Product Folder Sample & Buy Technical Documents Tools & Software Support & Community MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 MSP430F563x Mixed-Signal Microcontrollers 1 Device Overview 1.1 Features 1 • Low Supply Voltage Range: 1.8 V to 3.6 V • Ultra-Low Power Consumption – Active Mode (AM): All System Clocks Active: 270 µA/MHz at 8 MHz, 3.0 V, Flash Program Execution (Typical) – Standby Mode (LPM3): Watchdog With Crystal and Supply Supervisor Operational, Full RAM Retention, Fast Wakeup: 1.8 µA at 2.2 V, 2.1 µA at 3.0 V (Typical) – Shutdown Real-Time Clock (RTC) Mode (LPM3.5): Shutdown Mode, Active RTC With Crystal: 1.1 µA at 3.0 V (Typical) – Shutdown Mode (LPM4.5): 0.3 µA at 3.0 V (Typical) • Wake up From Standby Mode in 3 µs (Typical) • 16-Bit RISC Architecture, Extended Memory, up to 20-MHz System Clock • Flexible Power-Management System – Fully Integrated LDO With Programmable Regulated Core Supply Voltage – Supply Voltage Supervision, Monitoring, and Brownout • Unified Clock System – FLL Control Loop for Frequency Stabilization – Low-Power Low-Frequency Internal Clock Source (VLO) – Low-Frequency Trimmed Internal Reference Source (REFO) – 32-kHz Crystals (XT1) – High-Frequency Crystals up to 32 MHz (XT2) 1.2 • • • • Four 16-Bit Timers With 3, 5, or 7 Capture/Compare Registers • Two Universal Serial Communication Interfaces (USCIs) – USCI_A0 and USCI_A1 Each Support: • Enhanced UART Supports Automatic BaudRate Detection • IrDA Encoder and Decoder • Synchronous SPI – USCI_B0 and USCI_B1 Each Support: • I2C • Synchronous SPI • Full-Speed Universal Serial Bus (USB) – Integrated USB-PHY – Integrated 3.3-V and 1.8-V USB Power System – Integrated USB-PLL – Eight Input and Eight Output Endpoints • 12-Bit Analog-to-Digital Converter (ADC) With Internal Shared Reference, Sample-and-Hold, and Autoscan Feature • Dual 12-Bit Digital-to-Analog Converters (DACs) With Synchronization • Voltage Comparator • Hardware Multiplier Supports 32-Bit Operations • Serial Onboard Programming, No External Programming Voltage Needed • Six-Channel Internal DMA • RTC Module With Supply Voltage Backup Switch • Table 3-1 Summarizes the Available Family Members • For Complete Module Descriptions, See the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) Applications Analog and Digital Sensor Systems Digital Motor Control Remote Controls • • • Thermostats Digital Timers Hand-Held Meters 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 1.3 www.ti.com Description The TI MSP430™ family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from lowpower modes to active mode in 3 µs (typical). The MSP430F563x devices are microcontrollers with a high-performance 12-bit ADC, a comparator, two USCIs, USB 2.0, a hardware multiplier, DMA, four 16-bit timers, an RTC module with alarm capabilities, and up to 74 I/O pins. Device Information (1) PACKAGE BODY SIZE (2) MSP430F5638IPZ LQFP (100) 14 mm × 14 mm MSP430F5638IZQW BGA (113) 7 mm × 7 mm PART NUMBER (1) (2) 2 For the most current device, package, and ordering information, see the Package Option Addendum in Section 8, or see the TI website at www.ti.com. The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 8. Device Overview Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com 1.4 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Functional Block Diagrams Figure 1-1 shows the functional block diagram for the MSP430F5638, MSP430F5637, and MSP430F5636 devices. XIN XOUT DVCC DVSS AVCC AVSS RST/NMI P1.x XT2IN XT2OUT Unified Clock System 16KB RAM ACLK SMCLK 256KB 192KB 128KB Power Management +2KB RAM USB Buffer Flash MCLK SYS Watchdog +8B Backup RAM LDO SVM/SVS Brownout P2 Port Mapping Controller PA P2.x P3.x PB P4.x P5.x PC P6.x I/O Ports P1/P2 2×8 I/Os Interrupt Capability I/O Ports P3/P4 2×8 I/Os Interrupt Capability I/O Ports P5/P6 2×8 I/Os PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os P7.x PD P8.x I/O Ports P7/P8 1×6 I/Os 1×8 I/Os PD 1×14 I/Os P9.x I/O Ports P9 1×8 I/Os PE 1×8 I/Os USCI0,1 Ax: UART, IrDA, SPI USB Full-speed Bx: SPI, I2C CPUXV2 and Working Registers EEM (L: 8+2) DMA TA0 JTAG/ SBW Interface/ MPY32 Port PJ Timer_A 5 CC Registers PJ.x TA1 and TA2 2 Timer_A each with 3 CC Registers ADC12_A RTC_B TB0 Timer_B 7 CC Registers CRC16 Comp_B Battery Backup System 12 Bit 200 KSPS 16 Channels (12 ext/4 int) Autoscan DAC12_A REF 12 bit 2 channels voltage out Reference 1.5V, 2.0V, 2.5V 6 Channel Figure 1-1. Functional Block Diagram – MSP430F5638, MSP430F5637, MSP430F5636 Figure 1-2 shows the functional block diagram for the MSP430F5635, MSP430F5634, and MSP430F5633 devices. XIN XOUT DVCC DVSS AVCC AVSS RST/NMI P1.x XT2IN XT2OUT Unified Clock System MCLK ACLK SMCLK 256KB 192KB 128KB Flash 16KB RAM Power Management +2KB RAM USB Buffer +8B Backup RAM SYS Watchdog LDO SVM/SVS Brownout P2 Port Mapping Controller PA P2.x P3.x PB P4.x P5.x PC P6.x I/O Ports P1/P2 2×8 I/Os Interrupt Capability I/O Ports P3/P4 2×8 I/Os Interrupt Capability I/O Ports P5/P6 2×8 I/Os PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os P7.x PD P8.x I/O Ports P7/P8 1×6 I/Os 1×8 I/Os PD 1×14 I/Os P9.x I/O Ports P9 1×8 I/Os PE 1×8 I/Os USCI0,1 Ax: UART, IrDA, SPI USB Full-speed Bx: SPI, I2C CPUXV2 and Working Registers EEM (L: 8+2) JTAG/ SBW Interface/ Port PJ PJ.x DMA TA0 MPY32 Timer_A 5 CC Registers TA1 and TA2 2 Timer_A each with 3 CC Registers ADC12_A RTC_B TB0 Timer_B 7 CC Registers CRC16 Battery Backup System Comp_B 12 Bit 200 KSPS 16 Channels (12 ext/4 int) Autoscan REF 6 Channel Reference 1.5V, 2.0V, 2.5V Figure 1-2. Functional Block Diagram – MSP430F5635, MSP430F5634, MSP430F5633 Device Overview Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 3 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com Figure 1-3 shows the functional block diagram for the MSP430F5632, MSP430F5631, and MSP430F5630 devices. XIN XOUT DVCC DVSS AVCC AVSS RST/NMI P1.x XT2IN XT2OUT Unified Clock System ACLK SMCLK MCLK 256KB 192KB 128KB Flash 16KB RAM Power Management +2KB RAM USB Buffer +8B Backup RAM SYS Watchdog LDO SVM/SVS Brownout P2 Port Mapping Controller PA P2.x P3.x PB P4.x P5.x PC P6.x I/O Ports P1/P2 2×8 I/Os Interrupt Capability I/O Ports P3/P4 2×8 I/Os Interrupt Capability I/O Ports P5/P6 2×8 I/Os PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os P7.x PD P8.x I/O Ports P7/P8 1×6 I/Os 1×8 I/Os PD 1×14 I/Os P9.x I/O Ports P9 1×8 I/Os PE 1×8 I/Os USCI0,1 Ax: UART, IrDA, SPI USB Full-speed Bx: SPI, I2C CPUXV2 and Working Registers EEM (L: 8+2) JTAG/ SBW Interface/ Port PJ PJ.x DMA TA0 MPY32 Timer_A 5 CC Registers TA1 and TA2 2 Timer_A each with 3 CC Registers RTC_B REF TB0 Timer_B 7 CC Registers CRC16 Battery Backup System Comp_B 6 Channel Reference 1.5V, 2.0V, 2.5V Figure 1-3. Functional Block Diagram – MSP430F5632, MSP430F5631, MSP430F5630 4 Device Overview Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table of Contents 1 2 3 4 Device Overview ......................................... 1 5.27 Timer_A, Timers TA0, TA1, and TA2 ............... 33 1.1 Features .............................................. 1 5.28 Timer_B, Timer TB0 1.2 Applications ........................................... 1 5.29 Battery Backup ...................................... 33 1.3 Description ............................................ 2 5.30 USCI (UART Mode) ................................. 34 1.4 Functional Block Diagrams ........................... 3 5.31 USCI (SPI Master Mode)............................ 34 Revision History ......................................... 6 Device Comparison ..................................... 7 Terminal Configuration and Functions .............. 8 5.32 USCI (SPI Slave Mode) ............................. 36 5.33 5.34 USCI (I2C Mode) .................................... 38 12-Bit ADC, Power Supply and Input Range Conditions ........................................... 39 5.35 5.36 12-Bit ADC, Timing Parameters .................... 12-Bit ADC, Linearity Parameters Using an External Reference Voltage .................................. 12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage .................................. 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage .................................. 39 5.39 12-Bit ADC, Temperature Sensor and Built-In VMID 41 ........................... 42 4.1 4.2 4.3 4.4 5.37 5.38 33 40 40 40 5.40 REF, External Reference Signal Descriptions .................................. 12 5.41 REF, Built-In Reference ............................. 43 Specifications ........................................... 18 5.42 12-Bit DAC, Supply Specifications .................. 44 5.1 Absolute Maximum Ratings ......................... 18 5.43 12-Bit DAC, Linearity Specifications ................ 44 5.2 ........................................ Recommended Operating Conditions ............... 18 5.44 12-Bit DAC, Output Specifications .................. 46 18 5.45 12-Bit DAC, Reference Input Specifications ........ 47 Active Mode Supply Current Into VCC Excluding External Current ..................................... 20 Low-Power Mode Supply Currents (Into VCC) Excluding External Current.......................... 20 5.46 12-Bit DAC, Dynamic Specifications ................ 47 5.47 12-Bit DAC, Dynamic Specifications (Continued) ... 48 5.48 Comparator_B ....................................... 49 5.49 Ports PU.0 and PU.1 ................................ 50 5.50 USB Output Ports DP and DM ...................... 50 5.51 USB Input Ports DP and DM ........................ 50 5.52 USB-PWR (USB Power System) 5.53 USB-PLL (USB Phase-Locked Loop) ............... 51 5.54 Flash Memory ....................................... 52 5.55 JTAG and Spy-Bi-Wire Interface .................... 52 4.5 5 Pin Designation – MSP430F5638IPZ, MSP430F5637IPZ, MSP430F5636IPZ ............... 8 Pin Designation – MSP430F5635IPZ, MSP430F5634IPZ, MSP430F5633IPZ ............... 9 Pin Designation – MSP430F5632IPZ, MSP430F5631IPZ, MSP430F5630IPZ ............. 10 Pin Designation – MSP430F5638IZQW, MSP430F5637IZQW, MSP430F5636IZQW, MSP430F5635IZQW, MSP430F5634IZQW, MSP430F5633IZQW, MSP430F5632IZQW, MSP430F5631IZQW, MSP430F5630IZQW ........ 11 ................................ 5.3 5.4 5.5 ESD Ratings 5.6 Thermal Resistance Characteristics ................ 21 5.7 Schmitt-Trigger Inputs – General-Purpose I/O...... 22 5.8 Inputs – Ports P1, P2, P3, and P4 .................. 22 5.9 5.10 Leakage Current – General-Purpose I/O ........... 22 Outputs – General-Purpose I/O (Full Drive Strength) ............................................ 22 Outputs – General-Purpose I/O (Reduced Drive Strength) ............................................ 23 5.11 5.12 5.13 5.14 Output Frequency – Ports P1, P2, and P3.......... 23 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0) ............................... 24 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1) ............................... 25 ..... 5.15 Crystal Oscillator, XT1, Low-Frequency Mode 5.16 5.17 Crystal Oscillator, XT2 .............................. 27 Internal Very-Low-Power Low-Frequency Oscillator (VLO) ................................................ 28 Internal Reference, Low-Frequency Oscillator (REFO) .............................................. 28 5.18 6 26 5.19 DCO Frequency ..................................... 29 5.20 PMM, Brownout Reset (BOR)....................... 30 5.21 PMM, Core Voltage ................................. 30 5.22 PMM, SVS High Side ............................... 31 5.23 PMM, SVM High Side ............................... 31 5.24 PMM, SVS Low Side ................................ 32 5.25 5.26 PMM, SVM Low Side ............................... 32 Wake-up Times From Low-Power Modes and Reset ................................................ 32 7 ................... Detailed Description ................................... 53 ............................................ 53 ................................................. 53 6.3 Instruction Set ....................................... 54 6.4 Operating Modes .................................... 55 6.5 Interrupt Vector Addresses.......................... 56 6.6 Memory .............................................. 57 6.7 Bootloader (BSL) .................................... 58 6.8 JTAG Operation ..................................... 59 6.9 Flash Memory (Link to User's Guide) ............... 59 6.10 RAM (Link to User's Guide) ......................... 60 6.11 Backup RAM ........................................ 60 6.12 Peripherals .......................................... 60 6.13 Input/Output Schematics ............................ 82 6.14 Device Descriptors ................................. 104 Device and Documentation Support .............. 105 7.1 Device Support..................................... 105 7.2 Documentation Support ............................ 108 7.3 Related Links ...................................... 108 6.1 Overview 6.2 CPU Table of Contents Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 50 5 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 7.4 Community Resources............................. 109 7.7 Export Control Notice .............................. 109 7.5 Trademarks ........................................ 109 7.8 Glossary............................................ 109 7.6 Electrostatic Discharge Caution ................... 109 8 Mechanical, Packaging, and Orderable Information ............................................. 109 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from August 5, 2013 to December 8, 2015 • • • • • • • • • • • • • • • • • • • • • • • • • 6 Page Document format and organization changes throughout, including addition of section numbering........................ 1 Moved all functional block diagrams to Section 1.4, Functional Block Diagrams ............................................ 3 Added USB column to Table 3-1, Family Members ............................................................................. 7 Added Section 3, Device Comparison, and moved Table 3-1, Family Members to it ....................................... 7 Added "Port U is supplied by the LDOO rail" to the PU.0 and PU.1 descriptions in Table 4-1, Signal Descriptions .. 15 Moved all electrical specifications to Section 5 ................................................................................. 18 Added Section 5.2, ESD Ratings.................................................................................................. 18 Added note to CVCORE ............................................................................................................... 18 Added note to RPull .................................................................................................................. 22 Changed TYP value of CL,eff with Test Conditions of "XTS = 0, XCAPx = 0" from 2 pF to 1 pF ......................... 26 In VBAT3 parameter description, changed from "VBAT3 ≠ VBAT/3" to "VBAT3 = VBAT/3" ........................................ 33 Changed from fDAC12_0OUT to fDAC12_1OUT in the first row of the Test Conditions for the "Channel-to-channel crosstalk" parameter ................................................................................................................ 48 Changed the value of DAC12_xDAT from 7F7h to F7Fh and changed the x-axis label from fToggle to 1/fToggle in Figure 5-22, Crosstalk Test Conditions .......................................................................................... 48 Added note to RPUR ................................................................................................................. 50 Corrected the spelling of the MRG bits in the fMCLK,MRG parameter ........................................................... 52 Removed RTC_B from LPM4.5 wake-up options ............................................................................... 55 Throughout document, changed all instances of "bootstrap loader" to "bootloader" ....................................... 58 Added the paragraph that starts "The application report Using the MSP430 RTC_B..." .................................. 62 Corrected names of interrupt events PMMSWBOR (BOR) and PMMSWPOR (POR) in Table 6-11, System Module Interrupt Vector Registers ................................................................................................ 63 Corrected spelling of NMIIFG (added missing "I") in Table 6-11, System Module Interrupt Vector Registers.......... 63 Corrected register names (added "USB" prefix as required) in Table 6-50, USB Control Registers..................... 81 Added P7SEL.2 and XT2BYPASS inputs with AND and OR gates in Figure 6-10, Port P7 (P7.3) Schematic ........ 95 Changed P7SEL.3 column from X to 0 for "P7.3 (I/O)" rows .................................................................. 95 Added Section 7 and moved Development Tools Support, Device and Development Tool Nomenclature, Trademarks, and Electrostatic Discharge Caution sections to it ............................................................ 105 Added Section 8, Mechanical, Packaging, and Orderable Information ..................................................... 109 Revision History Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 3 Device Comparison Table 3-1 summarizes the available family members. Table 3-1. Family Members (1) (2) USCI CHANNEL CHANNEL A: B: UART, SPI, I2C IrDA, SPI DEVICE FLASH (KB) SRAM (KB) (3) Timer_A ADC12_A (Ch) DAC12_A (Ch) Comp_B (Ch) USB I/O PACKAGE MSP430F5638 256 16 + 2 5, 3, 3 7 2 2 12 ext, 4 int 2 12 Yes 74 100 PZ, 113 ZQW MSP430F5637 192 16 + 2 5, 3, 3 7 2 2 12 ext, 4 int 2 12 Yes 74 100 PZ, 113 ZQW MSP430F5636 128 16 + 2 5, 3, 3 7 2 2 12 ext, 4 int 2 12 Yes 74 100 PZ, 113 ZQW MSP430F5635 256 16 + 2 5, 3, 3 7 2 2 12 ext, 4 int - 12 Yes 74 100 PZ, 113 ZQW MSP430F5634 192 16 + 2 5, 3, 3 7 2 2 12 ext, 4 int - 12 Yes 74 100 PZ, 113 ZQW MSP430F5633 128 16 + 2 5, 3, 3 7 2 2 12 ext, 4 int - 12 Yes 74 100 PZ, 113 ZQW MSP430F5632 256 16 + 2 5, 3, 3 7 2 2 - - 12 Yes 74 100 PZ, 113 ZQW MSP430F5631 192 16 + 2 5, 3, 3 7 2 2 - - 12 Yes 74 100 PZ, 113 ZQW MSP430F5630 128 16 + 2 5, 3, 3 7 2 2 - - 12 Yes 74 100 PZ, 113 ZQW (1) (2) (3) (4) (5) (4) Timer_B (5) For the most current package and ordering information, see the Package Option Addendum in Section 8, or see the TI website at www.ti.com. Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging. The additional 2KB of USB SRAM that is listed can be used as general-purpose SRAM when USB is not in use. Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively. Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively. Device Comparison Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 7 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 4 Terminal Configuration and Functions 4.1 Pin Designation – MSP430F5638IPZ, MSP430F5637IPZ, MSP430F5636IPZ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 MSP430F5638 MSP430F5637 MSP430F5636 PZ PACKAGE (TOP VIEW) P9.7 P9.6 P9.5 P9.4 P9.3 P9.2 P9.1 P9.0 P8.7 P8.6/UCB1SOMI/UCB1SCL P8.5/UCB1SIMO/UCB1SDA DVCC2 DVSS2 P8.4/UCB1CLK/UCA1STE P8.3/UCA1RXD/UCA1SOMI P8.2/UCA1TXD/UCA1SIMO P8.1/UCB1STE/UCA1CLK P8.0/TB0CLK P4.7/TB0OUTH/SVMOUT P4.6/TB0.6 P4.5/TB0.5 P4.4/TB0.4 P4.3/TB0.3 P4.2/TB0.2 P4.1/TB0.1 P5.5 P1.0/TA0CLK/ACLK P1.1/TA0.0 P1.2/TA0.1 P1.3/TA0.2 P1.4/TA0.3 P1.5/TA0.4 P1.6/TA0.1 P1.7/TA0.2 P3.0/TA1CLK/CBOUT P3.1/TA1.0 P3.2/TA1.1 P3.3/TA1.2 P3.4/TA2CLK/SMCLK P3.5/TA2.0 P3.6/TA2.1 P3.7/TA2.2 P4.0/TB0.0 P5.2 DVSS DNC P5.3 P5.4 DVSS1 VCORE 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P6.4/CB4/A4 P6.5/CB5/A5 P6.6/CB6/A6/DAC0 P6.7/CB7/A7/DAC1 P7.4/CB8/A12 P7.5/CB9/A13 P7.6/CB10/A14/DAC0 P7.7/CB11/A15/DAC1 P5.0/VREF+/VeREF+ P5.1/VREF−/VeREF− AVCC1 AVSS1 XIN XOUT AVSS2 P5.6/ADC12CLK/DMAE0 P2.0/P2MAP0 P2.1/P2MAP1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4 P2.5/P2MAP5 P2.6/P2MAP6 P2.7/P2MAP7 DVCC1 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P6.3/CB3/A3 P6.2/CB2/A2 P6.1/CB1/A1 P6.0/CB0/A0 RST/NMI/SBWTDIO PJ.3/TCK PJ.2/TMS PJ.1/TDI/TCLK PJ.0/TDO TEST/SBWTCK DVSS3 DVCC3 P5.7/RTCCLK VBAT VBAK P7.3/XT2OUT P7.2/XT2IN AVSS3 V18 VUSB VBUS PU.1/DM PUR PU.0/DP VSSU Figure 4-1 shows the pinout for the MSP430F5638, MSP430F5637, and MSP430F5636 devices in the PZ package. NOTE: DNC = Do not connect Figure 4-1. 100-Pin PZ Package (Top View) – MSP430F5638, MSP430F5637, MSP430F5636 8 Terminal Configuration and Functions Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com 4.2 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Pin Designation – MSP430F5635IPZ, MSP430F5634IPZ, MSP430F5633IPZ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MSP430F5635 MSP430F5634 MSP430F5633 PZ PACKAGE (TOP VIEW) 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P9.7 P9.6 P9.5 P9.4 P9.3 P9.2 P9.1 P9.0 P8.7 P8.6/UCB1SOMI/UCB1SCL P8.5/UCB1SIMO/UCB1SDA DVCC2 DVSS2 P8.4/UCB1CLK/UCA1STE P8.3/UCA1RXD/UCA1SOMI P8.2/UCA1TXD/UCA1SIMO P8.1/UCB1STE/UCA1CLK P8.0/TB0CLK P4.7/TB0OUTH/SVMOUT P4.6/TB0.6 P4.5/TB0.5 P4.4/TB0.4 P4.3/TB0.3 P4.2/TB0.2 P4.1/TB0.1 P5.5 P1.0/TA0CLK/ACLK P1.1/TA0.0 P1.2/TA0.1 P1.3/TA0.2 P1.4/TA0.3 P1.5/TA0.4 P1.6/TA0.1 P1.7/TA0.2 P3.0/TA1CLK/CBOUT P3.1/TA1.0 P3.2/TA1.1 P3.3/TA1.2 P3.4/TA2CLK/SMCLK P3.5/TA2.0 P3.6/TA2.1 P3.7/TA2.2 P4.0/TB0.0 P5.2 DVSS DNC P5.3 P5.4 DVSS1 VCORE 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P6.4/CB4/A4 P6.5/CB5/A5 P6.6/CB6/A6 P6.7/CB7/A7 P7.4/CB8/A12 P7.5/CB9/A13 P7.6/CB10/A14 P7.7/CB11/A15 P5.0/VREF+/VeREF+ P5.1/VREF−/VeREF− AVCC1 AVSS1 XIN XOUT AVSS2 P5.6/ADC12CLK/DMAE0 P2.0/P2MAP0 P2.1/P2MAP1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4 P2.5/P2MAP5 P2.6/P2MAP6 P2.7/P2MAP7 DVCC1 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P6.3/CB3/A3 P6.2/CB2/A2 P6.1/CB1/A1 P6.0/CB0/A0 RST/NMI/SBWTDIO PJ.3/TCK PJ.2/TMS PJ.1/TDI/TCLK PJ.0/TDO TEST/SBWTCK DVSS3 DVCC3 P5.7/RTCCLK VBAT VBAK P7.3/XT2OUT P7.2/XT2IN AVSS3 V18 VUSB VBUS PU.1/DM PUR PU.0/DP VSSU Figure 4-2 shows the pinout for the MSP430F5635, MSP430F5634, and MSP430F5633 devices in the PZ package. NOTE: DNC = Do not connect Figure 4-2. 100-Pin PZ Package (Top View) – MSP430F5635, MSP430F5634, MSP430F5633 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 9 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 4.3 www.ti.com Pin Designation – MSP430F5632IPZ, MSP430F5631IPZ, MSP430F5630IPZ P6.0/CB0 RST/NMI/SBWTDIO PJ.3/TCK PJ.2/TMS PJ.1/TDI/TCLK PJ.0/TDO TEST/SBWTCK DVSS3 DVCC3 P5.7/RTCCLK VBAT VBAK P7.3/XT2OUT P7.2/XT2IN AVSS3 V18 VUSB VBUS PU.1/DM PUR PU.0/DP VSSU P6.1/CB1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 MSP430F5632 MSP430F5631 MSP430F5630 PZ PACKAGE (TOP VIEW) P9.7 P9.6 P9.5 P9.4 P9.3 P9.2 P9.1 P9.0 P8.7 P8.6/UCB1SOMI/UCB1SCL P8.5/UCB1SIMO/UCB1SDA DVCC2 DVSS2 P8.4/UCB1CLK/UCA1STE P8.3/UCA1RXD/UCA1SOMI P8.2/UCA1TXD/UCA1SIMO P8.1/UCB1STE/UCA1CLK P8.0/TB0CLK P4.7/TB0OUTH/SVMOUT P4.6/TB0.6 P4.5/TB0.5 P4.4/TB0.4 P4.3/TB0.3 P4.2/TB0.2 P4.1/TB0.1 P5.5 P1.0/TA0CLK/ACLK P1.1/TA0.0 P1.2/TA0.1 P1.3/TA0.2 P1.4/TA0.3 P1.5/TA0.4 P1.6/TA0.1 P1.7/TA0.2 P3.0/TA1CLK/CBOUT P3.1/TA1.0 P3.2/TA1.1 P3.3/TA1.2 P3.4/TA2CLK/SMCLK P3.5/TA2.0 P3.6/TA2.1 P3.7/TA2.2 P4.0/TB0.0 P5.2 DVSS DNC P5.3 P5.4 DVSS1 VCORE 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P6.4/CB4 P6.5/CB5 P6.6/CB6 P6.7/CB7 P7.4/CB8 P7.5/CB9 P7.6/CB10 P7.7/CB11 P5.0/VREF+/VeREF+ P5.1/VREF−/VeREF− AVCC1 AVSS1 XIN XOUT AVSS2 P5.6/DMAE0 P2.0/P2MAP0 P2.1/P2MAP1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4 P2.5/P2MAP5 P2.6/P2MAP6 P2.7/P2MAP7 DVCC1 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P6.3/CB3 P6.2/CB2 Figure 4-3 shows the pinout for the MSP430F5632, MSP430F5631, and MSP430F5630 devices in the PZ package. NOTE: DNC = Do not connect Figure 4-3. 100-Pin PZ Package (Top View) – MSP430F5632, MSP430F5631, MSP430F5630 10 Terminal Configuration and Functions Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com 4.4 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Pin Designation – MSP430F5638IZQW, MSP430F5637IZQW, MSP430F5636IZQW, MSP430F5635IZQW, MSP430F5634IZQW, MSP430F5633IZQW, MSP430F5632IZQW, MSP430F5631IZQW, MSP430F5630IZQW Figure 4-4 shows the pin diagram for all devices in the ZQW package. See Section 4.5 for pin assignments and descriptions. ZQW PACKAGE (TOP VIEW) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 C1 C2 C3 C11 C12 D1 D2 D4 D5 D6 D7 D8 D9 D11 D12 E1 E2 E4 E5 E6 E7 E8 E9 E11 E12 F1 F2 F4 F5 F8 F9 F11 F12 G1 G2 G4 G5 G8 G9 G11 G12 H1 H2 H4 H5 H6 H7 H8 H9 H11 H12 J1 J2 J4 J5 J6 J7 J8 J9 J11 J12 K1 K2 K11 K12 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 NOTE: For terminal assignments, see Table 4-1 Figure 4-4. 113-Pin ZQW Package (Top View) – MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635, MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 11 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 4.5 www.ti.com Signal Descriptions Table 4-1 describes the signals for all device variants and packages. Table 4-1. Signal Descriptions TERMINAL NAME I/O (1) NO. PZ DESCRIPTION ZQW General-purpose digital I/O P6.4/CB4/A4 1 A1 I/O Comparator_B input CB4 Analog input A4 – ADC (not available on F5632, F5631, and F5630 devices) General-purpose digital I/O P6.5/CB5/A5 2 B2 I/O Comparator_B input CB5 Analog input A5 – ADC (not available on F5632, F5631, and F5630 devices) General-purpose digital I/O Comparator_B input CB6 P6.6/CB6/A6/DAC0 3 B1 I/O Analog input A6 – ADC (not available on F5632, F5631, and F5630 devices) DAC12.0 output (not available on F5635, F5634, F5633, F5632, F5631, and F5630 devices) General-purpose digital I/O Comparator_B input CB7 P6.7/CB7/A7/DAC1 4 C2 I/O Analog input A7 – ADC (not available on F5632, F5631, and F5630 devices) DAC12.1 output (not available on F5635, F5634, F5633, F5632, F5631, and F5630 devices) General-purpose digital I/O P7.4/CB8/A12 5 C1 I/O Comparator_B input CB8 Analog input A12 –ADC (not available on F5632, F5631, and F5630 devices) General-purpose digital I/O P7.5/CB9/A13 6 C3 I/O Comparator_B input CB9 Analog input A13 – ADC (not available on F5632, F5631, and F5630 devices) General-purpose digital I/O Comparator_B input CB10 P7.6/CB10/A14/DAC0 7 D2 I/O Analog input A14 – ADC (not available on F5632, F5631, and F5630 devices) DAC12.0 output (not available on F5635, F5634, F5633, F5632, F5631, and F5630 devices) General-purpose digital I/O Comparator_B input CB11 P7.7/CB11/A15/DAC1 8 D1 I/O Analog input A15 – ADC (not available on F5632, F5631, and F5630 devices) DAC12.1 output (not available on F5635, F5634, F5633, F5632, F5631, and F5630 devices) General-purpose digital I/O P5.0/VREF+/VeREF+ 9 D4 I/O Output of reference voltage to the ADC Input for an external reference voltage to the ADC General-purpose digital I/O P5.1/VREF-/VeREF- 10 E4 AVCC1 11 E1, E2 (1) 12 I/O Negative terminal for the reference voltage of the ADC for both sources, the internal reference voltage, or an external applied reference voltage Analog power supply I = input, O = output, N/A = not available on this package offering Terminal Configuration and Functions Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 4-1. Signal Descriptions (continued) TERMINAL NAME I/O (1) NO. DESCRIPTION PZ ZQW AVSS1 12 F2 XIN 13 F1 I Input terminal for crystal oscillator XT1 XOUT 14 G1 O Output terminal of crystal oscillator XT1 AVSS2 15 G2 Analog ground supply Analog ground supply General-purpose digital I/O P5.6/ADC12CLK/DMAE0 16 H1 I/O Conversion clock output ADC (not available on F5632, F5631, and F5630 devices) DMA external trigger input General-purpose digital I/O with port interrupt and mappable secondary function P2.0/P2MAP0 17 G4 I/O Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output General-purpose digital I/O with port interrupt and mappable secondary function P2.1/P2MAP1 18 H2 I/O P2.2/P2MAP2 19 J1 I/O P2.3/P2MAP3 20 H4 I/O Default mapping: USCI_B0 SPI slave in/master out; USCI_B0 I2C data General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 SPI slave out/master in; USCI_B0 I2C clock General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable General-purpose digital I/O with port interrupt and mappable secondary function P2.4/P2MAP4 21 J2 I/O Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in/master out General-purpose digital I/O with port interrupt and mappable secondary function P2.5/P2MAP5 22 K1 I/O Default mapping: USCI_A0 UART receive data; USCI_A0 slave out/master in General-purpose digital I/O with port interrupt and mappable secondary function P2.6/P2MAP6 23 K2 I/O Default mapping: no secondary function General-purpose digital I/O with port interrupt and mappable secondary function P2.7/P2MAP7 24 L2 I/O DVCC1 25 L1 Digital power supply DVSS1 26 M1 Digital ground supply VCORE (2) 27 M2 P5.2 28 L3 DVSS 29 M3 DNC 30 J4 P5.3 31 L4 I/O General-purpose digital I/O P5.4 32 M4 I/O General-purpose digital I/O P5.5 33 J5 I/O General-purpose digital I/O Default mapping: no secondary function Regulated core power supply (internal use only, no external current loading) I/O General-purpose digital I/O Digital ground supply Do not connect. It is strongly recommended to leave this terminal open. General-purpose digital I/O with port interrupt P1.0/TA0CLK/ACLK 34 L5 I/O Timer TA0 clock signal TACLK input ACLK output (divided by 1, 2, 4, 8, 16, or 32) General-purpose digital I/O with port interrupt P1.1/TA0.0 35 M5 I/O Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output BSL transmit output General-purpose digital I/O with port interrupt P1.2/TA0.1 36 J6 I/O Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output BSL receive input (2) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 13 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME I/O (1) NO. PZ ZQW 37 H6 DESCRIPTION General-purpose digital I/O with port interrupt P1.3/TA0.2 I/O Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output General-purpose digital I/O with port interrupt P1.4/TA0.3 38 M6 I/O Timer TA0 CCR3 capture: CCI3A input compare: Out3 output General-purpose digital I/O with port interrupt P1.5/TA0.4 39 L6 I/O Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output General-purpose digital I/O with port interrupt P1.6/TA0.1 40 J7 I/O Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output General-purpose digital I/O with port interrupt P1.7/TA0.2 41 M7 I/O Timer TA0 CCR2 capture: CCI2B input, compare: Out2 output General-purpose digital I/O with port interrupt P3.0/TA1CLK/CBOUT 42 L7 I/O Timer TA1 clock input Comparator_B output General-purpose digital I/O with port interrupt P3.1/TA1.0 43 H7 I/O Timer TA1 capture CCR0: CCI0A/CCI0B input, compare: Out0 output General-purpose digital I/O with port interrupt P3.2/TA1.1 44 M8 I/O Timer TA1 capture CCR1: CCI1A/CCI1B input, compare: Out1 output General-purpose digital I/O with port interrupt P3.3/TA1.2 45 L8 I/O Timer TA1 capture CCR2: CCI2A/CCI2B input, compare: Out2 output General-purpose digital I/O with port interrupt P3.4/TA2CLK/SMCLK 46 J8 I/O Timer TA2 clock input SMCLK output General-purpose digital I/O with port interrupt P3.5/TA2.0 47 M9 I/O Timer TA2 capture CCR0: CCI0A/CCI0B input, compare: Out0 output General-purpose digital I/O with port interrupt P3.6/TA2.1 48 L9 I/O Timer TA2 capture CCR1: CCI1A/CCI1B input, compare: Out1 output General-purpose digital I/O with port interrupt P3.7/TA2.2 49 M10 I/O Timer TA2 capture CCR2: CCI2A/CCI2B input, compare: Out2 output General-purpose digital I/O with port interrupt P4.0/TB0.0 50 J9 I/O Timer TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output General-purpose digital I/O with port interrupt P4.1/TB0.1 51 M11 I/O Timer TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output General-purpose digital I/O with port interrupt P4.2/TB0.2 52 L10 I/O Timer TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output General-purpose digital I/O with port interrupt P4.3/TB0.3 53 M12 I/O Timer TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output General-purpose digital I/O with port interrupt P4.4/TB0.4 54 L12 I/O Timer TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output General-purpose digital I/O with port interrupt P4.5/TB0.5 55 L11 I/O Timer TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output General-purpose digital I/O with port interrupt P4.6/TB0.6 56 K11 I/O Timer TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output 14 Terminal Configuration and Functions Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 4-1. Signal Descriptions (continued) TERMINAL NAME I/O (1) NO. PZ DESCRIPTION ZQW General-purpose digital I/O with port interrupt P4.7/TB0OUTH/SVMOUT 57 K12 I/O Timer TB0: Switch all PWM outputs high impedance SVM output General-purpose digital I/O P8.0/TB0CLK 58 J11 I/O Timer TB0 clock input General-purpose digital I/O P8.1/UCB1STE/UCA1CLK 59 J12 I/O USCI_B1 SPI slave transmit enable; USCI_A1 clock input/output General-purpose digital I/O P8.2/UCA1TXD/UCA1SIMO 60 H11 I/O USCI_A1 UART transmit data; USCI_A1 SPI slave in/master out P8.3/UCA1RXD/UCA1SOMI 61 H12 I/O General-purpose digital I/O USCI_A1 UART receive data; USCI_A1 SPI slave out/master in General-purpose digital I/O P8.4/UCB1CLK/UCA1STE 62 G11 I/O USCI_B1 clock input/output; USCI_A1 SPI slave transmit enable DVSS2 63 G12 Digital ground supply DVCC2 64 F12 Digital power supply P8.5/UCB1SIMO/UCB1SDA 65 F11 I/O P8.6/UCB1SOMI/UCB1SCL 66 G9 I/O P8.7 67 E12 I/O General-purpose digital I/O P9.0 68 E11 I/O General-purpose digital I/O P9.1 69 F9 I/O General-purpose digital I/O P9.2 70 D12 I/O General-purpose digital I/O P9.3 71 D11 I/O General-purpose digital I/O P9.4 72 E9 I/O General-purpose digital I/O P9.5 73 C12 I/O General-purpose digital I/O P9.6 74 C11 I/O General-purpose digital I/O P9.7 75 D9 I/O General-purpose digital I/O VSSU 76 B11, B12 PU.0/DP 77 A12 General-purpose digital I/O USCI_B1 SPI slave in/master out; USCI_B1 I2C data General-purpose digital I/O USCI_B1 SPI slave out/master in; USCI_B1 I2C clock USB PHY ground supply I/O General-purpose digital I/O, controlled by USB control register. Port U is supplied by the LDOO rail. USB data terminal DP USB pullup resistor pin (open drain). The voltage level at the PUR pin is used to invoke the default USB BSL. TI recommends a 1-MΩ resistor to ground. See Section 6.7.1 for more information. PUR 78 B10 I/O PU.1/DM 79 A11 I/O VBUS 80 A10 USB LDO input (connect to USB power source) VUSB 81 A9 USB LDO output V18 82 B9 USB regulated power (internal use only, no external current loading) AVSS3 83 A8 Analog ground supply General-purpose digital I/O, controlled by USB control register. Port U is supplied by the LDOO rail. USB data terminal DM Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 15 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL NAME I/O (1) NO. PZ ZQW 84 B8 DESCRIPTION General-purpose digital I/O P7.2/XT2IN I/O Input terminal for crystal oscillator XT2 General-purpose digital I/O P7.3/XT2OUT 85 B7 I/O Output terminal of crystal oscillator XT2 VBAK 86 A7 Capacitor for backup subsystem. Do not load this pin externally. For capacitor values, see CBAK in Recommended Operating Conditions. VBAT 87 D8 Backup or secondary supply voltage. If backup voltage is not supplied, connect to DVCC externally. P5.7/RTCCLK 88 D7 DVCC3 89 A6 Digital power supply DVSS3 90 A5 Digital ground supply TEST/SBWTCK 91 B6 General-purpose digital I/O I/O RTCCLK output Test mode pin; selects digital I/O on JTAG pins I Spy-Bi-Wire input clock General-purpose digital I/O PJ.0/TDO 92 B5 I/O Test data output port General-purpose digital I/O PJ.1/TDI/TCLK 93 A4 I/O Test data input or test clock input General-purpose digital I/O PJ.2/TMS 94 E7 I/O Test mode select General-purpose digital I/O PJ.3/TCK 95 D6 I/O Test clock Reset input (active low) (3) RST/NMI/SBWTDIO 96 A3 I/O Nonmaskable interrupt input Spy-Bi-Wire data input/output General-purpose digital I/O P6.0/CB0/A0 97 B4 I/O Comparator_B input CB0 Analog input A0 – ADC (not available on F5632, F5631, and F5630 devices) General-purpose digital I/O P6.1/CB1/A1 98 B3 I/O Comparator_B input CB1 Analog input A1 – ADC (not available on F5632, F5631, and F5630 devices) General-purpose digital I/O P6.2/CB2/A2 99 A2 I/O Comparator_B input CB2 Analog input A2 – ADC (not available on F5632, F5631, and F5630 devices) General-purpose digital I/O P6.3/CB3/A3 100 D5 I/O Comparator_B input CB3 Analog input A3 – ADC (not available on F5632, F5631, and F5630 devices) (3) 16 When this pin is configured as reset, the internal pullup resistor is enabled by default. Terminal Configuration and Functions Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 4-1. Signal Descriptions (continued) TERMINAL NAME Reserved NO. PZ ZQW N/A E5, E6, E8, F4, F5, F8, G5, G8, H5, H8, H9 I/O (1) DESCRIPTION Reserved. TI recommends connecting to ground (DVSS, AVSS). Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 17 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5 Specifications Absolute Maximum Ratings (1) 5.1 over operating free-air temperature range (unless otherwise noted) Voltage applied at VCC to VSS Voltage applied to any pin (excluding VCORE, VBUS, V18) (2) MIN MAX –0.3 4.1 –0.3 VCC + 0.3 Diode current at any device pin Maximum junction temperature, TJ Storage temperature, Tstg (3) (1) (2) (3) –55 UNIT V V ±2 mA 95 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. 5.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±1000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±250 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance. 5.3 Recommended Operating Conditions MIN Supply voltage during program execution and flash programming (AVCC1 = DVCC1 = DVCC2 = DVCC3 = DVCC = VCC) (1) (2) VCC Supply voltage during USB operation, USB PLL disabled (USB_EN = 1, UPLLEN = 0) VCC,USB Supply voltage during USB operation, USB PLL enabled (3) (USB_EN = 1, UPLLEN = 1) VSS Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DVSS2 = DVSS3 = VSS) VBAT,RTC Backup-supply voltage with RTC operational VBAT,MEM TA NOM MAX PMMCOREVx = 0 1.8 3.6 PMMCOREVx = 0, 1 2.0 3.6 PMMCOREVx = 0, 1, 2 2.2 3.6 PMMCOREVx = 0, 1, 2, 3 2.4 3.6 PMMCOREVx = 0 1.8 3.6 PMMCOREVx = 0, 1 2.0 3.6 PMMCOREVx = 0, 1, 2 2.2 3.6 PMMCOREVx = 0, 1, 2, 3 2.4 3.6 PMMCOREVx = 2 2.2 3.6 PMMCOREVx = 2, 3 2.4 3.6 0 UNIT V V V TA = 0°C to 85°C 1.55 3.6 TA = –40°C to +85°C 1.70 3.6 Backup-supply voltage with backup memory retained TA = –40°C to +85°C 1.20 3.6 V Operating free-air temperature I version –40 85 °C TJ Operating junction temperature I version –40 CBAK Capacitance at pin VBAK CVCORE Capacitor at VCORE (4) (1) (2) (3) (4) 18 1 4.7 V 85 °C 10 nF 470 nF TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation. The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the threshold parameters in Section 5.22 for the exact values and further details. USB operation with USB PLL enabled requires PMMCOREVx ≥ 2 for proper operation. A capacitor tolerance of ±20% or better is required. Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Recommended Operating Conditions (continued) MIN CDVCC/ CVCORE Capacitor ratio of DVCC to VCORE fSYSTEM_USB Minimum processor frequency for USB operation USB_wait Wait state cycles during USB operation (5) (6) MAX UNIT 10 Processor frequency (maximum MCLK frequency) (5) (6) (see Figure 5-1) fSYSTEM NOM PMMCOREVx = 0, 1.8 V ≤ VCC ≤ 3.6 V (default condition) 0 8.0 PMMCOREVx = 1, 2 V ≤ VCC ≤ 3.6 V 0 12.0 PMMCOREVx = 2, 2.2 V ≤ VCC ≤ 3.6 V 0 16.0 PMMCOREVx = 3, 2.4 V ≤ VCC ≤ 3.6 V 0 20.0 1.5 MHz MHz 16 cycles The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency. Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet. 25 System Frequency - MHz 20 3 16 2 2, 3 1 1, 2 1, 2, 3 0, 1 0, 1, 2 0, 1, 2, 3 12 8 0 0 1.8 2.0 2.2 2.4 3.6 Supply Voltage - V The numbers within the fields denote the supported PMMCOREVx settings. Figure 5-1. Frequency vs Supply Voltage Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 19 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.4 www.ti.com Active Mode Supply Current Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3) FREQUENCY (fDCO = fMCLK = fSMCLK) PARAMETER EXECUTION MEMORY VCC PMMCOREVx 1 MHz TYP IAM, IAM, (1) (2) (3) Flash Flash RAM RAM 3V 3V 8 MHz MAX 0.36 TYP 12 MHz MAX 2.1 TYP 0 0.32 1 0.36 2.4 3.6 2 0.37 2.5 3.8 3 0.39 0 0.18 1 0.20 1.2 1.7 2 0.22 1.3 2.0 3 0.23 1.4 2.1 TYP UNIT MAX 2.4 2.7 0.21 20 MHz MAX 4.0 4.0 1.0 mA 6.6 1.2 1.9 mA 3.6 All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Characterized with program executing typical data processing. USB disabled (VUSBEN = 0, SLDOEN = 0). fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0. 5.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) PARAMETER ILPM0,1MHz Low-power mode 0 (3) (4) ILPM2 Low-power mode 2 (5) (4) (3) (4) (5) (6) 20 60°C 85°C 2.2 V 0 71 75 87 81 85 99 3V 3 78 83 98 89 94 108 2.2 V 0 6.3 6.7 9.9 9.0 11 16 3V 3 6.6 7.0 11 10 12 18 0 1.6 1.8 2.4 4.7 6.5 10.5 1 1.6 1.9 4.8 6.6 2 1.7 2.0 4.9 6.7 0 1.9 2.1 5.0 6.8 1 1.9 2.1 5.1 7.0 2 2.0 2.2 5.2 7.1 3 2.0 2.2 5.4 7.3 Low-power mode 3, crystal mode (6) (4) 3V (1) (2) 25°C PMMCOREVx 2.2 V ILPM3,XT1LF –40°C VCC TYP MAX TYP MAX 2.7 2.9 TYP MAX TYP MAX 10.8 UNIT µA µA µA 12.6 All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF. Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz USB disabled (VUSBEN = 0, SLDOEN = 0). Current for brownout included. Low-side supervisor and monitors disabled (SVSL, SVML). High-side supervisor and monitor disabled (SVSH, SVMH). RAM retention enabled. Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO setting = 1 MHz operation, DCO bias generator enabled. USB disabled (VUSBEN = 0, SLDOEN = 0). Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz USB disabled (VUSBEN = 0, SLDOEN = 0). Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Low-Power Mode Supply Currents (Into VCC) Excluding External Current (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2) PARAMETER ILPM3, VLO,WDT Low-power mode 3, VLO mode, Watchdog enabled (7) (4) Low-power mode 4 (8) (4) ILPM4 ILPM3.5, RTC,VCC ILPM3.5, RTC,VBAT ILPM3.5, RTC,TOT ILPM4.5 VCC PMMCOREVx 3V 3V –40°C TYP MAX 25°C TYP 0 0.9 1.2 1 0.9 2 1.0 3 1.0 1.3 0 0.9 1.1 1 0.9 1.1 2 1.0 1.2 3 1.0 1.2 60°C MAX 1.9 TYP MAX 85°C TYP MAX 4.0 5.9 1.2 4.1 6.0 1.3 4.2 6.1 2.2 4.3 6.3 11.3 1.8 3.9 5.8 10 4.0 5.9 4.1 6.1 4.2 6.2 11 2.1 UNIT 10.3 µA µA Low-power mode 3.5 (LPM3.5) current with active RTC into primary supply pin DVCC (9) 3V 0.5 0.8 1.4 µA Low-power mode 3.5 (LPM3.5) current with active RTC into backup supply pin VBAT (10) 3V 0.6 0.8 1.4 µA Total low-power mode 3.5 (LPM3.5) current with active RTC (11) 3V 1.0 1.1 1.3 1.6 2.8 µA Low-power mode 4.5 (LPM4.5) (12) 3V 0.2 0.3 0.7 0.9 1.4 µA 0.6 (7) Current for watchdog timer clocked by VLO included. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fMCLK = fSMCLK = fDCO = 0 MHz USB disabled (VUSBEN = 0, SLDOEN = 0). (8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz USB disabled (VUSBEN = 0, SLDOEN = 0). (9) VVBAT = VCC - 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active (10) VVBAT = VCC - 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK (11) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK (12) Internal regulator disabled. No data retention. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz 5.6 Thermal Resistance Characteristics PARAMETER θJA Junction-to-ambient thermal resistance, still air (1) θJC(TOP) Junction-to-case (top) thermal resistance (2) θJB Junction-to-board thermal resistance (3) (1) (2) (3) VALUE QFP (PZ) 122 BGA (ZQW) 108 QFP (PZ) 83 BGA (ZQW) 72 QFP (PZ) 98 BGA (ZQW) 76 UNIT °C/W °C/W °C/W The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a. The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88. The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8. Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 21 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com Schmitt-Trigger Inputs – General-Purpose I/O (1) 5.7 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup or pulldown resistor (2) For pullup: VIN = VSS For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC (1) (2) VCC MIN TYP 1.8 V 0.80 1.40 3V 1.50 2.10 1.8 V 0.45 1.00 3V 0.75 1.65 1.8 V 0.3 0.8 3V 0.4 1.0 20 35 MAX UNIT V V V 50 kΩ 5 pF Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN). Also applies to RST pin when pullup or pulldown resistor is enabled. Inputs – Ports P1, P2, P3, and P4 (1) 5.8 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER External interrupt timing (2) t(int) (1) (2) TEST CONDITIONS VCC Port P1, P2, P3, P4: P1.x to P4.x, External trigger pulse duration to set interrupt flag MIN 2.2 V, 3 V MAX UNIT 20 ns Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals shorter than t(int). 5.9 Leakage Current – General-Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.x) (1) (2) TEST CONDITIONS VCC (1) (2) High-impedance leakage current MIN 1.8 V, 3 V MAX UNIT ±50 nA The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled. 5.10 Outputs – General-Purpose I/O (Full Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OHmax) = –3 mA (1) VOH High-level output voltage I(OHmax) = –10 mA (2) I(OHmax) = –5 mA (1) I(OHmax) = –15 mA (2) I(OLmax) = 3 mA VOL Low-level output voltage (2) 22 1.8 V 3V (1) I(OLmax) = 10 mA (2) I(OLmax) = 5 mA (1) I(OLmax) = 15 mA (2) (1) VCC 1.8 V 3V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 UNIT V V The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified. Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.11 Outputs – General-Purpose I/O (Reduced Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS I(OHmax) = –1 mA VOH 1.8 V I(OHmax) = –3 mA (3) High-level output voltage I(OHmax) = –2 mA (2) 3V I(OHmax) = –6 mA (3) I(OLmax) = 1 mA VOL (3) MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 1.8 V I(OLmax) = 2 mA (2) 3V I(OLmax) = 6 mA (3) (1) (2) MIN (2) I(OLmax) = 3 mA (3) Low-level output voltage VCC (2) UNIT V V Selecting reduced drive strength may reduce EMI. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified. 5.12 Output Frequency – Ports P1, P2, and P3 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fPx.y fPort_CLK (1) (2) (3) TEST CONDITIONS Port output frequency (with load) P3.4/TA2CLK/SMCLK/S27, CL = 20 pF, RL = 1 kΩ (1) or 3.2 kΩ (2) (3) Clock output frequency P1.0/TA0CLK/ACLK/S39, P3.4/TA2CLK/SMCLK/S27, P2.0/P2MAP0 (P2MAP0 = PM_MCLK ), CL = 20 pF (3) MIN MAX VCC = 1.8 V, PMMCOREVx = 0 8 VCC = 3 V, PMMCOREVx = 3 20 VCC = 1.8 V, PMMCOREVx = 0 8 VCC = 3 V, PMMCOREVx = 3 20 UNIT MHz MHz Full drive strength of port: A resistive divider with 2 × 0.5 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. Reduced drive strength of port: A resistive divider with 2 × 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 23 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.13 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) 8.0 VCC = 3.0 V P3.2 IOL – Typical Low-Level Output Current – mA IOL – Typical Low-Level Output Current – mA 25.0 TA = 25°C 20.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 IOH – Typical High-Level Output Current – mA IOH – Typical High-Level Output Current – mA −5.0 −10.0 −25.0 0.0 TA = 85°C TA = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH – High-Level Output Voltage – V Figure 5-4. Typical High-Level Output Current vs High-Level Output Voltage 24 TA = 85°C 5.0 4.0 3.0 2.0 1.0 0.5 1.0 1.5 2.0 0.0 VCC = 3.0 V P3.2 −20.0 TA = 25°C VOL – Low-Level Output Voltage – V Figure 5-3. Typical Low-Level Output Current vs Low-Level Output Voltage 0.0 −15.0 VCC = 1.8 V P3.2 6.0 0.0 0.0 3.5 VOL – Low-Level Output Voltage – V Figure 5-2. Typical Low-Level Output Current vs Low-Level Output Voltage 7.0 Specifications −1.0 VCC = 1.8 V P3.2 −2.0 −3.0 −4.0 −5.0 TA = 85°C −6.0 TA = 25°C −7.0 −8.0 0.0 0.5 1.0 1.5 2.0 VOH – High-Level Output Voltage – V Figure 5-5. Typical High-Level Output Current vs High-Level Output Voltage Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.14 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) 55.0 VCC = 3.0 V P3.2 IOL – Typical Low-Level Output Current – mA IOL – Typical Low-Level Output Current – mA 60.0 TA = 25°C 50.0 TA = 85°C 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 IOH – Typical High-Level Output Current – mA IOH – Typical High-Level Output Current – mA −15.0 −20.0 −25.0 −30.0 −35.0 −40.0 −45.0 TA = 85°C −55.0 −60.0 0.0 16 TA = 85°C 12 8 4 0.5 1.0 1.5 2.0 0 VCC = 3.0 V P3.2 −10.0 −50.0 TA = 25°C VOL – Low-Level Output Voltage – V Figure 5-7. Typical Low-Level Output Current vs Low-Level Output Voltage 0.0 −5.0 VCC = 1.8 V P3.2 20 0 0.0 3.5 VOL – Low-Level Output Voltage – V Figure 5-6. Typical Low-Level Output Current vs Low-Level Output Voltage 24 TA = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH – High-Level Output Voltage – V Figure 5-8. Typical High-Level Output Current vs High-Level Output Voltage VCC = 1.8 V P3.2 −4 −8 −12 TA = 85°C −16 TA = 25°C −20 0.0 0.5 1.0 1.5 VOH – High-Level Output Voltage – V Figure 5-9. Typical High-Level Output Current vs High-Level Output Voltage Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 2.0 25 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.15 Crystal Oscillator, XT1, Low-Frequency Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C ΔIDVCC,LF Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C 0.170 32768 XTS = 0, XT1BYPASS = 0 fXT1,LF,SW XT1 oscillator logic-level squarewave input frequency, LF mode XTS = 0, XT1BYPASS = 1 (2) OALF 3V 0.290 XT1 oscillator crystal frequency, LF mode (3) 10 CL,eff fFault,LF tSTART,LF 210 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, fXT1,LF = 32768 Hz, CL,eff = 12 pF 300 (1) (2) (3) (4) (5) (6) (7) (8) 26 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 12.0 Oscillator fault frequency, LF mode (7) XTS = 0 (8) fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, TA = 25°C, CL,eff = 6 pF fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C, CL,eff = 12 pF µA Hz 50 kHz 1 5.5 Duty cycle, LF mode UNIT kΩ XTS = 0, XCAPx = 1 XTS = 0, Measured at ACLK, fXT1,LF = 32768 Hz Start-up time, LF mode 32.768 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, fXT1,LF = 32768 Hz, CL,eff = 6 pF XTS = 0, XCAPx = 0 (6) Integrated effective load capacitance, LF mode (5) MAX 0.075 fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C fXT1,LF0 Oscillation allowance for LF crystals (4) TYP pF 30% 70% 10 10000 Hz 1000 3V ms 500 To improve EMI on the XT1 oscillator, the following guidelines should be observed. • Keep the trace between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. • Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins. • If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: • For XT1DRIVEx = 0, CL,eff ≤ 6 pF. • For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF. • For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF. • For XT1DRIVEx = 3, CL,eff ≥ 6 pF. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.16 Crystal Oscillator, XT2 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS VCC MIN fOSC = 4 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 0, TA = 25°C IDVCC,XT2 XT2 oscillator crystal current consumption fOSC = 12 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 1, TA = 25°C fOSC = 20 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 2, TA = 25°C (2) TYP MAX UNIT 200 260 3V µA 325 fOSC = 32 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 3, TA = 25°C 450 fXT2,HF0 XT2 oscillator crystal frequency, mode 0 XT2DRIVEx = 0, XT2BYPASS = 0 (3) 4 8 MHz fXT2,HF1 XT2 oscillator crystal frequency, mode 1 XT2DRIVEx = 1, XT2BYPASS = 0 (3) 8 16 MHz fXT2,HF2 XT2 oscillator crystal frequency, mode 2 XT2DRIVEx = 2, XT2BYPASS = 0 (3) 16 24 MHz fXT2,HF3 XT2 oscillator crystal frequency, mode 3 XT2DRIVEx = 3, XT2BYPASS = 0 (3) 24 32 MHz fXT2,HF,SW XT2 oscillator logic-level squarewave input frequency XT2BYPASS = 1 (4) 0.7 32 MHz OAHF tSTART,HF CL,eff fFault,HF (1) (2) (3) (4) (5) (6) (7) (8) Oscillation allowance for HF crystals (5) Start-up time Integrated effective load capacitance, HF mode (6) (3) XT2DRIVEx = 0, XT2BYPASS = 0, fXT2,HF0 = 6 MHz, CL,eff = 15 pF 450 XT2DRIVEx = 1, XT2BYPASS = 0, fXT2,HF1 = 12 MHz, CL,eff = 15 pF 320 XT2DRIVEx = 2, XT2BYPASS = 0, fXT2,HF2 = 20 MHz, CL,eff = 15 pF 200 XT2DRIVEx = 3, XT2BYPASS = 0, fXT2,HF3 = 32 MHz, CL,eff = 15 pF 200 fOSC = 6 MHz XT2BYPASS = 0, XT2DRIVEx = 0, TA = 25°C, CL,eff = 15 pF 0.5 fOSC = 20 MHz XT2BYPASS = 0, XT2DRIVEx = 3, TA = 25°C, CL,eff = 15 pF Ω 3V ms 0.3 1 (1) Duty cycle Measured at ACLK, fXT2,HF2 = 20 MHz Oscillator fault frequency (7) XT2BYPASS = 1 (8) 40% 30 50% pF 60% 300 kHz Requires external capacitors at both terminals. Values are specified by crystal manufacturers. To improve EMI on the XT2 oscillator the following guidelines should be observed. • Keep the traces between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT. • Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins. • If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. Maximum frequency of operation of the entire device cannot be exceeded. When XT2BYPASS is set, the XT2 circuit is automatically powered down. Oscillation allowance is based on a safety factor of 5 for recommended crystals. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 27 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.17 Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fVLO VLO frequency Measured at ACLK 1.8 V to 3.6 V dfVLO/dT VLO frequency temperature drift Measured at ACLK (1) 1.8 V to 3.6 V Measured at ACLK (2) 1.8 V to 3.6 V Measured at ACLK 1.8 V to 3.6 V dfVLO/dVCC VLO frequency supply voltage drift Duty cycle (1) (2) MIN TYP MAX 6 9.4 14 0.5 50% kHz %/°C 4 40% UNIT %/V 60% Calculated using the box method: (MAX(–40°C to +85°C) – MIN(–40°C to +85°C)) / MIN(–40°C to +85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) 5.18 Internal Reference, Low-Frequency Oscillator (REFO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IREFO fREFO TEST CONDITIONS VCC 3 REFO frequency calibrated Measured at ACLK 1.8 V to 3.6 V 32768 REFO absolute tolerance calibrated Full temperature range 1.8 V to 3.6 V ±3.5% 3V ±1.5% TA = 25°C REFO frequency temperature drift Measured at ACLK dfREFO/dVCC REFO frequency supply voltage drift Measured at ACLK (2) Duty cycle Measured at ACLK 1.8 V to 3.6 V REFO start-up time 40%/60% duty cycle 1.8 V to 3.6 V 28 MAX 1.8 V to 3.6 V dfREFO/dT (1) (2) TYP TA = 25°C (1) tSTART MIN REFO oscillator current consumption UNIT µA Hz 1.8 V to 3.6 V 0.01 %/°C 1.8 V to 3.6 V 1.0 %/V 40% 50% 60% 25 µs Calculated using the box method: (MAX(–40°C to +85°C) – MIN(–40°C to +85°C)) / MIN(–40°C to +85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.19 DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fDCO(0,0) DCO frequency (0, 0) DCORSELx = 0, DCOx = 0, MODx = 0 0.07 0.20 MHz fDCO(0,31) DCO frequency (0, 31) DCORSELx = 0, DCOx = 31, MODx = 0 0.70 1.70 MHz fDCO(1,0) DCO frequency (1, 0) DCORSELx = 1, DCOx = 0, MODx = 0 0.15 0.36 MHz fDCO(1,31) DCO frequency (1, 31) DCORSELx = 1, DCOx = 31, MODx = 0 1.47 3.45 MHz fDCO(2,0) DCO frequency (2, 0) DCORSELx = 2, DCOx = 0, MODx = 0 0.32 0.75 MHz fDCO(2,31) DCO frequency (2, 31) DCORSELx = 2, DCOx = 31, MODx = 0 3.17 7.38 MHz fDCO(3,0) DCO frequency (3, 0) DCORSELx = 3, DCOx = 0, MODx = 0 0.64 1.51 MHz fDCO(3,31) DCO frequency (3, 31) DCORSELx = 3, DCOx = 31, MODx = 0 6.07 14.0 MHz fDCO(4,0) DCO frequency (4, 0) DCORSELx = 4, DCOx = 0, MODx = 0 1.3 3.2 MHz fDCO(4,31) DCO frequency (4, 31) DCORSELx = 4, DCOx = 31, MODx = 0 12.3 28.2 MHz fDCO(5,0) DCO frequency (5, 0) DCORSELx = 5, DCOx = 0, MODx = 0 2.5 6.0 MHz fDCO(5,31) DCO frequency (5, 31) DCORSELx = 5, DCOx = 31, MODx = 0 23.7 54.1 MHz fDCO(6,0) DCO frequency (6, 0) DCORSELx = 6, DCOx = 0, MODx = 0 4.6 10.7 MHz fDCO(6,31) DCO frequency (6, 31) DCORSELx = 6, DCOx = 31, MODx = 0 39.0 88.0 MHz fDCO(7,0) DCO frequency (7, 0) DCORSELx = 7, DCOx = 0, MODx = 0 8.5 19.6 MHz fDCO(7,31) DCO frequency (7, 31) DCORSELx = 7, DCOx = 31, MODx = 0 60 135 MHz SDCORSEL Frequency step between range DCORSEL and DCORSEL + 1 SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO) 1.2 2.3 ratio SDCO Frequency step between tap DCO and DCO + 1 SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO) 1.02 1.12 ratio Duty cycle Measured at SMCLK 40% dfDCO/dT DCO frequency temperature drift fDCO = 1 MHz 0.1 %/°C dfDCO/dVCC DCO frequency voltage drift fDCO = 1 MHz 1.9 %/V 50% 60% Typical DCO Frequency, VCC = 3.0 V, TA = 25°C 100 fDCO – MHz 10 DCOx = 31 1 0.1 DCOx = 0 0 1 2 3 4 5 6 7 DCORSEL Figure 5-10. Typical DCO frequency Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 29 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.20 PMM, Brownout Reset (BOR) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS V(DVCC_BOR_IT–) BORH on voltage, DVCC falling level | dDVCC/dt | < 3 V/s V(DVCC_BOR_IT+) BORH off voltage, DVCC rising level | dDVCC/dt | < 3 V/s V(DVCC_BOR_hys) BORH hysteresis tRESET Pulse length required at RST/NMI pin to accept a reset MIN 0.80 TYP 1.30 60 MAX UNIT 1.45 V 1.50 V 250 mV 2 µs 5.21 PMM, Core Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VCORE3(AM) Core voltage, active mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA 1.90 V VCORE2(AM) Core voltage, active mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA 1.80 V VCORE1(AM) Core voltage, active mode, PMMCOREV = 1 2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 17 mA 1.60 V VCORE0(AM) Core voltage, active mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 13 mA 1.40 V VCORE3(LPM) Core voltage, low-current 2.4 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA mode, PMMCOREV = 3 1.94 V VCORE2(LPM) Core voltage, low-current 2.2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA mode, PMMCOREV = 2 1.84 V VCORE1(LPM) Core voltage, low-current 2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA mode, PMMCOREV = 1 1.64 V VCORE0(LPM) Core voltage, low-current 1.8 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA mode, PMMCOREV = 0 1.44 V 30 Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.22 PMM, SVS High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSHE = 0, DVCC = 3.6 V I(SVSH) SVS current consumption V(SVSH_IT+) SVSH on voltage level (1) SVSH off voltage level (1) tpd(SVSH) SVSH propagation delay t(SVSH) SVSH on or off delay time dVDVCC/dt DVCC rise time (1) MAX 0 SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0 2.0 µA SVSHE = 1, SVSHRVL = 0 1.59 1.64 1.69 SVSHE = 1, SVSHRVL = 1 1.79 1.84 1.91 SVSHE = 1, SVSHRVL = 2 1.98 2.04 2.11 SVSHE = 1, SVSHRVL = 3 2.10 2.16 2.23 SVSHE = 1, SVSMHRRL = 0 1.62 1.74 1.81 SVSHE = 1, SVSMHRRL = 1 1.88 1.94 2.01 SVSHE = 1, SVSMHRRL = 2 2.07 2.14 2.21 SVSHE = 1, SVSMHRRL = 3 2.20 2.26 2.33 SVSHE = 1, SVSMHRRL = 4 2.32 2.40 2.48 SVSHE = 1, SVSMHRRL = 5 2.56 2.70 2.84 SVSHE = 1, SVSMHRRL = 6 2.85 3.00 3.15 SVSHE = 1, SVSMHRRL = 7 2.85 3.00 3.15 SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1 2.5 SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0 20 SVSHE = 0→1, SVSHFP = 1 12.5 SVSHE = 0→1, SVSHFP = 0 100 0 UNIT nA 200 SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1 V(SVSH_IT–) TYP V V µs µs 1000 V/s The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and usage. 5.23 PMM, SVM High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMHE = 0, DVCC = 3.6 V I(SVMH) SVMH current consumption SVMH on or off voltage level (1) SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0 SVMH propagation delay t(SVMH) SVMH on or off delay time (1) UNIT nA 200 2.0 µA SVMHE = 1, SVSMHRRL = 0 1.65 1.74 1.86 SVMHE = 1, SVSMHRRL = 1 1.85 1.94 2.02 SVMHE = 1, SVSMHRRL = 2 2.02 2.14 2.22 SVMHE = 1, SVSMHRRL = 3 2.18 2.26 2.35 SVMHE = 1, SVSMHRRL = 4 2.32 2.40 2.48 SVMHE = 1, SVSMHRRL = 5 2.56 2.70 2.84 SVMHE = 1, SVSMHRRL = 6 2.85 3.00 3.15 SVMHE = 1, SVSMHRRL = 7 2.85 3.00 3.15 SVMHE = 1, SVMHOVPE = 1 tpd(SVMH) MAX 0 SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1 V(SVMH) TYP V 3.75 SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1 2.5 SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0 20 SVMHE = 0→1, SVSMFP = 1 12.5 SVMHE = 0→1, SVMHFP = 0 100 µs µs The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and usage. Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 31 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.24 PMM, SVS Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSLE = 0, PMMCOREV = 2 I(SVSL) SVSL current consumption tpd(SVSL) SVSL propagation delay t(SVSL) SVSL on/off delay time TYP MAX 0 SVSLE = 1, PMMCOREV = 2, SVSLFP = 0 200 SVSLE = 1, PMMCOREV = 2, SVSLFP = 1 2.0 SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1 2.5 SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0 20 SVSLE = 0→1, SVSLFP = 1 12.5 SVSLE = 0→1, SVSLFP = 0 100 UNIT nA µA µs µs 5.25 PMM, SVM Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMLE = 0, PMMCOREV = 2 I(SVML) SVML current consumption tpd(SVML) SVML propagation delay t(SVML) SVML on or off delay time TYP MAX 0 SVMLE = 1, PMMCOREV = 2, SVMLFP = 0 200 SVMLE = 1, PMMCOREV = 2, SVMLFP = 1 2.0 SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1 2.5 SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0 20 SVMLE = 0→1, SVMLFP = 1 12.5 SVMLE = 0→1, SVMLFP = 0 100 UNIT nA µA µs µs 5.26 Wake-up Times From Low-Power Modes and Reset over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TYP MAX fMCLK ≥ 4 MHz 3 6.5 1 MHz < fMCLK < 4 MHz 4 8.0 150 165 µs Wake-up time from LPM3.5 or LPM4.5 to active mode (3) 2 3 ms Wake-up time from RST or BOR event to active mode (3) 2 3 ms tWAKE-UP-FAST Wake-up time from LPM2, LPM3, or LPM4 to active mode (1) PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 1 tWAKE-UP-SLOW Wake-up time from LPM2, LPM3 or LPM4 to active mode (2) PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0 tWAKE-UP-LPM5 tWAKE-UP-RESET (1) (2) (3) 32 MIN UNIT µs This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). Fastest wake-up times are possible with SVSL and SVML in full performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVSL and SVML while operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). In this case, the SVSL and SVML are in normal mode (low current) mode when operating in AM, LPM0, and LPM1. Various options are available for SVSL and SVML while operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). This value represents the time from the wake-up event to the reset vector execution. Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.27 Timer_A, Timers TA0, TA1, and TA2 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fTA Timer_A input clock frequency Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ±10% 1.8 V, 3 V tTA,cap Timer_A capture timing All capture inputs, Minimum pulse duration required for capture 1.8 V, 3 V MIN MAX UNIT 20 MHz 20 ns 5.28 Timer_B, Timer TB0 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fTB Timer_B input clock frequency Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ±10% 1.8 V, 3 V tTB,cap Timer_B capture timing All capture inputs, Minimum pulse duration required for capture 1.8 V, 3 V MIN MAX UNIT 20 MHz 20 ns 5.29 Battery Backup over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VBAT = 1.7 V, DVCC not connected, RTC running IVBAT Current into VBAT terminal if no primary battery is connected VBAT = 2.2 V, DVCC not connected, RTC running VBAT = 3 V, DVCC not connected, RTC running VCC MIN 0.43 TA = 25°C 0.52 TA = 60°C 0.58 TA = 85°C 0.64 TA = –40°C 0.50 TA = 25°C 0.59 TA = 60°C 0.64 TA = 85°C 0.71 TA = –40°C 0.68 TA = 25°C 0.75 TA = 60°C 0.79 TA = 85°C 0.86 General VSWITCH Switch-over level (VCC to VBAT) RON_VBAT ON-resistance of switch between VBAT and VBAK VBAT3 VBAT to ADC input channel 12: VBAT divided, VBAT3 = VBAT/3 tSample, CVCC = 4.7 µF VSVSH_IT1.69 SVSHRL = 1 1.79 1.91 SVSHRL = 2 1.98 2.11 SVSHRL = 3 2.10 2.23 VBAT = 1.8 V 0V 0.35 1 1.8 V 0.6 ±5% 3V 1.0 ±5% 3.6 V 1.2 ±5% ADC12ON = 1, Error of conversion result ≤ 1 LSB 1000 VCHVx Charger end voltage CHVx = 2 2.65 V kΩ V ns 2.7 2.9 CHCx = 1 5 CHCx = 2 10 CHCx = 3 20 Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated UNIT µA 1.59 VBAT to ADC: Sampling time required if VBAT3 selected Charge limiting resistor MAX SVSHRL = 0 VBAT3 RCHARGE TYP TA = –40°C V kΩ 33 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.30 USCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fUSCI USCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) tτ UART receive deglitch time (1) (1) TEST CONDITIONS VCC MIN Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10% MAX UNIT fSYSTEM MHz 1 MHz 2.2 V 50 600 3V 50 600 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. 5.31 USCI (SPI Master Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (see Figure 5-11 and Figure 5-12) PARAMETER fUSCI USCI input clock frequency TEST CONDITIONS PMMCOREV = 0 tSU,MI SOMI input data setup time PMMCOREV = 3 PMMCOREV = 0 tHD,MI SOMI input data hold time PMMCOREV = 3 tVALID,MO SIMO output data valid time (2) (2) (3) 34 1.8 V 55 3V 38 2.4 V 30 3V 25 1.8 V 0 3V 0 2.4 V 0 3V 0 MAX UNIT fSYSTEM MHz ns ns 1.8 V 20 3V 18 UCLK edge to SIMO valid, CL = 20 pF, PMMCOREV = 3 2.4 V 16 SIMO output data hold time (3) CL = 20 pF, PMMCOREV = 3 (1) MIN UCLK edge to SIMO valid, CL = 20 pF, PMMCOREV = 0 CL = 20 pF, PMMCOREV = 0 tHD,MO VCC SMCLK, ACLK, Duty cycle = 50% ±10% 3V ns 15 1.8 V –10 3V –8 2.4 V –10 3V –8 ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)). For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-11 and Figure 5-12. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 511 and Figure 5-12. Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tHD,MO tVALID,MO SIMO Figure 5-11. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tHD,MO tVALID,MO SIMO Figure 5-12. SPI Master Mode, CKPH = 1 Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 35 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.32 USCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (see Figure 5-13 and Figure 5-14) PARAMETER TEST CONDITIONS PMMCOREV = 0 tSTE,LEAD STE lead time, STE low to clock PMMCOREV = 3 PMMCOREV = 0 tSTE,LAG STE lag time, Last clock to STE high PMMCOREV = 3 PMMCOREV = 0 tSTE,ACC STE access time, STE low to SOMI data out PMMCOREV = 3 PMMCOREV = 0 STE disable time, STE high to SOMI high impedance tSTE,DIS PMMCOREV = 3 SIMO input data setup time PMMCOREV = 3 PMMCOREV = 0 tHD,SI SIMO input data hold time PMMCOREV = 3 tVALID,SO tHD,SO (1) (2) (3) 36 SOMI output data valid time (2) SOMI output data hold time (3) MIN 11 3V 8 2.4 V 7 3V 6 1.8 V 3 3V 3 2.4 V 3 3V 3 MAX UNIT ns ns 1.8 V 66 3V 50 2.4 V 36 3V 30 1.8 V 30 3V 23 2.4 V 16 3V PMMCOREV = 0 tSU,SI VCC 1.8 V ns ns 13 1.8 V 5 3V 5 2.4 V 2 3V 2 1.8 V 5 3V 5 2.4 V 5 3V 5 ns ns UCLK edge to SOMI valid, CL = 20 pF, PMMCOREV = 0 1.8 V 76 3V 60 UCLK edge to SOMI valid, CL = 20 pF, PMMCOREV = 3 2.4 V 44 3V 40 CL = 20 pF, PMMCOREV = 0 1.8 V 18 3V 12 CL = 20 pF, PMMCOREV = 3 2.4 V 10 3V 8 ns ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)). For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13 and Figure 5-14. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13 and Figure 5-14. Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tSU,SI tLO/HI tHD,SI SIMO tHD,SO tVALID,SO tSTE,ACC tSTE,DIS SOMI Figure 5-13. SPI Slave Mode, CKPH = 0 tSTE,LAG tSTE,LEAD STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tLO/HI tHD,SI tSU,SI SIMO tSTE,ACC tHD,MO tVALID,SO tSTE,DIS SOMI Figure 5-14. SPI Slave Mode, CKPH = 1 Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 37 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.33 USCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-15) PARAMETER TEST CONDITIONS VCC MIN Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10% MAX UNIT fSYSTEM MHz 400 kHz fUSCI USCI input clock frequency fSCL SCL clock frequency tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time 2.2 V, 3 V 0 ns tSU,DAT Data setup time 2.2 V, 3 V 250 ns 2.2 V, 3 V fSCL ≤ 100 kHz fSCL ≤ 100 kHz fSCL ≤ 100 kHz tSP Pulse duration of spikes suppressed by input filter tSU,STA tHD,STA 4.7 µs 0.6 4.0 2.2 V, 3 V fSCL > 100 kHz µs 0.6 2.2 V, 3 V fSCL > 100 kHz Setup time for STOP 4.0 2.2 V, 3 V fSCL > 100 kHz tSU,STO 0 µs 0.6 2.2 V 50 600 3V 50 600 tHD,STA ns tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 5-15. I2C Mode Timing 38 Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.34 12-Bit ADC, Power Supply and Input Range Conditions over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(Ax) Analog input voltage range (2) All ADC12 analog input pins Ax IADC12_A Operating supply current into AVCC terminal (3) fADC12CLK = 5 MHz (4) CI Input capacitance Only one terminal Ax can be selected at one time Input MUX ON resistance 0 V ≤ VIN ≤ V(AVCC) RI (1) (2) (3) (4) VCC MIN TYP MAX UNIT 2.2 3.6 V 0 AVCC V 2.2 V 150 200 3V 150 250 2.2 V 20 25 pF 200 1900 Ω 10 µA The leakage current is specified by the digital I/O input leakage. The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. If the reference voltage is supplied by an external source or if the internal voltage is used and REFOUT = 1, then decoupling capacitors are required. See Section 5.40 and Section 5.41. The internal reference supply current is not included in current consumption parameter IADC12. ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0 5.35 12-Bit ADC, Timing Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC For specified performance of ADC12 linearity parameters using an external reference voltage or AVCC as reference (1) fADC12CLK ADC conversion clock For specified performance of ADC12 linearity parameters using the internal reference (2) 2.2 V, 3 V For specified performance of ADC12 linearity parameters using the internal reference (3) fADC12OSC tCONVERT tSample (1) (2) (3) (4) (5) (6) Internal ADC12 oscillator (4) Conversion time Sampling time MIN TYP MAX 0.45 4.8 5.0 0.45 2.4 4.0 0.45 2.4 2.7 4.8 5.4 ADC12DIV = 0, fADC12CLK = fADC12OSC 2.2 V, 3 V 4.2 REFON = 0, Internal oscillator, ADC12OSC used for ADC conversion clock 2.2 V, 3 V 2.4 MHz MHz 3.1 µs External fADC12CLK from ACLK, MCLK or SMCLK, ADC12SSEL ≠ 0 RS = 400 Ω, RI = 200 Ω, CI = 20 pF, τ = [RS + RI] × CI (6) UNIT (5) 2.2 V, 3 V 1000 ns REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0, SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the specified performance of the ADC12 linearity is ensured with fADC12CLK maximum of 5 MHz. SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1 SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC divided by 2. The ADC12OSC is sourced directly from MODOSC inside the UCS. 13 × ADC12DIV × 1/fADC12CLK Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) x (RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 39 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.36 12-Bit ADC, Linearity Parameters Using an External Reference Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP (2) MAX EI Integral linearity error (1) 1.4 V ≤ dVREF ≤ 1.6 V ED Differential linearity error (1) (2) 2.2 V, 3 V EO Offset error (3) dVREF ≤ 2.2 V (2) 2.2 V, 3 V ±3 ±5.6 dVREF > 2.2 V (2) 2.2 V, 3 V ±1.5 ±3.5 EG Gain error (3) (2) ET (1) (2) (3) 1.6 V < dVREF ±1.7 ±1 2.2 V, 3 V ±1 ±2.5 (2) 2.2 V, 3 V ±3.5 ±7.1 dVREF > 2.2 V (2) 2.2 V, 3 V ±2 ±5 dVREF ≤ 2.2 V Total unadjusted error ±2 2.2 V, 3 V (2) UNIT LSB LSB LSB LSB LSB Parameters are derived using the histogram method. The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = VR+ - VR-. VR+ < AVCC. VR- > AVSS. Unless otherwise mentioned, dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω, and two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF+/VREF- to decouple the dynamic current. See also the MSP430F5xx and MSP430F6xx Family User's Guide (SLAU208). Parameters are derived using a best fit curve. 5.37 12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT EI Integral linearity error See (2) 2.2 V, 3 V ±1.7 LSB ED Differential linearity error (1) See (2) 2.2 V, 3 V ±1 LSB EO Offset error (3) See (2) 2.2 V, 3 V ±1 ±2 LSB EG Gain error (3) See (2) 2.2 V, 3 V ±2 ±4 LSB ET Total unadjusted error See (2) 2.2 V, 3 V ±2 ±5 LSB TYP MAX UNIT (1) (2) (3) (1) Parameters are derived using the histogram method. AVCC as reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 0. Parameters are derived using a best fit curve. 5.38 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER EI Integral linearity error (2) ED Differential linearity error (2) EO Offset error (3) EG Gain error (3) ET Total unadjusted error (1) (2) (3) (4) 40 TEST CONDITIONS (1) ADC12SR = 0, REFOUT = 1 fADC12CLK ≤ 4.0 MHz ADC12SR = 0, REFOUT = 0 fADC12CLK ≤ 2.7 MHz ADC12SR = 0, REFOUT = 1 fADC12CLK ≤ 4.0 MHz ADC12SR = 0, REFOUT = 1 fADC12CLK ≤ 2.7 MHz ADC12SR = 0, REFOUT = 0 fADC12CLK ≤ 2.7 MHz ADC12SR = 0, REFOUT = 1 fADC12CLK ≤ 4.0 MHz ADC12SR = 0, REFOUT = 0 fADC12CLK ≤ 2.7 MHz ADC12SR = 0, REFOUT = 1 fADC12CLK ≤ 4.0 MHz ADC12SR = 0, REFOUT = 0 fADC12CLK ≤ 2.7 MHz ADC12SR = 0, REFOUT = 1 fADC12CLK ≤ 4.0 MHz ADC12SR = 0, REFOUT = 0 fADC12CLK ≤ 2.7 MHz VCC MIN ±1.7 2.2 V, 3 V ±2.5 -1 +1.5 -1 +2.5 2.2 V, 3 V 2.2 V, 3 V 2.2 V, 3 V 2.2 V, 3 V ±1 ±2 ±4 ±2 ±4 ±1 ±2.5 LSB LSB LSB (4) VREF ±5 LSB ±1% ±2 LSB ±1% (4) VREF The external reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 1. dVREF = VR+ - VR-. Parameters are derived using the histogram method. Parameters are derived using a best fit curve. The gain error and the total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In this mode the reference voltage used by the ADC12_A is not available on a pin. Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.39 12-Bit ADC, Temperature Sensor and Built-In VMID over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS ADC12ON = 1, INCH = 0Ah, TA = 0°C (1) VCC MIN TYP 2.2 V 680 3V 680 2.2 V 2.25 3V 2.25 MAX VSENSOR See TCSENSOR Temperature coefficient of sensor ADC12ON = 1, INCH = 0Ah tSENSOR(sample) Sample time required if channel 10 is selected (2) (3) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB 2.2 V 100 3V 100 VMID AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID is approximately 0.5 × VAVCC 2.2 V 1.06 1.1 1.14 3V 1.46 1.5 1.54 tVMID(sample) Sample time required if channel 11 is selected (4) ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 2.2 V, 3 V 1000 (1) (2) (3) (4) UNIT mV mV/°C µs V ns The temperature sensor is provided by the REF module. See the REF module parametric, IREF+, regarding the current consumption of the temperature sensor. The temperature sensor offset can be significant. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor. The TLV structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature,°C) + VSENSOR, where TCSENSOR and VSENSOR can be computed from the calibration values for higher accuracy. See also the MSP430F5xx and MSP430F6xx Family User's Guide (SLAU208). The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. Typical Temperature Sensor Voltage (mV) 1000 950 900 850 800 750 700 650 600 550 500 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 Ambient Temperature (°C) Figure 5-16. Typical Temperature Sensor Voltage Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 41 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.40 REF, External Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT VeREF+ Positive external reference voltage input VeREF+ > VREF-/VeREF- (2) 1.4 AVCC V VREF-/VeREF- Negative external reference voltage input VeREF+ > VREF-/VeREF- (3) 0 1.2 V VeREF+ – VREF-/VeREF- Differential external reference voltage input VeREF+ > VREF-/VeREF- (4) 1.4 AVCC V –26 26 IVeREF+, IVREF- Static input current /VeREF- CVREF+/(1) (2) (3) (4) (5) 42 Capacitance at VREF+ or VREF- terminal (5) 1.4 V ≤ VeREF+ ≤ VAVCC , VeREF- = 0 V, fADC12CLK = 5 MHz, ADC12SHTx = 1h, Conversion rate 200 ksps 2.2 V, 3 V 1.4 V ≤ VeREF+ ≤ VAVCC , VeREF- = 0 V, fADC12CLK = 5 MHZ, ADC12SHTx = 8h, Conversion rate 20 ksps 2.2 V, 3 V µA –1.2 +1.2 10 µF The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to let the charge settle for 12-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.41 REF, Built-In Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS REFVSEL = {2} for 2.5 V, REFON = REFOUT = 1 , IVREF+ = 0 A VREF+ REFVSEL = {1} for 2 V, Positive built-in reference REFON = REFOUT = 1, voltage output IVREF+ = 0 A REFVSEL = {0} for 1.5 V, REFON = REFOUT = 1, IVREF+ = 0 A AVCC(min) VCC TYP MAX 3V 2.5 ±1% 3V 2.0 ±1% 2.2 V, 3 V 1.5 ±1% REFVSEL = {0} for 1.5 V AVCC minimum voltage, Positive built-in reference REFVSEL = {1} for 2 V active REFVSEL = {2} for 2.5 V MIN V 2.2 2.3 V 2.8 ADC12SR = 1 (4), REFON = 1, REFOUT = 0, REFBURST = 0 IREF+ UNIT 70 100 µA 0.45 0.75 mA 210 310 µA ADC12SR = 0 (4), REFON = 1, REFOUT = 1, REFBURST = 0 0.95 1.7 mA 1500 ADC12SR = 1 (4), REFON = 1, REFOUT = 1, Operating supply current REFBURST = 0 into AVCC terminal (2) (3) ADC12SR = 0 (4), REFON = 1, REFOUT = 0, REFBURST = 0 3V IL(VREF+) Load-current regulation, VREF+ terminal (5) REFVSEL = {0, 1, 2} IVREF+ = +10 µA , –1000 µA AVCC = AVCC(min) for each reference level, REFVSEL = {0, 1, 2}, REFON = REFOUT = 1 CVREF+ Capacitance at VREF+ terminal REFON = REFOUT = 1, (6) 0 mA ≤ IVREF+ ≤ IVREF+(max) TCREF+ Temperature coefficient of built-in reference (7) IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ –1 mA REFOUT = 0 2.2 V, 3 V 20 TCREF+ Temperature coefficient of built-in reference (7) IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ –1 mA REFOUT = 1 2.2 V, 3 V 20 50 ppm/ °C PSRR_DC Power supply rejection ratio (DC) AVCC = AVCC(min) through AVCC(max), TA = 25°C, REFVSEL = {0, 1, 2}, REFON = 1, REFOUT = 0 or 1 120 300 µV/V PSRR_AC Power supply rejection ratio (AC) AVCC = AVCC(min) through AVCC(max), TA = 25°C, REFVSEL = {0, 1, 2}, REFON = 1, REFOUT = 0 or 1 1 2.2 V, 3 V AVCC = AVCC(min) through AVCC(max), REFVSEL = {0, 1, 2}, REFOUT = 0, REFON = 0 → 1 tSETTLE (1) (2) (3) (4) (5) (6) (7) (8) Settling time of reference AVCC = AVCC(min) through AVCC(max), voltage (8) CVREF = CVREF(max), REFVSEL = {0, 1, 2}, REFOUT = 1, REFON = 0 → 1 20 2500 µV/mA 100 pF ppm/ °C mV/V 75 µs 75 The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers, one smaller and one larger for driving the VREF+ terminal. When REFOUT = 1, the reference is available at the VREF+ terminal, as well as, used as the reference for the conversion and uses the larger buffer. When REFOUT = 0, the reference is only used as the reference for the conversion and uses the smaller buffer. The internal reference current is supplied by the AVCC terminal. Consumption is independent of the ADC12ON control bit, unless a conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current contribution of the larger buffer without external load. The temperature sensor is provided by the REF module. Its current is supplied by terminal AVCC and is equivalent to IREF+ with REFON = 1 and REFOUT = 0. For devices without the ADC12, the parametric with ADC12SR = 0 are applicable. Contribution only due to the reference and buffer including package. This does not include resistance due to PCB traces or other external factors. Connect two decoupling capacitors, 10 µF and 100 nF, to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). Calculated using the box method: (MAX(–40°C to +85°C) – MIN(–40°C to +85°C)) / MIN(–40°C to +85°C)/(85°C – (–40°C)). The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external capacitive load when REFOUT = 1. Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 43 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.42 12-Bit DAC, Supply Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER AVCC TEST CONDITIONS Analog supply voltage AVCC = DVCC, AVSS = DVSS = 0 V DAC12AMPx = 2, DAC12IR = 0, DAC12OG = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = 1.5 V Supply current, single DAC channel (1) IDD VCC MIN 2.20 3V DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AVCC (2) DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AVCC PSRR (1) (2) (3) (4) Power supply rejection ratio (3) (4) DAC12_xDAT = 800h, VeREF+ = 1.5 V or 2.5 V, ΔAVCC = 100 mV MAX UNIT 3.60 V 65 110 125 165 µA 2.2 V, 3 V DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AVCC DAC12_xDAT = 800h, VeREF+ = 1.5 V, ΔAVCC = 100 mV TYP 250 350 750 1100 2.2 V 70 3V 70 dB No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications. PSRR = 20 log (ΔAVCC / ΔVDAC12_xOUT) The internal reference is not used. 5.43 12-Bit DAC, Linearity Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17) PARAMETER TEST CONDITIONS VCC MIN TYP MAX Resolution 12-bit monotonic INL Integral nonlinearity (1) VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V ±2 ±4 (2) VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V ±2 ±4 DNL Differential nonlinearity (1) VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V ±0.4 ±1 (2) VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V ±0.4 ±1 Without calibration (1) EO Offset voltage With calibration dE(O)/dT Offset error temperature coefficient (1) EG Gain error (1) (2) (3) 44 (1) (3) 12 (3) VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V UNIT bits LSB LSB ±21 (2) ±21 mV VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V ±1.5 (2) ±1.5 With calibration 2.2 V, 3 V ±10 µV/°C VeREF+ = 1.5 V 2.2 V ±2.5 VeREF+ = 2.5 V 3V ±2.5 %FSR Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first-order equation: y = a + bx. VDAC12_xOUT = EO + (1 + EG) × (VeREF+ / 4095) × DAC12_xDAT, DAC12IR = 1. This parameter is not production tested. The offset calibration works on the output operational amplifier. Offset calibration is triggered by setting the DAC12CALON bit. Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 12-Bit DAC, Linearity Specifications (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17) PARAMETER dE(G)/dT Gain temperature coefficient (1) tOffset_Cal Time for offset calibration (4) TEST CONDITIONS VCC MIN 2.2 V, 3 V TYP UNIT ppm of FSR/ °C 10 DAC12AMPx = 2 165 DAC12AMPx = 3, 5 2.2 V, 3 V 66 DAC12AMPx = 4, 6, 7 (4) MAX ms 16.5 The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. TI recommends configuring the DAC12 module before initiating calibration. Port activity during calibration may effect accuracy and is not recommended. DAC VOUT DAC Output VR+ RLoad = ¥ Ideal transfer function AVCC 2 CLoad = 100 pF Offset Error Positive Negative Gain Error DAC Code Figure 5-17. Linearity Test Load Conditions and Gain/Offset Definition Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 45 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.44 12-Bit DAC, Output Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC No load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 No load, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 Output voltage range (1) (see Figure 5-18) VO TYP MAX 0 0.005 AVCC – 0.05 AVCC 2.2 V, 3 V RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 CL(DAC12) Maximum DAC12 load capacitance 2.2 V, 3 V IL(DAC12) DAC12AMPx = 2, DAC12_xDAT = 0FFFh, Maximum DAC12 VO/P(DAC12) > AVCC – 0.3 load current DAC12AMPx = 2, DAC12_xDAT = 0h, VO/P(DAC12) < 0.3 V 2.2 V, 3 V V 0 0.1 AVCC – 0.13 AVCC 100 pF mA 1 Output resistance RLoad = 3 kΩ, VO/P(DAC12) > AVCC – 0.3 V, (see Figure 5-18) DAC12_xDAT = 0FFFh 2.2 V, 3 V 150 250 150 250 RLoad = 3 kΩ, 0.3 V ≤ VO/P(DAC12) ≤ AVCC – 0.3 V (1) UNIT –1 RLoad = 3 kΩ, VO/P(DAC12) < 0.3 V, DAC12AMPx = 2, DAC12_xDAT = 0h RO/P(DAC12) MIN Ω 6 Data is valid after the offset calibration of the output amplifier. RO/P(DAC12_x) ILoad Max RLoad AVCC DAC12 2 O/P(DAC12_x) CLoad = 100 pF Min 0.3 AVCC – 0.3 V VOUT AVCC Figure 5-18. DAC12_x Output Resistance Tests 46 Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.45 12-Bit DAC, Reference Input Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS DAC12IR = 0 (1) Reference input voltage range VeREF+ VCC (2) 2.2 V, 3 V DAC12IR = 1 (3) (4) DAC12_0 IR = DAC12_1 IR = 0 Ri(VREF+), Ri(VeREF+) MIN (6) AVCC /3 AVCC + 0.2 AVCC AVCC + 0.2 UNIT V MΩ 48 2.2 V, 3 V DAC12_0 IR = 0, DAC12_1 IR = 1 48 DAC12_0 IR = DAC12_1 IR = 1, DAC12_0 SREFx = DAC12_1 SREFx (6) (1) (2) (3) (4) (5) MAX 20 DAC12_0 IR = 1, DAC12_1 IR = 0 Reference input resistance (5) TYP kΩ 24 For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = (AVCC – VE(O)) / (3 × (1 + EG)). For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = (AVCC – VE(O)) / (1 + EG). This impedance depends on tradeoff in power savings. Current devices have 48 kΩ for each channel when divide is enabled. Can be increased if performance can be maintained. When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance. 5.46 12-Bit DAC, Dynamic Specifications VREF = VCC, DAC12IR = 1 (see Figure 5-19 and Figure 5-20), over recommended ranges of supply voltage and operating freeair temperature (unless otherwise noted) PARAMETER tON DAC12 on time TEST CONDITIONS DAC12_xDAT = 800h, ErrorV(O) < ±0.5 LSB (1) (see Figure 5-19) VCC MIN DAC12AMPx = 0 → {2, 3, 4} DAC12AMPx = 0 → {5, 6} 2.2 V, 3 V DAC12AMPx = 0 → 7 DAC12AMPx = 2 tS(FS) Settling time, full scale DAC12_xDAT = 80h → F7Fh → 80h DAC12AMPx = 3, 5 2.2 V, 3 V DAC12AMPx = 4, 6, 7 tS(C-C) Settling time, code to code DAC12_xDAT = 3F8h → 408h → 3F8h, BF8h → C08h → BF8h DAC12AMPx = 2 DAC12AMPx = 3, 5 Slew rate DAC12_xDAT = 80h → F7Fh → 80h (2) (1) (2) DAC12_xDAT = 800h → 7FFh → 800h DAC12AMPx = 7 15 30 6 12 100 200 40 80 15 30 UNIT µs µs µs 1 2.2 V, 3 V DAC12AMPx = 4, 6, 7 Glitch energy 120 2 DAC12AMPx = 4, 6, 7 DAC12AMPx = 3, 5 MAX 60 5 2.2 V, 3 V DAC12AMPx = 2 SR TYP 0.05 0.35 0.35 1.10 1.50 5.20 2.2 V, 3 V 35 V/µs nV-s RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 5-19. Slew rate applies to output voltage steps ≥ 200 mV. Conversion 1 VOUT DAC Output ILoad RLoad = 3 kW Conversion 2 Conversion 3 ±1/2 LSB Glitch Energy AVCC 2 RO/P(DAC12.x) ±1/2 LSB CLoad = 100 pF tsettleLH tsettleHL Figure 5-19. Settling Time and Glitch Energy Testing Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 47 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com Conversion 1 Conversion 2 Conversion 3 VOUT 90% 90% 10% 10% tSRHL tSRLH Figure 5-20. Slew Rate Testing 5.47 12-Bit DAC, Dynamic Specifications (Continued) over recommended ranges of supply voltage and TA = 25°C (unless otherwise noted) PARAMETER BW–3dB TEST CONDITIONS MIN DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 3-dB bandwidth, VDC = 1.5 V, VAC = 0.1 VPP (see Figure 5-21) TYP MAX UNIT 40 DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 2.2 V, 3 V 180 DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h kHz 550 DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, fDAC12_1OUT = 10 kHz at 50/50 duty cycle Channel-to-channel crosstalk (1) (see Figure 5-22) (1) VCC –80 2.2 V, 3 V DAC12_0DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, DAC12_1DAT = 800h, No load, fDAC12_0OUT = 10 kHz at 50/50 duty cycle dB –80 RLoad = 3 kΩ, CLoad = 100 pF RLoad = 3 kW ILoad VeREF+ AVCC DAC12_x 2 DACx AC CLoad = 100 pF DC Figure 5-21. Test Conditions for 3-dB Bandwidth Specification RLoad ILoad AVCC DAC12_0 2 DAC0 DAC12_xDAT 080h F7Fh 080h F7Fh 080h VOUT CLoad = 100 pF VREF+ VDAC12_yOUT RLoad ILoad AVCC DAC12_1 VDAC12_xOUT 2 DAC1 1/fToggle CLoad = 100 pF Figure 5-22. Crosstalk Test Conditions 48 Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.48 Comparator_B over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC TEST CONDITIONS VCC Supply voltage MIN TYP 1.8 3.6 1.8 V IAVCC_COMP Comparator operating supply current into AVCC terminal, Excludes reference resistor ladder CBPWRMD = 00 30 50 3V 40 65 2.2 V, 3 V 10 30 2.2 V, 3 V 0.1 0.5 VIC Common-mode input range VOFFSET Input offset voltage CIN Input capacitance RSIN Series input resistance tPD Propagation delay, response time tPD,filter 2.2 V CBPWRMD = 10 Quiescent current of local reference voltage amplifier CBREFACC = 1, CBREFLx = 01 into AVCC terminal 0 V µA VCC - 1 V ±20 CBPWRMD = 01, 10 ±10 5 ON (switch closed) 3 µA 22 CBPWRMD = 00 OFF (switch open) UNIT 40 CBPWRMD = 01 IAVCC_REF Propagation delay with filter active MAX mV pF 4 50 kΩ MΩ CBPWRMD = 00, CBF = 0 450 CBPWRMD = 01, CBF = 0 600 CBPWRMD = 10, CBF = 0 50 CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00 0.35 0.6 1.0 CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01 0.6 1.0 1.8 CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10 1.0 1.8 3.4 CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11 1.8 3.4 6.5 ns µs µs tEN_CMP Comparator enable time, settling time CBON = 0 to CBON = 1 CBPWRMD = 00, 01, 10 1 2 µs tEN_REF Resistor reference enable time CBON = 0 to CBON = 1 0.3 1.5 µs VCB_REF Reference voltage for a given tap VIN = reference into resistor ladder, n = 0 to 31 VIN × (n + 1) / 32 VIN × (n + 1.5) / 32 V VIN × (n + 0.5) / 32 Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 49 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.49 Ports PU.0 and PU.1 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VOH High-level output voltage VUSB = 3.3 V ±10%, IOH = –25 mA VOL Low-level output voltage VUSB = 3.3 V ±10%, IOL = 25 mA VIH High-level input voltage VUSB = 3.3 V ±10% VIL Low-level input voltage VUSB = 3.3 V ±10% MIN MAX UNIT 2.4 V 0.4 V 2.0 V 0.8 V MIN MAX UNIT 2.8 3.6 5.50 USB Output Ports DP and DM over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VOH D+, D– single ended USB 2.0 load conditions VOL D+, D– single ended USB 2.0 load conditions Z(DRV) D+, D– impedance Including external series resistor of 27 Ω tRISE Rise time tFALL Fall time V 0 0.3 V 28 44 Ω Full speed, differential, CL = 50 pF, 10%/90%, Rpu on D+ 4 20 ns Full speed, differential, CL = 50 pF, 10%/90%, Rpu on D+ 4 20 ns 5.51 USB Input Ports DP and DM over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) MIN MAX V(CM) Differential input common-mode range PARAMETER 0.8 2.5 Z(IN) Input impedance 300 VCRS Crossover voltage 1.3 VIL Static SE input logic low level VIH Static SE input logic high level VDI Differential input voltage UNIT V kΩ 2.0 V 0.8 V 2.0 V 0.2 V 5.52 USB-PWR (USB Power System) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VLAUNCH VBUS detection threshold VBUS USB bus voltage VUSB USB LDO output voltage TEST CONDITIONS Normal operation MIN TYP 3.76 3.3 (1) MAX UNIT 3.75 V 5.5 V ±9% V V18 Internal USB voltage IUSB_EXT Maximum external current from VUSB terminal (2) IDET USB LDO current overload detection (3) ISUSPEND Operating supply current into VBUS terminal. (4) CBUS VBUS terminal recommended capacitance 4.7 µF CUSB VUSB terminal recommended capacitance 220 nF C18 V18 terminal recommended capacitance 220 nF tENABLE Settling time VUSB and V18 RPUR Pullup resistance of PUR terminal (5) (1) (2) (3) (4) (5) 50 1.8 USB LDO is on 60 USB LDO is on, USB PLL disabled V 12 mA 100 mA 250 µA Within 2%, recommended capacitances 70 110 2 ms 150 Ω This voltage is for internal use only. No external DC loading should be applied. This represents additional current that can be supplied to the application from the VUSB terminal beyond the needs of the USB operation. A current overload is detected when the total current supplied from the USB LDO, including IUSB_EXT, exceeds this value. Does not include current contribution of Rpu and Rpd as outlined in the USB specification. This value, in series with an external resistor between PUR and D+, produces the Rpu as outlined in the USB specification. Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 5.53 USB-PLL (USB Phase-Locked Loop) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IPLL Operating supply current fPLL PLL frequency fUPD PLL reference frequency tLOCK PLL lock time tJitter PLL jitter TEST CONDITIONS VCC MIN TYP MAX 7 48 1.5 mA MHz 3 MHz 2 ms 1000 Specifications Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated UNIT ps 51 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 5.54 Flash Memory over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS DVCC(PGM/ERASE) Program and erase supply voltage MIN TYP 1.8 MAX 3.6 UNIT V IPGM Average supply current from DVCC during program 3 5 mA IERASE Average supply current from DVCC during erase 6 11 mA IMERASE, IBANK Average supply current from DVCC during mass erase or bank erase 6 11 mA tCPT Cumulative program time See (1) 16 104 Program and erase endurance 105 ms cycles tRetention Data retention duration TJ = 25°C tWord Word or byte program time See (2) 64 85 µs tBlock, 0 Block program time for first byte or word See (2) 49 65 µs 1–(N–1) Block program time for each additional byte or word, except for last byte or word See (2) 37 49 µs Block program time for last byte or word See (2) 55 73 µs Erase time for segment, mass erase, and bank erase when available See (2) 23 32 ms 0 1 MHz tBlock, tBlock, tSeg N Erase fMCLK,MRG (1) (2) 100 MCLK frequency in marginal read mode (FCTL4.MRG0 = 1 or FCTL4.MRG1 = 1) years The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word or byte write and block write modes. These values are hardwired into the flash controller state machine. 5.55 JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2.2 V, 3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse duration 2.2 V, 3 V 0.025 15 µs tSBW, En Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1) 2.2 V, 3 V 1 µs tSBW,Rst Spy-Bi-Wire return to normal operation time 100 µs fTCK TCK input frequency (4-wire JTAG) (2) Rinternal Internal pulldown resistance on TEST (1) (2) 52 15 2.2 V 0 5 MHz 3V 0 10 MHz 2.2 V, 3 V 45 80 kΩ 60 Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge. fTCK may be restricted to meet the timing requirements of the module selected. Specifications Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 6 Detailed Description 6.1 Overview The MSP430F563x devices include a high-performance 12-bit ADC, a comparator, two USCIs, USB 2.0, a hardware multiplier, DMA, four 16-bit timers, an RTC module with alarm capabilities, and up to 74 I/O pins. 6.2 CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers (see Figure 6-1). Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with all instructions. Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Figure 6-1. CPU Registers Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 53 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 6.3 www.ti.com Instruction Set The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 6-1 shows examples of the three types of instruction formats; Table 6-2 shows the address modes. Table 6-1. Instruction Word Formats INSTRUCTION WORD FORMAT Dual operands, source-destination Single operands, destination only EXAMPLE ADD R4 + R5 → R5 R8 PC → (TOS), R8 → PC CALL Relative jump, un/conditional OPERATION R4,R5 JNE Jump-on-equal bit = 0 Table 6-2. Address Mode Descriptions ADDRESS MODE S (1) D (1) SYNTAX EXAMPLE Register + + MOV Rs,Rd MOV R10,R11 R10 → R11 Indexed + + MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) → M(6+R6) Symbolic (PC relative) + + MOV EDE,TONI Absolute + + MOV &MEM, &TCDAT Indirect + MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect auto-increment + MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2 → R10 Immediate + MOV #X,TONI MOV #45,TONI #45 → M(TONI) (1) S = source, D = destination 54 Detailed Description OPERATION M(EDE) → M(TONI) M(MEM) → M(TCDAT) Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com 6.4 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Operating Modes These devices have one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. Software can configure the following operating modes: • Active mode (AM) – All clocks are active • Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active, MCLK is disabled – FLL loop control remains active • Low-power mode 1 (LPM1) – CPU is disabled – FLL loop control is disabled – ACLK and SMCLK remain active, MCLK is disabled • Low-power mode 2 (LPM2) – CPU is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO remains enabled – ACLK remains active • Low-power mode 3 (LPM3) – CPU is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO is disabled – ACLK remains active • Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO is disabled – Crystal oscillator is stopped – Complete data retention • Low-power mode 3.5 (LPM3.5) – Internal regulator disabled – No data retention – RTC enabled and clocked by low-frequency oscillator – Wake-up signal from RST/NMI, RTC_B, P1, P2, P3, and P4 • Low-power mode 4.5 (LPM4.5) – Internal regulator disabled – No data retention – Wake-up signal from RST/NMI, P1, P2, P3, and P4 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 55 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 6.5 www.ti.com Interrupt Vector Addresses The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence (see Table 6-3). Table 6-3. Interrupt Sources, Flags, and Vectors of MSP430F563x Configurations INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY System Reset Power-Up, External Reset Watchdog Time-out, Key Violation Flash Memory Key Violation WDTIFG, KEYV (SYSRSTIV) (1) (2) Reset 0FFFEh 63, highest System NMI PMM Vacant Memory Access JTAG Mailbox SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) (1) (Non)maskable 0FFFCh 62 User NMI NMI Oscillator Fault Flash Memory Access Violation NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV) (1) (2) (Non)maskable 0FFFAh 61 Comp_B Comparator B interrupt flags (CBIV) (1) (3) Maskable 0FFF8h 60 Timer TB0 Maskable 0FFF6h 59 TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6, TB0IFG (TBIV) (1) (3) Maskable 0FFF4h 58 Watchdog Interval Timer Mode WDTIFG Maskable 0FFF2h 57 USCI_A0 Receive or Transmit UCA0RXIFG, UCA0TXIFG (UCA0IV) (1) (3) Maskable 0FFF0h 56 USCI_B0 Receive or Transmit UCB0RXIFG, UCB0TXIFG (UCB0IV) (1) (3) Maskable 0FFEEh 55 Timer TB0 ADC12_A (4) Maskable 0FFECh 54 TA0CCR0 CCIFG0 (3) Maskable 0FFEAh 53 Timer TA0 TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4, TA0IFG (TA0IV) (1) (3) Maskable 0FFE8h 52 USB_UBM USB interrupts (USBIV) (1) (3) Maskable 0FFE6h 51 DMA DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG, DMA4IFG, DMA5IFG (DMAIV) (1) (3) Maskable 0FFE4h 50 Timer TA1 TA1CCR0 CCIFG0 (3) Maskable 0FFE2h 49 Timer TA1 TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV) (1) (3) Maskable 0FFE0h 48 (3) Maskable 0FFDEh 47 USCI_A1 Receive or Transmit UCA1RXIFG, UCA1TXIFG (UCA1IV) Maskable 0FFDCh 46 USCI_B1 Receive or Transmit UCB1RXIFG, UCB1TXIFG (UCB1IV) (1) (3) Maskable 0FFDAh 45 Maskable 0FFD8h 44 P2IFG.0 to P2IFG.7 (P2IV) (1) (3) Reserved Reserved Maskable 0FFD6h 43 RTC_B RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV) (1) (3) Maskable 0FFD4h 42 DAC12_A (5) DAC12_0IFG, DAC12_1IFG (1) (3) Maskable 0FFD2h 41 Timer TA2 56 P1IFG.0 to P1IFG.7 (P1IV) (1) (1) (3) I/O Port P2 (3) (4) (5) ADC12IFG0 to ADC12IFG15 (ADC12IV) (1) (3) Timer TA0 I/O Port P1 (1) (2) TB0CCR0 CCIFG0 (3) TA2CCR0 CCIFG0 (3) Maskable 0FFD0h 40 Timer TA2 TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2, TA2IFG (TA2IV) (1) (3) Maskable 0FFCEh 39 I/O Port P3 P3IFG.0 to P3IFG.7 (P3IV) (1) (3) Maskable 0FFCCh 38 I/O Port P4 P4IFG.0 to P4IFG.7 (P4IV) (1) (3) Maskable 0FFCAh 37 Multiple source flags A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. Interrupt flags are located in the module. Only on devices with peripheral module ADC12_A, otherwise reserved. Only on devices with peripheral module DAC12_A, otherwise reserved. Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-3. Interrupt Sources, Flags, and Vectors of MSP430F563x Configurations (continued) (6) INTERRUPT SOURCE INTERRUPT FLAG Reserved Reserved (6) SYSTEM INTERRUPT WORD ADDRESS PRIORITY 0FFC8h 36 ⋮ ⋮ 0FF80h 0, lowest Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, TI recommends reserving these locations. 6.6 Memory Table 6-4 shows the memory organization for all device variants. Table 6-4. Memory Organization (1) (2) Memory (flash) Main: interrupt vector Main: code memory RAM USB RAM (3) Information memory (flash) Bootloader (BSL) memory (flash) Peripherals (1) (2) (3) MSP430F5636 MSP430F5633 MSP430F5630 MSP430F5637 MSP430F5634 MSP430F5631 MSP430F5638 MSP430F5635 MSP430F5632 128KB 00FFFFh-00FF80h 192KB 00FFFFh-00FF80h 256KB 00FFFFh-00FF80h Bank 3 N/A N/A 64KB 047FFFh-038000h Bank 2 N/A 64KB 037FFFh-028000h 64KB 037FFFh-028000h Bank 1 64KB 027FFFh-018000h 64KB 027FFFh-018000h 64KB 027FFFh-018000h Bank 0 64KB 017FFFh-008000h 64KB 017FFFh-008000h 64KB 017FFFh-008000h Sector 3 4KB 0063FFh-005400h 4KB 0063FFh-005400h 4KB 0063FFh-005400h Sector 2 4KB 0053FFh-004400h 4KB 0053FFh-004400h 4KB 0053FFh-004400h Sector 1 4KB 0043FFh-003400h 4KB 0043FFh-003400h 4KB 0043FFh-003400h Sector 0 4KB 0033FFh-002400h 4KB 0033FFh-002400h 4KB 0033FFh-002400h Size RAM 2KB 0023FFh-001C00h 2KB 0023FFh-001C00h 2KB 0023FFh-001C00h Info A 128 B 0019FFh-001980h 128 B 0019FFh-001980h 128 B 0019FFh-001980h Info B 128 B 00197Fh-001900h 128 B 00197Fh-001900h 128 B 00197Fh-001900h Info C 128 B 0018FFh-001880h 128 B 0018FFh-001880h 128 B 0018FFh-001880h Info D 128 B 00187Fh-001800h 128 B 00187Fh-001800h 128 B 00187Fh-001800h BSL 3 512 B 0017FFh-001600h 512 B 0017FFh-001600h 512 B 0017FFh-001600h BSL 2 512 B 0015FFh-001400h 512 B 0015FFh-001400h 512 B 0015FFh-001400h BSL 1 512 B 0013FFh-001200h 512 B 0013FFh-001200h 512 B 0013FFh-001200h BSL 0 512 B 0011FFh-001000h 512 B 0011FFh-001000h 512 B 0011FFh-001000h Size 4KB 000FFFh-000000h 4KB 000FFFh-000000h 4KB 000FFFh-000000h Total Size N/A = Not available. Backup RAM is accessed through the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3. USB RAM can be used as general-purpose RAM when not used for USB operation. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 57 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 6.7 www.ti.com Bootloader (BSL) The BSL enables users to program the flash memory or RAM using various serial interfaces. Access to the device memory by the BSL is protected by an user-defined password. For complete description of the features of the BSL and its implementation, see MSP430 Programming With the Bootloader (BSL) (SLAU319). 6.7.1 USB BSL All devices come preprogrammed with the USB BSL. Use of the USB BSL requires external access to six pins (see Table 6-5). In addition to these pins, the application must support external components necessary for normal USB operation; for example, the proper crystal on XT2IN and XT2OUT or proper decoupling. Table 6-5. USB BSL Pin Requirements and Functions DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal PU.0/DP USB data terminal DP PU.1/DM USB data terminal DM PUR USB pullup resistor terminal VBUS USB bus power supply VSSU USB ground supply NOTE The default USB BSL evaluates the logic level of the PUR pin after a BOR reset. If the PUR pin is pulled high externally, the BSL is invoked. Therefore, unless the application is invoking the BSL, it is important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI recommends applying a 1-MΩ resistor to ground. 6.7.2 UART BSL A UART BSL is also available that can be programmed by the user into the BSL memory by replacing the preprogrammed, factory supplied, USB BSL. Use of the UART BSL requires external access to six pins (see Table 6-6). Table 6-6. UART BSL Pin Requirements and Functions 58 Detailed Description DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P1.1 Data transmit P1.2 Data receive VCC Power supply VSS Ground supply Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com 6.8 6.8.1 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 JTAG Operation JTAG Standard Interface The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. Table 6-7 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430™ Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320). Table 6-7. JTAG Pin Requirements and Functions 6.8.2 DEVICE SIGNAL DIRECTION FUNCTION PJ.3/TCK IN JTAG clock input PJ.2/TMS IN JTAG state control PJ.1/TDI/TCLK IN JTAG data input, TCLK input PJ.0/TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset VCC Power supply VSS Ground supply Spy-Bi-Wire Interface In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 6-8 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320). Table 6-8. Spy-Bi-Wire Pin Requirements and Functions 6.9 DEVICE SIGNAL DIRECTION FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input/output VCC Power supply VSS Ground supply Flash Memory (Link to User's Guide) The flash memory can be programmed by the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. • Segment A can be locked separately. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 59 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.10 RAM (Link to User's Guide) The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all data is lost. Features of the RAM include: • RAM has n sectors. The size of a sector can be found in Memory Organization. • Each sector 0 to n can be complete disabled; however, data retention is lost. • Each sector 0 to n automatically enters low power retention mode when possible. • For devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required. 6.11 Backup RAM The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during operation from a backup supply if the Battery Backup System module is implemented. There are 8 bytes of backup RAM available on MSP430F563x. It can be wordwise accessed by the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3. 6.12 Peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). 6.12.1 Digital I/O (Link to User's Guide) Up to nine 8-bit I/O ports are implemented: P1 through P6, P8, and P9 are complete, P7 contains six individual I/O ports, and PJ contains four individual I/O ports. • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt conditions is possible. • Programmable pullup or pulldown on all ports. • Programmable drive strength on all ports. • Edge-selectable interrupt input capability for all the eight bits of ports P1, P2, P3, and P4. • Read and write access to port-control registers is supported by all instructions. • Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PD). 6.12.2 Port Mapping Controller (Link to User's Guide) The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2. Table 6-9 lists the mnemonic for each function that can be assigned. Table 6-9. Port Mapping Mnemonics and Functions VALUE PxMAPy MNEMONIC INPUT PIN FUNCTION 0 PM_NONE None DVSS PM_CBOUT - Comparator_B output 1 PM_TB0CLK Timer TB0 clock input - PM_ADC12CLK - ADC12CLK PM_DMAE0 DMAE0 Input - PM_SVMOUT - SVM output PM_TB0OUTH Timer TB0 high impedance input TB0OUTH - 4 PM_TB0CCR0B Timer TB0 CCR0 capture input CCI0B Timer TB0: TB0.0 compare output Out0 5 PM_TB0CCR1B Timer TB0 CCR1 capture input CCI1B Timer TB0: TB0.1 compare output Out1 6 PM_TB0CCR2B Timer TB0 CCR2 capture input CCI2B Timer TB0: TB0.2 compare output Out2 2 3 60 OUTPUT PIN FUNCTION Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-9. Port Mapping Mnemonics and Functions (continued) VALUE PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION 7 PM_TB0CCR3B Timer TB0 CCR3 capture input CCI3B Timer TB0: TB0.3 compare output Out3 8 PM_TB0CCR4B Timer TB0 CCR4 capture input CCI4B Timer TB0: TB0.4 compare output Out4 9 PM_TB0CCR5B Timer TB0 CCR5 capture input CCI5B Timer TB0: TB0.5 compare output Out5 10 PM_TB0CCR6B Timer TB0 CCR6 capture input CCI6B Timer TB0: TB0.6 compare output Out6 11 12 13 14 15 16 PM_UCA0RXD USCI_A0 UART RXD (Direction controlled by USCI – input) PM_UCA0SOMI USCI_A0 SPI slave out master in (direction controlled by USCI) PM_UCA0TXD USCI_A0 UART TXD (Direction controlled by USCI – output) PM_UCA0SIMO USCI_A0 SPI slave in master out (direction controlled by USCI) PM_UCA0CLK USCI_A0 clock input/output (direction controlled by USCI) PM_UCB0STE USCI_B0 SPI slave transmit enable (direction controlled by USCI – input) PM_UCB0SOMI USCI_B0 SPI slave out master in (direction controlled by USCI) PM_UCB0SCL USCI_B0 I2C clock (open drain and direction controlled by USCI) PM_UCB0SIMO USCI_B0 SPI slave in master out (direction controlled by USCI) PM_UCB0SDA USCI_B0 I2C data (open drain and direction controlled by USCI) PM_UCB0CLK USCI_B0 clock input/output (direction controlled by USCI) PM_UCA0STE USCI_A0 SPI slave transmit enable (direction controlled by USCI – input) 17 PM_MCLK - 18 Reserved Reserved for test purposes. Do not use this setting. 19 Reserved 20-30 Reserved 31 (0FFh) (1) (1) MCLK Reserved for test purposes. Do not use this setting. None PM_ANALOG DVSS Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents when applying analog signals. The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are 5 bits wide and the upper bits are ignored, which results in a maximum value of 31. Table 6-10 lists the default port mapping for all supported pins. Table 6-10. Default Mapping PIN PxMAPy MNEMONIC P2.0/P2MAP0 PM_UCB0STE, PM_UCA0CLK USCI_B0 SPI slave transmit enable (direction controlled by USCI – input), USCI_A0 clock input/output (direction controlled by USCI) P2.1/P2MAP1 PM_UCB0SIMO, PM_UCB0SDA USCI_B0 SPI slave in master out (direction controlled by USCI), USCI_B0 I2C data (open drain and direction controlled by USCI) P2.2/P2MAP2 PM_UCB0SOMI, PM_UCB0SCL USCI_B0 SPI slave out master in (direction controlled by USCI), USCI_B0 I2C clock (open drain and direction controlled by USCI) P2.3/P2MAP3 PM_UCB0CLK, PM_UCA0STE USCI_B0 clock input/output (direction controlled by USCI), USCI_A0 SPI slave transmit enable (direction controlled by USCI – input) P2.4/P2MAP4 PM_UCA0TXD, PM_UCA0SIMO USCI_A0 UART TXD (direction controlled by USCI – output), USCI_A0 SPI slave in master out (direction controlled by USCI) P2.5/P2MAP5 PM_UCA0RXD, PM_UCA0SOMI USCI_A0 UART RXD (direction controlled by USCI – input), USCI_A0 SPI slave out master in (direction controlled by USCI) P2.6/P2MAP6 PM_NONE - DVSS P2.7/P2MAP7 PM_NONE - DVSS INPUT PIN FUNCTION OUTPUT PIN FUNCTION Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 61 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.12.3 Oscillator and System Clock (Link to User's Guide) The clock system is supported by the Unified Clock System (UCS) module that includes support for a 32kHz watch crystal oscillator (in XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT2. The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turnon clock source and stabilizes in 3 µs (typical). The UCS module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally-controlled oscillator DCO. • Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to ACLK. • Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources available to ACLK. • ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32. 6.12.4 Power-Management Module (PMM) (Link to User's Guide) The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during poweron and power-off. The SVS and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply. 6.12.5 Hardware Multiplier (MPY) (Link to User's Guide) The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations. 6.12.6 Real-Time Clock (RTC_B) (Link to User's Guide) The RTC_B module can be configured for real-time clock (RTC) or calendar mode providing seconds, minutes, hours, day of week, day of month, month, and year. Calendar mode integrates an internal calendar which compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. The implementation on this device supports operation in LPM3.5 mode and operation from a backup supply. The application report Using the MSP430 RTC_B Module With Battery Backup Supply (SLAA665) describes how to use the RTC_B with battery backup supply functionality to retain the time and keep the RTC counting through loss of main power supply, and how to perform correct reinitialization when the main power supply is restored. 6.12.7 Watchdog Timer (WDT_A) (Link to User's Guide) The primary function of the WDT_A module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. 62 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 6.12.8 System Module (SYS) (Link to User's Guide) The SYS module handles many of the system functions within the device. These include power-on reset and power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootloader entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application. Table 6-11 lists the SYS interrupt vector registers. Table 6-11. System Module Interrupt Vector Registers INTERRUPT VECTOR REGISTER INTERRUPT EVENT WORD ADDRESS OFFSET No interrupt pending 00h Brownout (BOR) 02h RST/NMI (BOR) 04h PMMSWBOR (BOR) 06h LPM3.5 or LPM4.5 wakeup (BOR) 08h Security violation (BOR) 0Ah SVSL (POR) 0Ch SVSH (POR) 0Eh SVML_OVP (POR) SYSRSTIV, System Reset SVMH_OVP (POR) 019Eh 12h 14h WDT time-out (PUC) 16h WDT key violation (PUC) 18h KEYV flash key violation (PUC) 1Ah Reserved 1Ch Peripheral area fetch (PUC) 1Eh PMM key violation (PUC) 20h Reserved 22h to 3Eh No interrupt pending 00h SYSUNIV, User NMI SYSBERRIV, Bus Error SVMLIFG 02h SVMHIFG 04h DLYLIFG 06h DLYHIFG 08h VMAIFG 019Ch 0Ch JMBOUTIFG 0Eh SVMLVLRIFG 10h SVMHVLRIFG 12h Reserved 14h to 1Eh No interrupt pending 00h NMIIFG 02h OFIFG 04h 019Ah BUSIFG 08h 0Ah to 1Eh No interrupt pending 00h Reserved 0198h Highest Lowest Highest 06h Reserved USB wait state time-out Lowest 0Ah JMBINIFG ACCVIFG Highest 10h PMMSWPOR (POR) SYSSNIV, System NMI PRIORITY Lowest 02h Highest 04h to 1Eh Lowest Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 63 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.12.9 DMA Controller (Link to User's Guide) The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. Table 6-12 lists the trigger assignments for each DMA channel. The USB timestamp generator also uses the channel 0, 1, and 2 DMA trigger assignments (see Table 612). Table 6-12. DMA Trigger Assignments (1) TRIGGER CHANNEL 0 1 1 TA0CCR0 CCIFG 2 TA0CCR2 CCIFG 3 TA1CCR0 CCIFG 4 TA1CCR2 CCIFG 5 TA2CCR0 CCIFG 6 TA2CCR2 CCIFG 7 TBCCR0 CCIFG 8 TBCCR2 CCIFG 9 Reserved 10 Reserved 11 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Reserved 16 UCA0RXIFG 17 UCA0TXIFG 18 UCB0RXIFG 19 UCB0TXIFG 20 UCA1RXIFG 21 UCA1TXIFG 22 UCB1RXIFG 23 UCB1TXIFG 24 ADC12IFGx (2) 25 DAC12_0IFG (3) 26 DAC12_1IFG (3) 27 USB FNRXD 28 USB ready 30 31 (2) (3) 64 3 DMAREQ 29 (1) 2 0 4 5 DMA3IFG DMA4IFG MPY ready DMA5IFG DMA0IFG DMA1IFG DMA2IFG DMAE0 Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers will not cause any DMA trigger event when selected. Only on devices with peripheral module ADC12_A. Reserved on devices without ADC. Only on devices with peripheral module DAC12_A. Reserved on devices without DAC. Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 6.12.10 Universal Serial Communication Interface (USCI) (Links to User's Guide: UART Mode, SPI Mode, I2C Mode) The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3-pin or 4-pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions, A and B. The USCI_An module provides support for SPI (3-pin or 4-pin), UART, enhanced UART, or IrDA. The USCI_Bn module provides support for SPI (3-pin or 4-pin) or I2C. The MSP430F563x series includes two complete USCI modules (n = 0 to 1). 6.12.11 Timer TA0 (Link to User's Guide) Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers (see Table 6-13). TA0 can support multiple capture/compares, PWM outputs, and interval timing. TA0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/compare register. Table 6-13. Timer TA0 Signal Connections INPUT PIN NUMBER PZ ZQW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 34-P1.0 L5-P1.0 TA0CLK TACLK ACLK ACLK SMCLK SMCLK 34-P1.0 L5-P1.0 TA0CLK TACLK 35-P1.1 M5-P1.1 TA0.0 CCI0A DVSS CCI0B DVSS GND DVCC VCC 36-P1.2 J6-P1.2 TA0.1 CCI1A 40-P1.6 J7-P1.6 TA0.1 CCI1B DVSS MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA CCR0 CCR1 TA0 TA1 OUTPUT PIN NUMBER PZ ZQW 35-P1.1 M5-P1.1 36-P1.2 J6-P1.2 40-P1.6 J7-P1.6 TA0.0 TA0.1 ADC12_A (internal) (1) ADC12SHSx = {1} DVCC VCC 37-P1.3 H6-P1.3 TA0.2 CCI2A 37-P1.3 H6-P1.3 41-P1.7 M7-P1.7 TA0.2 CCI2B 41-P1.7 M7-P1.7 DVSS GND 38-P1.4 M6-P1.4 39-P1.5 L6-P1.5 38-P1.4 39-P1.5 (1) GND MODULE BLOCK M6-P1.4 L6-P1.5 DVCC VCC TA0.3 CCI3A DVSS CCI3B DVSS GND DVCC VCC TA0.4 CCI4A DVSS CCI4B DVSS GND DVCC VCC CCR2 CCR3 CCR4 TA2 TA3 TA4 TA0.2 TA0.3 TA0.4 Only on devices with peripheral module ADC12_A. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 65 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.12.12 Timer TA1 (Link to User's Guide) Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers(see Table 6-14). TA1 supports multiple capture/compares, PWM outputs, and interval timing. TA1 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/compare register. Table 6-14. Timer TA1 Signal Connections INPUT PIN NUMBER PZ ZQW DEVICE INPUT SIGNAL 42-P3.0 L7-P3.0 TA1CLK ACLK SMCLK SMCLK L7-P3.0 TA1CLK TACLK 43-P3.1 H7-P3.1 TA1.0 CCI0A DVSS CCI0B DVSS GND 45-P3.3 66 TACLK ACLK 42-P3.0 44-P3.2 (1) MODULE INPUT SIGNAL M8-P3.2 L8-P3.3 DVCC VCC TA1.1 CCI1A CBOUT (internal) CCI1B DVSS GND DVCC VCC TA1.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA CCR0 CCR1 TA0 TA1 OUTPUT PIN NUMBER PZ ZQW 43-P3.1 H7-P3.1 44-P3.2 M8-P3.2 TA1.0 TA1.1 DAC12_A (1) DAC12_0, DAC12_1 (internal) 45-P3.3 CCR2 TA2 L8-P3.3 TA1.2 Only on devices with peripheral module DAC12_A. Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 6.12.13 Timer TA2 (Link to User's Guide) Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers(see Table 6-15). TA2 supports multiple capture/compares, PWM outputs, and interval timing. TA2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/compare register. Table 6-15. Timer TA2 Signal Connections INPUT PIN NUMBER PZ ZQW DEVICE INPUT SIGNAL 46-P3.4 J8-P3.4 TA2CLK MODULE INPUT SIGNAL TACLK ACLK ACLK SMCLK SMCLK 46-P3.4 J8-P3.4 TA2CLK TACLK 47-P3.5 M9-P3.5 TA2.0 CCI0A DVSS CCI0B DVSS GND 48-P3.6 49-P3.7 L9-P3.6 M10-P3.7 DVCC VCC TA2.1 CCI1A CBOUT (internal) CCI1B DVSS GND DVCC VCC TA2.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA CCR0 CCR1 CCR2 TA0 TA1 TA2 OUTPUT PIN NUMBER PZ ZQW 47-P3.5 M9-P3.5 48-P3.6 L9-P3.6 49-P3.7 M10-P3.7 TA2.0 TA2.1 TA2.2 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 67 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.12.14 Timer TB0 (Link to User's Guide) Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers(see Table 6-16). TB0 supports multiple capture/compares, PWM outputs, and interval timing. TB0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each capture/compare register. Table 6-16. Timer TB0 Signal Connections INPUT PIN NUMBER PZ ZQW 58-P8.0 P2MAPx (1) J11-P8.0 P2MAPx (1) DEVICE INPUT SIGNAL MODULE INPUT SIGNAL TB0CLK TB0CLK ACLK ACLK SMCLK SMCLK 58-P8.0 P2MAPx (1) J11-P8.0 P2MAPx (1) TB0CLK TB0CLK 50-P4.0 J9-P4.0 TB0.0 CCI0A P2MAPx (1) P2MAPx (1) TB0.0 MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA GND DVCC VCC PZ ZQW 50-P4.0 CCI0B DVSS OUTPUT PIN NUMBER P2MAPx CCR0 TB0 TB0.0 (1) J9-P4.0 P2MAPx (1) ADC12 (internal) (2) ADC12SHSx = {2} 51-P4.1 M11-P4.1 TB0.1 CCI1A 51-P4.1 M11-P4.1 P2MAPx (1) P2MAPx (1) TB0.1 CCI1B P2MAPx (1) P2MAPx (1) DVSS GND CCR1 TB1 TB0.1 ADC12 (internal) (2) ADC12SHSx = {3} DVCC VCC 52-P4.2 L10-P4.2 TB0.2 CCI2A 52-P4.2 L10-P4.2 P2MAPx (1) P2MAPx (1) TB0.2 CCI2B P2MAPx (1) P2MAPx (1) DVSS GND CCR2 TB2 TB0.2 DAC12_A (3) DAC12_0, DAC12_1 (internal) DVCC VCC 53-P4.3 M12-P4.3 TB0.3 CCI3A 53-P4.3 M12-P4.3 P2MAPx (1) P2MAPx (1) TB0.3 CCI3B P2MAPx (1) P2MAPx (1) DVSS GND CCR3 TB3 TB0.3 DVCC VCC 54-P4.4 L12-P4.4 TB0.4 CCI4A 54-P4.4 L12-P4.4 P2MAPx (1) P2MAPx (1) TB0.4 CCI4B P2MAPx (1) P2MAPx (1) DVSS GND 55-P4.5 L11-P4.5 55-P4.5 P2MAPx L11-P4.5 (1) 56-P4.6 P2MAPx (1) (2) (3) 68 P2MAPx (1) K11-P4.6 (1) P2MAPx (1) DVCC VCC TB0.5 CCI5A TB0.5 CCI5B DVSS GND DVCC VCC TB0.6 CCI6A TB0.6 CCI6B DVSS GND DVCC VCC CCR4 CCR5 TB4 TB5 TB0.4 TB0.5 P2MAPx (1) 56-P4.6 CCR6 TB6 TB0.6 P2MAPx (1) P2MAPx (1) K11-P4.6 P2MAPx (1) Timer functions selectable by the port mapping controller. Only on devices with peripheral module ADC12_A. Only on devices with peripheral module DAC12_A. Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 6.12.15 Comparator_B (Link to User's Guide) The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals. 6.12.16 ADC12_A (Link to User's Guide) The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. 6.12.17 DAC12_A (Link to User's Guide) The DAC12_A module is a 12-bit R-ladder voltage-output DAC. The DAC12_A may be used in 8-bit or 12bit mode, and may be used with the DMA controller. When multiple DAC12_A modules are present, they may be grouped together for synchronous operation. 6.12.18 CRC16 (Link to User's Guide) The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard. 6.12.19 Voltage Reference (REF) Module (Link to User's Guide) The REF module generates all of the critical reference voltages that can be used by the various analog peripherals in the device. 6.12.20 USB Universal Serial Bus (Link to User's Guide) The USB module is a fully integrated USB interface that is compliant with the USB 2.0 specification. The module supports full-speed operation of control, interrupt, and bulk transfers. The module includes an integrated LDO, PHY, and PLL. The PLL is highly flexible and can support a wide range of input clock frequencies. USB RAM, when not used for USB communication, can be used by the system. 6.12.21 Embedded Emulation Module (EEM) (Link to User's Guide) The EEM supports real-time in-system debugging. The L version of the EEM has the following features: • Eight hardware triggers or breakpoints on memory access • Two hardware triggers or breakpoints on CPU register write access • Up to 10 hardware triggers can be combined to form complex triggers or breakpoints • Two cycle counters • Sequencer • State storage • Clock control on module level Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 69 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.12.22 Peripheral File Map Table 6-17 lists the register base address for all of the available peripheral modules. Table 6-17. Peripherals (1) 70 MODULE NAME BASE ADDRESS OFFSET ADDRESS RANGE (1) Special Functions (see Table 6-18) 0100h 000h-01Fh PMM (see Table 6-19) 0120h 000h-010h Flash Control (see Table 6-20) 0140h 000h-00Fh CRC16 (see Table 6-21) 0150h 000h-007h RAM Control (see Table 6-22) 0158h 000h-001h Watchdog (see Table 6-23) 015Ch 000h-001h UCS (see Table 6-24) 0160h 000h-01Fh SYS (see Table 6-25) 0180h 000h-01Fh Shared Reference (see Table 6-26) 01B0h 000h-001h 000h-003h Port Mapping Control (see Table 6-27) 01C0h Port Mapping Port P2 (see Table 6-27) 01D0h 000h-007h Port P1, P2 (see Table 6-28) 0200h 000h-01Fh Port P3, P4 (see Table 6-29) 0220h 000h-01Fh Port P5, P6 (see Table 6-30) 0240h 000h-00Bh Port P7, P8 (see Table 6-31) 0260h 000h-00Bh Port P9 (see Table 6-32) 0280h 000h-00Bh Port PJ (see Table 6-33) 0320h 000h-01Fh Timer TA0 (see Table 6-34) 0340h 000h-02Eh Timer TA1 (see Table 6-35) 0380h 000h-02Eh Timer TB0 (see Table 6-36) 03C0h 000h-02Eh Timer TA2 (see Table 6-37) 0400h 000h-02Eh Battery Backup (see Table 6-38) 0480h 000h-01Fh RTC_B (see Table 6-39) 04A0h 000h-01Fh 32-bit Hardware Multiplier (see Table 6-40) 04C0h 000h-02Fh DMA General Control (see Table 6-41) 0500h 000h-00Fh DMA Channel 0 (see Table 6-41) 0510h 000h-00Ah DMA Channel 1 (see Table 6-41) 0520h 000h-00Ah DMA Channel 2 (see Table 6-41) 0530h 000h-00Ah DMA Channel 3 (see Table 6-41) 0540h 000h-00Ah DMA Channel 4 (see Table 6-41) 0550h 000h-00Ah DMA Channel 5 (see Table 6-41) 0560h 000h-00Ah USCI_A0 (see Table 6-42) 05C0h 000h-01Fh USCI_B0 (see Table 6-43) 05E0h 000h-01Fh USCI_A1 (see Table 6-44) 0600h 000h-01Fh USCI_B1 (see Table 6-45) 0620h 000h-01Fh ADC12_A (see Table 6-46) 0700h 000h-03Fh DAC12_A (see Table 6-47) 0780h 000h-01Fh Comparator_B (see Table 6-48) 08C0h 000h-00Fh USB configuration (see Table 6-49) 0900h 000h-014h USB control (see Table 6-50) 0920h 000h-01Fh For a detailed description of the individual control register offset addresses, see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-18. Special Function Registers (Base Address: 0100h) REGISTER DESCRIPTION REGISTER OFFSET SFR interrupt enable SFRIE1 00h SFR interrupt flag SFRIFG1 02h SFR reset pin control SFRRPCR 04h Table 6-19. PMM Registers (Base Address: 0120h) REGISTER DESCRIPTION REGISTER OFFSET PMM control 0 PMMCTL0 00h PMM control 1 PMMCTL1 02h SVS high-side control SVSMHCTL 04h SVS low-side control SVSMLCTL 06h PMM interrupt flags PMMIFG 0Ch PMM interrupt enable PMMIE 0Eh PMM power mode 5 control PM5CTL0 10h Table 6-20. Flash Control Registers (Base Address: 0140h) REGISTER DESCRIPTION REGISTER OFFSET Flash control 1 FCTL1 00h Flash control 3 FCTL3 04h Flash control 4 FCTL4 06h Table 6-21. CRC16 Registers (Base Address: 0150h) REGISTER DESCRIPTION REGISTER OFFSET CRC data input CRC16DI 00h CRC result CRC16INIRES 04h Table 6-22. RAM Control Registers (Base Address: 0158h) REGISTER DESCRIPTION RAM control 0 REGISTER RCCTL0 OFFSET 00h Table 6-23. Watchdog Registers (Base Address: 015Ch) REGISTER DESCRIPTION Watchdog timer control REGISTER WDTCTL OFFSET 00h Table 6-24. UCS Registers (Base Address: 0160h) REGISTER DESCRIPTION REGISTER OFFSET UCS control 0 UCSCTL0 00h UCS control 1 UCSCTL1 02h UCS control 2 UCSCTL2 04h UCS control 3 UCSCTL3 06h UCS control 4 UCSCTL4 08h UCS control 5 UCSCTL5 0Ah UCS control 6 UCSCTL6 0Ch UCS control 7 UCSCTL7 0Eh UCS control 8 UCSCTL8 10h Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 71 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com Table 6-25. SYS Registers (Base Address: 0180h) REGISTER DESCRIPTION REGISTER OFFSET System control SYSCTL 00h Bootloader configuration area SYSBSLC 02h JTAG mailbox control SYSJMBC 06h JTAG mailbox input 0 SYSJMBI0 08h JTAG mailbox input 1 SYSJMBI1 0Ah JTAG mailbox output 0 SYSJMBO0 0Ch JTAG mailbox output 1 SYSJMBO1 0Eh Bus error vector generator SYSBERRIV 18h User NMI vector generator SYSUNIV 1Ah System NMI vector generator SYSSNIV 1Ch Reset vector generator SYSRSTIV 1Eh Table 6-26. Shared Reference Registers (Base Address: 01B0h) REGISTER DESCRIPTION Shared reference control REGISTER REFCTL OFFSET 00h Table 6-27. Port Mapping Registers (Base Address of Port Mapping Control: 01C0h, Port P2: 01D0h) REGISTER DESCRIPTION REGISTER OFFSET Port mapping password PMAPPWD 00h Port mapping control PMAPCTL 02h Port P2.0 mapping P2MAP0 00h Port P2.1 mapping P2MAP1 01h Port P2.2 mapping P2MAP2 02h Port P2.3 mapping P2MAP3 03h Port P2.4 mapping P2MAP4 04h Port P2.5 mapping P2MAP5 05h Port P2.6 mapping P2MAP6 06h Port P2.7 mapping P2MAP7 07h Table 6-28. Port P1, P2 Registers (Base Address: 0200h) REGISTER DESCRIPTION REGISTER OFFSET Port P1 input P1IN 00h Port P1 output P1OUT 02h Port P1 direction P1DIR 04h Port P1 pullup/pulldown enable P1REN 06h Port P1 drive strength P1DS 08h Port P1 selection P1SEL 0Ah Port P1 interrupt vector word P1IV 0Eh Port P1 interrupt edge select P1IES 18h Port P1 interrupt enable P1IE 1Ah Port P1 interrupt flag P1IFG 1Ch Port P2 input P2IN 01h Port P2 output P2OUT 03h Port P2 direction P2DIR 05h Port P2 pullup/pulldown enable P2REN 07h 72 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-28. Port P1, P2 Registers (Base Address: 0200h) (continued) REGISTER DESCRIPTION REGISTER OFFSET Port P2 drive strength P2DS 09h Port P2 selection P2SEL 0Bh Port P2 interrupt vector word P2IV 1Eh Port P2 interrupt edge select P2IES 19h Port P2 interrupt enable P2IE 1Bh Port P2 interrupt flag P2IFG 1Dh Table 6-29. Port P3, P4 Registers (Base Address: 0220h) REGISTER DESCRIPTION REGISTER OFFSET Port P3 input P3IN 00h Port P3 output P3OUT 02h Port P3 direction P3DIR 04h Port P3 pullup/pulldown enable P3REN 06h Port P3 drive strength P3DS 08h Port P3 selection P3SEL 0Ah Port P3 interrupt vector word P3IV 0Eh Port P3 interrupt edge select P3IES 18h Port P3 interrupt enable P3IE 1Ah Port P3 interrupt flag P3IFG 1Ch Port P4 input P4IN 01h Port P4 output P4OUT 03h Port P4 direction P4DIR 05h Port P4 pullup/pulldown enable P4REN 07h Port P4 drive strength P4DS 09h Port P4 selection P4SEL 0Bh Port P4 interrupt vector word P4IV 1Eh Port P4 interrupt edge select P4IES 19h Port P4 interrupt enable P4IE 1Bh Port P4 interrupt flag P4IFG 1Dh Table 6-30. Port P5, P6 Registers (Base Address: 0240h) REGISTER DESCRIPTION REGISTER OFFSET Port P5 input P5IN 00h Port P5 output P5OUT 02h Port P5 direction P5DIR 04h Port P5 pullup/pulldown enable P5REN 06h Port P5 drive strength P5DS 08h Port P5 selection P5SEL 0Ah Port P6 input P6IN 01h Port P6 output P6OUT 03h Port P6 direction P6DIR 05h Port P6 pullup/pulldown enable P6REN 07h Port P6 drive strength P6DS 09h Port P6 selection P6SEL 0Bh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 73 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com Table 6-31. Port P7, P8 Registers (Base Address: 0260h) REGISTER DESCRIPTION REGISTER OFFSET Port P7 input P7IN 00h Port P7 output P7OUT 02h Port P7 direction P7DIR 04h Port P7 pullup/pulldown enable P7REN 06h Port P7 drive strength P7DS 08h Port P7 selection P7SEL 0Ah Port P8 input P8IN 01h Port P8 output P8OUT 03h Port P8 direction P8DIR 05h Port P8 pullup/pulldown enable P8REN 07h Port P8 drive strength P8DS 09h Port P8 selection P8SEL 0Bh Table 6-32. Port P9 Register (Base Address: 0280h) REGISTER DESCRIPTION REGISTER OFFSET Port P9 input P9IN 00h Port P9 output P9OUT 02h Port P9 direction P9DIR 04h Port P9 pullup/pulldown enable P9REN 06h Port P9 drive strength P9DS 08h Port P9 selection P9SEL 0Ah Table 6-33. Port J Registers (Base Address: 0320h) REGISTER DESCRIPTION REGISTER OFFSET Port PJ input PJIN 00h Port PJ output PJOUT 02h Port PJ direction PJDIR 04h Port PJ pullup/pulldown enable PJREN 06h Port PJ drive strength PJDS 08h Table 6-34. TA0 Registers (Base Address: 0340h) REGISTER DESCRIPTION REGISTER OFFSET TA0 control TA0CTL 00h Capture/compare control 0 TA0CCTL0 02h Capture/compare control 1 TA0CCTL1 04h Capture/compare control 2 TA0CCTL2 06h Capture/compare control 3 TA0CCTL3 08h Capture/compare control 4 TA0CCTL4 0Ah TA0 counter TA0R 10h Capture/compare 0 TA0CCR0 12h Capture/compare 1 TA0CCR1 14h Capture/compare 2 TA0CCR2 16h Capture/compare 3 TA0CCR3 18h Capture/compare 4 TA0CCR4 1Ah TA0 expansion 0 TA0EX0 20h TA0 interrupt vector TA0IV 2Eh 74 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-35. TA1 Registers (Base Address: 0380h) REGISTER DESCRIPTION REGISTER OFFSET TA1 control TA1CTL 00h Capture/compare control 0 TA1CCTL0 02h Capture/compare control 1 TA1CCTL1 04h Capture/compare control 2 TA1CCTL2 06h TA1 counter TA1R 10h Capture/compare 0 TA1CCR0 12h Capture/compare 1 TA1CCR1 14h Capture/compare 2 TA1CCR2 16h TA1 expansion 0 TA1EX0 20h TA1 interrupt vector TA1IV 2Eh Table 6-36. TB0 Registers (Base Address: 03C0h) REGISTER DESCRIPTION REGISTER OFFSET TB0 control TB0CTL 00h Capture/compare control 0 TB0CCTL0 02h Capture/compare control 1 TB0CCTL1 04h Capture/compare control 2 TB0CCTL2 06h Capture/compare control 3 TB0CCTL3 08h Capture/compare control 4 TB0CCTL4 0Ah Capture/compare control 5 TB0CCTL5 0Ch Capture/compare control 6 TB0CCTL6 0Eh TB0 counter TB0R 10h Capture/compare 0 TB0CCR0 12h Capture/compare 1 TB0CCR1 14h Capture/compare 2 TB0CCR2 16h Capture/compare 3 TB0CCR3 18h Capture/compare 4 TB0CCR4 1Ah Capture/compare 5 TB0CCR5 1Ch Capture/compare 6 TB0CCR6 1Eh TB0 expansion 0 TB0EX0 20h TB0 interrupt vector TB0IV 2Eh Table 6-37. TA2 Registers (Base Address: 0400h) REGISTER DESCRIPTION REGISTER OFFSET TA2 control TA2CTL 00h Capture/compare control 0 TA2CCTL0 02h Capture/compare control 1 TA2CCTL1 04h Capture/compare control 2 TA2CCTL2 06h TA2 counter TA2R 10h Capture/compare 0 TA2CCR0 12h Capture/compare 1 TA2CCR1 14h Capture/compare 2 TA2CCR2 16h TA2 expansion 0 TA2EX0 20h TA2 interrupt vector TA2IV 2Eh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 75 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com Table 6-38. Battery Backup Registers (Base Address: 0480h) REGISTER DESCRIPTION REGISTER OFFSET Battery backup memory 0 BAKMEM0 00h Battery backup memory 1 BAKMEM1 02h Battery backup memory 2 BAKMEM2 04h Battery backup memory 3 BAKMEM3 06h Battery backup control BAKCTL 1Ch Battery charger control BAKCHCTL 1Eh Table 6-39. Real-Time Clock Registers (Base Address: 04A0h) REGISTER DESCRIPTION REGISTER OFFSET RTC control 0 RTCCTL0 00h RTC control 1 RTCCTL1 01h RTC control 2 RTCCTL2 02h RTC control 3 RTCCTL3 03h RTC prescaler 0 control RTCPS0CTL 08h RTC prescaler 1 control RTCPS1CTL 0Ah RTC prescaler 0 RTCPS0 0Ch RTC prescaler 1 RTCPS1 0Dh RTC interrupt vector word RTCIV 0Eh RTC seconds RTCSEC 10h RTC minutes RTCMIN 11h RTC hours RTCHOUR 12h RTC day of week RTCDOW 13h RTC days RTCDAY 14h RTC month RTCMON 15h RTC year low RTCYEARL 16h RTC year high RTCYEARH 17h RTC alarm minutes RTCAMIN 18h RTC alarm hours RTCAHOUR 19h RTC alarm day of week RTCADOW 1Ah RTC alarm days RTCADAY 1Bh Binary-to-BCD conversion BIN2BCD 1Ch BCD-to-binary conversion BCD2BIN 1Eh Table 6-40. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) REGISTER DESCRIPTION REGISTER OFFSET 16-bit operand 1 – multiply MPY 00h 16-bit operand 1 – signed multiply MPYS 02h 16-bit operand 1 – multiply accumulate MAC 04h 16-bit operand 1 – signed multiply accumulate MACS 06h 16-bit operand 2 OP2 08h 16 × 16 result low word RESLO 0Ah 16 × 16 result high word RESHI 0Ch 16 × 16 sum extension SUMEXT 0Eh 32-bit operand 1 – multiply low word MPY32L 10h 32-bit operand 1 – multiply high word MPY32H 12h 32-bit operand 1 – signed multiply low word MPYS32L 14h 32-bit operand 1 – signed multiply high word MPYS32H 16h 76 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-40. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued) REGISTER DESCRIPTION REGISTER OFFSET 32-bit operand 1 – multiply accumulate low word MAC32L 18h 32-bit operand 1 – multiply accumulate high word MAC32H 1Ah 32-bit operand 1 – signed multiply accumulate low word MACS32L 1Ch 32-bit operand 1 – signed multiply accumulate high word MACS32H 1Eh 32-bit operand 2 – low word OP2L 20h 32-bit operand 2 – high word OP2H 22h 32 × 32 result 0 – least significant word RES0 24h 32 × 32 result 1 RES1 26h 32 × 32 result 2 RES2 28h 32 × 32 result 3 – most significant word RES3 2Ah MPY32 control 0 MPY32CTL0 2Ch Table 6-41. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h) REGISTER DESCRIPTION REGISTER OFFSET DMA general control: DMA module control 0 DMACTL0 00h DMA general control: DMA module control 1 DMACTL1 02h DMA general control: DMA module control 2 DMACTL2 04h DMA general control: DMA module control 3 DMACTL3 06h DMA general control: DMA module control 4 DMACTL4 08h DMA general control: DMA interrupt vector DMAIV 0Ah DMA channel 0 control DMA0CTL 00h DMA channel 0 source address low DMA0SAL 02h DMA channel 0 source address high DMA0SAH 04h DMA channel 0 destination address low DMA0DAL 06h DMA channel 0 destination address high DMA0DAH 08h DMA channel 0 transfer size DMA0SZ 0Ah DMA channel 1 control DMA1CTL 00h DMA channel 1 source address low DMA1SAL 02h DMA channel 1 source address high DMA1SAH 04h DMA channel 1 destination address low DMA1DAL 06h DMA channel 1 destination address high DMA1DAH 08h DMA channel 1 transfer size DMA1SZ 0Ah DMA channel 2 control DMA2CTL 00h DMA channel 2 source address low DMA2SAL 02h DMA channel 2 source address high DMA2SAH 04h DMA channel 2 destination address low DMA2DAL 06h DMA channel 2 destination address high DMA2DAH 08h DMA channel 2 transfer size DMA2SZ 0Ah DMA channel 3 control DMA3CTL 00h DMA channel 3 source address low DMA3SAL 02h DMA channel 3 source address high DMA3SAH 04h DMA channel 3 destination address low DMA3DAL 06h DMA channel 3 destination address high DMA3DAH 08h DMA channel 3 transfer size DMA3SZ 0Ah DMA channel 4 control DMA4CTL 00h Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 77 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com Table 6-41. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h) (continued) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 4 source address low DMA4SAL 02h DMA channel 4 source address high DMA4SAH 04h DMA channel 4 destination address low DMA4DAL 06h DMA channel 4 destination address high DMA4DAH 08h DMA channel 4 transfer size DMA4SZ 0Ah DMA channel 5 control DMA5CTL 00h DMA channel 5 source address low DMA5SAL 02h DMA channel 5 source address high DMA5SAH 04h DMA channel 5 destination address low DMA5DAL 06h DMA channel 5 destination address high DMA5DAH 08h DMA channel 5 transfer size DMA5SZ 0Ah Table 6-42. USCI_A0 Registers (Base Address: 05C0h) REGISTER DESCRIPTION REGISTER OFFSET USCI control 0 UCA0CTL0 00h USCI control 1 UCA0CTL1 01h USCI baud rate 0 UCA0BR0 06h USCI baud rate 1 UCA0BR1 07h USCI modulation control UCA0MCTL 08h USCI status UCA0STAT 0Ah USCI receive buffer UCA0RXBUF 0Ch USCI transmit buffer UCA0TXBUF 0Eh USCI LIN control UCA0ABCTL 10h USCI IrDA transmit control UCA0IRTCTL 12h USCI IrDA receive control UCA0IRRCTL 13h USCI interrupt enable UCA0IE 1Ch USCI interrupt flags UCA0IFG 1Dh USCI interrupt vector word UCA0IV 1Eh Table 6-43. USCI_B0 Registers (Base Address: 05E0h) REGISTER DESCRIPTION REGISTER OFFSET USCI synchronous control 0 UCB0CTL0 00h USCI synchronous control 1 UCB0CTL1 01h USCI synchronous bit rate 0 UCB0BR0 06h USCI synchronous bit rate 1 UCB0BR1 07h USCI synchronous status UCB0STAT 0Ah USCI synchronous receive buffer UCB0RXBUF 0Ch USCI synchronous transmit buffer UCB0TXBUF 0Eh USCI I2C own address UCB0I2COA 10h USCI I2C slave address UCB0I2CSA 12h USCI interrupt enable UCB0IE 1Ch USCI interrupt flags UCB0IFG 1Dh USCI interrupt vector word UCB0IV 1Eh 78 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-44. USCI_A1 Registers (Base Address: 0600h) REGISTER DESCRIPTION REGISTER OFFSET USCI control 0 UCA1CTL0 00h USCI control 1 UCA1CTL1 01h USCI baud rate 0 UCA1BR0 06h USCI baud rate 1 UCA1BR1 07h USCI modulation control UCA1MCTL 08h USCI status UCA1STAT 0Ah USCI receive buffer UCA1RXBUF 0Ch USCI transmit buffer UCA1TXBUF 0Eh USCI LIN control UCA1ABCTL 10h USCI IrDA transmit control UCA1IRTCTL 12h USCI IrDA receive control UCA1IRRCTL 13h USCI interrupt enable UCA1IE 1Ch USCI interrupt flags UCA1IFG 1Dh USCI interrupt vector word UCA1IV 1Eh Table 6-45. USCI_B1 Registers (Base Address: 0620h) REGISTER DESCRIPTION REGISTER OFFSET USCI synchronous control 0 UCB1CTL0 00h USCI synchronous control 1 UCB1CTL1 01h USCI synchronous bit rate 0 UCB1BR0 06h USCI synchronous bit rate 1 UCB1BR1 07h USCI synchronous status UCB1STAT 0Ah USCI synchronous receive buffer UCB1RXBUF 0Ch USCI synchronous transmit buffer UCB1TXBUF 0Eh USCI I2C own address UCB1I2COA 10h USCI I2C slave address UCB1I2CSA 12h USCI interrupt enable UCB1IE 1Ch USCI interrupt flags UCB1IFG 1Dh USCI interrupt vector word UCB1IV 1Eh Table 6-46. ADC12_A Registers (Base Address: 0700h) REGISTER DESCRIPTION REGISTER OFFSET ADC12 control 0 ADC12CTL0 00h ADC12 control 1 ADC12CTL1 02h ADC12 control 2 ADC12CTL2 04h Interrupt flag ADC12IFG 0Ah Interrupt enable ADC12IE 0Ch Interrupt vector word ADC12IV 0Eh ADC memory control 0 ADC12MCTL0 10h ADC memory control 1 ADC12MCTL1 11h ADC memory control 2 ADC12MCTL2 12h ADC memory control 3 ADC12MCTL3 13h ADC memory control 4 ADC12MCTL4 14h ADC memory control 5 ADC12MCTL5 15h ADC memory control 6 ADC12MCTL6 16h ADC memory control 7 ADC12MCTL7 17h ADC memory control 8 ADC12MCTL8 18h Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 79 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com Table 6-46. ADC12_A Registers (Base Address: 0700h) (continued) REGISTER DESCRIPTION REGISTER OFFSET ADC memory control 9 ADC12MCTL9 19h ADC memory control 10 ADC12MCTL10 1Ah ADC memory control 11 ADC12MCTL11 1Bh ADC memory control 12 ADC12MCTL12 1Ch ADC memory control 13 ADC12MCTL13 1Dh ADC memory control 14 ADC12MCTL14 1Eh ADC memory control 15 ADC12MCTL15 1Fh Conversion memory 0 ADC12MEM0 20h Conversion memory 1 ADC12MEM1 22h Conversion memory 2 ADC12MEM2 24h Conversion memory 3 ADC12MEM3 26h Conversion memory 4 ADC12MEM4 28h Conversion memory 5 ADC12MEM5 2Ah Conversion memory 6 ADC12MEM6 2Ch Conversion memory 7 ADC12MEM7 2Eh Conversion memory 8 ADC12MEM8 30h Conversion memory 9 ADC12MEM9 32h Conversion memory 10 ADC12MEM10 34h Conversion memory 11 ADC12MEM11 36h Conversion memory 12 ADC12MEM12 38h Conversion memory 13 ADC12MEM13 3Ah Conversion memory 14 ADC12MEM14 3Ch Conversion memory 15 ADC12MEM15 3Eh Table 6-47. DAC12_A Registers (Base Address: 0780h) REGISTER DESCRIPTION REGISTER OFFSET DAC12_A channel 0 control 0 DAC12_0CTL0 00h DAC12_A channel 0 control 1 DAC12_0CTL1 02h DAC12_A channel 0 data DAC12_0DAT 04h DAC12_A channel 0 calibration control DAC12_0CALCTL 06h DAC12_A channel 0 calibration data DAC12_0CALDAT 08h DAC12_A channel 1 control 0 DAC12_1CTL0 10h DAC12_A channel 1 control 1 DAC12_1CTL1 12h DAC12_A channel 1 data DAC12_1DAT 14h DAC12_A channel 1 calibration control DAC12_1CALCTL 16h DAC12_A channel 1 calibration data DAC12_1CALDAT 18h DAC12_A interrupt vector word DAC12IV 1Eh Table 6-48. Comparator_B Registers (Base Address: 08C0h) REGISTER DESCRIPTION REGISTER OFFSET Comp_B control 0 CBCTL0 00h Comp_B control 1 CBCTL1 02h Comp_B control 2 CBCTL2 04h Comp_B control 3 CBCTL3 06h Comp_B interrupt CBINT 0Ch Comp_B interrupt vector word CBIV 0Eh 80 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-49. USB Configuration Registers (Base Address: 0900h) REGISTER DESCRIPTION REGISTER OFFSET USB key/ID USBKEYID 00h USB module configuration USBCNF 02h USB PHY control USBPHYCTL 04h USB power control USBPWRCTL 08h USB power voltage setting USBPWRVSR 0Ah USB PLL control USBPLLCTL 10h USB PLL divider USBPLLDIV 12h USB PLL interrupts USBPLLIR 14h Table 6-50. USB Control Registers (Base Address: 0920h) REGISTER DESCRIPTION REGISTER OFFSET Input endpoint_0 configuration USBIEPCNF_0 00h Input endpoint_0 byte count USBIEPCNT_0 01h Output endpoint_0 configuration USBOEPCNF_0 02h Output endpoint_0 byte count USBOEPCNT_0 03h Input endpoint interrupt enables USBIEPIE 0Eh Output endpoint interrupt enables USBOEPIE 0Fh Input endpoint interrupt flags USBIEPIFG 10h Output endpoint interrupt flags USBOEPIFG 11h USB interrupt vector USBIV 12h USB maintenance USBMAINT 16h Time stamp USBTSREG 18h USB frame number USBFN 1Ah USB control USBCTL 1Ch USB interrupt enables USBIE 1Dh USB interrupt flags USBIFG 1Eh Function address USBFUNADR 1Fh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 81 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.13 Input/Output Schematics 6.13.1 Port P1, P1.0 to P1.7, Input/Output With Schmitt Trigger Pad Logic P1REN.x DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1DIR.x P1OUT.x 0 Module X OUT 1 P1DS.x 0: Low drive 1: High drive P1SEL.x P1IN.x EN Module X IN P1.0/TA0CLK/ACLK P1.1/TA0.0 P1.2/TA0.1 P1.3/TA0.2 P1.4/TA0.3 P1.5/TA0.4 P1.6/TA0.1 P1.7/TA0.2 D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Figure 6-2. Port P1 (P1.0 to P1.7) Schematic 82 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-51. Port P1 (P1.0 to P1.7) Pin Functions PIN NAME (P1.x) P1.0/TA0CLK/ACLK x 0 FUNCTION P1.0 (I/O) Timer TA0.TA0CLK ACLK P1.1/TA0.0 1 P1.1 (I/O) Timer TA0.CCI0A capture input Timer TA0.0 output P1.2/TA0.1 2 P1.2 (I/O) Timer TA0.CCI1A capture input Timer TA0.1 output P1.3/TA0.2 P1.4/TA0.3 P1.5/TA0.4 P1.6/TA0.1 P1.7/TA0.2 3 4 5 6 7 CONTROL BITS OR SIGNALS P1DIR.x P1SEL.x I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 Timer TA0.CCI2A capture input 0 1 Timer TA0.2 output 1 1 P1.3 (I/O) P1.4 (I/O) I: 0; O: 1 0 Timer TA0.CCI3A capture input 0 1 Timer TA0.3 output 1 1 P1.5 (I/O) I: 0; O: 1 0 Timer TA0.CCI4A capture input 0 1 Timer TA0.4 output 1 1 P1.6 (I/O) I: 0; O: 1 0 Timer TA0.CCI1B capture input 0 1 Timer TA0.1 output 1 1 I: 0; O: 1 0 Timer TA0.CCI2B capture input 0 1 Timer TA0.2 output 1 1 P1.7 (I/O) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 83 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.13.2 Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger Pad Logic P2REN.x P2DIR.x 0 From Port Mapping 1 P2OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P2DS.x 0: Low drive 1: High drive P2SEL.x P2IN.x EN To Port Mapping 1 P2.0/P2MAP0 P2.1/P2MAP1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4 P2.5/P2MAP5 P2.6/P2MAP6 P2.7/P2MAP7 D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Figure 6-3. Port P2 (P2.0 to P2.7) Schematic 84 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-52. Port P2 (P2.0 to P2.7) Pin Functions PIN NAME (P2.x) P2.0/P2MAP0 x 0 FUNCTION P2.0 (I/O) Mapped secondary digital function P2.1/P2MAP1 1 P2.1 (I/O) Mapped secondary digital function P2.2/P2MAP2 2 P2.3/P2MAP3 3 P2.2 (I/O) Mapped secondary digital function P2.3 (I/O) Mapped secondary digital function P2.4/P2MAP4 4 P2.4 (I/O) Mapped secondary digital function P2.5/P2MAP5 5 P2.5 (I/O Mapped secondary digital function P2.6/P2MAP6 6 P2.6 (I/O) Mapped secondary digital function P2.7/P2MAP7 7 P2.7 (I/O) Mapped secondary digital function (1) CONTROL BITS OR SIGNALS (1) P2DIR.x P2SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 P2MAPx ≤ 19 ≤ 19 ≤ 19 ≤ 19 ≤ 19 ≤ 19 ≤ 19 ≤ 19 X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 85 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.13.3 Port P3, P3.0 to P3.7, Input/Output With Schmitt Trigger Pad Logic P3REN.x DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3DIR.x P3OUT.x 0 Module X OUT 1 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x EN Module X IN P3.0/TA1CLK/CBOUT P3.1/TA1.0 P3.2/TA1.1 P3.3/TA1.2 P3.4/TA2CLK/SMCLK P3.5/TA2.0 P3.6/TA2.1 P3.7/TA2.2 D P3IE.x EN P3IRQ.x Q P3IFG.x P3SEL.x P3IES.x Set Interrupt Edge Select Figure 6-4. Port P3 (P3.0 to P3.7) Schematic 86 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-53. Port P3 (P3.0 to P3.7) Pin Functions PIN NAME (P3.x) P3.0/TA1CLK/CBOUT x 0 FUNCTION P3.0 (I/O) Timer TA1.TA1CLK CBOUT P3.1/TA1.0 1 P3.1 (I/O) Timer TA1.CCI0A capture input Timer TA1.0 output P3.2/TA1.1 2 P3.2 (I/O) Timer TA1.CCI1A capture input Timer TA1.1 output P3.3/TA1.2 P3.4/TA2CLK/SMCLK P3.5/TA2.0 P3.6/TA2.1 P3.7/TA2.2 3 4 5 6 7 CONTROL BITS OR SIGNALS P3DIR.x P3SEL.x I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 Timer TA1.CCI2A capture input 0 1 Timer TA1.2 output 1 1 P3.3 (I/O) P3.4 (I/O) I: 0; O: 1 0 Timer TA2.TA2CLK 0 1 SMCLK 1 1 P3.5 (I/O) I: 0; O: 1 0 Timer TA2.CCI0A capture input 0 1 Timer TA2.0 output 1 1 P3.6 (I/O) I: 0; O: 1 0 Timer TA2.CCI1A capture input 0 1 Timer TA2.1 output 1 1 I: 0; O: 1 0 Timer TA2.CCI2A capture input 0 1 Timer TA2.2 output 1 1 P3.7 (I/O) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 87 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.13.4 Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger Pad Logic P4REN.x DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P4DIR.x P4OUT.x 0 Module X OUT 1 P4DS.x 0: Low drive 1: High drive P4SEL.x P4IN.x EN Module X IN P4.0/TB0.0 P4.1/TB0.1 P4.2/TB0.2 P4.3/TB0.3 P4.4/TB0.4 P4.5/TB0.5 P4.6/TB0.6 P4.7/TB0OUTH/SVMOUT D P4IE.x EN P4IRQ.x Q P4IFG.x P4SEL.x P4IES.x Set Interrupt Edge Select Figure 6-5. Port P4 (P4.0 to P4.7) Schematic 88 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-54. Port P4 (P4.0 to P4.7) Pin Functions PIN NAME (P4.x) P4.0/TB0.0 x 0 FUNCTION P4.0 (I/O) Timer TB0.CCI0A capture input Timer TB0.0 output P4.1/TB0.1 1 (1) P4.1 (I/O) Timer TB0.CCI1A capture input Timer TB0.1 output P4.2/TB0.2 2 (1) P4.2 (I/O) Timer TB0.CCI2A capture input Timer TB0.2 output P4.3/TB0.3 P4.4/TB0.4 P4.5/TB0.5 P4.6/TB0.6 P4.7/TB0OUTH/ SVMOUT (1) 3 4 5 6 7 (1) CONTROL BITS OR SIGNALS P4DIR.x P4SEL.x I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 Timer TB0.CCI3A capture input 0 1 Timer TB0.3 output (1) 1 1 P4.3 (I/O) P4.4 (I/O) I: 0; O: 1 0 Timer TB0.CCI4A capture input 0 1 Timer TB0.4 output (1) 1 1 P4.5 (I/O) I: 0; O: 1 0 Timer TB0.CCI5A capture input 0 1 Timer TB0.5 output (1) 1 1 P4.6 (I/O) I: 0; O: 1 0 Timer TB0.CCI6A capture input 0 1 Timer TB0.6 output (1) 1 1 I: 0; O: 1 0 Timer TB0.TB0OUTH 0 1 SVMOUT 1 1 P4.7 (I/O) Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 89 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.13.5 Port P5, P5.0 and P5.1, Input/Output With Schmitt Trigger Pad Logic To/From Reference P5REN.x P5DIR.x DVSS 0 DVCC 1 1 0 1 P5OUT.x 0 Module X OUT 1 P5.0/VREF+/VeREF+ P5.1/VREF–/VeREF– P5DS.x 0: Low drive 1: High drive P5SEL.x P5IN.x Bus Keeper EN Module X IN D Figure 6-6. Port P5 (P5.0 and P5.1) Schematic Table 6-55. Port P5 (P5.0 and P5.1) Pin Functions PIN NAME (P5.x) P5.0/VREF+/VeREF+ x 0 FUNCTION P5DIR.x P5SEL.x REFOUT I: 0; O: 1 0 X X 1 0 X 1 1 I: 0; O: 1 0 X VeREF- (5) X 1 0 VREF- (6) X 1 1 P5.0 (I/O) (2) VeREF+ (3) VREF+ (4) P5.1/VREF-/VeREF- (1) (2) (3) (4) (5) (6) 90 1 CONTROL BITS OR SIGNALS (1) P5.1 (I/O) (2) X = Don't care Default condition Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A, Comparator_B, or DAC12_A. Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A, VREF+ reference is available at the pin. Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A, Comparator_B, or DAC12_A. Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A, VREF- reference is available at the pin. Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 6.13.6 Port P5, P5.2 to P5.7, Input/Output With Schmitt Trigger Pad Logic P5REN.x DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P5DIR.x P5OUT.x 0 Module X OUT 1 P5.2 P5.3 P5.4 P5.5 P5.6/ADC12CLK/DMAE0 P5.7/RTCCLK P5DS.x 0: Low drive 1: High drive P5SEL.x P5IN.x EN Module X IN D Figure 6-7. Port P5 (P5.2 to P5.7) Schematic Table 6-56. Port P5 (P5.2 to P5.7) Pin Functions PIN NAME (P5.x) x FUNCTION CONTROL BITS OR SIGNALS P5DIR.x P5SEL.x P5.2 2 P5.2 (I/O) I: 0; O: 1 0 P5.3 3 P5.3 (I/O) I: 0; O: 1 0 P5.4 4 P5.4 (I/O) I: 0; O: 1 0 P5.5 5 P5.5 (I/O) I: 0; O: 1 0 P5.6/ADC12CLK/DMAE0 6 P5.6 (I/O) I: 0; O: 1 0 1 1 ADC12CLK DMAE0 P5.7/RTCCLK 7 0 1 P5.7 (I/O) I: 0; O: 1 0 RTCCLK 1 1 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 91 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.13.7 Port P6, P6.0 to P6.7, Input/Output With Schmitt Trigger Pad Logic To ADC12 INCHx = y 0 Dvss 1 From DAC12_A 2 0 if DAC12AMPx=0 1 if DAC12AMPx=1 2 if DAC12AMPx>1 To Comparator_B From Comparator_B CBPD.x DAC12AMPx>0 DAC12OPS P6REN.x DVSS 0 DVCC 1 1 P6DIR.x P6OUT.x P6DS.x 0: Low drive 1: High drive P6SEL.x P6IN.x Bus Keeper P6.0/CB0/A0 P6.1/CB1/A1 P6.2/CB2/A2 P6.3/CB3/A3 P6.4/CB4/A4 P6.5/CB5/A5 P6.6/CB6/A6/DAC0 P6.7/CB7/A7/DAC1 Figure 6-8. Port P6 (P6.0 to P6.7) Schematic 92 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-57. Port P6 (P6.0 to P6.7) Pin Functions PIN NAME (P6.x) P6.0/CB0/A0 x 0 FUNCTION P6.0 (I/O) CB0 A0 P6.1/CB1/A1 1 (2) (3) P6.1 (I/O) CB1 A1 P6.2/CB2/A2 2 (2) (3) P6.2 (I/O) CB2 A2 P6.3/CB3/A3 3 (2) (3) P6.3 (I/O) CB3 A3 (2) P6.4/CB4/A4 4 (3) P6.4 (I/O) CB4 A4 (2) P6.5/CB5/A5 5 (3) P6.5 (I/O) CB5 A5 P6.6/CB6/A6/DAC0 6 (2) (3) P6.6 (I/O) CB6 A6 (2) (3) DAC0 P6.7/CB7/A7/DAC1 7 P6.7 (I/O) CB7 A7 (2) (3) DAC1 (1) (2) (3) CONTROL BITS OR SIGNALS (1) P6DIR.x P6SEL.x CBPD.x DAC12OPS DAC12AMPx I: 0; O: 1 0 0 n/a n/a X X 1 n/a n/a X 1 X n/a n/a I: 0; O: 1 0 0 n/a n/a X X 1 n/a n/a X 1 X n/a n/a I: 0; O: 1 0 0 n/a n/a X X 1 n/a n/a X 1 X n/a n/a I: 0; O: 1 0 0 n/a n/a X X 1 n/a n/a X 1 X n/a n/a I: 0; O: 1 0 0 n/a n/a X X 1 n/a n/a X 1 X n/a n/a I: 0; O: 1 0 0 n/a n/a X X 1 n/a n/a X 1 X n/a n/a I: 0; O: 1 0 0 X 0 X X 1 X 0 X 1 X X 0 X X X 0 >1 I: 0; O: 1 0 0 X 0 X X 1 X 0 X 1 X X 0 X X X 0 >1 X = Don't care Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 93 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.13.8 Port P7, P7.2, Input/Output With Schmitt Trigger Pad Logic To XT2 P7REN.2 P7DIR.2 DVSS 0 DVCC 1 1 0 1 P7OUT.2 P7DS.2 0: Low drive 1: High drive P7SEL.2 P7.2/XT2IN P7IN.2 Bus Keeper Figure 6-9. Port P7 (P7.2) Schematic 94 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 6.13.9 Port P7, P7.3, Input/Output With Schmitt Trigger Pad Logic To XT2 P7REN.3 P7DIR.3 DVSS 0 DVCC 1 1 0 1 P7OUT.3 P7SEL.2 P7.3/XT2OUT P7DS.3 0: Low drive 1: High drive XT2BYPASS P7SEL.3 P7IN.3 Bus Keeper Figure 6-10. Port P7 (P7.3) Schematic Table 6-58. Port P7 (P7.2 and P7.3) Pin Functions PIN NAME (P5.x) P7.2/XT2IN x 2 FUNCTION P7.2 (I/O) XT2IN crystal mode (2) XT2IN bypass mode P7.3/XT2OUT 3 (2) P7.3 (I/O) XT2OUT crystal mode (3) P7.3 (I/O) (1) (2) (3) (3) CONTROL BITS OR SIGNALS (1) P7DIR.x P7SEL.2 P7SEL.3 XT2BYPASS I: 0; O: 1 0 X X X 1 X 0 X 1 X 1 I: 0; O: 1 0 0 X X 1 X 0 X 1 0 1 X = Don't care Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal mode or bypass mode. Setting P7SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as general-purpose I/O. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 95 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.13.10 Port P7, P7.4 to P7.7, Input/Output With Schmitt Trigger 0 Dvss 1 From DAC12_A 2 Pad Logic 0 if DAC12AMPx=0 1 if DAC12AMPx=1 2 if DAC12AMPx>1 To ADC12 INCHx = y To Comparator_B From Comparator_B CBPD.x DAC12AMPx>0 DAC12OPS P7REN.x DVSS 0 DVCC 1 1 P7DIR.x P7OUT.x P7DS.x 0: Low drive 1: High drive P7SEL.x P7.4/CB8/A12 P7.5/CB9/A13 P7.6/CB10/A14/DAC0 P7.7/CB11/A15/DAC1 P7IN.x Bus Keeper Figure 6-11. Port P7 (P7.4 to P7.7) Schematic 96 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-59. Port P7 (P7.4 to P7.7) Pin Functions PIN NAME (P7.x) P7.4/CB8/A12 x 4 FUNCTION P7.4 (I/O) Comparator_B input CB8 A12 P7.5/CB9/A13 5 (2) (3) P7.5 (I/O) Comparator_B input CB9 A13 P7.6/CB10/A14/DAC0 6 (2) (3) P7.6 (I/O) Comparator_B input CB10 A14 (2) (3) DAC12_A output DAC0 P7.7/CB11/A15/DAC1 7 P7.7 (I/O) Comparator_B input CB11 A15 (2) (3) DAC12_A output DAC1 (1) (2) (3) CONTROL BITS OR SIGNALS (1) P7DIR.x P7SEL.x CBPD.x DAC12OPS DAC12AMPx I: 0; O: 1 0 0 n/a n/a X X 1 n/a n/a X 1 X n/a n/a I: 0; O: 1 0 0 n/a n/a X X 1 n/a n/a X 1 X n/a n/a I: 0; O: 1 0 0 X 0 X X 1 X 0 X 1 X X 0 X X X 1 >1 I: 0; O: 1 0 0 X 0 X X 1 X 0 X 1 X X 0 X X X 1 >1 X = Don't care Setting the P7SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 97 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.13.11 Port P8, P8.0 to P8.7, Input/Output With Schmitt Trigger Pad Logic P8REN.x P8DIR.x 0 From module 1 P8OUT.x 0 Module X OUT 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P8DS.x 0: Low drive 1: High drive P8SEL.x P8IN.x EN Module X IN 1 P8.0/TB0CLK P8.1/UCB1STE/UCA1CLK P8.2/UCA1TXD/UCA1SIMO P8.3/UCA1RXD/UCA1SOMI P8.4/UCB1CLK/UCA1STE P8.5/UCB1SIMO//UCB1SDA P8.6/UCB1SOMI/UCB1SCL P8.7 D Figure 6-12. Port P8 (P8.0 to P8.7) Schematic Table 6-60. Port P8 (P8.0 to P8.7) Pin Functions PIN NAME (P9.x) P8.0/TB0CLK x 0 FUNCTION P8.0 (I/O) Timer TB0.TB0CLK clock input P8.1/UCB1STE/UCA1CLK 1 P8.2/UCA1TXD/UCA1SIMO 2 P8.1 (I/O) UCB1STE/UCA1CLK P8.2 (I/O) UCA1TXD/UCA1SIMO P8.3/UCA1RXD/UCA1SOMI 3 P8.3 (I/O) UCA1RXD/UCA1SOMI P8.4/UCB1CLK/UCA1STE 4 P8.5/UCB1SIMO/UCB1SDA 5 P8.4 (I/O) UCB1CLK/UCA1STE P8.5 (I/O) UCB1SIMO/UCB1SDA P8.6/UCB1SOMI/UCB1SCL 6 P8.7 7 P8.6 (I/O) UCB1SOMI/UCB1SCL (1) 98 P8.7 (I/O) CONTROL BITS OR SIGNALS (1) P8DIR.x P8SEL.x I: 0; O: 1 0 0 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X = Don't care Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 6.13.12 Port P9, P9.0 to P9.7, Input/Output With Schmitt Trigger Pad Logic P9REN.x DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P9DIR.x P9OUT.x P9.0 P9.1 P9.2 P9.3 P9.4 P9.5 P9.6 P9.7 P9DS.x 0: Low drive 1: High drive P9IN.x Figure 6-13. Port P9 (P9.0 to P9.7) Schematic Table 6-61. Port P9 (P9.0 to P9.7) Pin Functions PIN NAME (P9.x) x FUNCTION CONTROL BITS OR SIGNALS P9DIR.x P9SEL.x P9.0 0 P9.0 (I/O) I: 0; O: 1 0 P9.1 1 P9.1 (I/O) I: 0; O: 1 0 P9.2 2 P9.2 (I/O) I: 0; O: 1 0 P9.3 3 P9.3 (I/O) I: 0; O: 1 0 P9.4 4 P9.4 (I/O) I: 0; O: 1 0 P9.5 5 P9.5 (I/O) I: 0; O: 1 0 P9.6 6 P9.6 (I/O) I: 0; O: 1 0 P9.7 7 P9.7 (I/O) I: 0; O: 1 0 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 99 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.13.13 Port PU.0/DP, PU.1/DM, PUR USB Ports PUSEL PUOPE USB output enable PUOUT0 USB DP output VUSB VSSU Pad Logic 0 1 0 PU.0/ DP 1 PUIN0 USB DP input PUIPE . PUIN1 USB DM input PUOUT1 0 USB DM output 1 PU.1/ DM VUSB VSSU Pad Logic PUREN PUR “1” PUSEL PURIN Figure 6-14. Port U (PU.0 and PU.1) Schematic Table 6-62. Port PU.0/DP and PU.1/DM Output Functions CONTROL BITS 100 PIN NAME FUNCTION PUSEL PUDIR PUOUT1 PUOUT0 PU.1/DM PU.0/DP 0 0 X X Hi-Z Hi-Z Outputs off 0 1 0 0 0 0 Outputs enabled 0 1 0 1 0 1 Outputs enabled 0 1 1 0 1 0 Outputs enabled 0 1 1 1 1 1 Outputs enabled 1 X X X DM DP Direction set by USB module Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-63. Port PUR Input Functions CONTROL BITS FUNCTION PUSEL PUREN 0 0 Input disabled Pullup disabled 0 1 Input disabled Pullup enabled 1 0 Input enabled Pullup disabled 1 1 Input enabled Pullup enabled Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 101 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.13.14 Port J, J.0 JTAG Pin TDO, Input/Output With Schmitt Trigger or Output Pad Logic PJREN.0 PJDIR.0 0 DVCC 1 PJOUT.0 0 From JTAG 1 DVSS 0 DVCC 1 1 PJ.0/TDO PJDS.0 0: Low drive 1: High drive From JTAG PJIN.0 EN D Figure 6-15. Port J (PJ.0) Schematic 6.13.15 Port J, J.1 to J.3 JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output Pad Logic PJREN.x PJDIR.x 0 DVSS 1 PJOUT.x 0 From JTAG 1 DVSS 0 DVCC 1 PJDS.x 0: Low drive 1: High drive From JTAG 1 PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK PJIN.x EN To JTAG D Figure 6-16. Port PJ (PJ.1 to PJ.3) Schematic 102 Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Table 6-64. Port PJ (PJ.0 to PJ.3) Pin Functions PIN NAME (PJ.x) x FUNCTION CONTROL BITS OR SIGNALS (1) PJDIR.x PJ.0/TDO 0 PJ.0 (I/O) (2) I: 0; O: 1 TDO (3) PJ.1/TDI/TCLK 1 X PJ.1 (I/O) (2) TDI/TCLK (3) PJ.2/TMS 2 PJ.2 (I/O) TMS (3) PJ.3/TCK 3 (4) (2) (4) PJ.3 (I/O) (2) TCK (3) (1) (2) (3) (4) I: 0; O: 1 (4) X I: 0; O: 1 X I: 0; O: 1 X X = Don't care Default condition The pin direction is controlled by the JTAG module. In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 103 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 6.14 Device Descriptors Table 6-65 list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type. Table 6-65. MSP430F563x Device Descriptor Table (1) Info Block Die Record ADC12 Calibration (1) 104 VALUE ADDRESS SIZE (bytes) F5638 F5637 F5636 F5635 F5634 F5633 F5632 F5631 F5630 Info length 01A00h 1 06h 06h 06h 06h 06h 06h 06h 06h 06h CRC length 01A01h 1 06h 06h 06h 06h 06h 06h 06h 06h 06h CRC value 01A02h 2 per unit per unit per unit per unit per unit per unit per unit per unit per unit DESCRIPTION Device ID 01A04h 2 8014h 8012h 8010h 800Eh 8044h 8042h 8040h 803Eh 803Ch Hardware revision 01A06h 1 per unit per unit per unit per unit per unit per unit per unit per unit per unit Firmware revision 01A07h 1 per unit per unit per unit per unit per unit per unit per unit per unit per unit Die record tag 01A08h 1 08h 08h 08h 08h 08h 08h 08h 08h 08h Die record length 01A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah Lot/wafer ID 01A0Ah 4 per unit per unit per unit per unit per unit per unit per unit per unit per unit Die X position 01A0Eh 2 per unit per unit per unit per unit per unit per unit per unit per unit per unit Die Y position 01A10h 2 per unit per unit per unit per unit per unit per unit per unit per unit per unit Test results 01A12h 2 per unit per unit per unit per unit per unit per unit per unit per unit per unit ADC12 calibration tag 01A14h 1 11h 11h 11h 11h 11h 11h 11h 11h 11h ADC12 calibration length 01A15h 1 10h 10h 10h 10h 10h 10h 10h 10h 10h ADC gain factor 01A16h 2 per unit per unit per unit per unit per unit per unit per unit per unit per unit ADC offset 01A18h 2 per unit per unit per unit per unit per unit per unit per unit per unit per unit ADC 1.5-V reference temp. l 30°C 01A1Ah 2 per unit per unit per unit per unit per unit per unit per unit per unit per unit ADC 1.5-V reference temp. sensor 85°C 01A1Ch 2 per unit per unit per unit per unit per unit per unit per unit per unit per unit ADC 2.0-V reference temp. sensor 30°C 01A1Eh 2 per unit per unit per unit per unit per unit per unit per unit per unit per unit ADC 2.0-V reference temp. sensor 85°C 01A20h 2 per unit per unit per unit per unit per unit per unit per unit per unit per unit ADC 2.5-V reference temp. sensor 30°C 01A22h 2 per unit per unit per unit per unit per unit per unit per unit per unit per unit ADC 2.5-V reference temp. sensor 85°C 01A24h 2 per unit per unit per unit per unit per unit per unit per unit per unit per unit NA = Not applicable Detailed Description Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 7 Device and Documentation Support 7.1 Device Support 7.1.1 Development Support 7.1.1.1 Getting Started and Next Steps For more information on the MSP430™ family of devices and the tools and libraries that are available to help with your development, visit the Getting Started page. 7.1.1.2 Development Tools Support All MSP430™ microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools. 7.1.1.2.1 Hardware Features See the Code Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features. MSP430 ARCHITECTURE 4-WIRE JTAG 2-WIRE JTAG BREAKPOINTS (N) RANGE BREAKPOINTS CLOCK CONTROL STATE SEQUENCER TRACE BUFFER LPMx.5 DEBUGGING SUPPORT MSP430Xv2 Yes Yes 8 Yes Yes Yes Yes No 7.1.1.2.2 Recommended Hardware Options 7.1.1.2.2.1 Target Socket Boards The target socket boards allow easy programming and debugging of the device using JTAG. They also feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the JTAG programmer and debugger included. The following table shows the compatible target boards and the supported packages. PACKAGE TARGET BOARD AND PROGRAMMER BUNDLE TARGET BOARD ONLY 100-pin LQFP (PZ) MSP-FET430U100USB MSP-TS430PZ100USB 7.1.1.2.2.2 Experimenter Boards Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature additional hardware components and connectivity for full system evaluation and prototyping. See www.ti.com/msp430tools for details. 7.1.1.2.2.3 Debugging and Programming Tools Hardware programming and debugging tools are available from TI and from its third party suppliers. See the full list of available tools at www.ti.com/msp430tools. 7.1.1.2.2.4 Production Programmers The production programmers expedite loading firmware to devices by programming several devices simultaneously. PART NUMBER MSP-GANG PC PORT Serial and USB FEATURES Program up to eight devices at a time. Works with a PC or as a stand-alone package. PROVIDER Texas Instruments Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 105 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 www.ti.com 7.1.1.2.3 Recommended Software Options 7.1.1.2.3.1 Integrated Development Environments Software development tools are available from TI or from third parties. Open source solutions are also available. This device is supported by Code Composer Studio™ IDE (CCS). 7.1.1.2.3.2 MSP430Ware MSP430Ware is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware also includes a high-level API called MSP430 Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware is available as a component of CCS or as a stand-alone package. 7.1.1.2.3.3 TI-RTOS TI-RTOS is a complete real-time operating system for the MSP430 microcontrollers. It combines a realtime multitasking kernel SYS/BIOS with additional middleware components. TI-RTOS is available free of charge and provided with full source code. 7.1.1.2.3.4 MSP430 USB Developer's Package MSP430 USB Developer's Package is an easy-to-use USB stack implementation for the MSP430 microcontrollers. 7.1.1.2.3.5 Command-Line Programmer MSP430 Flasher is an open-source, shell-based interface for programming MSP430 microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher can be used to download binary files (.txt or .hex) files directly to the MSP430 Flash without the need for an IDE. 7.1.2 Device and Development Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430 MCU devices and support tools. Each MSP430 MCU commercial family member has one of three prefixes: MSP, PMS, or XMS (for example, MSP430F5438A). TI recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for devices and MSP for tools). Device development evolutionary flow: XMS – Experimental device that is not necessarily representative of the electrical specifications for the final device PMS – Final silicon die that conforms to the electrical specifications for the device but has not completed quality and reliability verification MSP – Fully qualified production device Support tool development evolutionary flow: MSPX – Development-support product that has not yet completed TI's internal qualification testing. MSP – Fully-qualified development-support product XMS and PMS devices and MSPX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." 106 Device and Documentation Support Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (XMS and PMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZP) and temperature range (for example, T). Figure 7-1 provides a legend for reading the complete device name for any family member. MSP 430 F 5 438 A I ZQW T -EP Processor Family Optional: Additional Features MCU Platform Optional: Tape and Reel Device Type Packaging Series Feature Set Processor Family Optional: Temperature Range Optional: A = Revision CC = Embedded RF Radio MSP = Mixed-Signal Processor XMS = Experimental Silicon PMS = Prototype Device 430 = MSP430 low-power microcontroller platform MCU Platform Device Type Memory Type C = ROM F = Flash FR = FRAM G = Flash or FRAM (Value Line) L = No Nonvolatile Memory Series 1 Series = Up to 8 MHz 2 Series = Up to 16 MHz 3 Series = Legacy 4 Series = Up to 16 MHz with LCD Feature Set Various Levels of Integration Within a Series Optional: A = Revision N/A Specialized Application AFE = Analog Front End BT = Preprogrammed with Bluetooth BQ = Contactless Power CG = ROM Medical FE = Flash Energy Meter FG = Flash Medical FW = Flash Electronic Flow Meter 5 Series = Up to 25 MHz 6 Series = Up to 25 MHz with LCD 0 = Low-Voltage Series Optional: Temperature Range S = 0°C to 50°C C = 0°C to 70°C I = –40°C to 85°C T = –40°C to 105°C Packaging http://www.ti.com/packaging Optional: Tape and Reel T = Small Reel R = Large Reel No Markings = Tube or Tray Optional: Additional Features -EP = Enhanced Product (–40°C to 105°C) -HT = Extreme Temperature Parts (–55°C to 150°C) -Q1 = Automotive Q100 Qualified Figure 7-1. Device Nomenclature Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 107 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 7.2 www.ti.com Documentation Support The following documents describe the devices. Copies of these documents are available on the Internet at www.ti.com. 7.3 SLAU208 MSP430x5xx and MSP430x6xx Family User's Guide. Detailed information on the modules and peripherals available in this device family. SLAZ323 MSP430F5638 Device Erratasheet. Describes the known exceptions to the functional specifications for this device. SLAZ322 MSP430F5637 Device Erratasheet. Describes the known exceptions to the functional specifications for this device. SLAZ321 MSP430F5636 Device Erratasheet. Describes the known exceptions to the functional specifications for this device. SLAZ320 MSP430F5635 Device Erratasheet. Describes the known exceptions to the functional specifications for this device. SLAZ319 MSP430F5634 Device Erratasheet. Describes the known exceptions to the functional specifications for this device. SLAZ318 MSP430F5633 Device Erratasheet. Describes the known exceptions to the functional specifications for this device. SLAZ317 MSP430F5632 Device Erratasheet. Describes the known exceptions to the functional specifications for this device. SLAZ316 MSP430F5631 Device Erratasheet. Describes the known exceptions to the functional specifications for this device. SLAZ315 MSP430F5630 Device Erratasheet. Describes the known exceptions to the functional specifications for this device. Related Links Table 7-1 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 7-1. Related Links 108 PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY MSP430F5638 Click here Click here Click here Click here Click here MSP430F5637 Click here Click here Click here Click here Click here MSP430F5636 Click here Click here Click here Click here Click here MSP430F5635 Click here Click here Click here Click here Click here MSP430F5634 Click here Click here Click here Click here Click here MSP430F5633 Click here Click here Click here Click here Click here MSP430F5632 Click here Click here Click here Click here Click here MSP430F5631 Click here Click here Click here Click here Click here MSP430F5630 Click here Click here Click here Click here Click here Device and Documentation Support Copyright © 2010–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 MSP430F5638, MSP430F5637, MSP430F5636, MSP430F5635 MSP430F5634, MSP430F5633, MSP430F5632, MSP430F5631, MSP430F5630 www.ti.com 7.4 SLAS650E – JUNE 2010 – REVISED DECEMBER 2015 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 7.5 Trademarks MSP430, Code Composer Studio, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. 7.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 7.7 Export Control Notice Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. 7.8 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 8 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Mechanical, Packaging, and Orderable Information Submit Documentation Feedback Product Folder Links: MSP430F5638 MSP430F5637 MSP430F5636 MSP430F5635 MSP430F5634 MSP430F5633 MSP430F5632 MSP430F5631 MSP430F5630 Copyright © 2010–2015, Texas Instruments Incorporated 109 PACKAGE OPTION ADDENDUM www.ti.com 1-Nov-2015 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F5630IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5630 MSP430F5630IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5630 MSP430F5630IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5630 MSP430F5630IZQWT NRND BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430F5631IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5631 MSP430F5631IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5631 MSP430F5631IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5631 MSP430F5632IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5632 MSP430F5632IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5632 MSP430F5632IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5632 MSP430F5632IZQWT ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5632 MSP430F5633IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5633 MSP430F5633IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5633 MSP430F5633IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5633 Addendum-Page 1 -40 to 85 M430F5630 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 1-Nov-2015 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F5633IZQWT ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5633 MSP430F5634IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5634 MSP430F5634IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5634 MSP430F5634IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5634 MSP430F5634IZQWT NRND BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5634 MSP430F5635IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5635 MSP430F5635IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5635 MSP430F5635IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5635 MSP430F5635IZQWT ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5635 MSP430F5636IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5636 MSP430F5636IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5636 MSP430F5636IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5636 MSP430F5637IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5637 MSP430F5637IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5637 MSP430F5637IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5637 Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 1-Nov-2015 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking TBD Call TI Call TI M430F5637 (4/5) MSP430F5637IZQWT NRND BGA MICROSTAR JUNIOR ZQW 113 MSP430F5638IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5638 MSP430F5638IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR M430F5638 MSP430F5638IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5638 MSP430F5638IZQWT ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR M430F5638 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 1-Nov-2015 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 4 PACKAGE MATERIALS INFORMATION www.ti.com 1-Feb-2016 TAPE AND REEL INFORMATION *All dimensions are nominal Device MSP430F5630IPZR Package Package Pins Type Drawing LQFP SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F5630IZQWR BGA MI CROSTA R JUNI OR ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F5630IZQWT BGA MI CROSTA R JUNI OR ZQW 113 250 180.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F5631IPZR MSP430F5631IZQWR MSP430F5632IPZR LQFP BGA MI CROSTA R JUNI OR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F5632IZQWR BGA MI CROSTA R JUNI OR ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F5632IZQWT BGA MI CROSTA R JUNI ZQW 113 250 180.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 1-Feb-2016 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant OR MSP430F5633IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F5633IZQWR BGA MI CROSTA R JUNI OR ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F5633IZQWT BGA MI CROSTA R JUNI OR ZQW 113 250 180.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F5634IZQWR BGA MI CROSTA R JUNI OR ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F5634IZQWT BGA MI CROSTA R JUNI OR ZQW 113 250 180.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F5635IZQWR MSP430F5635IPZR BGA MI CROSTA R JUNI OR ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F5635IZQWT BGA MI CROSTA R JUNI OR ZQW 113 250 180.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F5636IZQWR BGA MI CROSTA R JUNI OR ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F5637IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F5637IZQWR BGA MI CROSTA R JUNI OR LQFP ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F5638IZQWR BGA MI CROSTA R JUNI OR ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430F5638IZQWT BGA MI CROSTA R JUNI OR ZQW 113 250 180.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 1-Feb-2016 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430F5630IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F5630IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F5630IZQWT BGA MICROSTAR JUNIOR ZQW 113 250 213.0 191.0 55.0 MSP430F5631IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F5631IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F5632IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F5632IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F5632IZQWT BGA MICROSTAR JUNIOR ZQW 113 250 213.0 191.0 55.0 MSP430F5633IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F5633IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F5633IZQWT BGA MICROSTAR JUNIOR ZQW 113 250 213.0 191.0 55.0 MSP430F5634IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F5634IZQWT BGA MICROSTAR JUNIOR ZQW 113 250 213.0 191.0 55.0 MSP430F5635IPZR LQFP PZ 100 1000 367.0 367.0 45.0 Pack Materials-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 1-Feb-2016 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430F5635IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F5635IZQWT BGA MICROSTAR JUNIOR ZQW 113 250 213.0 191.0 55.0 MSP430F5636IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F5637IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F5637IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F5638IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430F5638IZQWT BGA MICROSTAR JUNIOR ZQW 113 250 213.0 191.0 55.0 Pack Materials-Page 4 MECHANICAL DATA MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996 PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 75 0,08 M 51 76 50 100 26 1 0,13 NOM 25 12,00 TYP Gage Plane 14,20 SQ 13,80 16,20 SQ 15,80 0,05 MIN 1,45 1,35 0,25 0°– 7° 0,75 0,45 Seating Plane 0,08 1,60 MAX 4040149 /B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated