Maxim MAX2031ETP+ High-linearity, 650mhz to 1000mhz upconversion/downconversion mixer with lo buffer/switch Datasheet

19-0248; Rev 1; 6/09
KIT
ATION
EVALU
E
L
B
AVAILA
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Features
The MAX2031 high-linearity passive upconverter or
downconverter mixer is designed to provide +36dBm
IIP3, 7dB NF, and 7dB conversion loss for a 650MHz to
1000MHz RF frequency range to support GSM/cellular
base-station transmitter or receiver applications. With a
650MHz to 1250MHz LO frequency range, this particular mixer is ideal for high-side LO injection architectures. For a pin-to-pin-compatible mixer meant for
low-side LO injection, refer to the MAX2029.
o 650MHz to 1000MHz RF Frequency Range
o 650MHz to 1250MHz LO Frequency Range
o 570MHz to 900MHz LO Frequency Range
(Refer to the MAX2029 Data Sheet)
o DC to 250MHz IF Frequency Range
o 7dB Conversion Loss
o +36dBm Input IP3
o +27dBm Input 1dB Compression Point
o 7dB Noise Figure
o Integrated LO Buffer
o Integrated RF and LO Baluns
o Low -3dBm to +3dBm LO Drive
o Built-In SPDT LO Switch with 49dB LO1 to LO2
Isolation and 50ns Switching Time
o Pin Compatible with the MAX2039/MAX2041
1700MHz to 2200MHz Mixers
o External Current-Setting Resistor Provides Option
for Operating Mixer in Reduced-Power/ReducedPerformance Mode
Predistortion Receivers
Microwave and Fixed
Broadband Wireless
Access
Wireless Local Loop
Digital and SpreadSpectrum
Communication Systems
PIN-PACKAGE
-40°C to +85°C
20 Thin QFN-EP*
MAX2031ETP+T
-40°C to +85°C
20 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
T= Tape and reel.
*EP = Exposed pad.
Pin Configuration/
Functional Diagram
TOP VIEW
+
VCC
1
RF
2
GND
WCDMA/LTE and
cdma2000 ® Base
Stations
GSM 850/GSM 900 2G
and 2.5G EDGE Base
Stations
Integrated Digital
Enhanced Network
(iDEN®) Base Stations
WiMAX(SM) Base Stations
and Customer Premise
Equipment
PART
GND
Applications
TEMP RANGE
MAX2031ETP+
IF-
The MAX2031 is available in a compact 20-pin thin
QFN package (5mm x 5mm) with an exposed pad.
Electrical performance is guaranteed over the extended
-40°C to +85°C temperature range.
Ordering Information
IF+
The MAX2031 is pin compatible with the MAX2039/
MAX2041 1700MHz to 2200MHz mixers, making this
family of passive upconverters and downconverters
ideal for applications where a common PC board layout
is used for both frequency bands.
GND
In addition to offering excellent linearity and noise performance, the MAX2031 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, a dual-input LO selectable switch, and an LO buffer. On-chip baluns are also
integrated to allow for a single-ended RF input for
downconversion (or RF output for upconversion), and
single-ended LO inputs. The MAX2031 requires a nominal LO drive of 0dBm, and supply current is guaranteed
to be below 100mA.
20
19
18
17
16
MAX2031
15
LO2
14
VCC
TAP
3
13
GND
GND
4
12
GND
11
LO1
E.P.
6
7
8
9
10
LOBIAS
VCC
LOSEL
GND
cdma2000 is a registered trademark of Telecommunications
Industry Association.
iDEN is a registered trademark of Motorola, Inc.
WiMAX is a trademark of WiMAX Forum.
5
VCC
GND
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX2031
General Description
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
ABSOLUTE MAXIMUM RATINGS
VCC to GND ...........................................................-0.3V to +5.5V
RF (RF is DC shorted to GND through a balun)..................50mA
LO1, LO2 to GND ..................................................-0.3V to +0.3V
IF+, IF- to GND ...........................................-0.3V to (VCC + 0.3V)
TAP to GND ...........................................................-0.3V to +1.4V
LOSEL to GND ...........................................-0.3V to (VCC + 0.3V)
LOBIAS to GND..........................................-0.3V to (VCC + 0.3V)
RF, LO1, LO2 Input Power (Note 1) ...............................+20dBm
Continuous Power Dissipation (Note 2)....................................5W
θjA (Notes 3, 4)...............................................................+38°C/W
θjC (Notes 2, 3) ..............................................................+13°C/W
Operating Temperature Range (Note 5) .....TC = -40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Note 1: Maximum, reliable, continuous input power applied to the RF and IF port of this device is +12dBm from a 50Ω source.
Note 2: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction
temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 5: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 4.75V to 5.25V, no RF signals applied, TC = -40°C to +85°C. IF+ and IF- are DC grounded through an
IF balun. Typical values are at VCC = 5V, TC = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
LOSEL Input-Logic Low
VIL
LOSEL Input-Logic High
VIH
CONDITIONS
MIN
TYP
MAX
UNITS
4.75
5.00
5.25
V
85
100
mA
0.8
V
2
V
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER
SYMBOL
CONDITIONS
Components tuned for the 700MHz band
(Table 1), C1 = 7pF, C5 = 3.3pF (Notes 6, 7)
RF Frequency
fRF
MIN
TYP
650
MAX
UNITS
850
MHz
Components tuned for the 800MHz/900MHz
cellular band (Table 1), C1 = 82pF,
C5 = 2.0pF (Note 6)
800
1000
650
1250
MHz
LO Frequency
fLO
(Notes 6, 7)
IF Frequency
fIF
IF frequency range depends on external IF
transformer selection
0
250
MHz
(Note 6)
-3
+3
dBm
LO Drive Level
2
PLO
_______________________________________________________________________________________
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
(Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not
used, VCC = 4.75V to 5.25V, RF and LO ports driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 815MHz to
1000MHz, fLO = 960MHz to 1180MHz, fIF = 160MHz, fLO > fRF, TC = -40°C to +85°C, unless otherwise noted. Typical values are at
VCC = 5V, PRF = 0dBm, PLO = 0dBm, fRF = 910MHz, fLO = 1070MHz, fIF = 160MHz, TC = +25°C, unless otherwise noted.) (Note 8)
PARAMETER
Conversion Loss
SYMBOL
CONDITIONS
MIN
Lc
Flatness over any one of three frequency
bands (fIF = 160MHz):
fRF = 827MHz to 849MHz
fRF = 869MHz to 894MHz
fRF = 880MHz to 915MHz
Conversion Loss Flatness
TYP
MAX
UNITS
7.0
dB
±0.18
dB
TC = +25°C to -40°C
-0.3
TC = +25°C to +85°C
0.2
P1dB
(Note 9)
27
dBm
Input Third-Order Intercept Point
IIP3
fRF1 = 910MHz, fRF2 = 911MHz,
PRF = 0dBm/tone, fLO = 1070MHz,
PLO = 0dBm, TC = +25°C (Note 10)
36
dBm
Input IP3 Variation Over
Temperature
IIP3
Conversion Loss Variation Over
Temperature
Input Compression Point
Spurious Response at IF
Noise Figure
LO1-to-LO2 Isolation (Note 10)
TC = +25°C to -40°C
0.3
TC = +25°C to +85°C
-0.3
2x2
2LO - 2RF
72
3x3
3LO - 3RF
79
Single sideband
7.0
PBLOCKER = +8dBm
15
PBLOCKER = +12dBm
19
NF
Noise Figure Under Blocking
(Note 11)
32
LO2 selected, PLO = +3dBm, TC = +25°C
42
51
LO1 selected, PLO = +3dBm, TC = +25°C
42
49
dB
dB
dBc
dB
dB
dB
Maximum LO Leakage at RF Port
PLO = +3dBm
-27
dBm
Maximum LO Leakage at IF Port
PLO = +3dBm
-35
dBm
LO Switching Time
50% of LOSEL to IF, settled within 2 degrees
50
ns
Minimum RF-to-IF Isolation
45
dB
RF Port Return Loss
17
dB
LO Port Return Loss
IF Port Return Loss
LO1/LO2 port selected, LO2/LO1, RF, and IF
terminated into 50Ω
28
LO1/LO2 port unselected, LO2/LO1, RF, and
IF terminated into 50Ω
30
LO driven at 0dBm, RF terminated into 50Ω
17
dB
dB
_______________________________________________________________________________________
3
MAX2031
AC ELECTRICAL CHARACTERISTICS (800MHz/900MHz CELLULAR BAND DOWNCONVERTER OPERATION)
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
AC ELECTRICAL CHARACTERISTICS (700MHz BAND DOWNCONVERTER OPERATION)
(Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
4.75V to 5.25V, RF and LO ports driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 650MHz to 850MHz, fLO =
790MHz to 990MHz, fIF = 140MHz, fLO > fRF, TC = +25°C, unless otherwise noted. Typical values are at VCC = 5V, PRF = 0dBm,
PLO = 0dBm, fRF = 750MHz, fLO = 890MHz, fIF = 140MHz, TC = +25°C, unless otherwise noted.) (Notes 8, 10)
PARAMETER
Conversion Loss
SYMBOL
CONDITIONS
LC
Input 1dB Compression Point
P1dB
fRF = 750MHz, PRF = 0dBm, PLO = 0dBm
Input Third-Order Intercept Point
IIP3
fRF1 = 749MHz, fRF2 = 750MHz,
fLO = 890MHz, PRF = 0dBm/tone,
PLO = 0dBm
MIN
TYP
MAX
UNITS
6.1
6.9
8.1
dB
32
27.7
dBm
37
dBm
LO Leakage at IF Port
PLO = +3dBm
-33
-21
dBm
LO Leakage at RF Port
PLO = +3dBm
-20
-13
dBm
RF-to-IF Isolation
36
49
dB
2LO-2RF Spurious Response
2x2
40
72
dBc
3LO-3RF Spurious Response
3x3
65
82
dBc
AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit, L1 = 4.7nH, C4 = 6pF, C1 = 82pF, C5 not used, VCC = 4.75V to 5.25V, RF and LO ports are driven from
50Ω sources, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 815MHz to 1000MHz, fLO = 960MHz to 1180MHz, fIF = 160MHz, fLO > fRF,
TC = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 5V, PIF = 0dBm, PLO = 0dBm, fRF = 910MHz, fLO =
1070MHz, fIF = 160MHz, TC = +25°C, unless otherwise noted.) (Note 8)
PARAMETER
Conversion Loss
SYMBOL
CONDITIONS
MIN
Lc
TYP
MAX
UNITS
7.4
dB
Flatness over any one of three frequency
bands (fIF = 160MHz):
fRF = 827MHz to 849MHz
fRF = 869MHz to 894MHz
fRF = 880MHz to 915MHz
±0.3
dB
TC = +25°C to -40°C
-0.3
TC = +25°C to +85°C
0.4
P1dB
(Note 9)
27
dBm
Input Third-Order Intercept Point
IIP3
fIF1 = 160MHz, fIF2 = 161MHz,
PIF = 0dBm/tone, fLO = 1070MHz,
PLO = 0dBm, TC = +25°C (Note 10)
36
dBm
Input IP3 Variation Over
Temperature
IIP3
Conversion Loss Flatness
Conversion Loss Variation Over
Temperature
Input Compression Point
TC = +25°C to -40°C
1.2
TC = +25°C to +85°C
-0.9
LO ± 2IF Spur
64
LO ± 3IF Spur
Output Noise Floor
Note 6:
Note 7:
Note 8:
Note 9:
Note 10:
Note 11:
4
32
POUT = 0dBm (Note 11)
dB
dB
dBc
83
dBc
-167
dBm/Hz
Operation outside this range is possible, but with degraded performance of some parameters.
Not production tested.
All limits include external component losses. Output measurements are taken at IF or RF port of the Typical Application Circuit.
Compression point characterized. It is advisable not to continuously operate the mixer RF/IF inputs above +12dBm.
Guaranteed by design.
Measured with external LO source noise filtered, so its noise floor is -174dBm/Hz. This specification reflects the effects of all
SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and Measurements
of Local Oscilator Noise in Integrated Circuit Base Station Mixers.
_______________________________________________________________________________________
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Downconverter Curves
TC = +25°C
7
7
5
950
1000
800
RF FREQUENCY (MHz)
TC = +85°C, +25°C
36
38
INPUT IP3 (dBm)
800
1000
34
TC = -40°C
32
TC = -25°C
PRF = 0dBm/TONE
PLO = +3dBm
PLO = 0dBm
40
PLO = -3dBm
32
VCC = 4.75V
28
28
26
26
800
NOISE FIGURE vs. RF FREQUENCY
TC = +25°C
9
1000
10
9
NOISE FIGURE (dB)
TC = +85°C
7
6
8
7
PLO = -3dBm, 0dBm, +3dBm
8
7
VCC = 4.75V, 5.0V, 5.25V
6
6
TC = -40°C
TC = -25°C
5
5
5
850
850
900
950
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
NOISE FIGURE vs. RF FREQUENCY
8
800
800
1000
MAX2031 toc08
9
850
900
950
RF FREQUENCY (MHz)
10
MAX2031 toc07
10
VCC = 5.0V
32
28
1000
VCC = 5.25V
34
30
850
900
950
RF FREQUENCY (MHz)
1000
36
30
800
950
PRF = 0dBm/TONE
38
30
26
900
INPUT IP3 vs. RF FREQUENCY
36
34
850
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
INPUT IP3 (dBm)
38
NOISE FIGURE (dB)
950
INPUT IP3 vs. RF FREQUENCY
40
MAX2031 toc04
PRF = 0dBm/TONE
900
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
850
INPUT IP3 (dBm)
900
MAX2031 toc05
850
MAX2031 toc03
5
5
800
7
6
6
TC = -40°C
VCC = 4.75V, 5.0V, 5.25V
8
MAX2031 toc09
6
PLO = -3dBm, 0dBm, +3dBm
8
9
CONVERSION LOSS (dB)
TC = -25°C
10
MAX2031 toc02
MAX2031 toc01
TC = +85°C
8
9
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
9
CONVERSION LOSS vs. RF FREQUENCY
CONVERSION LOSS vs. RF FREQUENCY
10
MAX2031 toc06
CONVERSION LOSS vs. RF FREQUENCY
10
900
950
RF FREQUENCY (MHz)
1000
800
850
900
950
RF FREQUENCY (MHz)
1000
800
850
900
950
1000
RF FREQUENCY (MHz)
_______________________________________________________________________________________
5
MAX2031
Typical Operating Characteristics
(Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC = +25°C, unless otherwise noted.)
Downconverter Curves
TC = +85°C
75
65
TC = -25°C
TC = -40°C
45
850
900
950
75
PLO = +3dBm
65
55
75
65
VCC = 5.25V
55
45
800
850
900
950
800
1000
850
900
950
3LO - 3RF RESPONSE
vs. RF FREQUENCY
3LO - 3RF RESPONSE
vs. RF FREQUENCY
70
PLO = 0dBm
3LO - 3RF RESPONSE (dBc)
80
PRF = 0dBm
90
100
MAX2031 toc14
MAX2031 toc13
100
80
PLO = -3dBm
70
800
1000
RF FREQUENCY (MHz)
900
950
INPUT P1dB (dBm)
28
TC = -25°C, +85°C
TC = +25°C
950
RF FREQUENCY (MHz)
1000
900
950
1000
INPUT P1dB vs. RF FREQUENCY
MAX2031 toc17
32
VCC = 5.25V
30
28
PLO = -3dBm
28
VCC = 4.75V
26
VCC = 5.0V
24
24
24
850
RF FREQUENCY (MHz)
26
26
900
800
1000
PLO = 0dBm, +3dBm
30
30
850
VCC = 4.75V
INPUT P1dB vs. RF FREQUENCY
32
MAX2031 toc16
TC = -40°C
VCC = 5.0V
70
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
32
850
INPUT P1dB (dBm)
950
80
60
60
900
VCC = 5.25V
PLO = +3dBm
60
850
PRF = 0dBm
90
1000
MAX2031 toc15
3LO - 3RF RESPONSE
vs. RF FREQUENCY
TC = -40°C, -25°C
6
85
RF FREQUENCY (MHz)
TC = +85°C
800
VCC = 4.75V, 5.0V
RF FREQUENCY (MHz)
TC = +25°C
800
PRF = 0dBm
RF FREQUENCY (MHz)
PRF = 0dBm
90
1000
3LO - 3RF RESPONSE (dBc)
3LO - 3RF RESPONSE (dBc)
85
95
45
800
100
PLO = 0dBm P = -3dBm
LO
MAX2031 toc18
55
PRF = 0dBm
MAX2031 toc12
85
95
2LO - 2RF RESPONSE (dBc)
TC = +25°C
MAX2031 toc10
PRF = 0dBm
2LO - 2RF RESPONSE (dBc)
2LO - 2RF RESPONSE (dBc)
95
2LO - 2RF RESPONSE
vs. RF FREQUENCY
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc11
2LO - 2RF RESPONSE
vs. RF FREQUENCY
INPUT P1dB (dBm)
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
800
850
900
950
RF FREQUENCY (MHz)
1000
800
850
900
950
RF FREQUENCY (MHz)
_______________________________________________________________________________________
1000
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Downconverter Curves
TC = -40°C, -25°C
50
TC = +85°C
45
TC = +25°C
40
950
1050
1150
50
PLO = -3dBm, 0dBm, +3dBm
45
1250
950
1050
1150
850
1250
1050
1150
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-50
-40
PLO = -3dBm, 0dBm, +3dBm
1060
1110
960
1160
VCC = 4.75V
VCC = 5.0V
-60
-60
1010
-40
-50
-50
-60
MAX2031 toc24
VCC = 5.25V
-30
LO LEAKAGE (dBm)
LO LEAKAGE (dBm)
TC = +85°C
1010
1060
1110
960
1160
1010
1060
1110
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-30
TC = +85°C
-35
TC = +25°C
-40
-25
-30
PLO = -3dBm, 0dBm, +3dBm
-35
-40
950
1050
1150
LO FREQUENCY (MHz)
1250
-20
VCC = 5.25V
-25
-30
VCC = 4.75V
-35
VCC = 5.0V
-40
-45
-45
-45
MAX2031 toc27
-20
1160
-15
LO LEAKAGE AT RF PORT (dBm)
-25
MAX2031 toc26
TC = -40°C, -25°C
-15
LO LEAKAGE AT RF PORT (dBm)
MAX2031 toc25
-15
1250
-20
MAX2031 toc23
-20
MAX2031 toc22
TC = +25°C
850
950
LO FREQUENCY (MHz)
-30
-20
VCC = 4.75V, 5.0V, 5.25V
45
LO FREQUENCY (MHz)
TC = -40°C, -25°C
960
50
40
850
-30
-40
55
LO FREQUENCY (MHz)
-20
LO LEAKAGE (dBm)
55
40
850
LO LEAKAGE AT RF PORT (dBm)
LO SWITCH ISOLATION (dB)
55
60
MAX2031 toc20
MAX2031 toc19
60
LO SWITCH ISOLATION (dB)
LO SWITCH ISOLATION (dB)
60
LO SWITCH ISOLATION
vs. LO FREQUENCY
LO SWITCH ISOLATION
vs. LO FREQUENCY
MAX2031 toc21
LO SWITCH ISOLATION
vs. LO FREQUENCY
850
950
1050
1150
LO FREQUENCY (MHz)
1250
850
950
1050
1150
1250
LO FREQUENCY (MHz)
_______________________________________________________________________________________
7
MAX2031
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC = +25°C, unless otherwise noted.)
Downconverter Curves
TC = -40°C, -25°C
35
50
45
40
PLO = -3dBm
PLO = 0dBm
35
30
55
850
900
950
1000
VCC = 4.75V, 5.0V, 5.25V
40
30
800
850
900
950
800
1000
850
900
950
1000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
IF PORT RETURN LOSS
vs. IF FREQUENCY
IF PORT RETURN LOSS
vs. IF FREQUENCY
15
20
PLO = -3dBm, 0dBm, +3dBm
25
15
20
VCC = 4.75V, 5.0V, 5.25V
25
30
35
40
850
900
950
1000
1050
15
20
PLO = -3dBm, 0dBm, +3dBm
25
30
35
40
45
50
50
800
MAX2031 toc33
10
45
30
INCLUDES IF TRANSFORMER
5
IF PORT RETURN LOSS (dB)
10
IF PORT RETURN LOSS (dB)
10
INCLUDES IF TRANSFORMER
5
0
MAX2031 toc32
0
MAX2031 toc31
5
0
100
200
300
400
0
500
100
200
300
400
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
LO UNSELECTED RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs.TEMPERATURE (TC)
15
PLO = +3dBm
PLO = 0dBm
20
25
30
35
PLO = -3dBm, 0dBm, +3dBm
20
30
40
500
MAX2031 toc36
10
VCC = 5.25V
SUPPLY CURRENT (mA)
10
100
MAX2031 toc35
5
0
LO UNSELECTED RETURN LOSS (dB)
MAX2031 toc34
0
90
80
VCC = 5.0V
VCC = 4.75V
70
50
PLO = -3dBm
60
40
800
900
1000
1100
LO FREQUENCY (MHz)
8
45
RF FREQUENCY (MHz)
0
750
50
35
30
800
RF PORT RETURN LOSS (dB)
PLO = +3dBm
RF-TO-IF ISOLATION (dB)
45
40
55
RF-TO-IF ISOLATION (dB)
TC = +25°C
TC = +85°C
60
MAX2031 toc29
55
RF-TO-IF ISOLATION (dB)
60
MAX2031 toc28
60
50
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
MAX2031 toc30
RF-TO-IF ISOLATION
vs. RF FREQUENCY
LO SELECTED RETURN LOSS (dB)
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
1200
1300
60
800
900
1000
1100
LO FREQUENCY (MHz)
1200
1300
-40
-15
10
35
TEMPERATURE (°C)
_______________________________________________________________________________________
60
85
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Downconverter Curves
650
700
750
800
5
850
PLO = -3dBm, 0dBm, +3dBm
6
650
RF FREQUENCY (MHz)
MAX2031 toc39
VCC = 4.75V, 5.0V, 5.25V
6
5
850
650
TC = +25°C
TC = +85°C
34
38
36
34
750
800
850
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
INPUT IP3 (dBm)
38
700
RF FREQUENCY (MHz)
40
MAX2031 toc40
PRF = 0dBm/TONE
INPUT IP3 (dBm)
800
7
INPUT IP3 vs. RF FREQUENCY
INPUT IP3 vs. RF FREQUENCY
TC = +25°C
750
8
RF FREQUENCY (MHz)
40
36
700
40
PRF = 0dBm/TONE
38
INPUT IP3 (dBm)
5
TC = +25°C
TC = -40°C
7
MAX2031 toc41
6
8
CONVERSION LOSS (dB)
7
9
MAX2031 toc38
MAX2031 toc37
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
TC = +85°C
8
CONVERSION LOSS vs. RF FREQUENCY
CONVERSION LOSS vs. RF FREQUENCY
9
PLO = -3dBm, 0dBm, +3dBm
MAX2031 toc42
CONVERSION LOSS vs. RF FREQUENCY
9
VCC = 5.25V
36
VCC = 5.0V
34
VCC = 4.75V
700
750
800
650
700
750
650
700
750
800
RF FREQUENCY (MHz)
2LO-2RF RESPONSE
vs. RF FREQUENCY
2LO-2RF RESPONSE
vs. RF FREQUENCY
2LO-2RF RESPONSE
vs. RF FREQUENCY
65
TC = +25°C
75
PLO = +3dBm
65
PLO = 0dBm
55
PLO = -3dBm
TC = -40°C
700
750
800
RF FREQUENCY (MHz)
850
45
650
700
750
800
RF FREQUENCY (MHz)
85
MAX2031 toc44
PRF = 0dBm
850
2LO-2RF RESPONSE (dBc)
TC = +85°C
55
85
2LO-2RF RESPONSE (dBc)
PRF = 0dBm
650
30
850
RF FREQUENCY (MHz)
75
45
800
RF FREQUENCY (MHz)
85
2LO-2RF RESPONSE (dBc)
850
PRF = 0dBm
850
MAX2031 toc45
30
650
MAX2031 toc43
30
32
32
TC = -40°C
32
75
65
55
45
VCC = 4.75V, 5.0V, 5.25V
650
700
750
800
850
RF FREQUENCY (MHz)
_______________________________________________________________________________________
9
MAX2031
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC = +25°C, unless otherwise noted.)
Downconverter Curves
PRF = 0dBm
TC = +85°C
TC = -40°C
80
PLO = -3dBm, 0dBm, +3dBm
70
90
PRF = 0dBm
VCC = 5.25V
3LO-3RF RESPONSE (dBc)
80
70
90
MAX2031 toc47
PRF = 0dBm
3LO-3RF RESPONSE (dBc)
3LO-3RF RESPONSE (dBc)
TC = +25°C
MAX2031 toc46
90
3LO-3RF RESPONSE
vs. RF FREQUENCY
3LO-3RF RESPONSE
vs. RF FREQUENCY
MAX2031 toc48
3LO-3RF RESPONSE
vs. RF FREQUENCY
80
VCC = 5.0V
70
VCC = 4.75V
750
800
60
850
650
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
MAX2031 toc49
TC = +25°C
PLO = +3dBm
29
TC = +85°C
26
700
750
800
25
850
VCC = 5.25V
VCC = 5.0V
29
27
VCC = 4.75V
26
650
700
750
800
25
850
650
700
750
800
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
PLO = +3dBm
-35
PLO = 0dBm
TC = +85°C
-45
890
940
LO FREQUENCY (MHz)
990
790
840
890
PLO = -3dBm
850
MAX2031 toc54
MAX2031 toc53
-25
-15
LO LEAKAGE AT IF PORT (dBm)
TC = +25°C
-15
LO LEAKAGE AT IF PORT (dBm)
MAX2031 toc52
TC = -40°C
840
850
28
RF FREQUENCY (MHz)
-25
790
800
PLO = -3dBm
-15
-35
750
INPUT P1dB vs. RF FREQUENCY
PLO = 0dBm
27
700
30
26
650
650
RF FREQUENCY (MHz)
28
TC = -40°C
10
60
850
INPUT P1dB vs. RF FREQUENCY
28
-45
800
30
INPUT P1dB (dBm)
INPUT P1dB (dBm)
29
25
750
RF FREQUENCY (MHz)
30
27
700
MAX2031 toc51
700
INPUT P1dB (dBm)
650
MAX2031 toc50
60
LO LEAKAGE AT IF PORT (dBm)
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
VCC = 5.25V
-25
-35
VCC = 5.0V
VCC = 4.75V
940
LO FREQUENCY (MHz)
990
-45
790
840
890
940
LO FREQUENCY (MHz)
______________________________________________________________________________________
990
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Downconverter Curves
TC = +85°C
840
890
940
-30
990
790
TC = +85°C
PLO = +3dBm
790
840
890
940
-25
-30
-35
-40
890
940
990
PLO = -3dBm
840
790
RF-TO-IF ISOLATION vs. RF FREQUENCY
RF-TO-IF ISOLATION (dB)
50
TC = +25°C
750
790
800
RF FREQUENCY (MHz)
850
30
700
750
800
RF FREQUENCY (MHz)
890
940
990
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2031 toc62
PLO = -3dBm, 0dBm, +3dBm
650
840
LO FREQUENCY (MHz)
50
40
MAX2031 toc57
-35
-40
990
VCC = 4.75V
-30
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2031 toc61
TC = +85°C
700
940
-25
LO FREQUENCY (MHz)
60
TC = -40°C
890
VCC = 5.0V
VCC = 5.25V
990
850
MAX2031 toc63
840
PLO = 0dBm
-20
2LO LEAKAGE AT RF PORT (dBm)
TC = +25°C
-20
LO FREQENCY (MHz)
RF-TO-IF ISOLATION (dB)
-30
990
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-35
650
940
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-30
30
890
VCC = 4.75V
-25
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-25
40
840
VCC = 5.0V
LO FREQUENCY (MHz)
TC = -40°C
790
PLO = 0dBm
-20
LO FREQUENCY (MHz)
MAX2031 toc58
2LO LEAKAGE AT RF PORT (dBm)
-25
VCC = 5.25V
-15
LO FREQUENCY (MHz)
-20
-40
PLO = -3dBm
RF-TO-IF ISOLATION (dB)
790
-20
MAX2031 toc59
-30
TC = +25°C
2LO LEAKAGE AT RF PORT (dBm)
-25
PLO = +3dBm
-15
-10
MAX2031 toc60
-20
MAX2031 toc56
TC = -40°C
-15
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
LO LEAKAGE AT RF PORT (dBm)
MAX2031 toc55
LO LEAKAGE AT RF PORT (dBm)
-10
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
50
VCC = 4.75V, 5.0V, 5.25V
40
30
650
700
750
800
850
RF FREQUENCY (MHz)
______________________________________________________________________________________
11
MAX2031
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC = +25°C, unless otherwise noted.)
Downconverter Curves
RF PORT RETURN LOSS
vs. RF FREQUENCY
700
800
VCC = 4.75V, 5.0V, 5.25V
25
1000
900
50
100
150
200
250
350
MAX2031 toc66
600
30
900
VCC = 5.25V
SUPPLY CURRENT (mA)
PLO = -3dBm, 0dBm, +3dBm
750
1050
750
1200
90
80
VCC = 5.0V
70
VCC = 4.75V
60
-40
900
1050
LO FREQUENCY (MHz)
100
MAX2031 toc67
LO UNSELECTED RETURN LOSS (dB)
300
SUPPLY CURRENT
vs. TEMPERATURE (TC)
10
LO FREQENCY (MHz)
12
30
IF FREQUENCY (MHz)
0
600
20
PLO = -3dBm
LO UNSELECTED RETURN LOSS
vs. LO FREQUENCY
40
PLO = 0dBm
PLO = +3dBm
40
RF FREQUENCY (MHz)
20
10
MAX2031 toc68
600
15
20
PLO = -3dBm, 0dBm, +3dBm
500
10
0
LO SELECTED RETURN LOSS (dB)
15
5
MAX2031 toc65
fLO = 890MHz
IF PORT RETURN LOSS (dB)
10
25
0
MAX2031 toc64
5
20
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
IF PORT RETURN LOSS
vs. IF FREQUENCY
0
RF PORT RETURN LOSS (dB)
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
-15
10
35
60
85
TEMPERATURE (NC)
______________________________________________________________________________________
1200
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Upconverter Curves
CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
TC = -25°C
TC = -40°C
5
5
800
850
900
950
1000
MAX2031 toc71
VCC = 4.75V, 5.0V, 5.25V
6
5
3
750
1050
7
4
3
750
800
850
900
950
1000
1050
750
800
850
900
950
1000
1050
INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
39
39
39
PIF = 0dBm/TONE
TC = -25°C
TC = -40°C
PIF = 0dBm/TONE
37
35
TC = +25°C
31
33
INPUT IP3 (dBm)
INPUT IP3 (dBm)
TC = +85°C
PLO = -3dBm, 0dBm, +3dBm
31
33
VCC = 4.75V
29
29
27
27
27
25
25
750
800
850
900
950
1000
1050
VCC = 5.0V
31
29
25
VCC = 5.25V
35
35
33
PIF = 0dBm/TONE
37
MAX2031 toc74
RF FREQUENCY (MHz)
MAX2031 toc73
RF FREQUENCY (MHz)
MAX2031 toc72
RF FREQUENCY (MHz)
37
750
800
850
900
950
1000
750
1050
800
850
900
950
1000
1050
RF FREQUENCY (MHz)
LO + 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO + 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO + 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
80
80
80
PIF = 0dBm
TC = -40°C, -25°C
TC = +25°C
70
65
75
LO + 2IF REJECTION (dBc)
75
TC = +85°C
60
PIF = 0dBm
PLO = +3dBm
70
65
PLO = -3dBm
60
PLO = 0dBm
910
960
1010
1060
1110
LO FREQUENCY (MHz)
1160
1210
VCC = 5.25V
75
70
VCC = 5.0V
65
60
VCC = 4.75V
50
50
50
PIF = 0dBm
55
55
55
MAX2031 toc77
RF FREQUENCY (MHz)
MAX2031 toc75
RF FREQUENCY (MHz)
LO + 2IF REJECTION (dBc)
INPUT IP3 (dBm)
PLO = -3dBm, 0dBm, +3dBm
4
4
LO + 2IF REJECTION (dBc)
7
6
8
MAX2031 toc76
CONVERSION LOSS (dB)
7
6
8
CONVERSION LOSS (dB)
TC = +85°C
9
MAX2031 toc70
TC = +25°C
8
9
MAX2031 toc69
9
CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
CONVERSION LOSS (dB)
CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
910
960
1010
1060
1110
LO FREQUENCY (MHz)
1160
1210
910
960
1010
1060
1110
1160
1210
LO FREQUENCY (MHz)
______________________________________________________________________________________
13
MAX2031
Typical Operating Characteristics (continued)
(Typical Application Circuit, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC = 5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF, fIF = 160MHz,
TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC = 5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF, fIF = 160MHz,
TC = +25°C, unless otherwise noted.)
Upconverter Curves
80
80
80
75
65
TC = +25°C
60
55
60
PLO = -3dBm
PLO = 0dBm
960
1010
1060
1110
1160
1210
VCC = 5.25V
70
VCC = 5.0V
65
60
VCC = 4.75V
55
50
910
50
910
960
1010
1060
1110
1160
910
1210
960
1010
1060
1110
1160
1210
LO + 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO + 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO + 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
90
90
90
80
TC = -40°C, -25°C, +25°C, +85°C
70
60
PIF = 0dBm
80
LO + 3IF REJECTION (dBc)
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
70
60
910
960
1010
1060
1110
1160
910
1210
PIF = 0dBm VCC = 5.25V
80
VCC = 4.75V, 5.0V
70
60
50
50
50
MAX2031 toc83
LO FREQUENCY (MHz)
MAX2031 toc82
LO FREQUENCY (MHz)
MAX2031 toc81
LO FREQUENCY (MHz)
LO + 3IF REJECTION (dBc)
960
1010
1060
1110
1160
910
1210
960
1010
1060
1110
1160
1210
LO FREQUENCY (MHz)
LO - 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO - 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO - 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
90
90
90
PIF = 0dBm
TC = -40°C, -25°C, +25°C
LO - 3IF REJECTION (dBc)
80
TC = +85°C
70
60
PIF = 0dBm
80
PLO = -3dBm, 0dBm, +3dBm
70
60
910
960
1010
1060
1110
LO FREQUENCY (MHz)
1160
1210
VCC = 5.25V
80
VCC = 4.75V
70
VCC = 5.0V
60
50
50
50
PIF = 0dBm
MAX2031 toc86
LO FREQUENCY (MHz)
MAX2031 toc84
LO FREQUENCY (MHz)
LO - 3IF REJECTION (dBc)
LO + 3IF REJECTION (dBc)
65
55
50
14
PLO = +3dBm
70
PIF = 0dBm
75
MAX2031 toc85
LO - 2IF REJECTION (dBc)
TC = +85°C
70
PIF = 0dBm
LO - 2IF REJECTION (dBc)
TC = -40°C, -25°C
LO - 2IF REJECTION (dBc)
PIF = 0dBm
MAX2031 toc80
LO - 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc79
LO - 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2031 toc78
LO - 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
75
LO - 3IF REJECTION (dBc)
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
910
960
1010
1060
1110
LO FREQUENCY (MHz)
1160
1210
910
960
1010
1060
1110
LO FREQUENCY (MHz)
______________________________________________________________________________________
1160
1210
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Upconverter Curves
-20
TC = -40°C, -25°C
-25
TC = +85°C
-30
TC = +25°C
-20
-25
PLO = -3dBm, 0dBm, +3dBm
-30
-15
910
960
1010
1060
1110
1160
910
1210
-20
VCC = 5.25V
-25
VCC = 4.75V
-30
VCC = 5.0V
-35
-35
-35
MAX2031 toc89
MAX2031 toc88
-15
LO LEAKAGE AT RF PORT (dBm)
MAX2031 toc87
960
1010
1060
1110
1160
910
1210
960
1010
1060
1110
1160
1210
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
IF LEAKAGE AT RF vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
IF LEAKAGE AT RF vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
IF LEAKAGE AT RF vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
-50
PLO = -3dBm
-60
VCC = 5.0V
-60
MAX2031 toc92
TC = +25°C
-60
-50
MAX2031 toc90
-50
MAX2031 toc91
LO LEAKAGE AT RF PORT (dBm)
-15
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
VCC = 5.25V
-70
TC = +85°C
-80
-90
PLO = 0dBm
IF LEAKAGE (dBm)
IF LEAKAGE (dBm)
-70
PLO = +3dBm
-80
-100
-100
960
1010
1060
1110
1160
1210
910
960
LO FREQUENCY (MHz)
1010
1060
1110
1160
1210
910
960
1010
1060
1110
1160
1210
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
0
L1 AND C4 BPF
REMOVED
5
RF PORT RETURN LOSS (dB)
910
VCC = 4.75V
-80
-90
-90
-100
-70
MAX2031 toc93
IF LEAKAGE (dBm)
TC = -40°C, -25°C
L1 AND C4 BPF
INSTALLED
10
15
20
THE OPTIONAL L-C BPF
ENHANCES PERFORMANCE
IN THE UPCONVERTER
MODE BUT LIMITS
RF BANDWIDTH
25
30
35
750
800
850
900
950
1000
1050
RF FREQUENCY (MHz)
______________________________________________________________________________________
15
MAX2031
Typical Operating Characteristics (continued)
(Typical Application Circuit, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC = 5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF, fIF = 160MHz,
TC = +25°C, unless otherwise noted.)
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Pin Description
PIN
NAME
FUNCTION
1, 6, 8, 14
VCC
2
RF
3
TAP
Center Tap of the Internal RF Balun. Connect to ground.
4, 5, 10, 12,
13, 16, 17, 20
GND
Ground
Power-Supply Connection. Bypass each VCC pin to GND with capacitors as shown in the Typical
Application Circuit.
Single-Ended 50Ω RF Input/Output. This port is internally matched and DC shorted to GND through a balun.
7
LOBIAS Bias Resistor for Internal LO Buffer. Connect a 523Ω ±1% resistor from LOBIAS to the power supply.
9
LOSEL
11
LO1
Local Oscillator Input 1. Drive LOSEL low to select LO1.
Local Oscillator Select. Logic-control input for selecting LO1 or LO2.
15
LO2
Local Oscillator Input 2. Drive LOSEL high to select LO2.
18, 19
IF-, IF+
—
EP
Differential IF Input/Outputs
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple
ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground
vias are also required to achieve the noted RF performance.
Detailed Description
The MAX2031 can operate either as a downconverter or
an upconverter mixer that provides approximately 7dB of
conversion loss with a typical 7dB noise figure. IIP3 is
+36dBm for both upconversion and downconversion
modes. The integrated baluns and matching circuitry
allow for 50Ω single-ended interfaces to the RF port and
the two LO ports. The RF port can be used as an input
for downconversion or an output for upconversion. A single-pole, double-throw (SPDT) switch provides 50ns
switching time between the two LO inputs with 49dB of
LO-to-LO isolation. Furthermore, the integrated LO buffer
provides a high drive level to the mixer core, reducing
the LO drive required at the MAX2031’s inputs to a
-3dBm to +3dBm range. The IF port incorporates a differential output for downconversion, which is ideal for
providing enhanced IIP2 performance. For upconversion, the IF port is a differential input.
Specifications are guaranteed over broad frequency
ranges to allow for use in cellular band WCDMA,
cdmaOne™, cdma2000, and GSM 850/GSM 900 2.5G
EDGE base stations. The MAX2031 is specified to operate over a 650MHz to 1000MHz RF frequency range, a
650MHz to 1250MHz LO frequency range, and a DC to
250MHz IF frequency range. Operation beyond these
ranges is possible; see the Typical Operating
Characteristics for additional details.
The MAX2031 is optimized for high-side LO injection
architectures. However, the device can operate in low-
side LO injection applications with an extended LO
range, but performance degrades as fLO decreases. See
the Typical Operating Characteristics for measurements
taken with fLO below 960MHz. For a pin-compatible
device that has been optimized for LO frequencies below
960MHz, refer to the MAX2029.
RF Port and Balun
For using the MAX2031 as a downconverter, the RF
input is internally matched to 50Ω, requiring no external
matching components. A DC-blocking capacitor is
required because the input is internally DC shorted to
ground through the on-chip balun. For upconverter
operation, the RF port is a single-ended output similarly
matched to 50Ω.
LO Inputs, Buffer, and Balun
The MAX2031 is optimized for high-side LO injection
architectures with a 650MHz to 1250MHz LO frequency
range. For a device with a 570MHz to 900MHz LO frequency range, refer to the MAX2029. As an added feature, the MAX2031 includes an internal LO SPDT switch
that can be used for frequency-hopping applications.
The switch selects one of the two single-ended LO
ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching
time is typically less than 50ns, which is more than adequate for nearly all GSM applications. If frequency hopping is not employed, set the switch to either of the LO
inputs. The switch is controlled by a digital input
(LOSEL): logic-high selects LO2, logic-low selects LO1.
cdmaOne is a trademark of CDMA Development Group.
16
______________________________________________________________________________________
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
High-Linearity Mixer
The core of the MAX2031 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer.
Differential IF
The MAX2031 mixer has a DC to 250MHz IF frequency
range. Note that these differential ports are ideal for providing enhanced IIP2 performance. Single-ended IF
applications require a 1:1 balun to transform the 50Ω differential IF impedance to 50Ω single-ended. Including
the balun, the IF return loss is better than 15dB. The differential IF is used as an input port for upconverter operation. The user can use a differential IF amplifier following
the mixer, but a DC block is required on both IF pins.
Applications Information
Input and Output Matching
The RF and LO inputs are internally matched to 50Ω. No
matching components are required. As a downconverter, the return loss at the RF port is typically better than
15dB over the entire input range (650MHz to 1000MHz),
and return loss at the LO ports are typically 15dB
(960MHz to 1180MHz). RF and LO inputs require only
DC-blocking capacitors for interfacing (see Table 1).
An optional L-C bandpass filter (BPF) can be installed at
the RF port to improve upconverter performance. See
the Typical Application Circuit and Typical Operating
Characteristics for upconverter operation with an L-C
BPF tuned for 810MHz RF frequency. Performance can
be optimized at other frequencies by choosing different
values for L1 and C4. Removing L1 and C4 altogether
results in a broader match, but performance degrades.
Contact factory for details.
The IF output impedance is 50Ω (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun
transforms this impedance to a 50Ω single-ended output (see the Typical Application Circuit).
Bias Resistor
Bias current for the LO buffer is optimized by fine tuning resistor R1. If reduced current is required at the
Table 1. Typical Application Circuit Component List
DESIGNATION
QTY
DESCRIPTION
SUPPLIER
82pF microwave capacitor (0603).
Use for 800MHz/900MHz cellular band applications.
C1
1
Murata Electronics North America, Inc.
7pF microwave capacitor (0603).
Use for 700MHz band applications
C2, C7, C8, C10,
C11, C12
6
82pF microwave capacitors (0603)
Murata Electronics North America, Inc.
C3, C6, C9
3
0.01µF microwave capacitors (0603)
Murata Electronics North America, Inc.
C4*
1
6pF microwave capacitor (0603)
—
2pF microwave capacitor (0603).
Use for 800MHz/900MHz cellular band applications.
C5**
Murata Electronics North America, Inc.
1
3.3pF microwave capacitor (0603).
Use for 700MHz band applications
L1*
1
4.7nH inductor (0603)
R1
1
523Ω ±1% resistor (0603)
Digi-Key Corp.
—
T1
1
MABAES0029 1:1 transformer (50:50)
M/A-Com, Inc.
U1
1
MAX2031 IC (20 TQFN)
Maxim Integrated Products, Inc.
*C4 and L1 installed only when mixer is used as an upconverter.
**C5 installed only when mixer is used as a downconverter.
______________________________________________________________________________________
17
MAX2031
To avoid damage to the part, voltage MUST be applied
to VCC before digital logic is applied to LOSEL (see the
Absolute Maximum Ratings). LO1 and LO2 inputs are
internally matched to 50Ω, requiring an 82pF DC-blocking capacitor at each input.
A two-stage internal LO buffer allows a wide inputpower range for the LO drive. All guaranteed specifications are for a -3dBm to +3dBm LO signal power. The
on-chip low-loss balun, along with an LO buffer, drives
the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs
are integrated on-chip.
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
expense of performance, contact the factory for details.
If the ±1% bias resistor values are not readily available,
substitute standard ±5% values.
Layout Considerations
A properly designed PC board is an essential part of
any RF/microwave circuit. Keep RF signal lines as short
as possible to reduce losses, radiation, and inductance. For the best performance, route the ground-pin
traces directly to the exposed pad under the package.
The PC board exposed pad MUST be connected to the
ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower-level
ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed
pad on the bottom of the device package to the PC
board. The MAX2031 evaluation kit can be used as a
reference for board layout. Gerber files are available
upon request at www.maxim-ic.com.
18
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with
the capacitors shown in the Typical Application Circuit.
See Table 1.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX2031’s 20-pin thin
QFN-EP package provides a low-thermal-resistance
path to the die. It is important that the PC board on
which the MAX2031 is mounted be designed to conduct heat from the EP. In addition, provide the EP with
a low-inductance path to electrical ground. The EP
MUST be soldered to a ground plane on the PC board,
either directly or through an array of plated via holes.
______________________________________________________________________________________
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
T1
1
4
3
5
IF
C3
RF
RF
C4
L1
19
17
GND
IF18
16
C12
VCC
C1
20
+
C2
IF+
GND
VCC
GND
C5
TAP
GND
GND
15
1
MAX2031
2
14
3
13
4
12
E.P.
11
5
LO2
LO2
VCC
VCC
C11
GND
GND
LO1
LO1
C10
GND
10
LOSEL
9
VCC
8
LOBIAS
7
VCC
6
R1
VCC
LOSEL
C6
C7
C8
VCC
NOTE: L1 AND C4 USED ONLY FOR UPCONVERTER OPERATION.
C5 USED ONLY FOR DOWNCONVERTER OPERATION.
C9
Package Information
Chip Information
PROCESS: SiGe BiCMOS
For the latest package outline information and land patterns, go
to www.maxim-ic.com/packages.
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
20 Thin QFN-EP
T2055+3
21-0140
______________________________________________________________________________________
19
MAX2031
Typical Application Circuit
MAX2031
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Revision History
REVISION
NUMBER
REVISION
DATE
DESCRIPTION
0
7/05
Initial release
1
6/09
Added new Electrical Characteristics tables and Typical Operating Characteristics
PAGES
CHANGED
—
1–16
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2009 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.
Similar pages