IL420, IL4208 www.vishay.com Vishay Semiconductors Optocoupler, Phototriac Output, High dV/dt, Low Input Current A 1 6 MT2 C 2 5 NC FEATURES • High input sensitivity IFT = 2 mA • 600 V, 800 V blocking voltage • 300 mA on-state current 4 MT1 NC 3 • High static dV/dt 10 kV/μs i179035_2 V D E 21842-1 • Very low leakage < 10 μA DESCRIPTION • Isolation test voltage 5300 VRMS The IL420 and IL4208 consists of a GaAs IRLED optically coupled to a photosensitive non-zero crossing TRIAC network. The TRIAC consists of two inverse parallel connected monolithic SCRs. These three semiconductors are assembled in a six pin dual in-line package. High input sensitivity is achieved by using an emitter follower phototransistor and a cascaded SCR predriver resulting in an LED trigger current of less than 2 mA (DC). The use of a proprietary dV/dt clam results in a static dV/dt of greater than 10 kV/μs. This clamp circuit has a MOSFET that is enhanced when high dV/dt spikes occur between MT1 and MT2 of the TRIAC. When conducting, the FET clamps the base of the phototransistors, disabling the first stage SCR predriver. The 600 V, 800 V blocking voltage permits control of offline voltages up to 240 VAC, with a safety factor of more than two, and is sufficient for as much as 380 VAC. The IL420, IL4208 isolates low-voltage logic from 120 VAC, 240 VAC, and 380 VAC lines to control resistive, inductive, or capacitive loads including motors, solenoids, high current thyristors or TRIAC and relays. • Small 6-pin DIP package • Material categorization: For definitions of compliance please see www.vishay.com/doc?99912 APPLICATIONS • Solid state relays • Industrial controls • Office equipment • Consumer appliances AGENCY APPROVALS • UL1577, file no. E52744 system code H, double protection • CSA 93751 • DIN EN 60747-5-5 (VDE 0884), available with option 1 • CQC: GB8898-2001 ORDERING INFORMATION DIP-# I L 4 2 0 # - X 0 # # T 7.62 mm Option 7 Option 6 PART NUMBER PACKAGE OPTION TAPE AND REEL 10.16 mm 9.27 mm AGENCY CERTIFIED/PACKAGE UL, cUL, CQC DIP-6 DIP-6, 400 mil, option 6 SMD-6, option 7 > 0.7 mm Option 9 Option 8 > 0.1 mm BLOCKING VOLTAGE VDRM (V) 600 800 IL420 IL4208 IL420-X006 - IL420-X007T (1) IL4208-X007T (1) SMD-6, option 8 IL420-X008T - SMD-6, option 9 IL420-X009T (1) IL4208-X009T (1) 600 800 IL420-X001 - VDE, UL, cUL, CQC DIP-6 DIP-6, 400 mil, option 6 SMD-6, option 7 IL420-X016 - IL420-X017T (1) IL4208-X017T Note (1) Also available in tubes, do not put T on the end. Rev. 2.1, 11-Jun-13 Document Number: 83629 1 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IL420, IL4208 www.vishay.com Vishay Semiconductors ABSOLUTE MAXIMUM RATINGS (Tamb = 25 °C, unless otherwise specified) PARAMETER TEST CONDITION PART SYMBOL VALUE UNIT INPUT Reverse voltage VR 6 V Forward current IF 60 mA Surge current IFSM 2.5 A Power dissipation Pdiss 100 mW 1.33 mW/°C Derate from 25 °C OUTPUT IL420 VDRM 600 V IL4208 VDRM 800 V RMS on-state current ITM 300 mA Single cycle surge current ITSM 3 A Power dissipation Pdiss 500 mW 6.6 mW/°C Peak off-state voltage Derate from 25 °C COUPLER Isolation test voltage between emitter and detector Isolation resistance t=1s VISO 5300 VRMS VIO = 500 V, Tamb = 25 °C RIO 1012 VIO = 500 V, Tamb = 100 °C RIO 1011 Tstg - 55 to + 150 °C Tamb - 55 to + 100 °C Tsld 260 °C Storage temperature range Ambient temperature range Soldering temperature (1) max. 10 s dip soldering 0.5 mm from case bottom Notes • Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability. (1) Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering condditions for through hole devices (DIP). ELECTRICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified) PARAMETER TEST CONDITION SYMBOL Forward voltage IF = 10 mA Reverse current VR = 6 V VF = 0 V, f = 1 MHz MIN. TYP. MAX. UNIT VF 1.16 1.35 V IR 0.1 10 μA CIN 40 pF Rthja 750 °C/W INPUT Input capacitance Thermal resistance, junction to ambient OUTPUT Off-state current VD = VDRM, Tamb = 100 °C IDRM 10 100 On-state voltage IT = 300 mA VTM 1.7 3 V f = 50 Hz ITSM 3 A Surge (non-repetitive), on-state current Holding current Latching current LED trigger current IH VT = 2.2 V IL VD = 5 V IFT IFT/Tj Trigger current temperature gradient Critical rate of rise off-state voltage Critical rate of rise of voltage at current commutation Critical rate of rise of on-state current commutation Thermal resistance, junction to ambient Rev. 2.1, 11-Jun-13 65 μA 500 μA 500 μA 1 2 mA 7 14 μA/°C VD = 0.67 VDRM, Tj = 25 °C dV/dtcr 10 000 V/μs VD = 0.67 VDRM, Tj = 80 °C dV/dtcr 5000 V/μs VD = 230 VRMS, ID = 300 mARMS, TJ = 25 °C dV/dtcrq 8 V/μs VD = 230 VRMS, ID = 300 mARMS, TJ = 85 °C dV/dtcrq 7 V/μs dI/dtcrq 12 A/ms Rthja 150 °C/W Document Number: 83629 2 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IL420, IL4208 www.vishay.com Vishay Semiconductors ELECTRICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified) PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT Critical rate of rise of coupled input/output voltage IT = 0 A, VRM = VDM = VDRM dV/dt 5000 V/μs Capacitance (input to output) f = 1 MHz, VIO = 0 V CIO 0.8 pF COUPLER Note • Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements. SWITCHING CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified) PARAMETER TEST CONDITION SYMBOL Turn-on time VRM = VDM = VDRM ton MIN. TYP. MAX. UNIT 35 μs SAFETY AND INSULATION RATINGS (Tamb = 25 °C, unless otherwise specified) PARAMETER TEST CONDITION SYMBOL MIN. TYP. Climatic classification (according to IEC68 part 1) MAX. UNIT 55/100/21 Comparative tracking index CTI 175 VIOTM 8000 VIORM 630 399 V V PSO 500 mW ISI 250 mA TSI 175 °C Creepage distance Standard DIP-8 7 mm Clearance distance Standard DIP-8 7 mm Creepage distance 400 mil DIP-8 8 mm Clearance distance 400 mil DIP-8 8 mm Insulation thickness For IL4208 only 0.4 mm Note • As per IEC60747-5-2, § 7.4.3.8.1, this optocoupler is suitable for “safe electrical insulation” only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits. TYPICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified) 10 000 1.3 IF(pk) - Peak LED Current (mA) VF - Forward Voltage (V) 1.4 Tamb = - 55 °C 1.2 Tamb = 25 °C 1.1 1.0 0.9 Tamb = 85 °C 0.8 0.7 1000 100 10 0.1 iil420_01 1 10 100 IF - Forward Current (mA) Fig. 1 - Forward Voltage vs. Forward Current Rev. 2.1, 11-Jun-13 τ Duty factor 0.005 0.01 0.02 0.05 0.1 0.2 0.5 t DF = τ/t 10-6 10-5 10-4 10-3 10-2 10-1 100 101 t - LED Pulse Duration (s) iil420_02 Fig. 2 - Peak LED Current vs. Duty Factor, Document Number: 83629 3 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IL420, IL4208 www.vishay.com Vishay Semiconductors 400 300 100 ITRMS (mA) LED - Power (mW) 150 50 200 ITRMS = f(TPIN5), RthJ-PIN5 = 16.5 K/W Thermocouple measurement must be performed potentially separated to A1 and A2. Measuring junction as near as possible at the case. 100 0 - 60 - 40 - 20 0 20 40 60 Tamb - Ambient Temperature (°C) iil420_03 0 50 80 100 60 Fig. 3 - Maximum LED Power Dissipation 80 90 100 Fig. 6 - Current Reduction 103 103 5 t gd = f(IF /IFT 25 °C),VD = 200 V, parameter: Tj Tj = 25 °C Tj = 100 °C IT = f(VT), parameter: Tj 5 102 Tj = 25 °C 100 °C tgd (µs) 102 IT (mA) 70 TPIN5 (°C) iil420_06 101 101 5 100 100 100 0 1 2 3 4 VT (V) iil420_04 iil420_07 Fig. 4 - Typical Output Characteristics 102 Fig. 7 - Typical Trigger Delay Time 400 103 ITRMS = f(TA), RthJA = 150 K/W Device switch soldered in pcb or base plate. ID = f(Tj), VD = 600 V, parameter:Tj 102 ID (nA) 300 ITRMS (mA) 101 IF/IFT 25 °C 200 100 101 100 10-1 0 0 iil420_05 20 40 60 Tamb (°C) Fig. 5 - Current Reduction Rev. 2.1, 11-Jun-13 80 100 0 iil420_08 20 40 60 80 100 Tj (°C) Fig. 8 - Typical Off-State Current Document Number: 83629 4 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IL420, IL4208 www.vishay.com 0.6 10 for 40 Hz to 60 Hz line operation, Ptot = f(ITRMS) 0.5 8 ITRMS 0.4 7 6 T 0.3 IFTN = f (tpIF), IFTN normalized to IFT, referring to tpIF I ≥ 1.0 ms, VOP = 200 V, f = 40 HZ to 60 Hz typ. 9 IFTN P tot (W) Vishay Semiconductors = 180 °C = 120 °C = 90 °C = 60 °C = 30 °C 0.2 5 4 3 0.1 2 0 0 1 0 100 200 300 101 102 ITRMS (mA) iil420_09 103 tpIF (µs) Fig. 9 - Power Dissipation Fig. 10 - Pulse Trigger Current PACKAGE DIMENSIONS in millimeters 3 2 1 4 5 6 Pin one ID 6.30 6.50 ISO method A 8.50 8.70 7.62 typ. 1.22 1.32 1 min. 3.30 3.81 4° typ. 18° 0.84 typ. 0.46 0.51 3.30 3.81 3° to 9° 0.20 0.30 0.84 typ. 7.62 to 8.81 2.54 typ. i178014 Option 6 Option 7 Option 8 Option 9 7.62 typ. 7.62 typ. 7.62 typ. 10.3 max. 7.62 typ. 3.5 ± 0.3 0.7 min. 4.3 ± 0.3 0.25 ± 0.1 3.5 ± 0.3 0.1 ± 0.1 3.6 ± 0.3 0.1 min. 8 min. 2.55 ± 0.25 9.27 min. 0.6 min. 10.3 max. 0.6 min. 12.1 max. 8 min. 10.16 typ. 0.76 2.54 R 0.25 0.76 2.54 R 0.25 1.78 20802-25 Rev. 2.1, 11-Jun-13 8 min. 11.05 1.52 0.76 2.54 R 0.25 1.78 8 min. 11.05 1.52 1.78 8 min. 11.05 1.52 Document Number: 83629 5 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IL420, IL4208 www.vishay.com Vishay Semiconductors PACKAGE MARKING (example) IL4208 V YWW H 68 Notes • Only options 1, 7, and 8 are reflected in the package marking. • The VDE Logo is only marked on option 1 parts. • Tape and reel suffix (T) is not part of the package marking. Rev. 2.1, 11-Jun-13 Document Number: 83629 6 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. © 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED Revision: 08-Feb-17 1 Document Number: 91000