Vishay IRFB9N65APBF Power mosfet Datasheet

IRFB9N65A, SiHFB9N65A
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Low Gate Charge Qg Results in Simple Drive
Requirement
650
RDS(on) (Ω)
VGS = 10 V
0.93
Qg (Max.) (nC)
48
Qgs (nC)
12
Qgd (nC)
19
Configuration
Available
• Improved Gate, Avalanche and Dynamic dV/dt RoHS*
COMPLIANT
Ruggedness
• Fully Characterized Capacitance and Avalanche Voltage
and Current
Single
• Lead (Pb)-free Available
D
APPLICATIONS
TO-220
• Switch Mode Power Supply (SMPS)
• Uninterruptible Power Supply
G
• High Speed Power Switching
TYPICAL SMPS TOPOLOGIES
S
G
D
S
• Single Transistor Flyback
N-Channel MOSFET
• Single Transistor Forward
ORDERING INFORMATION
Package
TO-220
IRFB9N65APbF
SiHFB9N65A-E3
IRFB9N65A
SiHFB9N65A
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
650
Gate-Source Voltage
VGS
± 30
Continuous Drain Current
VGS at 10 V
TC = 25 °C
TC = 100 °C
Pulsed Drain Currenta
ID
UNIT
V
8.5
5.4
A
IDM
21
1.3
W/°C
EAS
325
mJ
Currenta
IAR
5.2
A
Repetitive Avalanche Energya
EAR
16
mJ
PD
167
W
dV/dt
2.8
V/ns
TJ, Tstg
- 55 to + 150
Linear Derating Factor
Single Pulse Avalanche Energyb
Repetitive Avalanche
Maximum Power Dissipation
Peak Diode Recovery
TC = 25 °C
dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 24 mH, RG = 25 Ω, IAS = 5.2 A (see fig. 12).
c. ISD ≤ 5.2 A, dI/dt ≤ 90 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91104
S-81243-Rev. B, 21-Jul-08
www.vishay.com
1
IRFB9N65A, SiHFB9N65A
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
62
Case-to-Sink, Flat, Greased Surface
RthCS
0.50
-
Maximum Junction-to-Case (Drain)
RthJC
-
0.75
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
VDS
VGS = 0 V, ID = 250 µA
MIN.
TYP.
MAX.
UNIT
650
-
-
V
-
670
-
mV/°C
2.0
-
4.0
V
nA
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
Gate-Source Leakage
Zero Gate Voltage Drain Current
Drain-Source On-State Resistance
Forward Transconductance
ΔVDS/TJ
VGS(th)
Reference to 25 °C, ID = 1
VDS = VGS, ID = 250 µA
VGS = ± 30 V
-
-
± 100
VDS = 650 V, VGS = 0 V
-
-
25
VDS = 520 V, VGS = 0 V, TJ = 125 °C
-
-
250
-
-
0.93
Ω
VDS = 50 V, ID = 3.1 A
3.9
-
-
S
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
-
1417
-
-
177
-
-
7.0
-
VDS = 1.0 V, f = 1.0 MHz
-
1912
-
VDS = 520 V, f = 1.0 MHz
-
48
-
-
84
-
-
-
48
-
-
12
-
-
19
-
14
-
-
20
-
-
34
-
-
18
-
-
-
5.2
-
-
21
IGSS
IDSS
RDS(on)
gfs
mAd
ID = 5.1 Ab
VGS = 10 V
µA
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Output Capacitance
Coss
Effective Output Capacitance
Coss eff.
Total Gate Charge
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
Turn-On Delay Time
td(on)
Rise Time
Turn-Off Delay Time
Fall Time
VGS = 0 V
tr
td(off)
VDS = 0 V to 520
VGS = 10 V
Vc
ID = 5.2 A, VDS = 400 V
see fig. 6 and 13b
VDD = 325 V, ID = 5.2 A
RG = 9.1 Ω,RD = 62 Ω,
see fig. 10b
tf
pF
nC
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
Pulsed Diode Forward Currenta
Body Diode Voltage
IS
ISM
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
TJ = 25 °C, IS = 5.2 A, VGS = 0
S
Vb
TJ = 25 °C, IF = 5.2 A, dI/dt = 100 A/µsb
-
-
1.5
V
-
493
739
ns
-
2.1
3.2
µC
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
d. Uses SiHFIB5N65A data and test conditions.
www.vishay.com
2
Document Number: 91104
S-81243-Rev. B, 21-Jul-08
IRFB9N65A, SiHFB9N65A
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
10
1
20µs PULSE WIDTH
4.5V TJ = 25 °C
0.1
0.1
1
10
10
TJ = 150 ° C
TJ = 25 ° C
1
0.1
4.0
100
Fig. 1 - Typical Output Characteristics
I D , Drain-to-Source Current (A)
10
4.5V
1
20µs PULSE WIDTH
TJ = 150 ° C
10
VDS , Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
Document Number: 91104
S-81243-Rev. B, 21-Jul-08
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
3.0
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
1
6.0
7.0
8.0
9.0
Fig. 3 - Typical Transfer Characteristics
TOP
0.1
5.0
VGS , Gate-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
100
V DS = 100V
20µs PULSE WIDTH
ID = 5.2A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
IRFB9N65A, SiHFB9N65A
Vishay Siliconix
2000
ISD , Reverse Drain Current (A)
1600
C, Capacitance (pF)
100
V GS = 0V,
f = 1MHz
C iss = Cgs + C gd , Cds SHORTED
C rss = C gd
C oss = C ds + C gd
Ciss
1200
Coss
800
400
Crss
0
10
100
TJ = 150 ° C
1
TJ = 25 ° C
0.1
0.2
A
1
10
1000
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
0.8
1.0
1.2
Fig. 7 - Typical Source-Drain Diode Forward Voltage
100
ID = 5.2A
OPERATION IN THIS AREA LIMITED
BY RDS(on)
VDS = 520V
VDS = 325V
VDS = 130V
16
10us
ID , Drain Current (A)
VGS , Gate-to-Source Voltage (V)
0.6
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
20
V GS = 0 V
0.4
12
8
10
100us
1ms
1
10ms
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
0
10
20
30
40
50
QG , Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
0.1
TC = 25 ° C
TJ = 150 ° C
Single Pulse
10
100
1000
10000
VDS , Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
Document Number: 91104
S-81243-Rev. B, 21-Jul-08
IRFB9N65A, SiHFB9N65A
Vishay Siliconix
RD
VDS
10.0
VGS
D.U.T.
RG
+
ID , Drain Current (A)
8.0
- VDD
10V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
6.0
Fig. 10a - Switching Time Test Circuit
4.0
VDS
90 %
2.0
0.0
25
50
75
100
125
150
10 %
VGS
TC , Case Temperature ( ° C)
t d(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
tr
t d(off) t f
Fig. 10b - Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
PDM
0.05
t1
0.02
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.01
0.01
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (s)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
V DS
tp
15 V
L
VDS
D.U.T.
RG
IAS
20 V
tp
Driver
+
A
- VDD
A
0.01 Ω
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 91104
S-81243-Rev. B, 21-Jul-08
A
I AS
Fig. 12b - Unclamped Inductive Waveforms
www.vishay.com
5
IRFB9N65A, SiHFB9N65A
EAS , Single Pulse Avalanche Energy (mJ)
Vishay Siliconix
800
TOP
BOTTOM
ID
2.3A
3.3A
5.2A
QG
600
10 V
QGS
400
Q GD
VG
Charge
200
Fig. 13a - Basic Gate Charge Waveform
0
25
50
75
100
125
150
Current regulator
Same type as D.U.T.
Starting TJ , Junction Temperature ( °C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
50 kΩ
12 V
0.2 µF
0.3 µF
800
V DSav , Avalanche Voltage (V)
D.U.T.
780
+
V
- DS
VGS
3 mA
760
IG
ID
Current sampling resistors
740
Fig. 13b - Gate Charge Test Circuit
720
700
A
0
1
2
3
4
5
6
I av , Avalanche Current (A)
Fig. 12d - Typical Drain-to-Source Voltage vs.
Avalanche Current
www.vishay.com
6
Document Number: 91104
S-81243-Rev. B, 21-Jul-08
IRFB9N65A, SiHFB9N65A
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
•
•
•
•
RG
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
Body diode
VDD
forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91104.
Document Number: 91104
S-81243-Rev. B, 21-Jul-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1
Similar pages