19-5889; Rev 0; 8/11 EVALUATION KIT AVAILABLE MAX9643 60V High-Speed Precision Current-Sense Amplifier General Description The MAX9643 is a high-speed 60V precision unidirectional current-sense amplifier ideal for a wide variety of power-supply control applications. Its high signal bandwidth allows its use within DC-DC switching converter power-supply control loops with minimal phase delay. The IC also features 50FV (max) precision input offset voltage, allowing small sense resistors to be used in applications where efficiency is important and when wide dynamic-range current measurement is needed. Benefits and Features S Supports High-Voltage Applications Wide Input VCM = -1.5V to +60V S Delivers High-Speed Operation 15MHz Bandwidth S Increases System Accuracy Precision VOS = 50µV (max) S -40NC to +125NC Specified Temperature Range High DC CMRR and AC CMRR make it easy to use in a wide variety of aggressive environments. The device is available in fixed gains of 2.5V/V and 10V/V. It is also available in a small, 8-pin TDFN (2mm x 3mm) package and is rated over the -40NC to +125NC temperature range. Applications Industrial and Automotive Power Supplies GSM Base Station Power Supply High-Brightness LED Control Ordering Information appears at end of data sheet. Automotive Engine Control For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX9643.related. H-Bridge Motor Control Typical Operating Circuit RS+ RS- CP1 CP2 OUT VEE VCC MAX9643 BOOST POWER-SUPPLY CONTROL LOAD GND ����������������������������������������������������������������� Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX9643 60V High-Speed Precision Current-Sense Amplifier ABSOLUTE MAXIMUM RATINGS RS+ to GND, RS- to GND (Note 1)........................-3.5V to +65V RS+ to RS-........................................................................... Q15V VCC to GND............................................................-0.3V to +40V VCC > 4.5V OUT to GND......................................................-0.3V to +4.5V VEE to GND.......................................................+0.3V to -4.5V CP1 to GND.......................................................-0.3V to +4.5V VCC ≤ 4.5V OUT to GND.......................................... -0.3V to (VCC + 0.3V) VEE to GND......................................... +0.3V to (-VCC + 0.3V) CP1 to GND........................................... -0.3V to (VCC + 0.3V) CP2 to GND .............................................. (VEE - 0.3V) to +0.3V Short-Circuit Duration.................................................Continuous Continuous Input Current into Any Pin............................. Q20mA ESD on RS+, RS-........................................................Q4kV HBM ESD on All Other Pins.................................................Q2kV HBM Maximum Power Dissipation TDFN-EP (derate 16.7mW/NC at +70NC).................1333.3mW Operating Temperature Range......................... -40NC to +125NC Junction Temperature......................................................+150NC Lead Temperature (10s, soldering).................................+300NC Soldering Temperature (reflow).......................................+260NC Note 1: Voltages below -3.5V are allowed, as long as the input current is limited to 5mA by an external resistor. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. PACKAGE THERMAL CHARACTERISTICS (Note 2) TDFN Junction-to-Ambient Thermal Resistance (BJA).......... 60NC/W Junction-to-Case Thermal Resistance (BJC)............... 11NC/W Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. ELECTRICAL CHARACTERISTICS (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted.) (Note 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DC CHARACTERISTICS Input Common-Mode Voltage Range VRS+, VRS- Input Offset Voltage (Notes 4, 5) VOS Common-Mode Rejection Ratio (Note 5) CMRR CMRR vs. Frequency (Note 5) -1.5 +60 VCC < 5V, guaranteed by CMRR test, VSENSE P 100mV 3.5 VCC 60 IRS+, IRS- Input Bias Current, VCC = 0V, VRS+ = VRS- = 60V IRS+, IRS Input Offset Current (Note 6) IRS+ - IRS- 50 400 -40NC < TA <+125NC -1.5V P VCM P 60V, TA = +25NC -1.5V P VCM P 60V, -40NC P TA P +125NC 120 130 90 35 dB 60 60 -40NC < TA < +125NC 25 0.02 TA = +25NC VCM R 2V 0.15 0.3 -40NC < TA < +125NC FV dB 110 TA = +25NC VCM < 2V FS V 10 TA = +25NC AC CMRR f = 100kHz Input Bias Current Maximum Sense Voltage Before Input Saturation VCC R 5V, guaranteed by CMRR test, VSENSE P 100mV FA FA FA 100 MAX9643T 400 MAX9643U 300 mV ����������������������������������������������������������������� Maxim Integrated Products 2 MAX9643 60V High-Speed Precision Current-Sense Amplifier ELECTRICAL CHARACTERISTICS* (continued) (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted.) (Note 3) PARAMETER SYMBOL Voltage Gain (Note 4) Voltage Gain Error (Note 4) GE CONDITIONS MIN TYP MAX9643T 2.5 MAX9643U 10 TA = +25NC 0.06 MAX V/V 0.5 0.6 -40NC < TA < +125NC UNITS % AC CHARACTERISTICS VSENSE = 25mVDC + 2mVP-P, MAX9643T 15 VSENSE = 25mVDC + 2mVP-P, MAX9643U 10 VOUT = 10mV to 110mV 12 V/Fs Delay from Output Saturation to VOL VSENSE = 0 to 20mV 100 ns Delay from Input Saturation and Delay from Output Saturation to VOH VSENSE = 10V to 10mV 1 Fs Signal Bandwidth BW Slew Rate SR MHz OUTPUT CHARACTERISTICS Output Short-Circuit Current Output-Voltage Low (MAX9643T) (Note 5) ISC VOL 3.39 IOUT = 100FA sink, TA = +25NC IOUT = 100FA sink, -40NC < TA < +125NC 0.2 IOUT = 1mA sink, TA = +25NC 0.6 1 VOL 0.5 0.6 VOH Capacitive Drive Capability CL 10 mV 10 IOUT = 1mA sink, -40NC < TA < +125NC Output-Voltage High (Note 7) mV 3 3 IOUT = 100FA sink, -40NC < TA < +125NC IOUT = 1mA sink, TA = +25NC IOUT = 1mA source, VCC < 4.5V IOUT = 1mA source, VCC R 4.5V 10 10 IOUT = 1mA sink, -40NC < TA < +125NC IOUT = 100FA sink, TA = +25NC Output-Voltage Low (MAX9643U) (Note 5) mA 1 VCC - 1.3 3.2 RLOAD = Open, no sustained oscillation 2.3 30 V pF POWER-SUPPLY CHARACTERISTICS Power Supply VCC Power-Supply Rejection Ratio (Note 5) PSRR Quiescent Supply Current ICC Charge-Pump Current IEE Note Note Note Note Note 3: 4: 5: 6: 7: Guaranteed by PSRR 2.7 VCC = 2.7V to 36V, VSENSE = 10mV, TA = +25NC 107 -40NC < TA < +125NC 100 TA = +25NC 36 125 1000 DVEE = 500mV dB 1400 1600 -40NC < TA < +125NC 4 V FA mA All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization. Gain and offset voltage are calculated based on two point measurements: VSENSE1 = 10mV and VSENSE2 = 100mV. VOS, VOL, CMRR, and PSRR are measured with the charge pump off. Guaranteed by design and/or characterization. The maximum VSENSE of the MAX9643T is 400mV. With the gain = 2.5V/V, the output swing high is not applicable to the MAX9643T. ����������������������������������������������������������������� Maxim Integrated Products 3 MAX9643 60V High-Speed Precision Current-Sense Amplifier Typical Operating Characteristics (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization.) SUPPLY CURRENT vs. SUPPLY VOLTAGE 1.4 25 20 15 10 1.2 1.3 1.1 1.0 0.9 0.8 1.2 1.1 1.0 0.9 0.8 0.7 0.7 5 0.6 0.6 0 0.5 -20 -15 -10 -5 0 0.5 0 5 10 15 20 25 30 10 20 30 40 -25 0 25 50 75 100 SUPPLY VOLTAGE (V) TEMPERATURE (°C) GAIN ERROR vs. COMMON-MODE VOLTAGE GAIN ERROR vs. TEMPERATURE COMMON-MODE REJECTION RATIO vs. FREQUENCY (VCM_AC = 100mV) 0.12 0.10 0.08 0.14 0.12 0.10 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0 10 20 30 40 COMMON-MODE VOLTAGE (V) 50 60 -20 -40 -60 -80 -100 -120 -140 0 0 0 125 MAX9643 toc06 0.16 GAIN ERROR (%) 0.14 0.18 COMMON-MODE REJECTION RATIO (dB) 0.16 MAX9643 toc05 0.20 MAX9643 toc04 0.18 -10 -50 INPUT OFFSET VOLTAGE (V) 0.20 GAIN ERROR (%) 1.4 SUPPLY CURRENT (mA) 1.3 SUPPLY CURRENT (mA) 30 1.5 MAX9643 toc02 35 OCCURRENCE (%) 1.5 MAX9643 toc01 40 SUPPLY CURRENT vs. TEMPERATURE MAX9643 toc03 INPUT OFFSET VOLTAGE HISTOGRAM -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 1 10 100 1000 10,000 100,000 FREQUENCY (kHz) ����������������������������������������������������������������� Maxim Integrated Products 4 MAX9643 60V High-Speed Precision Current-Sense Amplifier Typical Operating Characteristics (continued) (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization.) POWER-SUPPLY REJECTION RATIO vs. FREQUENCY -40 -60 -80 -100 -120 -140 100 10,000 1000 MAX9643 toc09 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 1 FREQUENCY (kHz) 10 100 1000 0 10,000 100,000 FREQUENCY (kHz) 740 720 700 680 660 640 620 3.9 3.8 15 20 25 30 35 40 3.7 3.6 3.5 3.4 3.3 3.2 600 MAX9643 toc12 760 4.0 10 OUTPUT-VOLTAGE LOW vs. OUTPUT SINK CURRENT MAX9643 toc11 780 OUTPUT-VOLTAGE HIGH (V) MAX9643 toc10 800 5 SUPPLY VOLTAGE (V) OUTPUT-VOLTAGE HIGH vs. OUTPUT SOURCE CURRENT SUPPLY CURRENT vs. TEMPERATURE SUPPLY CURRENT (µA) 0.95 OUTPUT-VOLTAGE LOW (µV) 10 1.00 SUPPLY CURRENT (mA) SMALL-SIGNAL GAIN (dB) -20 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 MAX9643 toc08 MAX9643 toc07 POWER-SUPPLY REJECTION RATIO (dB) 0 1 SUPPLY CURRENT vs. SUPPLY VOLTAGE SMALL SIGNAL vs. FREQUENCY (MAX9643T) 500 400 300 200 100 3.1 600 3.0 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 OUTPUT SOURCE CURRENT (mA) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 OUTPUT SINK CURRENT (mA) ����������������������������������������������������������������� Maxim Integrated Products 5 MAX9643 60V High-Speed Precision Current-Sense Amplifier Typical Operating Characteristics (continued) (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization.) SMALL-SIGNAL TRANSIENT RESPONSE LARGE-SIGNAL TRANSIENT RESPONSE MAX9643 toc13 OUTPUT HIGH-SATURATION RECOVERY RESPONSE (INPUT SIGNAL = 4V TO 100mV) MAX9643 toc15 MAX9643 toc14 MAX9643T MAX9643T MAX9643T OUTPUT 10mV/div OUTPUT 100mV/div INPUT 2V/div GND GND VRS_ INPUT 10mV/div INPUT 100mV/div OUTPUT 1V/div GND GND GND 200ns/div 100ns/div 1µs/div OUTPUT LOW-SATURATION RECOVERY RESPONSE (INPUT SIGNAL = 0V TO 20mV) STARTUP DELAY (VSENSE = 200mV) INPUT SENSE VOLTAGE SATURATION (VCM = 12V) MAX9643 toc16 MAX9643T INPUT 20mV/div MAX9643 toc17 MAX9643T VCC 5V/div MAX9643 toc18 MAX9643T VSENSE 1V/div GND VRS_ GND OUTPUT 500mV/div OUTPUT 50mV/div OUTPUT 1V/div GND GND GND 200ns/div 100µs/div 200µs/div INPUT SENSE VOLTAGE SATURATION (VCM = 1.5V) CHARGE-PUMP NOISE COMMON MODE (VCM = 0V TO 10V) MAX9643 toc19 MAX9643 toc20 MAX9643T VSENSE 500mV/div MAX9643 toc21 MAX9643T MAX9643T VCM 5V/div CP1 2V/div GND GND GND OUTPUT 200mV/div OUTPUT 200mV/div OUTPUT 20mV/div GND GND 200µs/div 1µs/div 20ns/div ����������������������������������������������������������������� Maxim Integrated Products 6 MAX9643 60V High-Speed Precision Current-Sense Amplifier Pin Configuration TOP VIEW OUT VCC 8 7 RS- RS+ 6 5 MAX9643 EP + 1 2 GND VEE 3 4 CP1 CP2 TDFN Pin Description PIN NAME DESCRIPTION 1 GND Ground 2 VEE Charge-Pump Output. Connect 1µF to GND. 3 CP1 Positive Terminal of 1µF Flying Capacitor 4 CP2 Negative Terminal of 1µF Flying Capacitor 5 RS+ Positive Sense Resistor Input 6 RS- Negative Sense Resistor Input 7 VCC Power Supply 8 OUT Output — EP Exposed Pad. Must be externally connected to GND. ����������������������������������������������������������������� Maxim Integrated Products 7 MAX9643 60V High-Speed Precision Current-Sense Amplifier Detailed Description The MAX9643 is a high-speed precision current-sense amplifier ideal for a wide variety of high-performance industrial and automotive power-supply applications. The device’s low input offset voltage, tight gain error, and low temperature drift characteristics allow the use of smallsense resistors for current measurements to improve power-supply conversion efficiency and accuracy of measurements. Its fast response allows it to react quickly to switching currents as is common in power-supply circuits, and makes it possible to be used as part of control loops. The unidirectional high-side, current-sense amplifier also features a wide -1.5V to +60V input common-mode range. This feature allows monitoring of power-supply load current even if the rail is shorted to ground. Highside current monitoring does not interfere with the ground path of the load being measured, making the IC particularly useful in a wide range of high-reliability systems. The IC has been designed on a proprietary high-speed complementary BiCMOS SOI process. This high-voltage analog process is optimized for excellent AC dynamic performance, ultra-low noise, wide operating voltage range, and low-drift signal conditioning circuitry. Input Common-Mode Voltage Range The use of an internal negative voltage rail for its input stage allows the current-sense amplifier to extend its input common-mode voltage below ground without any crossover inaccuracies. Crossover problems with precision can occur with alternate architectures of current-sense amplifiers that use two different input differential stages to cover the entire operating commonmode voltage range (either npn/pnp transistors or pnp transistor and resistor-based input stages). The minimum input common-mode voltage capability is dependent on the internal negative voltage rail generated by the charge pump. Since this negative voltage rail goes down at low values of VCC (i.e., when under 5V), the minimum input common-mode voltage rail is also limited at low VCC. The negative input common-mode voltage specification can be exceeded if the input current is limited to under 5mA. This is typically accomplished by using series input resistors. The input ESD structure for negative input common-mode voltages looks like 5 series-connected diodes. Assuming an on-drop of 0.7V per diode, negative Application Information Internal Charge Pump An internal charge pump on the part is utilized to provide two attractive application features: FROM RSENSE TO ADC 8 U Input common-mode voltage range extends to 1.5V below ground. 7 6 5 MAX9643 + 1 It is possible to also connect the VEE pin directly to an external -5V power supply. Ensure that this voltage is lower than the internally generated charge-pump voltage. The MAX9643 EV kit shows a good example layout. A representation is shown in Figure 1. 0.1µF A 250kHz internal charge pump is used to generate a negative voltage rail to bias both the input stage and output stage of the current-sense amplifier. Use a 1FF ceramic capacitor between the CP1 and CP2 pins of the IC, and ensure a tight layout to minimize loop area. Using a 1FF ceramic capacitor from VEE to GND is essential to good low-noise performance. 0.1µF U Output voltage range extends down to true ground. 1µF 2 3 4 1µF 0.1µF Figure 1. PCB Layout ����������������������������������������������������������������� Maxim Integrated Products 8 MAX9643 60V High-Speed Precision Current-Sense Amplifier input voltage transients below -3.5V should be limited by the use of input series resistors. For example, if an input voltage transient or fault condition of -12V were to occur in the application, use a resistor greater than 8.5V/5mA = 1700I. Use 2kI for margin. The maximum input common-mode voltage extends up to 60V over the entire VCC range of 2.7V to 36V. It is recommended to shield the device from overvoltages above its 65V absolute maximum rating to protect the device. Output Voltage Range The internal negative voltage rail generated by the charge pump is also used to bias the output stage of the current-sense amplifier, allowing it to feature true VOL = 0V performance. This feature allows small sense voltages to be used and eases interface to other analog and mixed-signal ICs. In reality, attaining true VOL = 0V specification is usually limited by the offset voltage of the current-sense amplifier since VOUT = VOS x gain, when input VSENSE = 0V. U Efficiency and power dissipation: At high current levels, the I2R losses in RSENSE can be significant. Take this into consideration when choosing the resistor value and its power dissipation (wattage) rating. Also, the sense resistor’s value might drift if it is allowed to heat up excessively. U Inductance: Keep inductance low if ISENSE has a large high-frequency component. Because of the high currents that flow through RSENSE, take care to eliminate parasitic trace resistance from causing errors in the sense voltage. Either use a four-terminal current-sense resistor or use Kelvin (force and sense) PCB layout techniques. Power-Supply Bypassing and Grounding In addition, the maximum output voltage of the IC is internally clamped to less than 5V even when it is powered from a 40V rail. This allows easy interface to low-voltage downstream circuitry without worrying about protecting them from large input voltage transients or faults. For most applications, bypass VCC to GND with a 0.1FF ceramic capacitor. In many applications, VCC can be connected to one of the current monitor terminals (RS+ or RS-). Because VCC is independent of the monitored voltage, VCC can be connected to a separate regulated supply. There are no specific power-supply sequencing issues to consider. The part can withstand 60V input common-mode voltages even when VCC = 0V, and maintains a high input impedance in this application condition. Choosing the Sense Resistor Chip Information Choose RSENSE based on the following criteria: U Voltage loss: A high RSENSE value causes the power-source voltage to reduce due to IR drop. For minimal voltage loss, use the lowest RSENSE value. U Accuracy: A high RSENSE value allows lower currents to be measured more accurately. This is because input offset voltages become less significant when the sense voltage is larger. PROCESS: BiCMOS Ordering Information PART PINPACKAGE GAIN (V/V) TEMP RANGE MAX9643TATA+ 8 TDFN-EP* 2.5 -40NC to +125NC MAX9643UATA+ 8 TDFN-EP* 10 -40NC to +125NC +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. ����������������������������������������������������������������� Maxim Integrated Products 9 MAX9643 60V High-Speed Precision Current-Sense Amplifier Package Information For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 8 TDFN-EP T823+1 21-0174 90-0091 8L, TDFN.EPS PACKAGE TYPE PACKAGE OUTLINE 8L TDFN, EXPOSED PAD, 2x3x0.8mm 21-0174 B 1 2 DIMENSIONS SYMBOL A E D A1 L k A2 MIN. 0.70 NOM. 0.75 MAX. 0.80 2.95 3.00 3.05 2.05 2.00 EXPOSED PAD PACKAGE 0.05 0.02 E2 D2 PKG. 0.50 0.40 CODE MIN. MAX. MIN. MAX. NOM. NOM. 0.20 MIN. ���������������������������������������������������������������� Maxim Integrated Products 10 T823-1 1.60 1.75 1.90 1.50 1.63 1.75 0.20 REF. 1.95 0.00 0.30 N e b 0.18 8 0.50 BSC 0.25 0.30 MAX9643 60V High-Speed Precision Current-Sense Amplifier Package Information (continued) PACKAGE OUTLINE For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or 8L TDFN, EXPOSED PAD, 2x3x0.8mm “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains 1 B 21-0174 2 to the package regardless of RoHS status. DIMENSIONS SYMBOL A E MIN. 0.70 NOM. 0.75 2.95 3.00 D A1 L 1.95 0.00 0.30 2.00 0.02 0.40 0.20 MIN. 0.20 REF. k A2 N e b 0.18 8 0.50 BSC 0.25 MAX. 0.80 3.05 2.05 0.05 0.50 EXPOSED PAD PACKAGE E2 D2 PKG. CODE MIN. NOM. MAX. MIN. NOM. MAX. T823-1 1.60 1.75 1.90 1.50 1.63 1.75 0.30 PACKAGE OUTLINE 8L TDFN, EXPOSED PAD, 2x3x0.8mm 21-0174 B 2 2 ���������������������������������������������������������������� Maxim Integrated Products 11 MAX9643 60V High-Speed Precision Current-Sense Amplifier Revision History REVISION NUMBER REVISION DATE 0 8/11 DESCRIPTION Initial release PAGES CHANGED — Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2011 Maxim Integrated Products 12 Maxim is a registered trademark of Maxim Integrated Products, Inc.