ICST ICS843002CY-31LF 700mhz femtoclocksâ ¢ vcxo based frequency translator and jitter attenuator Datasheet

PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
GENERAL DESCRIPTION
FEATURES
The ICS843002-31 is a member of the
HiperClockS™ family of high performance clock
HiPerClockS™
solutions from ICS. This monolithic device is a
high-performance, PLL-based synchronous
clock generator and jitter attenuation circuit. The
ICS843002-31 contains two clock multiplication stages that
are cascaded in series. The first stage is a VCXO-based PLL
that is optimized to provide reference clock jitter attenuation,
to be jitter tolerant, and to provide a stable reference clock
for the second multiplication stage. The second stage is the
proprietary ICS FemtoClock™circuit which is a high-frequency,
sub-picosecond clock multiplier.
• Outputs:
• Two high frequency differential LVPECL outputs
Output frequency: up to 700MHz
The VCXO PLL has an on-chip VCXO circuit that uses an
external, inexpensive pullable crystal in the 17.5 to 25MHz
range. The PLL includes 13 bit reference and feedback
dividers supporting complex PLL multiplication ratios and
input reference clock rates as low as 2.3kHz. External loop
filter components are used (two resistors and two capacitors)
to achieve the low loop bandwidth needed for jitter attenuation of a recovered data clock.
• FemtoClock frequency multiplier supports rate of:
560MHz - 700MHz
ICS
• One LVCMOS/LVTTL VCXO PLL output with output
enable
• One Reference clock output with output enable
• One LOCK detect output
• Input mux supports 3 selectable inputs: one differential
input pair and two LVCMOS/LVTTL input clocks
• 13-bit VCXO PLL feedback and reference dividers provide
wide range of frequency translation ratio options
• ‘Lock Detect’ output reports lock status of VCXO PLL
• VCXO PLL circuit provides jitter attenuation with
loop bandwidth of 250Hz and below (user adjustable)
• RMS phase jitter, random at 12kHz to 20MHz:
<1ps (design target)
• 3.3V supply voltage
The FemtoClock circuit can multiply the VCXO crystal
frequency by a factor of 28 or 32 (selectable) and provide a
clock output of up to 700MHz.
• 0°C to 70°C ambient operating temperature
• Industrial temperature information available upon request
• Available in both standard and lead-free RoHS-compliant
packages
Clock Input/Output Configuration:
• Clock Inputs - one differential pair, two singled ended
(mux selected)
• Differential input pair can support LVPECL, LVDS,
LVHSTL, SSTL, HCSL or single-ended LVCMOS
or LVTTL levels
• Singled ended inputs can support LVCMOS or
LVTTL levels
• Clock Outputs, FemtoClockS two LVPECL pairs
(selectable output dividers)
LF1
LF0
ISET
VEE
NV1
NV0
V CC
MR
CLK0
nCLK0
OE_REF
CLK1
V CC
SEL1
SEL0
CLK2
• Clock Output, VCXO – one single ended output
(at VCXO crystal frequency)
• Clock Output, other – VCXO reference clock
Example Applications:
• SONET/SDH line card clock generator (up to 622.08MHz
for OC-48) using 8kHz frame clock as input reference
• Jitter attenuation of a recovered communications clock
• Complex-ratio clock frequency translation between
various communication protocols, such as:
• For telecom, OC-12 to E3 rate conversion, 622.08MHz
to 34.368MHz, PLL ratio of 179/32
XOFB12
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
1
48
2
47
3
46
4
45
5
44
6
43
7
42
64-Lead TQFP, EPAD
8
41
10mm x 10mm x 1.0mm
9
40
package body
10
39
Y package
11
38
Top View
12
37
13
36
14
35
15
34
16
33
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
ICS843002-31
VEE
REF_CLK
VCLK
LOCK
VCCO_CMOS
nQB
QB
VEE
nQA
QA
VCCO_PECL
MP
NPB0
NPB1
NPB2
VCCA
XOIN12
XOIN11
XOIN10
XOIN9
XOIN8
XOIN7
XOIN6
XOIN5
XOIN4
XOIN3
XOIN2
XOIN1
XOIN0
NPA2
NPA1
NPA0
• For digital video, ITU-R601 to SMPTE 252M/59.94,
27MHz to 74.17582MHz, PLL ratio of 250/91
XOFB0
XOFB1
XOFB2
XOFB3
XOFB4
XOFB5
XOFB6
XOFB7
XOFB8
XOFB9
XOFB10
XOFB11
VCCA_XO
XTAL_IN
XTAL_OUT
PIN ASSIGNMENT
The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.
843002CY-31
www.icst.com/products/hiperclocks.html
1
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
BLOCK DIAGRAM - NOMINAL SYSTEM CONFIGURATION
3
NPB[2:0]
3
NPA[2:0]
2
NV[1:0]
VCXO PLL Output
Divider NV[1:0]
ISET
Charge Pump Current
External Loop
Filter Connection
17.5 - 25MHz LF0 LF1
XTAL_OUT
CLK1
00
01
QA Output
Divider NPA[2:0]
FemtoClock™
Frequency
Multiplier
Input Divider
CLK2
XOIN[12:0]
÷1 to ÷8191
10
VCXO PLL
0: x32
1: x28
11 Bypass
VCXO PLL
Feedback Divider
XOIN[12:0]
XOFB[12:0]
13
000:
001:
010:
011:
100:
101:
110:
111:
÷1
÷2
÷4
÷8
÷12
÷14
÷16
Disabled
Drive Low
QA
nQA
QB Output
Divider NPB[2:0]
000:
001:
010:
011:
100:
101:
110:
111:
XOFB[12:0]
÷1 to ÷8191
SEL1
SEL0
VCLK
÷1
÷12
÷16
Disabled Drive Low
XTAL_IN
CLK0
nCLK0
00:
01:
10:
11:
>1 1
13
QA ÷1
QA ÷2
QA ÷4
QA ÷8
XOIN Output
OFB Output
MP Output
Disabled
Drive Low
QB
nQB
MP
REF_CLK
OE_REF
LOCK
LOCK Detect
NOTE 1: For application configuration (non-test/bypass modes).
NOTE 2: Bold lines
are primary clock paths (non-control/non-feedback lines).
Not all control lines and signal paths are shown in this simplified block diagram.
843002CY-31
www.icst.com/products/hiperclocks.html
2
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
SIMPLIFIED BLOCK DIAGRAM - CLOCK SIGNAL PATHS
External Loop
Filter Connection
17.5 - 25MHz
CLK1
QA Output
Divider NPA[2:0]
XTAL_IN
XTAL_OUT
VCLK
÷1
÷12
÷16
Disabled Drive Low
LF0 LF1
01
Input Divider
XOIN[12:0]
÷1 to ÷8191
CLK2
00:
01:
10:
11:
1 1 Bypass
nCLK0
BYPASS MODE
VCXO PLL Output
Divider NV[1:0]
ISET
Charge Pump
Current
CLK0
IN
FemtoClock™
Frequency
Multiplier
VCXO PLL
NPA[2:0]
000: ÷1
001: ÷2
010: ÷4
011: ÷8
100: ÷12
101: ÷14
110: ÷16
111: Disabled Drive Low
QA
nQA
10
000: ÷1
001: ÷2
010: ÷4
QB
nQB
011: ÷8
111: Disabled
SEL1 = 1
SEL0 = 1
FemtoClock™
Feedback Divider
VCXO PLL
Feedback Divider
XOFB[12:0]
MP
0: ÷32
1: ÷28
÷1 to ÷8191
110: MP
101: XOFB
100: XOIN
NPB2
NPB1
NPB0
NOTE 1: Setting SEL1:SEL0 = 11 enables bypass mode.
Only clock signals on the CLK0/nCLK0 input pair are routed
to the device in bypass mode.
NOTE 2: Bold lines
show clock bypass paths.
Not all control lines and signal paths are shown in this
simplified block diagram.
843002CY-31
www.icst.com/products/hiperclocks.html
3
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
TABLE 1. PIN DESCRIPTIONS (CONTINUED ON NEXT PAGE)
Number
Name
Type
Analog
Input/Output
Analog
Input/Output
Power
1, 2
LF1, LF0
3
ISET
4, 41, 48
VEE
5, 6
NV1, NV0
Input
7, 13
VCC
Power
8
MR
Input
9
CLK0
Input
10
nCLK0
Input
11
OE_REF
Input
12
CLK1
Input
Pullup/ Inver ting differential clock input.
Pulldown VCC/2 bias voltage when left floating.
Output enable control for reference clock output. When logic LOW,
Pulldown the reference clock output is in high impedance. When logic HIGH,
the output is enabled. LVCMOS/LVTTL interface levels.
Pulldown Clock input. LVCMOS/LVTTL interface levels.
14, 15
SEL1, SEL0
Input
Pulldown Input clock select. LVCMOS/LVTTL interface levels.
16
17, 18,
19, 20,
21, 22,
23, 24,
25, 26,
27, 28
CLK2
Input
Pulldown Clock input. LVCMOS/LVTTL interface levels.
XOIN12:XOIN1
Input
Pulldown
29
XOIN0
Input
30, 31,
32
33
34, 35,
36
NPA2, NPA1,
NPA0
VCCA
NPB2, NPB1,
NPB0
Power
37
MP
Input
38,
VCCO_PECL
Power
Input
Input
Description
Loop filter connection pins.
Charge pump current setting pin.
Negative supply pins. Normally connected to ground.
VCXO PLL output divider control pins.
Pullup
LVCMOS/LVTTL interface levels.
Core power supply pins.
Master Reset. When HIGH, resets all internal dividers and
Pulldown LVCMOS outputs are in high impedance.
LVCMOS / LVTTL interface levels.
Pulldown Non-inver ting differential clock input.
VCXO PLL input divider control input.
LVCMOS/LVTTL interface levels.
VCXO PLL input divider control input.
LVCMOS/LVTTL interface levels.
LVPECL output divider control for QA/nQA outputs.
Pulldown
LVCMOS/LVTTL interface levels.
Analog supply pin.
LVPECL output divider control for QB/nQB outputs.
Pulldown
LVCMOS/LVTTL interface levels.
FemtoClock™ circuit clock multiplication control input.
Pulldown When HIGH, selects 28. When LOW, selects 32.
LVCMOS/LVTTL interface levels.
Output power supply pin for LVPECL clock outputs.
Pullup
39, 40
QA, nQA
Output
Differential clock output pair. LVPECL interface levels.
42, 43
QB, nQB
Output
Differential clock output pair. LVPECL interface levels.
44
VCCO_CMOS
Power
Output power supply pin for LVCMOS outputs.
45
LOCK
Output
Lock detect output. LVCMOS/LVTTL interface levels.
46
VCLK
Output
VCXO PLL clock output. LVCMOS/LVTTL interface levels.
47
REF_CLK
Output
Reference clock output. LVCMOS/LVTTL interface levels.
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.
843002CY-31
www.icst.com/products/hiperclocks.html
4
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
TABLE 1. PIN DESCRIPTIONS (CONTINUED
Number
49, 50,
51, 52,
53, 54,
55, 56,
57, 58,
59. 60
ICS843002-31
Name
FROM PREVIOUS PAGE)
Type
Description
XOFB12:XOFB1
Input
Pulldown
61
XOFB0
Input
Pullup
62, 63
XTAL_OUT,
XTAL_IN
Input
64
VCCA_XO
Power
VCXO feedback divider control input.
LVCMOS/LVTTL interface levels.
VCXO feedback divider control input.
LVCMOS/LVTTL interface levels.
VCXO crystal oscillator interface. XTAL_IN is the input.
XTAL_OUT is the output.
Analog power supply pin for VCXO.
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.
TABLE 2. PIN CHARACTERISTICS
Symbol
Parameter
Test Conditions
CIN
Input Capacitance
CPD
Power Dissipation Capacitance
(per LVCMOS output)
RPULLUP
Minimum Typical
Maximum
Units
4
pF
TBD
pF
Input Pullup Resistor
51
kΩ
RPULLDOWN
Input Pulldown Resistor
51
kΩ
ROUT
Output Impedance
7
Ω
843002CY-31
VCC, VCCA, VCCA_XO, VCCO_CMOS,
VCCO_PECL = 3.465V
www.icst.com/products/hiperclocks.html
5
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
SECTION 1. FREQUENCY TRANSLATION
➥ Set the QB/nQB output divider control pins,
NPB[2:0] = 010 for divide by 4. This sets the QB/nQB
LVPECL output pair for 155.52MHz.
The ICS843002-31 is a two stage device, a VCXO PLL stage
followed by a low phase noise FemtoClock multiplier stage.
The VCXO uses a pullable crystal to lock to the reference
clock and can provide an output frequency up to 25MHz on
the single-ended VCLK output. For higher frequencies, the low
phase noise FemtoClock can multiply the VCXO PLL output clock up to 700MHz on 2 differential LVPECL output
pairs (QA/nQA, QB/nQB).
2. T1 to T3. (1.544MHz to two 44.736MHz outputs)
Since 44.736MHz is slightly higher than the maximum VCXO
output frequency, the FemtoClock circuit will have to be used.
➥ Using a pullable 22.368MHz on XTAL_IN/XTAL_OUT,
set the VCXO PLL feedback divider pins, XOFB[12:0]
to 2796 and the input divider pins, XOIN[12:0] to 193.
This multiplies the 1.544MHz reference to 22.368MHz
(1.544MHz * 2796/193 = 22.368MHz).
The VCXO PLL stage has a 13-bit input divider and a 13-bit
feedback divider to generate large integer ratios needed for
some frequency translation applications. When configuring
the device is to use pullable crystals in the 17.5MHz – 25MHz
range on the VCXO PLL stage, and ensure that the
FemtoClock PLL is kept within its range of 560MHz to 700MHz.
➥ Set the FemtoClock multiplication control pin, MP, to
28 which sets the VCO at 626.304MHz.
Below are 3 examples:
➥ Set the QA/nQA output divider control pins,
NPA[2:0] = 101 for divide by 14. This sets the QA/nQA
LVPECL output pair for 44.736MHz.
1. 8kHz to 622.08MHz and 155.52MHz
This frequency translation requires use of both the VCXO
PLL and the FemtoClock circuit. The VCXO PLL can be used
to multiply up to 19.44MHz for use as a reference clock for
the FemtoClock which will do the multiplication from
19.44MHz to 622.08MHz.
➥ Set the QB/nQB output divider control pins,
NPB[2:0] = 000 for divide by 1. This sets the QB/nQB
LVPECL output pair for 44.736MHz
3. T1 to E1. (1.544MHz to two 2.048MHz outputs)
➥ Using a 19.44MHz pullable crystal on XTAL_IN/
XTAL_OUT, set the VCXO PLL feedback divider pins,
XOFB[12:0], to 2430. This multiplies the 8kHz reference clock to 19.44MHz.
The 2.048MHz output frequency requirement is low enough
that the FemtoClock circuit is not required. Only the VCXO
stage is used for this frequency translation.
➥ Using a pullable 24.576MHz on XTAL_IN/XTAL_OUT,
set the VCXO PLL feedback divider pins, XOFB[12:0]
to 3072 and the input divider pins, XOIN[12:0] to 193.
This multiplies the 1.544MHz reference to 2.048MHz
(1.544MHz * 3072/193 = 24.576MHz).
➥ Set the FemtoClock multiplication control pin, MP, to
0 which sets the multiplication factor to 32. This sets
the FemtoClock VCO to 622.08MHz.
➥ Set the QA/nQA output divider control pins,
NPA[2:0] = 000 for divide by 1. This sets the QA/nQA
LVPECL output pair for 622.08MHz.
➥ Set the VCXO PLL Output Divider control pins,
NV[1:0] = 01 for /12. This divides the 24.576MHz VCXO
PLL frequency down to 2.048MHz.
SECTION 2. FREQUENCY CONFIGURATION
of 28 or 32, this means there are 2 viable VCXO PLL crystal
choices which fall within its 17.5MHz – 15MHz range:
22.217143MHz (/28 feedback divider) or 19.44MHz (/32
feedback divider). Use of the /28 feedback divider for the
FemtoClock multiplier will give slightly better phase noise,
but in this case 22.217143/1.544 cannot be exactly
achieved with the 13-bit input and feedback VCXO PLL
dividers. Using the x32 setting of the FemtoClock allows a
ratio of 19.44/1.544 = 2430/193 which is easily achievable.
So the FemtoClock would be set for x32 and a 19.44MHz
crystal would be used. The VCXO PLL input divider would
be set for 193 and the VCXO PLL feedback divider would
be set for 2430. To double check the solution, perform the
following calculation: 1.544 * 2430 * 32/193 = 622.08MHz.
The Frequency Configuration Table Examples (see the following pages) are intended to show the most common frequency
translation requirements. It is sorted in order of descending
input frequency. It is not intended to be an exhaustive configuration table because that would be impractical with almost 3
billion possible configurations. As far as configuration is
concerned, frequencies <= 25MHz can be generated with the
VCXO PLL while frequencies > 25MHz require the use of the
downstream FemtoClock which can multiply the VCXO PLL
output up to 700MHz. Complex integer ratios are handled with
the VCXO PLL stage and the FemtoClock circuit can be
configured to multiply the VCXO PLL output by 32 or 28. The
following example will illustrate the configuration process.
Assume you have a 1.544MHz T1 clock which needs to be
multiplied up to 622.08MHz (OC12). Obviously, the
FemtoClock multiplier will be needed to achieve 622.08MHz.
Since the FemtoClock has a selectable multiplication factor
843002CY-31
The 2nd FemtoClock multiplier output, QB/nQB, can be set to
equal the QA/nQA output frequency or a fraction of its frequency.
The following fractional values are available: /1, /2, /4, /8.
www.icst.com/products/hiperclocks.html
6
REV. B NOVEMBER 22, 2005
843002CY-31
FemtoClock Output
VCXO Output
311.04
155.52
77.76
51.84
38.88
19.44
44.736
34.368
32.064
2.048
1.544
311.04
155.52
77.76
51.84
38.88
19.44
622.08
622.08
622.08
622.08
622.08
622.08
622.08
622.08
622.08
622.08
622.08
311.04
311.04
311.04
311.04
311.04
7
311.04
www.icst.com/products/hiperclocks.html
77.76
38.88
19.44
311.04
155.52
155.52
155.52
155.52
155.52
51.84
1.544
155.52
2.048
311.04
311.04
155.52
34.368
32.064
311.04
311.04
FemtoClock Output
VCXO Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
VCXO Output
VCXO Output
VCXO Output
VCXO Output
FemtoClock Output
44.736
311.04
405
19.44
19.44
19.44
19.44
19.44
19.44
8
8
8
8
8
8
2430
24.576
24.704
1620
1620
3240
16
16
16
32.064
34.368
22.368
19.44
19.44
FemtoClock Output
FemtoClock Output
622.08
622.08
311.04
311.04
19.44
16
16
19.44
16
16
16
19.44
19.44
19.44
VCXO Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
19.44
405
4860
24.576
3240
3240
6480
32
24.704
32.064
34.368
22.368
19.44
32
32
19.44
19.44
32
32
32
32
VCXO
Input
Divider
19.44
19.44
19.44
19.44
Required VCXO
Crystal Frequency
(MHz)
1
1
1
1
1
1
193
32
167
179
233
1
1
1
1
1
1
1
1
193
16
167
179
233
1
1
1
1
1
1
1
VCXO
Feedback
Divider
N/A
32
1
32
32
32
32
N/A
N/A
N/A
N/A
28
32
32
N/A
32
32
32
32
32
N/A
N/A
N/A
N/A
28
N/A
32
32
32
32
32
32
FemtoClock
™
Multiplication
Factor
N /A
N/A
N/A
N/A
N/ A
16
12
1
1
1
1
1
1
N/A
N/ A
N/A
N/A
N/A
16
12
1
1
N/A
1
N/A
N/A
N/A
N/A
N/A
N/A
VCXO
Output
Divider
CONTINUED ON NEXT PAGE
622.08
2
N/A
16
622.08
N/A
12
8
4
N/ A
N/A
N/A
N/ A
14
1
1
N/ A
16
12
8
4
2
N/A
622.08
622.08
622.08
N/A
N/A
N/ A
N/A
626.304
622.08
622.08
N/A
622.08
622.08
622.08
622.08
622.08
N/A
N/A
N/A
N /A
N/A
N/A
14
N/A
16
12
8
4
2
1
FemtoClock
Output
Divider
N/A
626.304
N/A
622.08
622.08
622.08
622.08
622.08
622.08
FemtoClock
Output Frequency
(MHz)
155.52 -> 311.04 (SONET)
155.52 -> 19.44 (SONET)
155.52 -> 38.88 (SONET)
155.52 -> 51.84 (OC3 to OC1)
155.52 -> 77.76 (SONET)
155.52 -> 155.52 (OC3)
311.04 -> 1.544 (SONET to T1/J1)
311.04 -> 2.048 (SONET to E1)
311.04 -> 32.064 (SONET to J3)
311.04 -> 34.368 (SONET to E3)
311.04 -> 44.736 (SONET to T3)
311.04 -> 622.08 (SONET)
311.04 -> 622.08 (SONET)
311.04 -> 19.44 (SONET)
311.04 -> 38.88 (SONET)
311.04 -> 51.84 (SONET)
311.04 -> 77.76 (SONET)
311.04 -> 155.52 (SONET)
311.04 -> 311.04 (SONET)
622.08 -> 1.544 (OC12 to T1/J1)
622.08 -> 2.048 (OC12 to E1)
622.08 -> 32.064 (OC12 to J3)
622.08 -> 34.368 (OC12 to E3)
622.08-> 44.736 (OC12 to T3)
622.08 -> 19.44 (SONET)
622.08 -> 38.88 (SONET)
622.08 -> 51.84 (OC12 to OC1)
622.08 -> 77.76 (SONET)
622.08 -> 155.52 (OC12 to OC3)
622.08 -> 311.04 (SONET)
622.08 -> 622.08 (OC12)
Application
Integrated
Circuit
Systems, Inc.
FemtoClock Output
VCXO Output
VCXO Output
VCXO Output
VCXO Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
622.08
622.08
VCXO or
FemtoClock Output
Output
Frequency
(MHz)
Input
Frequency
(MHz)
TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES,
PRELIMINARY
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
REV. B NOVEMBER 22, 2005
843002CY-31
www.icst.com/products/hiperclocks.html
8
32.064
2.048
1.544
51.84
38.88
19.44
77.76
77.76
77.76
51.84
51.84
51.84
622.08
44.736
34.368
32.064
2.048
1.544
44.736
51.84
51.84
51.84
51.84
51.84
51.84
44.736
311.04
34.368
51.84
44.736
77.76
77.76
77.76
622.08
155.52
311.04
77.76
77.76
51.84
VCXO Output
155.52
77.76
19.44
FemtoClock Output
VCXO Output
VCXO Output
VCXO Output
VCXO Output
22.368
24.704
24.576
32.064
34.368
22.368
FemtoClock Output
FemtoClock Output
19.44
19.44
19.44
19.44
19.44
19.44
24.704
24.576
32.064
34.368
22.368
19.44
19.44
19.44
FemtoClock Output
FemtoClock Output
FemtoClock Output
VCXO Output
FemtoClock Output
FemtoClock Output
VCXO Output
VCXO Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
19.44
19.44
19.44
19.44
24.704
2
405
135
270
270
540
8
8
8
8
8
8
8
1215
405
405
405
810
4
4
4
4
4
4
4
1215
810
405
32.064
810
1620
8
VCXO
Input
Divider
24.576
34.368
22.368
19.44
Required VCXO
Crystal Frequency
(MHz)
1
193
64
167
179
233
3
3
3
3
3
3
3
386
128
167
1
16
12
1
1
N/A
N/ A
N/A
28
N/A
N/A
N/A
N/A
28
32
32
32
32
N/A
N/A
32
32
N/A
N/ A
N/A
N/A
28
32
32
32
N/A
32
32
32
N/A
N/ A
N/A
N/A
28
32
FemtoClock
™
Multiplication
Factor
N /A
1
N/A
N/A
16
12
1
1
N/A
233
179
N/A
N/A
N/A
1
N/A
N/A
N/A
16
12
1
1
N/A
N/A
VCXO
Output
Divider
1
1
1
1
1
1
1
193
64
167
179
233
1
VCXO
Feedback
Divider
CONTINUED ON NEXT PAGE
14
N/A
N/A
626.304
N/A
N/A
N/A
14
1
2
4
8
N/ A
16
12
N/A
N/A
N/A
N/A
14
1
2
4
N/A
16
12
8
N/A
N/A
44.736 -> 44.736 (T3)
51.84 -> 1.544 (OC1 to T1/J1)
51.84 -> 2.048 (OC1 to E1)
51.84 -> 32.064 (OC1 to J3)
51.84 -> 34.368 (OC1 to E3)
51.84 -> 44.736 (OC1 to T3)
51.84 -> 622.08 (OC1 to OC12)
51.84 -> 311.04 (SONET)
51.84 -> 155.52 (OC1 to OC3)
51.84 -> 77.76 (SONET)
51.84 -> 19.44 (SONET)
51.84 -> 38.88 (SONET)
51.84 -> 51.84 (SONET)
77.76 -> 1.544 (SONET to T1/E1)
77.76 -> 2.048 (SONET to E1)
77.76 -> 32.064 (SONET to J3)
77.76 -> 34.368 (SONET to E3)
77.76 -> 44.736 (SONET to T3)
77.76 -> 622.08 (SONET)
77.76 -> 311.04 (SONET)
77.76 -> 155.52 (SONET)
77.76 -> 19.44 (SONET)
77.76 -> 38.88 (SONET)
77.76 -> 51.84 (SONET)
77.76 -> 77.76 (SONET)
155.52 -> 1.544 (OC3 to T1/J1)
155.52 -> 2.048 (OC3 to E1)
155.52 -> 32.064 (OC3 to J3)
155.52 -> 34.368 (OC3 to E3)
N/A
N/A
155.52 -> 44.736 (OC3 to T3)
155.52 -> 622.08 (OC3 to OC12)
Application
14
1
FemtoClock
Output
Divider
N/A
N/A
N/A
626.304
622.08
622.08
622.08
622.08
N/A
622.08
622.08
N/A
N/A
N/A
N/A
626.304
622.08
622.08
622.08
N/A
622.08
622.08
622.08
N/A
N/A
N/A
N/A
626.304
622.08
FemtoClock
Output
Frequency
(MHz)
Integrated
Circuit
Systems, Inc.
51.84
VCXO Output
19.44
77.76
VCXO Output
38.88
77.76
FemtoClock Output
FemtoClock Output
51.84
77.76
VCXO Output
VCXO Output
VCXO Output
2.048
155.52
FemtoClock Output
32.064
155.52
VCXO Output
1.544
34.368
155.52
FemtoClock Output
77.76
44.736
155.52
FemtoClock Output
77.76
622.08
155.52
VCXO or
FemtoClock Output
155.52
Output
Frequency
(MHz)
Input
Frequency
(MHz)
TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES,
PRELIMINARY
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
REV. B NOVEMBER 22, 2005
843002CY-31
9
VCXO Output
VCXO Output
34.368
32.064
2.048
38.88
38.88
38.88
FemtoClock Output
www.icst.com/products/hiperclocks.html
1.544
34.368
44.736
32.064
32.064
2.048
34.368
32.064
19.44
34.368
32.064
32.064
34.368
34.368
VCXO Output
VCXO Output
44.736
34.368
FemtoClock Output
VCXO Output
VCXO Output
VCXO Output
VCXO Output
FemtoClock Output
VCXO Output
1.544
34.368
38.88
34.368
VCXO Output
VCXO Output
FemtoClock Output
622.08
44.736
FemtoClock Output
38.88
311.04
38.88
FemtoClock Output
FemtoClock Output
VCXO Output
FemtoClock Output
FemtoClock Output
38.88
77.76
19.44
38.88
155.52
38.88
38.88
38.88
622.08
44.736
FemtoClock Output
FemtoClock Output
FemtoClock Output
22.368
34.368
32.064
24.704
24.576
19.44
334
167
1
537
17 9
716
179
358
22.368
32.064
1
1215
405
405
405
40 5
2
2
2
2
2
2
932
233
179
1
386
128
405
167
233
1
772
256
334
358
233
1
1
1
1
1
1
405
405
405
932
405
405
405
179
167
405
128
386
VCXO
Feedback
Divider
932
932
932
932
233
233
932
233
699
VCXO
Input
Divider
34.368
24.704
24.576
32.064
34.368
22.368
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
19.44
FemtoClock Output
34.368
32.064
19.44
24.576
24.704
Required VCXO
Crystal Frequency
(MHz)
FemtoClock Output
VCXO Output
VCXO Output
VCXO Output
VCXO Output
VCXO Output
VCXO or
FemtoClock Output
N/A
1
1
16
12
1
1
N/A
1
16
12
1
1
N/A
N/A
N/A
N/A
N/A
1
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1
1
1
12
16
VCXO
Output
Divider
CONTINUED ON NEXT PAGE
622.08
28
N/A
N/A
N/A
N/A
N/A
N/A
28
N/A
N/A
N/A
N/A
N/ A
N/A
14
N/A
N/A
N/A
N/A
N/A
N/A
14
N/A
N/A
N/A
N/A
N/A
14
1
2
4
8
N/A
16
1
2
4
8
12
16
N/A
N/A
N/A
N/A
N/A
FemtoClock
Output
Divider
626.304
N/A
N/A
N/A
N/A
N/A
626.304
N/A
N/A
N/A
N/ A
N/A
626.304
32
28
622.08
622.08
622.08
N/A
622.08
622.08
622.08
622.08
622.08
622.08
622.08
N/A
N/A
N/A
N/A
N/A
FemtoClock
Output
Frequency
(MHz)
32
32
32
N/A
32
32
32
32
32
32
32
N/A
N/A
N/A
N/A
N/A
FemtoClock
™
Multiplication
Factor
32.064 -> 44.736 (J3 to T3)
32.064 -> 34.368 (J3 to E3)
32.064 -> 32.064 (J3)
34.368 -> 1.544 (E3 to T1)
34.368 -> 2.048 (E3 to E1)
34.368 -> 19.44 (E3 to SONET)
34.368 -> 32.064 (E3 to J3)
34.368 > 44.736 (E3 to T3)
34.368 -> 34.368 (E3)
38.88 ->1.544 (SONET to DS1/J1)
38.88 -> 2.048 (SONET to E1)
38.88 -> 32.064 (SONET TO J3)
38.88 -> 34.368 (SONET to E3)
38.88 -> 44.736 (SONET to T3)
38.88 -> 622.08 (SONET to OC12)
38.88 -> 311.04 (SONET)
38.88 -> 155.52 (SONET to OC3)
38.88 -> 77.76 (SONET)
38.88 -> 19.44 (SONET)
38.88 -> 38.88 (SONET)
44.736 -> 622.08 (T3 to OC12)
44.736 -> 311.04 (T3 to SONET)
44.736 -> 155.52 (T3 to OC3)
44.736 -> 77.76 (T3 to SONET)
44.736 -> 51.84 (T3 to OC1)
44.736 -> 38.88 (T3 to SONET)
44.736 -> 34.368 (T3 to E3)
44.736 -> 32.064 (T3 to J3)
44.736 -> 19.44 (T3 to SONET)
44.736 -> 2.048 (T3 to E1)
44.736 -> 1.544 (T3 to T1/J1)
Application
Integrated
Circuit
Systems, Inc.
38.88
155.52
311.04
44.736
77.76
44.736
44.736
38.88
51.84
44.736
34.368
44.736
44.736
19.44
32.064
2.048
44.736
44.736
1.544
44.736
44.736
Output
Frequency
(MHz)
Input
Frequency
(MHz)
TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES,
PRELIMINARY
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
REV. B NOVEMBER 22, 2005
843002CY-31
10
2.048
1.544
2.048
2.048
www.icst.com/products/hiperclocks.html
1.544
19.44
32.064
0.008
0.008
44.736
1.544
2.048
34.368
0.008
32.064
1.544
1.544
0.008
1.544
2.048
1.544
1.544
VCXO Output
VCXO Output
VCXO Output
VCXO Output
FemtoClock Output
VCXO Output
VCXO Output
VCXO Output
VCXO Output
VCXO Output
32.064
19.44
24.576
24.704
22.368
34.368
32.064
24.576
24.704
22.368
32.064
34.368
24.704
24.576
VCXO Output
VCXO Output
21.00508475
20.9164557
20.82857143
24.704
24.576
32.064
34.368
22.368
19.44
19.44
19.44
19.44
19.44
19.44
19.44
FemtoClock Output
VCXO Output
672.1627119
19.44
FemtoClock Output
FemtoClock Output
FemtoClock Output
669.3265823
19.44
44.736
666.5142857
19.44
VCXO Output
2.048
1.544
19.44
VCXO Output
VCXO Output
34.368
2.048
32.064
32.064
19.44
19.44
VCXO Output
FemtoClock Output
2.048
34.368
FemtoClock Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
24.576
24.704
1
1
1
1
193
193
193
193
1
64
32
32
16
1
236
79
14
1215
405
405
405
405
1
1
1
1
1
1
1
501
167
VCXO
Input
Divider
4008
2430
3072
3088
2796
4296
4008
3072
16
699
501
537
193
12
255
85
15
1544
512
668
716
466
1
1
1
1
1
1
1
386
128
VCXO
Feedback
Divider
1
1
12
16
N/A
1
1
12
16
N/A
1
1
16
12
N/A
N/A
N/A
16
12
1
1
N/A
N/A
N/A
N/A
N/A
N/A
N/A
1
16
12
VCXO
Output
Divider
N/A
N/A
N/A
N/A
28
N/A
N/A
N/A
N/A
28
N/A
N/A
N/A
N/A
32
32
32
N/A
N/A
N/A
N/A
28
32
32
32
32
32
32
N/A
N/A
N/A
FemtoClock
™
Multiplication
Factor
N/A
N/A
N/A
N/A
626.304
N/A
N/A
N/A
N/A
626.304
N/A
N/A
N/A
N/A
672.1627119
669.3265823
666.5142857
N/A
N/A
N/A
N/A
626.304
622.08
622.08
622.08
622.08
622.08
622.08
N/A
N/A
N/A
FemtoClock
Output
Frequency
(MHz)
N/A
N/A
N/ A
N/A
14
N/A
N/A
N/A
N/A
14
N/A
N/A
N/A
N/A
1
1
1
N/A
N/A
N/A
N/A
14
1
2
4
8
12
16
N/A
N/A
N/A
FemtoClock
Output
Divider
8KHz -> 32.064MHz (Frame Clock to J3)
8KHz -> 19.44MHz (Frame Clock to SONET)
8KHz -> 2.048MHz (Frame Clock to E1)
8KHz -> 1.544MHz (Frame Clock to T1)
1.544 -> 44.736 (T1/J1 to T3)
1.544 -> 34.368 (T1/J1 to E3)
1.544 -> 32.064 (T1/J1 to J3)
1.544 -> 2.048 (T1 to E1)
1.544 -> 1.54 (T1/J1)
2.048 -> 44.736 (E1 to T3)
2.048 -> 32.064 (E1 to J3)
2.048 -> 34.368 (E1 to E3)
2.048 -> 1.544 (E1 toT1/J1)
2.048 -> 2.048 (E1)
19.44 -> 672.1627119 (255/236 FEC)
19.44 -> 669.3265823 (255/237 FEC)
19.44 -> 666.5142857 (255/238 FEC)
19.44 -> 1.544 (SONET to T1/J1)
19.44 -> 2.048 (SONET to E1)
19.44 -> 32.064 (SONET to J3)
19.44 -> 34.368 (SONET to E3)
19.44 -> 44.736 (SONET to T3)
19.44 -> 622.08 (SONET to OC12)
19.44 -> 311.04 (SONET)
19.44 -> 155.52 (SONET to OC3)
19.44 -> 77.76 (SONET)
19.44 -> 51.84 (SONET to OC1)
19.44 -> 38.88 (SONET)
19.44 -> 19.44 (SONET)
32.064 -> 1.544 (J3 to T1)
32.064 -> 2.048 (J3 to E1)
Application
Integrated
Circuit
Systems, Inc.
2.048
44.736
19.44
19.44
155.52
311.04
19.44
19.44
622.08
77.76
19.44
19.44
38.88
51.84
19.44
19.44
19.44
19.44
1.544
32.064
VCXO Output
VCXO Output
VCXO Output
2.048
32.064
VCXO or
FemtoClock
Output
Output
Frequency
(MHz)
Input
Frequency
(MHz)
CONTINUED ON NEXT PAGE
Required VCXO
Crystal
Frequency
(MHz)
TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES,
PRELIMINARY
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
REV. B NOVEMBER 22, 2005
843002CY-31
77.76
155.52
311.04
622.08
0.008
0.008
0.008
38.88
0.008
0.008
34.368
44.736
0.008
0.008
Output
Frequency
(MHz)
Input
Frequency
(MHz)
FemtoClock Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
FemtoClock Output
VCXO Output
VCXO or
FemtoClock
Output
19.44
19.44
19.44
19.44
19.44
22.368
34.368
Required VCXO
Crystal
Frequency
(MHz)
TABLE 3A. FREQUENCY CONFIGURATION EXAMPLES
1
1
1
1
1
1
1
VCXO
Input
Divider
2430
2430
2430
2430
2430
2796
4296
VCXO
Feedback
Divider
N/A
N/ A
N/ A
N/A
N/ A
1
1
VCXO
Output
Divider
32
32
32
32
32
28
N/A
FemtoClock
™
Multiplication
Factor
622.08
622.08
622.08
622.08
622.08
626.304
N/A
FemtoClock
Output
Frequency
(MHz)
1
2
4
8
16
14
N/A
FemtoClock
Output
Divider
8KHz -> 622.08MHz (Frame Clock to OC12)
8KHz -> 311.04MHz (Frame Clock to SONET)
8KHz ->155.52MHz (Frame Clock to OC3)
8KHz -> 77.76MHz (Frame Clock to SONET)
8KHz -> 38.88MHz (Frame Clock to SONET)
8KHz -> 44.736MHz (Frame Clock to T3)
8KHz -> 34.368MHz (Frame Clock to E3)
Application
PRELIMINARY
Integrated
Circuit
Systems, Inc.
www.icst.com/products/hiperclocks.html
11
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, VCC
4.6V
Inputs, VI
-0.5V to VCC + 0.5V
Outputs, VO (LVCMOS)
-0.5V to VCCO + 0.5V
Outputs, IO (LVPECL)
Continuous Current
Surge Current
50mA
100mA
Package Thermal Impedance, θJA
22.3°C/W (0 lfpm)
Storage Temperature, TSTG
-65°C to 150°C
NOTE: Stresses beyond those listed under Absolute
Maximum Ratings may cause permanent damage to the
device. These ratings are stress specifications only. Functional
operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect product reliability.
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = VCCO_PECL = 3.3V±5%, TA = 0°C TO 70°C
Symbol
Parameter
Minimum
Typical
Maximum
Units
VCC
Core Supply Voltage
Test Conditions
3.135
3.3
3.465
V
VCCA, VCCA_XO
Analog Supply Voltage
3.135
3.3
3.465
V
VCCO_CMOS,
VCCO_PECL
Output Supply Voltage
3.135
3.3
3.465
V
IEE
Power Supply Current
395
mA
ICCA
Analog Supply Current
15
mA
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = 3.3V±5%, TA = 0°C TO 70°C
Symbol
Parameter
Test Conditions
VIH
Input High Voltage
VIL
Input Low Voltage
MP, MR, OE_REF, SEL0, SEL1,
XOIN[12:1], NPA[2:0], NPB[2:0],
Input
C
LK1, CLK2, XOFB[12:1]
High Current
NV0, NV1, XOIN0, XOFB0
MP, MR, OE_REF, SEL0, SEL1,
XOIN[12:1], NPA[2:0], NPB[2:0],
Input
CLK1, CLK2, XOFB[12:1]
Low Current
NV0, NV1, XOIN0, XOFB0
IIH
IIL
VOH
Output
High Voltage
REF_CLK, VCLK, LOCK;
NOTE 1
VOL
Output
Low Voltage
REF_CLK, VCLK, LOCK;
NOTE 1
Minimum
Typical
Maximum
Units
2
VCC + 0.3
V
-0.3
0.8
V
VCC = VIN = 3.465V
150
µA
VCC = VIN = 3.465V
5
µA
VCC = 3.465V,
VIN = 0V
-5
µA
VCC = 3.465V,
VIN = 0V
-150
µA
2.6
V
0.5
V
NOTE 1: Outputs terminated with 50Ω to VCCO_CMOS/2.
843002CY-31
www.icst.com/products/hiperclocks.html
12
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = VCCO_PECL = 3.3V±5%, TA = 0°C TO 70°C
Symbol
Parameter
IIH
Input High Current
Test Conditions
CLK0
Minimum
Typical
VIN = VCC = 3.465V
Maximum
Units
150
µA
nCLK0
VIN = VCC = 3.465V
CLK0
VIN = 0V, VCC = 3.465V
-150
µA
nCLK0
VIN = 0V, VCC = 3.465V
-5
µA
IIL
Input Low Current
VPP
Peak-to-Peak Input Voltage
5
0.15
VCMR
Common Mode Input Voltage; NOTE 1, 2
VEE + 0.5
NOTE 1: Common mode voltage is defined as VIH.
NOTE 2: For single ended applications, the maximum input voltage for CLK0, nCLK0 is VCC + 0.3V.
µA
1.3
V
VCC - 0.85
V
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_PECL = 3.3V±5%, TA = 0°C TO 70°C
Symbol Parameter
Maximum
Units
VOH
Output High Voltage; NOTE 1
Test Conditions
Minimum
VCCO - 1.4
Typical
VCCO - 0.9
V
VOL
Output Low Voltage; NOTE 1
VCCO - 2.0
VCCO - 1.7
VSWING
Peak-to-Peak Output Voltage Swing
0.6
1.0
NOTE 1: Outputs terminated with 50 Ω to VCCO_PECL - 2V. See "Parameter Measurement Information" section,
"3.3V Output Load Test Circuit".
V
V
TABLE 5. CRYSTAL CHARACTERISTICS
Symbol
Parameter
fN
Nominal Frequency
Test Conditions
Minimum
Typical
Maximum
19.44
Units
MHz
fT
Frequency Tolerance
±TBD
ppm
fS
Frequency Stability
±TBD
ppm
CL
Load Capacitance
12
pF
CO
Shunt Capacitance
4
pF
CO/C1
Pullability Ratio
ESR
Equivalent Series Resistance
Operating Temperature Range
0
70
220
Drive Level
Mode of Operation
843002CY-31
°C
240
50
Ω
1
mW
Fundamental
www.icst.com/products/hiperclocks.html
13
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
TABLE 6. AC CHARACTERISTICS, VCC = VCCA = VCCA_XO = VCCO_CMOS = VCCO_PECL = 3.3V±5%, TA = 0°C TO 70°C
Symbol Parameter
Test Conditions
Maximum
Units
35
700
MHz
QB/nQB
4.375
700
MHz
VCLK
1.1875
25
MHz
200
MHz
QA/nQA
fOUT
Output Frequency
Minimum
Typical
REF_CLK
OC-48 mask (12kHz - 20MHz)
19.44MHz input, into CLK0
622.08MHz output;
NOTE 1, 2
OC-12 mask (250kHz - 5MHz)
19.44MHz input, into CLK0
155.52MHz output;
NOTE 1, 3
t(J)
Timing Jitter
OC-48 mask (12kHz - 20MHz)
8kHz input, into CLK2
622.08MHz output;
NOTE 1, 2
OC-12 mask (250kHz - 5MHz)
8kHz input, into CLK2
155.52MHz output;
NOTE 1, 3
CLK0/nCLK0 to (QA or QB)
CLK0/nCLK0 to VCLK
t(IO)
Input to Output
Clock Skew
(rising clock edge)
CLK0/nCLK0 to REF_CLK
CLK1 or CLK2 to QA or QB
CLK1 or CLK2 to VCLK
CLK1 or CLK2 to REF_CLK
t R / tF
Output Rise/Fall Time
odc
Output Duty Cycle
Random jitter
1.3
ps
Deterministic jitter
0.75
ps
Total jitter
Random jitter
Deterministic jitter
Total jitter
Random jitter
Deterministic jitter
1.5
ps
3.5
mUI
1
ps
0.5
ps
1.1
ps
0.7
mUI
1
ps
0.3
ps
1.1
ps
2.7
mUI
Random jitter
0.9
ps
Deterministic jitter
0.19
ps
0.9
ps
0.6
mUI
2
ns
2
ns
2.5
ns
1
ns
1.5
ns
Total jitter
Total jitter
CLK0/nCLK0 = 19.44MHz
QA/B = 77.76MHz
VCLK = REF_CLK = 19.44MHz;
NOTES 1, 2, 4
CLK1/2 = 8kHz
QA/B = 77.76MHz
VCLK = REF_CLK = 19.44MHz;
NOTES 1, 3, 5
20% to 80%
3
200
ns
700
QA/QB @ 622.08MHz
50
VCLK, REF_CLK @ 19.44MHz
50
%
%
PLL Lock Time
100
tLOCK
See Parameter Measurement Information section.
NOTE 1: External crystal is 19.44MHz Eliptek ECX-5451.
NOTE 2: Loop bandwidth (-3dB) = 180Hz; Loop Damping Factor = 5.3 (see Applications Section, Example Loop Filter Component Value,
example case #4).
NOTE 3: Loop bandwidth (-3dB) = 19Hz; Loop Damping Factor = 2.8 (see Applications Section, Example Loop Filter Component Value
example case #2).
NOTE 4: XOIN = XOFB = NPA = NPB = ÷8, MP = 0 (x32); NV = ÷1.
NOTE 5: XOIN = 1; XOFB = 2430; NPA = NPB = ÷8, MP = 0 (x32); NV = ÷1.
843002CY-31
www.icst.com/products/hiperclocks.html
14
ps
ms
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
PARAMETER MEASUREMENT INFORMATION
2V
1.65V ± 5%
V CC ,
VCCA,
VCCA_XO, VCCO_PECL
Qx
SCOPE
SCOPE
VCC ,
VCCA,
VCCA_XO, VCCO_CMOS
LVPECL
Qx
LVCMOS
nQx
VEE
VEE
-1.3V ± 0.165V
-1.65V ± 5%
3.3V LVCMOS OUTPUT LOAD AC TEST CIRCUIT
3.3V LVPECL OUTPUT LOAD AC TEST CIRCUIT
nQA
V
DDO
QA
VCLK
2
nQB
V
DDO
REF_CLK
QB
tsk(o)
LVPECL OUTPUT SKEW
2
tsk(o)
LVCMOS OUTPUT SKEW
nQA, nQB
V
CCO_LVCMOS
QA, QB
VCLK,
REF_CLK
t PW
t
odc =
t
PERIOD
t PW
x 100%
odc =
t PERIOD
PERIOD
t PW
x 100%
t PERIOD
LVPECL OUTPUT DUTY CYCLE/PULSE WIDTH/tPERIOD
843002CY-31
2
t PW
LVCMOS OUTPUT DUTY CYCLE/PULSE WIDTH/tPERIOD
www.icst.com/products/hiperclocks.html
15
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
Noise Power
Phase Noise Plot
80%
Phase Noise Mask
80%
VSW I N G
Clock
Outputs
f1
Offset Frequency
20%
20%
f2
tR
tF
RMS Jitter = Area Under the Masked Phase Noise Plot
LVPECL OUTPUT RISE/FALL TIME
PHASE JITTER
80%
Clock
Outputs
80%
20%
20%
tR
tF
LVCMOS OUTPUT RISE/FALL TIME
843002CY-31
www.icst.com/products/hiperclocks.html
16
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
APPLICATION INFORMATION
DESCRIPTION OF THE PLL STAGES
The ICS843002-31 is a two stage frequency multiplication
device, a VCXO PLL followed by a low phase noise
FemtoClock frequency multiplier. The VCXO uses an external
pullable crystal which can be pulled ±100ppm by the VCXO
PLL circuitry to phase lock it to the input reference frequency.
The output frequency of the VCXO PLL is equal to that of the
external pullable crystal, which is in the range of 17.5MHz to
25MHz. The loop bandwidth VCXO PLL is typically set in the
range of 10-250Hz which provides attenuation of input
reference clock jitter. Since the VCXO is a high-Q oscillator
circuit, it has low intrinsic output jitter and phase noise. The
VCXO PLL output clock is available from the VCLK pin.
The above equation calculates the “normalized” loop bandwidth
(denoted as “NBW”) which is approximately equal to the - 3dB
bandwidth. NBW does not take into account the effects of
damping factor or the second pole imposed by CP. It does,
however, provide a useful approximation of filter performance.
The FemtoClock frequency multiplier has an effective
control bandwidth of about 800kHz which means it will track
the VCXO PLL clock output.
ƒ(Phase Detector) = Input Frequency ÷ XOIN
To prevent jitter on VCLK due to modulation of the VCXO PLL
by the phase detector frequency, the following general rule
should be observed:
NBW (VCXO PLL) ≤
ƒ (Phase Detector)
20
The PLL loop damping factor (DF) is determined by:
VCXO PLL LOOP RESPONSE CONSIDERATIONS
DF (VCLK) =
Loop response characteristics of the VCXO PLL is affected
by the setting of the VCXO feedback divider value (XOFB)
and by the external loop filter components. A practical range
of loop bandwidth for many applications is 25Hz to 1kHz.
A bandwidth of less than 10Hz requires careful component
selection and possible metal shielding to prevent clock output
wander. A damping factor of 0.7 or greater should be used
to ensure loop stability. When a passband peaking of <0.1dB
is desired for SONET/SDH loop timing application, the
damping factor should be 6 or higher.
RS
2
x
ICP x CS x KO
XOFB Divider
WHERE:
CS = Value of capacitor CS in loop filter in farads
optional
A PC base PLL bandwidth calculator is also under development. For assistance with loop filter bandwidth and component selection suggestions, please contact your ICS
sales representative.
LFR
LF
CP
SETTING THE VCXO PLL LOOP RESPONSE
RS
ISET
64
1
optional
63
62
2
3
CS
The VCXO PLL loop response is determined both by fixed
device characteristics and by other characteristics set by
the user. This includes the values of RS, CS, CP and RSET
as shown in the External VCXO PLL Components figure on
this page.
RSET
The VCXO PLL loop bandwidth is approximated by:
NBW (VCXO PLL) =
FIGURE 1. EXTERNAL VCXO PLL COMPONENTS
RS x ICP x KO
2π x XOFB Divider
WHERE:
RS = Value of resistor RS in loop filter in ohms
ICP = Charge pump current in amps (see table on page 17)
KO = VCXO Gain in Hz/V (see table on page 18)
XOFB Divider = 1 to 8191
843002CY-31
www.icst.com/products/hiperclocks.html
17
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
NOTES ON SETTING THE VALUE OF CP
NOTES ON EXTERNAL CRYSTAL LOAD CAPACITORS
As another general rule, the following relationship should be
maintained between components CS and CP in the loop filter:
In the loop filter schematic diagram, capacitors are shown
from pin 62 to ground and pin 63 to ground. These are
optional crystal load capacitors which can be used to center tune the external pullable crystal (the crystal frequency
can only be lowered by adding capacitance, it cannot be
raised). Note that the addition of external load capacitors
will decrease the crystal pull range and the Kvco value.
CP =
CS
20
CP establishes a second pole in the VCXO PLL loop filter.
For higher damping factors (> 1), calculate the value of CP
based on a CS value that would be used for a damping
factor of 1. This will minimize baseband peaking and loop
instability that can lead to output jitter.
LOOP FILTER RESPONSE SOFTWARE
Online tools to calculate loop filter response can be found at
www.icst.com.
CP also dampens VCXO PLL input voltage modulation by the
charge pump correction pulses. A CP value that is too low will
result in increased output phase noise at the phase detector
frequency due to this. In extreme cases where input jitter is
high, charge pump current is high, and CP is too small, the
VCXO PLL input voltage can hit the supply or ground rail
resulting in non-linear loop response.
The best way to set the value of CP is to use the filter response
software available from ICS (please refer to the following
section). CP should be increased in value until it just starts
affecting the passband peak.
NOTES ON SETTING CHARGE PUMP CURRENT
CHARGE PUMP CURRENT, EXAMPLE SETTINGS
The recommended range for the charge pump current is
50μA to 500μA. Below 50μA, loop filter charge leakage,
due to PCB or capacitor leakage, can become a problem.
This loop filter leakage can cause locking problems, output
clock cycle slips, or low frequency phase noise.
As can be seen in the loop bandwidth and damping factor
equations or by using the filter response software available
from ICS, increasing charge pump current (ICP) increases
both bandwidth and damping factor.
RSET
Charge Pump Current (ICP)
17.6K
62.5µA
8.8K
125µA
4.4K
250µA
2.2K
500µA
ICP, Amps
1E-3
100E-6
10E-6
1k
10k
RSET, Ω
FIGURE 2. CHARGE PUMP CURRENT VS. VALUE
(EXTERNAL RESISTOR) GRAPH
843002CY-31
www.icst.com/products/hiperclocks.html
18
100k
OF
RSET
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
VCXO GAIN (KO) VS. XTAL FREQUENCY
9000
8000
K VCO
7000
(Hz/V)
6000
5000
4000
16
18
20
22
26
24
XTAL Frequency (MHz)
EXAMPLE LOOP FILTER COMPONENT VALUE
Example
Case
Number
Device Configuration
XTAL
XOIN
XOFB
Frequency
Divider Divider
(MHz)
19.44
1
2430
Loop Filter Component Selection
RSET
RS
CS
CP
Resistor Resistor Cap
Cap
(kΩ )
(kΩ )
(µF)
(µF)
4.5
150
10
0.01
VCXO PLL Performance
Loop BW
Loop
Passband
(-3dB)
Damping Peaking
(MHz)
Factor
(dB)
18
5.8
0.1
1
Input
Reference
Clock
8kHz
2
8kHz
19.44
1
2430
0
4.5
150
2.2
0.01
19
2.8
0.3
3
19.44kHz
19.44
32
32
0
9.09
11
10
0.01
65
2.7
0.3
4
19.44MHz
19.44
8
8
0
9.09
11
10
0.01
180
5.3
0.1
843002CY-31
MP
Divider
0
www.icst.com/products/hiperclocks.html
19
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
POWER SUPPLY FILTERING TECHNIQUES
As in any high speed analog circuitry, the power supply pins
are vulnerable to random noise. The ICS843002-31 provides
separate power supplies to isolate any high switching
noise from the outputs to the internal PLL. VCC, VCCA, VCCA_XO,
and VCCO_X should be individually connected to the power supply plane through vias, and bypass capacitors should be
used for each pin. To achieve optimum jitter performance,
power supply isolation is required. Figure 3 illustrates how
a 10Ω resistor along with a 10μF and a .01μF bypass
capacitor should be connected to each VCCA pin.
3.3V
VCC
.01μF
10Ω
V CCA
.01μF
10μF
FIGURE 3. POWER SUPPLY FILTERING
DIFFERENTIAL CLOCK INPUT INTERFACE
The CLK0 /nCLK0 accepts LVDS, LVPECL, LVHSTL, SSTL,
HCSL and other differential signals. Both VSWING and VOH must
meet the VPP and VCMR input requirements. Figures 4A to 4D
show interface examples for the HiPerClockS CLK0/nCLK0
input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with
the vendor of the driver component to confirm the driver termination requirements. For example in Figure 4A, the input termination applies for ICS HiPerClockS LVHSTL drivers. If you
are using an LVHSTL driver from another vendor, use their
termination recommendation.
3.3V
3.3V
3.3V
1.8V
Zo = 50 Ohm
CLK
Zo = 50 Ohm
CLK
Zo = 50 Ohm
nCLK
Zo = 50 Ohm
LVPECL
nCLK
HiPerClockS
Input
LVHSTL
ICS
HiPerClockS
LVHSTL Driver
R1
50
R1
50
HiPerClockS
Input
R2
50
R2
50
R3
50
FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY
ICS HIPERCLOCKS LVHSTL DRIVER
FIGURE 4B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY
3.3V LVPECL DRIVER
3.3V
3.3V
3.3V
3.3V
3.3V
R3
125
R4
125
Zo = 50 Ohm
LVDS_Driv er
Zo = 50 Ohm
CLK
CLK
R1
100
Zo = 50 Ohm
nCLK
LVPECL
R1
84
HiPerClockS
Input
Receiv er
R2
84
FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY
3.3V LVPECL DRIVER
843002CY-31
nCLK
Zo = 50 Ohm
FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY
3.3V LVDS DRIVER
www.icst.com/products/hiperclocks.html
20
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
DIFFERENTIAL CLOCK INPUT CIRCUIT
USING THE DIFFERENTIAL INTERFACE FOR SINGLE-ENDED CLOCKS
The differential interface (CLK0/nCLK0) can be used as a
third single-ended input to support an LVCMOS or LVTTL
clock driver. The clock input is connected to the CLK0 input
pin, and the nCLK0 pin is left unconnected. To help reduce
interference with the internal VCO circuits, an external
resistor can be placed in series with the clock signal near
Series
Termination
Optional
Series
Filter
Resistor
the CLK0 input pint. Combined with the input pin capacitance, this resistor acts as a low pass signal filter. The
typical value of this optional series filter resistor is 100Ω.
This will lower both the amplitude and edge rate of the
clock input signal. In the case of a very short clock trace a
series termination register may not be needed.
3.3V
3.3V
CLK0
CLK
LVTTL
or LVCMOS
Logic Output
51k
nCLK0
nCLK
(no connection)
51k
External Circuitry
51k
Differential
Input Stage
Internal Device Circuitry
FIGURE 5. SINGLE-ENDED CLOCK INPUT INTERFACE
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS
INPUTS:
OUTPUTS:
CRYSTAL INPUT:
For applications not requiring the use of the crystal oscillator
input, both XTAL_IN and XTAL_OUT can be left floating.
Though not required, but for additional protection, a 1kΩ
resistor can be tied from XTAL_IN to ground.
LVCMOS OUTPUT:
All unused LVCMOS output can be left floating. We
recommend that there is no trace attached.
LVPECL OUTPUT
All unused LVPECL outputs can be left floating. We
recommend that there is no trace attached. Both sides of the
differential output pair should either be left floating or
terminated.
CLK INPUT:
For applications not requiring the use of a clock input, it can
be left floating. Though not required, but for additional
protection, a 1kΩ resistor can be tied from the CLK input to
ground.
CLK/nCLK INPUT:
For applications not requiring the use of the differential input,
both CLK and nCLK can be left floating. Though not required,
but for additional protection, a 1kΩ resistor can be tied from
CLK to ground.
LVCMOS CONTROL PINS:
All control pins have internal pull-ups or pull-downs; additional
resistance is not required but can be added for additional
protection. A 1kΩ resistor can be used.
843002CY-31
www.icst.com/products/hiperclocks.html
21
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
THERMAL RELEASE PATH
PCB is contacted through solder as shown in Figure 6. For
further information, please refer to the Application Note on
Surface Mount Assembly of Amkor’s Thermally /Electrically
Enhance Leadframe Base Package, Amkor Technology.
The exposed metal pad provides heat transfer from the
device to the P.C. board. The exposed metal pad is ground
pad connected to ground plane through thermal via. The
exposed pad on the device to the exposed metal pad on the
EXPOSED PAD
SOLDER M ASK
SOLDER
SIGNAL
TRACE
SIGNAL
TRACE
GROUND PLANE
Expose Metal Pad
THERM AL VIA
(GROUND PAD)
FIGURE 6. P.C. BOARD FOR EXPOSED PAD THERMAL RELEASE PATH EXAMPLE
TERMINATION
FOR
LVPECL OUTPUTS
The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.
designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating
frequency and minimize signal distortion. Figures 7A and
7B show two different layouts which are recommended only
as guidelines. Other suitable clock layouts may exist and it
would be recommended that the board designers simulate
to guarantee compatibility across all printed circuit and
clock component process variations.
FOUT and nFOUT are low impedance follower outputs that
generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current
sources must be used for functionality. These outputs are
3.3V
Zo = 50Ω
125Ω
FOUT
125Ω
FIN
Zo = 50Ω
Zo = 50Ω
FOUT
50Ω
RTT =
1
Z
((VOH + VOL) / (VCC – 2)) – 2 o
Zo = 50Ω
VCC - 2V
RTT
84Ω
FIGURE 7A. LVPECL OUTPUT TERMINATION
843002CY-31
FIN
50Ω
84Ω
FIGURE 7B. LVPECL OUTPUT TERMINATION
www.icst.com/products/hiperclocks.html
22
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
POWER CONSIDERATIONS
This section provides information on power dissipation and junction temperature for the ICS843002-31.
Equations and example calculations are also provided.
1. Power Dissipation.
The total power dissipation for the ICS843002-31 is the sum of the core power plus the power dissipated in the load(s).
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.
•
•
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 395mA = 1368.67mW
Power (outputs)MAX = 30mW/Loaded Output pair
If all outputs are loaded, the total power is 2 * 30mW = 60mW
Total Power_MAX (3.465V, with all outputs switching) = 1368.67mW + 60mW = 1428.67mW
2. Junction Temperature.
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.
The equation for Tj is as follows: Tj = θJA * Pd_total + TA
Tj = Junction Temperature
θJA = Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
TA = Ambient Temperature
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 17.2°C/W per Table 7 below.
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:
70°C + 1.429W * 17.2°C/W = 94.6°C. This is well below the limit of 125°C.
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,
and the type of board (single layer or multi-layer).
TABLE 7. THERMAL RESISTANCE θJA FOR 64-PIN TQFP, FORCED CONVECTION
θJA by Velocity (Linear Feet per Minute)
Multi-Layer PCB, JEDEC Standard Test Boards
843002CY-31
0
200
500
22.3°C/W
17.2°C/W
15.1°C/W
www.icst.com/products/hiperclocks.html
23
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
3. Calculations and Equations.
The purpose of this section is to derive the power dissipated into the load.
LVPECL output driver circuit and termination are shown in Figure 8.
VCCO
Q1
VOUT
RL
50
VCCO - 2V
FIGURE 8. LVPECL DRIVER CIRCUIT AND TERMINATION
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination
voltage of V - 2V.
CCO
•
For logic high, VOUT = V
OH_MAX
(V
CCO_MAX
•
-V
OH_MAX
OL_MAX
CCO_MAX
-V
OL_MAX
CCO_MAX
– 0.9V
) = 0.9V
For logic low, VOUT = V
(V
=V
=V
CCO_MAX
– 1.7V
) = 1.7V
Pd_H is power dissipation when the output drives high.
Pd_L is the power dissipation when the output drives low.
Pd_H = [(V
OH_MAX
– (V
CCO_MAX
- 2V))/R ] * (V
CCO_MAX
L
-V
OH_MAX
) = [(2V - (V
CCO_MAX
-V
OH_MAX
))/R ] * (V
CCO_MAX
L
-V
OH_MAX
)=
[(2V - 0.9V)/50Ω) * 0.9V = 19.8mW
Pd_L = [(V
OL_MAX
– (V
CCO_MAX
- 2V))/R ] * (V
L
CCO_MAX
-V
OL_MAX
) = [(2V - (V
CCO_MAX
-V
OL_MAX
))/R ] * (V
L
CCO_MAX
-V
OL_MAX
)=
[(2V - 1.7V)/50Ω) * 1.7V = 10.2mW
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW
843002CY-31
www.icst.com/products/hiperclocks.html
24
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
RELIABILITY INFORMATION
TABLE 8. θJAVS. AIR FLOW TABLE FOR 64 LEAD TQFP, EPAD
θJA by Velocity (Linear Feet per Minute)
Multi-Layer PCB, JEDEC Standard Test Boards
0
200
500
22.3°C/W
17.2°C/W
15.1°C/W
TRANSISTOR COUNT
The transistor count for ICS843002-31 is: 10,095
843002CY-31
www.icst.com/products/hiperclocks.html
25
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
PACKAGE OUTLINE - Y SUFFIX FOR 64 LEAD TQFP, EPAD (32 pin package depicted to define Table 9 dimension symbols)
TABLE 9. PACKAGE DIMENSIONS FOR 64 LEAD TQFP, EPAD
JEDEC VARIATION
ALL DIMENSIONS IN MILLIMETERS
SYMBOL
BCD
MINIMUM
NOMINAL
MAXIMUM
64
N
A
--
--
1.20
A1
0.05
--
0.15
A2
.95
1.0
1.05
b
0.17
0.22
0.27
c
0.09
--
0.20
D
12.00 BASIC
D1
10.00 BASIC
D2
5.00 Ref.
E
12.00 BASIC
E1
10.00 BASIC
E2
5.00 Ref.
e
0.50 BASIC
0.60
0.75
L
0.45
θ
0°
--
7°
ccc
--
--
0.08
Reference Document: JEDEC Publication 95, MS-026
843002CY-31
www.icst.com/products/hiperclocks.html
26
REV. B NOVEMBER 22, 2005
PRELIMINARY
Integrated
Circuit
Systems, Inc.
ICS843002-31
700MHZ FEMTOCLOCKS™ VCXO BASED
FREQUENCY TRANSLATOR AND JITTER ATTENUATOR
TABLE 10. ORDERING INFORMATION
Part/Order Number
Marking
Package
Shipping Packaging
Temperature
ICS843002CY-31
ICS843002CY31
64 Lead TQFP, EPAD
tray
0°C to 70°C
ICS843002CY-31T
ICS843002CY31
64 Lead TQFP, EPAD
500 tape & reel
0°C to 70°C
ICS843002CY-31LF
TBD
64 Lead "Lead-Free" TQFP, EPAD
tray
0°C to 70°C
ICS843002CY-31LFT
TBD
64 Lead "Lead-Free" TQFP, EPAD
500 tape & reel
0°C to 70°C
NOTE: Par ts that are ordered with an "LF" suffix to the par t number are the Pb-Free configuration and are RoHS compliant.
The aforementioned trademarks, HiPerClockS and FEMTOCLOCKS are trademarks of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS
product for use in life support devices or critical medical instruments.
843002CY-31
www.icst.com/products/hiperclocks.html
27
REV. B NOVEMBER 22, 2005
Similar pages