
N/A
0
Timer_A2.CCI1B
0
1
X
0
N/A
0
Timer_A2.TA1
1
1
X
0
N/A
0
SDO (SPI) / SCL (I2C)
X
X
1
0
N/A
0
A6 (see Note 3)
X
X
X
1
6
0
TDI (see Note 5)
X
X
X
X
X
1
7 P1.7† Input/Output
0/1
0
X
0
N/A
0
N/A
0
1
X
0
N/A
0
DVSS
1
1
X
0
N/A
0
SDI (SPI) / SDA (I2C)
X
X
1
0
N/A
0
A7 (see Note 3)
X
X
X
1
7
0
TDO/TDI (see Notes 5,
6)
X
X
X
X
X
1
6 P1.6† Input/Output
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the ADC10AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
4. The reference voltage is output if bit REFOUT in register ADC10CTL0 is set. An applied voltage is used as positive reference if
bits SREF0/1 in register ADC10CTL0 are set to 10 or 11.
5. In JTAG mode the internal pull-up/down resistors are disabled.
6. Function controlled by JTAG
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
59
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.4) pin schematics, MSP430x20x2
Pad Logic
To /from ADC10
positive reference
A4
INCHx = 4
ADC10AE.4
P1REN.4
P1DIR.4
0
0
Module X OUT
1
0
DVCC
1
P1.4/SMCLK/A4/VREF+/VeREF+/TCK
Bus
Keeper
P1SEL.4
EN
EN
Module X IN
D
P1IE.4
P1IRQ.4
EN
Q
P1IFG.4
P1SEL.4
P1IES.4
Set
Interrupt
Edge
Select
To JTAG
From JTAG
60
1
Direction
0: Input
1: Output
1
P1OUT.4
DVSS
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.5) pin schematics, MSP430x20x2
Pad Logic
A5
INCHx = 5
ADC10AE.5
P1REN.5
P1SEL.5
USIPE5
P1DIR.5
0
USI Module Direction
1
P1OUT.5
0
Module X OUT
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
P1.5/TA0/SCLK/A5/TMS
Bus
Keeper
EN
P1IN.5
EN
Module X IN
D
P1IE.5
P1IRQ.5
EN
Q
P1IFG.5
P1SEL.5
P1IES.5
Set
Interrupt
Edge
Select
To JTAG
From JTAG
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
61
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.6) pin schematics, MSP430x20x2
Pad Logic
A6
INCHx = 6
ADC10AE.6
P1REN.6
P1SEL.6
USIPE6
P1DIR.6
0
USI Module Direction
1
P1OUT.6
0
Module X OUT
1
DVSS
0
DVCC
1
Direction
0: Input
1: Output
P1.6/TA1/SDO/SCL/A6/TDI
USI Module Output
(I2C Mode)
Bus
Keeper
EN
P1IN.6
EN
Module X IN
D
P1IE.6
P1IRQ.6
EN
Q
P1IFG.6
P1SEL.6
P1IES.6
Set
Interrupt
Edge
Select
To JTAG
From JTAG
62
1
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.7) pin schematics, MSP430x20x2
Pad Logic
A7
INCHx = 7
ADC10AE.7
P1REN.7
P1SEL.7
USIPE7
P1DIR.7
0
USI Module Direction
1
P1OUT.7
0
Module X OUT
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
P1.7/SDI/SDA/A7/TDO/TDI
USI Module Output
(I2C Mode)
Bus
Keeper
EN
P1IN.7
EN
Module X IN
D
P1IE.7
P1IRQ.7
EN
Q
P1IFG.7
P1SEL.7
P1IES.7
Set
Interrupt
Edge
Select
To JTAG
From JTAG
From JTAG
From JTAG (TDO)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
63
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P2 (P2.6) pin schematics, MSP430x20x2
LFXT1 Oscillator
BCSCTL3.LFXT1Sx = 11
P2.7/XOUT
LFXT1 off
0
LFXT1CLK
1
P2SEL.7
Pad Logic
P2REN.6
P2DIR.6
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P2OUT.6
DVSS
P2.6/XIN/TA1
Bus
Keeper
P2SEL.6
EN
P2IN.6
EN
Module X IN
D
P2IE.6
P2IRQ.6
EN
Q
P2IFG.6
P2SEL.6
P2IES.6
Set
Interrupt
Edge
Select
Port P2 (P2.6) pin functions, MSP430x20x2
PIN NAME (P2.X)
P2.6/XIN/TA1
CONTROL BITS / SIGNALS
X
FUNCTION
P2DIR.x
P2SEL.x
0/1
0
XIN† (see Note 3)
0
1
Timer_A2.TA1
1
1
6 P2.6 Input/Output
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. XIN is used as digital clock input if the bits LFXT1Sx in register BCSCTL3 are set to 11.
64
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P2 (P2.7) pin schematics, MSP430x20x2
LFXT1 Oscillator
BCSCTL3.LFXT1Sx = 11
LFXT1 off
0
LFXT1CLK
From P2.6/XIN
1
P2.6/XIN/TA1
Pad Logic
P2SEL.6
P2REN.7
P2DIR.7
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P2OUT.7
DVSS
P2.7/XOUT
Bus
Keeper
P2SEL.7
EN
P2IN.7
EN
Module X IN
D
P2IE.7
P2IRQ.7
EN
Q
P2IFG.7
Set
Interrupt
Edge
Select
P2SEL.7
P2IES.7
Port P2 (P2.7) pin functions, MSP430x20x2
PIN NAME (P2.X)
P2.7/XOUT
CONTROL BITS / SIGNALS
X
FUNCTION
7 P2.7 Input/Output
P2DIR.x
P2SEL.x
0/1
0
DVSS
0
1
XOUT† (see Note 3)
1
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. If the pin P2.7/XOUT is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection
to this pin after reset.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
65
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
APPLICATION INFORMATION, MSP430x20x3
Port P1 (P1.0 to P1.3) pin functions, MSP430x20x3
PIN NAME (P1.X)
P1.0/TACLK/ACLK/A0+
CONTROL BITS / SIGNALS
X
FUNCTION
0 P1.0† Input/Output
Timer_A2.TACLK/INCLK
P1.1/TA0/A0−/A4+
SD16AE.x
INCHx
0
0
N/A
0
1
0
N/A
N/A
1
1
0
A0+ (see Note 3)
X
X
1
0
0/1
0
0
N/A
Timer_A2.CCI0A
0
1
0
N/A
Timer_A2.TA0
1
1
0
N/A
A0− (see Notes 3, 4)
X
X
1
0
1 P1.1† Input/Output
X
X
1
4
0/1
0
0
N/A
Timer_A2.CCI1A
0
1
0
N/A
Timer_A2.TA1
1
1
0
N/A
A1+ (see Note 3)
X
X
1
1
2 P1.2† Input/Output
A4− (see Notes 3, 4)
P1.3/VREF/A1−
P1SEL.x
0/1
ACLK
A4+ (see Note 3)
P1.2/TA1/A1+/A4−
P1DIR.x
3 P1.3† Input/Output
VREF
X
X
1
4
0/1
0
0
N/A
X
1
0
N/A
A1− (see Notes 3, 4)
X
X
1
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the SD16AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
4. With SD16AE.x = 0 the negative inputs are connected to VSS if the corresponding input is selected.
66
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.0) pin schematics, MSP430x20x3
INCH=0
Pad Logic
A0+
SD16AE.0
P1REN.0
P1DIR.0
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P1OUT.0
DVSS
P1.0/TACLK/ACLK/A0+
Bus
Keeper
P1SEL.0
EN
P1IN.0
EN
Module X IN
D
P1IE.0
P1IRQ.0
EN
Q
Set
P1IFG.0
P1SEL.0
P1IES.0
Interrupt
Edge
Select
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
67
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.1) pin schematics, MSP430x20x3
INCH=4
Pad Logic
A4+
INCH=0
0
A0−
AV SS
1
SD16AE.1
P1REN.1
P1DIR.1
0
0
Module X OUT
1
0
1
P1.1/TA0/A0−/A4+
Bus
Keeper
P1SEL.1
EN
P1IN.1
EN
Module X IN
D
P1IE.1
P1IRQ.1
EN
Q
Set
P1IFG.1
P1SEL.1
P1IES.1
68
1
Direction
0: Input
1: Output
1
P1OUT.1
DVSS
DVCC
Interrupt
Edge
Select
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.2) pin schematics, MSP430x20x3
INCH=1
Pad Logic
A1+
INCH=4
0
A4−
AV SS
1
SD16AE.2
P1REN.2
P1DIR.2
0
0
Module X OUT
1
0
1
1
Direction
0: Input
1: Output
1
P1OUT.2
DVSS
DVCC
P1.2/TA1/A1+/A4−
Bus
Keeper
P1SEL.2
EN
P1IN.2
EN
Module X IN
D
P1IE.2
P1IRQ.2
EN
Q
Set
P1IFG.2
P1SEL.2
P1IES.2
Interrupt
Edge
Select
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
69
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.3) pin schematics, MSP430x20x3
Pad Logic
VREF
INCH=1
0
A1−
AV SS
1
SD16AE.3
P1REN.3
P1DIR.3
0
0
1
1
Direction
0: Input
1: Output
1
P1OUT.3
DVSS
DVCC
0
1
P1.3/VREF/A1−
Bus
Keeper
P1SEL.3
EN
P1IN.3
P1IE.3
P1IRQ.3
EN
Q
Set
P1IFG.3
P1SEL.3
P1IES.3
70
Interrupt
Edge
Select
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.4 to P1.7) pin functions, MSP430x20x3
CONTROL BITS / SIGNALS
PIN NAME (P1.X)
P1.4/SMCLK/A2+/
TCK
P1.5/TA0/SCLK/A2−/
TMS
P1.6/TA1/SDO/SCL/A3+/
TDI
P1.7/SDI/SDA/A3−/
TDO/TDI
X
FUNCTION
4 P1.4† Input/Output
N/A
P1DIR.x
P1SEL.x
USIP.x
SD16AE.x
INCHx
JTAG
Mode
0/1
0
N/A
0
N/A
0
0
1
N/A
0
N/A
0
SMCLK
1
1
N/A
0
N/A
0
A2+ (see Note 3)
X
X
N/A
1
2
0
TCK (see Note 5)
X
X
N/A
X
X
1
5 P1.5† Input/Output
0/1
0
X
0
N/A
0
N/A
0
1
X
0
N/A
0
Timer_A2.TA0
1
1
X
0
N/A
0
SCLK
X
X
1
0
N/A
0
A2− (see Notes 3, 4)
X
X
X
1
2
0
TMS (see Note 5)
X
X
X
X
X
1
6 P1.6† Input/Output
0/1
0
X
0
N/A
0
Timer_A2.CCI1B
0
1
X
0
N/A
0
Timer_A2.TA1
1
1
X
0
N/A
0
SDO (SPI) / SCL (I2C)
X
X
1
0
N/A
0
A3+ (see Note 3)
X
X
X
1
3
0
TDI (see Note 5)
X
X
X
X
X
1
7 P1.7† Input/Output
0/1
0
X
0
N/A
0
0
1
X
0
N/A
0
N/A
DVSS
1
1
X
0
N/A
0
SDI (SPI) / SDA (I2C)
X
X
1
0
N/A
0
A3− (see Notes 3, 4)
X
X
X
1
3
0
TDO/TDI (see Notes 5, 6)
X
X
X
X
X
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. Setting the SD16AE.x bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when
applying analog signals.
4. With SD16AE.x = 0 the negative inputs are connected to VSS if the corresponding input is selected.
5. In JTAG mode the internal pull-up/down resistors are disabled.
6. Function controlled by JTAG
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
71
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.4) pin schematics, MSP430x20x3
INCH=2
Pad Logic
A2+
SD16AE.4
P1REN.4
P1DIR.4
0
0
Module X OUT
1
0
DVCC
1
P1.4/SMCLK/A2+/TCK
Bus
Keeper
P1SEL.4
EN
P1IN.4
EN
Module X IN
D
P1IE.4
EN
P1IRQ.4
Q
Set
P1IFG.4
P1SEL.4
P1IES.4
Interrupt
Edge
Select
To JTAG
From JTAG
72
1
Direction
0: Input
1: Output
1
P1OUT.4
DVSS
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.5) pin schematics, MSP430x20x3
Pad Logic
INCH=2
0
A2−
AV SS
1
SD16AE.5
P1REN.5
P1SEL.5
USIPE5
P1DIR.5
0
USI Module Direction
1
P1OUT.5
0
Module X OUT
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
P1.5/TA0/SCLK/A2−/TMS
Bus
Keeper
EN
P1IN.5
EN
Module X IN
D
P1IE.5
P1IRQ.5
EN
Q
Set
P1IFG.5
P1SEL.5
P1IES.5
Interrupt
Edge
Select
To JTAG
From JTAG
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
73
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.6) pin schematics, MSP430x20x3
Pad Logic
INCH=3
A3+
SD16AE.6
P1REN.6
P1SEL.6
USIPE6
P1DIR.6
0
USI Module Direction
1
P1OUT.6
0
Module X OUT
1
DVSS
0
DVCC
1
Direction
0: Input
1: Output
P1.6/TA1/SDO/SCL/A3+/TDI
USI Module Output
(I2C Mode)
Bus
Keeper
EN
P1IN.6
EN
Module X IN
D
P1IE.6
P1IRQ.6
EN
Q
Set
P1IFG.6
P1SEL.6
P1IES.6
Interrupt
Edge
Select
To JTAG
From JTAG
74
1
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P1 (P1.7) pin schematics, MSP430x20x3
Pad Logic
INCH=3
0
A3−
AV SS
1
SD16AE.x
P1REN.x
P1SEL.x
USIPE7
P1DIR.x
0
USI Module Direction
1
P1OUT.x
0
Module X OUT
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
P1.7/SDI/SDA/A3−/TDO/TDI
USI Module Output
(I2C Mode)
Bus
Keeper
EN
P1IN.x
EN
Module X IN
D
P1IE.x
P1IRQ.x
EN
Q
Set
P1IFG.x
P1SEL.x
P1IES.x
Interrupt
Edge
Select
To JTAG
From JTAG
From JTAG
From JTAG (TDO)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
75
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P2 (P2.6) pin schematics, MSP430x20x3
LFXT1 Oscillator
BCSCTL3.LFXT1Sx = 11
P2.7/XOUT
LFXT1 off
0
LFXT1CLK
1
P2SEL.7
Pad Logic
P2REN.6
P2DIR.6
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P2OUT.6
DVSS
P2.6/XIN/TA1
Bus
Keeper
P2SEL.6
EN
P2IN.6
EN
Module X IN
D
P2IE.6
P2IRQ.6
EN
Q
P2IFG.6
P2SEL.6
P2IES.6
Set
Interrupt
Edge
Select
Port P2 (P2.6) pin functions, MSP430x20x3
PIN NAME (P2.X)
P2.6/XIN/TA1
CONTROL BITS / SIGNALS
X
FUNCTION
P2DIR.x
P2SEL.x
0/1
0
XIN† (see Note 3)
0
1
Timer_A2.TA1
1
1
6 P2.6 Input/Output
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. XIN is used as digital clock input if the bits LFXT1Sx in register BCSCTL3 are set to 11.
76
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Port P2 (P2.7) pin schematics, MSP430x20x3
LFXT1 Oscillator
BCSCTL3.LFXT1Sx = 11
LFXT1 off
0
LFXT1CLK
From P2.6/XIN
1
P2.6/XIN/TA1
Pad Logic
P2SEL.6
P2REN.7
P2DIR.7
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P2OUT.7
DVSS
P2.7/XOUT
Bus
Keeper
P2SEL.7
EN
P2IN.7
EN
Module X IN
D
P2IE.7
P2IRQ.7
EN
Q
P2IFG.7
Set
Interrupt
Edge
Select
P2SEL.7
P2IES.7
Port P2 (P2.7) pin functions, MSP430x20x3
PIN NAME (P2.X)
P2.7/XOUT
CONTROL BITS / SIGNALS
X
FUNCTION
7 P2.7 Input/Output
P2DIR.x
P2SEL.x
0/1
0
DVSS
0
1
XOUT† (see Note 3)
1
1
† Default after reset (PUC/POR)
NOTES: 1. N/A: Not available or not applicable.
2. X: Don’t care.
3. If the pin P2.7/XOUT is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection
to this pin after reset.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
77
SLAS491A − AUGUST 2005 − REVISED OCTOBER 2005
Data Sheet Revision History
Literature
Number
SLAS491
SLAS491A
Summary
Preliminary PRODUCT PREVIEW datasheet release.
MSP430x20x3 production datasheet release.
Updated specification and added characterization graphs.
NOTE: The referring page and figure numbers are referred to the respective document revision.
78
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated
Similar pages