19-0248; Rev 1; 6/09 KIT ATION EVALU E L B AVAILA High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Features The MAX2031 high-linearity passive upconverter or downconverter mixer is designed to provide +36dBm IIP3, 7dB NF, and 7dB conversion loss for a 650MHz to 1000MHz RF frequency range to support GSM/cellular base-station transmitter or receiver applications. With a 650MHz to 1250MHz LO frequency range, this particular mixer is ideal for high-side LO injection architectures. For a pin-to-pin-compatible mixer meant for low-side LO injection, refer to the MAX2029. o 650MHz to 1000MHz RF Frequency Range o 650MHz to 1250MHz LO Frequency Range o 570MHz to 900MHz LO Frequency Range (Refer to the MAX2029 Data Sheet) o DC to 250MHz IF Frequency Range o 7dB Conversion Loss o +36dBm Input IP3 o +27dBm Input 1dB Compression Point o 7dB Noise Figure o Integrated LO Buffer o Integrated RF and LO Baluns o Low -3dBm to +3dBm LO Drive o Built-In SPDT LO Switch with 49dB LO1 to LO2 Isolation and 50ns Switching Time o Pin Compatible with the MAX2039/MAX2041 1700MHz to 2200MHz Mixers o External Current-Setting Resistor Provides Option for Operating Mixer in Reduced-Power/ReducedPerformance Mode Predistortion Receivers Microwave and Fixed Broadband Wireless Access Wireless Local Loop Digital and SpreadSpectrum Communication Systems PIN-PACKAGE -40°C to +85°C 20 Thin QFN-EP* MAX2031ETP+T -40°C to +85°C 20 Thin QFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. T= Tape and reel. *EP = Exposed pad. Pin Configuration/ Functional Diagram TOP VIEW + VCC 1 RF 2 GND WCDMA/LTE and cdma2000 ® Base Stations GSM 850/GSM 900 2G and 2.5G EDGE Base Stations Integrated Digital Enhanced Network (iDEN®) Base Stations WiMAX(SM) Base Stations and Customer Premise Equipment PART GND Applications TEMP RANGE MAX2031ETP+ IF- The MAX2031 is available in a compact 20-pin thin QFN package (5mm x 5mm) with an exposed pad. Electrical performance is guaranteed over the extended -40°C to +85°C temperature range. Ordering Information IF+ The MAX2031 is pin compatible with the MAX2039/ MAX2041 1700MHz to 2200MHz mixers, making this family of passive upconverters and downconverters ideal for applications where a common PC board layout is used for both frequency bands. GND In addition to offering excellent linearity and noise performance, the MAX2031 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, a dual-input LO selectable switch, and an LO buffer. On-chip baluns are also integrated to allow for a single-ended RF input for downconversion (or RF output for upconversion), and single-ended LO inputs. The MAX2031 requires a nominal LO drive of 0dBm, and supply current is guaranteed to be below 100mA. 20 19 18 17 16 MAX2031 15 LO2 14 VCC TAP 3 13 GND GND 4 12 GND 11 LO1 E.P. 6 7 8 9 10 LOBIAS VCC LOSEL GND cdma2000 is a registered trademark of Telecommunications Industry Association. iDEN is a registered trademark of Motorola, Inc. WiMAX is a trademark of WiMAX Forum. 5 VCC GND ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX2031 General Description MAX2031 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch ABSOLUTE MAXIMUM RATINGS VCC to GND ...........................................................-0.3V to +5.5V RF (RF is DC shorted to GND through a balun)..................50mA LO1, LO2 to GND ..................................................-0.3V to +0.3V IF+, IF- to GND ...........................................-0.3V to (VCC + 0.3V) TAP to GND ...........................................................-0.3V to +1.4V LOSEL to GND ...........................................-0.3V to (VCC + 0.3V) LOBIAS to GND..........................................-0.3V to (VCC + 0.3V) RF, LO1, LO2 Input Power (Note 1) ...............................+20dBm Continuous Power Dissipation (Note 2)....................................5W θjA (Notes 3, 4)...............................................................+38°C/W θjC (Notes 2, 3) ..............................................................+13°C/W Operating Temperature Range (Note 5) .....TC = -40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Note 1: Maximum, reliable, continuous input power applied to the RF and IF port of this device is +12dBm from a 50Ω source. Note 2: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150°C. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150°C. Note 5: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = 4.75V to 5.25V, no RF signals applied, TC = -40°C to +85°C. IF+ and IF- are DC grounded through an IF balun. Typical values are at VCC = 5V, TC = +25°C, unless otherwise noted.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC LOSEL Input-Logic Low VIL LOSEL Input-Logic High VIH CONDITIONS MIN TYP MAX UNITS 4.75 5.00 5.25 V 85 100 mA 0.8 V 2 V RECOMMENDED AC OPERATING CONDITIONS PARAMETER SYMBOL CONDITIONS Components tuned for the 700MHz band (Table 1), C1 = 7pF, C5 = 3.3pF (Notes 6, 7) RF Frequency fRF MIN TYP 650 MAX UNITS 850 MHz Components tuned for the 800MHz/900MHz cellular band (Table 1), C1 = 82pF, C5 = 2.0pF (Note 6) 800 1000 650 1250 MHz LO Frequency fLO (Notes 6, 7) IF Frequency fIF IF frequency range depends on external IF transformer selection 0 250 MHz (Note 6) -3 +3 dBm LO Drive Level 2 PLO _______________________________________________________________________________________ High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch (Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used, VCC = 4.75V to 5.25V, RF and LO ports driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 815MHz to 1000MHz, fLO = 960MHz to 1180MHz, fIF = 160MHz, fLO > fRF, TC = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 5V, PRF = 0dBm, PLO = 0dBm, fRF = 910MHz, fLO = 1070MHz, fIF = 160MHz, TC = +25°C, unless otherwise noted.) (Note 8) PARAMETER Conversion Loss SYMBOL CONDITIONS MIN Lc Flatness over any one of three frequency bands (fIF = 160MHz): fRF = 827MHz to 849MHz fRF = 869MHz to 894MHz fRF = 880MHz to 915MHz Conversion Loss Flatness TYP MAX UNITS 7.0 dB ±0.18 dB TC = +25°C to -40°C -0.3 TC = +25°C to +85°C 0.2 P1dB (Note 9) 27 dBm Input Third-Order Intercept Point IIP3 fRF1 = 910MHz, fRF2 = 911MHz, PRF = 0dBm/tone, fLO = 1070MHz, PLO = 0dBm, TC = +25°C (Note 10) 36 dBm Input IP3 Variation Over Temperature IIP3 Conversion Loss Variation Over Temperature Input Compression Point Spurious Response at IF Noise Figure LO1-to-LO2 Isolation (Note 10) TC = +25°C to -40°C 0.3 TC = +25°C to +85°C -0.3 2x2 2LO - 2RF 72 3x3 3LO - 3RF 79 Single sideband 7.0 PBLOCKER = +8dBm 15 PBLOCKER = +12dBm 19 NF Noise Figure Under Blocking (Note 11) 32 LO2 selected, PLO = +3dBm, TC = +25°C 42 51 LO1 selected, PLO = +3dBm, TC = +25°C 42 49 dB dB dBc dB dB dB Maximum LO Leakage at RF Port PLO = +3dBm -27 dBm Maximum LO Leakage at IF Port PLO = +3dBm -35 dBm LO Switching Time 50% of LOSEL to IF, settled within 2 degrees 50 ns Minimum RF-to-IF Isolation 45 dB RF Port Return Loss 17 dB LO Port Return Loss IF Port Return Loss LO1/LO2 port selected, LO2/LO1, RF, and IF terminated into 50Ω 28 LO1/LO2 port unselected, LO2/LO1, RF, and IF terminated into 50Ω 30 LO driven at 0dBm, RF terminated into 50Ω 17 dB dB _______________________________________________________________________________________ 3 MAX2031 AC ELECTRICAL CHARACTERISTICS (800MHz/900MHz CELLULAR BAND DOWNCONVERTER OPERATION) MAX2031 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch AC ELECTRICAL CHARACTERISTICS (700MHz BAND DOWNCONVERTER OPERATION) (Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC = 4.75V to 5.25V, RF and LO ports driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 650MHz to 850MHz, fLO = 790MHz to 990MHz, fIF = 140MHz, fLO > fRF, TC = +25°C, unless otherwise noted. Typical values are at VCC = 5V, PRF = 0dBm, PLO = 0dBm, fRF = 750MHz, fLO = 890MHz, fIF = 140MHz, TC = +25°C, unless otherwise noted.) (Notes 8, 10) PARAMETER Conversion Loss SYMBOL CONDITIONS LC Input 1dB Compression Point P1dB fRF = 750MHz, PRF = 0dBm, PLO = 0dBm Input Third-Order Intercept Point IIP3 fRF1 = 749MHz, fRF2 = 750MHz, fLO = 890MHz, PRF = 0dBm/tone, PLO = 0dBm MIN TYP MAX UNITS 6.1 6.9 8.1 dB 32 27.7 dBm 37 dBm LO Leakage at IF Port PLO = +3dBm -33 -21 dBm LO Leakage at RF Port PLO = +3dBm -20 -13 dBm RF-to-IF Isolation 36 49 dB 2LO-2RF Spurious Response 2x2 40 72 dBc 3LO-3RF Spurious Response 3x3 65 82 dBc AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION) (Typical Application Circuit, L1 = 4.7nH, C4 = 6pF, C1 = 82pF, C5 not used, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 815MHz to 1000MHz, fLO = 960MHz to 1180MHz, fIF = 160MHz, fLO > fRF, TC = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 5V, PIF = 0dBm, PLO = 0dBm, fRF = 910MHz, fLO = 1070MHz, fIF = 160MHz, TC = +25°C, unless otherwise noted.) (Note 8) PARAMETER Conversion Loss SYMBOL CONDITIONS MIN Lc TYP MAX UNITS 7.4 dB Flatness over any one of three frequency bands (fIF = 160MHz): fRF = 827MHz to 849MHz fRF = 869MHz to 894MHz fRF = 880MHz to 915MHz ±0.3 dB TC = +25°C to -40°C -0.3 TC = +25°C to +85°C 0.4 P1dB (Note 9) 27 dBm Input Third-Order Intercept Point IIP3 fIF1 = 160MHz, fIF2 = 161MHz, PIF = 0dBm/tone, fLO = 1070MHz, PLO = 0dBm, TC = +25°C (Note 10) 36 dBm Input IP3 Variation Over Temperature IIP3 Conversion Loss Flatness Conversion Loss Variation Over Temperature Input Compression Point TC = +25°C to -40°C 1.2 TC = +25°C to +85°C -0.9 LO ± 2IF Spur 64 LO ± 3IF Spur Output Noise Floor Note 6: Note 7: Note 8: Note 9: Note 10: Note 11: 4 32 POUT = 0dBm (Note 11) dB dB dBc 83 dBc -167 dBm/Hz Operation outside this range is possible, but with degraded performance of some parameters. Not production tested. All limits include external component losses. Output measurements are taken at IF or RF port of the Typical Application Circuit. Compression point characterized. It is advisable not to continuously operate the mixer RF/IF inputs above +12dBm. Guaranteed by design. Measured with external LO source noise filtered, so its noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and Measurements of Local Oscilator Noise in Integrated Circuit Base Station Mixers. _______________________________________________________________________________________ High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Downconverter Curves TC = +25°C 7 7 5 950 1000 800 RF FREQUENCY (MHz) TC = +85°C, +25°C 36 38 INPUT IP3 (dBm) 800 1000 34 TC = -40°C 32 TC = -25°C PRF = 0dBm/TONE PLO = +3dBm PLO = 0dBm 40 PLO = -3dBm 32 VCC = 4.75V 28 28 26 26 800 NOISE FIGURE vs. RF FREQUENCY TC = +25°C 9 1000 10 9 NOISE FIGURE (dB) TC = +85°C 7 6 8 7 PLO = -3dBm, 0dBm, +3dBm 8 7 VCC = 4.75V, 5.0V, 5.25V 6 6 TC = -40°C TC = -25°C 5 5 5 850 850 900 950 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY 8 800 800 1000 MAX2031 toc08 9 850 900 950 RF FREQUENCY (MHz) 10 MAX2031 toc07 10 VCC = 5.0V 32 28 1000 VCC = 5.25V 34 30 850 900 950 RF FREQUENCY (MHz) 1000 36 30 800 950 PRF = 0dBm/TONE 38 30 26 900 INPUT IP3 vs. RF FREQUENCY 36 34 850 RF FREQUENCY (MHz) NOISE FIGURE (dB) INPUT IP3 (dBm) 38 NOISE FIGURE (dB) 950 INPUT IP3 vs. RF FREQUENCY 40 MAX2031 toc04 PRF = 0dBm/TONE 900 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 40 850 INPUT IP3 (dBm) 900 MAX2031 toc05 850 MAX2031 toc03 5 5 800 7 6 6 TC = -40°C VCC = 4.75V, 5.0V, 5.25V 8 MAX2031 toc09 6 PLO = -3dBm, 0dBm, +3dBm 8 9 CONVERSION LOSS (dB) TC = -25°C 10 MAX2031 toc02 MAX2031 toc01 TC = +85°C 8 9 CONVERSION LOSS (dB) CONVERSION LOSS (dB) 9 CONVERSION LOSS vs. RF FREQUENCY CONVERSION LOSS vs. RF FREQUENCY 10 MAX2031 toc06 CONVERSION LOSS vs. RF FREQUENCY 10 900 950 RF FREQUENCY (MHz) 1000 800 850 900 950 RF FREQUENCY (MHz) 1000 800 850 900 950 1000 RF FREQUENCY (MHz) _______________________________________________________________________________________ 5 MAX2031 Typical Operating Characteristics (Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used, VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used, VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC = +25°C, unless otherwise noted.) Downconverter Curves TC = +85°C 75 65 TC = -25°C TC = -40°C 45 850 900 950 75 PLO = +3dBm 65 55 75 65 VCC = 5.25V 55 45 800 850 900 950 800 1000 850 900 950 3LO - 3RF RESPONSE vs. RF FREQUENCY 3LO - 3RF RESPONSE vs. RF FREQUENCY 70 PLO = 0dBm 3LO - 3RF RESPONSE (dBc) 80 PRF = 0dBm 90 100 MAX2031 toc14 MAX2031 toc13 100 80 PLO = -3dBm 70 800 1000 RF FREQUENCY (MHz) 900 950 INPUT P1dB (dBm) 28 TC = -25°C, +85°C TC = +25°C 950 RF FREQUENCY (MHz) 1000 900 950 1000 INPUT P1dB vs. RF FREQUENCY MAX2031 toc17 32 VCC = 5.25V 30 28 PLO = -3dBm 28 VCC = 4.75V 26 VCC = 5.0V 24 24 24 850 RF FREQUENCY (MHz) 26 26 900 800 1000 PLO = 0dBm, +3dBm 30 30 850 VCC = 4.75V INPUT P1dB vs. RF FREQUENCY 32 MAX2031 toc16 TC = -40°C VCC = 5.0V 70 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY 32 850 INPUT P1dB (dBm) 950 80 60 60 900 VCC = 5.25V PLO = +3dBm 60 850 PRF = 0dBm 90 1000 MAX2031 toc15 3LO - 3RF RESPONSE vs. RF FREQUENCY TC = -40°C, -25°C 6 85 RF FREQUENCY (MHz) TC = +85°C 800 VCC = 4.75V, 5.0V RF FREQUENCY (MHz) TC = +25°C 800 PRF = 0dBm RF FREQUENCY (MHz) PRF = 0dBm 90 1000 3LO - 3RF RESPONSE (dBc) 3LO - 3RF RESPONSE (dBc) 85 95 45 800 100 PLO = 0dBm P = -3dBm LO MAX2031 toc18 55 PRF = 0dBm MAX2031 toc12 85 95 2LO - 2RF RESPONSE (dBc) TC = +25°C MAX2031 toc10 PRF = 0dBm 2LO - 2RF RESPONSE (dBc) 2LO - 2RF RESPONSE (dBc) 95 2LO - 2RF RESPONSE vs. RF FREQUENCY 2LO - 2RF RESPONSE vs. RF FREQUENCY MAX2031 toc11 2LO - 2RF RESPONSE vs. RF FREQUENCY INPUT P1dB (dBm) MAX2031 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch 800 850 900 950 RF FREQUENCY (MHz) 1000 800 850 900 950 RF FREQUENCY (MHz) _______________________________________________________________________________________ 1000 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Downconverter Curves TC = -40°C, -25°C 50 TC = +85°C 45 TC = +25°C 40 950 1050 1150 50 PLO = -3dBm, 0dBm, +3dBm 45 1250 950 1050 1150 850 1250 1050 1150 LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY -50 -40 PLO = -3dBm, 0dBm, +3dBm 1060 1110 960 1160 VCC = 4.75V VCC = 5.0V -60 -60 1010 -40 -50 -50 -60 MAX2031 toc24 VCC = 5.25V -30 LO LEAKAGE (dBm) LO LEAKAGE (dBm) TC = +85°C 1010 1060 1110 960 1160 1010 1060 1110 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY -30 TC = +85°C -35 TC = +25°C -40 -25 -30 PLO = -3dBm, 0dBm, +3dBm -35 -40 950 1050 1150 LO FREQUENCY (MHz) 1250 -20 VCC = 5.25V -25 -30 VCC = 4.75V -35 VCC = 5.0V -40 -45 -45 -45 MAX2031 toc27 -20 1160 -15 LO LEAKAGE AT RF PORT (dBm) -25 MAX2031 toc26 TC = -40°C, -25°C -15 LO LEAKAGE AT RF PORT (dBm) MAX2031 toc25 -15 1250 -20 MAX2031 toc23 -20 MAX2031 toc22 TC = +25°C 850 950 LO FREQUENCY (MHz) -30 -20 VCC = 4.75V, 5.0V, 5.25V 45 LO FREQUENCY (MHz) TC = -40°C, -25°C 960 50 40 850 -30 -40 55 LO FREQUENCY (MHz) -20 LO LEAKAGE (dBm) 55 40 850 LO LEAKAGE AT RF PORT (dBm) LO SWITCH ISOLATION (dB) 55 60 MAX2031 toc20 MAX2031 toc19 60 LO SWITCH ISOLATION (dB) LO SWITCH ISOLATION (dB) 60 LO SWITCH ISOLATION vs. LO FREQUENCY LO SWITCH ISOLATION vs. LO FREQUENCY MAX2031 toc21 LO SWITCH ISOLATION vs. LO FREQUENCY 850 950 1050 1150 LO FREQUENCY (MHz) 1250 850 950 1050 1150 1250 LO FREQUENCY (MHz) _______________________________________________________________________________________ 7 MAX2031 Typical Operating Characteristics (continued) (Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used, VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used, VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC = +25°C, unless otherwise noted.) Downconverter Curves TC = -40°C, -25°C 35 50 45 40 PLO = -3dBm PLO = 0dBm 35 30 55 850 900 950 1000 VCC = 4.75V, 5.0V, 5.25V 40 30 800 850 900 950 800 1000 850 900 950 1000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY IF PORT RETURN LOSS vs. IF FREQUENCY IF PORT RETURN LOSS vs. IF FREQUENCY 15 20 PLO = -3dBm, 0dBm, +3dBm 25 15 20 VCC = 4.75V, 5.0V, 5.25V 25 30 35 40 850 900 950 1000 1050 15 20 PLO = -3dBm, 0dBm, +3dBm 25 30 35 40 45 50 50 800 MAX2031 toc33 10 45 30 INCLUDES IF TRANSFORMER 5 IF PORT RETURN LOSS (dB) 10 IF PORT RETURN LOSS (dB) 10 INCLUDES IF TRANSFORMER 5 0 MAX2031 toc32 0 MAX2031 toc31 5 0 100 200 300 400 0 500 100 200 300 400 RF FREQUENCY (MHz) IF FREQUENCY (MHz) IF FREQUENCY (MHz) LO SELECTED RETURN LOSS vs. LO FREQUENCY LO UNSELECTED RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs.TEMPERATURE (TC) 15 PLO = +3dBm PLO = 0dBm 20 25 30 35 PLO = -3dBm, 0dBm, +3dBm 20 30 40 500 MAX2031 toc36 10 VCC = 5.25V SUPPLY CURRENT (mA) 10 100 MAX2031 toc35 5 0 LO UNSELECTED RETURN LOSS (dB) MAX2031 toc34 0 90 80 VCC = 5.0V VCC = 4.75V 70 50 PLO = -3dBm 60 40 800 900 1000 1100 LO FREQUENCY (MHz) 8 45 RF FREQUENCY (MHz) 0 750 50 35 30 800 RF PORT RETURN LOSS (dB) PLO = +3dBm RF-TO-IF ISOLATION (dB) 45 40 55 RF-TO-IF ISOLATION (dB) TC = +25°C TC = +85°C 60 MAX2031 toc29 55 RF-TO-IF ISOLATION (dB) 60 MAX2031 toc28 60 50 RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2031 toc30 RF-TO-IF ISOLATION vs. RF FREQUENCY LO SELECTED RETURN LOSS (dB) MAX2031 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch 1200 1300 60 800 900 1000 1100 LO FREQUENCY (MHz) 1200 1300 -40 -15 10 35 TEMPERATURE (°C) _______________________________________________________________________________________ 60 85 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Downconverter Curves 650 700 750 800 5 850 PLO = -3dBm, 0dBm, +3dBm 6 650 RF FREQUENCY (MHz) MAX2031 toc39 VCC = 4.75V, 5.0V, 5.25V 6 5 850 650 TC = +25°C TC = +85°C 34 38 36 34 750 800 850 INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE INPUT IP3 (dBm) 38 700 RF FREQUENCY (MHz) 40 MAX2031 toc40 PRF = 0dBm/TONE INPUT IP3 (dBm) 800 7 INPUT IP3 vs. RF FREQUENCY INPUT IP3 vs. RF FREQUENCY TC = +25°C 750 8 RF FREQUENCY (MHz) 40 36 700 40 PRF = 0dBm/TONE 38 INPUT IP3 (dBm) 5 TC = +25°C TC = -40°C 7 MAX2031 toc41 6 8 CONVERSION LOSS (dB) 7 9 MAX2031 toc38 MAX2031 toc37 CONVERSION LOSS (dB) CONVERSION LOSS (dB) TC = +85°C 8 CONVERSION LOSS vs. RF FREQUENCY CONVERSION LOSS vs. RF FREQUENCY 9 PLO = -3dBm, 0dBm, +3dBm MAX2031 toc42 CONVERSION LOSS vs. RF FREQUENCY 9 VCC = 5.25V 36 VCC = 5.0V 34 VCC = 4.75V 700 750 800 650 700 750 650 700 750 800 RF FREQUENCY (MHz) 2LO-2RF RESPONSE vs. RF FREQUENCY 2LO-2RF RESPONSE vs. RF FREQUENCY 2LO-2RF RESPONSE vs. RF FREQUENCY 65 TC = +25°C 75 PLO = +3dBm 65 PLO = 0dBm 55 PLO = -3dBm TC = -40°C 700 750 800 RF FREQUENCY (MHz) 850 45 650 700 750 800 RF FREQUENCY (MHz) 85 MAX2031 toc44 PRF = 0dBm 850 2LO-2RF RESPONSE (dBc) TC = +85°C 55 85 2LO-2RF RESPONSE (dBc) PRF = 0dBm 650 30 850 RF FREQUENCY (MHz) 75 45 800 RF FREQUENCY (MHz) 85 2LO-2RF RESPONSE (dBc) 850 PRF = 0dBm 850 MAX2031 toc45 30 650 MAX2031 toc43 30 32 32 TC = -40°C 32 75 65 55 45 VCC = 4.75V, 5.0V, 5.25V 650 700 750 800 850 RF FREQUENCY (MHz) _______________________________________________________________________________________ 9 MAX2031 Typical Operating Characteristics (continued) (Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC = 5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC = 5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC = +25°C, unless otherwise noted.) Downconverter Curves PRF = 0dBm TC = +85°C TC = -40°C 80 PLO = -3dBm, 0dBm, +3dBm 70 90 PRF = 0dBm VCC = 5.25V 3LO-3RF RESPONSE (dBc) 80 70 90 MAX2031 toc47 PRF = 0dBm 3LO-3RF RESPONSE (dBc) 3LO-3RF RESPONSE (dBc) TC = +25°C MAX2031 toc46 90 3LO-3RF RESPONSE vs. RF FREQUENCY 3LO-3RF RESPONSE vs. RF FREQUENCY MAX2031 toc48 3LO-3RF RESPONSE vs. RF FREQUENCY 80 VCC = 5.0V 70 VCC = 4.75V 750 800 60 850 650 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY MAX2031 toc49 TC = +25°C PLO = +3dBm 29 TC = +85°C 26 700 750 800 25 850 VCC = 5.25V VCC = 5.0V 29 27 VCC = 4.75V 26 650 700 750 800 25 850 650 700 750 800 RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY LO LEAKAGE AT IF PORT vs. LO FREQUENCY PLO = +3dBm -35 PLO = 0dBm TC = +85°C -45 890 940 LO FREQUENCY (MHz) 990 790 840 890 PLO = -3dBm 850 MAX2031 toc54 MAX2031 toc53 -25 -15 LO LEAKAGE AT IF PORT (dBm) TC = +25°C -15 LO LEAKAGE AT IF PORT (dBm) MAX2031 toc52 TC = -40°C 840 850 28 RF FREQUENCY (MHz) -25 790 800 PLO = -3dBm -15 -35 750 INPUT P1dB vs. RF FREQUENCY PLO = 0dBm 27 700 30 26 650 650 RF FREQUENCY (MHz) 28 TC = -40°C 10 60 850 INPUT P1dB vs. RF FREQUENCY 28 -45 800 30 INPUT P1dB (dBm) INPUT P1dB (dBm) 29 25 750 RF FREQUENCY (MHz) 30 27 700 MAX2031 toc51 700 INPUT P1dB (dBm) 650 MAX2031 toc50 60 LO LEAKAGE AT IF PORT (dBm) MAX2031 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch VCC = 5.25V -25 -35 VCC = 5.0V VCC = 4.75V 940 LO FREQUENCY (MHz) 990 -45 790 840 890 940 LO FREQUENCY (MHz) ______________________________________________________________________________________ 990 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Downconverter Curves TC = +85°C 840 890 940 -30 990 790 TC = +85°C PLO = +3dBm 790 840 890 940 -25 -30 -35 -40 890 940 990 PLO = -3dBm 840 790 RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION (dB) 50 TC = +25°C 750 790 800 RF FREQUENCY (MHz) 850 30 700 750 800 RF FREQUENCY (MHz) 890 940 990 RF-TO-IF ISOLATION vs. RF FREQUENCY 60 MAX2031 toc62 PLO = -3dBm, 0dBm, +3dBm 650 840 LO FREQUENCY (MHz) 50 40 MAX2031 toc57 -35 -40 990 VCC = 4.75V -30 RF-TO-IF ISOLATION vs. RF FREQUENCY 60 MAX2031 toc61 TC = +85°C 700 940 -25 LO FREQUENCY (MHz) 60 TC = -40°C 890 VCC = 5.0V VCC = 5.25V 990 850 MAX2031 toc63 840 PLO = 0dBm -20 2LO LEAKAGE AT RF PORT (dBm) TC = +25°C -20 LO FREQENCY (MHz) RF-TO-IF ISOLATION (dB) -30 990 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -35 650 940 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -30 30 890 VCC = 4.75V -25 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -25 40 840 VCC = 5.0V LO FREQUENCY (MHz) TC = -40°C 790 PLO = 0dBm -20 LO FREQUENCY (MHz) MAX2031 toc58 2LO LEAKAGE AT RF PORT (dBm) -25 VCC = 5.25V -15 LO FREQUENCY (MHz) -20 -40 PLO = -3dBm RF-TO-IF ISOLATION (dB) 790 -20 MAX2031 toc59 -30 TC = +25°C 2LO LEAKAGE AT RF PORT (dBm) -25 PLO = +3dBm -15 -10 MAX2031 toc60 -20 MAX2031 toc56 TC = -40°C -15 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 LO LEAKAGE AT RF PORT (dBm) MAX2031 toc55 LO LEAKAGE AT RF PORT (dBm) -10 LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT (dBm) LO LEAKAGE AT RF PORT vs. LO FREQUENCY 50 VCC = 4.75V, 5.0V, 5.25V 40 30 650 700 750 800 850 RF FREQUENCY (MHz) ______________________________________________________________________________________ 11 MAX2031 Typical Operating Characteristics (continued) (Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC = 5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC = 5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC = +25°C, unless otherwise noted.) Downconverter Curves RF PORT RETURN LOSS vs. RF FREQUENCY 700 800 VCC = 4.75V, 5.0V, 5.25V 25 1000 900 50 100 150 200 250 350 MAX2031 toc66 600 30 900 VCC = 5.25V SUPPLY CURRENT (mA) PLO = -3dBm, 0dBm, +3dBm 750 1050 750 1200 90 80 VCC = 5.0V 70 VCC = 4.75V 60 -40 900 1050 LO FREQUENCY (MHz) 100 MAX2031 toc67 LO UNSELECTED RETURN LOSS (dB) 300 SUPPLY CURRENT vs. TEMPERATURE (TC) 10 LO FREQENCY (MHz) 12 30 IF FREQUENCY (MHz) 0 600 20 PLO = -3dBm LO UNSELECTED RETURN LOSS vs. LO FREQUENCY 40 PLO = 0dBm PLO = +3dBm 40 RF FREQUENCY (MHz) 20 10 MAX2031 toc68 600 15 20 PLO = -3dBm, 0dBm, +3dBm 500 10 0 LO SELECTED RETURN LOSS (dB) 15 5 MAX2031 toc65 fLO = 890MHz IF PORT RETURN LOSS (dB) 10 25 0 MAX2031 toc64 5 20 LO SELECTED RETURN LOSS vs. LO FREQUENCY IF PORT RETURN LOSS vs. IF FREQUENCY 0 RF PORT RETURN LOSS (dB) MAX2031 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch -15 10 35 60 85 TEMPERATURE (NC) ______________________________________________________________________________________ 1200 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Upconverter Curves CONVERSION LOSS vs. RF FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) TC = -25°C TC = -40°C 5 5 800 850 900 950 1000 MAX2031 toc71 VCC = 4.75V, 5.0V, 5.25V 6 5 3 750 1050 7 4 3 750 800 850 900 950 1000 1050 750 800 850 900 950 1000 1050 INPUT IP3 vs. RF FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) INPUT IP3 vs. RF FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) INPUT IP3 vs. RF FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) 39 39 39 PIF = 0dBm/TONE TC = -25°C TC = -40°C PIF = 0dBm/TONE 37 35 TC = +25°C 31 33 INPUT IP3 (dBm) INPUT IP3 (dBm) TC = +85°C PLO = -3dBm, 0dBm, +3dBm 31 33 VCC = 4.75V 29 29 27 27 27 25 25 750 800 850 900 950 1000 1050 VCC = 5.0V 31 29 25 VCC = 5.25V 35 35 33 PIF = 0dBm/TONE 37 MAX2031 toc74 RF FREQUENCY (MHz) MAX2031 toc73 RF FREQUENCY (MHz) MAX2031 toc72 RF FREQUENCY (MHz) 37 750 800 850 900 950 1000 750 1050 800 850 900 950 1000 1050 RF FREQUENCY (MHz) LO + 2IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) LO + 2IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) LO + 2IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) 80 80 80 PIF = 0dBm TC = -40°C, -25°C TC = +25°C 70 65 75 LO + 2IF REJECTION (dBc) 75 TC = +85°C 60 PIF = 0dBm PLO = +3dBm 70 65 PLO = -3dBm 60 PLO = 0dBm 910 960 1010 1060 1110 LO FREQUENCY (MHz) 1160 1210 VCC = 5.25V 75 70 VCC = 5.0V 65 60 VCC = 4.75V 50 50 50 PIF = 0dBm 55 55 55 MAX2031 toc77 RF FREQUENCY (MHz) MAX2031 toc75 RF FREQUENCY (MHz) LO + 2IF REJECTION (dBc) INPUT IP3 (dBm) PLO = -3dBm, 0dBm, +3dBm 4 4 LO + 2IF REJECTION (dBc) 7 6 8 MAX2031 toc76 CONVERSION LOSS (dB) 7 6 8 CONVERSION LOSS (dB) TC = +85°C 9 MAX2031 toc70 TC = +25°C 8 9 MAX2031 toc69 9 CONVERSION LOSS vs. RF FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) CONVERSION LOSS (dB) CONVERSION LOSS vs. RF FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) 910 960 1010 1060 1110 LO FREQUENCY (MHz) 1160 1210 910 960 1010 1060 1110 1160 1210 LO FREQUENCY (MHz) ______________________________________________________________________________________ 13 MAX2031 Typical Operating Characteristics (continued) (Typical Application Circuit, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC = 5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF, fIF = 160MHz, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC = 5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF, fIF = 160MHz, TC = +25°C, unless otherwise noted.) Upconverter Curves 80 80 80 75 65 TC = +25°C 60 55 60 PLO = -3dBm PLO = 0dBm 960 1010 1060 1110 1160 1210 VCC = 5.25V 70 VCC = 5.0V 65 60 VCC = 4.75V 55 50 910 50 910 960 1010 1060 1110 1160 910 1210 960 1010 1060 1110 1160 1210 LO + 3IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) LO + 3IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) LO + 3IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) 90 90 90 80 TC = -40°C, -25°C, +25°C, +85°C 70 60 PIF = 0dBm 80 LO + 3IF REJECTION (dBc) PIF = 0dBm PLO = -3dBm, 0dBm, +3dBm 70 60 910 960 1010 1060 1110 1160 910 1210 PIF = 0dBm VCC = 5.25V 80 VCC = 4.75V, 5.0V 70 60 50 50 50 MAX2031 toc83 LO FREQUENCY (MHz) MAX2031 toc82 LO FREQUENCY (MHz) MAX2031 toc81 LO FREQUENCY (MHz) LO + 3IF REJECTION (dBc) 960 1010 1060 1110 1160 910 1210 960 1010 1060 1110 1160 1210 LO FREQUENCY (MHz) LO - 3IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) LO - 3IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) LO - 3IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) 90 90 90 PIF = 0dBm TC = -40°C, -25°C, +25°C LO - 3IF REJECTION (dBc) 80 TC = +85°C 70 60 PIF = 0dBm 80 PLO = -3dBm, 0dBm, +3dBm 70 60 910 960 1010 1060 1110 LO FREQUENCY (MHz) 1160 1210 VCC = 5.25V 80 VCC = 4.75V 70 VCC = 5.0V 60 50 50 50 PIF = 0dBm MAX2031 toc86 LO FREQUENCY (MHz) MAX2031 toc84 LO FREQUENCY (MHz) LO - 3IF REJECTION (dBc) LO + 3IF REJECTION (dBc) 65 55 50 14 PLO = +3dBm 70 PIF = 0dBm 75 MAX2031 toc85 LO - 2IF REJECTION (dBc) TC = +85°C 70 PIF = 0dBm LO - 2IF REJECTION (dBc) TC = -40°C, -25°C LO - 2IF REJECTION (dBc) PIF = 0dBm MAX2031 toc80 LO - 2IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) MAX2031 toc79 LO - 2IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) MAX2031 toc78 LO - 2IF REJECTION vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) 75 LO - 3IF REJECTION (dBc) MAX2031 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch 910 960 1010 1060 1110 LO FREQUENCY (MHz) 1160 1210 910 960 1010 1060 1110 LO FREQUENCY (MHz) ______________________________________________________________________________________ 1160 1210 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Upconverter Curves -20 TC = -40°C, -25°C -25 TC = +85°C -30 TC = +25°C -20 -25 PLO = -3dBm, 0dBm, +3dBm -30 -15 910 960 1010 1060 1110 1160 910 1210 -20 VCC = 5.25V -25 VCC = 4.75V -30 VCC = 5.0V -35 -35 -35 MAX2031 toc89 MAX2031 toc88 -15 LO LEAKAGE AT RF PORT (dBm) MAX2031 toc87 960 1010 1060 1110 1160 910 1210 960 1010 1060 1110 1160 1210 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) IF LEAKAGE AT RF vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) IF LEAKAGE AT RF vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) IF LEAKAGE AT RF vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) -50 PLO = -3dBm -60 VCC = 5.0V -60 MAX2031 toc92 TC = +25°C -60 -50 MAX2031 toc90 -50 MAX2031 toc91 LO LEAKAGE AT RF PORT (dBm) -15 LO LEAKAGE AT RF PORT vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) LO LEAKAGE AT RF PORT vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) LO LEAKAGE AT RF PORT (dBm) LO LEAKAGE AT RF PORT vs. LO FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) VCC = 5.25V -70 TC = +85°C -80 -90 PLO = 0dBm IF LEAKAGE (dBm) IF LEAKAGE (dBm) -70 PLO = +3dBm -80 -100 -100 960 1010 1060 1110 1160 1210 910 960 LO FREQUENCY (MHz) 1010 1060 1110 1160 1210 910 960 1010 1060 1110 1160 1210 LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY (L-C BPF TUNED FOR 810MHz RF FREQUENCY) 0 L1 AND C4 BPF REMOVED 5 RF PORT RETURN LOSS (dB) 910 VCC = 4.75V -80 -90 -90 -100 -70 MAX2031 toc93 IF LEAKAGE (dBm) TC = -40°C, -25°C L1 AND C4 BPF INSTALLED 10 15 20 THE OPTIONAL L-C BPF ENHANCES PERFORMANCE IN THE UPCONVERTER MODE BUT LIMITS RF BANDWIDTH 25 30 35 750 800 850 900 950 1000 1050 RF FREQUENCY (MHz) ______________________________________________________________________________________ 15 MAX2031 Typical Operating Characteristics (continued) (Typical Application Circuit, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC = 5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF, fIF = 160MHz, TC = +25°C, unless otherwise noted.) MAX2031 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Pin Description PIN NAME FUNCTION 1, 6, 8, 14 VCC 2 RF 3 TAP Center Tap of the Internal RF Balun. Connect to ground. 4, 5, 10, 12, 13, 16, 17, 20 GND Ground Power-Supply Connection. Bypass each VCC pin to GND with capacitors as shown in the Typical Application Circuit. Single-Ended 50Ω RF Input/Output. This port is internally matched and DC shorted to GND through a balun. 7 LOBIAS Bias Resistor for Internal LO Buffer. Connect a 523Ω ±1% resistor from LOBIAS to the power supply. 9 LOSEL 11 LO1 Local Oscillator Input 1. Drive LOSEL low to select LO1. Local Oscillator Select. Logic-control input for selecting LO1 or LO2. 15 LO2 Local Oscillator Input 2. Drive LOSEL high to select LO2. 18, 19 IF-, IF+ — EP Differential IF Input/Outputs Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the noted RF performance. Detailed Description The MAX2031 can operate either as a downconverter or an upconverter mixer that provides approximately 7dB of conversion loss with a typical 7dB noise figure. IIP3 is +36dBm for both upconversion and downconversion modes. The integrated baluns and matching circuitry allow for 50Ω single-ended interfaces to the RF port and the two LO ports. The RF port can be used as an input for downconversion or an output for upconversion. A single-pole, double-throw (SPDT) switch provides 50ns switching time between the two LO inputs with 49dB of LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX2031’s inputs to a -3dBm to +3dBm range. The IF port incorporates a differential output for downconversion, which is ideal for providing enhanced IIP2 performance. For upconversion, the IF port is a differential input. Specifications are guaranteed over broad frequency ranges to allow for use in cellular band WCDMA, cdmaOne™, cdma2000, and GSM 850/GSM 900 2.5G EDGE base stations. The MAX2031 is specified to operate over a 650MHz to 1000MHz RF frequency range, a 650MHz to 1250MHz LO frequency range, and a DC to 250MHz IF frequency range. Operation beyond these ranges is possible; see the Typical Operating Characteristics for additional details. The MAX2031 is optimized for high-side LO injection architectures. However, the device can operate in low- side LO injection applications with an extended LO range, but performance degrades as fLO decreases. See the Typical Operating Characteristics for measurements taken with fLO below 960MHz. For a pin-compatible device that has been optimized for LO frequencies below 960MHz, refer to the MAX2029. RF Port and Balun For using the MAX2031 as a downconverter, the RF input is internally matched to 50Ω, requiring no external matching components. A DC-blocking capacitor is required because the input is internally DC shorted to ground through the on-chip balun. For upconverter operation, the RF port is a single-ended output similarly matched to 50Ω. LO Inputs, Buffer, and Balun The MAX2031 is optimized for high-side LO injection architectures with a 650MHz to 1250MHz LO frequency range. For a device with a 570MHz to 900MHz LO frequency range, refer to the MAX2029. As an added feature, the MAX2031 includes an internal LO SPDT switch that can be used for frequency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically less than 50ns, which is more than adequate for nearly all GSM applications. If frequency hopping is not employed, set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL): logic-high selects LO2, logic-low selects LO1. cdmaOne is a trademark of CDMA Development Group. 16 ______________________________________________________________________________________ High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch High-Linearity Mixer The core of the MAX2031 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. Differential IF The MAX2031 mixer has a DC to 250MHz IF frequency range. Note that these differential ports are ideal for providing enhanced IIP2 performance. Single-ended IF applications require a 1:1 balun to transform the 50Ω differential IF impedance to 50Ω single-ended. Including the balun, the IF return loss is better than 15dB. The differential IF is used as an input port for upconverter operation. The user can use a differential IF amplifier following the mixer, but a DC block is required on both IF pins. Applications Information Input and Output Matching The RF and LO inputs are internally matched to 50Ω. No matching components are required. As a downconverter, the return loss at the RF port is typically better than 15dB over the entire input range (650MHz to 1000MHz), and return loss at the LO ports are typically 15dB (960MHz to 1180MHz). RF and LO inputs require only DC-blocking capacitors for interfacing (see Table 1). An optional L-C bandpass filter (BPF) can be installed at the RF port to improve upconverter performance. See the Typical Application Circuit and Typical Operating Characteristics for upconverter operation with an L-C BPF tuned for 810MHz RF frequency. Performance can be optimized at other frequencies by choosing different values for L1 and C4. Removing L1 and C4 altogether results in a broader match, but performance degrades. Contact factory for details. The IF output impedance is 50Ω (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance to a 50Ω single-ended output (see the Typical Application Circuit). Bias Resistor Bias current for the LO buffer is optimized by fine tuning resistor R1. If reduced current is required at the Table 1. Typical Application Circuit Component List DESIGNATION QTY DESCRIPTION SUPPLIER 82pF microwave capacitor (0603). Use for 800MHz/900MHz cellular band applications. C1 1 Murata Electronics North America, Inc. 7pF microwave capacitor (0603). Use for 700MHz band applications C2, C7, C8, C10, C11, C12 6 82pF microwave capacitors (0603) Murata Electronics North America, Inc. C3, C6, C9 3 0.01µF microwave capacitors (0603) Murata Electronics North America, Inc. C4* 1 6pF microwave capacitor (0603) — 2pF microwave capacitor (0603). Use for 800MHz/900MHz cellular band applications. C5** Murata Electronics North America, Inc. 1 3.3pF microwave capacitor (0603). Use for 700MHz band applications L1* 1 4.7nH inductor (0603) R1 1 523Ω ±1% resistor (0603) Digi-Key Corp. — T1 1 MABAES0029 1:1 transformer (50:50) M/A-Com, Inc. U1 1 MAX2031 IC (20 TQFN) Maxim Integrated Products, Inc. *C4 and L1 installed only when mixer is used as an upconverter. **C5 installed only when mixer is used as a downconverter. ______________________________________________________________________________________ 17 MAX2031 To avoid damage to the part, voltage MUST be applied to VCC before digital logic is applied to LOSEL (see the Absolute Maximum Ratings). LO1 and LO2 inputs are internally matched to 50Ω, requiring an 82pF DC-blocking capacitor at each input. A two-stage internal LO buffer allows a wide inputpower range for the LO drive. All guaranteed specifications are for a -3dBm to +3dBm LO signal power. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip. MAX2031 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch expense of performance, contact the factory for details. If the ±1% bias resistor values are not readily available, substitute standard ±5% values. Layout Considerations A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground-pin traces directly to the exposed pad under the package. The PC board exposed pad MUST be connected to the ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PC board. The MAX2031 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com. 18 Power-Supply Bypassing Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit. See Table 1. Exposed Pad RF/Thermal Considerations The exposed pad (EP) of the MAX2031’s 20-pin thin QFN-EP package provides a low-thermal-resistance path to the die. It is important that the PC board on which the MAX2031 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PC board, either directly or through an array of plated via holes. ______________________________________________________________________________________ High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch T1 1 4 3 5 IF C3 RF RF C4 L1 19 17 GND IF18 16 C12 VCC C1 20 + C2 IF+ GND VCC GND C5 TAP GND GND 15 1 MAX2031 2 14 3 13 4 12 E.P. 11 5 LO2 LO2 VCC VCC C11 GND GND LO1 LO1 C10 GND 10 LOSEL 9 VCC 8 LOBIAS 7 VCC 6 R1 VCC LOSEL C6 C7 C8 VCC NOTE: L1 AND C4 USED ONLY FOR UPCONVERTER OPERATION. C5 USED ONLY FOR DOWNCONVERTER OPERATION. C9 Package Information Chip Information PROCESS: SiGe BiCMOS For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 20 Thin QFN-EP T2055+3 21-0140 ______________________________________________________________________________________ 19 MAX2031 Typical Application Circuit MAX2031 High-Linearity, 650MHz to 1000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Revision History REVISION NUMBER REVISION DATE DESCRIPTION 0 7/05 Initial release 1 6/09 Added new Electrical Characteristics tables and Typical Operating Characteristics PAGES CHANGED — 1–16 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.