LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 LM4040-N/LM4040Q-N Precision Micropower Shunt Voltage Reference Check for Samples: LM4040-N, LM4040Q-N FEATURES DESCRIPTION • Ideal for space critical applications, the LM4040-N precision voltage reference is available in the subminiature SC70 and SOT-23 surface-mount package. The LM4040-N's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4040-N easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048V, 2.500V, 3.000V, 4.096V, 5.000V, 8.192V, and 10.000V. The minimum operating current increases from 60 μA for the 2.5-V LM4040-N to 100 μA for the 10.0-V LM4040-N. All versions have a maximum operating current of 15 mA. 1 2 • • • • 2.5V/SOT-23 AEC Q-100 Grades 1 and 3 available Small Packages: SOT-23, TO-92 and SC70 No Output Capacitor Required Tolerates Capacitive Loads Fixed Reverse Breakdown Voltages of 2.048V, 2.500V,3.000V, 4.096V, 5.000V, 8.192V, and 10.000V APPLICATIONS • • • • • • • • Portable, Battery-Powered Equipment Data Acquisition Systems Instrumentation Process Control Energy Management Product Testing Automotive Precision Audio Components The LM4040-N utilizes fuse and zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than ±0.1% (A grade) at 25°C. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents. Also available is the LM4041-N with two reverse breakdown voltage versions: adjustable and 1.2V. Please see the LM4041-N data sheet. Key Specifications (2.5-V LM4040-N) VALUE UNIT Output voltage tolerance (A grade, 25°C) ±0.1 % (max) Low output noise (10 Hz to 10 kHz) 35 μVrms (typ) Wide operating current range 60 to 15 μA to mA Industrial temperature range −40 to +85 °C Extended temperature range −40 to +125 °C Low temperature coefficient 100 ppm/°C (max) 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2000–2013, Texas Instruments Incorporated LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com Connection Diagrams - 1 5 N/C 2 N/C* 3 *This pin must be left floating or connected to pin 2. + 4 N/C *This pin must be left floating or connected to pin 1. Figure 1. SOT-23 (Top View) See Package Number DBZ (JEDEC Registration TO-236AB) Figure 2. TO-92 (Bottom View) See Package Number LP Figure 3. SC70 (Top View) See Package Number DCK SOT-23 AND SC70 Package Marking Information Only three fields of marking are possible on the SOT-23's and SC70's small surface. This table gives the meaning of the three fields. First Field: R = Reference Second Field: Voltage Option J = 2.048V Voltage Option 2 = 2.500V Voltage Option K = 3.000V Voltage Option 4 = 4.096V Voltage Option 5 = 5.000V Voltage Option 8 = 8.192V Voltage Option 0 = 10.000V Voltage Option Third Field: Initial Reverse Breakdown Voltage or Reference Voltage Tolerance A = ±0.1% B = ±0.2% C = +0.5% D = ±1.0% E = ±2.0% 2 Part Marking Field Definition RJA (SOT-23 only) Reference, 2.048V, ±0.1% R2A (SOT-23 only) Reference, 2.500V, ±0.1% RKA (SOT-23 only Reference, 3.000V, ±0.1% R4A (SOT-23 only) Reference, 4.096V, ±0.1% R5A (SOT-23 only) Reference, 5.000V, ±0.1% R8A (SOT-23 only) Reference, 8.192V, ±0.1% R0A (SOT-23 only) Reference, 10.000V, ±0.1% RJB Reference, 2.048V, ±0.2% R2B Reference, 2.500V, ±0.2% RKB Reference, 3.000V, ±0.2% R4B Reference, 4.096V, ±0.2% R5B Reference, 5.000V, ±0.2% R8B (SOT-23 only) Reference, 8.192V, ±0.2% R0B (SOT-23 only) Reference, 10.000V, ±0.2% RJC Reference, 2.048V, ±0.5% R2C Reference, 2.500V, ±0.5% RKC Reference, 3.000V, ±0.5% R4C Reference, 4.096V, ±0.5% R5C Reference, 5.000V, ±0.5% Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 R8C (SOT-23 only) Reference, 8.192V, ±0.5% R0C (SOT-23 only) Reference, 10.000V, ±0.5% RJD Reference, 2.048V, ±1.0% R2D Reference, 2.500V, ±1.0% RKD Reference, 3.000V, ±1.0% R4D Reference, 4.096V, ±1.0% R5D Reference, 5.000V, ±1.0% R8D (SOT-23 only) Reference, 8.192V, ±1.0% R0D (SOT-23 only) Reference, 10.000V, ±1.0% RJE Reference, 2.048V, ±2.0% R2E Reference, 2.500V, ±2.0% RKE Reference, 3.000V, ±2.0% These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. Absolute Maximum Ratings (1) (2) Reverse Current 20 mA Forward Current Power Dissipation (TA = 25°C) 10 mA (3) SOT-23 (M3) Package 306 mW TO-92 (Z) Package 550 mW SC70 (M7) Package 241 mW −65°C to +150°C Storage Temperature Soldering Temperature (4) ESD Susceptibility SOT-23 (M3) Package Peak Reflow (30 sec) +260°C TO-92 (Z) Package Soldering (10 sec) +260°C SC70 (M7) Package Peak Reflow (30 sec) +260°C Human Body Model (5) 2 kV Machine Model (5) (1) (2) (3) (4) (5) 200V Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications. The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), θJA (junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is PDmax = (TJmax − TA)/θJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040-N, TJmax = 125°C, and the typical thermal resistance (θJA), when board mounted, is 326°C/W for the SOT-23 package, and 180°C/W with 0.4″ lead length and 170°C/W with 0.125″ lead length for the TO-92 package and 415°C/W for the SC70 Package. For definitions of Peak Reflow Temperatures for Surface Mount devices, see the TI Absolute Maximum Ratings for Soldering Application Report (SNOA549). The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 3 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com Operating Ratings (1) (2) Temperature Range (Tmin ≤ TA ≤ Tmax) Reverse Current (1) (2) 4 Industrial Temperature Range −40°C ≤ TA ≤ +85°C Extended Temperature Range −40°C ≤ TA ≤ +125°C LM4040-N-2.0 60 μA to 15 mA LM4040-N-2.5 60 μA to 15 mA LM4040-N-3.0 62 μA to 15 mA LM4040-N-4.1 68 μA to 15 mA LM4040-N-5.0 74 μA to 15 mA LM4040-N-8.2 91 μA to 15 mA LM4040-N-10.0 100 μA to 15 mA Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), θJA (junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is PDmax = (TJmax − TA)/θJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040-N, TJmax = 125°C, and the typical thermal resistance (θJA), when board mounted, is 326°C/W for the SOT-23 package, and 180°C/W with 0.4″ lead length and 170°C/W with 0.125″ lead length for the TO-92 package and 415°C/W for the SC70 package. Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 2.0-V LM4040-N Electrical Characteristics VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively. Symbol Parameter Reverse Breakdown Voltage VR Reverse Breakdown Voltage Tolerance (3) Conditions IR = 100 μA Typical (1) LM4040AIM3 LM4040AIZ — Limits (2) LM4040BIM3 LM4040BIZ LM4040BIM7 Limits (2) Units ±2.0 ±4.1 mV (max) ±15 ±17 mV (max) 60 60 μA (max) 65 65 μA (max) ±100 ±100 ppm/°C (max) 2.048 IR = 100 μA V μA 45 IRMIN ΔVR/ΔT Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (3) IR = 10 mA ±20 IR = 1 mA ±15 IR = 100 μA ±15 ppm/°C 0.3 mV IRMIN ≤ IR ≤ 1 mA ΔVR/ΔIR Reverse Breakdown Voltage Change with Operating Current Change (4) eN ΔVR VHYST (1) (2) (3) (4) (5) 0.8 0.8 mV (max) 1.0 1.0 mV (max) 2.5 1 mA ≤ IR ≤ 15 mA ZR ppm/°C mV 6.0 6.0 mV (max) 8.0 8.0 mV (max) Ω 0.3 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 35 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % 0.8 0.8 Ω (max) Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 5 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com 2.0-V LM4040-N Electrical Characteristics VR Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'I' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1.0% and ±2.0%, respectively. Symbol VR Parameter Conditions Reverse Breakdown Voltage IR = 100 μA Reverse Breakdown Voltage Tolerance (3) IR = 100 μA Typical (1) LM4040CIM3 LM4040CIZ LM4040CIM7 Limits (2) LM4040DIM3 LM4040DIZ LM4040DIM7 Limits (2) — LM4040EIZ LM4040EIM7 Limits (2) 2.048 V ±10 ±20 ±41 mV (max) ±23 ±40 ±60 mV (max) 60 65 65 μA (max) 65 70 70 μA (max) ±100 ±150 ±150 ppm/°C (max) μA 45 IRMIN Minimum Operating Current ΔVR/ΔT Average Reverse Breakdown Voltage Temperature Coefficient (3) IR = 10 mA ±20 IR = 1 mA ±15 IR = 100 μA ±15 ppm/°C ppm/°C 0.3 ΔVR/ΔIR (4) (5) 6 1.0 1.0 mV (max) 1.0 1.2 1.2 mV (max) 6.0 8.0 8.0 mV (max) 8.0 10.0 10.0 mV (max) 0.9 1.1 1.1 Ω(max) 2.5 1 mA ≤ IR ≤ 15 mA mV Ω 0.3 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz IAC = 0.1 IR eN Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 35 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % VHYST (3) mV 0.8 ZR ΔVR (1) (2) Reverse Breakdown Voltage Change with Operating Current Change (4) IRMIN ≤ IR ≤ 1 mA Units Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 2.0-V LM4040-N Electrical Characteristics VR Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'E' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1.0% and ±2.0%, respectively. Symbol VR Parameter Conditions Reverse Breakdown Voltage IR = 100 μA Reverse Breakdown Voltage Tolerance (3) IR = 100 μA Typical (1) LM4040CEM3 Limits (2) LM4040DEM3 Limits (2) LM4040EEM3 Limits (2) 2.048 V ±10 ±20 ±41 mV (max) ±30 ±50 ±70 mV (max) μA 45 IRMIN ΔVR/ΔT ΔVR/ΔIR (4) (5) Reverse Breakdown Voltage Change with Operating Current Change (4) 65 65 μA (max) 68 73 73 μA (max) IR = 10 mA ±20 IR = 1 mA ±15 IR = 100 μA ±15 ppm/°C 0.3 mV IRMIN ≤ IR ≤ 1 mA ppm/°C ±100 ±150 ±150 0.8 1.0 1.0 mV (max) 1.0 1.2 1.2 mV (max) 2.5 1 mA ≤ IR ≤ 15 mA ppm/°C (max) mV 6.0 8.0 8.0 mV (max) 8.0 10.0 10.0 mV (max) 0.9 1.1 1.1 Ω (max) Ω 0.3 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR eN Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 35 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % VHYST (3) Average Reverse Breakdown Voltage Temperature Coefficient (3) 60 ZR ΔVR (1) (2) Minimum Operating Current Units Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 7 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com 2.5-V LM4040-N Electrical Characteristics VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I' (AEC Grade 3) Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively. LM4040AIM3 Symbol VR Parameter Conditions Reverse Breakdown Voltage IR = 100 μA Reverse Breakdown Voltage Tolerance (3) IR = 100 μA Typical (1) LM4040BIM3 LM4040AIZ LM4040BIZ — LM4040BIM7 LM4040AIM3 LM4040QBIM3 Limits (2) Limits (2) 2.500 V ±2.5 ±5.0 mV (max) ±19 ±21 mV (max) 60 60 μA (max) 65 65 μA (max) ±100 ±100 ppm/°C (max) μA 45 IRMIN Minimum Operating Current ΔVR/ΔT Average Reverse Breakdown Voltage Temperature Coefficient (3) IR = 10 mA ±20 IR = 1 mA ±15 IR = 100 μA ±15 ppm/°C ppm/°C 0.3 IRMIN ≤ IR ≤ 1 mA ΔVR/ΔIR Reverse Breakdown Voltage Change with Operating Current Change (4) (4) (5) 8 mV (max) 1.0 1.0 mV (max) 6.0 6.0 mV (max) 8.0 8.0 mV (max) 0.8 0.8 Ω (max) mV Ω 0.3 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR eN Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 35 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % VHYST (3) 0.8 ZR ΔVR (1) (2) mV 0.8 2.5 1 mA ≤ IR ≤ 15 mA Units Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 2.5-V LM4040-N Electrical Characteristics VR Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'I' (AEC Grade 3) Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1.0% and ±2.0%, respectively. Symbol Parameter Conditions Typical (1) LM4040CIZ LM4040DIZ LM4040EIZ LM4040CIM3 LM4040DIM3 LM4040EIM3 LM4040CIM7 LM4040DIM7 LM4040EIM7 Units LM4040QCIM3 LM4040QDIM3 LM4040QEIM3 Limits (2) VR Reverse Breakdown Voltage IR = 100 μA Reverse Breakdown Voltage Tolerance (3) IR = 100 μA Limits (2) Limits (2) 2.500 V ±12 ±25 ±50 mV (max) ±29 ±49 ±74 mV (max) μA 45 IRMIN Minimum Operating Current Average Reverse Breakdown Voltage ΔVR/ΔT Temperature Coefficient (3) ΔVR/ΔIR (4) (5) 65 μA (max) 70 70 μA (max) IR = 10 mA ±20 IR = 1 mA ±15 IR = 100 μA ±15 ppm/°C 0.3 mV IRMIN ≤ IR ≤ 1 mA ppm/°C ±100 ±150 ±150 0.8 1.0 1.0 mV (max) 1.0 1.2 1.2 mV (max) 2.5 1 mA ≤ IR ≤ 15 mA ppm/°C (max) mV 6.0 8.0 8.0 mV (max) 8.0 10.0 10.0 mV (max) 0.9 1.1 1.1 Ω(max) Ω 0.3 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz IAC = 0.1 IR eN Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 35 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT= −40°C to +125°C 0.08 % VHYST (3) 65 65 ZR ΔVR (1) (2) Reverse Breakdown Voltage Change with Operating Current Change (4) 60 Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 9 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com 2.5-V LM4040-N Electrical Characteristics VR Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'E' (AEC Grade 1) Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1.0% and ±2.0%, respectively. Symbol Parameter Conditions Typical (1 ) LM4040CEM3 Limits (2) Reverse Breakdown Voltage VR IR = 100 μA LM4040DEM3 LM4040QCEM3 LM4040QDEM3 Limits (2) LM4040EEM3 LM4040QEEM3 2.500 Reverse Breakdown I = 100 μA Voltage Tolerance (3) R V ±12 ±25 ±50 mV (max) ±38 ±63 ±88 mV (max) 60 65 65 μA (max) 68 73 73 μA (max) ±100 ±150 ±150 ppm/°C (max) μA 45 Minimum Operating Current IRMIN ΔVR/ΔT Average Reverse Breakdown Voltage Temperature Coefficient (3) IR = 10 mA ±20 IR = 1 mA ±15 IR = 100 μA ±15 ppm/°C ppm/°C 0.3 ΔVR/ΔIR (4) (5) 10 1.0 1.0 mV (max) 1.0 1.2 1.2 mV (max) 6.0 8.0 8.0 mV (max) 8.0 10.0 10.0 mV (max) 0.9 1.1 1.1 Ω (max) 2.5 1 mA ≤ IR ≤ 15 mA mV Ω 0.3 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR eN Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 35 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT= −40°C to +125°C 0.08 % VHYST (3) mV 0.8 ZR ΔVR (1) (2) Reverse Breakdown Voltage Change with Operating Current Change (4) IRMIN ≤ IR ≤ 1 mA Units Limits (2) Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 3.0-V LM4040-N Electrical Characteristics VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively. Symbol Parameter Reverse Breakdown Voltage VR Reverse Breakdown Voltage Tolerance (3) Conditions IR = 100 μA Typical (1) LM4040AIM3 LM4040AIZ — Limits (2) LM4040BIM3 LM4040BIZ LM4040BIM7 Limits (2) Units ±3.0 ±6.0 mV (max) ±22 ±26 mV (max) 62 62 μA (max) 67 67 μA (max) ±100 ±100 ppm/°C (max) 3.000 IR = 100 μA V μA 47 IRMIN ΔVR/ΔT Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (3) IR = 10 mA ±20 IR = 1 mA ±15 IR = 100 μA ±15 ppm/°C 0.6 mV IRMIN ≤ IR ≤ 1 mA ΔVR/ΔIR Reverse Breakdown Voltage Change with Operating Current Change (4) eN ΔVR VHYST (1) (2) (3) (4) (5) 0.8 0.8 mV (max) 1.1 1.1 mV (max) 2.7 1 mA ≤ IR ≤ 15 mA ZR ppm/°C mV 6.0 6.0 mV (max) 9.0 9.0 mV (max) Ω 0.4 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 35 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % 0.9 0.9 Ω (max) Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 11 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com 3.0-V LM4040-N Electrical Characteristics VR Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'I' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1.0% and ±2.0%, respectively. Symbol VR Parameter Conditions Reverse Breakdown Voltage IR = 100 μA Reverse Breakdown Voltage Tolerance (3) IR = 100 μA Typical (1) LM4040CIM3 LM4040CIZ LM4040CIM7 Limits (2) LM4040DIM3 LM4040DIZ LM4040DIM7 Limits (2) LM4040EIM7 LM4040EIZ — Limits (2) 3.000 V ±15 ±30 ±60 mV (max) ±34 ±59 ±89 mV (max) 60 65 65 μA (max) 65 70 70 μA (max) ±100 ±150 ±150 ppm/°C (max) μA 45 IRMIN Minimum Operating Current ΔVR/ΔT Average Reverse Breakdown Voltage Temperature Coefficient (3) IR = 10 mA ±20 IR = 1 mA ±15 IR = 100 μA ±15 ppm/°C ppm/°C 0.4 ΔVR/ΔIR (4) (5) 12 1.1 1.1 mV (max) 1.1 1.3 1.3 mV (max) 6.0 8.0 8.0 mV (max) 9.0 11.0 11.0 mV (max) 0.9 1.2 1.2 Ω(max) 2.7 1 mA ≤ IR ≤ 15 mA mV Ω 0.4 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz IAC = 0.1 IR eN Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 35 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % VHYST (3) mV 0.8 ZR ΔVR (1) (2) Reverse Breakdown Voltage Change with Operating Current Change (4) IRMIN ≤ IR ≤ 1 mA Units Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 3.0-V LM4040-N Electrical Characteristics VR Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'E' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ±0.5%, ±1.0% and ±2.0%, respectively. Symbol VR Parameter Conditions Reverse Breakdown Voltage IR = 100 μA Reverse Breakdown Voltage Tolerance (3) IR = 100 μA Typical (1) LM4040CEM3 Limits (2) LM4040DEM3 Limits (2) LM4040EEM3 Limits (2) 3.000 V ±15 ±30 ±60 mV (max) ±45 ±75 ±105 mV (max) μA 47 IRMIN ΔVR/ΔT ΔVR/ΔIR (4) (5) Reverse Breakdown Voltage Change with Operating Current Change (4) 67 67 μA (max) 70 75 75 μA (max) IR = 10 mA ±20 IR = 1 mA ±15 IR = 100 μA ±15 ppm/°C 0.4 mV IRMIN ≤ IR ≤ 1 mA ppm/°C ±100 ±150 ±150 0.8 1.1 1.1 mV (max) 1.1 1.3 1.3 mV (max) 2.7 1 mA ≤ IR ≤ 15 mA ppm/°C (max) mV 6.0 8.0 8.0 mV (max) 9.0 11.0 11.0 mV (max) 0.9 1.2 1.2 Ω (max) Ω 0.4 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR eN Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 35 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % VHYST (3) Average Reverse Breakdown Voltage Temperature Coefficient (3) 62 ZR ΔVR (1) (2) Minimum Operating Current Units Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 13 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com 4.1-V LM4040-N Electrical Characteristics VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively. Symbol Parameter Reverse Breakdown Voltage VR Reverse Breakdown Voltage Tolerance (3) Conditions IR = 100 μA Typical (1) LM4040AIM3 LM4040AIZ — Limits (2) LM4040BIM3 LM4040BIZ LM4040BIM7 Limits (2) Units ±4.1 ±8.2 mV (max) ±31 ±35 mV (max) 68 68 μA (max) 73 73 μA (max) ±100 ±100 ppm/°C (max) 4.096 IR = 100 μA V μA 50 IRMIN Minimum Operating Current ΔVR/ΔT Average Reverse Breakdown Voltage Temperature Coefficient (3) IR = 10 mA ±30 IR = 1 mA ±20 IR = 100 μA ±20 ppm/°C 0.5 mV IRMIN ≤ IR ≤ 1 mA ΔVR/ΔIR Reverse Breakdown Voltage Change with Operating Current Change (4) eN ΔVR VHYST (1) (2) (3) (4) (5) 14 0.9 0.9 mV (max) 1.2 1.2 mV (max) 3.0 1 mA ≤ IR ≤ 15 mA ZR ppm/°C mV 7.0 7.0 mV (max) 10.0 10.0 mV (max) Ω 0.5 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 80 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % 1.0 1.0 Ω (max) Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 4.1-V LM4040-N Electrical Characteristics VR Tolerance Grades 'C' and 'D'; Temperature Grade 'I' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and ±1.0%, respectively. Symbol Parameter Reverse Breakdown Voltage VR Reverse Breakdown Voltage Tolerance (3) Conditions IR = 100 μA Typical (1) LM4040CIM3 LM4040CIZ LM4040CIM7 Limits (2) LM4040DIM3 LM4040DIZ LM4040DIM7 Limits (2) Units ±20 ±41 mV (max) ±47 ±81 mV (max) 68 73 μA (max) 73 78 μA (max) ±100 ±150 ppm/°C (max) 4.096 IR = 100 μA V μA 50 IRMIN Minimum Operating Current Average Reverse Breakdown ΔVR/ΔT Voltage Temperature Coefficient (3) IR = 10 mA ±30 IR = 1 mA ±20 IR = 100 μA ±20 ppm/°C 0.5 mV IRMIN ≤ IR ≤ 1 mA ΔVR/ΔI R Reverse Breakdown Voltage Change with Operating Current Change (4) eN ΔVR VHYST (1) (2) (3) (4) (5) 0.9 1.2 mV (max) 1.2 1.5 mV (max) 3.0 1 mA ≤ IR ≤ 15 mA ZR ppm/°C mV 7.0 9.0 mV (max) 10.0 13.0 mV (max) Ω 0.5 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 80 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % 1.0 1.3 Ω (max) Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 15 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com 5.0-V LM4040-N Electrical Characteristics VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively. Symbol Parameter Reverse Breakdown Voltage VR Reverse Breakdown Voltage Tolerance (3) Conditions IR = 100 μA Typical (1) LM4040AIM3 LM4040AIZ — Limits (2) LM4040BIM3 LM4040BIZ LM4040BIM7 Limits (2) Units ±5.0 ±10 mV (max) ±38 ±43 mV (max) 74 74 μA (max) 80 80 μA (max) ±100 ±100 ppm/°C (max) 5.000 IR = 100 μA V μA 54 IRMIN Minimum Operating Current Average Reverse Breakdown ΔVR/ΔT Voltage Temperature Coefficient (3) IR = 10 mA ±30 IR = 1 mA ±20 IR = 100 μA ±20 ppm/°C 0.5 mV IRMIN ≤ IR ≤ 1 mA ΔVR/ΔI R Reverse Breakdown Voltage Change with Operating Current Change (4) eN ΔVR VHYST (1) (2) (3) (4) (5) 16 1.0 1.0 mV (max) 1.4 1.4 mV (max) 3.5 1 mA ≤ IR ≤ 15 mA ZR ppm/°C mV 8.0 8.0 mV (max) 12.0 12.0 mV (max) Ω 0.5 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 80 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % 1.1 1.1 Ω (max) Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 5.0-V LM4040-N Electrical Characteristics VR Tolerance Grades 'C' and 'D'; Temperature Grade 'I' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and ±1.0%, respectively. Symbol Parameter Reverse Breakdown Voltage VR Reverse Breakdown Voltage Tolerance (3) Conditions IR = 100 μA Typical (1) LM4040CIM3 LM4040CIZ LM4040CIM7 Limits (2) LM4040DIM3 LM4040DIZ LM4040DIM7 Limits (2) Units ±25 ±50 mV (max) ±58 ±99 mV (max) 74 79 μA (max) 80 85 μA (max) ±100 ±150 ppm/°C (max) 5.000 IR = 100 μA V μA 54 IRMIN Minimum Operating Current Average Reverse Breakdown ΔVR/ΔT Voltage Temperature Coefficient (3) IR = 10 mA ±30 IR = 1 mA ±20 IR = 100 μA ±20 ppm/°C 0.5 mV IRMIN ≤ IR ≤ 1 mA ΔVR/ΔI R Reverse Breakdown Voltage Change with Operating Current Change (4) eN ΔVR VHYST (1) (2) (3) (4) (5) 1.0 1.3 mV (max) 1.4 1.8 mV (max) 3.5 1 mA ≤ IR ≤ 15 mA ZR ppm/°C mV 8.0 10.0 mV (max) 12.0 15.0 mV (max) Ω 0.5 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 80 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % 1.1 1.5 Ω (max) Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 17 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com 5.0-V LM4040-N Electrical Characteristics VR Tolerance Grades 'C' and 'D'; Temperature Grade 'E' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and ±1.0%, respectively. Symbol VR Parameter Conditions Reverse Breakdown Voltage IR = 100 μA Reverse Breakdown Voltage Tolerance (2) IR = 100 μA Typical LM4040CEM3 Limits (1) LM4040DEM3 Limits (1) 5.000 V ±25 ±50 mV (max) ±75 ±125 mV (max) μA 54 IRMIN Minimum Operating Current Average Reverse Breakdown ΔVR/ΔT Voltage Temperature Coefficient (2) IR = 10 mA ±30 IR = 1 mA ±20 IR = 100 μA ±20 74 79 μA (max) 83 88 μA (max) ±100 ±150 ppm/°C (max) ppm/°C ppm/°C 0.5 mV IRMIN ≤ IR ≤ 1 mA Reverse Breakdown Voltage ΔVR/ΔIR Change with Operating Current Change (3) (4) 18 mV (max) 1.4 1.8 mV (max) 8.0 8.0 mV (max) 12.0 15.0 mV (max) 1.1 1.1 Ω (max) mV Ω 0.5 ZR Reverse Dynamic Impedance eN Wideband Noise IR = 100 μA 10 Hz ≤ f ≤ 10 kHz 80 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm Thermal Hysteresis (4) ΔT = −40°C to +125°C 0.08 % VHYST (3) 1.0 IR = 1 mA, f = 120 Hz, IAC = 0.1 IR ΔVR (2) 1.0 3.5 1 mA ≤ IR ≤ 15 mA (1) Units Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 8.2-V LM4040-N Electrical Characteristics VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively. Symbol Parameter Reverse Breakdown Voltage VR Reverse Breakdown Voltage Tolerance (3) Conditions IR = 150 μA Typical (1) LM4040AIM3 LM4040BIM3 LM4040AIZ LM4040BIZ Limits (2) Limits (2) 8.192 IR = 150 μA V ±8.2 ±16 mV (max) ±61 ±70 mV (max) 91 91 μA (max) 95 95 μA (max) μA 67 IRMIN ΔVR/ΔT Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (3) IR = 10 mA ±40 IR = 1 mA ±20 IR = 150 μA ±20 ppm/°C 0.6 mV IRMIN ≤ IR ≤ 1 mA ΔVR/ΔIR Reverse Breakdown Voltage Change with Operating Current Change (4) (5) ±100 ppm/°C (max) 1.3 1.3 mV (max) 2.5 2.5 mV (max) mV 10.0 10.0 mV (max) 18.0 18.0 mV (max) 1.5 1.5 Ω (max) Ω 0.6 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR eN Wideband Noise IR = 150 μA 10 Hz ≤ f ≤ 10 kHz 130 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 150 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % VHYST (4) ±100 ZR ΔVR (3) ppm/°C 7.0 1 mA ≤ IR ≤ 15 mA (1) (2) Units Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 19 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com 8.2-V LM4040-N Electrical Characteristics VR Tolerance Grades 'C' and 'D'; Temperature Grade 'I' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and ±1.0%, respectively. Symbol Parameter Reverse Breakdown Voltage VR Reverse Breakdown Voltage Tolerance (3) Conditions IR = 150 μA Typical (1) LM4040CIM3 LM4040DIM3 LM4040CIZ LM4040DIZ Limits (2) Limits (2) 8.192 IR = 150 μA V ±41 ±82 mV (max) ±94 ±162 mV (max) 91 96 μA (max) 95 100 μA (max) μA 67 IRMIN Minimum Operating Current ΔVR/ΔT Average Reverse Breakdown Voltage Temperature Coefficient (3) IR = 10 mA ±40 IR = 1 mA ±20 IR = 150 μA ±20 ppm/°C 0.6 mV IRMIN ≤ IR ≤ 1 mA ΔVR/ΔIR Reverse Breakdown Voltage Change with Operating Current Change (4) (5) 20 ±150 ppm/°C (max) 1.3 1.7 mV (max) 2.5 3.0 mV (max) mV 10.0 15.0 mV (max) 18.0 24.0 mV (max) 1.5 1.9 Ω (max) Ω 0.6 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR eN Wideband Noise IR = 150 μA 10 Hz ≤ f ≤ 10 kHz 130 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 150 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % VHYST (4) ±100 ZR ΔVR (3) ppm/°C 7.0 1 mA ≤ IR ≤ 15 mA (1) (2) Units Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 10-V LM4040-N Electrical Characteristics VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively. Symbol Parameter Reverse Breakdown Voltage VR Reverse Breakdown Voltage Tolerance (3) Conditions IR = 150 μA Typical (1) LM4040AIM3 LM4040BIM3 LM4040AIZ LM4040BIZ Limits (2) Limits (2) 10.00 IR = 150 μA V ±10 ±20 mV (max) ±75 ±85 mV (max) 100 100 μA (max) 103 103 μA (max) μA 75 IRMIN ΔVR/ΔT Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (3) IR = 10 mA ±40 IR = 1 mA ±20 IR = 150 μA ±20 ppm/°C 0.8 mV IRMIN ≤ IR ≤ 1 mA ΔVR/ΔIR Reverse Breakdown Voltage Change with Operating Current Change (4) (5) ±100 ppm/°C (max) 1.5 1.5 mV (max) 3.5 3.5 mV (max) mV 12.0 12.0 mV (max) 23.0 23.0 mV (max) 1.7 1.7 Ω (max) Ω 0.7 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR eN Wideband Noise IR = 150 μA 10 Hz ≤ f ≤ 10 kHz 180 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 150 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % VHYST (4) ±100 ZR ΔVR (3) ppm/°C 8.0 1 mA ≤ IR ≤ 15 mA (1) (2) Units Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 21 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com 10.0-V LM4040-N Electrical Characteristics VR Tolerance Grades 'C' and 'D'; Temperature Grade 'I' Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ±0.5% and ±1.0%, respectively. Symbol Parameter Reverse Breakdown Voltage VR Reverse Breakdown Voltage Tolerance (3) Conditions IR = 150 μA Typical (1) LM4040CIM3 LM4040DIM3 LM4040CIZ LM4040DIZ Limits (2) Limits (2) 10.00 IR = 150 μA V ±50 ±100 mV (max) ±115 ±198 mV (max) 100 110 μA (max) 103 113 μA (max) μA 75 IRMIN Minimum Operating Current ΔVR/ΔT Average Reverse Breakdown Voltage Temperature Coefficient (3) IR = 10 mA ±40 IR = 1 mA ±20 IR = 150 μA ±20 ppm/°C 0.8 mV IRMIN ≤ IR ≤ 1 mA ΔVR/ΔIR Reverse Breakdown Voltage Change with Operating Current Change (4) (5) 22 ±150 ppm/°C (max) 1.5 2.0 mV (max) 3.5 4.0 mV (max) mV 12.0 18.0 mV (max) 23.0 29.0 mV (max) 1.7 2.3 Ω (max) Ω 0.7 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR eN Wideband Noise IR = 150 μA 10 Hz ≤ f ≤ 10 kHz 180 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 150 μA 120 ppm Thermal Hysteresis (5) ΔT = −40°C to +125°C 0.08 % VHYST (4) ±100 ZR ΔVR (3) ppm/°C 8.0 1 mA ≤ IR ≤ 15 mA (1) (2) Units Typicals are at TJ = 25°C and represent most likely parametric norm. Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate AOQL. The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75% = ±19 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C. Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 Typical Performance Characteristics Temperature Drift for Different Average Temperature Coefficient Output Impedance vs Frequency Figure 4. Figure 5. Output Impedance vs Frequency Reverse Characteristics and Minimum Operating Current Figure 6. Figure 7. Noise Voltage vs Frequency Figure 8. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 23 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com Start-Up Characteristics LM4040-N-2.5 Figure 9. LM4040-N-5.0 Figure 10. RS = 30k LM4040-N-10.0 Figure 11. 24 Submit Documentation Feedback RS = 30k RS = 30k Figure 12. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 Functional Block Diagram APPLICATIONS INFORMATION The LM4040-N is a precision micro-power curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4040-N is available in the sub-miniature SOT-23 and SC70 surface-mount package. The LM4040-N has been designed for stable operation without the need of an external capacitor connected between the “+” pin and the “−” pin. If, however, a bypass capacitor is used, the LM4040-N remains stable. Reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048V, 2.500V, 3.000V, 4.096V, 5.000V, 6.000, 8.192V, and 10.000V. The minimum operating current increases from 60 µA for the LM4040-N-2.048 and LM4040-N-2.5 to 100 μA for the 10.0-V LM4040-N. All versions have a maximum operating current of 15 mA. LM4040-Ns in the SOT-23 packages have a parasitic Schottky diode between pin 2 (−) and pin 3 (Die attach interface contact). Therefore, pin 3 of the SOT-23 package must be left floating or connected to pin 2. LM4040-Ns in the SC70 have a parasitic Schottky diode between pin 1 (−) and pin 2 (Die attach interface contact). Therefore, pin 2 must be left floating or connected to pin1. The 4.096V version allows single +5V 12-bit ADCs or DACs to operate with an LSB equal to 1 mV. For 12-bit ADCs or DACs that operate on supplies of 10V or greater, the 8.192V version gives 2 mV per LSB. The typical thermal hysteresis specification is defined as the change in +25°C voltage measured after thermal cycling. The device is thermal cycled to temperature -40°C and then measured at 25°C. Next the device is thermal cycled to temperature +125°C and again measured at 25°C. The resulting VOUT delta shift between the 25°C measurements is thermal hysteresis. Thermal hysteresis is common in precision references and is induced by thermal-mechanical package stress. Changes in environmental storage temperature, operating temperature and board mounting temperature are all factors that can contribute to thermal hysteresis. In a conventional shunt regulator application (Figure 13) , an external series resistor (RS) is connected between the supply voltage and the LM4040-N. RS determines the current that flows through the load (IL) and the LM4040-N (IQ). Since load current and supply voltage may vary, RS should be small enough to supply at least the minimum acceptable IQ to the LM4040-N even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and IL is at its minimum, RS should be large enough so that the current flowing through the LM4040-N is less than 15 mA. RS is determined by the supply voltage, (VS), the load and operating current, (IL and IQ), and the LM4040-N's reverse breakdown voltage, VR. (1) Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 25 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com Typical Applications Figure 13. Shunt Regulator **Ceramic monolithic *Tantalum Figure 14. 4.1-V LM4040-N's Nominal 4.096 breakdown voltage gives ADC12451 1 mV/LSB 26 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 Nominal clamping voltage is ±11.5V (LM4040-N's reverse breakdown voltage +2 diode VF). Figure 15. Bounded amplifier reduces saturation-induced delays and can prevent succeeding stage damage. The bounding voltage is ±4V with the 2.5-V LM4040-N (LM4040-N's reverse breakdown voltage + 3 diode VF). Figure 16. Protecting Op Amp input. Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 27 LM4040-N, LM4040Q-N SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 www.ti.com Figure 17. Precision ±4.096V Reference Figure 18. Precision 1 μA to 1 mA Current Sources 28 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N LM4040-N, LM4040Q-N www.ti.com SNOS633H – OCTOBER 2000 – REVISED APRIL 2013 REVISION HISTORY Changes from Revision G (April 2013) to Revision H • Page Changed layout of National Data Sheet to TI format .......................................................................................................... 28 Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM4040-N LM4040Q-N Submit Documentation Feedback 29 PACKAGE OPTION ADDENDUM www.ti.com 4-Jul-2013 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) LM4040AIM3-10.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R0A LM4040AIM3-10.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R0A LM4040AIM3-2.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI RJA LM4040AIM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJA LM4040AIM3-2.5 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R2A LM4040AIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2A LM4040AIM3-3.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI RKA LM4040AIM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKA LM4040AIM3-4.1 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R4A LM4040AIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R4A LM4040AIM3-5.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R5A LM4040AIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5A LM4040AIM3X-10 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R0A LM4040AIM3X-10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R0A LM4040AIM3X-2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJA LM4040AIM3X-2.5 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R2A LM4040AIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2A LM4040AIM3X-3.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKA Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 4-Jul-2013 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) LM4040AIM3X-4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R4A LM4040AIM3X-5.0 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R5A LM4040AIM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5A LM4040AIZ-10.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040A IZ10 LM4040AIZ-2.5/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040A IZ2.5 LM4040AIZ-4.1/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040A IZ4.1 LM4040AIZ-5.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040A IZ5.0 LM4040BIM3-10.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R0B LM4040BIM3-10.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R0B LM4040BIM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJB LM4040BIM3-2.5 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R2B LM4040BIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2B LM4040BIM3-3.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI RKB LM4040BIM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKB LM4040BIM3-4.1 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R4B LM4040BIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R4B LM4040BIM3-5.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R5B LM4040BIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5B LM4040BIM3-8.2 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R8B Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 4-Jul-2013 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) LM4040BIM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R8B LM4040BIM3X-10 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R0B LM4040BIM3X-10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R0B LM4040BIM3X-2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJB LM4040BIM3X-2.5 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R2B LM4040BIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2B LM4040BIM3X-3.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKB LM4040BIM3X-4.1 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R4B LM4040BIM3X-4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R4B LM4040BIM3X-5.0 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R5B LM4040BIM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5B LM4040BIM7-2.0/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJB LM4040BIM7-2.5 ACTIVE SC70 DCK 5 1000 TBD Call TI Call TI R2B LM4040BIM7-2.5/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2B LM4040BIM7-5.0/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5B LM4040BIM7X-2.5/NOPB ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2B LM4040BIZ-10.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040B IZ10 LM4040BIZ-2.5/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) Call TI Level-1-NA-UNLIM 4040B IZ2.5 LM4040BIZ-4.1/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040B IZ4.1 Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 4-Jul-2013 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) LM4040BIZ-5.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM LM4040CEM3-2.5 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R2C LM4040CEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2C LM4040CEM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKC LM4040CEM3-5.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R5C LM4040CEM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5C LM4040CEM3X-3.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKC LM4040CEM3X-5.0 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R5C LM4040CEM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5C LM4040CIM3-10.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R0C LM4040CIM3-10.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R0C LM4040CIM3-2.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI RJC LM4040CIM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJC LM4040CIM3-2.5 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R2C LM4040CIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2C LM4040CIM3-3.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI RKC LM4040CIM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKC LM4040CIM3-4.1 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R4C LM4040CIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R4C Addendum-Page 4 4040B IZ5.0 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 4-Jul-2013 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) LM4040CIM3-5.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R5C LM4040CIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5C LM4040CIM3-8.2 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R8C LM4040CIM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R8C LM4040CIM3X-10 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R0C LM4040CIM3X-10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R0C LM4040CIM3X-2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJC LM4040CIM3X-2.5 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R2C LM4040CIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2C LM4040CIM3X-3.0 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI RKC LM4040CIM3X-3.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKC LM4040CIM3X-4.1 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R4C LM4040CIM3X-4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R4C LM4040CIM3X-5.0 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R5C LM4040CIM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5C LM4040CIM7-2.0/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJC LM4040CIM7-2.5/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2C LM4040CIM7X-2.5/NOPB ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2C LM4040CIZ-10.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM Addendum-Page 5 4040C IZ10 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 4-Jul-2013 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) LM4040CIZ-2.5/LFT8 ACTIVE TO-92 LP 3 2000 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040C IZ2.5 LM4040CIZ-2.5/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040C IZ2.5 LM4040CIZ-4.1/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040C IZ4.1 LM4040CIZ-5.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040C IZ5.0 LM4040DEM3-2.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI RJD LM4040DEM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJD LM4040DEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2D LM4040DEM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKD LM4040DEM3-5.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R5D LM4040DEM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5D LM4040DEM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2D LM4040DEM3X-5.0 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R5D LM4040DEM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5D LM4040DIM3-10.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R0D LM4040DIM3-10.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R0D LM4040DIM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJD LM4040DIM3-2.5 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R2D LM4040DIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2D LM4040DIM3-3.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI RKD Addendum-Page 6 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 4-Jul-2013 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) LM4040DIM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKD LM4040DIM3-4.1 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R4D LM4040DIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R4D LM4040DIM3-5.0 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R5D LM4040DIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5D LM4040DIM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R8D LM4040DIM3X-10 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R0D LM4040DIM3X-10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R0D LM4040DIM3X-2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJD LM4040DIM3X-2.5 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R2D LM4040DIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2D LM4040DIM3X-3.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKD LM4040DIM3X-4.1 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R4D LM4040DIM3X-4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R4D LM4040DIM3X-5.0 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R5D LM4040DIM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R5D LM4040DIM7-2.0/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJD LM4040DIM7-2.5/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2D LM4040DIM7-5.0 ACTIVE SC70 DCK 5 1000 TBD Call TI Call TI R5D Addendum-Page 7 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 4-Jul-2013 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) LM4040DIM7-5.0/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM LM4040DIZ-10.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040D IZ10 LM4040DIZ-2.5/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040D IZ2.5 LM4040DIZ-4.1/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040D IZ4.1 LM4040DIZ-5.0/LFT1 ACTIVE TO-92 LP 3 2000 Green (RoHS & no Sb/Br) SNCU Level-1-NA-UNLIM 4040D IZ5.0 LM4040DIZ-5.0/NOPB ACTIVE TO-92 LP 3 1800 Green (RoHS & no Sb/Br) Call TI Level-1-NA-UNLIM 4040D IZ5.0 LM4040EEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2E LM4040EEM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKE LM4040EIM3-2.5 ACTIVE SOT-23 DBZ 3 1000 TBD Call TI Call TI R2E LM4040EIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2E LM4040EIM3-3.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKE LM4040EIM3X-2.5 ACTIVE SOT-23 DBZ 3 3000 TBD Call TI Call TI R2E LM4040EIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2E LM4040EIM3X-3.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RKE LM4040EIM7-2.0/NOPB ACTIVE SC70 DCK 5 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM RJE LM4040QAIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R6A LM4040QAIM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R6A LM4040QBIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R6B Addendum-Page 8 R5D Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 4-Jul-2013 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) LM4040QBIM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R6B LM4040QCEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2C LM4040QCIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R6C LM4040QCIM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R6C LM4040QDEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2D LM4040QDIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R6D LM4040QDIM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R6D LM4040QEEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R2E LM4040QEIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R6E LM4040QEIM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM R6E (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) Addendum-Page 9 Samples PACKAGE OPTION ADDENDUM www.ti.com 4-Jul-2013 (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF LM4040-N, LM4040-N-Q1 : • Catalog: LM4040-N • Automotive: LM4040-N-Q1 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 10 PACKAGE MATERIALS INFORMATION www.ti.com 8-Apr-2013 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ SOT-23 DBZ 3 1000 178.0 8.4 LM4040AIM3-10.0/NOPB SOT-23 LM4040AIM3-10.0 Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 3.3 2.9 1.22 4.0 8.0 Q3 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3-2.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3-2.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3-2.5 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3-3.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3-4.1 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3-4.1/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3-5.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3-5.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3X-10 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3X-10/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3X-2.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3X-2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3X-3.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3X-2.5 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 8-Apr-2013 Device Package Package Pins Type Drawing LM4040AIM3X-4.1/NOPB SOT-23 SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040AIM3X-5.0/NOPB SOT-23 LM4040AIM3X-5.0 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3-10.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3-2.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3-2.5 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3-10.0 LM4040BIM3-3.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3-4.1 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3-4.1/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3-5.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3-5.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3-8.2 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3-8.2/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3X-10 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3X-10/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3X-2.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3X-2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3X-3.0/NOPB SOT-23 LM4040BIM3X-2.5 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3X-4.1/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3X-5.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040BIM3X-4.1 LM4040BIM3X-5.0 LM4040BIM7-2.0/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040BIM7-2.5 SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040BIM7-2.5/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040BIM7-5.0/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040BIM7X-2.5/NOPB SC70 DCK 5 3000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040CEM3-2.5 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CEM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CEM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CEM3-5.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CEM3X-3.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CEM3X-5.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3-10.0/NOPB SOT-23 LM4040CEM3-5.0 LM4040CEM3X-5.0 LM4040CIM3-10.0 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3-2.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3-2.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 8-Apr-2013 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant LM4040CIM3-2.5 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3-3.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3-4.1 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3-4.1/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3-5.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3-5.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3-8.2 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3-8.2/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3X-10 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3X-10/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3X-2.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3X-2.5/NOPB SOT-23 LM4040CIM3X-2.5 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3X-3.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3X-4.1/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3X-5.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040CIM3X-3.0 LM4040CIM3X-4.1 LM4040CIM3X-5.0 LM4040CIM7-2.0/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040CIM7-2.5/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040CIM7X-2.5/NOPB SC70 DCK 5 3000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040DEM3-2.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DEM3-2.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DEM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DEM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DEM3-5.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DEM3X-2.5/NOPB SOT-23 LM4040DEM3-5.0 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DEM3X-5.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DEM3X-5.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3-10.0/NOPB SOT-23 LM4040DIM3-10.0 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3-2.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3-2.5 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3-3.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3-4.1 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3-4.1/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3-5.0 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 Pack Materials-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 8-Apr-2013 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) LM4040DIM3-5.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 LM4040DIM3-8.2/NOPB SOT-23 DBZ 3 1000 178.0 8.4 LM4040DIM3X-10 B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 3.3 2.9 1.22 4.0 8.0 Q3 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3X-10/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3X-2.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3X-2.5/NOPB SOT-23 LM4040DIM3X-2.5 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3X-3.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3X-4.1/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM3X-4.1 LM4040DIM3X-5.0 SOT-23 LM4040DIM3X-5.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040DIM7-2.0/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040DIM7-2.5/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040DIM7-5.0 SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040DIM7-5.0/NOPB SC70 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040EEM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040EEM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040EIM3-2.5 SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040EIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040EIM3-3.0/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040EIM3X-2.5 SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040EIM3X-2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040EIM3X-3.0/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 DCK 5 1000 178.0 8.4 2.25 2.45 1.2 4.0 8.0 Q3 LM4040QAIM3-2.5/NOPB SOT-23 LM4040EIM7-2.0/NOPB SC70 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040QAIM3X2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040QBIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040QBIM3X2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040QCEM3-2.5/NOP B SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040QCIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040QCIM3X2.5/NOP B SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040QDEM3-2.5/NOP B SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040QDIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040QDIM3X2.5/NOP B SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040QEEM3-2.5/NOP B SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040QEIM3-2.5/NOPB SOT-23 DBZ 3 1000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 LM4040QEIM3X2.5/NOPB SOT-23 DBZ 3 3000 178.0 8.4 3.3 2.9 1.22 4.0 8.0 Q3 Pack Materials-Page 4 PACKAGE MATERIALS INFORMATION www.ti.com 8-Apr-2013 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LM4040AIM3-10.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040AIM3-10.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040AIM3-2.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040AIM3-2.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040AIM3-2.5 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040AIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040AIM3-3.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040AIM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040AIM3-4.1 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040AIM3-4.1/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040AIM3-5.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040AIM3-5.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040AIM3X-10 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040AIM3X-10/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040AIM3X-2.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040AIM3X-2.5 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040AIM3X-2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040AIM3X-3.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040AIM3X-4.1/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040AIM3X-5.0 SOT-23 DBZ 3 3000 210.0 185.0 35.0 Pack Materials-Page 5 PACKAGE MATERIALS INFORMATION www.ti.com 8-Apr-2013 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LM4040AIM3X-5.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040BIM3-10.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3-10.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3-2.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3-2.5 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3-3.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3-4.1 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3-4.1/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3-5.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3-5.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3-8.2 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3-8.2/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040BIM3X-10 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040BIM3X-10/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040BIM3X-2.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040BIM3X-2.5 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040BIM3X-2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040BIM3X-3.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040BIM3X-4.1 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040BIM3X-4.1/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040BIM3X-5.0 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040BIM3X-5.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040BIM7-2.0/NOPB SC70 DCK 5 1000 210.0 185.0 35.0 LM4040BIM7-2.5 SC70 DCK 5 1000 210.0 185.0 35.0 LM4040BIM7-2.5/NOPB SC70 DCK 5 1000 210.0 185.0 35.0 LM4040BIM7-5.0/NOPB SC70 DCK 5 1000 210.0 185.0 35.0 LM4040BIM7X-2.5/NOPB SC70 DCK 5 3000 210.0 185.0 35.0 LM4040CEM3-2.5 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CEM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CEM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CEM3-5.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CEM3-5.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CEM3X-3.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CEM3X-5.0 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CEM3X-5.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CIM3-10.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3-10.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3-2.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3-2.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3-2.5 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3-3.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 Pack Materials-Page 6 PACKAGE MATERIALS INFORMATION www.ti.com 8-Apr-2013 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LM4040CIM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3-4.1 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3-4.1/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3-5.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3-5.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3-8.2 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3-8.2/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040CIM3X-10 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CIM3X-10/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CIM3X-2.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CIM3X-2.5 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CIM3X-2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CIM3X-3.0 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CIM3X-3.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CIM3X-4.1 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CIM3X-4.1/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CIM3X-5.0 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CIM3X-5.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040CIM7-2.0/NOPB SC70 DCK 5 1000 210.0 185.0 35.0 LM4040CIM7-2.5/NOPB SC70 DCK 5 1000 210.0 185.0 35.0 LM4040CIM7X-2.5/NOPB SC70 DCK 5 3000 210.0 185.0 35.0 LM4040DEM3-2.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DEM3-2.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DEM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DEM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DEM3-5.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DEM3-5.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DEM3X-2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040DEM3X-5.0 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040DEM3X-5.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040DIM3-10.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DIM3-10.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DIM3-2.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DIM3-2.5 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DIM3-3.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DIM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DIM3-4.1 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DIM3-4.1/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DIM3-5.0 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DIM3-5.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DIM3-8.2/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040DIM3X-10 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040DIM3X-10/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 Pack Materials-Page 7 PACKAGE MATERIALS INFORMATION www.ti.com 8-Apr-2013 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LM4040DIM3X-2.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040DIM3X-2.5 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040DIM3X-2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040DIM3X-3.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040DIM3X-4.1 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040DIM3X-4.1/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040DIM3X-5.0 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040DIM3X-5.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040DIM7-2.0/NOPB SC70 DCK 5 1000 210.0 185.0 35.0 LM4040DIM7-2.5/NOPB SC70 DCK 5 1000 210.0 185.0 35.0 LM4040DIM7-5.0 SC70 DCK 5 1000 210.0 185.0 35.0 LM4040DIM7-5.0/NOPB SC70 DCK 5 1000 210.0 185.0 35.0 LM4040EEM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040EEM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040EIM3-2.5 SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040EIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040EIM3-3.0/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040EIM3X-2.5 SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040EIM3X-2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040EIM3X-3.0/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040EIM7-2.0/NOPB SC70 DCK 5 1000 210.0 185.0 35.0 LM4040QAIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040QAIM3X2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040QBIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040QBIM3X2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040QCEM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040QCIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040QCIM3X2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040QDEM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040QDIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040QDIM3X2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 LM4040QEEM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040QEIM3-2.5/NOPB SOT-23 DBZ 3 1000 210.0 185.0 35.0 LM4040QEIM3X2.5/NOPB SOT-23 DBZ 3 3000 210.0 185.0 35.0 Pack Materials-Page 8 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated