Rohm FMY1A Emitter common (dual transistors) Datasheet

EMY1 / UMY1N / FMY1A
Transistors
Emitter common (dual transistors)
EMY1 / UMY1N / FMY1A
zExternal dimensions (Unit : mm)
(3)
(4)
0.22
0.5 0.5
1.0
1.6
EMY1
(2)
(5)
1.2
1.6
(1)
0.5
0.13
zFeatures
1) Includes a 2SA1037AK and a 2SC2412K transistor in
a EMT or UMT or SMT package.
2) PNP and NPN transistors have common emitters.
3) Mounting cost and area can be cut in half.
Each lead has same dimensions
zStructure
Epitaxial planar type
PNP / NPN silicon transistor
ROHM : EMT5
Abbreviated symbol : Y1
Tr2
Tr1
Tr2
2.0
(2)
2.1
(4)
(5)
Tr1
0.1Min.
0.9
(3)
0.7
(1)
0~0.1
(2)
(1)
(5)
(3)
1.25
FMY1A
0.15
EMY1 / UMY1N
1.3
(3)
(4)
0.2
zEquivalent circuit
0.65 0.65
UMY1N
Each lead has same dimensions
(4)
(2)
(5)
(1)
ROHM : UMT5
EIAJ : SC-88A
Abbreviated symbol : Y1
VCBO
−60
60
V
Collector-emitter voltage
VCEO
−50
50
V
VEBO
−6
7
V
Collector current
EMY1, UMY1N
Power
dissipation FMY1A
IC
PC
−150
150
150 (TOTAL) ∗1
(5)
1.6
Collector-base voltage
Emitter-base voltage
(1)
Unit
2.9
Tr2
mA
300 (TOTAL) ∗2
mW
Junction temperature
Tj
150
°C
Storage temperature
Tstg
−55 to +150
°C
2.8
0.3to0.6
0to0.1
Tr1
0.15
Symbol
1.1
Limits
Parameter
0.8
(3)
(4)
(2)
0.3
zAbsolute maximum ratings (Ta = 25°C)
0.95 0.95
1.9
FMY1A
Each lead has same dimensions
ROHM : SMT5
EIAJ : SC-74A
Abbreviated symbol : Y1
∗1 120mW per element must not be exceeded.
∗2 200mW per element must not be exceeded.
Rev.A
1/4
EMY1 / UMY1N / FMY1A
Transistors
zElectrical characteristics (Ta = 25°C)
Tr1 (PNP)
Parameter
Symbol Min. Typ. Max. Unit
Conditions
Collector-base breakdown voltage
BVCBO
−60
−
−
V
Collector-emitter breakdown voltage
BVCEO
−50
−
−
V
IC=−1mA
Emitter-base breakdown voltage
BVEBO
−6
−
−
V
IE=−50µA
Collector cutoff current
ICBO
−
−
−0.1
µA
VCB=−60V
Emitter cutoff current
IEBO
−
−
−0.1
µA
VEB=−6V
VCE (sat)
−
−
−0.5
V
IC/IB=−50mA/−5mA
hFE
120
−
560
−
VCE=−6V, IC=−1mA
fT
−
140
−
MHz VCE=−12V, IE=2mA, f=100MHz
Cob
−
4
5
PF
Collector-emitter saturation voltage
DC current transfer ratio
Transition frequency
Output capacitance
IC=−50µA
VCB=−12V, IE=0A, f=1MHz
Tr2 (NPN)
Parameter
Symbol Min. Typ. Max. Unit
Conditions
Collector-base breakdown voltage
BVCBO
60
−
−
V
IC=50µA
Collector-emitter breakdown voltage
BVCEO
50
−
−
V
IC=1mA
Emitter-base breakdown voltage
BVEBO
7
−
−
V
IE=50µA
Collector cutoff current
ICBO
−
−
0.1
µA
VCB=60V
Emitter cutoff current
IEBO
−
−
0.1
µA
VEB=7V
VCE (sat)
−
−
0.4
V
IC/IB=50mA/5mA
hFE
120
−
560
−
VCE=6V, IC=1mA
fT
−
180
−
Cob
−
2
3.5
Collector-emitter saturation voltage
DC current transfer ratio
Transition frequency
Output capacitance
MHz VCE=12V, IE=−2mA, f=100MHz
PF
VCB=12V, IE=0A, f=1MHz
zPackaging specifications
Packaging type
Type
Taping
Code
T2R
TR
T148
Basic ordering
unit (pieces)
8000
3000
3000
EMY1
UMY1N
FMY1
zElectrical characteristic curves
Tr1 (PNP)
−10
−5
−2
−1
−0.5
−0.2
−0.1
−10
VCE=−6V
−35.0
Ta=25˚C
−100
−31.5
−28.0
−8
−24.5
−21.0
−6
−17.5
−14.0
−4
−10.5
−7.0
−2
−3.5µA
COLLECTOR CURRENT : IC (mA)
−20
Ta=100˚C
25˚C
−40˚C
COLLECTOR CURRENT : IC (mA)
COLLECTOR CURRENT : Ic (mA)
−50
−80
−60
Ta=25˚C
−500
−450
−400
−350
−300
−250
−200
−150
−40
−100
−20
−50µA
IB=0
−0.2 −0.4 −0.6 −0.8 −1.0 −1.2 −1.4 −1.6
BASE TO EMITTER VOLTAGE : VBE (V)
Fig.1 Grounded emitter propagation
characteristics
0
−0.4
−0.8
−1.2
−1.6
−2.0
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.2 Grounded emitter output
characteristics ( I )
IB=0
0
−1
−2
−3
−4
−5
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.3 Grounded emitter output
characteristics ( II )
Rev.A
2/4
EMY1 / UMY1N / FMY1A
500
Ta=100˚C
25˚C
200
100
−40˚C
200
100
50
50
−0.2
−0.5 −1
−2
−5
−10 −20
VCE=−6V
−50 −100
−0.2
COLLECTOR CURRENT : IC (mA)
−0.2
Ta=100˚C
25˚C
−40˚C
−0.05
−0.5 −1
−2
−5
−10 −20
−10 −20
1000
TRANSITION FREQUENCY : fT (MHz)
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
−0.5
−0.2
−5
−50 −100
−50 −100
Ta=25˚C
VCE=−12V
500
200
100
50
0.5
1
2
5
10
20
50
100
EMITTER CURRENT : IE (mA)
COLLECTOR CURRENT : IC (mA)
−0.2
IC/IB=50
−0.1
20
10
−0.05
−0.2
−0.5 −1
−2
−5
−10 −20
−50 −100
COLLECTOR CURRENT : IC (mA)
Fig.6 Collector-emitter saturation
voltage vs. collector current ( I )
20
Ta=25˚C
f=1MHz
IE=0A
IC=0A
Cib
10
Co
b
5
2
-0.5
-1
-2
-5
-10
-20
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE
: VEB (V)
Fig.9 Collector output capacitance vs.
collector-base voltage
Emitter input capacitance vs.
emitter-base voltage
Fig.8 Gain bandwidth product vs.
emitter current
Fig.7 Collector-emitter saturation
voltage vs. collector current ( II )
Ta=25˚C
−0.5
Fig.5 DC current gain vs. collector
current ( II )
lC/lB=10
−0.1
−2
COLLECTOR CURRENT : IC (mA)
Fig.4 DC current gain vs. collector
current ( I )
−1
−0.5 −1
−1
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE
: Cib (pF)
VCE=−5V
−3V
−1V
Ta=25˚C
DC CURRENT GAIN : hFE
DC CURRENT GAIN : hFE
500
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
Transistors
Tr2 (NPN)
0.50mA
mA
0.45 A
0.40m
0.35mA
Ta=25˚C
COLLECTOR CURRENT : IC (mA)
20
10
2
1
25˚C
−55˚C
5
0.5
0.2
0.1
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
BASE TO EMITTER VOLTAGE : VBE (V)
Fig.10 Grounded emitter propagation
characteristics
80
0.30mA
0.25mA
60
0.20mA
0.15mA
40
0.10mA
20
0.05mA
IB=0A
0
0
0.4
0.8
1.2
1.6
2.0
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.11 Grounded emitter output
characteristics ( I )
10
COLLECTOR CURRENT : IC (mA)
100
VCE=6V
Ta=100˚C
COLLECTOR CURRENT : IC (mA)
50
30µA
Ta=25˚C
27µA
8
24µA
21µA
6
18µA
15µA
12µA
4
9µA
6µA
2
3µA
0
0
IB=0A
4
8
12
16
20
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.12 Grounded emitter output
characteristics ( II )
Rev.A
3/4
EMY1 / UMY1N / FMY1A
500
Ta=25˚C
VCE=5V
3V
1V
200
100
50
25˚C
200
−55˚C
100
50
20
20
0.5
1
2
5
10 20
10
0.2
50 100 200
COLLECTOR CURRENT : IC (mA)
0.05
0.02
0.01
1
2
5
10
20
50 100 200
COLLECTOR CURRENT : IC (mA)
20
Ta=25˚C
f=1MHz
IE=0A
IC=0A
Cib
5
2
Co
b
1
0.2
0.5
1
2
5
10
20
50
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE
: VEB (V)
Fig.19 Collector output capacitance vs.
collector-base voltage
Emitter input capacitance vs.
emitter-base voltage
10 20
50 100 200
Ta=25˚C
0.2
IC/IB=50
20
10
0.1
0.05
0.02
0.01
0.2
0.5
1
2
5
10
20
Ta=100˚C
25˚C
−55˚C
0.1
0.05
0.02
0.01
0.5
1
2
5
10
20
50 100 200
COLLECTOR CURRENT : IC (mA)
Ta=25˚C
VCE=6V
IC/IB=50
0.2
0.2
0.5
Fig.15 Collector-emitter saturation
voltage vs. collector current ( I )
50 100
500
200
100
50
−0.5
−1
−2
−5
−10
−20
−50 −100
EMITTER CURRENT : IE (mA)
COLLECTOR CURRENT : IC (mA)
Fig.17 Collector-emitter saturation
voltage vs. collector current ( III )
Fig.16 Collector-emitter saturation
voltage vs. collector current ( II )
10
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
Ta=100˚C
25˚C
−55˚C
0.5
5
0.5
BASE COLLECTOR TIME CONSTANT : Cc rbb' (ps)
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
0.2
0.2
2
Fig.14 DC current gain vs. collector
current ( II )
IC/IB=10
0.1
1
COLLECTOR CURRENT : IC (mA)
Fig.13 DC current gain vs. collector
current ( I )
0.5
0.5
TRANSITION FREQUENCY : fT (MHz)
10
0.2
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE
: Cib (pF)
VCE=5V
Ta=100˚C
DC CURRENT GAIN : hFE
DC CURRENT GAIN : hFE
500
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
Transistors
Fig.18 Gain bandwidth product vs.
emitter current
Ta=25˚C
f=32MHZ
VCB=6V
200
100
50
20
10
−0.2
−0.5
−1
−2
−5
−10
EMITTER CURRENT : IE (mA)
Fig.20 Base-collector time constant vs.
emitter current
Rev.A
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.1
Similar pages