Product Folder Sample & Buy Tools & Software Technical Documents Support & Community OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 OMAP-L137 Low-Power Applications Processor Check for Samples: OMAP-L137 1 OMAP-L137 Low-Power Applications Processor 1.1 Features 1234 • Highlights – Dual Core SoC • 375/456-MHz ARM926EJ-S™ RISC MPU • 375/456-MHz C674x VLIW DSP – TMS320C674x Fixed/Floating-Point VLIW DSP Core – Enhanced Direct-Memory-Access Controller 3 (EDMA3) – 128K-Byte RAM Shared Memory – Two External Memory Interfaces – Three Configurable 16550 type UART Modules – LCD Controller – Two Serial Peripheral Interfaces (SPI) – Multimedia Card (MMC)/Secure Digital (SD) – Two Master/Slave Inter-Integrated Circuit – One Host-Port Interface (HPI) – USB 1.1 OHCI (Host) With Integrated PHY (USB1) • Applications – Industrial Diagnostics – Test and measurement – Military Sonar/ Radar – Medical measurement – Professional Audio • Software Support – TI DSP/BIOS™ – Chip Support Library and DSP Library • Dual Core SoC – 375/456-MHz ARM926EJ-S™ RISC MPU – 375/456-MHz C674x VLIW DSP • ARM926EJ-S Core – 32-Bit and 16-Bit (Thumb®) Instructions – DSP Instruction Extensions – Single Cycle MAC – ARM™ Jazelle® Technology – EmbeddedICE-RT™ for Real-Time Debug • ARM9 Memory Architecture – 16K-Byte Instruction Cache – 16K-Byte Data Cache 1 2 3 4 • • • • – 8K-Byte RAM (Vector Table) – 64K-Byte ROM C674x Instruction Set Features – Superset of the C67x+™ and C64x+™ ISAs – Up to 3648/2736 C674x MIPS/MFLOPS – Byte-Addressable (8-/16-/32-/64-Bit Data) – 8-Bit Overflow Protection – Bit-Field Extract, Set, Clear – Normalization, Saturation, Bit-Counting – Compact 16-Bit Instructions C674x Two Level Cache Memory Architecture – 32K-Byte L1P Program RAM/Cache – 32K-Byte L1D Data RAM/Cache – 256K-Byte L2 Unified Mapped RAM/Cache – Flexible RAM/Cache Partition (L1 and L2) Enhanced Direct-Memory-Access Controller 3 (EDMA3): – 2 Transfer Controllers – 32 Independent DMA Channels – 8 Quick DMA Channels – Programmable Transfer Burst Size TMS320C674x Fixed/Floating-Point VLIW DSP Core – Load-Store Architecture With Non-Aligned Support – 64 General-Purpose Registers (32 Bit) – Six ALU (32-/40-Bit) Functional Units • Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point • Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks • Supports up to Two Floating Point (SP or DP) Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per Cycle – Two Multiply Functional Units • Mixed-Precision IEEE Floating Point Multiply Supported up to: – 2 SP x SP -> SP Per Clock – 2 SP x SP -> DP Every Two Clocks Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. DSP/BIOS, TMS320C6000, C6000 are trademarks of Texas Instruments. ARM926EJ-S, ETM9, CoreSight are trademarks of ARM Limited. All other trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 • • • • • • • • • • 2 – 2 SP x DP -> DP Every Three Clocks – 2 DP x DP -> DP Every Four Clocks • Fixed Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples – Instruction Packing Reduces Code Size – All Instructions Conditional – Hardware Support for Modulo Loop Operation – Protected Mode Operation – Exceptions Support for Error Detection and Program Redirection 128K-Byte RAM Shared Memory 3.3V LVCMOS IOs (except for USB interfaces) Two External Memory Interfaces: – EMIFA • NOR (8-/16-Bit-Wide Data) • NAND (8-/16-Bit-Wide Data) • 16-Bit SDRAM With 128MB Address Space – EMIFB • 32-Bit or 16-Bit SDRAM With 256MB Address Space Three Configurable 16550 type UART Modules: – UART0 With Modem Control Signals – Autoflow control signals (CTS, RTS) on UART0 only – 16-byte FIFO – 16x or 13x Oversampling Option LCD Controller Two Serial Peripheral Interfaces (SPI) Each With One Chip-Select Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO) Two Master/Slave Inter-Integrated Circuit (I2C Bus™) One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address/Data Bus For High Bandwidth Programmable Real-Time Unit Subsystem (PRUSS) – Two Independent Programmable Realtime Unit (PRU) Cores • 32-Bit Load/Store RISC architecture • 4K Byte instruction RAM per core • 512 Bytes data RAM per core • PRU Subsystem (PRUSS) can be disabled via software to save power – Standard power management mechanism • Clock gating www.ti.com • • • • • • • • • • • • • Entire subsystem under a single PSC clock gating domain – Dedicated interrupt controller – Dedicated switched central resource USB 1.1 OHCI (Host) With Integrated PHY (USB1) USB 2.0 OTG Port With Integrated PHY (USB0) – USB 2.0 High-/Full-Speed Client – USB 2.0 High-/Full-/Low-Speed Host – End Point 0 (Control) – End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) Rx and Tx Three Multichannel Audio Serial Ports: – Six Clock Zones and 28 Serial Data Pins – Supports TDM, I2S, and Similar Formats – DIT-Capable (McASP2) – FIFO buffers for Transmit and Receive 10/100 Mb/s Ethernet MAC (EMAC): – IEEE 802.3 Compliant (3.3-V I/O Only) – RMII Media Independent Interface – Management Data I/O (MDIO) Module Real-Time Clock With 32 KHz Oscillator and Separate Power Rail One 64-Bit General-Purpose Timer (Configurable as Two 32-Bit Timers) One 64-bit General-Purpose/Watchdog Timer (Configurable as Two 32-bit General-Purpose Timers) Three Enhanced Pulse Width Modulators (eHRPWM): – Dedicated 16-Bit Time-Base Counter With Period And Frequency Control – 6 Single Edge, 6 Dual Edge Symmetric or 3 Dual Edge Asymmetric Outputs – Dead-Band Generation – PWM Chopping by High-Frequency Carrier – Trip Zone Input Three 32-Bit Enhanced Capture Modules (eCAP): – Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) outputs – Single Shot Capture of up to Four Event Time-Stamps Two 32-Bit Enhanced Quadrature Encoder Pulse Modules (eQEP) 256-Ball Pb-Free Plastic Ball Grid Array (PBGA) [ZKB Suffix], 1.0-mm Ball Pitch Commercial, Industrial, Extended, or Automotive Temperature OMAP-L137 Low-Power Applications Processor Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com 1.2 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Description The OMAP-L137 is a low-power applications processor based on an ARM926EJ-S™ and a C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The OMAP-L137 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the OMAP-L137 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16Kbyte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM. The OMAP-L137 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM shared memory is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; two inter-integrated circuit (I2C) bus interfaces; 3 multichannel audio serial ports (McASP) with 16/12/4 serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with RTS and CTS); 3 enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhanced quadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the OMAP-L137 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration. The HPI, I2C, SPI, USB1.1 and USB2.0 ports allow the OMAP-L137 to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The OMAP-L137 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 Low-Power Applications Processor Submit Documentation Feedback Product Folder Links: OMAP-L137 3 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 1.3 www.ti.com Functional Block Diagram JTAG Interface ARM Subsystem DSP Subsystem ARM926EJ-S CPU With MMU C674x™ DSP CPU System Control PLL/Clock Generator w/OSC Input Clock(s) Memory Protection GeneralPurpose Timer GeneralPurpose Timer (Watchdog) 4 KB ETB 16 KB 16 KB I-Cache D-Cache Power/Sleep Controller RTC/ Pin 32-KHz Multiplexing OSC AET 32 KB L1 Pgm 32 KB L1 RAM 8 KB RAM (Vector Table) 256 KB L2 RAM 64 KB ROM BOOT ROM Switched Central Resource (SCR) Peripherals DMA McASP w/FIFO (3) EDMA3 GPIO I2C (2) eCAP (3) SPI (2) UART (3) Internal Memory LCD Ctlr 128 KB RAM Connectivity Control Timers eHRPWM (3) Display Serial Interfaces Audio Ports eQEP (2) USB2.0 OTG Ctlr PHY USB1.1 OHCI Ctlr PHY (10/100) EMAC (RMII) MDIO PRU Subsystem External Memory Interfaces HPI MMC/SD (8b) EMIFA(8b/16B) NAND/Flash 16b SDRAM EMIFB SDRAM Only (16b/32b) Note: Not all peripherals are available at the same time due to multiplexing. Figure 1-1. OMAP-L137 Functional Block Diagram 4 OMAP-L137 Low-Power Applications Processor Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 . 1 ............................................. 1 1.2 Description ........................................... 3 1.3 Functional Block Diagram ........................... 4 Revision History .............................................. 6 2 Device Overview ........................................ 9 2.1 Device Characteristics ............................... 9 2.2 Device Compatibility ................................ 10 2.3 ARM Subsystem .................................... 10 2.4 DSP Subsystem .................................... 13 2.5 Memory Map Summary ............................ 24 2.6 Pin Assignments .................................... 27 2.7 Terminal Functions ................................. 28 3 Device Configuration ................................. 49 3.1 Boot Modes ......................................... 49 3.2 SYSCFG Module ................................... 50 3.3 Pullup/Pulldown Resistors .......................... 52 4 Device Operating Conditions ....................... 53 1 OMAP-L137 Low-Power Applications Processor 5.9 1.1 5.10 Features 5.11 5.12 5.13 5.14 5.15 5.16 5.17 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted) ................................. 53 4.2 4.3 4.4 5 .............. Notes on Recommended Power-On Hours (POH) . Recommended Operating Conditions 54 55 5.1 5.2 Parameter Information .............................. 57 Recommended Clock and Control Signal Transition Behavior ............................................ 58 5.3 5.4 Power Supplies ..................................... 58 Unused USB0 (USB2.0) and USB1 (USB1.1) Pin Configurations ...................................... 59 5.5 Reset 5.6 5.7 5.8 ............................................... Crystal Oscillator or External Clock Input .......... Clock PLLs ......................................... Interrupts ............................................ 60 63 Enhanced Capture (eCAP) Peripheral ............ 149 Enhanced Quadrature Encoder (eQEP) Peripheral ..................................................... 152 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM) ........................................ 154 LCD Controller Timers 173 5.24 5.25 .................................... ............................................. Inter-Integrated Circuit Serial Ports (I2C0, I2C1) . 158 5.23 175 Universal Asynchronous Receiver/Transmitter (UART) ............................................ 180 5.26 USB1 Host Controller Registers (USB1.1 OHCI) . ........................ Host-Port Interface (UHPI) ........................ Power and Sleep Controller (PSC) ................ 182 5.27 USB0 OTG (USB2.0 OTG) 183 ................................... 5.32 IEEE 1149.1 JTAG ................................ 5.33 Real Time Clock (RTC) ........................... Device and Documentation Support ............. 6.1 Device Support .................................... 6.2 Documentation Support ........................... 6.3 Community Resources ............................ 204 5.31 6 7 130 5.22 5.29 5.30 Peripheral Information and Electrical Specifications .......................................... 57 .... Serial Peripheral Interface Ports (SPI0, SPI1) 5.19 5.20 5.28 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) ........... 56 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) ..................................... 117 5.18 5.21 4.1 ............. 78 ............................................... 81 External Memory Interface A (EMIFA) ............. 86 External Memory Interface B (EMIFB) ............. 97 Memory Protection Units .......................... 104 MMC / SD / SDIO (MMCSD) ...................... 107 Ethernet Media Access Controller (EMAC) ....... 110 Management Data Input/Output (MDIO) .......... 115 General-Purpose Input/Output (GPIO) EDMA 191 198 Programmable Real-Time Unit Subsystem (PRUSS) ..................................................... 201 Emulation Logic 211 213 216 216 217 218 Mechanical Packaging and Orderable Information ............................................ 219 65 7.1 Thermal Data for ZKB 69 7.2 Packaging Information ............................. ............................ Contents Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 219 219 5 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. NOTE: Page numbers for previous revisions may differ from page numbers in the current version. This data manual revision history highlights the changes made to the SPRS563E device-specific data manual to make it an SPRS563F revision. Scope: Applicable updates to the OMAP-L137 Low-Power Applications Processor device family, specifically relating to the OMAP-L137 device, which are all now in the production data (PD) stage of development have been incorporated. • Silicon Revision 3.0 • Digital I/O Buffers Premature Aging • 456 MHz Version now PD Revision History SEE Global ADDITIONS/MODIFICATIONS/DELETIONS Updated/Changed Product Status on the 456-MHz Version device from “Advanced Information (AI)” to “Production Data (PD)” Added DSP/BIOS as a Texas Instruments trademark Section 1.3 Functional Block Diagram Figure 1-1, OMAP-L137 Functional Block Diagram: • Added “Memory Protection” in the System Control Block Section 2.1 Device Characteristics Table 2-1, Characteristics of the OMAP-L137 Processor: • Updated/Changed EMIFB "16/32bit, up to 512 Mb SDRAM” to "16/32bit, up to 256 MB SDRAM” • Added Silicon Revisions "3.0" and "2.1" to the JTAG BSDL_ID row Section 2.3.7 ARM Memory Mapping Added “To improve security …” paragraph Section 2.5 Memory Map Summary Added “Note: Read/Write accesses …” sentence Section 2.7.5 External Memory Interface B (only SDRAM): Table 2-9, External Memory Interface B (EMIFB) Terminal Functions: • Updated/Changed EMIFB SDRAM data bus upper byte (EMB_D[31:16]) TYPE from “O” to “I/O” • Updated/Changed EMB_SDCKE, C13, EMIFB SDRAM clock TYPE from “I/O” to “O” Table 2-13, Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions: Section 2.7.9 • Updated/Changed eQEP0 MUXED column from “SPIO” and “SPI1” to “SPI0” Enhanced Quadrature Encoder • Updated/Changed eQEP1 DESCRIPTION column for eQEP1 to “eQEP1A” and “eQEP1B” Pulse Module • Split eQEP1 MUXED column for ZKB Pin No. T5 and T6 (eQEP): • Added "SIP0, GPIO, BOOT" to MUXED column for ZKB Pin No. T5 6 Section 2.7.10 Boot Table 2-14, Boot Mode Selection Terminal Functions: • Updated/Changed SPI0_CLK/EQEP1I/GP5[2]/BOOT[2], T5, MUXED column from “SPIO” to “SPI0” Section 2.7.15 Multichannel Audio Serial Ports (McASP0, McASP1, McASP2) Table 2-19, Multichannel Audio Serial Ports (McASPs) Terminal Functions: • Split McASP2 MUXED column for pin AXR2[0] (A5) and added “McASP2, GPIO” Section 2.7.16 Universal Serial Bus Modules (USB0, USB1) Table 2-20, Universal Serial Bus (USB) Terminal Functions: • Updated/Changed the USB0_VDDA12 pin DESCRIPTION column and associated footnote Section 2.7.20 Reserved and No Connect Table 2-24, Reserved and No Connect Terminal Functions: • Updated/Changed the RSV1 TYPE column from “PWR” to “-“ • Updated/Changed RSV2 DESCRIPTION to “… be tied either directly to CVDD or left unconnected [do not connect to ground (VSS)]” Section 3.1 Boot Modes Added “16-bit NAND” sub-bullet to NAND Flash boot Contents Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Revision History (continued) SEE ADDITIONS/MODIFICATIONS/DELETIONS Section 3.2 SYSCFG Module Table 3-1, System Configuration (SYSCFG) Module Register Access: • Updated/Changed 0x01C1 4018, DEVIDR0 REGISTER DESCRIPTION from “Device Identification Register 0” to “JTAG Identification Register” • Added 0x01C1 4024, CHIPREVID, Silicon Revision Identification Register row Section 4 Device Operating Conditions Section 4.1, Absolute Maximum Ratings Over Operating Case Temperature Range: • Updated/Changed Input voltage ranges, “VI I/O, CVDD" to "VI I/O, 1.2V" • Updated/Changed Input voltage ranges, VI I/O, 3.3V (Steady State) from “-0.3V to DVDD + 0.3V” to “0.3V to DVDD + 0.35V” Section 4.2, Recommended Operating Conditions: • Updated/Change DVDD, Supply voltage, I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33) MIN value from “3.15” to “3.0” V Section 5.3 Power Supplies Section 5.3.1, Power-on Sequence: • Updated/Changed, for clarity, the order the device should be powered-on Section 5.5 Reset Section 5.5.1, Power-On Reset (POR): • Updated/Changed "RTCK is maintained active through a POR." to "RTCK/GP7[14] is maintained active through a POR." Section 5.5.2, Warm Reset: • Updated/Changed "RTCK is maintained active through a warm reset." to "RTCK/GP7[14] is maintained active through a warm reset." Table 5-7 AINTC System Interrupt Assignments on OMAP-L137 Table 5-7, AINTC System Interrupt Assignments: • Updated/Changed SYSTEM INTERRUPT 27 INTERRUPT NAME from “PROTERR” to “MPU_BOOTCFG_ERR” • Updated/Changed SYSTEM INTERRUPT 27 SOURCE from “SYSCFG Protection Shared Interrupt” to “Shared MPU and SYSCFG Address/Protection Error Interrupt" Table 5-8, AINTC Memory Map: • Updated/Changed SRSR[0], SECR[0], ESR[0], and ECR[0] REGISTER NAME to [1] registers • Updated/Changed "HIPIR[0] - HIPIR[1]" REGISTER NAME to "HIPIR[1] - HIPIR[2]" • Updated/Changed BYTE ADDRESS 0xFFFE EF00 - 0xFFFE EF04 from "DSR[0] - DSR[1]" REGISTER Section 5.8.1.5 NAME and "Debug Select Registers" DESCRIPTION to "-" REGISTER NAME and "Reserved" AINTC Memory Map DESCRIPTION • Updated/Changed "HINLR[0] - HINLR[1]" REGISTER NAME to "HINLR[1] - HINLR[2]" • Deleted "[0]" to 0xFFFE F500 "HIER" REGISTER NAME • Updated/Changed "HIPVR[0] - HIPVR[1]" REGISTER NAME to "HIPVR[1] - HIPVR[2]" Section 5.8.2 DSP Interrupts Table 5-9, OMAP-L137 DSP Interrupts: • Updated/Changed EVT# 74 INTERRUPT NAME from “PROTERR” to “MPU_BOOTCFG_ERR” • Updated/Changed EVT# 74 SOURCE from “SYSCFG Protection Shared Interrupt” to “Shared MPU and SYSCFG Address/Protection Error Interrupt" Section 5.11 External Memory Interface A (EMIFA) Section 5.11.4, EMIFA Connection Examples: • Added new Subsection Section 5.12 External Memory Interface B (EMIFB) Figure 5-20, EMIFB Functional Block Diagram: • Added MPU2 block to figure Section 5.12.1, EMIFB SDRAM Loading Limitations: • Updated/Changed “EMIFB supports SDRAM up to 133MHz …” to “EMIFB supports SDRAM up to 152MHz …” Section 5.12.3 EMIFB Electrical Data/Timing Table 5-30, EMIFB SDRAM Interface Switching Characteristics: • Updated/Changed PARAMETER No. 1, tc(CLK) Cycle time, EMIF clock EMB_CLK MIN value from “7.5” to “6.579” ns • Updated/Changed PARAMETER No. 2, tw(CLK) Pulse width, EMIF clock EMB_CLK high or low MIN value from “3” to “2.63” ns Section 5.14.3 MMC/SD Electrical Data/Timing Table 5-35, Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module: • Updated/Changed the MAX value of PARAMETER No. 14, td(CLKL-DAT), Delay time, MMCSD_CLK low to MMCSD_DATx transition from “2” to “2.5” ns Contents Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 7 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Revision History (continued) SEE ADDITIONS/MODIFICATIONS/DELETIONS Section 5.16.2 Table 5-8, Timing Requirements for MDIO Input: Management Data Input/Output (MDIO) • Updated/Changed the MIN value of No. 5, th(MDIO_CLKH-MDIO), Hold time, MDIO_D data input valid after Electrical MDIO_CLK high from “10” to “0” ns Data/Timing Section 5.18.2 SPI Electrical Data/Timing Table 5-57, General Timing Requirements for SPI0 Slave Modes: • Updated/Changed MIN value of PARAMETER No. 9, tc(SPC)S, Cycle Time, SPI0_CLK, All Slave Modes from “greater of 3P or 20” to “greater of 3P or 40” ns Section 5.22.1 Table 5-84, LCD LIDD Mode Timing Requirements: LCD Interface Table 5-85, LCD LIDD Mode Timing Characteristics: Display Driver (LIDD • Updated/Changed LCD_CLK (SYSCLK2) all references to "LCD_MCLK" Mode): Section 5.22.2 LCD Raster Mode Table 5-86, LCD Raster Mode Timing: • Updated/Changed PARAMETER NO. 9, td(LCD_VSYNC_I) description from "Delay time, LCD_PCLK low to LCD_VSYNC high" to "Delay time, LCD_PCLK low to LCD_VSYNC low" • Changed parameter descriptions, replacing arrows with text. • Added "The activation edge of the control signals ..." footnote • Added associated footnote cross-references to PARAMETER No. 8, 9, 10, and 11 Figure 5-56, LCD Raster-Mode Active: • Updated/Changed LCD_AC_ENB_CS signal in figure • Added LCD_AC_ENB_CS in expanded view • Added "x" in "16 (1 to 1024)" Section 5.28.3 HPI Electrical Data/Timing Table 5-102, Switching Characteristics for Host-Port Interface Cycles: • Added "UHPI_" to the all signal names and descriptions to match associated figures and Terminal Functions signal names Figure 5-67 through Figure 5-70: • Added "UHPI_" to the all signal names in footnotes to match figures Section 5.29.1 Power Domain and Module Topology Section 5.29.1.1, Power Domain States: • Added new subsection Section 5.32 IEEE 1149.1 JTAG Section 5.32.1, JTAG Peripheral Register Description(s) – JTAG ID Register (DEVIDR0): • Added Silicon Revisions "3.0" and "2.1" to the "0x9B7D F02F for silicon revision 2.0" bullet Section 6.1.2 Device and DevelopmentSupport Tool Nomenclature Updated/Changed subsection title from “Device Nomenclature” to “Device and Development-Support Tool Nomenclature” Figure 6-1, Device Nomenclature: • Updated/Changed Silicon Revision to include Revision 3.0 Section 6.2 Documentation Support Section 7 Mechanical Packaging and Orderable Information 8 Deleted the following document(s): • SPRUG84, OMAP-L137 Applications Processor System Reference Guide • SPRUGA6, OMAP-L137 Applications Processor Peripherals Overview Reference Guide Added the following document(s): • SPRUH92, OMAP-L137 DSP_ARM Processor Technical Reference Manual • • • Deleted “Mechanical Drawings” section and moved paragraph under Section 7, Mechanical Packaging and Orderable Information Deleted Packaging Materials Information subsection (was Section 7.1 in the previous revision), duplicate information Added Section 7.2, Packaging Information Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 2 Device Overview 2.1 Device Characteristics Table 2-1 provides an overview of the OMAP-L137 low power applications processor. The table shows significant features of the device, including the capacity of on-chip RAM, peripherals, and the package type with pin count. Table 2-1. Characteristics of the OMAP-L137 Processor HARDWARE FEATURES 16/32bit, up to 256MB SDRAM EMIFA Asynchronous (8/16-bit bus width) RAM, Flash, 16bit up to 128MB SDRAM, NOR, NAND Flash Card Interface Peripherals Not all peripherals pins are available at the same time (for more detail, see the Device Configurations section). OMAP-L137 EMIFB MMC and SD cards supported. EDMA3 32 independent channels, 8 QDMA channels, 2 Transfer controllers Timers 2 64-Bit General Purpose (each configurable as 2 separate 32-bit timers, 1 configurable as Watch Dog) UART 3 (one with RTS and CTS flow control) SPI 2 (each with one hardware chip select) I2C 2 (both Master/Slave) Multichannel Audio Serial Port [McASP] 10/100 Ethernet MAC with Management Data I/O eHRPWM 3 (each with transmit/receive, FIFO buffer, 16/12/4 serializers) 1 (RMII Interface) 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs eCAP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs eQEP 2 32-bit QEP channels with 4 inputs/channel UHPI 1 (16-bit multiplexed address/data) USB 2.0 (USB0) High-Speed OTG Controller with on-chip OTG PHY USB 1.1 (USB1) Full-Speed OHCI (as host) with on-chip PHY General-Purpose Input/Output Port 8 banks of 16-bit LCD Controller PRU Subsystem (PRUSS) 1 2 Programmable PRU Cores Size (Bytes) 488KB RAM DSP 32KB L1 Program (L1P)/Cache (up to 32KB) 32KB L1 Data (L1D)/Cache (up to 32KB) 256KB Unified Mapped RAM/Cache (L2) DSP Memories can be made accessible to ARM, EDMA3, and other peripherals. On-Chip Memory Organization ARM 16KB I-Cache 16KB D-Cache 8KB RAM (Vector Table) 64KB ROM ADDITIONAL SHARED MEMORY 128KB RAM C674x CPU ID + CPU Rev ID Control Status Register (CSR.[31:16]) 0x1400 C674x Megamodule Revision Revision ID Register (MM_REVID[15:0]) 0x0000 JTAG BSDL_ID DEVIDR0 register 0x0B7D F02F (Silicon Revision 1.0) 0x8B7D F02F (Silicon Revision 1.1) 0x9B7D F02F (Silicon Revisions 3.0, 2.1, and 2.0) Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 9 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 2-1. Characteristics of the OMAP-L137 Processor (continued) HARDWARE FEATURES CPU Frequency MHz ARM926 at 375 MHz(1.2V) or 456 MHz (1.3V) Core (V) Voltage I/O (V) Package 1.2V / 1.3V 3.3 V / 1.8 V (1.8 V for USB only) 17 mm x 17 mm, 256-Ball 1 mm pitch, PBGA (ZKB) Product Status (1) (1) OMAP-L137 674x DSP at 375 MHz(1.2V) or 456 MHz (1.3V) Product Preview (PP), Advance Information (AI), or Production Data (PD) 375 MHz Versions -PD 456 MHz Version - PD PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. 2.2 Device Compatibility The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc. The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both the C64x+ and C67x+ DSP families. 2.3 ARM Subsystem The ARM Subsystem includes the following features: • ARM926EJ-S RISC processor • ARMv5TEJ (32/16-bit) instruction set • Little endian • System Control Co-Processor 15 (CP15) • MMU • 16KB Instruction cache • 16KB Data cache • Write Buffer • Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) • ARM Interrupt controller 2.3.1 ARM926EJ-S RISC CPU The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications where full memory management, high performance, low die size, and low power are all important. The ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to trade off between high performance and high code density. Specifically, the ARM926EJ-S processor supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes, providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code overhead. The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a complete high performance subsystem, including: • ARM926EJ -S integer core • CP15 system control coprocessor • Memory Management Unit (MMU) • Separate instruction and data caches 10 Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com • • • • SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Write buffer Separate instruction and data (internal RAM) interfaces Separate instruction and data AHB bus interfaces Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available at http://www.arm.com 2.3.2 CP15 The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as supervisor or system mode. 2.3.3 MMU A single set of two level page tables stored in main memory is used to control the address translation, permission checks and memory region attributes for both data and instruction accesses. The MMU uses a single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The MMU features are: • Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme. • Mapping sizes are: – 1MB (sections) – 64KB (large pages) – 4KB (small pages) – 1KB (tiny pages) • Access permissions for large pages and small pages can be specified separately for each quarter of the page (subpage permissions) • Hardware page table walks • Invalidate entire TLB, using CP15 register 8 • Invalidate TLB entry, selected by MVA, using CP15 register 8 • Lockdown of TLB entries, using CP15 register 10 2.3.4 Caches and Write Buffer The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following features: • Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA) • Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with two dirty bits in the Dcache • Dcache supports write-through and write-back (or copy back) cache operation, selected by memory region using the C and B bits in the MMU translation tables • Critical-word first cache refilling • Cache lockdown registers enable control over which cache ways are used for allocation on a line fill, providing a mechanism for both lockdown, and controlling cache corruption • Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the possibility of TLB misses related to the write-back address. • Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of the Dcache or Icache, and regions of virtual memory. Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 11 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com The write buffer is used for all writes to a noncachable bufferable region, write-through region and write misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a four-address buffer. The Dcache write-back has eight data word entries and a single address entry. 2.3.5 Advanced High-Performance Bus (AHB) The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the Config Bus and the external memories bus. 2.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB) To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an Embedded Trace Macrocell (ETM). The ARM926EJ-S Subsystem in the OMAP-L137 also includes the Embedded Trace Buffer (ETB). The ETM consists of two parts: • Trace Port provides real-time trace capability for the ARM9. • Triggering facilities provide trigger resources, which include address and data comparators, counter, and sequencers. The OMAP-L137 trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace data. This device uses ETM9™ version r2p2 and ETB version r0p1. Documentation on the ETM and ETB is available from ARM Ltd. Reference the ' CoreSight™ ETM9™ Technical Reference Manual, revision r0p1' and the 'ETM9 Technical Reference Manual, revision r2p2'. 2.3.7 ARM Memory Mapping By default the ARM has access to most on and off chip memory areas, including the DSP Internal memories, EMIFA, EMIFB, and the additional 128K byte on chip shared SRAM. Likewise almost all of the on chip peripherals are accessible to the ARM by default. To improve security and/or robustness, the device has extensive memory and peripheral protection units which can be configured to limit access rights to the various on/off chip resources to specific hosts; including the ARM as well as other master peripherals. This allows the system tasks to be partitioned between the ARM and DSP as best suites the particular application; while enhancing the overall robustness of the solution. See Table 2-4 for a detailed top level OMAP-L137 memory map that includes the ARM memory space. 12 Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com 2.4 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 DSP Subsystem The DSP Subsystem includes the following features: • C674x DSP CPU • 32KB L1 Program (L1P)/Cache (up to 32KB) • 32KB L1 Data (L1D)/Cache (up to 32KB) • 256KB Unified Mapped RAM/Cache (L2) • Boot ROM (cannot be used for application code) • Little endian 32K Bytes L1P RAM/ Cache 256K Bytes L2 RAM Boot ROM 256 256 256 256 Cache Control Memory Protect Cache Control Memory Protect L1P Bandwidth Mgmt L2 Bandwidth Mgmt 256 256 256 Instruction Fetch 256 Power Down Interrupt Controller C674x Fixed/Floating Point CPU IDMA Register File A Register File B 64 64 256 CFG Bandwidth Mgmt Memory Protect EMC L1D Cache Control 32 MDMA 8 x 32 64 Configuration Peripherals Bus SDMA 64 64 64 High Performance Switch Fabric 32K Bytes L1D RAM/ Cache Figure 2-1. C674x Megamodule Block Diagram Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 13 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 2.4.1 www.ti.com C674x DSP CPU Description The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 2-2. The two general-purpose register files (A and B) each contain 32 32bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register). The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory. The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the C67x+ core. Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x 32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes four 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on a variety of signed and unsigned 32-bit data types. The .L Unit (or Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions. The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C674x core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support. Other new features include: • SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible. • Compact Instructions - The native instruction size for the C6000™ devices is 32 bits. Many common instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools. • Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication. • Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration). • Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions. 14 Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com • SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a freerunning time-stamp counter is implemented in the CPU which is not sensitive to system stalls. For more details on the C674x CPU and its enhancements over the C64x architecture, see the following documents: • TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number: SPRU732) • TMS320C64x Technical Overview (literature number: SPRU395) Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 15 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 ÁÁ ÁÁ Á Á ÁÁ Á ÁÁ Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á www.ti.com src1 Odd register file A (A1, A3, A5...A31) src2 .L1 odd dst Even register file A (A0, A2, A4...A30) (D) even dst long src ST1b ST1a 32 MSB 32 LSB long src 8 8 even dst odd dst .S1 src1 Data path A (D) src2 LD1b LD1a 32 LSB DA2 32 32 src2 32 MSB DA1 LD2a LD2b Á Á Á Á Á Á .M1 dst2 dst1 src1 (A) (B) (C) dst .D1 src1 src2 2x 1x Odd register file B (B1, B3, B5...B31) src2 .D2 32 LSB 32 MSB src1 dst src2 .M2 Even register file B (B0, B2, B4...B30) (C) src1 dst2 32 (B) dst1 32 (A) src2 src1 .S2 odd dst even dst long src Data path B ST2a ST2b 32 MSB 32 LSB long src even dst .L2 (D) 8 8 (D) odd dst src2 src1 Control Register A. B. C. D. On .M unit, dst2 is 32 MSB. On .M unit, dst1 is 32 LSB. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files. Figure 2-2. TMS320C674x CPU (DSP Core) Data Paths 16 Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com 2.4.2 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 DSP Memory Mapping The DSP memory map is shown in Section 2.5. By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM RAM, ROM, and AINTC interrupt controller. The DSP also boots first, and must release the ARM from reset before the ARM can execute any code. Additionally, the DSP megamodule includes the capability to limit access to its internal memories through its SDMA port; without needing an external MPU unit. 2.4.2.1 ARM Internal Memories The DSP does not have access to the ARM internal memory. 2.4.2.2 External Memories The DSP has access to the following External memories: • Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA) • SDRAM (EMIFB) 2.4.2.3 DSP Internal Memories The DSP has access to the following DSP memories: • L2 RAM • L1P RAM • L1D RAM 2.4.2.4 C674x CPU The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both. Table 2-2 shows a memory map of the C674x CPU cache registers for the device. Table 2-2. C674x Cache Registers BYTE ADDRESS ACRONYM 0x0184 0000 L2CFG 0x0184 0020 L1PCFG 0x0184 0024 L1PCC 0x0184 0040 L1DCFG REGISTER DESCRIPTION L2 Cache configuration register (See the System reference Guide for the reset configuration) L1P Size Cache configuration register (See the System reference Guide for the reset configuration) L1P Freeze Mode Cache configuration register L1D Size Cache configuration register (See the System reference Guide for the reset configuration) 0x0184 0044 L1DCC 0x0184 0048 - 0x0184 0FFC - L1D Freeze Mode Cache configuration register 0x0184 1000 EDMAWEIGHT 0x0184 1004 - 0x0184 1FFC - 0x0184 2000 L2ALLOC0 L2 allocation register 0 0x0184 2004 L2ALLOC1 L2 allocation register 1 0x0184 2008 L2ALLOC2 L2 allocation register 2 L2 allocation register 3 Reserved L2 EDMA access control register Reserved 0x0184 200C L2ALLOC3 0x0184 2010 - 0x0184 3FFF - 0x0184 4000 L2WBAR L2 writeback base address register 0x0184 4004 L2WWC L2 writeback word count register Reserved Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 17 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 2-2. C674x Cache Registers (continued) BYTE ADDRESS ACRONYM 0x0184 4010 L2WIBAR L2 writeback invalidate base address register REGISTER DESCRIPTION 0x0184 4014 L2WIWC L2 writeback invalidate word count register 0x0184 4018 L2IBAR L2 invalidate base address register 0x0184 401C L2IWC L2 invalidate word count register 0x0184 4020 L1PIBAR L1P invalidate base address register 0x0184 4024 L1PIWC L1P invalidate word count register 0x0184 4030 L1DWIBAR L1D writeback invalidate base address register 0x0184 4034 L1DWIWC L1D writeback invalidate word count register 0x0184 4038 - 0x0184 4040 L1DWBAR L1D writeback base address register 0x0184 4044 L1DWWC L1D writeback word count register Reserved 0x0184 4048 L1DIBAR L1D invalidate base address register 0x0184 404C L1DIWC L1D invalidate word count register 0x0184 4050 - 0x0184 4FFF - 0x0184 5000 L2WB 0x0184 5004 L2WBINV 0x0184 5008 L2INV Reserved L2 writeback all register L2 writeback invalidate all register L2 Global Invalidate without writeback 0x0184 500C - 0x0184 5027 - 0x0184 5028 L1PINV Reserved 0x0184 502C - 0x0184 5039 - 0x0184 5040 L1DWB 0x0184 5044 L1DWBINV 0x0184 5048 L1DINV L1D Global Invalidate without writeback 0x0184 8000 – 0x0184 80FF MAR0 - MAR63 Reserved 0x0000 0000 – 0x3FFF FFFF 0x0184 8100 – 0x0184 817F MAR64 – MAR95 Memory Attribute Registers for EMIFA SDRAM Data (CS0) 0x4000 0000 – 0x5FFF FFFF 0x0184 8180 – 0x0184 8187 MAR96 - MAR97 Memory Attribute Registers for EMIFA Async Data (CS2) 0x6000 0000 – 0x61FF FFFF 0x0184 8188 – 0x0184 818F MAR98 – MAR99 Memory Attribute Registers for EMIFA Async Data (CS3) 0x6200 0000 – 0x63FF FFFF 0x0184 8190 – 0x0184 8197 MAR100 – MAR101 Memory Attribute Registers for EMIFA Async Data (CS4) 0x6400 0000 – 0x65FF FFFF 0x0184 8198 – 0x0184 819F MAR102 – MAR103 Memory Attribute Registers for EMIFA Async Data (CS5) 0x6600 0000 – 0x67FF FFFF 0x0184 81A0 – 0x0184 81FF MAR104 – MAR127 Reserved 0x6800 0000 – 0x7FFF FFFF 0x0184 8200 MAR128 0x0184 8204 – 0x0184 82FF MAR129 – MAR191 Reserved 0x8200 0000 – 0xBFFF FFFF 0x0184 8300 – 0x0184 837F MAR192 – MAR223 Memory Attribute Registers for EMIFB SDRAM Data (CS0) 0xC000 0000 – 0xDFFF FFFF 0x0184 8380 – 0x0184 83FF MAR224 – MAR255 Reserved 0xE000 0000 – 0xFFFF FFFF L1P Global Invalidate Reserved L1D Global Writeback L1D Global Writeback with Invalidate Memory Attribute Register for Shared RAM 0x8000 0000 – 0x8001 FFFF Reserved 0x8002 0000 – 0x81FF FFFF Table 2-3. C674x L1/L2 Memory Protection Registers BYTE ADDRESS ACRONYM 0x0184 A000 L2MPFAR L2 memory protection fault address register 0x0184 A004 L2MPFSR L2 memory protection fault status register 0x0184 A008 L2MPFCR L2 memory protection fault command register 0x0184 A00C - 0x0184 A0FF - 0x0184 A100 L2MPLK0 18 REGISTER DESCRIPTION Reserved L2 memory protection lock key bits [31:0] Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 2-3. C674x L1/L2 Memory Protection Registers (continued) BYTE ADDRESS ACRONYM 0x0184 A104 L2MPLK1 L2 memory protection lock key bits [63:32] REGISTER DESCRIPTION 0x0184 A108 L2MPLK2 L2 memory protection lock key bits [95:64] 0x0184 A10C L2MPLK3 L2 memory protection lock key bits [127:96] 0x0184 A110 L2MPLKCMD L2 memory protection lock key command register L2 memory protection lock key status register 0x0184 A114 L2MPLKSTAT 0x0184 A118 - 0x0184 A1FF - 0x0184 A200 L2MPPA0 L2 memory protection page attribute register 0 (controls memory address 0x0080 0000 - 0x0080 1FFF) 0x0184 A204 L2MPPA1 L2 memory protection page attribute register 1 (controls memory address 0x0080 2000 - 0x0080 3FFF) 0x0184 A208 L2MPPA2 L2 memory protection page attribute register 2 (controls memory address 0x0080 4000 - 0x0080 5FFF) 0x0184 A20C L2MPPA3 L2 memory protection page attribute register 3 (controls memory address 0x0080 6000 - 0x0080 7FFF) 0x0184 A210 L2MPPA4 L2 memory protection page attribute register 4 (controls memory address 0x0080 8000 - 0x0080 9FFF) 0x0184 A214 L2MPPA5 L2 memory protection page attribute register 5 (controls memory address 0x0080 A000 - 0x0080 BFFF) 0x0184 A218 L2MPPA6 L2 memory protection page attribute register 6 (controls memory address 0x0080 C000 - 0x0080 DFFF) 0x0184 A21C L2MPPA7 L2 memory protection page attribute register 7 (controls memory address 0x0080 E000 - 0x0080 FFFF) 0x0184 A220 L2MPPA8 L2 memory protection page attribute register 8 (controls memory address 0x0081 0000 - 0x0081 1FFF) 0x0184 A224 L2MPPA9 L2 memory protection page attribute register 9 (controls memory address 0x0081 2000 - 0x0081 3FFF) 0x0184 A228 L2MPPA10 L2 memory protection page attribute register 10 (controls memory address 0x0081 4000 - 0x0081 5FFF) 0x0184 A22C L2MPPA11 L2 memory protection page attribute register 11 (controls memory address 0x0081 6000 - 0x0081 7FFF) 0x0184 A230 L2MPPA12 L2 memory protection page attribute register 12 (controls memory address 0x0081 8000 - 0x0081 9FFF) 0x0184 A234 L2MPPA13 L2 memory protection page attribute register 13 (controls memory address 0x0081 A000 - 0x0081 BFFF) 0x0184 A238 L2MPPA14 L2 memory protection page attribute register 14 (controls memory address 0x0081 C000 - 0x0081 DFFF) 0x0184 A23C L2MPPA15 L2 memory protection page attribute register 15 (controls memory address 0x0081 E000 - 0x0081 FFFF) 0x0184 A240 L2MPPA16 L2 memory protection page attribute register 16 (controls memory address 0x0082 0000 - 0x0082 1FFF) 0x0184 A244 L2MPPA17 L2 memory protection page attribute register 17 (controls memory address 0x0082 2000 - 0x0082 3FFF) 0x0184 A248 L2MPPA18 L2 memory protection page attribute register 18 (controls memory address 0x0082 4000 - 0x0082 5FFF) 0x0184 A24C L2MPPA19 L2 memory protection page attribute register 19 (controls memory address 0x0082 6000 - 0x0082 7FFF) 0x0184 A250 L2MPPA20 L2 memory protection page attribute register 20 (controls memory address 0x0082 8000 - 0x0082 9FFF) 0x0184 A254 L2MPPA21 L2 memory protection page attribute register 21 (controls memory address 0x0082 A000 - 0x0082 BFFF) 0x0184 A258 L2MPPA22 L2 memory protection page attribute register 22 (controls memory address 0x0082 C000 - 0x0082 DFFF) 0x0184 A25C L2MPPA23 L2 memory protection page attribute register 23 (controls memory address 0x0082 E000 - 0x0082 FFFF) Reserved Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 19 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 2-3. C674x L1/L2 Memory Protection Registers (continued) BYTE ADDRESS 20 ACRONYM REGISTER DESCRIPTION 0x0184 A260 L2MPPA24 L2 memory protection page attribute register 24 (controls memory address 0x0083 0000 - 0x0083 1FFF) 0x0184 A264 L2MPPA25 L2 memory protection page attribute register 25 (controls memory address 0x0083 2000 - 0x0083 3FFF) 0x0184 A268 L2MPPA26 L2 memory protection page attribute register 26 (controls memory address 0x0083 4000 - 0x0083 5FFF) 0x0184 A26C L2MPPA27 L2 memory protection page attribute register 27 (controls memory address 0x0083 6000 - 0x0083 7FFF) 0x0184 A270 L2MPPA28 L2 memory protection page attribute register 28 (controls memory address 0x0083 8000 - 0x0083 9FFF) 0x0184 A274 L2MPPA29 L2 memory protection page attribute register 29 (controls memory address 0x0083 A000 - 0x0083 BFFF) 0x0184 A278 L2MPPA30 L2 memory protection page attribute register 30 (controls memory address 0x0083 C000 - 0x0083 DFFF) 0x0184 A27C L2MPPA31 L2 memory protection page attribute register 31 (controls memory address 0x0083 E000 - 0x0083 FFFF) 0x0184 A280 L2MPPA32 L2 memory protection page attribute register 32 (controls memory address 0x0070 0000 - 0x0070 7FFF) 0x0184 A284 L2MPPA33 L2 memory protection page attribute register 33 (controls memory address 0x0070 8000 - 0x0070 FFFF) 0x0184 A288 L2MPPA34 L2 memory protection page attribute register 34 (controls memory address 0x0071 0000 - 0x0071 7FFF) 0x0184 A28C L2MPPA35 L2 memory protection page attribute register 35 (controls memory address 0x0071 8000 - 0x0071 FFFF) 0x0184 A290 L2MPPA36 L2 memory protection page attribute register 36 (controls memory address 0x0072 0000 - 0x0072 7FFF) 0x0184 A294 L2MPPA37 L2 memory protection page attribute register 37 (controls memory address 0x0072 8000 - 0x0072 FFFF) 0x0184 A298 L2MPPA38 L2 memory protection page attribute register 38 (controls memory address 0x0073 0000 - 0x0073 7FFF) 0x0184 A29C L2MPPA39 L2 memory protection page attribute register 39 (controls memory address 0x0073 8000 - 0x0073 FFFF) 0x0184 A2A0 L2MPPA40 L2 memory protection page attribute register 40 (controls memory address 0x0074 0000 - 0x0074 7FFF) 0x0184 A2A4 L2MPPA41 L2 memory protection page attribute register 41 (controls memory address 0x0074 8000 - 0x0074 FFFF) 0x0184 A2A8 L2MPPA42 L2 memory protection page attribute register 42 (controls memory address 0x0075 0000 - 0x0075 7FFF) 0x0184 A2AC L2MPPA43 L2 memory protection page attribute register 43 (controls memory address 0x0075 8000 - 0x0075 FFFF) 0x0184 A2B0 L2MPPA44 L2 memory protection page attribute register 44 (controls memory address 0x0076 0000 - 0x0076 7FFF) 0x0184 A2B4 L2MPPA45 L2 memory protection page attribute register 45 (controls memory address 0x0076 8000 - 0x0076 FFFF) 0x0184 A2B8 L2MPPA46 L2 memory protection page attribute register 46 (controls memory address 0x0077 0000 - 0x0077 7FFF) 0x0184 A2BC L2MPPA47 L2 memory protection page attribute register 47 (controls memory address 0x0077 8000 - 0x0077 FFFF) 0x0184 A2C0 L2MPPA48 L2 memory protection page attribute register 48 (controls memory address 0x0078 0000 - 0x0078 7FFF) 0x0184 A2C4 L2MPPA49 L2 memory protection page attribute register 49 (controls memory address 0x0078 8000 - 0x0078 FFFF) 0x0184 A2C8 L2MPPA50 L2 memory protection page attribute register 50 (controls memory address 0x0079 0000 - 0x0079 7FFF) 0x0184 A2CC L2MPPA51 L2 memory protection page attribute register 51 (controls memory address 0x0079 8000 - 0x0079 FFFF) Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 2-3. C674x L1/L2 Memory Protection Registers (continued) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x0184 A2D0 L2MPPA52 L2 memory protection page attribute register 52 (controls memory address 0x007A 0000 - 0x007A 7FFF) 0x0184 A2D4 L2MPPA53 L2 memory protection page attribute register 53 (controls memory address 0x007A 8000 - 0x007A FFFF) 0x0184 A2D8 L2MPPA54 L2 memory protection page attribute register 54 (controls memory address 0x007B 0000 - 0x007B 7FFF) 0x0184 A2DC L2MPPA55 L2 memory protection page attribute register 55 (controls memory address 0x007B 8000 - 0x007B FFFF) 0x0184 A2E0 L2MPPA56 L2 memory protection page attribute register 56 (controls memory address 0x007C 0000 - 0x007C 7FFF) 0x0184 A2E4 L2MPPA57 L2 memory protection page attribute register 57 (controls memory address 0x007C 8000 - 0x007C FFFF) 0x0184 A2E8 L2MPPA58 L2 memory protection page attribute register 58 (controls memory address 0x007D 0000 - 0x007D 7FFF) 0x0184 A2EC L2MPPA59 L2 memory protection page attribute register 59 (controls memory address 0x007D 8000 - 0x007D FFFF) 0x0184 A2F0 L2MPPA60 L2 memory protection page attribute register 60 (controls memory address 0x007E 0000 - 0x007E 7FFF) 0x0184 A2F4 L2MPPA61 L2 memory protection page attribute register 61 (controls memory address 0x007E 8000 - 0x007E FFFF) 0x0184 A2F8 L2MPPA62 L2 memory protection page attribute register 62 (controls memory address 0x007F 0000 - 0x007F 7FFF) 0x0184 A2FC L2MPPA63 L2 memory protection page attribute register 63 (controls memory address 0x007F 8000 - 0x007F FFFF) 0x0184 A300 - 0x0184 A3FF - 0x0184 A400 L1PMPFAR Reserved L1P memory protection fault address register 0x0184 A404 L1PMPFSR L1P memory protection fault status register 0x0184 A408 L1PMPFCR L1P memory protection fault command register 0x0184 A40C - 0x0184 A4FF - 0x0184 A500 L1PMPLK0 L1P memory protection lock key bits [31:0] 0x0184 A504 L1PMPLK1 L1P memory protection lock key bits [63:32] 0x0184 A508 L1PMPLK2 L1P memory protection lock key bits [95:64] 0x0184 A50C L1PMPLK3 L1P memory protection lock key bits [127:96] Reserved 0x0184 A510 L1PMPLKCMD L1P memory protection lock key command register 0x0184 A514 L1PMPLKSTAT L1P memory protection lock key status register 0x0184 A518 - 0x0184 A5FF - Reserved 0x0184 A600 - 0x0184 A63F - Reserved 0x0184 A640 L1PMPPA16 L1P memory protection page attribute register 16 (controls memory address 0x00E0 0000 - 0x00E0 07FF) 0x0184 A644 L1PMPPA17 L1P memory protection page attribute register 17 (controls memory address 0x00E0 0800 - 0x00E0 0FFF) 0x0184 A648 L1PMPPA18 L1P memory protection page attribute register 18 (controls memory address 0x00E0 1000 - 0x00E0 17FF) 0x0184 A64C L1PMPPA19 L1P memory protection page attribute register 19 (controls memory address 0x00E0 1800 - 0x00E0 1FFF) 0x0184 A650 L1PMPPA20 L1P memory protection page attribute register 20 (controls memory address 0x00E0 2000 - 0x00E0 27FF) 0x0184 A654 L1PMPPA21 L1P memory protection page attribute register 21 (controls memory address 0x00E0 2800 - 0x00E0 2FFF) 0x0184 A658 L1PMPPA22 L1P memory protection page attribute register 22 (controls memory address 0x00E0 3000 - 0x00E0 37FF) (1) (1) These addresses correspond to the L1P memory protection page attribute registers 0-15 (L1PMPPA0-L1PMPPA15) of the C674x megamaodule. These registers are not supported for this device. Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 21 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 2-3. C674x L1/L2 Memory Protection Registers (continued) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x0184 A65C L1PMPPA23 L1P memory protection page attribute register 23 (controls memory address 0x00E0 3800 - 0x00E0 3FFF) 0x0184 A660 L1PMPPA24 L1P memory protection page attribute register 24 (controls memory address 0x00E0 4000 - 0x00E0 47FF) 0x0184 A664 L1PMPPA25 L1P memory protection page attribute register 25 (controls memory address 0x00E0 4800 - 0x00E0 4FFF) 0x0184 A668 L1PMPPA26 L1P memory protection page attribute register 26 (controls memory address 0x00E0 5000 - 0x00E0 57FF) 0x0184 A66C L1PMPPA27 L1P memory protection page attribute register 27 (controls memory address 0x00E0 5800 - 0x00E0 5FFF) 0x0184 A670 L1PMPPA28 L1P memory protection page attribute register 28 (controls memory address 0x00E0 6000 - 0x00E0 67FF) 0x0184 A674 L1PMPPA29 L1P memory protection page attribute register 29 (controls memory address 0x00E0 6800 - 0x00E0 6FFF) 0x0184 A678 L1PMPPA30 L1P memory protection page attribute register 30 (controls memory address 0x00E0 7000 - 0x00E0 77FF) 0x0184 A67C L1PMPPA31 L1P memory protection page attribute register 31 (controls memory address 0x00E0 7800 - 0x00E0 7FFF) 0x0184 A67F – 0x0184 ABFF - 0x0184 AC00 L1DMPFAR L1D memory protection fault address register 0x0184 AC04 L1DMPFSR L1D memory protection fault status register 0x0184 AC08 L1DMPFCR L1D memory protection fault command register Reserved 0x0184 AC0C - 0x0184 ACFF - 0x0184 AD00 L1DMPLK0 Reserved L1D memory protection lock key bits [31:0] 0x0184 AD04 L1DMPLK1 L1D memory protection lock key bits [63:32] 0x0184 AD08 L1DMPLK2 L1D memory protection lock key bits [95:64] 0x0184 AD0C L1DMPLK3 L1D memory protection lock key bits [127:96] 0x0184 AD10 L1DMPLKCMD L1D memory protection lock key command register 0x0184 AD14 L1DMPLKSTAT L1D memory protection lock key status register 0x0184 AD18 - 0x0184 ADFF - Reserved 0x0184 AE00 - 0x0184 AE3F - Reserved 0x0184 AE40 L1DMPPA16 L1D memory protection page attribute register 16 (controls memory address 0x00F0 0000 - 0x00F0 07FF) 0x0184 AE44 L1DMPPA17 L1D memory protection page attribute register 17 (controls memory address 0x00F0 0800 - 0x00F0 0FFF) 0x0184 AE48 L1DMPPA18 L1D memory protection page attribute register 18 (controls memory address 0x00F0 1000 - 0x00F0 17FF) 0x0184 AE4C L1DMPPA19 L1D memory protection page attribute register 19 (controls memory address 0x00F0 1800 - 0x00F0 1FFF) 0x0184 AE50 L1DMPPA20 L1D memory protection page attribute register 20 (controls memory address 0x00F0 2000 - 0x00F0 27FF) 0x0184 AE54 L1DMPPA21 L1D memory protection page attribute register 21 (controls memory address 0x00F0 2800 - 0x00F0 2FFF) 0x0184 AE58 L1DMPPA22 L1D memory protection page attribute register 22 (controls memory address 0x00F0 3000 - 0x00F0 37FF) 0x0184 AE5C L1DMPPA23 L1D memory protection page attribute register 23 (controls memory address 0x00F0 3800 - 0x00F0 3FFF) 0x0184 AE60 L1DMPPA24 L1D memory protection page attribute register 24 (controls memory address 0x00F0 4000 - 0x00F0 47FF) 0x0184 AE64 L1DMPPA25 L1D memory protection page attribute register 25 (controls memory address 0x00F0 4800 - 0x00F0 4FFF) (2) 22 (2) These addresses correspond to the L1D memory protection page attribute registers 0-15 (L1DMPPA0-L1DMPPA15) of the C674x megamaodule. These registers are not supported for this device. Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 2-3. C674x L1/L2 Memory Protection Registers (continued) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x0184 AE68 L1DMPPA26 L1D memory protection page attribute register 26 (controls memory address 0x00F0 5000 - 0x00F0 57FF) 0x0184 AE6C L1DMPPA27 L1D memory protection page attribute register 27 (controls memory address 0x00F0 5800 - 0x00F0 5FFF) 0x0184 AE70 L1DMPPA28 L1D memory protection page attribute register 28 (controls memory address 0x00F0 6000 - 0x00F0 67FF) 0x0184 AE74 L1DMPPA29 L1D memory protection page attribute register 29 (controls memory address 0x00F0 6800 - 0x00F0 6FFF) 0x0184 AE78 L1DMPPA30 L1D memory protection page attribute register 30 (controls memory address 0x00F0 7000 - 0x00F0 77FF) 0x0184 AE7C L1DMPPA31 L1D memory protection page attribute register 31 (controls memory address 0x00F0 7800 - 0x00F0 7FFF) 0x0184 AE80 – 0x0185 FFFF - Reserved See Table 2-4 for a detailed top level OMAP-L137 memory map that includes the DSP memory space. Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 23 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 2.5 www.ti.com Memory Map Summary Note: Read/Write accesses to illegal or reserved addresses in the memory map may cause undefined behavior. Table 2-4. OMAP-L137 Top Level Memory Map Start Address End Address Size 0x0000 0000 0x0000 0FFF 4K 0x0000 1000 0x006F FFFF 0x0070 0000 0x007F FFFF 1024K - 0x0080 0000 0x0083 FFFF 256K - DSP L2 RAM 32K - DSP L1P RAM 0x0084 0000 0x00DF FFFF 0x00E0 0000 0x00E0 7FFF 0x00E0 8000 0x00EF FFFF ARM Mem Map DSP Mem Map EDMA Mem Map - PRUSS Mem Map Master Peripheral Mem Map LCDC Mem Map PRUSS Local Address Space - DSP L2 ROM (1) - 0x00F0 0000 0x00F0 7FFF 0x00F0 8000 0x017F FFFF 32K - DSP L1D RAM - 0x0180 0000 0x0180 FFFF 64K - DSP Interrupt Controller - 0x0181 0000 0x0181 0FFF 4K - DSP Powerdown Controller - 0x0181 1000 0x0181 1FFF 4K - DSP Security ID - - 0x0181 2000 0x0181 2FFF 4K - DSP Revision ID - 0x0181 3000 0x0181 FFFF 52K - - - 0x0182 0000 0x0182 FFFF 64K - DSP EMC - 0x0183 0000 0x0183 FFFF 64K - DSP Internal Reserved - 0x0184 0000 0x0184 FFFF 64K - DSP Memory System - 0x0185 0000 0x01BB FFFF 0x01BC 0000 0x01BC 0FFF 4K ARM ETB memory - 0x01BC 1000 0x01BC 17FF 2K ARM ETB reg - 0x01BC 1800 0x01BC 18FF 256 ARM Ice Crusher - 0x01BC 1900 0x01BF FFFF 0x01C0 0000 0x01C0 7FFF 32K EDMA3 Channel Controller - 0x01C0 8000 0x01C0 83FF 1024 EDMA3 Transfer Controller 0 - 0x01C0 8400 0x01C0 87FF 1024 EDMA3 Transfer Controller 1 - 0x01C0 8800 0x01C0 FFFF 0x01C1 0000 0x01C1 0FFF 4K PSC 0 0x01C1 1000 0x01C1 1FFF 4K PLL Controller 0x01C1 2000 0x01C1 3FFF 0x01C1 4000 0x01C1 4FFF 0x01C1 5000 0x01C1 5FFF - 0x01C1 6000 0x01C1 6FFF - 0x01C1 7000 0x01C1 7FFF - 0x01C1 8000 0x01C1 FFFF 0x01C2 0000 0x01C2 0FFF 4K Timer64P 0 - 0x01C2 1000 0x01C2 1FFF 4K Timer64P 1 - (1) 24 - - - 4K SYSCFG - - The DSP L2 ROM is used for boot purposes and cannot be programmed with application code Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 2-4. OMAP-L137 Top Level Memory Map (continued) Start Address End Address Size ARM Mem Map DSP Mem Map EDMA Mem Map PRUSS Mem Map Master Peripheral Mem Map 0x01C2 2000 0x01C2 2FFF 4K I2C 0 - 0x01C2 3000 0x01C2 3FFF 4K RTC - - LCDC Mem Map 0x01C2 4000 0x01C2 4FFF 0x01C2 5000 0x01C3 FFFF - 0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0 - 0x01C4 1000 0x01C4 1FFF 4K SPI 0 - 0x01C4 2000 0x01C4 2FFF 4K UART 0 0x01C4 3000 0x01CF FFFF 0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control - 0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Control - 0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data - 0x01D0 3000 0x01D0 3FFF 0x01D0 4000 0x01D0 4FFF 4K McASP 1 Control - 0x01D0 5000 0x01D0 5FFF 4K McASP 1 AFIFO Control - 0x01D0 6000 0x01D0 6FFF 4K McASP 1 Data - 0x01D0 7000 0x01D0 7FFF 0x01D0 8000 0x01D0 8FFF 4K McASP 2 Control - 0x01D0 9000 0x01D0 9FFF 4K McASP 2 AFIFO Control - 0x01D0 A000 0x01D0 AFFF 4K McASP 2 Data - - - - - 0x01D0 B000 0x01D0 BFFF 0x01D0 C000 0x01D0 CFFF 4K UART 1 - 0x01D0 D000 0x01D0 DFFF 4K UART 2 - 0x01D0 E000 0x01DF FFFF 0x01E0 0000 0x01E0 FFFF 64K USB0 0x01E1 0000 0x01E1 0FFF 4K UHPI 0x01E1 1000 0x01E1 1FFF 0x01E1 2000 0x01E1 2FFF 4K SPI 1 - 0x01E1 3000 0x01E1 3FFF 4K LCD Controller - 0x01E1 4000 0x01E1 4FFF 4K Memory Protection Unit 1 (MPU 1) - 0x01E1 5000 0x01E1 5FFF 4K Memory Protection Unit 2 (MPU 2) - 0x01E1 6000 0x01E1 FFFF 0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM - 0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers - 0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers - 0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port - 0x01E2 5000 0x01E2 5FFF 4K USB1 - 0x01E2 6000 0x01E2 6FFF 4K GPIO - 0x01E2 7000 0x01E2 7FFF 4K PSC 1 - 0x01E2 8000 0x01E2 8FFF 4K I2C 1 - 0x01E2 9000 0x01EF FFFF 0x01F0 0000 0x01F0 0FFF 4K eHRPWM 0 - 0x01F0 1000 0x01F0 1FFF 4K HRPWM 0 - 0x01F0 2000 0x01F0 2FFF 4K eHRPWM 1 - 0x01F0 3000 0x01F0 3FFF 4K HRPWM 1 - 0x01F0 4000 0x01F0 4FFF 4K eHRPWM 2 - 0x01F0 5000 0x01F0 5FFF 4K HRPWM 2 - - - - Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 25 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 2-4. OMAP-L137 Top Level Memory Map (continued) Start Address End Address Size 0x01F0 6000 0x01F0 6FFF 4K ECAP 0 - 0x01F0 7000 0x01F0 7FFF 4K ECAP 1 - 0x01F0 8000 0x01F0 8FFF 4K ECAP 2 - 0x01F0 9000 0x01F0 9FFF 4K EQEP 0 - 0x01F0 A000 0x01F0 AFFF 4K EQEP 1 0x01F0 B000 0x116F FFFF 0x1170 0000 0x117F FFFF 1024K 0x1180 0000 0x1183 FFFF 256K 0x1184 0000 0x11DF FFFF 0x11E0 0000 0x11E0 7FFF 0x11E0 8000 0x11EF FFFF 0x11F0 0000 0x11F0 7FFF 0x11F0 8000 0x3FFF FFFF 0x4000 0000 0x47FF FFFF 0x4800 0000 0x5FFF FFFF 0x6000 0000 ARM Mem Map EDMA Mem Map PRUSS Mem Map Master Peripheral Mem Map LCDC Mem Map - DSP L2 ROM (2) - DSP L2 RAM - 32K DSP L1P RAM - 32K DSP L1D RAM 128M EMIFA SDRAM data (CS0) - 0x61FF FFFF 32M EMIFA async data (CS2) - 0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3) - 0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4) - 0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5) - 0x6800 0000 0x6800 7FFF 32K EMIFA Control Registers - 0x6800 8000 0x7FFF FFFF 0x8000 0000 0x8001 FFFF 0x8002 0000 0xAFFF FFFF 0xB000 0000 0xB000 7FFF 0xB000 8000 0xBFFF FFFF 0xC000 0000 0xCFFF FFFF 0xD000 0000 0xFFFC FFFF 0xFFFD 0000 0xFFFD FFFF 128K Shared RAM - 32K EMIFB Control Registers 256M EMIFB SDRAM Data 64K ARM local ROM 0xFFFE 0000 0xFFFE DFFF 0xFFFE FFFF 8K ARM Interrupt Controller 0xFFFF 0000 0xFFFF 1FFF 8K ARM local RAM 0xFFFF 2000 0xFFFF FFFF (2) - - 0xFFFE E000 26 DSP Mem Map - ARM Local RAM (PRU0 only) - The DSP L2 ROM is used for boot purposes and cannot be programmed with application code Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com 2.6 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Pin Assignments Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings. 2.6.1 Pin Map (Bottom View) Figure 2-3 shows the pin assignments for the ZKB package. 1 2 3 4 5 6 7 8 9 10 AXR1[11]/ GP5[11] SPI0_CLK/ EQEP1I/ GP5[2]/ BOOT[2] SPI1_CLK/ EQEP1S/ GP5[7]/ BOOT[7] EMA_CS[3]/ AMUTE2/ GP2[6] EMA_CS[0]/ UHPI_HAS/ GP2[4] EMA_A[0]/ LCD_D[7]/ GP1[0] EMA_A[4]/ LCD_D[3]/ GP1[4] T VSS VSS AXR1[0]/ GP4[0] R DVDD AXR1[1]/ GP4[1] UART0_RXD/ I2C0_SDA/ TM64P0_IN12/ GP5[8]/ BOOT[8] P AXR1[3]/ EQEP1A/ GP4[3] AXR1[2]/ GP4[2] N AXR1[5]/ EPWM2B/ GP4[5] AXR1[4]/ EQEP1B/ GP4[4] AXR1[10]/ GP5[10] M AXR1[9]/ GP4[9] AXR1[8]/ EPWM1A/ GP4[8] AXR1[7]/ EPWM1B/ GP4[7] AXR1[6]/ EPWM2A/ GP4[6] DVDD VSS VSS L AHCLKR1/ GP4[11] ACLKR1/ ECAP2/ APWM2/ GP4[12] AFSR1/ GP4[13] AMUTE0/ RESETOUT DVDD CVDD AHCLKX1/ EPWM0B/ GP3[14] ACLKX1/ EPWM0A/ GP3[15] AFSX1/ EPWMSYNCI/ EPWMSYNCO/ GP4[10] DVDD K RTCK/GP7[14] SPI0_ENA/ SPI0_SOMI[0]/ EMA_OE/ SPI1_ENA/ UART0_CTS/ UHPI_HDS1/ EQEP0I/ UART2_RXD/ EQEP0A/ AXR0[13]/ GP5[0]/ GP5[3]/ GP5[12] GP2[7] BOOT[0] BOOT[3] 11 12 13 14 EMA_D[0]/ EMA_D[9]/ EMA_A[8]/ EMA_SDCKE/ MMCSD_DAT[0]/ UHPI_HD[9]/ UHPI_HD[0]/ LCD_PCLK/ GP2[0] LCD_D[9]/ GP0[0]/ GP1[8] GP0[9] BOOT[12] EMA_CLK/ OBSCLK/ AHCLKR2/ GP1[15] 15 16 VSS VSS T DVDD R EMA_A[1]/ EMA_BA[0]/ MMCSD_CLK/ LCD_D[4]/ UHPI_HCNTL0/ GP1[14] GP1[1] EMA_A[5]/ LCD_D[2]/ GP1[5] EMA_A[9]/ LCD_HSYNC/ GP1[9] EMA_D[2]/ EMA_D[10]/ EMA_D[1]/ MMCSD_DAT[2]/ UHPI_HD[10]/ MMCSD_DAT[1]/ UHPI_HD[2]/ LCD_D[10]/ UHPI_HD[1]/ GP0[2] GP0[10] GP0[1] UART0_TXD/ EMA_A[2]/ SPI1_SOMI[0]/ SPI0_SIMO[0]/ EMA_CS[2]/ EMA_BA[1]/ SPI1_SCS[0]/ I2C0_SCL/ I2C1_SCL/ EQEP0S/ UHPI_HCS/ LCD_D[5]/ MMCSD_CMD/ TM64P0_OUT12/ UART2_TXD/ UHPI_HHWIL/ UHPI_HCNTL1/ GP5[5]/ GP5[1]/ GP2[5]/ GP5[9]/ GP5[13] GP1[13] GP1[2] BOOT[5] BOOT[1] BOOT[15] BOOT[9] EMA_A[6]/ LCD_D[1]/ GP1[6] EMA_A[11]/ LCD_AC_ ENB_CS/ GP1[11] EMA_WE_ EMA_D[4]/ EMA_D[12]/ EMA_D[3]/ EMA_D[11]/ DQM[1]/ MMCSD_DAT[4]/ UHPI_HD[12]/ MMCSD_DAT[3]/ UHPI_HD[11]/ UHPI_HDS2/ UHPI_HD[4]/ LCD_D[12]/ UHPI_HD[3]/ LCD_D[11] AXR0[14]/ GP0[4] GP0[12] GP0[3] GP0[11] GP2[8] P SPI0_SCS[0]/ SPI1_SIMO[0]/ UART0_RTS/ I2C1_SDA/ EMA_WAIT[0]/ EMA_RAS/ EMA_A[10]/ UHPI_HRDY/ EMA_CS[5]/ LCD_VSYNC/ EQEP0B/ GP5[6]/ GP5[4]/ GP2[10] GP2[2] GP1[10] BOOT[6] BOOT[4] EMA_A[3]/ LCD_D[6]/ GP1[3] EMA_A[7]/ LCD_D[0]/ GP1[7] EMA_A[12]/ LCD_MCLK/ GP1[12] EMA_D[8]/ EMA_D[6]/ EMA_D[14]/ EMA_D[5]/ EMA_D[13]/ UHPI_HD[8]/ MMCSD_DAT[6]/ UHPI_HD[14]/ MMCSD_DAT[5]/ UHPI_HD[13]/ LCD_D[8]/ UHPI_HD[6]/ LCD_D[14]/ UHPI_HD[5]/ LCD_D[13]/ GP0[14] GP0[5] GP0[13] GP0[8] GP0[6] N DVDD DVDD VSS VSS DVDD EMA_WE/ UHPI_HRW/ AXR0[12]/ GP2[3]/ BOOT[14]] EMA_D[7]/ EMA_WE_ EMA_D[15]/ MMCSD_DAT[7]/ DQM[0]/ UHPI_HD[15]/ UHPI_HINT/ UHPI_HD[7]/ LCD_D[15]/ AXR0[15]/ GP0[7]/ GP0[15] GP2[9] BOOT[13] M VSS VSS VSS VSS DVDD DVDD EMB_CAS EMB_D[22] EMB_D[23] EMA_CAS/ EMA_CS[4]/ GP2[1] L CVDD CVDD VSS VSS CVDD CVDD DVDD EMB_D[20] EMB_WE_ DQM[0]/ GP5[15] EMB_WE EMB_D[21] K J TMS TDI TDO TRST EMU0/GP7[15] CVDD CVDD VSS VSS CVDD CVDD CVDD EMB_D[5]/ GP6[5] EMB_D[19] EMB_D[6]/ GP6[6] EMB_D[7]/ GP6[7] J H RTC_XI RTC_XO TCK NC USB0_ VDDA33 RVDD CVDD VSS VSS CVDD CVDD RVDD EMB_D[3]/ GP6[3] EMB_D[17] EMB_D[18] EMB_D[4]/ GP6[4] H G RTC_CVDD RTC_VSS RESET USB0_DM DVDD CVDD CVDD VSS VSS CVDD CVDD DVDD EMB_D[1]/ GP6[1] EMB_D[31] EMB_D[16] EMB_D[2]/ GP6[2] G F OSCOUT OSCIN NC USB0_DP DVDD CVDD RSV1 VSS VSS VSS DVDD DVDD EMB_D[15]/ GP6[15] EMB_D[29] EMB_D[30] EMB_D[0]/ GP6[0] F E PLL0_VSSA OSCVSS USB0_ VDDA18 USB0_ DRVVBUS/ GP4[15] DVDD VSS VSS DVDD DVDD VSS VSS DVDD EMB_D[13]/ GP6[13] EMB_D[27] EMB_D[28] EMB_D[14]/ GP6[14] E D PLL0_VDDA USB0_ID USB0_VBUS AMUTE1/ EPWMTZ/ GP4[14] AFSX0/ GP2[13]/ BOOT[10] AXR0[6]/ UART1_TXD/ RMII_RXER/ AXR0[10]/ ACLKR2/ GP3[10] GP3[6] AXR0[2]/ RMII_TXEN/ AXR2[3]/ GP3[2] EMB_CS[0] EMB_A[0]/ GP7[2] EMB_A[4]/ GP7[6] EMB_A[8]/ GP7[10] EMB_D[9]/ GP6[9] EMB_D[10]/ GP6[10] EMB_D[11]/ GP6[11] EMB_D[12]/ GP6[12] D C USB1_ VDDA33 USB1_ VDDA18 USB0_ VDDA12 AFSR0/ GP3[12] ACLKX0/ ECAP0/ APWM0/ GP2[12] AXR0[5]/ AXR0[1]/ UART1_RXD/ RMII_RXD[1]/ RMII_TXD[1]/ AXR0[9]/ AFSX2/ ACLKX2/ GP3[9] GP3[5] GP3[1] EMB_BA[0]/ GP7[1] EMB_A[1]/ GP7[3] EMB_A[5]/ GP7[7] EMB_A[9]/ GP7[11] EMB_SDCKE EMB_CLK EMB_WE_ DQM[1]/ GP5[14] EMB_D[8]/ GP6[8] C B RSV2 VSS USB1_DM ACLKR0/ ECAP1/ APWM1/ GP2[15] AHCLKX0/ AHCLKX2/ USB_ REFCLKIN/ GP2[11] AXR0[8]/ MDIO_D/ GP3[8] AXR0[4]/ AXR0[0]/ RMII_RXD[0]/ RMII_TXD[0]/ AXR2[1]/ AFSR2/ GP3[4] GP3[0] EMB_BA[1]/ GP7[0] EMB_A[2]/ GP7[4] EMB_A[6]/ GP7[8] EMB_A[11]/ GP7[13] EMB_WE_ DQM[2] EMB_D[25] EMB_A[12]/ GP3[13] DVDD B A VSS VSS USB1_DP AHCLKR0/ RMII_MHZ_ 50_CLK/ GP2[14]/ BOOT[11] AXR0[11]/ AXR2[0]/ GP3[11] AXR0[7]/ MDIO_CLK/ GP3[7] AXR0[3]/ RMII_CRS_DV/ AXR2[2]/ GP3[3] EMB_RAS EMB_A[10]/ GP7[12] EMB_A[3]/ GP7[5] EMB_A[7]/ GP7[9] EMB_WE_ DQM[3] EMB_D[24] EMB_D[26] VSS VSS A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Figure 2-3. Pin Map (ZKB) Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 27 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 2.7 www.ti.com Terminal Functions Table 2-5 to Table 2-25 identify the external signal names, the associated pin/ball numbers along with the mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description. 2.7.1 Device Reset and JTAG Table 2-5. Reset and JTAG Terminal Functions PIN NO SIGNAL NAME ZKB TYPE (1) PULL (2) DESCRIPTION RESET RESET AMUTE0/ RESETOUT G3 I L4 (3) O Device reset input IPD Reset output. Multiplexed with McASP0 mute output. JTAG TMS J1 I IPU JTAG test mode select TDI TDO J2 I IPU JTAG test data input J3 O IPD JTAG test data output TCK H3 I IPU JTAG test clock TRST J4 I IPD JTAG test reset EMU[0]/GP7[15] J5 I/O IPU Emulation Signal RTCK/GP7[14] K1 I/O IPD JTAG Test Clock Return Clock Output (1) (2) (3) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Open drain mode for RESETOUT function. 2.7.2 High-Frequency Oscillator and PLL Table 2-6. High-Frequency Oscillator and PLL Terminal Functions PIN NO TYPE (1) PULL (2) R12 O IPU OSCIN F2 I Oscillator input OSCOUT F1 O Oscillator output OSCVSS E2 GND SIGNAL NAME EMA_CLK/OBSCLK/AHCLKR2/ GP1[15] ZKB DESCRIPTION PLL Observation Clock 1.2-V OSCILLATOR Oscillator ground (for filter only) 1.2-V PLL PLL0_VDDA D1 PWR PLL analog VDD (1.2-V filtered supply) PLL0_VSSA E1 GND PLL analog VSS (for filter) (1) (2) 28 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com 2.7.3 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Real-Time Clock and 32-kHz Oscillator Table 2-7. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions SIGNAL NAME PIN NO ZKB TYPE (1) PULL (2) DESCRIPTION RTC_CVDD G1 PWR RTC_XI H1 I Low-frequency (32-kHz) oscillator receiver for real-time clock RTC_XO H2 O Low-frequency (32-kHz) oscillator driver for real-time clock RTC_Vss G2 GND (1) (2) RTC module core power (isolated from rest of chip CVDD) Oscillator ground (for filter) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.7.4 External Memory Interface A (ASYNC, SDRAM) Table 2-8. External Memory Interface A (EMIFA) Terminal Functions PIN NO SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15] M16 I/O IPD EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14] N14 I/O IPD EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13] N16 I/O IPD EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12] P14 I/O IPD EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11] P16 I/O IPD EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10] R14 I/O IPD EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9] T14 I/O IPD EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8] N12 I/O IPD EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] M15 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] N13 I/O IPU EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] N15 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] P13 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] P15 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] R13 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] R15 I/O IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] T13 I/O IPU (1) (2) UHPI, LCD, GPIO MMC/SD, UHPI, EMIFA data bus GPIO, BOOT MMC/SD, UHPI, GPIO MMC/SD, UHPI, GPIO, BOOT I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 29 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 2-8. External Memory Interface A (EMIFA) Terminal Functions (continued) SIGNAL NAME PIN NO TYPE (1) PULL (2) MUXED DESCRIPTION ZKB EMA_A[12]/LCD_MCLK/GP1[12] N11 O IPU EMA_A[11]/LCD_AC_ENB_CS/GP1[11] P11 O IPU EMA_A[10]/LCD_VSYNC/GP1[10] N8 O IPU EMA_A[9]/LCD_HSYNC/GP1[9] R11 O IPU EMA_A[8]/LCD_PCLK/GP1[8] T11 O IPU EMA_A[7]/LCD_D[0]/GP1[7] N10 O IPD EMA_A[6]/LCD_D[1]/GP1[6] P10 O IPD EMA_A[5]/LCD_D[2]/GP1[5] R10 O IPD EMA_A[4]/LCD_D[3]/GP1[4] T10 O IPD EMA_A[3]/LCD_D[6]/GP1[3] N9 O IPD EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] P9 O IPU EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] R9 O EMA_A[0]/LCD_D[7]/GP1[0] T9 EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] LCD, GPIO EMIFA address bus IPU MMCSD, UHPI, GPIO EMIFA address bus O IPD LCD, GPIO P8 O IPU LCD, UHPI, GPIO EMA_BA[0]/LCD_D[4]/GP1[14] R8 O IPU LCD, GPIO EMA_CLK/OBSCLK/AHCLKR2/GP1[15] R12 O IPU McASP2, GPIO, EMIFA clock OBSCLK EMA_SDCKE/GP2[0] T12 O IPU GPIO EMA_RAS/EMA_CS[5]/GP2[2] N7 O IPU EMA_CAS/EMA_CS[4]/GP2[1] L16 O IPU EMA_RAS/EMA_CS[5] /GP2[2] N7 O IPU EMA_CAS/EMA_CS[4] /GP2[1] L16 O IPU EMIF A SDRAM, GPIO EMA_CS[3]/AMUTE2/GP2[6] T7 O IPU McASP2, GPIO EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15] P7 O IPU UHPI, GPIO, BOOT EMA_CS[0]/UHPI_HAS/GP2[4] T8 O IPU UHPI, GPIO EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] M13 O IPU UHPI, MCASP0, EMIFA SDRAM write GPIO, BOOT enable EMA_WE_DQM[1]/UHPI_HDS2/AXR0[14]/GP2[8] P12 O IPU EMIFA write enable/data mask for EMA_D[15:8] EMIF A chip select, GPIO UHPI, McASP, GPIO EMA_WE_DQM[0]/UHPI_HINT/AXR0[15]/GP2[9] EMIFA bank address EMIFA SDRAM clock enable EMIFA SDRAM row address strobe EMIFA SDRAM column address strobe EMIFA Async Chip Select EMIFA SDRAM chip select EMIFA write enable/data mask for EMA_D[7:0] M14 O IPU EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7] R7 O IPU UHPI, McASP0, GPIO EMIFA output enable EMA_WAIT[0]/UHPI_HRDY/GP2[10] N6 I IPU UHPI, GPIO EMIFA wait input/interrupt 30 Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com 2.7.5 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 External Memory Interface B (only SDRAM) Table 2-9. External Memory Interface B (EMIFB) Terminal Functions SIGNAL NAME PIN NO ZKB TYPE (1) PULL (2) EMB_D[31] G14 I/O IPD EMB_D[30] F15 I/O IPD EMB_D[29] F14 I/O IPD EMB_D[28] E15 I/O IPD EMB_D[27] E14 I/O IPD EMB_D[26] A14 I/O IPD EMB_D[25] B14 I/O IPD EMB_D[24] A13 I/O IPD EMB_D[23] L15 I/O IPD EMB_D[22] L14 I/O IPD EMB_D[21] K16 I/O IPD EMB_D[20] K13 I/O IPD EMB_D[19] J14 I/O IPD EMB_D[18] H15 I/O IPD EMB_D[17] H14 I/O IPD EMB_D[16] G15 I/O IPD EMB_D[15]/GP6[15] F13 I/O IPD EMB_D[14]/GP6[14] E16 I/O IPD EMB_D[13]/GP6[13] E13 I/O IPD EMB_D[12]/GP6[12] D16 I/O IPD EMB_D[11]/GP6[11] D15 I/O IPD EMB_D[10]/GP6[10] D14 I/O IPD EMB_D[9]/GP6[9] D13 I/O IPD EMB_D[8]/GP6[8] C16 I/O IPD EMB_D[7]/GP6[7] J16 I/O IPD EMB_D[6]/GP6[6] J15 I/O IPD EMB_D[5]/GP6[5] J13 I/O IPD EMB_D[4]/GP6[4] H16 I/O IPD EMB_D[3]/GP6[3] H13 I/O IPD EMB_D[2]/GP6[2] G16 I/O IPD EMB_D[1]/GP6[1] G13 I/O IPD EMB_D[0]/GP6[0] F16 I/O IPD EMB_A[12]/GP3[13] B15 O IPD EMB_A[11]/GP7[13] B12 O IPD EMB_A[10]/GP7[12] A9 O IPD EMB_A[9]/GP7[11] C12 O IPD EMB_A[8]/GP7[10] D12 O IPD EMB_A[7]/GP7[9] A11 O IPD EMB_A[6]/GP7[8] B11 O IPD EMB_A[5]/GP7[7] C11 O IPD (1) (2) MUXED DESCRIPTION EMIFB SDRAM data bus GPIO GPIO EMIFB SDRAM row/column address bus I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 31 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 2-9. External Memory Interface B (EMIFB) Terminal Functions (continued) SIGNAL NAME PIN NO ZKB TYPE (1) PULL (2) MUXED DESCRIPTION EMB_A[4]/GP7[6] D11 O IPD EMB_A[3]/GP7[5] A10 O IPD EMB_A[2]/GP7[4] B10 O IPD EMB_A[1]/GP7[3] C10 O IPD EMB_A[0]/GP7[2] D10 O IPD EMB_BA[1]/GP7[0] B9 O IPU EMB_BA[0]/GP7[1] C9 O IPU EMB_CLK C14 O IPU EMIF SDRAM clock EMB_SDCKE C13 O IPU EMIFB SDRAM clock enable EMB_WE K15 O IPU EMIFB write enable EMB_RAS A8 O IPU EMIFB SDRAM row address strobe EMB_CAS L13 O IPU EMIFB column address strobe EMB_CS[0] D9 O IPU EMIFB SDRAM chip select 0 EMB_WE_DQM[3] A12 O IPU EMB_WE_DQM[2] B13 O IPU EMB_WE_DQM[1] /GP5[14] C15 O IPU EMB_WE_DQM[0] /GP5[15] K14 O IPU 32 Device Overview EMIFB SDRAM row/column address GPIO EMIFB SDRAM bank address EMIFB write enable/data mask for EMB_D GPIO Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com 2.7.6 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Serial Peripheral Interface Modules (SPI0, SPI1) Table 2-10. Serial Peripheral Interface (SPI) Terminal Functions PIN NO SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB SPI0 SPI0_SCS[0] /UART0_RTS/EQEP0B/GP5[4]/BOOT[4] N4 I/O IPU UART0, EQEP0B, GPIO, BOOT SPI0 chip select SPI0_ENA /UART0_CTS/EQEP0A/GP5[3]/BOOT[3] R5 I/O IPU UART0, EQEP0A, GPIO, BOOT SPI0 enable SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] T5 I/O IPD eQEP1, GPIO, BOOT SPI0 clock SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] P6 I/O IPD SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] R6 I/O IPD SPI1_SCS[0] /UART2_TXD/GP5[13] P4 I/O IPU SPI1_ENA /UART2_RXD/GP5[12] R4 I/O IPU SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] T6 I/O IPD SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] N5 I/O IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] P5 I/O IPU eQEP0, GPIO, BOOT SPI0 data slave-inmaster-out SPI0 data slave-outmaster-in SPI1 (2) SPI1 enable eQEP1, GPIO, BOOT I2C1, GPIO, BOOT (1) SPI1 chip select UART2, GPIO SPI1 clock SPI1 data slave-inmaster-out SPI1 data slave-outmaster-in I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 33 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 2.7.7 www.ti.com Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2) The eCAP Module pins function as either input captures or auxilary PWM 32-bit outputs, depending upon how the eCAP module is programmed. Table 2-11. Enhanced Capture Module (eCAP) Terminal Functions SIGNAL NAME PIN NO TYPE (1) PULL (2) MUXED DESCRIPTION ZKB eCAP0 ACLKX0/ECAP0/APWM0/GP2[12] C5 I/O IPD McASP0, GPIO enhanced capture 0 input or auxiliary PWM 0 output I/O IPD McASP0, GPIO enhanced capture 1 input or auxiliary PWM 1 output I/O IPD McASP1, GPIO enhanced capture 2 input or auxiliary PWM 2 output eCAP1 ACLKR0/ECAP1/APWM1/GP2[15] B4 eCAP2 ACLKR1/ECAP2/APWM2/GP4[12] (1) (2) 34 L2 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com 2.7.8 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2) Table 2-12. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions SIGNAL NAME PIN NO ZKB TYPE (1) PULL (2) MUXED DESCRIPTION eHRPWM0 ACLKX1/EPWM0A/GP3[15] K3 I/O IPD AHCLKX1/EPWM0B/GP3[14] K2 I/O IPD McASP1, GPIO eHRPWM0 A output (with high-resolution) eHRPWM0 B output AMUTE1/EPWMTZ/GP4[14] D4 I/O IPD McASP1, eHRPWM1, GPIO, eHRPWM2 AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] K4 I/O IPD McASP1, eHRPWM0, GPIO eHRPWM0 trip zone input Sync input to eHRPWM0 module or sync output to external PWM eHRPWM1 AXR1[8]/EPWM1A/GP4[8] M2 I/O IPD AXR1[7]/EPWM1B/GP4[7] M3 I/O IPD AMUTE1/EPWMTZ/GP4[14] D4 I/O IPD McASP1, GPIO eHRPWM1 A output (with high-resolution) eHRPWM1 B output McASP1, eHRPWM1, GPIO, eHRPWM2 eHRPWM1 trip zone input McASP1, GPIO eHRPWM2 A output (with high-resolution) eHRPWM2 AXR1[6]/EPWM2A/GP4[6] M4 I/O IPD AXR1[5]/EPWM2B/GP4[5] N1 I/O IPD AMUTE1/EPWMTZ/GP4[14] (1) (2) D4 I/O IPD eHRPWM2 B output McASP1, eHRPWM1, GPIO, eHRPWM2 eHRPWM2 trip zone input I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 35 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 2.7.9 www.ti.com Enhanced Quadrature Encoder Pulse Module (eQEP) Table 2-13. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions PIN NO SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB eQEP0 SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] R5 I IPU SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] N4 I IPU SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] R6 I IPD SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] P6 I IPD SPI0, UART0, GPIO, BOOT SPI0, GPIO, BOOT eQEP0A quadrature input eQEP0B quadrature input eQEP0 index eQEP0 strobe eQEP1 eQEP1A quadrature input AXR1[3]/EQEP1A/GP4[3] P1 I IPD AXR1[4]/EQEP1B/GP4[4] N2 I IPD SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] T5 I IPD SPI0, GPIO, BOOT eQEP1 index SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] T6 I IPD SPI1, GPIO, BOOT eQEP1 strobe McASP1, GPIO (1) (2) 36 eQEP1B quadrature input I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com 2.7.10 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Boot Table 2-14. Boot Mode Selection Terminal Functions (1) PIN NO TYPE (2) PULL (3) P7 I IPU EMIFA, UHPI, GPIO EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] M13 I IPU EMIFA, UHPI, McASP0, GPIO EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] M15 I IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] T13 I IPU AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] A4 I IPD McASP0, EMAC, GPIO AFSX0/GP2[13]/BOOT[10] D5 I IPD McASP0, GPIO UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] P3 I IPU UART0, I2C0, Timer0, GPIO UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] R3 I IPU SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] T6 I IPD SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] N5 I IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] P5 I IPU SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] N4 I IPU SPI0, UART0, eQEP0, GPIO SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] R5 I IPU SPI0, UART0, eQEP0, GPIO SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] T5 I IPD SPI0, eQEP1, GPIO SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] P6 I IPD SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] R6 I IPD SIGNAL NAME ZKB EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15] (1) (2) (3) MUXED DESCRIPTION EMIFA, MMC/SD, UHPI, GPIO UART0, I2C0, Timer0, Boot Mode GPIO Selection Pins SPI1, eQEP1, GPIO SPI1, I2C1, GPIO SPI0, eQEP0, GPIO Boot decoding will be defined in the ROM datasheet. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 37 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 2.7.11 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2) Table 2-15. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions PIN NO SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB UART0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] R3 I IPU I2C0, BOOT, Timer0, GPIO, UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] P3 O IPU I2C0, Timer0, GPIO, UART0 transmit BOOT data SPI0_SCS[0]/ UART0_RTS /EQEP0B/GP5[4]/BOOT[4] N4 O IPU SPI0_ENA/ UART0_CTS /EQEP0A/GP5[3]/BOOT[3] R5 I IPU (1) (2) 38 UART0 receive data UART0 ready-toSPI0, eQEP0, GPIO, send output BOOT UART0 clear-tosend input I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 2-15. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions (continued) SIGNAL NAME PIN NO TYPE (1) PULL (2) I IPD MUXED DESCRIPTION ZKB UART1 UART1_RXD/AXR0[9]/GP3[9] (1) UART1_TXD/AXR0[10]/GP3[10] (1) C6 D6 O IPD I IPU UART1 receive data McASP0, GPIO UART1 transmit data UART2 SPI1_ENA/UART2_RXD/GP5[12] SPI1_SCS[0]/UART2_TXD/GP5[13] (1) R4 P4 O IPU UART2 receive data SPI1, GPIO UART2 transmit data As these signals are internally pulled down while the device is in reset, it is necessary to externally pull them high with resistors if UART1 boot mode is used. Please see the OMAP-L137 Applications Processor System Reference Guide - Literature Number SPRUG84 for more for details on entering UART1 boot mode. Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 39 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 2.7.12 Inter-Integrated Circuit Modules(I2C0, I2C1) Table 2-16. Inter-Integrated Circuit (I2C) Terminal Functions PIN NO SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB I2C0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] R3 I/O IPU UART0, Timer0, GPIO, BOOT I2C0 serial data UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] P3 I/O IPU UART0, Timer0, GPIO, BOOT I2C0 serial clock SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] N5 I/O IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] P5 I/O IPU I2C1 (1) (2) SPI1, GPIO, BOOT I2C1 serial data I2C1 serial clock I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.7.13 Timers Table 2-17. Timers Terminal Functions PIN NO SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB TIMER0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] R3 I IPU UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] P3 O IPU UART0, I2C0, GPIO, BOOT Timer0 lower input Timer0 lower output TIMER1 (Watchdog ) No external pins. The Timer1 peripheral signals are not pinned out as external pins. (1) (2) 40 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com 2.7.14 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Universal Host-Port Interface (UHPI) Table 2-18. Universal Host-Port Interface (UHPI) Terminal Functions SIGNAL NAME PIN NO TYPE (1) PULL (2) MUXED DESCRIPTION ZKB EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15] M16 I/O IPD EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14] N14 I/O IPD EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13] N16 I/O IPD EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12] P14 I/O IPD EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11] P16 I/O IPD EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10] R14 I/O IPD EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9] T14 I/O IPD EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8] N12 I/O IPD EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/ BOOT[13] M15 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] N13 I/O IPU EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] N15 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] P13 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] P15 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] R13 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] R15 I/O IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/ BOOT[12] T13 I/O IPU EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] P9 I/O IPU EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] R9 I/O EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] P8 EMIFA, LCD, GPIO EMIFA, MMC/SD, GPIO, BOOT UHPI data bus EMIFA, MMC/SD, GPIO EMIFA, MMC/SD, GPIO, BOOT IPU EMIFA, MMCSD_CMD, GPIO UHPI access control I/O IPU EMIFA, LCD, GPIO UHPI half-word identification control M13 I/O IPU EMIFA, McASP, GPIO, BOOT UHPI read/write EMA_CS[2]/ UHPI_HCS /GP2[5]/BOOT[15] P7 I/O IPU EMIFA, GPIO, BOOT UHPI chip select EMA_WE_DQM[1]/ UHPI_HDS2 /AXR0[14]/GP2[8] P12 I/O IPU EMA_OE/ UHPI_HDS1 /AXR0[13]/GP2[7] R7 I/O IPU M14 I/O IPU EMA_WAIT[0]/ UHPI_HRDY /GP2[10] N6 I/O IPU EMA_CS[0]/ UHPI_HAS /GP2[4] T8 I/O IPU EMA_WE/UHPI_HRW /AXR0[12]/GP2[3]/BOOT[14] EMA_WE_DQM[0]/ UHPI_HINT /AXR0[15]/GP2[9] (1) (2) EMIFA, McASP0, GPIO UHPI data strobe UHPI host interrupt EMIFA, GPIO UHPI ready UHPI address strobe I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 41 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 2.7.15 Multichannel Audio Serial Ports (McASP0, McASP1, McASP2) Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions PIN NO SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB McASP0 EMA_WE_DQM[0]/UHPI_HINT/AXR0[15]/GP2[9] M14 I/O IPU EMA_WE_DQM[1]/UHPI_HDS2/AXR0[14]/GP2[8] P12 I/O IPU EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7] R7 I/O IPU M13 I/O IPU EMIFA, UHPI, GPIO, BOOT AXR0[11]/AXR2[0]/GP3[11] A5 I/O IPD McASP2, GPIO UART1_TXD/AXR0[10]/GP3[10] D6 I/O IPD GPIO UART1_RXD/AXR0[9]/GP3[9] C6 I/O IPD GPIO AXR0[8]/MDIO_D/GP3[8] B6 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] A6 I/O IPD AXR0[6]/RMII_RXER/ACLKR2/GP3[6] D7 I/O IPD AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] C7 I/O IPD AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4] B7 I/O IPD AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] A7 I/O IPD AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] D8 I/O IPD AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] C8 I/O IPD AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] B8 I/O IPD AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] B5 I/O IPD McASP2, USB, GPIO McASP1 transmit master clock ACLKX0/ECAP0/APWM0/GP2[12] C5 I/O IPD eCAP0, GPIO McASP0 transmit bit clock AFSX0/GP2[13]/BOOT[10] D5 I/O IPD GPIO, BOOT McASP0 transmit frame sync AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] A4 I/O IPD EMAC, GPIO, BOOT McASP0 receive master clock ACLKR0/ECAP1/APWM1/GP2[15] B4 I/O IPD eCAP1, GPIO McASP0 receive bit clock AFSR0/GP3[12] C4 I/O IPD GPIO McASP0 receive frame sync AMUTE0/RESETOUT L4 I/O IPD RESETOUT McASP0 mute output EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] (1) (2) 42 EMIFA, UHPI, GPIO MDIO, GPIO McASP0 serial data EMAC, McASP2, GPIO I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued) PIN NO TYPE (1) PULL (2) T4 I/O IPU AXR1[10]/GP5[10] N3 I/O IPU AXR1[9]/GP4[9] M1 I/O IPD AXR1[8]/EPWM1A/GP4[8] M2 I/O IPD eHRPWM1 A, GPIO AXR1[7]/EPWM1B/GP4[7] M3 I/O IPD eHRPWM1 B, GPIO AXR1[6]/EPWM2A/GP4[6] M4 I/O IPD eHRPWM2 A, GPIO AXR1[5]/EPWM2B/GP4[5] N1 I/O IPD eHRPWM2 B, GPIO AXR1[4]/EQEP1B/GP4[4] N2 I/O IPD AXR1[3]/EQEP1A/GP4[3] P1 I/O IPD AXR1[2]/GP4[2] P2 I/O IPD AXR1[1]/GP4[1] R2 I/O IPD AXR1[0]/GP4[0] T3 I/O IPD AHCLKX1/EPWM0B/GP3[14] K2 I/O IPD eHRPWM0, GPIO McASP1 transmit master clock ACLKX1/EPWM0A/GP3[15] K3 I/O IPD eHRPWM0, GPIO McASP1 transmit bit clock AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] K4 I/O IPD eHRPWM0, GPIO McASP1 transmit frame sync AHCLKR1/GP4[11] L1 I/O IPD GPIO McASP1 receive master clock ACLKR1/ECAP2/APWM2/GP4[12] L2 I/O IPD eCAP2, GPIO McASP1 receive bit clock AFSR1/GP4[13] L3 I/O IPD GPIO McASP1 receive frame sync eHRPWM0, eHRPWM1, eHRPWM2, GPIO McASP1 mute output SIGNAL NAME MUXED DESCRIPTION ZKB McASP1 AXR1[11]/GP5[11] AMUTE1/EPWMTZ/GP4[14] GPIO McASP1 serial data eQEP1, GPIO GPIO D4 I/O IPD AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] B8 I/O IPD AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] D8 I/O IPD AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] A7 I/O IPD AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4] B7 I/O IPD AXR0[11]/AXR2[0]/GP3[11] A5 I/O IPD AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] B5 I/O IPD AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] C8 I/O IPD AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] C7 I/O IPD McASP0, EMAC, GPIO McASP2 transmit frame sync EMA_CLK/OBSCLK/AHCLKR2/GP1[15] R12 I/O IPU EMIFA, GPIO, OBSCLK McASP2 receive master clock AXR0[6]/RMII_RXER/ACLKR2/GP3[6] D7 I/O IPD McASP0, EMAC, GPIO McASP2 receive bit clock EMA_CS[3]/AMUTE2/GP2[6] T7 I/O IPU EMIFA, GPIO McASP2 mute output McASP2 McASP0, EMAC, GPIO McASP2 serial data McASP0, GPIO McASP0, USB, GPIO McASP2 transmit master clock McASP2 transmit bit clock Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 43 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 2.7.16 Universal Serial Bus Modules (USB0, USB1) Table 2-20. Universal Serial Bus (USB) Terminal Functions SIGNAL NAME PIN NO TYPE (1) PULL (2) MUXED DESCRIPTION ZKB USB0 2.0 OTG (USB0) USB0_DM G4 A NA USB0 PHY data minus USB0_DP F4 A NA USB0 PHY data plus USB0_VDDA33 H5 PWR NA USB0 PHY 3.3-V supply USB0_VDDA18 E3 PWR NA USB0 PHY 1.8-V supply input USB0 PHY 1.2-V LDO output for bypass cap (3) C3 PWR NA For proper device operation, this pin must always be connected via a 1 uF capacitor to VSS (GND), even if USB0 is not being used. USB0_ID D2 A NA USB0 PHY identification (mini-A or mini-B plug) USB0_VBUS D3 A NA USB0 bus voltage USB0_DRVVBUS/GP4[15] E4 0 IPD GPIO USB0 controller VBUS control output AHCLKX0/AHCLKX2/USB_REFCLKIN/ GP2[11] B5 I IPD USB1_DM B3 A NA USB1 PHY data minus USB1_DP A3 A NA USB1 PHY data plus USB1_VDDA33 C1 PWR NA USB1 PHY 3.3-V supply USB1_VDDA18 C2 PWR NA USB1 PHY 1.8-V supply AHCLKX0/AHCLKX2/USB_REFCLKIN/ GP2[11] B5 I NA USB_REFCLKIN. Optional clock input USB0_VDDA12 USB_REFCLKIN. Optional clock input USB1 1.1 OHCI (USB1) (1) (2) (3) 44 IPD I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Core power supply LDO output for USB PHY. Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 2.7.17 Ethernet Media Access Controller (EMAC) Table 2-21. Ethernet Media Access Controller (EMAC) Terminal Functions SIGNAL NAME PIN NO TYPE (1) PULL (2) MUXED DESCRIPTION ZKB RMII AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] A4 I/O IPD AXR0[6]/RMII_RXER/ACLKR2/GP3[6] D7 I IPD AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] C7 I IPD AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4] B7 I IPD AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] A7 I IPD AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] D8 O IPD AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] C8 O IPD AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] B8 O IPD AXR0[8]/MDIO_D/GP3[8] B6 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] A6 O IPD McASP0, GPIO, BOOT EMAC 50-MHz clock input or output EMAC RMII receiver error EMAC RMII receive data McASP0, McASP2, GPIO EMAC RMII carrier sense data valid EMAC RMII transmit enable EMAC RMII trasmit data MDIO (1) (2) McASP0, GPIO MDIO serial data MDIO clock I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 45 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 2.7.18 Multimedia Card/Secure Digital (MMC/SD) Table 2-22. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions PIN NO SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] R9 O IPU EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] P9 I/O IPU EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] M15 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] N13 I/O IPU EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] N15 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] P13 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] P15 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] R13 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] R15 I/O IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] T13 I/O IPU (1) (2) 46 EMIFA, UHPI, GPIO MMCSD Clock MMCSD Command EMIFA, UHPI, GPIO, BOOT EMIFA, UHPI, GPIO MMC/SD data EMIFA, UHPI, GPIO, BOOT I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com 2.7.19 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Liquid Crystal Display Controller (LCD) Table 2-23. Liquid Crystal Display Controller (LCD) Terminal Functions SIGNAL NAME PIN NO ZKB TYPE (1) PULL (2) EMA_D[15]/UHPI_HD[15]/LCD_D [15]/GP0[15] M16 I/O IPD EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14] N14 I/O IPD EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13] N16 I/O IPD EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12] P14 I/O IPD EMA_D[11]/UHPI_HD[11]/LCD_D[11 ]/GP0[11] P16 I/O IPD EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10] R14 I/O IPD EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9] T14 I/O IPD EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8] MUXED DESCRIPTION EMIFA, UHPI, GPIO LCD data bus N12 I/O IPD EMA_A[0]/LCD_D[7]/GP1[0] T9 I/O IPD EMA_A[3]/LCD_D[6]/GP1[3] N9 I/O IPD EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] P8 I/O IPU EMA_BA[0]/LCD_D[4]/GP1[14] R8 I/O IPU EMA_A[4]/LCD_D[3]/GP1[4] T10 I/O IPD EMA_A[5]/LCD_D[2]/GP1[5] R10 I/O IPD EMA_A[6]/LCD_D[1]/GP1[6] P10 I/O IPD EMA_A[7]/LCD_D[0]/GP1[7] N10 I/O IPD EMA_A[8]/LCD_PCLK/GP1[8] T11 O IPU EMA_A[9]/LCD_HSYNC/GP1[9] R11 O IPU LCD horizontal sync EMA_A[10]/LCD_VSYNC/GP1[10] N8 O IPU LCD vertical sync EMA_A[11]/ LCD_AC_ENB_CS /GP1[11] P11 O IPU LCD AC bias enable chip select EMA_A[12]/LCD_MCLK/GP1[12] N11 O IPU LCD memory clock (1) (2) EMIFA, GPIO EMIFA, UHPI, GPIO LCD data bus EMIFA, GPIO LCD pixel clock I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 47 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 2.7.20 Reserved and No Connect Table 2-24. Reserved and No Connect Terminal Functions SIGNAL NAME PIN NO ZKB TYPE (1) DESCRIPTION RSV1 F7 - RSV2 B1 PWR NC F3 - No Connect (leave unconnected) NC H4 - No Connect (leave unconnected) (1) Reserved. (Leave unconnected, do not connect to power or ground.) Reserved. For proper device operation, this pin must be tied either directly to CVDD or left unconnected [do not connect to ground (VSS)]. PWR = Supply voltage. 2.7.21 Supply and Ground Table 2-25. Supply and Ground Terminal Functions PIN NO SIGNAL NAME TYPE (1) ZKB DESCRIPTION CVDD (Core supply) F6,G6, G7, G10, G11, H7, H10, H11, J6, J7, J10, J11, J12, K6, K7, K10, K11,L6 PWR Core supply voltage pins RVDD (Internal RAM supply) H6, H12 PWR Internal ram supply voltage pins DVDD (I/O supply) B16, E5, E8, E9, E12, F5, F11, F12, G5, G12, K5, K12, L5, L11, L12, M5, M8, M9, M12, R1, R16 PWR I/O supply voltage pins VSS (Ground) A1, A2, A15, A16, B2, E6, E7, E10, E11, F8, F9, F10, G8, G9, H8, H9, J8, J9, K8, K9, L7, L8, L9, L10, M6, M7, M10, M11, T1, T2, T15, T16 GND Ground pins (1) 48 PWR = Supply voltage, GND - Ground. Device Overview Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 3 Device Configuration 3.1 Boot Modes This device supports a variety of boot modes through an internal ROM bootloader. This device does not support dedicated hardware boot modes; therefore, all boot modes utilize the internal ROM. The input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by the values of the BOOT pins The following boot modes are supported: • NAND Flash boot – 8-bit NAND – 16-bit NAND • NOR Flash boot – NOR Direct boot (8-bit or 16-bit) – NOR Legacy boot (8-bit or 16-bit) – NOR AIS boot (8-bit or 16-bit) • HPI Boot • I2C0 / I2C1 Boot – EEPROM (Master Mode) – External Host (Slave Mode) • SPI0 / SPI1 Boot – Serial Flash (Master Mode) – SERIAL EEPROM (Master Mode) – External Host (Slave Mode) • UART0 / UART1 / UART2 Boot – External Host Device Configuration Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 49 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 3.2 www.ti.com SYSCFG Module The following system level features of the chip are controlled by the SYSCFG peripheral: • Readable Device, Die, and Chip Revision ID • Control of Pin Multiplexing • Priority of bus accesses different bus masters in the system • Capture at power on reset the chip BOOT[15:0] pin values and make them available to software • Special case settings for peripherals: – Locking of PLL controller settings – Default burst sizes for EDMA3 TC0 and TC1 – Selection of the source for the eCAP module input capture (including on chip sources) – McASP AMUTEIN selection and clearing of AMUTE status for the three McASP peripherals – Control of the reference clock source and other side-band signals for both of the integrated USB PHYs – Clock source selection for EMIFA and EMIFB • Selects the source of emulation suspend signal (from either ARM or DSP) of peripherals supporting this function. • Control of on-chip inter-processor interrupts for signaling between ARM and DSP Many registers are accessible only by a host (ARM or DSP) when it is operating in its privileged mode. (ex. from the kernel, but not from user space code). Table 3-1. System Configuration (SYSCFG) Module Register Access BYTE ADDRESS ACRONYM 0x01C1 4000 REVID Revision Identification Register — 50 REGISTER DESCRIPTION ACCESS 0x01C14008 DIEIDR0 Device Identification Register 0 — 0x01C1 400C DIEIDR1 Device Identification Register 1 — 0x01C1 4010 DIEIDR2 Device Identification Register 2 — 0x01C1 4014 DIEIDR3 Device Identification Register 3 — 0x01C1 4018 DEVIDR0 JTAG Identification Register — 0x01C1 4020 BOOTCFG Boot Configuration Register Privileged mode 0x01C1 4024 CHIPREVID Silicon Revision Identification Register Privileged mode 0x01C1 4038 KICK0R Kick 0 Register Privileged mode 0x01C1 403C KICK1R Kick 1 Register Privileged mode 0x01C1 4040 HOST0CFG Host 0 Configuration Register — 0x01C1 4044 HOST1CFG Host 1 Configuration Register 0x01C1 40E0 IRAWSTAT Interrupt Raw Status/Set Register Privileged mode — 0x01C1 40E4 IENSTAT Interrupt Enable Status/Clear Register Privileged mode 0x01C1 40E8 IENSET Interrupt Enable Register Privileged mode 0x01C1 40EC IENCLR Interrupt Enable Clear Register Privileged mode 0x01C1 40F0 EOI End of Interrupt Register Privileged mode 0x01C1 40F4 FLTADDRR Fault Address Register Privileged mode 0x01C1 40F8 FLTSTAT Fault Status Register 0x01C1 4110 MSTPRI0 Master Priority 0 Register Privileged mode 0x01C1 4114 MSTPRI1 Master Priority 1 Register Privileged mode 0x01C1 4118 MSTPRI2 Master Priority 2 Register Privileged mode 0x01C1 4120 PINMUX0 Pin Multiplexing Control 0 Register Privileged mode 0x01C1 4124 PINMUX1 Pin Multiplexing Control 1 Register Privileged mode 0x01C1 4128 PINMUX2 Pin Multiplexing Control 2 Register Privileged mode 0x01C1 412C PINMUX3 Pin Multiplexing Control 3 Register Privileged mode Device Configuration — Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 3-1. System Configuration (SYSCFG) Module Register Access (continued) BYTE ADDRESS ACRONYM 0x01C1 4130 PINMUX4 Pin Multiplexing Control 4 Register REGISTER DESCRIPTION Privileged mode ACCESS 0x01C1 4134 PINMUX5 Pin Multiplexing Control 5 Register Privileged mode 0x01C1 4138 PINMUX6 Pin Multiplexing Control 6 Register Privileged mode 0x01C1 413C PINMUX7 Pin Multiplexing Control 7 Register Privileged mode 0x01C1 4140 PINMUX8 Pin Multiplexing Control 8 Register Privileged mode 0x01C1 4144 PINMUX9 Pin Multiplexing Control 9 Register Privileged mode 0x01C1 4148 PINMUX10 Pin Multiplexing Control 10 Register Privileged mode 0x01C1 414C PINMUX11 Pin Multiplexing Control 11 Register Privileged mode 0x01C1 4150 PINMUX12 Pin Multiplexing Control 12 Register Privileged mode 0x01C1 4154 PINMUX13 Pin Multiplexing Control 13 Register Privileged mode 0x01C1 4158 PINMUX14 Pin Multiplexing Control 14 Register Privileged mode 0x01C1 415C PINMUX15 Pin Multiplexing Control 15 Register Privileged mode 0x01C1 4160 PINMUX16 Pin Multiplexing Control 16 Register Privileged mode 0x01C1 4164 PINMUX17 Pin Multiplexing Control 17 Register Privileged mode 0x01C1 4168 PINMUX18 Pin Multiplexing Control 18 Register Privileged mode 0x01C1 416C PINMUX19 Pin Multiplexing Control 19 Register Privileged mode 0x01C1 4170 SUSPSRC Suspend Source Register Privileged mode 0x01C1 4174 CHIPSIG 0x01C1 4178 CHIPSIG_CLR Chip Signal Register 0x01C1 417C CFGCHIP0 Chip Configuration 0 Register Privileged mode 0x01C1 4180 CFGCHIP1 Chip Configuration 1 Register Privileged mode 0x01C1 4184 CFGCHIP2 Chip Configuration 2 Register Privileged mode 0x01C1 4188 CFGCHIP3 Chip Configuration 3 Register Privileged mode 0x01C1 418C CFGCHIP4 Chip Configuration 4 Register Privileged mode Chip Signal Clear Register — — Device Configuration Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 51 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 3.3 www.ti.com Pullup/Pulldown Resistors Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors. An external pullup/pulldown resistor needs to be used in the following situations: • Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state. • Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail. For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device boot and configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration pins adds convenience to the user in debugging and flexibility in switching operating modes. Tips for choosing an external pullup/pulldown resistor: • Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors. • Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of the limiting device; which, by definition, have margin to the VIL and VIH levels. • Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net. • For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin). • Remember to include tolerances when selecting the resistor value. • For pullup resistors, also remember to include tolerances on the IO supply rail. • For most systems, a 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • For most systems, a 20-kΩ resistor can be used to compliment the IPU/IPD on the boot and configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • For more detailed information on input current (II), and the low-/high-level input voltages (VIL and VIH) for the device, see Section 4.2, Recommended Operating Conditions. • For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal functions table. 52 Device Configuration Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 4 Device Operating Conditions 4.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted) (1) Core (CVDD, RVDD, RTC_CVDD, PLL0_VDDA ) Supply voltage ranges I/O, 1.8V (USB0_VDDA18, USB1_VDDA18) Output voltage ranges Clamp Current -0.5 V to 2 V (2) I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33) Input voltage ranges Storage temperature range, Tstg ESD Stress Voltage, VESD (4) (1) (2) (3) (4) (5) (6) -0.5 V to 3.8V (2) VI I/O, 1.2V (OSCIN, RTC_XI) -0.3 V to CVDD + 0.3V VI I/O, 3.3V (Steady State) -0.3V to DVDD + 0.35V VI I/O, 3.3V (Transient) DVDD + 20% up to 20% of Signal Period VI I/O, USB 5V Tolerant Pins: (USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP) 5.25V (3) VI I/O, USB0 VBUS 5.50V (3) VO I/O, 3.3V (Steady State) -0.5 V to DVDD + 0.3V VO I/O, 3.3V (Transient Overshoot/Undershoot) 20% of DVDD for up to 20% of the signal period Input or Output Voltages 0.3V above or below their respective power rails. Limit clamp current that flows through the I/O's internal diode protection cells. Commercial Operating Junction Temperature ranges, TJ -0.5 V to 1.4 V (2) ±20mA 0°C to 90°C Industrial (D suffix ) -40°C to 90°C Extended (A suffix) -40°C to 105°C Automotive (T suffix) -40°C to 125°C (default) -55°C to 150°C Human Body Model (HBM) (5) >2000V Charged Device Model (CDM) (6) >500V Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS, PLL0_VSSA, OSCVSS, RTC_VSS Up to a max of 24 hours. Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device. Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary precautions are taken. Pins listed as 1000V may actually have higher performance. Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance. Device Operating Conditions Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 53 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 4.2 Recommended Operating Conditions CVDD RTC_CVDD RVDD NOM MAX 375 MHz versions 1.14 1.2 1.32 456 MHz version 1.25 1.3 1.35 Supply Voltage, RTC Core Logic 375 MHz versions 0.9 1.2 1.32 456 MHz version 0.9 1.3 1.35 375 MHz versions 1.14 1.2 1.32 456 MHz version 1.25 1.3 1.35 Supply voltage, I/O, 1.8V (USB0_VDDA18, USB1_VDDA18) 1.71 1.8 1.89 V Supply voltage, I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33) 3.0 3.3 3.45 V 0 0 0 V Supply ground (VSS, PLL0_VSSA, OSCVSS (2), RTC_VSS (2)) VSS VIL (1) MIN Supply voltage, Core (CVDD, PLL0_VDDA) Supply Voltage, Internal RAM DVDD VIH (3) (3) V V High-level input voltage, OSCIN 0.7*CVDD Low-level input voltage, I/O, 3.3V 0.8 V Low-level input voltage, RTC_XI 0.3*RTC_CVDD V Low-level input voltage, OSCIN 0.3*CVDD tt Transition time, 10%-90%, All Inputs (unless otherwise specified in the electrical data sections) TA Operating ambient temperature range 160 4.75 Commercial (4) 54 V 2 USB0_VBUS (3) V 0.7*RTC_CVDD Input Hysteresis (2) V High-level input voltage, RTC_XI USB FSYSCLK1,6 UNIT High-level input voltage, I/O, 3.3V VHYS (1) www.ti.com DSP and ARM Operating Frequency (SYSCLK1,6) 5 mV 5.25 0.25P or 10 V (4) ns 0 70 °C Industrial (D suffix) -40 70 °C Extended (A suffix) -40 85 °C Automotive (T suffix) -40 105 °C Commercial 0 375 / 456 MHz Industrial (D suffix) 0 456 MHz Extended (A suffix) 0 375 MHz Automotive (T suffix) 0 375 MHz The RTC provides an option for isolating the RTC_CVDD from the CVDD to reduce current leakage when the RTC is powered independently. If these power supplies are not isolated (CTRL.SPLITPOWER=0), RTC_CVDD must be equal to or greater than CVDD. If these power supplies are isolated (CTRL.SPLITPOWER=1), RTC_CVDD may be lower than CVDD. When an external crystal is used, oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground. These I/O specifications do not apply to USB I/Os. USB0 I/Os adhere to USB2.0 specification. USB1 I/Os adhere to USB1.1 specification. Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. Device Operating Conditions Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com 4.3 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Notes on Recommended Power-On Hours (POH) The information in the section below is provided solely for your convenience and does not extend or modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products. To avoid significant degradation, the device power-on hours (POH) must be limited to the following: Table 4-1. Recommended Power-On Hours Silicon Revision Speed Grade Operating Junction Temperature (Tj) Nominal CVDD Voltage (V) Power-On Hours [POH] (hours) A 300 MHz 0 to 90 °C 1.2V 100,000 B 300 MHz 0 to 90 °C 1.2V 100,000 B 375 MHz 0 to 90 °C 1.2V 100,000 B 375 MHz -40 to 105 °C 1.2V 75,000 (1) B 375 MHz -40 to 125 °C 1.2V 20,000 B 456 MHz 0 to 90 °C 1.3V 100,000 B 456 MHz -40 to 90 °C 1.3V 100,000 (1) 100,000 POH can be achieved at this temperature condition if the device operation is limited to 345 MHz. Note: Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions. The above notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI’s standard terms and conditions for TI semiconductor products. Device Operating Conditions Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 55 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 4.4 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) PARAMETER VOH VOL II (2) , www.ti.com (1) (1) (1) High-level output voltage (3.3V I/O) Low-level output voltage (3.3V I/O) Input current TEST CONDITIONS MIN DVDD= 3.15V, IOH = -4 mA 2.4 DVDD= 3.15V, IOH = 100 μA 2.95 TYP MAX UNIT V V DVDD= 3.15V, IOL = 4mA 0.4 V DVDD= 3.15V, IOL = -100 μA 0.2 V VI = VSS to DVDD without opposing internal resistor ±35 μA VI = VSS to DVDD with opposing internal pullup resistor (3) -30 -200 μA VI = VSS to DVDD with opposing internal pulldown resistor (3) 50 300 μA ±40 μA VI = VSS to USB1_VDDA33 USB1_DM and USB1_DP IOH (1) High-level output current -4 mA IOL (1) Low-level output current 4 mA IOZ (4) I/O Off-state output current ±35 μA LVCMOS signals 3 pF OSCIN and RTC_XI 2 pF LVCMOS signals 3 pF CI Input capacitance CO Output capacitance (1) (2) (3) (4) 56 VO = VDD or VSS; Internal pull disabled These I/O specifications apply to regular 3.3V IOs and do not apply to USB0 or USB1 unless specifically indicated. USB0 I/Os adhere to the USB 2.0 specification. USB1 I/Os adhere to the USB 1.1 specification. II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II indicates the input leakage current and off-state (Hi-Z) output leakage current. Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current. Device Operating Conditions Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5 Peripheral Information and Electrical Specifications 5.1 Parameter Information 5.1.1 Parameter Information Device-Specific Information Tester Pin Electronics 42 Ω 3.5 nH Transmission Line Z0 = 50 Ω (see note) 4.0 pF A. 1.85 pF Data Sheet Timing Reference Point Output Under Test Device Pin (see note) The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin and the input signals are driven between 0V and the appropriate IO supply rail for the signal. Figure 5-1. Test Load Circuit for AC Timing Measurements The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. 5.1.1.1 Signal Transition Levels All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3 V I/O, Vref = 1.65 V. For 1.8 V I/O, Vref = 0.9 V. For 1.2 V I/O, Vref = 0.6 V. Vref Figure 5-2. Input and Output Voltage Reference Levels for AC Timing Measurements All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOLMAX and VOH MIN for output clocks. Vref = VIH MIN (or VOH MIN) Vref = VIL MAX (or VOL MAX) Figure 5-3. Rise and Fall Transition Time Voltage Reference Levels Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 57 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.2 www.ti.com Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. 5.3 5.3.1 Power Supplies Power-on Sequence The device should be powered-on in the following order: 1. RTC (RTC_CVDD) may be powered from an external device (such as a battery) prior to all other supplies being applied or powered-up at the same time as CVDD. If the RTC is not used, RTC_CVDD should be connected to CVDD. RTC_CVDD should not be left unpowered while CVDD is powered. 2. Core logic supplies: (a) CVDD core logic and RVDD supply (b) Other 1.2V logic supplies (PLL0_VDDA). Groups 2a) and 2b) may be powered up together or 2a) first followed by 2b). 3. All 1.8V IO supplies (USB0_VDDA18, USB1_VDDA18). 4. All digital IO and analog 3.3V PHY supplies (DVDD, USB0_VDDA33, USB1_VDDA33). If both USB0 and USB1 are not used, USB0_VDDA33 and USB1_VDDA33 are not required and may be left unconnected. Group 3) and group 4) may be powered on in either order [3 then 4, or 4 then 3] but group 4) must be powered-on after the core logic supplies. There is no specific required voltage ramp rate for any of the supplies. RESET must be maintained active until all power supplies have reached their nominal values. 5.3.2 Power-off Sequence The power supplies can be powered-off in any order as long as the 3.3V supplies do not remain powered with the other supplies unpowered. 58 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com 5.4 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Unused USB0 (USB2.0) and USB1 (USB1.1) Pin Configurations If one or both USB modules on the device are not used, then some of the power supplies to those modules may not be required. This can eliminate the requirement for a 1.8V power supply to the USB modules. The required pin configurations for unused USB modules are shown below. Table 5-1. Unused USB0 and USB1 Pin Configurations SIGNAL NAME Configuration (When USB0 and USB1 are not used) Configuration (When USB0 is used and USB1 is not used) USB0_DM No connect Use as USB0 function USB0_DP No connect Use as USB0 function USB0_VDDA33 No connect 3.3V USB0_VDDA18 No connect 1.8V Use as USB0 function USB0_ID No connect USB0_VBUS No connect Use as USB0 function USB0_DRVVBUS/GP4[15] No connect or use as alternate function Use as USB0 or alternate function USB0_VDDA12 No connect Internal USB0 PHY output connected to an external filter capacitor USB1_DM No connect VSS USB1_DP No connect VSS USB1_VDDA33 No connect No connect USB1_VDDA18 No connect No connect AHCLKX0/AHCLKX2/USB_REFCLKIN/ GP2[11] No connect or use as alternate function Use as USB0 or alternate function Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 59 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.5 5.5.1 www.ti.com Reset Power-On Reset (POR) A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal logic to its default state. All pins are tri-stated with the exception of RESETOUT, which remains active through the reset sequence, and RTCK/GP7[14]. If an emulator is driving TCK into the device during reset, then RTCK/GP7[14] will drive out RTCK. If TCK is not being driven into the device during reset, then RTCK/GP7[14] will drive low.RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset. While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and device's emulation logic in the reset state. TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted. RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For maximum reliability, the device includes an internal pulldown on the TRST pin to ensure that TRST will always be asserted upon power up and the device's internal emulation logic will always be properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to intialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. RTCK/GP7[14] is maintained active through a POR. A • • • • • summary of the effects of Power-On Reset is given below: All internal logic (including emulation logic and the PLL logic) is reset to its default state Internal memory is not maintained through a POR RESETOUT goes active All device pins go to a high-impedance state The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC. CAUTION: A watchdog reset triggers a POR. 5.5.2 Warm Reset A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low (TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT, which remains active through the reset sequence, and RTCK/GP7[14]. If an emulator is driving TCK into the device during reset, then RTCK/GP7[14] will drive out RTCK. If TCK is not being driven into the device during reset, then RTCK/GP7[14] will drive low. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset. During emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is available during emulation debug and development. RTCK/GP7[14] is maintained active through a warm reset. A summary of the effects of Warm Reset is given below: • All internal logic (except for the emulation logic and the PLL logic) is reset to its default state 60 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com • • • • 5.5.3 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Internal memory is maintained through a warm reset RESETOUT goes active All device pins go to a high-impedance state The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the RTC. Reset Electrical Data Timings Table 5-2 assumes testing over the recommended operating conditions. Table 5-2. Reset Timing Requirements ( (1), (2) No. ) MIN MAX UNIT 1 tw(RSTL) Pulse width, RESET/TRST low 100 ns 2 tsu(BPV-RSTH) Setup time, boot pins valid before RESET/TRST high 20 ns 3 th(RSTH-BPV) Hold time, boot pins valid after RESET/TRST high 20 ns 4 td(RSTH- RESET high to RESETOUT high; Warm reset 4096 cycles (3) RESETOUTH) RESET high to RESETOUT high; Power-on Reset 6192 (1) (2) (3) RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 2-5 for details. For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this table refer to RESET only (TRST is held high). OSCIN cycles. Power Supplies Ramping Power Supplies Stable Clock Source Stable OSCIN 1 RESET TRST 4 RESETOUT 3 2 Boot Pins Config Figure 5-4. Power-On Reset (RESET and TRST active) Timing Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 61 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Power Supplies Stable OSCIN TRST 1 RESET 4 RESETOUT 3 2 Boot Pins Driven or Hi-Z Config Figure 5-5. Warm Reset (RESET active, TRST high) Timing 62 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com 5.6 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Crystal Oscillator or External Clock Input The OMAP-L137 device includes two choices to provide an external clock input, which is fed to the onchip PLL to generate high-frequency system clocks. These options are illustrated in Figure 5-6 and Figure 5-7. For input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended. Typical load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1 and C2. The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1, the internal oscillator is disabled. • Figure 5-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. • Figure 5-7 illustrates the option that uses an external 1.2V clock input. C2 OSCIN Clock Input to PLL X1 OSCOUT C1 OSCVSS Figure 5-6. On-Chip 1.2V Oscillator Table 5-3. Oscillator Timing Requirements PARAMETER fosc Oscillator frequency range (OSCIN/OSCOUT) Copyright © 2008–2013, Texas Instruments Incorporated MIN MAX UNIT 12 30 MHz Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 63 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com OSCIN NC Clock Input to PLL OSCOUT OSCVSS Figure 5-7. External 1.2V Clock Source Table 5-4. OSCIN Timing Requirements MIN MAX UNIT fOSCIN OSCIN frequency range (OSCIN) PARAMETER 12 50 MHz tc(OSCIN) Cycle time, external clock driven on OSCIN 20 ns tw(OSCINH) Pulse width high, external clock on OSCIN 0.4 tc(OSCIN) ns tw(OSCINL) Pulse width low, external clock on OSCIN 0.4 tc(OSCIN) tt(OSCIN) Transition time, OSCIN tj(OSCIN) Period jitter, OSCIN (1) 64 ns 0.25P or 10 0.02P (1) ns ns Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com 5.7 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Clock PLLs The OMAP-L137 has one PLL controller that provides clock to different parts of the system. PLL0 provides clocks (though various dividers) to most of the components of the device. The PLL controller provides the following: • Glitch-Free Transitions (on changing clock settings) • Domain Clocks Alignment • Clock Gating • PLL power down The various clock outputs given by the controller are as follows: • Domain Clocks: SYSCLK [1:n] • Auxiliary Clock from reference clock source: AUXCLK Various dividers that can be used are as follows: • Post-PLL Divider: POSTDIV • SYSCLK Divider: D1, ¼, Dn Various other controls supported are as follows: • PLL Multiplier Control: PLLM • Software programmable PLL Bypass: PLLEN 5.7.1 PLL Device-Specific Information The OMAP-L137 DSP generates the high-frequency internal clocks it requires through an on-chip PLL. The PLL requires some external filtering components to reduce power supply noise as shown in Figure 58. 1.14V - 1.32V PLL0_VDDA 50R 0.1 µF VSS 50R 0.01 µF PLL0_VSSA Ferrite Bead: Murata BLM31PG500SN1L or Equivalent Figure 5-8. PLL External Filtering Components The input to the PLL is either from the on-chip oscillator (OSCIN pin) or from an external clock on the OSCIN pin. The PLL outputs seven clocks that have programmable divider options. Figure 5-9 illustrates the PLL Topology. The PLL is disabled by default after a device reset. It must be configured by software according to the allowable operating conditions listed in Table 5-5 before enabling the DSP to run from the PLL by setting PLLEN = 1. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 65 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com CLKMODE OSCIN PLLEN Square Wave 1 Crystal 0 Pre-Div PLL Post-Div PLLM 1 PLLDIV1 (/1) SYSCLK1 0 PLLDIV2 (/2) SYSCLK2 PLLDIV3 (/3) SYSCLK3 PLLDIV4 (/4) SYSCLK4 PLLDIV5 (/3) SYSCLK5 PLLDIV6 (/1) SYSCLK6 PLLDIV7 (/6) SYSCLK7 AUXCLK 0 DIV4.5 1 EMIFA Internal Clock Source CFGCHIP3[EMA_CLKSRC] DIV4.5 1 0 EMIFB Internal Clock Source CFGCHIP3[EMB_CLKSRC] SYSCLK1 SYSCLK2 SYSCLK3 SYSCLK4 SYSCLK5 SYSCLK6 SYSCLK7 14h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh OSCDIV OBSCLK Pin OCSEL[OCSRC] Figure 5-9. PLL Topology 66 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-5. Allowed PLL Operating Conditions No. PARAMETER Default Value MIN MAX UNIT 1 PLLRST: Assertion time during initialization N/A 1000 N/A ns 2 Lock time: The time that the application has to wait for the PLL to acquire locks before setting PLLEN, after changing PREDIV, PLLM, or OSCIN N/A 3 PREDIV /1 4 PLL input frequency ( PLLREF) 5 PLL multiplier values (PLLM) 6 7 (1) (1) 2000 N m where N = Pre-Divider Ratio Max PLL Lock Time = N/A OSCIN cycles M = PLL Multiplier /1 /32 12 30 (if internal oscillator is used) 50 (if external clock source is used) x20 x4 x32 PLL output frequency. ( PLLOUT ) N/A 300 600 POSTDIV /1 /1 /32 MHz MHz The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between 300 and 600 MHz, but the frequency going into the SYSCLK dividers (after the post divider) cannot exceed the maximum clock frequency defined for the device at a given voltage operating point. 5.7.2 Device Clock Generation PLL0 is controlled by PLL Controller 0. The PLLC0 manages the clock ratios, alignment, and gating for the system clocks to the chip. The PLLC is responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock inputs, multiply factor within the PLL, and post-division for each of the chip-level clocks from the PLL output. The PLLC also controls reset propagation through the chip, clock alignment, and test points. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 67 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.7.3 www.ti.com PLL Controller 0 Registers Table 5-6. PLL Controller 0 Registers BYTE ADDRESS 68 ACRONYM REGISTER DESCRIPTION 0x01C1 1000 REVID 0x01C1 10E4 RSTYPE Revision Identification Register Reset Type Status Register 0x01C1 1100 PLLCTL PLL Control Register 0x01C1 1104 OCSEL OBSCLK Select Register 0x01C1 1110 PLLM 0x01C1 1114 PREDIV PLL Pre-Divider Control Register PLL Multiplier Control Register 0x01C1 1118 PLLDIV1 PLL Controller Divider 1 Register 0x01C1 111C PLLDIV2 PLL Controller Divider 2 Register 0x01C1 1120 PLLDIV3 PLL Controller Divider 3 Register 0x01C1 1124 OSCDIV Oscillator Divider 1 Register (OBSCLK) 0x01C1 1128 POSTDIV PLL Post-Divider Control Register 0x01C1 1138 PLLCMD PLL Controller Command Register 0x01C1 113C PLLSTAT PLL Controller Status Register 0x01C1 1140 ALNCTL PLL Controller Clock Align Control Register 0x01C1 1144 DCHANGE 0x01C1 1148 CKEN 0x01C1 114C CKSTAT Clock Status Register 0x01C1 1150 SYSTAT SYSCLK Status Register 0x01C1 1160 PLLDIV4 PLL Controller Divider 4 Register 0x01C1 1164 PLLDIV5 PLL Controller Divider 5 Register 0x01C1 1168 PLLDIV6 PLL Controller Divider 6 Register 0x01C1 116C PLLDIV7 PLL Controller Divider 7 Register PLLDIV Ratio Change Status Register Clock Enable Control Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com 5.8 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Interrupts The OMAP-L137 devices have a large number of interrupts to service the needs of its many peripherals and subsystems. Both the ARM and C674x CPUs are capable of servicing these interrupts equally. The interrupts can be selectively enabled or disabled in either of the controllers. Also, the ARM and DSP can communicate with each other through interrupts controlled by registers in the SYSCFG module. 5.8.1 ARM CPU Interrupts The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller on the OMAP-L13x extends the number of interrupts to 100, and provides features like programmable masking, priority, hardware nesting support, and interrupt vector generation. The OMAP-L13x ARM Interrupt controller is enhanced from previous devices like the DM6446 and DM355. 5.8.1.1 ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy On OMAP-L13x, the ARM Interrupt controller organizes interrupts into the following hierarchy: • Peripheral Interrupt Requests – Individual Interrupt Sources from Peripherals • 100 System Interrupts – One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a System Interrupt. – After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt • 32 Interrupt Channels – Each System Interrupt is mapped to one of the 32 Interrupt Channels – Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31 lowest. – If more than one system interrupt is mapped to a channel, priority within the channel is determined by system interrupt number (0 highest priority) • Host Interrupts (FIQ and IRQ) – Interrupt Channels 0 and 1 generate the ARM FIQ interrupt – Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt • Debug Interrupts – Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem – Sources can be selected from any of the System Interrupts or Host Interrupts 5.8.1.2 AINTC Hardware Vector Generation The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system interrupts. The vector is computed in hardware as: VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE) Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may dispatched to using a single instruction of type LDR PC, [PC, #-<offset_12>] at the FIQ and IRQ vector locations (0xFFFF0018 and 0xFFFF001C respectively). Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 69 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.8.1.3 www.ti.com AINTC Hardware Interrupt Nesting Support Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts; only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with the option of automatic nesting on a global or per host interrupt basis; or manual nesting. 5.8.1.4 AINTC System Interrupt Assignments on OMAP-L137 System Interrupt assignments for the OMAP-L137 are listed in Table 5-7 Table 5-7. AINTC System Interrupt Assignments 70 SYSTEM INTERRUPT INTERRUPT NAME 0 COMMTX ARM SOURCE 1 COMMRX ARM 2 NINT ARM 3 PRU_EVTOUT0 PRUSS Interrupt 4 PRU_EVTOUT1 PRUSS Interrupt 5 PRU_EVTOUT2 PRUSS Interrupt 6 PRU_EVTOUT3 PRUSS Interrupt 7 PRU_EVTOUT4 PRUSS Interrupt 8 PRU_EVTOUT5 PRUSS Interrupt 9 PRU_EVTOUT6 PRUSS Interrupt 10 PRU_EVTOUT7 PRUSS Interrupt 11 EDMA3_CC0_CCINT 12 EDMA3_CC0_CCERRINT EDMA Channel Controller 13 EDMA3_TC0_TCERRINT EDMA Transfer Controller 0 14 EMIFA_INT 15 IIC0_INT 16 MMCSD_INT0 MMCSD 17 MMCSD_INT1 MMCSD 18 PSC0_ALLINT PSC0 19 RTC_IRQS[1:0] RTC 20 SPI0_INT SPI0 21 T64P0_TINT12 Timer64P0 Interrupt 12 22 T64P0_TINT34 Timer64P0 Interrupt 34 23 T64P1_TINT12 Timer64P1 Interrupt 12 24 T64P1_TINT34 Timer64P1 Interrupt 34 25 UART0_INT EDMA Channel Controller Region 0 EMIFA I2C0 UART0 26 - 27 MPU_BOOTCFG_ERR Reserved 28 SYSCFG_CHIPINT0 SYSCFG CHIPSIG Register 29 SYSCFG_CHIPINT1 SYSCFG CHIPSIG Register 30 SYSCFG_CHIPINT2 SYSCFG CHIPSIG Register 31 SYSCFG_CHIPINT3 SYSCFG CHIPSIG Register 32 EDMA3_TC1_TCERRINT EDMA Transfer Controller 1 33 EMAC_C0RXTHRESH Shared MPU and SYSCFG Address/Protection Error Interrupt EMAC - Core 0 Receive Threshold Interrupt Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-7. AINTC System Interrupt Assignments (continued) SYSTEM INTERRUPT INTERRUPT NAME 34 EMAC_C0RX EMAC - Core 0 Receive Interrupt SOURCE 35 EMAC_C0TX EMAC - Core 0 Transmit Interrupt 36 EMAC_C0MISC 37 EMAC_C1RXTHRESH 38 EMAC_C1RX EMAC - Core 1 Receive Interrupt 39 EMAC_C1TX EMAC - Core 1 Transmit Interrupt 40 EMAC_C1MISC EMAC - Core 1 Miscellaneous Interrupt 41 EMIF_MEMERR EMIFB 42 GPIO_B0INT GPIO Bank 0 Interrupt 43 GPIO_B1INT GPIO Bank 1 Interrupt 44 GPIO_B2INT GPIO Bank 2 Interrupt 45 GPIO_B3INT GPIO Bank 3 Interrupt 46 GPIO_B4INT GPIO Bank 4 Interrupt 47 GPIO_B5INT GPIO Bank 5 Interrupt 48 GPIO_B6INT GPIO Bank 6 Interrupt 49 GPIO_B7INT GPIO Bank 7 Interrupt 50 - EMAC - Core 0 Miscellaneous Interrupt EMAC - Core 1 Receive Threshold Interrupt Reserved 51 IIC1_INT 52 LCDC_INT LCD Controller 53 UART_INT1 UART1 54 MCASP_INT McASP0, 1, 2 Combined RX / TX Interrupts 55 PSC1_ALLINT PSC1 56 SPI1_INT SPI1 57 UHPI_ARMINT 58 USB0_INT 59 USB1_HCINT 60 USB1_RWAKEUP 61 UART2_INT 62 - 63 EHRPWM0 64 EHRPWM0TZ I2C1 HPI ARM Interrupt USB0 Interrupt USB1 OHCI Host Controller Interrupt USB1 Remote Wakeup Interrupt UART2 Reserved HiResTimer / PWM0 Interrupt HiResTimer / PWM0 Trip Zone Interrupt 65 EHRPWM1 66 EHRPWM1TZ 67 EHRPWM2 68 EHRPWM2TZ 69 ECAP0 ECAP0 70 ECAP1 ECAP1 71 ECAP2 ECAP2 72 EQEP0 EQEP0 73 EQEP1 EQEP1 74 T64P0_CMPINT0 Timer64P0 - Compare 0 75 T64P0_CMPINT1 Timer64P0 - Compare 1 76 T64P0_CMPINT2 Timer64P0 - Compare 2 77 T64P0_CMPINT3 Timer64P0 - Compare 3 78 T64P0_CMPINT4 Timer64P0 - Compare 4 79 T64P0_CMPINT5 Timer64P0 - Compare 5 80 T64P0_CMPINT6 Timer64P0 - Compare 6 Copyright © 2008–2013, Texas Instruments Incorporated HiResTimer / PWM1 Interrupt HiResTimer / PWM1 Trip Zone Interrupt HiResTimer / PWM2 Interrupt HiResTimer / PWM2 Trip Zone Interrupt Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 71 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-7. AINTC System Interrupt Assignments (continued) 72 SYSTEM INTERRUPT INTERRUPT NAME 81 T64P0_CMPINT7 Timer64P0 - Compare 7 SOURCE 82 T64P1_CMPINT0 Timer64P1 - Compare 0 83 T64P1_CMPINT1 Timer64P1 - Compare 1 84 T64P1_CMPINT2 Timer64P1 - Compare 2 85 T64P1_CMPINT3 Timer64P1 - Compare 3 86 T64P1_CMPINT4 Timer64P1 - Compare 4 87 T64P1_CMPINT5 Timer64P1 - Compare 5 88 T64P1_CMPINT6 Timer64P1 - Compare 6 89 T64P1_CMPINT7 Timer64P1 - Compare 7 90 ARMCLKSTOPREQ 91 - 100 - PSC0 Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com 5.8.1.5 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 AINTC Memory Map Table 5-8. AINTC Memory Map BYTE ADDRESS ACRONYM 0xFFFE E000 REV Revision Register Control Register 0xFFFE E004 CR 0xFFFE E008 - 0xFFFE E00F - 0xFFFE E010 GER REGISTER DESCRIPTION Reserved Global Enable Register 0xFFFE E014 - 0xFFFE E01B - 0xFFFE E01C GNLR Reserved Global Nesting Level Register 0xFFFE E020 SISR System Interrupt Status Indexed Set Register 0xFFFE E024 SICR System Interrupt Status Indexed Clear Register 0xFFFE E028 EISR System Interrupt Enable Indexed Set Register 0xFFFE E02C EICR System Interrupt Enable Indexed Clear Register 0xFFFE E030 - Reserved 0xFFFE E034 HIEISR Host Interrupt Enable Indexed Set Register 0xFFFE E038 HIDISR Host Interrupt Enable Indexed Clear Register 0xFFFE E03C - 0xFFFE E04F - 0xFFFE E050 VBR Vector Base Register 0xFFFE E054 VSR Vector Size Register 0xFFFE E058 VNR Vector Null Register 0xFFFE E05C - 0xFFFE E07F - Reserved Reserved 0xFFFE E080 GPIR Global Prioritized Index Register 0xFFFE E084 GPVR Global Prioritized Vector Register 0xFFFE E088 - 0xFFFE E1FF - 0xFFFE E200 - 0xFFFE E20B SRSR[1] - SRSR[3] 0xFFFE E20C- 0xFFFE E27F - 0xFFFE E280 - 0xFFFE E28B SECR[1] - SECR[3] 0xFFFE E28C - 0xFFFE E2FF - 0xFFFE E300 - 0xFFFE E30C ESR[1] - ESR[3] 0xFFFE E30C - 0xFFFE E37F - 0xFFFE E380 - 0xFFFE E38B ECR[1] - ECR[3] Reserved System Interrupt Status Raw / Set Registers Reserved System Interrupt Status Enabled / Clear Registers Reserved System Interrupt Enable Set Registers Reserved System Interrupt Enable Clear Registers 0xFFFE E38C - 0xFFFE E3FF - 0xFFFE E400 - 0xFFFE E458 CMR[0] - CMR[22] Reserved 0xFFFE E459 - 0xFFFE E7FF - Reserved Channel Map Registers (Byte Wide Registers) 0xFFFE E800 - 0xFFFE E81F - Reserved 0xFFFE E820 - 0xFFFE E8FF - Reserved 0xFFFE E900 - 0xFFFE E904 HIPIR[1] - HIPIR[2] 0xFFFE E908 - 0xFFFE EEFF - Reserved 0xFFFE EF00 - 0xFFFE EF04 - Reserved 0xFFFE EF08 - 0xFFFE F0FF - Reserved 0xFFFE F100 - 0xFFFE F104 HINLR[1] - HINLR[2] 0xFFFE F108 - 0xFFFE F4FF - 0xFFFE F500 HIER 0xFFFE F504 - 0xFFFE F5FF - 0xFFFE F600 HIPVR[1] - HIPVR[2] 0xFFFE F608 - 0xFFFE FFFF - Copyright © 2008–2013, Texas Instruments Incorporated Host Interrupt Prioritized Index Registers Host Interrupt Nesting Level Registers Reserved Host Interrupt Enable Register Reserved Host Interrupt Prioritized Vector Registers Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 73 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.8.2 www.ti.com DSP Interrupts The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for each of the 12 CPU interrupts is user programmable and is listed in Table 5-9. Also, the interrupt controller controls the generation of the CPU exception, NMI, and emulation interrupts. Table 5-10 summarizes the C674x interrupt controller registers and memory locations. Table 5-9. OMAP-L137 DSP Interrupts 74 EVT# INTERRUPT NAME 0 EVT0 SOURCE C674x Int Ctl 0 1 EVT1 C674x Int Ctl 1 2 EVT2 C674x Int Ctl 2 3 EVT3 C674x Int Ctl 3 4 T64P0_TINT12 5 SYSCFG_CHIPINT2 6 PRU_EVTOUT0 7 EHRPWM0 8 EDMA3_CC0_INT1 Timer64P0 - TINT12 SYSCFG_CHIPSIG Register PRU Interrupt HiResTimer/PWM0 Interrupt EDMA3 Channel Controller 0 Region 1 interrupt 9 EMU-DTDMA C674x-ECM 10 EHRPWM0TZ HiResTimer/PWM0 Trip Zone Interrupt 11 EMU-RTDXRX C674x-RTDX 12 EMU-RTDXTX C674x-RTDX 13 IDMAINT0 C674x-EMC 14 IDMAINT1 C674x-EMC 15 MMCSD_INT0 MMCSD MMC/SD Interrupt 16 MMCSD_INT1 MMCSD SDIO Interrupt 17 PRU_EVTOUT1 18 EHRPWM1 HiResTimer/PWM1 Interrupt 19 USB0_INT USB0 Interrupt 20 USB1_HCINT 21 USB1_RWAKEUP 22 PRU_EVTOUT2 23 EHRPWM1TZ 24 EHRPWM2 PRU Interrupt USB1 OHCI Host Controller Interrupt USB1 Remote Wakeup Interrupt PRU Interrupt HiResTimer/PWM1 Trip Zone Interrupt HiResTimer/PWM2 Interrupt 25 EHRPWM2TZ 26 EMAC_C0RXTHRESH HiResTimer/PWM2 Trip Zone Interrupt 27 EMAC_C0RX EMAC - Core 0 Receive Interrupt 28 EMAC_C0TX EMAC - Core 0 Transmit Interrupt EMAC - Core 0 Receive Threshold Interrupt 29 EMAC_C0MISC 30 EMAC_C1RXTHRESH EMAC - Core 0 Miscellaneous Interrupt 31 EMAC_C1RX EMAC - Core 1 Receive Interrupt 32 EMAC_C1TX EMAC - Core 1 Transmit Interrupt 33 EMAC_C1MISC 34 UHPI_DSPINT 35 PRU_EVTOUT3 36 IIC0_INT I2C0 37 SP0_INT SPI0 38 UART0_INT 39 PRU_EVTOUT5 PRU Interrupt 40 T64P1_TINT12 Timer64P1 Interrupt 12 EMAC - Core 1 Receive Threshold Interrupt EMAC - Core 1 Miscellaneous Interrupt UHPI DSP Interrupt PRU Interrupt UART0 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-9. OMAP-L137 DSP Interrupts (continued) EVT# INTERRUPT NAME 41 GPIO_B1INT SOURCE GPIO Bank 1 Interrupt 42 IIC1_INT I2C1 43 SPI1_INT SPI1 44 PRU_EVTOUT6 PRU Interrupt 45 ECAP0 ECAP0 46 UART_INT1 UART1 47 ECAP1 ECAP1 48 T64P1_TINT34 Timer64P1 Interrupt 34 49 GPIO_B2INT GPIO Bank 2 Interrupt 50 PRU_EVTOUT7 51 ECAP2 52 GPIO_B3INT 53 EQEP1 54 GPIO_B4INT PRU Interrupt ECAP2 GPIO Bank 3 Interrupt EQEP1 GPIO Bank 4 Interrupt 55 EMIFA_INT 56 EDMA3_CC0_ERRINT EMIFA EDMA3 Channel Controller 0 57 EDMA3_TC0_ERRINT EDMA3 Transfer Controller 0 58 EDMA3_TC1_ERRINT EDMA3 Transfer Controller 1 59 GPIO_B5INT 60 EMIFB_INT EMIFB Memory Error Interrupt 61 MCASP_INT McASP0,1,2 Combined RX/TX Interrupts 62 GPIO_B6INT GPIO Bank 6 Interrupt 63 RTC_IRQS 64 T64P0_TINT34 Timer64P0 Interrupt 34 65 GPIO_B0INT GPIO Bank 0 Interrupt 66 PRU_EVTOUT4 67 SYSCFG_CHIPINT3 GPIO Bank 5 Interrupt RTC Combined PRU Interrupt SYSCFG_CHIPSIG Register 68 EQEP0 EQEP0 69 UART2_INT UART2 70 PSC0_ALLINT PSC0 71 PSC1_ALLINT PSC1 72 GPIO_B7INT 73 LCDC_INT 74 MPU_BOOTCFG_ERR GPIO Bank 7 Interrupt LCD Controller Shared MPU and SYSCFG Address/Protection Error Interrupt 75 - 77 - 78 T64P0_CMPINT0 Timer64P0 - Compare 0 79 T64P0_CMPINT1 Timer64P0 - Compare 1 80 T64P0_CMPINT2 Timer64P0 - Compare 2 81 T64P0_CMPINT3 Timer64P0 - Compare 3 82 T64P0_CMPINT4 Timer64P0 - Compare 4 83 T64P0_CMPINT5 Timer64P0 - Compare 5 84 T64P0_CMPINT6 Timer64P0 - Compare 6 85 T64P0_CMPINT7 Timer64P0 - Compare 7 86 T64P1_CMPINT0 Timer64P1 - Compare 0 87 T64P1_CMPINT1 Timer64P1 - Compare 1 88 T64P1_CMPINT2 Timer64P1 - Compare 2 89 T64P1_CMPINT3 Timer64P1 - Compare 3 Copyright © 2008–2013, Texas Instruments Incorporated Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 75 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-9. OMAP-L137 DSP Interrupts (continued) 76 EVT# INTERRUPT NAME 90 T64P1_CMPINT4 SOURCE Timer64P1 - Compare 4 91 T64P1_CMPINT5 Timer64P1 - Compare 5 92 T64P1_CMPINT6 Timer64P1 - Compare 6 93 T64P1_CMPINT7 Timer64P1 - Compare 7 94 - 95 - 96 INTERR Reserved C674x-Int Ctl 97 EMC_IDMAERR C674x-EMC 98 - 112 - 113 PMC_ED Reserved 114 - 115 - 116 UMC_ED1 C674x-UMC 117 UMC_ED2 C674x-UMC 118 PDC_INT C674x-PDC 119 SYS_CMPA C674x-SYS 120 PMC_CMPA C674x-PMC 121 PMC_CMPA C674x-PMC 122 DMC_CMPA C674x-DMC 123 DMC_CMPA C674x-DMC 124 UMC_CMPA C674x-UMC 125 UMC_CMPA C674x-UMC 126 EMC_CMPA C674x-EMC 127 EMC_BUSERR C674x-EMC C674x-PMC Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-10. C674x DSP Interrupt Controller Registers 5.8.3 BYTE ADDRESS ACRONYM 0x0180 0000 EVTFLAG0 Event flag register 0 REGISTER DESCRIPTION 0x0180 0004 EVTFLAG1 Event flag register 1 0x0180 0008 EVTFLAG2 Event flag register 2 0x0180 000C EVTFLAG3 Event flag register 3 0x0180 0020 EVTSET0 Event set register 0 0x0180 0024 EVTSET1 Event set register 1 0x0180 0028 EVTSET2 Event set register 2 0x0180 002C EVTSET3 Event set register 3 0x0180 0040 EVTCLR0 Event clear register 0 0x0180 0044 EVTCLR1 Event clear register 1 0x0180 0048 EVTCLR2 Event clear register 2 0x0180 004C EVTCLR3 Event clear register 3 0x0180 0080 EVTMASK0 Event mask register 0 0x0180 0084 EVTMASK1 Event mask register 1 0x0180 0088 EVTMASK2 Event mask register 2 0x0180 008C EVTMASK3 Event mask register 3 0x0180 00A0 MEVTFLAG0 Masked event flag register 0 0x0180 00A4 MEVTFLAG1 Masked event flag register 1 0x0180 00A8 MEVTFLAG2 Masked event flag register 2 0x0180 00AC MEVTFLAG3 Masked event flag register 3 0x0180 00C0 EXPMASK0 Exception mask register 0 0x0180 00C4 EXPMASK1 Exception mask register 1 0x0180 00C8 EXPMASK2 Exception mask register 2 0x0180 00CC EXPMASK3 Exception mask register 3 0x0180 00E0 MEXPFLAG0 Masked exception flag register 0 0x0180 00E4 MEXPFLAG1 Masked exception flag register 1 0x0180 00E8 MEXPFLAG2 Masked exception flag register 2 0x0180 00EC MEXPFLAG3 Masked exception flag register 3 0x0180 0104 INTMUX1 Interrupt mux register 1 0x0180 0108 INTMUX2 Interrupt mux register 2 0x0180 010C INTMUX3 Interrupt mux register 3 0x0180 0140 - 0x0180 0144 - 0x0180 0180 INTXSTAT Interrupt exception status 0x0180 0184 INTXCLR Interrupt exception clear 0x0180 0188 INTDMASK Dropped interrupt mask register 0x0180 01C0 EVTASRT Event assert register Reserved ARM/DSP Communications Interrupts Communications Interrupts between the ARM and DSP are part of the SYSCFG module on the OMAPL13x family of devices. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 77 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.9 www.ti.com General-Purpose Input/Output (GPIO) The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs. When configured as an output, a write to an internal register can control the state driven on the output pin. When configured as an input, the state of the input is detectable by reading the state of an internal register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices. The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]). The OMAP-L137 GPIO peripheral supports the following: • Up to 128 Pins on ZKB package configurable as GPIO • External Interrupt and DMA request Capability – Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or falling edges on the pin. – The interrupt requests within each bank are combined (logical or) to create eight unique bank level interrupt requests. – The bank level interrupt service routine may poll the INTSTATx register for its bank to determine which pin(s) have triggered the interrupt. – GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to ARM INTC Interrupt Requests 42, 43, 44, 45, 46, 47, 48, and 49 respectively – GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59, 62 and 72 respectively – Additionally, GPIO Banks 0, 1, 2, 3, 4, and 5 Interrupts assigned to EDMA events 6, 7, 22, 23, 28, and 29 respectively. • Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to anther process during GPIO programming). • Separate Input/Output registers • Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can be toggled by direct write to the output register(s). • Output register, when read, reflects output drive status. This, in addition to the input register reflecting pin status and open-drain I/O cell, allows wired logic be implemented. The memory map for the GPIO registers is shown in Table 5-11. See the OMAP-L137 Applications Processor DSP Peripherals Overview Reference Guide. (SPRUGA6) for more details. 5.9.1 GPIO Register Description(s) Table 5-11. GPIO Registers BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E2 6000 REV Peripheral Revision Register 0x01E2 6004 - Reserved 0x01E2 6008 BINTEN GPIO Interrupt Per-Bank Enable Register GPIO BANKS 0 AND 1 78 0x01E2 6010 DIR01 GPIO Banks 0 and 1 Direction Register 0x01E2 6014 OUT_DATA01 GPIO Banks 0 and 1 Output Data Register 0x01E2 6018 SET_DATA01 GPIO Banks 0 and 1 Set Data Register 0x01E2 601C CLR_DATA01 GPIO Banks 0 and 1 Clear Data Register 0x01E2 6020 IN_DATA01 GPIO Banks 0 and 1 Input Data Register 0x01E2 6024 SET_RIS_TRIG01 GPIO Banks 0 and 1 Set Rising Edge Interrupt Register 0x01E2 6028 CLR_RIS_TRIG01 GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-11. GPIO Registers (continued) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E2 602C SET_FAL_TRIG01 GPIO Banks 0 and 1 Set Falling Edge Interrupt Register 0x01E2 6030 CLR_FAL_TRIG01 GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register 0x01E2 6034 INTSTAT01 GPIO Banks 0 and 1 Interrupt Status Register GPIO BANKS 2 AND 3 0x01E2 6038 DIR23 GPIO Banks 2 and 3 Direction Register 0x01E2 603C OUT_DATA23 GPIO Banks 2 and 3 Output Data Register 0x01E2 6040 SET_DATA23 GPIO Banks 2 and 3 Set Data Register 0x01E2 6044 CLR_DATA23 GPIO Banks 2 and 3 Clear Data Register 0x01E2 6048 IN_DATA23 GPIO Banks 2 and 3 Input Data Register 0x01E2 604C SET_RIS_TRIG23 GPIO Banks 2 and 3 Set Rising Edge Interrupt Register 0x01E2 6050 CLR_RIS_TRIG23 GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register 0x01E2 6054 SET_FAL_TRIG23 GPIO Banks 2 and 3 Set Falling Edge Interrupt Register 0x01E2 6058 CLR_FAL_TRIG23 GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register 0x01E2 605C INTSTAT23 GPIO Banks 2 and 3 Interrupt Status Register 0x01E2 6060 DIR45 GPIO Banks 4 and 5 Direction Register 0x01E2 6064 OUT_DATA45 GPIO Banks 4 and 5 Output Data Register GPIO BANKS 4 AND 5 0x01E2 6068 SET_DATA45 GPIO Banks 4 and 5 Set Data Register 0x01E2 606C CLR_DATA45 GPIO Banks 4 and 5 Clear Data Register 0x01E2 6070 IN_DATA45 GPIO Banks 4 and 5 Input Data Register 0x01E2 6074 SET_RIS_TRIG45 GPIO Banks 4 and 5 Set Rising Edge Interrupt Register GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register 0x01E2 6078 CLR_RIS_TRIG45 0x01E2 607C SET_FAL_TRIG45 GPIO Banks 4 and 5 Set Falling Edge Interrupt Register 0x01E2 6080 CLR_FAL_TRIG45 GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register 0x01E2 6084 INTSTAT45 GPIO Banks 4 and 5 Interrupt Status Register GPIO BANKS 6 AND 7 0x01E2 6088 DIR67 GPIO Banks 6 and 7 Direction Register 0x01E2 608C OUT_DATA67 GPIO Banks 6 and 7 Output Data Register 0x01E2 6090 SET_DATA67 GPIO Banks 6 and 7 Set Data Register 0x01E2 6094 CLR_DATA67 GPIO Banks 6 and 7 Clear Data Register 0x01E2 6098 IN_DATA67 GPIO Banks 6 and 7 Input Data Register 0x01E2 609C SET_RIS_TRIG67 GPIO Banks 6 and 7 Set Rising Edge Interrupt Register 0x01E2 60A0 CLR_RIS_TRIG67 GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register 0x01E2 60A4 SET_FAL_TRIG67 GPIO Banks 6 and 7 Set Falling Edge Interrupt Register 0x01E2 60A8 CLR_FAL_TRIG67 GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register 0x01E2 60AC INTSTAT67 GPIO Banks 6 and 7 Interrupt Status Register Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 79 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.9.2 www.ti.com GPIO Peripheral Input/Output Electrical Data/Timing Table 5-12. Timing Requirements for GPIO Inputs (1) (see Figure 5-10) No. PARAMETER MIN MAX UNIT 1 tw(GPIH) Pulse duration, GPn[m] as input high 2C (1) (2) ns 2 tw(GPIL) Pulse duration, GPn[m] as input low 2C (1) (2) ns (1) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have OMAP-L137 recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow OMAP-L137 enough time to access the GPIO register through the internal bus. C=SYSCLK4 period in ns. (2) Table 5-13. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs (see Figure 5-10) No. (1) PARAMETER MIN MAX (1) (2) 3 tw(GPOH) Pulse duration, GPn[m] as output high 2C 4 tw(GPOL) Pulse duration, GPn[m] as output low 2C (1) UNIT ns (2) ns This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO is dependent upon internal bus activity. C=SYSCLK4 period in ns. (2) 2 1 GPn[m] as input 4 3 GPn[m] as output Figure 5-10. GPIO Port Timing 5.9.3 GPIO Peripheral External Interrupts Electrical Data/Timing Table 5-14. Timing Requirements for External Interrupts (1) (see Figure 5-11) No. (1) (2) PARAMETER MIN 1 tw(ILOW) Width of the external interrupt pulse low 2C (1) (2) 2 tw(IHIGH) Width of the external interrupt pulse high 2C (1) (2) MAX UNIT ns ns The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have OMAP-L137 recognize the GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow OMAP-L137 enough time to access the GPIO register through the internal bus. C=SYSCLK4 period in ns. 2 1 GPn[m] as input Figure 5-11. GPIO External Interrupt Timing 80 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.10 EDMA Table 5-15 is the list of EDMA3 Channel Contoller Registers and Table 5-16 is the list of EDMA3 Transfer Controller registers. Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers BYTE ADDRESS ACRONYM 0x01C0 0000 PID REGISTER DESCRIPTION 0x01C0 0004 CCCFG 0x01C0 0200 QCHMAP0 QDMA Channel 0 Mapping Register 0x01C0 0204 QCHMAP1 QDMA Channel 1 Mapping Register Peripheral Identification Register EDMA3CC Configuration Register GLOBAL REGISTERS 0x01C0 0208 QCHMAP2 QDMA Channel 2 Mapping Register 0x01C0 020C QCHMAP3 QDMA Channel 3 Mapping Register 0x01C0 0210 QCHMAP4 QDMA Channel 4 Mapping Register 0x01C0 0214 QCHMAP5 QDMA Channel 5 Mapping Register 0x01C0 0218 QCHMAP6 QDMA Channel 6 Mapping Register 0x01C0 021C QCHMAP7 QDMA Channel 7 Mapping Register 0x01C0 0240 DMAQNUM0 DMA Channel Queue Number Register 0 0x01C0 0244 DMAQNUM1 DMA Channel Queue Number Register 1 0x01C0 0248 DMAQNUM2 DMA Channel Queue Number Register 2 0x01C0 024C DMAQNUM3 DMA Channel Queue Number Register 3 0x01C0 0260 QDMAQNUM QDMA Channel Queue Number Register 0x01C0 0284 QUEPRI Queue Priority Register (1) 0x01C0 0300 EMR 0x01C0 0308 EMCR Event Missed Register Event Missed Clear Register 0x01C0 0310 QEMR QDMA Event Missed Register 0x01C0 0314 QEMCR QDMA Event Missed Clear Register 0x01C0 0318 CCERR EDMA3CC Error Register 0x01C0 031C CCERRCLR 0x01C0 0320 EEVAL Error Evaluate Register 0x01C0 0340 DRAE0 DMA Region Access Enable Register for Region 0 0x01C0 0348 DRAE1 DMA Region Access Enable Register for Region 1 0x01C0 0350 DRAE2 DMA Region Access Enable Register for Region 2 0x01C0 0358 DRAE3 DMA Region Access Enable Register for Region 3 0x01C0 0380 QRAE0 QDMA Region Access Enable Register for Region 0 0x01C0 0384 QRAE1 QDMA Region Access Enable Register for Region 1 0x01C0 0388 QRAE2 QDMA Region Access Enable Register for Region 2 0x01C0 038C QRAE3 QDMA Region Access Enable Register for Region 3 0x01C0 0400 - 0x01C0 043C Q0E0-Q0E15 Event Queue Entry Registers Q0E0-Q0E15 0x01C0 0440 - 0x01C0 047C Q1E0-Q1E15 Event Queue Entry Registers Q1E0-Q1E15 0x01C0 0600 QSTAT0 Queue 0 Status Register 0x01C0 0604 QSTAT1 Queue 1 Status Register 0x01C0 0620 QWMTHRA 0x01C0 0640 CCSTAT EDMA3CC Error Clear Register Queue Watermark Threshold A Register EDMA3CC Status Register GLOBAL CHANNEL REGISTERS (1) 0x01C0 1000 ER 0x01C0 1008 ECR Event Register Event Clear Register On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memorymap. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 81 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued) BYTE ADDRESS ACRONYM 0x01C0 1010 ESR Event Set Register REGISTER DESCRIPTION 0x01C0 1018 CER Chained Event Register 0x01C0 1020 EER Event Enable Register 0x01C0 1028 EECR Event Enable Clear Register 0x01C0 1030 EESR Event Enable Set Register 0x01C0 1038 SER Secondary Event Register 0x01C0 1040 SECR Secondary Event Clear Register 0x01C0 1050 IER 0x01C0 1058 IECR Interrupt Enable Register Interrupt Enable Clear Register 0x01C0 1060 IESR Interrupt Enable Set Register 0x01C0 1068 IPR Interrupt Pending Register 0x01C0 1070 ICR Interrupt Clear Register 0x01C0 1078 IEVAL 0x01C0 1080 QER Interrupt Evaluate Register QDMA Event Register 0x01C0 1084 QEER 0x01C0 1088 QEECR QDMA Event Enable Register QDMA Event Enable Clear Register 0x01C0 108C QEESR QDMA Event Enable Set Register 0x01C0 1090 QSER QDMA Secondary Event Register 0x01C0 1094 QSECR QDMA Secondary Event Clear Register SHADOW REGION 0 CHANNEL REGISTERS 0x01C0 2000 ER Event Register 0x01C0 2008 ECR Event Clear Register 0x01C0 2010 ESR Event Set Register 0x01C0 2018 CER Chained Event Register 0x01C0 2020 EER Event Enable Register 0x01C0 2028 EECR Event Enable Clear Register 0x01C0 2030 EESR Event Enable Set Register 0x01C0 2038 SER Secondary Event Register 0x01C0 2040 SECR 0x01C0 2050 IER 0x01C0 2058 IECR Interrupt Enable Clear Register 0x01C0 2060 IESR Interrupt Enable Set Register 0x01C0 2068 IPR Interrupt Pending Register 0x01C0 2070 ICR Interrupt Clear Register 0x01C0 2078 IEVAL 0x01C0 2080 QER 0x01C0 2084 QEER Secondary Event Clear Register Interrupt Enable Register Interrupt Evaluate Register QDMA Event Register QDMA Event Enable Register 0x01C0 2088 QEECR QDMA Event Enable Clear Register 0x01C0 208C QEESR QDMA Event Enable Set Register 0x01C0 2090 QSER QDMA Secondary Event Register 0x01C0 2094 QSECR 0x01C0 2200 ER 0x01C0 2208 ECR Event Clear Register 0x01C0 2210 ESR Event Set Register 0x01C0 2218 CER Chained Event Register 0x01C0 2220 EER Event Enable Register QDMA Secondary Event Clear Register SHADOW REGION 1 CHANNEL REGISTERS 82 Event Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued) BYTE ADDRESS ACRONYM 0x01C0 2228 EECR Event Enable Clear Register REGISTER DESCRIPTION 0x01C0 2230 EESR Event Enable Set Register 0x01C0 2238 SER Secondary Event Register 0x01C0 2240 SECR Secondary Event Clear Register 0x01C0 2250 IER 0x01C0 2258 IECR Interrupt Enable Register Interrupt Enable Clear Register 0x01C0 2260 IESR Interrupt Enable Set Register 0x01C0 2268 IPR Interrupt Pending Register 0x01C0 2270 ICR Interrupt Clear Register 0x01C0 2278 IEVAL 0x01C0 2280 QER Interrupt Evaluate Register QDMA Event Register 0x01C0 2284 QEER 0x01C0 2288 QEECR QDMA Event Enable Register QDMA Event Enable Clear Register 0x01C0 228C QEESR QDMA Event Enable Set Register 0x01C0 2290 QSER QDMA Secondary Event Register 0x01C0 2294 QSECR 0x01C0 4000 - 0x01C0 4FFF — QDMA Secondary Event Clear Register Parameter RAM (PaRAM) Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers Transfer Controller 0 BYTE ADDRESS Transfer Controller 1 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C0 8000 0x01C0 8400 PID Peripheral Identification Register 0x01C0 8004 0x01C0 8404 TCCFG EDMA3TC Configuration Register 0x01C0 8100 0x01C0 8500 TCSTAT EDMA3TC Channel Status Register 0x01C0 8120 0x01C0 8520 ERRSTAT Error Status Register 0x01C0 8124 0x01C0 8524 ERREN Error Enable Register 0x01C0 8128 0x01C0 8528 ERRCLR Error Clear Register 0x01C0 812C 0x01C0 852C ERRDET Error Details Register 0x01C0 8130 0x01C0 8530 ERRCMD Error Interrupt Command Register 0x01C0 8140 0x01C0 8540 RDRATE Read Command Rate Register 0x01C0 8240 0x01C0 8640 SAOPT Source Active Options Register 0x01C0 8244 0x01C0 8644 SASRC Source Active Source Address Register 0x01C0 8248 0x01C0 8648 SACNT Source Active Count Register 0x01C0 824C 0x01C0 864C SADST Source Active Destination Address Register 0x01C0 8250 0x01C0 8650 SABIDX Source Active B-Index Register 0x01C0 8254 0x01C0 8654 SAMPPRXY Source Active Memory Protection Proxy Register 0x01C0 8258 0x01C0 8658 SACNTRLD Source Active Count Reload Register 0x01C0 825C 0x01C0 865C SASRCBREF Source Active Source Address B-Reference Register 0x01C0 8260 0x01C0 8660 SADSTBREF Source Active Destination Address B-Reference Register 0x01C0 8280 0x01C0 8680 DFCNTRLD 0x01C0 8284 0x01C0 8684 DFSRCBREF Destination FIFO Set Source Address B-Reference Register 0x01C0 8288 0x01C0 8688 DFDSTBREF Destination FIFO Set Destination Address B-Reference Register 0x01C0 8300 0x01C0 8700 DFOPT0 Destination FIFO Options Register 0 0x01C0 8304 0x01C0 8704 DFSRC0 Destination FIFO Source Address Register 0 Destination FIFO Set Count Reload Register 0x01C0 8308 0x01C0 8708 DFCNT0 Destination FIFO Count Register 0 0x01C0 830C 0x01C0 870C DFDST0 Destination FIFO Destination Address Register 0 0x01C0 8310 0x01C0 8710 DFBIDX0 Destination FIFO B-Index Register 0 Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 83 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers (continued) Transfer Controller 0 BYTE ADDRESS Transfer Controller 1 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C0 8314 0x01C0 8714 DFMPPRXY0 0x01C0 8340 0x01C0 8740 DFOPT1 Destination FIFO Options Register 1 0x01C0 8344 0x01C0 8744 DFSRC1 Destination FIFO Source Address Register 1 Destination FIFO Memory Protection Proxy Register 0 0x01C0 8348 0x01C0 8748 DFCNT1 Destination FIFO Count Register 1 0x01C0 834C 0x01C0 874C DFDST1 Destination FIFO Destination Address Register 1 0x01C0 8350 0x01C0 8750 DFBIDX1 Destination FIFO B-Index Register 1 0x01C0 8354 0x01C0 8754 DFMPPRXY1 0x01C0 8380 0x01C0 8780 DFOPT2 Destination FIFO Options Register 2 0x01C0 8384 0x01C0 8784 DFSRC2 Destination FIFO Source Address Register 2 0x01C0 8388 0x01C0 8788 DFCNT2 Destination FIFO Count Register 2 0x01C0 838C 0x01C0 878C DFDST2 Destination FIFO Destination Address Register 2 0x01C0 8390 0x01C0 8790 DFBIDX2 Destination FIFO B-Index Register 2 0x01C0 8394 0x01C0 8794 DFMPPRXY2 0x01C0 83C0 0x01C0 87C0 DFOPT3 Destination FIFO Options Register 3 0x01C0 83C4 0x01C0 87C4 DFSRC3 Destination FIFO Source Address Register 3 0x01C0 83C8 0x01C0 87C8 DFCNT3 Destination FIFO Count Register 3 0x01C0 83CC 0x01C0 87CC DFDST3 Destination FIFO Destination Address Register 3 0x01C0 83D0 0x01C0 87D0 DFBIDX3 Destination FIFO B-Index Register 3 0x01C0 83D4 0x01C0 87D4 DFMPPRXY3 Destination FIFO Memory Protection Proxy Register 1 Destination FIFO Memory Protection Proxy Register 2 Destination FIFO Memory Protection Proxy Register 3 Table 5-17 shows an abbreviation of the set of registers which make up the parameter set for each of 128 EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 5-18 shows the parameter set entry registers with relative memory address locations within each of the parameter sets. Table 5-17. EDMA Parameter Set RAM BYTE ADDRESS RANGE DESCRIPTION 0x01C0 4000 - 0x01C0 401F Parameters Set 0 (8 32-bit words) 0x01C0 4020 - 0x01C0 403F Parameters Set 1 (8 32-bit words) 0x01C0 4040 - 0x01cC0 405F Parameters Set 2 (8 32-bit words) 0x01C0 4060 - 0x01C0 407F Parameters Set 3 (8 32-bit words) 0x01C0 4080 - 0x01C0 409F Parameters Set 4 (8 32-bit words) 0x01C0 40A0 - 0x01C0 40BF Parameters Set 5 (8 32-bit words) ... ... 0x01C0 4FC0 - 0x01C0 4FDF Parameters Set 126 (8 32-bit words) 0x01C0 4FE0 - 0x01C0 4FFF Parameters Set 127 (8 32-bit words) Table 5-18. Parameter Set Entries BYTE OFFSET ADDRESS WITHIN THE PARAMETER SET 84 ACRONYM PARAMETER ENTRY 0x0000 OPT Option 0x0004 SRC Source Address 0x0008 A_B_CNT A Count, B Count 0x000C DST 0x0010 SRC_DST_BIDX Source B Index, Destination B Index 0x0014 LINK_BCNTRLD Link Address, B Count Reload 0x0018 SRC_DST_CIDX Source C Index, Destination C Index 0x001C CCNT Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Destination Address C Count Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-19. EDMA Events Event Event Name / Source Event 0 McASP0 Receive 16 Event Name / Source MMCSD Receive 1 McASP0 Transmit 17 MMCSD Transmit 2 McASP1 Receive 18 SPI1 Receive 3 McASP1 Transmit 19 SPI1 Transmit 4 McASP2 Receive 20 PRU_EVENTOUT6 5 McASP2 Transmit 21 PRU_EVENTOUT7 6 GPIO Bank 0 Interrupt 22 GPIO Bank 2 Interrupt 7 GPIO Bank 1 Interrupt 23 GPIO Bank 3 Interrupt 8 UART0 Receive 24 I2C0 Receive I2C0 Transmit 9 UART0 Transmit 25 10 Timer64P0 Event Out 12 26 I2C1 Receive 11 Timer64P0 Event Out 34 27 I2C1 Transmit 12 UART1 Receive 28 GPIO Bank 4 Interrupt 13 UART1 Transmit 29 GPIO Bank 5 Interrupt 14 SPI0 Receive 30 UART2 Receive 15 SPI0 Transmit 31 UART2 Transmit Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 85 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.11 External Memory Interface A (EMIFA) EMIFA is one of two external memory interfaces supported on the OMAP-L137. It is primarily intended to support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However on OMAP-L137 EMIFA also provides a secondary interface to SDRAM. 5.11.1 EMIFA Asynchronous Memory Support EMIFA supports asynchronous: • SRAM memories • NAND Flash memories • NOR Flash memories The EMIFA data bus width is up to 16-bits on the ZKB package. The device supports up to fifteen address lines and an external wait/interrupt input. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]) . All four chip selects are available on the ZKB package. Each chip select has the following individually programmable attributes: • Data Bus Width • Read cycle timings: setup, hold, strobe • Write cycle timings: setup, hold, strobe • Bus turn around time • Extended Wait Option With Programmable Timeout • Select Strobe Option • NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes. 5.11.2 EMIFA Synchronous DRAM Memory Support The OMAP-L137 ZKB package supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 5.11.1. It has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are supported are: • One, Two, and Four Bank SDRAM devices • Devices with Eight, Nine, Ten, and Eleven Column Address • CAS Latency of two or three clock cycles • Sixteen Bit Data Bus Width • 3.3V LVCMOS Interface Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory contents; since the SDRAM will continue to refresh itself even without clocks from the DSP. Powerdown mode achieves even lower power, except the DSP must periodically wake the SDRAM up and issue refreshes if data retention is required. Finally, note that the EMIFA does not support Mobile SDRAM devices. Table 5-20 below shows the supported SDRAM configurations for EMIFA. 86 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-20. EMIFA Supported SDRAM Configurations (1) SDRAM Memory Data Bus Width (bits) 16 8 (1) Number of Memories EMIFB Data Bus Size Rows Columns Banks Total Memory (Mbits) Total Memory (Mbytes) Memory Density (Mbits) 1 16 13 8 1 32 4 32 1 16 13 8 2 64 8 64 1 16 13 8 4 128 16 128 1 16 13 9 1 64 8 64 1 16 13 9 2 128 16 128 1 16 13 9 4 256 32 256 1 16 13 10 1 128 16 128 1 16 13 10 2 256 32 256 1 16 13 10 4 512 64 512 1 16 13 11 1 256 32 256 1 16 13 11 2 512 64 512 1 16 13 11 4 1024 128 1024 2 16 13 8 1 32 4 16 2 16 13 8 2 64 8 32 2 16 13 8 4 128 16 64 2 16 13 9 1 64 8 32 2 16 13 9 2 128 16 64 2 16 13 9 4 256 32 128 2 16 13 10 1 128 16 64 2 16 13 10 2 256 32 128 2 16 13 10 4 512 64 256 2 16 13 11 1 256 32 128 2 16 13 11 2 512 64 256 2 16 13 11 4 1024 128 512 The shaded cells indicate configurations that are possible on the EMIFA interface but as of this writing SDRAM memories capable of supporting these densities are not available in the market. 5.11.3 EMIFA SDRAM Loading Limitations EMIFA supports SDRAM up to 100 MHz with up to two SDRAM or asynchronous memory loads. Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be confirmed by board simulation using IBIS models. 5.11.4 EMIFA Connection Examples Figure 5-12 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to EMIFA of a OMAP-L137 device simultaneously. The SDRAM chip select must be EMA_CS[0]. Note that the NOR flash is connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in this example. Note that any type of asynchronous memory may be connected to EMA_CS[5:2]. The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be stored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image is stored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects, but this must be supported by second stage boot code stored in the external flash. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 87 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 5-13. This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to bootload it. RESET CE CAS RAS WE SDRAM 2M x 16 x 4 CLK Bank CKE BA[1:0] A[11:0] LDQM UDQM DQ[15:0] EMA_BA[1] EMA_CS[0] EMA_CAS EMIFA EMA_RAS EMA_WE EMA_CLK EMA_SDCKE EMA_BA[1:0] EMA_A[12:0] EMA_WE_DQM[0] EMA_WE_DQM[1] EMA_D[15:0] EMA_CS[2] EMA_CS[3] EMA_WAIT EMA_OE A[0] A[12:1] DQ[15:0] NOR CE FLASH WE 512K x 16 OE RESET A[18:13] GPIO (6 Pins) RESET ... RY/BY EMA_A[1] EMA_A[2] DVDD ALE CLE DQ[15:0] NAND FLASH CE 1Gb x 16 WE RE RB Figure 5-12. OMAP-L137 Connection Diagram: SDRAM, NOR, NAND 88 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 EMA_A[1] EMA_A[2] EMA_D[7:0] EMA_CS[2] EMA_CS[3] EMA_WE EMA_OE EMIFA EMA_WAIT EMA_CS[4] EMA_CS[5] ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane DVDD Figure 5-13. OMAP-L137 EMIFA Connection Diagram: Multiple NAND Flash Planes Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 89 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.11.5 External Memory Interface A (EMIFA) Registers Table 5-21 is a list of the EMIF registers. For more information about these registers, see the C674x DSP External Memory Interface (EMIF) User's Guide (literature number SPRUFL6). Table 5-21. External Memory Interface (EMIFA) Registers 90 BYTE ADDRESS ACRONYM 0x6800 0000 MIDR Module ID Register REGISTER DESCRIPTION 0x6800 0004 AWCC Asynchronous Wait Cycle Configuration Register SDRAM Configuration Register 0x6800 0008 SDCR 0x6800 000C SDRCR SDRAM Refresh Control Register 0x6800 0010 CE2CFG Asynchronous 1 Configuration Register 0x6800 0014 CE3CFG Asynchronous 2 Configuration Register 0x6800 0018 CE4CFG Asynchronous 3 Configuration Register 0x6800 001C CE5CFG Asynchronous 4 Configuration Register 0x6800 0020 SDTIMR SDRAM Timing Register 0x6800 003C SDSRETR 0x6800 0040 INTRAW EMIFA Interrupt Raw Register 0x6800 0044 INTMSK EMIFA Interrupt Mask Register SDRAM Self Refresh Exit Timing Register 0x6800 0048 INTMSKSET EMIFA Interrupt Mask Set Register 0x6800 004C INTMSKCLR EMIFA Interrupt Mask Clear Register 0x6800 0060 NANDFCR NAND Flash Control Register 0x6800 0064 NANDFSR NAND Flash Status Register 0x6800 0070 NANDF1ECC NAND Flash 1 ECC Register (CS2 Space) 0x6800 0074 NANDF2ECC NAND Flash 2 ECC Register (CS3 Space) 0x6800 0078 NANDF3ECC NAND Flash 3 ECC Register (CS4 Space) NAND Flash 4 ECC Register (CS5 Space) 0x6800 007C NANDF4ECC 0x6800 00BC NAND4BITECCLOAD 0x6800 00C0 NAND4BITECC1 NAND Flash 4-Bit ECC Register 1 0x6800 00C4 NAND4BITECC2 NAND Flash 4-Bit ECC Register 2 0x6800 00C8 NAND4BITECC3 NAND Flash 4-Bit ECC Register 3 0x6800 00CC NAND4BITECC4 NAND Flash 4-Bit ECC Register 4 0x6800 00D0 NANDERRADD1 NAND Flash 4-Bit ECC Error Address Register 1 0x6800 00D4 NANDERRADD2 NAND Flash 4-Bit ECC Error Address Register 2 0x6800 00D8 NANDERRVAL1 NAND Flash 4-Bit ECC Error Value Register 1 0x6800 00DC NANDERRVAL2 NAND Flash 4-Bit ECC Error Value Register 2 NAND Flash 4-Bit ECC Load Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.11.6 EMIFA Electrical Data/Timing Table 5-22 through Table 5-25 assume testing over recommended operating conditions. Table 5-22. EMIFA SDRAM Interface Timing Requirements No. PARAMETER MIN MAX UNIT 19 tsu(DV-CLKH) Input setup time, read data valid on EMA_D[15:0] before EMA_CLK rising 1.3 ns 20 th(CLKH-DIV) Input hold time, read data valid on EMA_D[15:0] after EMA_CLK rising 1.5 ns Table 5-23. EMIFA SDRAM Interface Switching Characteristics No. PARAMETER MIN 1 tc(CLK) Cycle time, EMIF clock EMA_CLK 10 2 tw(CLK) Pulse width, EMIF clock EMA_CLK high or low 3 3 td(CLKH-CSV) Delay time, EMA_CLK rising to EMA_CS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMA_CLK rising to EMA_CS[0] invalid 5 td(CLKH-DQMV) Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0] invalid 7 td(CLKH-AV) Delay time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] valid 8 toh(CLKH-AIV) Output hold time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] invalid 9 td(CLKH-DV) Delay time, EMA_CLK rising to EMA_D[15:0] valid 10 toh(CLKH-DIV) Output hold time, EMA_CLK rising to EMA_D[15:0] invalid 11 td(CLKH-RASV) Delay time, EMA_CLK rising to EMA_RAS valid 12 toh(CLKH-RASIV) Output hold time, EMA_CLK rising to EMA_RAS invalid 13 td(CLKH-CASV) Delay time, EMA_CLK rising to EMA_CAS valid 14 toh(CLKH-CASIV) Output hold time, EMA_CLK rising to EMA_CAS invalid 15 td(CLKH-WEV) Delay time, EMA_CLK rising to EMA_WE valid 16 toh(CLKH-WEIV) Output hold time, EMA_CLK rising to EMA_WE invalid 17 tdis(CLKH-DHZ) Delay time, EMA_CLK rising to EMA_D[15:0] 3-stated 18 tena(CLKH-DLZ) Output hold time, EMA_CLK rising to EMA_D[15:0] driving Copyright © 2008–2013, Texas Instruments Incorporated MAX UNIT ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 ns ns 91 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 1 BASIC SDRAM WRITE OPERATION 2 2 EMA_CLK 3 4 EMA_CS[0] 5 6 EMA_WE_DQM[1:0] 7 8 7 8 EMA_BA[1:0] EMA_A[12:0] 9 10 EMA_D[15:0] 11 12 EMA_RAS 13 EMA_CAS 15 16 EMA_WE Figure 5-14. EMIFA Basic SDRAM Write Operation BASIC SDRAM READ OPERATION 1 2 2 EMA_CLK 3 4 EMA_CS[0] 5 6 EMA_WE_DQM[1:0] 7 8 7 8 EMA_BA[1:0] EMA_A[12:0] 19 17 2 EM_CLK Delay 20 18 EMA_D[15:0] 11 12 EMA_RAS 13 14 EMA_CAS EMA_WE Figure 5-15. EMIFA Basic SDRAM Read Operation 92 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-24. EMIFA Asynchronous Memory Timing Requirements (1) No. PARAMETER MIN NOM MAX UNIT READS and WRITES E tc(CLK) Cycle time, EMIFA module clock 10 ns 2 tw(EM_WAIT) Pulse duration, EM_WAIT assertion and deassertion 2E ns 3 ns READS 12 tsu(EMDV-EMOEH) Setup time, EM_D[15:0] valid before EM_OE high 13 th(EMOEH-EMDIV) Hold time, EM_D[15:0] valid after EM_OE high 14 tsu (EMOEL-EMWAIT) Setup Time, EM_WAIT asserted before end of Strobe Phase (2) 0 ns 4E+3 ns 4E+3 ns WRITES 28 (1) (2) tsu (EMWEL-EMWAIT) Setup Time, EM_WAIT asserted before end of Strobe Phase (2) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns. Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended wait states. Figure 5-18 and Figure 5-19 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles. Table 5-25. EMIFA Asynchronous Memory Switching Characteristics (1) No. PARAMETER MIN NOM (2) (3) MAX UNIT READS and WRITES 1 td(TURNAROUND) Turn around time (TA)*E - 3 (TA)*E (TA)*E + 3 ns EMIF read cycle time (EW = 0) (RS+RST+RH)*E -3 (RS+RST+RH)*E (RS+RST+RH)*E +3 ns EMIF read cycle time (EW = 1) (RS+RST+RH+(E WC*16))*E - 3 (RS+RST+RH+(EW (RS+RST+RH+(E C*16))*E WC*16))*E + 3 ns READS 3 4 5 tc(EMRCYCLE) tsu(EMCEL-EMOEL) th(EMOEH-EMCEH) Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 0) (RS)*E-3 (RS)*E (RS)*E+3 ns Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 1) -3 0 +3 ns Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 0) (RH)*E - 3 (RH)*E (RH)*E + 3 ns Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns 6 tsu(EMBAV-EMOEL) Output setup time, EMA_BA[1:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns 7 th(EMOEH-EMBAIV) Output hold time, EMA_OE high to EMA_BA[1:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns 8 tsu(EMBAV-EMOEL) Output setup time, EMA_A[13:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns 9 th(EMOEH-EMAIV) Output hold time, EMA_OE high to EMA_A[13:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns EMA_OE active low width (EW = 0) (RST)*E-3 (RST)*E (RST)*E+3 ns 10 tw(EMOEL) EMA_OE active low width (EW = 1) (RST+(EWC*16)) *E-3 (RST+(EWC*16))*E (RST+(EWC*16)) *E+3 ns 11 td(EMWAITH- 3E-3 4E 4E+3 ns EMOEH) Delay time from EMA_WAIT deasserted to EMA_OE high WRITES (1) (2) (3) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEW[1-256]. E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns. EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 93 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-25. EMIFA Asynchronous Memory Switching Characteristics(1) No. 15 16 17 18 PARAMETER tsu(EMCEL-EMWEL) th(EMWEH-EMCEH) tsu(EMDQMVEMWEL) 19 th(EMWEHEMDQMIV) NOM (continued) MAX UNIT EMIF write cycle time (EW = 0) (WS+WST+WH)* E-3 (WS+WST+WH)*E (WS+WST+WH)* E+3 ns EMIF write cycle time (EW = 1) (WS+WST+WH+( EWC*16))*E - 3 (WS+WST+WH+(E (WS+WST+WH+( WC*16))*E EWC*16))*E + 3 ns tc(EMWCYCLE) MIN (2) (3) Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 0) (WS)*E - 3 (WS)*E (WS)*E + 3 ns Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 1) -3 0 +3 ns Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 0) (WH)*E-3 (WH)*E (WH)*E+3 ns Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 20 tsu(EMBAV-EMWEL) Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 21 th(EMWEH-EMBAIV) Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 22 tsu(EMAV-EMWEL) Output setup time, EMA_A[13:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 23 th(EMWEH-EMAIV) Output hold time, EMA_WE high to EMA_A[13:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns EMA_WE active low width (EW = 0) (WST)*E-3 (WST)*E (WST)*E+3 ns 24 tw(EMWEL) EMA_WE active low width (EW = 1) (WST+(EWC*16)) *E-3 (WST+(EWC*16)) (WST+(EWC*16))*E *E+3 ns 25 td(EMWAITHEMWEH) Delay time from EMA_WAIT deasserted to EMA_WE high 3E-3 4E 4E+3 ns 26 tsu(EMDV-EMWEL) Output setup time, EMA_D[15:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 27 th(EMWEH-EMDIV) Output hold time, EMA_WE high to EMA_D[15:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 94 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 3 1 EMA_CS[5:2] EMA_BA[1:0] EMA_A[12:0] EMA_WE_DQM[1:0] 4 8 5 9 6 7 10 EMA_OE 13 12 EMA_D[15:0] EMA_WE Figure 5-16. Asynchronous Memory Read Timing for EMIFA 15 1 EMA_CS[5:2] EMA_BA[1:0] EMA_A[12:0] EMA_WE_DQM[1:0] 16 17 18 19 20 21 22 23 24 EMA_WE 26 27 EMA_D[15:0] EMA_OE Figure 5-17. Asynchronous Memory Write Timing for EMIFA Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 95 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 EMA_CS[5:2] SETUP www.ti.com STROBE Extended Due to EMA_WAIT STROBE HOLD EMA_BA[1:0] EMA_A[12:0] EMA_D[15:0] 14 11 EMA_OE 2 EMA_WAIT Asserted 2 Deasserted Figure 5-18. EMA_WAIT Read Timing Requirements Figure 5-19. EMA_WAIT Write Timing Requirements 96 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.12 External Memory Interface B (EMIFB) Figure 5-20 illustrates a high-level view of the EMIFB and its connections within the device. Multiple requesters have access to EMIFB through a switched central resource (indicated as crossbar in the figure). The EMIFB implements a split transaction internal bus, allowing concurrence between reads and writes from the various requesters. EMIFB Registers CPU EDMA Crossbar MPU2 Master Peripherals (USB, UHPI...) EMB_CS EMB_CAS Cmd/Write EMB_RAS FIFO EMB_WE EMB_CLK EMB_SDCKE Read EMB_BA[1:0] FIFO EMB_A[x:0] EMB_D[x:0] EMB_WE_DQM[x:0] SDRAM Interface Figure 5-20. EMIFB Functional Block Diagram EMIFB supports a 3.3V LVCMOS Interface. 5.12.1 EMIFB SDRAM Loading Limitations EMIFB supports SDRAM up to 152MHz with up to two SDRAM or asynchronous memory loads. Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be confirmed by board simulation using IBIS models. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 97 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.12.2 Interfacing to SDRAM The EMIFB supports a glueless interface to SDRAM devices with the following characteristics: • Pre-charge bit is A[10] • Supports 8, 9, 10 or 11 column address bits • Supports up to 13 row address bits • Supports 1, 2 or 4 internal banks Table 5-26 shows the supported SDRAM configurations for EMIFB. Table 5-26. EMIFB Supported SDRAM Configurations (1) SDRAM Memory Data Bus Width (bits) 32 16 (1) Total Memory (Mbits) Total Memory (Mbytes) Memory Density (Mbits) Number of Memories EMIFB Data Bus Size Rows Columns Banks 1 32 13 8 1 64 8 64 1 32 13 8 2 128 16 128 1 32 13 8 4 256 32 256 1 32 13 9 1 128 16 128 1 32 13 9 2 256 32 256 1 32 13 9 4 512 64 512 1 32 13 10 1 256 32 256 1 32 13 10 2 512 64 512 1 32 13 10 4 1024 128 1024 1 32 13 11 1 512 64 512 1 32 13 11 2 1024 128 1024 1 32 13 11 4 2048 256 2048 2 32 13 8 1 64 8 32 2 32 13 8 2 128 16 64 2 32 13 8 4 256 32 128 2 32 13 9 1 128 16 64 2 32 13 9 2 256 32 128 2 32 13 9 4 512 64 256 2 32 13 10 1 256 32 128 2 32 13 10 2 512 64 256 2 32 13 10 4 1024 128 512 2 32 13 11 1 512 64 256 2 32 13 11 2 1024 128 512 2 32 13 11 4 2048 256 1024 The shaded cells indicate configurations that are possible on the EMIFB interface but as of this writing SDRAM memories capable of supporting these densities are not available in the market. Figure 5-21 shows an interface between the EMIFB and a 2M × 16 × 4 bank SDRAM device. In addition, Figure 5-22 shows an interface between the EMIFB and a 2M × 32 × 4 bank SDRAM device and Figure 523 shows an interface between the EMIFB and two 4M × 16 × 4 bank SDRAM devices. Refer to Table 527, as an example that shows additional list of commonly-supported SDRAM devices and the required connections for the address pins. Note that in Table 5-27, page size/column size (not indicated in the table) is varied to get the required addressability range. 98 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[11:0] EMB_WE_DQM[0] EMB_WE_DQM[1] EMB_D[15:0] SDRAM 2M x 16 x 4 Bank CE CAS RAS WE CLK CKE BA[1:0] A[11:0] LDQM UDQM DQ[15:0] Figure 5-21. EMIFB to 2M × 16 × 4 bank SDRAM Interface SDRAM 2M x 32 x 4 Bank EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[11:0] EMB_WE_DQM[3:0] EMB_D[31:0] CE CAS RAS WE CLK CKE BA[1:0] A[11:0] DQM[3:0] DQ[31:0] Figure 5-22. EMIFB to 2M × 32 × 4 bank SDRAM Interface Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 99 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com SDRAM 4M x 16 x 4 Bank EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[12:0] EMB_WE_DQM[0] EMB_WE_DQM[1] EMB_D[15:0] EMB_WE_DQM[2] EMB_WE_DQM[3] EMB_D[31:16] CE CAS RAS WE CLK CKE BA[1:0] A[12:0] LDQM UDQM DQ[15:0] SDRAM 4M x 16 x 4 Bank CE CAS RAS WE CLK CKE BA[1:0] A[12:0] LDQM UDQM DQ[15:0] Figure 5-23. EMIFB to Dual 4M × 16 × 4 bank SDRAM Interface Table 5-27. Example of 16/32-bit EMIFB Address Pin Connections SDRAM SIZE WIDTH BANKS MEMORY 64M bits ×16 4 SDRAM A[11:0] EMIFB EMB_A[11:0] ×32 128M bits 256M bits 4 ×16 4 SDRAM A[10:0] EMIFB EMB_A[10:0] SDRAM A[11:0] EMIFB EMB_A[11:0] ×32 4 SDRAM A[11:0] EMIFB EMB_A[11:0] ×16 4 SDRAM A[12:0] EMIFB EMB_A[12:0] ×32 512M bits ADDRESS PINS 4 ×16 4 ×32 4 SDRAM A[11:0] EMIFB EMB_A[11:0] SDRAM A[12:0] EMIFB EMB_A[12:0] SDRAM A[12:0] EMIFB EMB_A[12:0] Table 5-28 is a list of the EMIFB registers. Table 5-28. EMIFB Base Controller Registers BYTE ADDRESS ACRONYM 0xB000 0000 MIDR 100 REGISTER DESCRIPTION Module ID Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-28. EMIFB Base Controller Registers (continued) BYTE ADDRESS ACRONYM 0xB000 0008 SDCFG SDRAM Configuration Register REGISTER DESCRIPTION 0xB000 000C SDRFC SDRAM Refresh Control Register 0xB000 0010 SDTIM1 SDRAM Timing Register 1 0xB000 0014 SDTIM2 SDRAM Timing Register 2 0xB000 001C SDCFG2 SDRAM Configuration 2 Register 0xB000 0020 BPRIO 0xB000 0040 PC1 Performance Counter 1 Register 0xB000 0044 PC2 Performance Counter 2 Register 0xB000 0048 PCC Performance Counter Configuration Register 0xB000 004C PCMRS 0xB000 0050 PCT Performance Counter Time Register 0xB000 00C0 IRR Interrupt Raw Register 0xB000 00C4 IMR Interrupt Mask Register 0xB000 00C8 IMSR Interrupt Mask Set Register 0xB000 00CC IMCR Interrupt Mask Clear Register Peripheral Bus Burst Priority Register Performance Counter Master Region Select Register Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 101 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.12.3 EMIFB Electrical Data/Timing Table 5-29. EMIFB SDRAM Interface Timing Requirements No. PARAMETER MIN 19 tsu(DV-CLKH) Input setup time, read data valid on EMB_D[31:0] before EMB_CLK rising 20 th(CLKH-DIV) Input hold time, read data valid on EMB_D[31:0] after EMB_CLK rising MAX UNIT 0.8 ns 1.5 ns Table 5-30. EMIFB SDRAM Interface Switching Characteristics No. PARAMETER MAX UNIT tc(CLK) Cycle time, EMIF clock EMB_CLK 6.579 ns 2 tw(CLK) Pulse width, EMIF clock EMB_CLK high or low 2.63 ns 3 td(CLKH-CSV) Delay time, EMB_CLK rising to EMB_CS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMB_CLK rising to EMB_CS[0] invalid 5 td(CLKH-DQMV) Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0] invalid 7 td(CLKH-AV) Delay time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] valid 8 toh(CLKH-AIV) Output hold time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] invalid 9 td(CLKH-DV) Delay time, EMB_CLK rising to EMB_D[31:0] valid 10 toh(CLKH-DIV) Output hold time, EMB_CLK rising to EMB_D[31:0] invalid 11 td(CLKH-RASV) Delay time, EMB_CLK rising to EMB_RAS valid 12 toh(CLKH-RASIV) Output hold time, EMB_CLK rising to EMB_RAS invalid 13 td(CLKH-CASV) Delay time, EMB_CLK rising to EMB_CAS valid 14 toh(CLKH-CASIV) Output hold time, EMB_CLK rising to EMB_CAS invalid 15 td(CLKH-WEV) Delay time, EMB_CLK rising to EMB_WE valid 16 toh(CLKH-WEIV) Output hold time, EMB_CLK rising to EMB_WE invalid 17 tdis(CLKH-DHZ) Delay time, EMB_CLK rising to EMB_D[31:0] 3-stated 18 tena(CLKH-DLZ) Output hold time, EMB_CLK rising to EMB_D[31:0] driving 102 MIN 1 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 5.1 0.9 ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns ns Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 1 BASIC SDRAM WRITE OPERATION 2 2 EMB_CLK 3 4 EMB_CS[0] 5 6 EMB_WE_DQM[3:0] 7 8 7 8 EMB_BA[1:0] EMB_A[12:0] 9 10 EMB_D[31:0] 11 12 EMB_RAS 13 EMB_CAS 15 16 EMB_WE Figure 5-24. EMIFB Basic SDRAM Write Operation BASIC SDRAM READ OPERATION 1 2 2 EMB_CLK 3 4 EMB_CS[0] 5 6 EMB_WE_DQM[3:0] 7 8 7 8 EMB_BA[1:0] EMB_A[12:0] 19 17 20 2 EM_CLK Delay 18 EMB_D[31:0] 11 12 EMB_RAS 13 14 EMB_CAS EMB_WE Figure 5-25. EMIFB Basic SDRAM Read Operation Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 103 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.13 Memory Protection Units The MPU performs memory protection checking. It receives requests from a bus master in the system and checks the address against the fixed and programmable regions to see if the access is allowed. If allowed, the transfer is passed unmodified to its output bus (to the targeted address). If the transfer is illegal (fails the protection check) then the MPU does not pass the transfer to the output bus but rather services the transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as well as generating an interrupt about the fault. The following features are supported by the MPU: • Provides memory protection for fixed and programmable address ranges • Supports multiple programmable address region • Supports secure and debug access privileges • Supports read, write, and execute access privileges • Supports privid(8) associations with ranges • Generates an interrupt when there is a protection violation, and saves violating transfer parameters • MMR access is also protected Table 5-31. MPU1 Configuration Registers MPU1 BYTE ADDRESS ACRONYM 0x01E1 4000 REVID 0x01E1 4004 CONFIG 0x01E1 4010 IRAWSTAT 0x01E1 4014 IENSTAT REGISTER DESCRIPTION Revision ID Configuration Interrupt raw status/set Interrupt enable status/clear 0x01E1 4018 IENSET Interrupt enable 0x01E1 401C IENCLR Interrupt enable clear 0x01E1 4020 - 0x01E1 41FF - 0x01E1 4200 PROG1_MPSAR Programmable range 1, start address 0x01E1 4204 PROG1_MPEAR Programmable range 1, end address 0x01E1 4208 PROG1_MPPA Reserved Programmable range 1, memory page protection attributes 0x01E1 420C - 0x01E1 420F - 0x01E1 4210 PROG2_MPSAR Reserved Programmable range 2, start address 0x01E1 4214 PROG2_MPEAR Programmable range 2, end address 0x01E1 4218 PROG2_MPPA Programmable range 2, memory page protection attributes 0x01E1 421C - 0x01E1 421F - 0x01E1 4220 PROG3_MPSAR Reserved Programmable range 3, start address 0x01E1 4224 PROG3_MPEAR Programmable range 3, end address 0x01E1 4228 PROG3_MPPA 0x01E1 422C - 0x01E1 422F - 0x01E1 4230 PROG4_MPSAR Programmable range 4, start address 0x01E1 4234 PROG4_MPEAR Programmable range 4, end address 0x01E1 4238 PROG4_MPPA 0x01E1 423C - 0x01E1 423F - 0x01E1 4240 PROG5_MPSAR Programmable range 5, start address 0x01E1 4244 PROG5_MPEAR Programmable range 5, end address 0x01E1 4248 PROG5_MPPA 0x01E1 424C - 0x01E1 424F - 0x01E1 4250 PROG6_MPSAR Programmable range 6, start address 0x01E1 4254 PROG6_MPEAR Programmable range 6, end address 0x01E1 4258 PROG6_MPPA 0x01E1 425C - 0x01E1 42FF - 104 Programmable range 3, memory page protection attributes Reserved Programmable range 4, memory page protection attributes Reserved Programmable range 5, memory page protection attributes Reserved Programmable range 6, memory page protection attributes Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-31. MPU1 Configuration Registers (continued) MPU1 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E14300 FLTADDRR 0x01E1 4304 FLTSTAT Fault address Fault status 0x01E1 4308 FLTCLR Fault clear 0x01E1 430C - 0x01E1 4FFF - Reserved Table 5-32. MPU2 Configuration Registers MPU2 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E1 5000 REVID 0x01E1 5004 CONFIG Revision ID 0x01E1 5010 IRAWSTAT 0x01E1 5014 IENSTAT 0x01E1 5018 IENSET Interrupt enable Interrupt enable clear Configuration Interrupt raw status/set Interrupt enable status/clear 0x01E1 501C IENCLR 0x01E1 5020 - 0x01E1 50FF - 0x01E1 5100 FXD_MPSAR Fixed range start address 0x01E1 5104 FXD_MPEAR Fixed range end start address Reserved 0x01E1 5108 FXD_MPPA 0x01E1 510C - 0x01E1 51FF - Fixed range memory page protection attributes 0x01E1 5200 PROG1_MPSAR Programmable range 1, start address 0x01E1 5204 PROG1_MPEAR Programmable range 1, end address 0x01E1 5208 PROG1_MPPA 0x01E1 520C - 0x01E1 520F - 0x01E1 5210 PROG2_MPSAR Programmable range 2, start address 0x01E1 5214 PROG2_MPEAR Programmable range 2, end address 0x01E1 5218 PROG2_MPPA 0x01E1 521C - 0x01E1 521F - 0x01E1 5220 PROG3_MPSAR Programmable range 3, start address 0x01E1 5224 PROG3_MPEAR Programmable range 3, end address 0x01E1 5228 PROG3_MPPA Reserved Programmable range 1, memory page protection attributes Reserved Programmable range 2, memory page protection attributes Reserved Programmable range 3, memory page protection attributes 0x01E1 522C - 0x01E1 522F - 0x01E1 5230 PROG4_MPSAR Reserved Programmable range 4, start address 0x01E1 5234 PROG4_MPEAR Programmable range 4, end address 0x01E1 5238 PROG4_MPPA 0x01E1 523C - 0x01E1 523F - Programmable range 4, memory page protection attributes 0x01E1 5240 PROG5_MPSAR Programmable range 5, start address 0x01E1 5244 PROG5_MPEAR Programmable range 5, end address Reserved 0x01E1 5248 PROG5_MPPA 0x01E1 524C - 0x01E1 524F - 0x01E1 5250 PROG6_MPSAR Programmable range 6, start address 0x01E1 5254 PROG6_MPEAR Programmable range 6, end address 0x01E1 5258 PROG6_MPPA 0x01E1 525C - 0x01E1 525F - 0x01E1 5260 PROG7_MPSAR Programmable range 7, start address 0x01E1 5264 PROG7_MPEAR Programmable range 7, end address 0x01E1 5268 PROG7_MPPA 0x01E1 526C - 0x01E1 526F - Copyright © 2008–2013, Texas Instruments Incorporated Programmable range 5, memory page protection attributes Reserved Programmable range 6, memory page protection attributes Reserved Programmable range 7, memory page protection attributes Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 105 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-32. MPU2 Configuration Registers (continued) MPU2 BYTE ADDRESS ACRONYM 0x01E1 5270 PROG8_MPSAR Programmable range 8, start address 0x01E1 5274 PROG8_MPEAR Programmable range 8, end address 0x01E1 5278 PROG8_MPPA REGISTER DESCRIPTION Programmable range 8, memory page protection attributes 0x01E1 527C - 0x01E1 527F - 0x01E1 5280 PROG9_MPSAR Reserved Programmable range 9, start address 0x01E1 5284 PROG9_MPEAR Programmable range 9, end address 0x01E1 5288 PROG9_MPPA 0x01E1 528C - 0x01E1 528F - Programmable range 9, memory page protection attributes 0x01E1 5290 PROG10_MPSAR Programmable range 10, start address 0x01E1 5294 PROG10_MPEAR Programmable range 10, end address Reserved 0x01E1 5298 PROG10_MPPA 0x01E1 529C - 0x01E1 529F - 0x01E1 52A0 PROG11_MPSAR Programmable range 11, start address 0x01E1 52A4 PROG11_MPEAR Programmable range 11, end address 0x01E1 52A8 PROG11_MPPA 0x01E1 52AC - 0x01E1 52AF - 0x01E1 52B0 PROG12_MPSAR Programmable range 12, start address 0x01E1 52B4 PROG12_MPEAR Programmable range 12, end address 0x01E1 52B8 PROG12_MPPA 0x01E1 52BC - 0x01E1 52FF - 0x01E1 5300 FLTADDRR 0x01E1 5304 FLTSTAT Fault status 0x01E1 5308 FLTCLR Fault clear 0x01E1 530C - 0x01E1 5FFF - Reserved 106 Programmable range 10, memory page protection attributes Reserved Programmable range 11, memory page protection attributes Reserved Programmable range 12, memory page protection attributes Reserved Fault address Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.14 MMC / SD / SDIO (MMCSD) 5.14.1 MMCSD Peripheral Description The OMAP-L137 includes an MMCSD controller which is compliant with MMC V4.0, Secure Digital Part 1 Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications. The MMC/SD Controller has following features: • MultiMediaCard (MMC) support • Secure Digital (SD) Memory Card support • MMC/SD protocol support • SD high capacity support • SDIO protocol support • Programmable clock frequency • 512 bit Read/Write FIFO to lower system overhead • Slave EDMA transfer capability The OMAP-L137 MMC/SD Controller does not support SPI mode. 5.14.2 MMCSD Peripheral Register Description(s) Table 5-33. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C4 0000 MMCCTL MMC Control Register 0x01C4 0004 MMCCLK MMC Memory Clock Control Register 0x01C4 0008 MMCST0 MMC Status Register 0 0x01C4 000C MMCST1 MMC Status Register 1 0x01C4 0010 MMCIM 0x01C4 0014 MMCTOR MMC Response Time-Out Register 0x01C4 0018 MMCTOD MMC Data Read Time-Out Register 0x01C4 001C MMCBLEN MMC Block Length Register 0x01C4 0020 MMCNBLK MMC Number of Blocks Register 0x01C4 0024 MMCNBLC MMC Number of Blocks Counter Register MMC Interrupt Mask Register 0x01C4 0028 MMCDRR MMC Data Receive Register 0x01C4 002C MMCDXR MMC Data Transmit Register 0x01C4 0030 MMCCMD MMC Command Register 0x01C4 0034 MMCARGHL MMC Argument Register 0x01C4 0038 MMCRSP01 MMC Response Register 0 and 1 0x01C4 003C MMCRSP23 MMC Response Register 2 and 3 0x01C4 0040 MMCRSP45 MMC Response Register 4 and 5 0x01C4 0044 MMCRSP67 MMC Response Register 6 and 7 0x01C4 0048 MMCDRSP MMC Data Response Register 0x01C4 0050 MMCCIDX MMC Command Index Register 0x01C4 0064 SDIOCTL SDIO Control Register 0x01C4 0068 SDIOST0 SDIO Status Register 0 0x01C4 006C SDIOIEN SDIO Interrupt Enable Register 0x01C4 0070 SDIOIST SDIO Interrupt Status Register 0x01C4 0074 MMCFIFOCTL MMC FIFO Control Register Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 107 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.14.3 MMC/SD Electrical Data/Timing Table 5-34. Timing Requirements for MMC/SD Module (see Figure 5-27 and Figure 5-29) No. PARAMETER MIN MAX UNIT 1 tsu(CMDV-CLKH) Setup time, MMCSD_CMD valid before MMCSD_CLK high 3.2 ns 2 th(CLKH-CMDV) Hold time, MMCSD_CMD valid after MMCSD_CLK high 1.5 ns 3 tsu(DATV-CLKH) Setup time, MMCSD_DATx valid before MMCSD_CLK high 3.2 ns 4 th(CLKH-DATV) Hold time, MMCSD_DATx valid after MMCSD_CLK high 1.5 ns Table 5-35. Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module (see Figure 5-26 through Figure 5-29) No. PARAMETER MIN MAX UNIT 0 52 MHz 0 400 KHz 7 f(CLK) Operating frequency, MMCSD_CLK 8 f(CLK_ID) Identification mode frequency, MMCSD_CLK 9 tW(CLKL) Pulse width, MMCSD_CLK low 6.5 ns 10 tW(CLKH) Pulse width, MMCSD_CLK high 6.5 ns 11 tr(CLK) Rise time, MMCSD_CLK 3 ns 12 tf(CLK) Fall time, MMCSD_CLK 3 ns 13 td(CLKL-CMD) Delay time, MMCSD_CLK low to MMCSD_CMD transition -4.5 2.5 ns 14 td(CLKL-DAT) Delay time, MMCSD_CLK low to MMCSD_DATx transition -4.5 2.5 ns 108 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 10 9 7 MMCSD_CLK 13 13 START MMCSD_CMD 13 XMIT Valid Valid 13 Valid END Figure 5-26. MMC/SD Host Command Timing 9 7 10 MMCSD_CLK 1 2 START MMCSD_CMD XMIT Valid Valid Valid END Figure 5-27. MMC/SD Card Response Timing 10 9 7 MMCSD_CLK 14 14 START MMCSD_DATx 14 D0 D1 14 Dx END Figure 5-28. MMC/SD Host Write Timing 9 10 7 MMCSD_CLK 4 4 3 MMCSD_DATx Start 3 D0 D1 Dx End Figure 5-29. MMC/SD Host Read and Card CRC Status Timing Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 109 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.15 Ethernet Media Access Controller (EMAC) The Ethernet Media Access Controller (EMAC) provides an efficient interface between OMAP-L137 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The EMAC controls the flow of packet data from the OMAP-L137 device to the PHY. The MDIO module controls PHY configuration and status monitoring. Both the EMAC and the MDIO modules interface to the OMAP-L137 device through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to multiplex and control interrupts. 5.15.1 EMAC Peripheral Register Description(s) Table 5-36. Ethernet Media Access Controller (EMAC) Registers 110 BYTE ADDRESS ACRONYM 0x01E2 3000 TXREV 0x01E2 3004 TXCONTROL 0x01E2 3008 TXTEARDOWN REGISTER DESCRIPTION Transmit Revision Register Transmit Control Register Transmit Teardown Register 0x01E2 3010 RXREV 0x01E2 3014 RXCONTROL Receive Revision Register 0x01E2 3018 RXTEARDOWN Receive Teardown Register 0x01E2 3080 TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register 0x01E2 3084 TXINTSTATMASKED 0x01E2 3088 TXINTMASKSET 0x01E2 308C TXINTMASKCLEAR 0x01E2 3090 MACINVECTOR 0x01E2 3094 MACEOIVECTOR MAC End Of Interrupt Vector Register 0x01E2 30A0 RXINTSTATRAW Receive Interrupt Status (Unmasked) Register 0x01E2 30A4 RXINTSTATMASKED 0x01E2 30A8 RXINTMASKSET 0x01E2 30AC RXINTMASKCLEAR Receive Interrupt Mask Clear Register 0x01E2 30B0 MACINTSTATRAW MAC Interrupt Status (Unmasked) Register 0x01E2 30B4 MACINTSTATMASKED 0x01E2 30B8 MACINTMASKSET 0x01E2 30BC MACINTMASKCLEAR 0x01E2 3100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register 0x01E2 3104 RXUNICASTSET Receive Unicast Enable Set Register 0x01E2 3108 RXUNICASTCLEAR Receive Control Register Transmit Interrupt Status (Masked) Register Transmit Interrupt Mask Set Register Transmit Interrupt Clear Register MAC Input Vector Register Receive Interrupt Status (Masked) Register Receive Interrupt Mask Set Register MAC Interrupt Status (Masked) Register MAC Interrupt Mask Set Register MAC Interrupt Mask Clear Register Receive Unicast Clear Register 0x01E2 310C RXMAXLEN 0x01E2 3110 RXBUFFEROFFSET Receive Maximum Length Register 0x01E2 3114 RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register 0x01E2 3120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register 0x01E2 3124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register 0x01E2 3128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register 0x01E2 312C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register 0x01E2 3130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register 0x01E2 3134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register 0x01E2 3138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register 0x01E2 313C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register Receive Buffer Offset Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-36. Ethernet Media Access Controller (EMAC) Registers (continued) BYTE ADDRESS ACRONYM 0x01E2 3140 RX0FREEBUFFER Receive Channel 0 Free Buffer Count Register REGISTER DESCRIPTION 0x01E2 3144 RX1FREEBUFFER Receive Channel 1 Free Buffer Count Register 0x01E2 3148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register 0x01E2 314C RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register 0x01E2 3150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register 0x01E2 3154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register 0x01E2 3158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register 0x01E2 315C RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register 0x01E2 3160 MACCONTROL MAC Control Register 0x01E2 3164 MACSTATUS MAC Status Register 0x01E2 3168 EMCONTROL Emulation Control Register 0x01E2 316C FIFOCONTROL 0x01E2 3170 MACCONFIG MAC Configuration Register 0x01E2 3174 SOFTRESET Soft Reset Register 0x01E2 31D0 MACSRCADDRLO MAC Source Address Low Bytes Register 0x01E2 31D4 MACSRCADDRHI MAC Source Address High Bytes Register 0x01E2 31D8 MACHASH1 MAC Hash Address Register 1 0x01E2 31DC MACHASH2 MAC Hash Address Register 2 0x01E2 31E0 BOFFTEST Back Off Test Register 0x01E2 31E4 TPACETEST 0x01E2 31E8 RXPAUSE Receive Pause Timer Register Transmit Pause Timer Register FIFO Control Register Transmit Pacing Algorithm Test Register 0x01E2 31EC TXPAUSE 0x01E2 3200 - 0x01E2 32FC (see Table 5-37) 0x01E2 3500 MACADDRLO MAC Address Low Bytes Register, Used in Receive Address Matching 0x01E2 3504 MACADDRHI MAC Address High Bytes Register, Used in Receive Address Matching 0x01E2 3508 MACINDEX 0x01E2 3600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register 0x01E2 3604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register 0x01E2 3608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register 0x01E2 360C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register 0x01E2 3610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register 0x01E2 3614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register 0x01E2 3618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register 0x01E2 361C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register 0x01E2 3620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register 0x01E2 3624 RX1HDP Receive Channel 1 DMA Head Descriptor Pointer Register 0x01E2 3628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register 0x01E2 362C RX3HDP Receive Channel 3 DMA Head Descriptor Pointer Register 0x01E2 3630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register 0x01E2 3634 RX5HDP Receive Channel 5 DMA Head Descriptor Pointer Register 0x01E2 3638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register 0x01E2 363C RX7HDP Receive Channel 7 DMA Head Descriptor Pointer Register 0x01E2 3640 TX0CP Transmit Channel 0 Completion Pointer Register 0x01E2 3644 TX1CP Transmit Channel 1 Completion Pointer Register EMAC Statistics Registers MAC Index Register 0x01E2 3648 TX2CP Transmit Channel 2 Completion Pointer Register 0x01E2 364C TX3CP Transmit Channel 3 Completion Pointer Register 0x01E2 3650 TX4CP Transmit Channel 4 Completion Pointer Register Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 111 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-36. Ethernet Media Access Controller (EMAC) Registers (continued) BYTE ADDRESS ACRONYM 0x01E2 3654 TX5CP Transmit Channel 5 Completion Pointer Register REGISTER DESCRIPTION 0x01E2 3658 TX6CP Transmit Channel 6 Completion Pointer Register 0x01E2 365C TX7CP Transmit Channel 7 Completion Pointer Register 0x01E2 3660 RX0CP Receive Channel 0 Completion Pointer Register 0x01E2 3664 RX1CP Receive Channel 1 Completion Pointer Register 0x01E2 3668 RX2CP Receive Channel 2 Completion Pointer Register 0x01E2 366C RX3CP Receive Channel 3 Completion Pointer Register 0x01E2 3670 RX4CP Receive Channel 4 Completion Pointer Register 0x01E2 3674 RX5CP Receive Channel 5 Completion Pointer Register 0x01E2 3678 RX6CP Receive Channel 6 Completion Pointer Register 0x01E2 367C RX7CP Receive Channel 7 Completion Pointer Register Table 5-37. EMAC Statistics Registers BYTE ADDRESS ACRONYM 0x01E2 3200 RXGOODFRAMES Good Receive Frames Register 0x01E2 3204 RXBCASTFRAMES Broadcast Receive Frames Register (Total number of good broadcast frames received) 0x01E2 3208 RXMCASTFRAMES Multicast Receive Frames Register (Total number of good multicast frames received) 0x01E2 320C RXPAUSEFRAMES Pause Receive Frames Register 0x01E2 3210 RXCRCERRORS 0x01E2 3214 RXALIGNCODEERRORS 0x01E2 3218 RXOVERSIZED 0x01E2 321C RXJABBER 0x01E2 3220 RXUNDERSIZED Receive Undersized Frames Register (Total number of undersized frames received) 0x01E2 3224 RXFRAGMENTS Receive Frame Fragments Register REGISTER DESCRIPTION Receive CRC Errors Register (Total number of frames received with CRC errors) Receive Alignment/Code Errors Register (Total number of frames received with alignment/code errors) Receive Oversized Frames Register (Total number of oversized frames received) Receive Jabber Frames Register (Total number of jabber frames received) 0x01E2 3228 RXFILTERED 0x01E2 322C RXQOSFILTERED 0x01E2 3230 RXOCTETS 0x01E2 3234 TXGOODFRAMES Good Transmit Frames Register (Total number of good frames transmitted) 0x01E2 3238 TXBCASTFRAMES Broadcast Transmit Frames Register 0x01E2 323C TXMCASTFRAMES Multicast Transmit Frames Register 0x01E2 3240 TXPAUSEFRAMES Pause Transmit Frames Register 0x01E2 3244 TXDEFERRED Deferred Transmit Frames Register Transmit Collision Frames Register 0x01E2 3248 TXCOLLISION 0x01E2 324C TXSINGLECOLL 0x01E2 3250 TXMULTICOLL 0x01E2 3254 TXEXCESSIVECOLL Filtered Receive Frames Register Received QOS Filtered Frames Register Receive Octet Frames Register (Total number of received bytes in good frames) Transmit Single Collision Frames Register Transmit Multiple Collision Frames Register Transmit Excessive Collision Frames Register 0x01E2 3258 TXLATECOLL Transmit Late Collision Frames Register 0x01E2 325C TXUNDERRUN Transmit Underrun Error Register 0x01E2 3260 TXCARRIERSENSE 0x01E2 3264 TXOCTETS 112 Transmit Carrier Sense Errors Register Transmit Octet Frames Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-37. EMAC Statistics Registers (continued) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E2 3268 FRAME64 0x01E2 326C FRAME65T127 Transmit and Receive 64 Octet Frames Register Transmit and Receive 65 to 127 Octet Frames Register 0x01E2 3270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register 0x01E2 3274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register 0x01E2 3278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register 0x01E2 327C FRAME1024TUP Transmit and Receive 1024 to 1518 Octet Frames Register 0x01E2 3280 NETOCTETS 0x01E2 3284 RXSOFOVERRUNS Network Octet Frames Register Receive FIFO or DMA Start of Frame Overruns Register 0x01E2 3288 RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns Register 0x01E2 328C RXDMAOVERRUNS Receive DMA Start of Frame and Middle of Frame Overruns Register Table 5-38. EMAC Control Module Registers BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E2 2000 REV 0x01E2 2004 SOFTRESET EMAC Control Module Revision Register EMAC Control Module Software Reset Register 0x01E2 200C INTCONTROL EMAC Control Module Interrupt Control Register 0x01E2 2010 C0RXTHRESHEN 0x01E2 2014 C0RXEN EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register 0x01E2 2018 C0TXEN EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register 0x01E2 201C C0MISCEN 0x01E2 2020 C1RXTHRESHEN 0x01E2 2024 C1RXEN EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register 0x01E2 2028 C1TXEN EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register 0x01E2 202C C1MISCEN 0x01E2 2030 C2RXTHRESHEN EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register 0x01E2 2034 C2RXEN EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register 0x01E2 2038 C2TXEN 0x01E2 203C C2MISCEN 0x01E2 2040 C0RXTHRESHSTAT 0x01E2 2044 C0RXSTAT EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register 0x01E2 2048 C0TXSTAT 0x01E2 204C C0MISCSTAT 0x01E2 2050 C1RXTHRESHSTAT 0x01E2 2054 C1RXSTAT EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register 0x01E2 2058 C1TXSTAT EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register 0x01E2 205C C1MISCSTAT 0x01E2 2060 C2RXTHRESHSTAT 0x01E2 2064 C2RXSTAT EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register 0x01E2 2068 C2TXSTAT EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register 0x01E2 206C C2MISCSTAT 0x01E2 2070 C0RXIMAX EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register 0x01E2 2074 C0TXIMAX EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register 0x01E2 2078 C1RXIMAX EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register 0x01E2 207C C1TXIMAX EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register 0x01E2 2080 C2RXIMAX EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register 0x01E2 2084 C2TXIMAX EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register Copyright © 2008–2013, Texas Instruments Incorporated EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 113 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-39. EMAC Control Module RAM BYTE ADRESS REGISTER DESCRIPTION 0x01E2 0000 - 0x01E2 1FFF EMAC Local Buffer Descriptor Memory Table 5-40. RMII Timing Requirements No. PARAMETER MIN TYP MAX 20 UNIT 1 tc(REFCLK) Cycle Time, RMII_MHZ_50_CLK 2 tw(REFCLKH) Pulse Width, RMII_MHZ_50_CLK High 7 13 ns ns 3 tw(REFCLKL) Pulse Width, RMII_MHZ_50_CLK Low 7 13 ns 6 tsu(RXD-REFCLK) Input Setup Time, RXD Valid before RMII_MHZ_50_CLK High 4 ns 7 th(REFCLK-RXD) Input Hold Time, RXD Valid after RMII_MHZ_50_CLK High 2 ns 8 tsu(CRSDV-REFCLK) Input Setup Time, CRSDV Valid before RMII_MHZ_50_CLK High 4 ns 9 th(REFCLK-CRSDV) Input Hold Time, CRSDV Valid after RMII_MHZ_50_CLK High 2 ns 10 tsu(RXER-REFCLK) Input Setup Time, RXER Valid before RMII_MHZ_50_CLK High 4 ns 11 th(REFCLKR-RXER) Input Hold Time, RXER Valid after RMII_MHZ_50_CLK High 2 ns Note: Per the RMII industry specification, the RMII reference clock (RMII_MHZ_50_CLK) must have jitter tolerance of 50 ppm or less. Table 5-41. RMII Switching Characteristics No. MAX UNIT 4 td(REFCLK-TXD) Output Delay Time, RMII_MHZ_50_CLK High to TXD Valid PARAMETER MIN 2.5 TYP 13 ns 5 td(REFCLK-TXEN) Output Delay Time, RMII_MHZ_50_CLK High to TXEN Valid 2.5 13 ns 1 2 3 RMII_MHz_50_CLK 5 5 RMII_TXEN 4 RMII_TXD[1:0] 6 7 RMII_RXD[1:0] 8 9 RMII_CRS_DV 10 11 RMII_RXER Figure 5-30. RMII Timing Diagram 114 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.16 Management Data Input/Output (MDIO) The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. Only one PHY may be connected at any given time. For more detailed information on the MDIO peripheral, see the OMAP-L137 Applications Processor DSP Peripherals Overview Reference Guide. (SPRUGA6). 5.16.1 MDIO Registers For a list of supported MDIO registers see Table 5-42 [MDIO Registers]. Table 5-42. MDIO Register Memory Map BYTE ADDRESS ACRONYM 0x01E2 4000 REV REGISTER DESCRIPTION 0x01E2 4004 CONTROL 0x01E2 4008 ALIVE MDIO PHY Alive Status Register 0x01E2 400C LINK MDIO PHY Link Status Register Revision Identification Register 0x01E2 4010 LINKINTRAW 0x01E2 4014 LINKINTMASKED 0x01E2 4018 – 0x01E2 4020 USERINTRAW MDIO Control Register MDIO Link Status Change Interrupt (Unmasked) Register MDIO Link Status Change Interrupt (Masked) Register Reserved MDIO User Command Complete Interrupt (Unmasked) Register 0x01E2 4024 USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register 0x01E2 4028 USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register 0x01E2 402C USERINTMASKCLEAR MDIO User Command Complete Interrupt Mask Clear Register 0x01E2 4030 - 0x01E2 407C – 0x01E2 4080 USERACCESS0 Reserved MDIO User Access Register 0 0x01E2 4084 USERPHYSEL0 MDIO User PHY Select Register 0 0x01E2 4088 USERACCESS1 MDIO User Access Register 1 0x01E2 408C USERPHYSEL1 MDIO User PHY Select Register 1 0x01E2 4090 - 0x01E2 47FF – Copyright © 2008–2013, Texas Instruments Incorporated Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 115 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.16.2 Management Data Input/Output (MDIO) Electrical Data/Timing Table 5-43. Timing Requirements for MDIO Input (see Figure 5-31 and Figure 5-32) No. PARAMETER MIN MAX UNIT 1 tc(MDIO_CLK) Cycle time, MDIO_CLK 400 2 tw(MDIO_CLK) Pulse duration, MDIO_CLK high/low 180 ns 3 tt(MDIO_CLK) Transition time, MDIO_CLK 4 tsu(MDIO-MDIO_CLKH) Setup time, MDIO_D data input valid before MDIO_CLK high 10 ns 5 th(MDIO_CLKH-MDIO) Hold time, MDIO_D data input valid after MDIO_CLK high 0 ns ns 5 ns 1 3 3 MDIO_CLK 4 5 MDIO_D (input) Figure 5-31. MDIO Input Timing Table 5-44. Switching Characteristics Over Recommended Operating Conditions for MDIO Output (see Figure 5-32) No. 7 PARAMETER td(MDIO_CLKL-MDIO) Delay time, MDIO_CLK low to MDIO_D data output valid MIN MAX UNIT 0 100 ns 1 MDIO_CLK 7 MDIO_D (output) Figure 5-32. MDIO Output Timing 116 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.17 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) The McASP serial port is specifically designed for multichannel audio applications. Its key features are: • Flexible clock and frame sync generation logic and on-chip dividers • Up to sixteen transmit or receive data pins and serializers • Large number of serial data format options, including: – TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst) – Time slots of 8,12,16, 20, 24, 28, and 32 bits – First bit delay 0, 1, or 2 clocks – MSB or LSB first bit order – Left- or right-aligned data words within time slots • DIT Mode (optional) with 384-bit Channel Status and 384-bit User Data registers • Extensive error checking and mute generation logic • All unused pins GPIO-capable Additionally, while the OMAP-L13x McASP modules are backward compatible with the McASP on previous devices; the OMAP-L13x McASP includes the following new features: • Transmit & Receive FIFO Buffers for each McASP. Allows the McASP to operate at a higher sample rate by making it more tolerant to DMA latency. • Dynamic Adjustment of Clock Dividers – Clock Divider Value may be changed without resetting the McASP The three McASPs on the OMAP-L137 are configured with the following options: Table 5-45. OMAP-L137 McASP Configurations (1) (1) Module Serializers AFIFO DIT OMAP-L137 Pins McASP0 16 64 Word RX 64 Word TX N AXR0[15:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0, AFSX0, AMUTE0 McASP1 12 64 Word RX 64 Word TX N AXR1[11:10], AXR1[8:0], AHCLKR1, ACLKR1, AFSR1, AHCLKX1, ACLKX1, AFSX1, AMUTE1 McASP2 4 16 Word RX 16 Word TX Y AXR2[3:0], AHCLKR2, ACLKR2, AFSR2, AHCLKX2, ACLKX2, AFSX2, AMUTE2 Pins available are the maximum number of pins that may be configured for a particular McASP; not including pin multiplexing. Pins Peripheral Configuration Bus GIO Control DIT RAM 384 C 384 U Optional McASP DMA Bus (Dedicated) Function Receive Logic Clock/Frame Generator State Machine AHCLKRx ACLKRx AFSRx Receive Master Clock Receive Bit Clock Receive Left/Right Clock or Frame Sync Clock Check and Error Detection AMUTEINx AMUTEx The McASPs DO NOT have dedicated AMUTEINx pins. Transmit Logic Clock/Frame Generator State Machine AFSXx ACLKXx AHCLKXx Transmit Left/Right Clock or Frame Sync Transmit Bit Clock Transmit Master Clock Serializer 0 AXRx[0] Transmit/Receive Serial Data Pin Serializer 1 AXRx[1] Transmit/Receive Serial Data Pin Serializer y AXRx[y] Transmit/Receive Serial Data Pin Transmit Formatter Receive Formatter McASPx (x = 0, 1, 2) Figure 5-33. McASP Block Diagram Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 117 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.17.1 McASP Peripheral Registers Description(s) Registers for the McASP are summarized in Table 5-46. The registers are accessed through the peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can also be accessed through the DMA port, as listed in Table 5-47 Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 5-48. Note that the AFIFO Write FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control registers are accessed through the peripheral configuration port. Table 5-46. McASP Registers Accessed Through Peripheral Configuration Port McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01D0 0000 0x01D0 4000 0x01D0 8000 REV 0x01D0 0010 0x01D0 4010 0x01D0 8010 PFUNC Pin function register 0x01D0 0014 0x01D0 4014 0x01D0 8014 PDIR Pin direction register 0x01D0 0018 0x01D0 4018 0x01D0 8018 PDOUT 0x01D0 001C 0x01D0 401C 0x01D0 801C PDIN 0x01D0 001C 0x01D0 401C 0x01D0 801C PDSET Writes affect: Pin data set register (alternate write address: PDOUT) 0x01D0 0020 0x01D0 4020 0x01D0 8020 PDCLR Pin data clear register (alternate write address: PDOUT) 0x01D0 0044 0x01D0 4044 0x01D0 8044 GBLCTL Global control register Revision identification register Pin data output register Read returns: Pin data input register 0x01D0 0048 0x01D0 4048 0x01D0 8048 AMUTE Audio mute control register 0x01D0 004C 0x01D0 404C 0x01D0 804C DLBCTL Digital loopback control register 0x01D0 0050 0x01D0 4050 0x01D0 8050 DITCTL DIT mode control register 0x01D0 0060 0x01D0 4060 0x01D0 8060 RGBLCTL 0x01D0 0064 0x01D0 4064 0x01D0 8064 RMASK Receiver global control register: Alias of GBLCTL, only receive bits are affected - allows receiver to be reset independently from transmitter Receive format unit bit mask register 0x01D0 0068 0x01D0 4068 0x01D0 8068 RFMT 0x01D0 006C 0x01D0 406C 0x01D0 806C AFSRCTL 0x01D0 0070 0x01D0 4070 0x01D0 8070 ACLKRCTL 0x01D0 0074 0x01D0 4074 0x01D0 8074 AHCLKRCTL 0x01D0 0078 0x01D0 4078 0x01D0 8078 RTDM 0x01D0 007C 0x01D0 407C 0x01D0 807C RINTCTL 0x01D0 0080 0x01D0 4080 0x01D0 8080 RSTAT Receiver status register 0x01D0 0084 0x01D0 4084 0x01D0 8084 RSLOT Current receive TDM time slot register 0x01D0 0088 0x01D0 4088 0x01D0 8088 RCLKCHK Receive clock check control register 0x01D0 008C 0x01D0 408C 0x01D0 808C REVTCTL Receiver DMA event control register 0x01D0 00A0 0x01D0 40A0 0x01D0 80A0 XGBLCTL Transmitter global control register. Alias of GBLCTL, only transmit bits are affected - allows transmitter to be reset independently from receiver 0x01D0 00A4 0x01D0 40A4 0x01D0 80A4 XMASK 0x01D0 00A8 0x01D0 40A8 0x01D0 80A8 XFMT 0x01D0 00AC 0x01D0 40AC 0x01D0 80AC AFSXCTL 0x01D0 00B0 0x01D0 40B0 0x01D0 80B0 ACLKXCTL 0x01D0 00B4 0x01D0 40B4 0x01D0 80B4 AHCLKXCTL 0x01D0 00B8 0x01D0 40B8 0x01D0 80B8 XTDM Transmit TDM time slot 0-31 register 0x01D0 00BC 0x01D0 40BC 0x01D0 80BC XINTCTL Transmitter interrupt control register 0x01D0 00C0 0x01D0 40C0 0x01D0 80C0 XSTAT Transmitter status register 0x01D0 00C4 0x01D0 40C4 0x01D0 80C4 XSLOT Current transmit TDM time slot register 0x01D0 00C8 0x01D0 40C8 0x01D0 80C8 XCLKCHK 118 Receive bit stream format register Receive frame sync control register Receive clock control register Receive high-frequency clock control register Receive TDM time slot 0-31 register Receiver interrupt control register Transmit format unit bit mask register Transmit bit stream format register Transmit frame sync control register Transmit clock control register Transmit high-frequency clock control register Transmit clock check control register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-46. McASP Registers Accessed Through Peripheral Configuration Port (continued) McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01D0 00CC 0x01D0 40CC 0x01D0 80CC XEVTCTL Transmitter DMA event control register 0x01D0 0100 0x01D0 4100 0x01D0 8100 DITCSRA0 Left (even TDM time slot) channel status register (DIT mode) 0 0x01D0 0104 0x01D0 4104 0x01D0 8104 DITCSRA1 Left (even TDM time slot) channel status register (DIT mode) 1 0x01D0 0108 0x01D0 4108 0x01D0 8108 DITCSRA2 Left (even TDM time slot) channel status register (DIT mode) 2 0x01D0 010C 0x01D0 410C 0x01D0 810C DITCSRA3 Left (even TDM time slot) channel status register (DIT mode) 3 0x01D0 0110 0x01D0 4110 0x01D0 8110 DITCSRA4 Left (even TDM time slot) channel status register (DIT mode) 4 0x01D0 0114 0x01D0 4114 0x01D0 8114 DITCSRA5 Left (even TDM time slot) channel status register (DIT mode) 5 0x01D0 0118 0x01D0 4118 0x01D0 8118 DITCSRB0 Right (odd TDM time slot) channel status register (DIT mode) 0 0x01D0 011C 0x01D0 411C 0x01D0 811C DITCSRB1 Right (odd TDM time slot) channel status register (DIT mode) 1 0x01D0 0120 0x01D0 4120 0x01D0 8120 DITCSRB2 Right (odd TDM time slot) channel status register (DIT mode) 2 0x01D0 0124 0x01D0 4124 0x01D0 8124 DITCSRB3 Right (odd TDM time slot) channel status register (DIT mode) 3 0x01D0 0128 0x01D0 4128 0x01D0 8128 DITCSRB4 Right (odd TDM time slot) channel status register (DIT mode) 4 0x01D0 012C 0x01D0 412C 0x01D0 812C DITCSRB5 Right (odd TDM time slot) channel status register (DIT mode) 5 0x01D0 0130 0x01D0 4130 0x01D0 8130 DITUDRA0 Left (even TDM time slot) channel user data register (DIT mode) 0 0x01D0 0134 0x01D0 4134 0x01D0 8134 DITUDRA1 Left (even TDM time slot) channel user data register (DIT mode) 1 0x01D0 0138 0x01D0 4138 0x01D0 8138 DITUDRA2 Left (even TDM time slot) channel user data register (DIT mode) 2 0x01D0 013C 0x01D0 413C 0x01D0 813C DITUDRA3 Left (even TDM time slot) channel user data register (DIT mode) 3 0x01D0 0140 0x01D0 4140 0x01D0 8140 DITUDRA4 Left (even TDM time slot) channel user data register (DIT mode) 4 0x01D0 0144 0x01D0 4144 0x01D0 8144 DITUDRA5 Left (even TDM time slot) channel user data register (DIT mode) 5 0x01D0 0148 0x01D0 4148 0x01D0 8148 DITUDRB0 Right (odd TDM time slot) channel user data register (DIT mode) 0 0x01D0 014C 0x01D0 414C 0x01D0 814C DITUDRB1 Right (odd TDM time slot) channel user data register (DIT mode) 1 0x01D0 0150 0x01D0 4150 0x01D0 8150 DITUDRB2 Right (odd TDM time slot) channel user data register (DIT mode) 2 0x01D0 0154 0x01D0 4154 0x01D0 8154 DITUDRB3 Right (odd TDM time slot) channel user data register (DIT mode) 3 0x01D0 0158 0x01D0 4158 0x01D0 8158 DITUDRB4 Right (odd TDM time slot) channel user data register (DIT mode) 4 0x01D0 015C 0x01D0 415C 0x01D0 815C DITUDRB5 Right (odd TDM time slot) channel user data register (DIT mode) 5 0x01D0 0180 0x01D0 4180 0x01D0 8180 SRCTL0 Serializer control register 0 0x01D0 0184 0x01D0 4184 0x01D0 8184 SRCTL1 Serializer control register 1 0x01D0 0188 0x01D0 4188 0x01D0 8188 SRCTL2 Serializer control register 2 0x01D0 018C 0x01D0 418C 0x01D0 818C SRCTL3 Serializer control register 3 0x01D0 0190 0x01D0 4190 0x01D0 8190 SRCTL4 Serializer control register 4 0x01D0 0194 0x01D0 4194 0x01D0 8194 SRCTL5 Serializer control register 5 0x01D0 0198 0x01D0 4198 0x01D0 8198 SRCTL6 Serializer control register 6 0x01D0 019C 0x01D0 419C 0x01D0 819C SRCTL7 Serializer control register 7 0x01D0 01A0 0x01D0 41A0 0x01D0 81A0 SRCTL8 Serializer control register 8 0x01D0 01A4 0x01D0 41A4 0x01D0 81A4 SRCTL9 Serializer control register 9 0x01D0 01A8 0x01D0 41A8 0x01D0 81A8 SRCTL10 Serializer control register 10 0x01D0 01AC 0x01D0 41AC 0x01D0 81AC SRCTL11 Serializer control register 11 0x01D0 01B0 0x01D0 41B0 0x01D0 81B0 SRCTL12 Serializer control register 12 0x01D0 01B4 0x01D0 41B4 0x01D0 81B4 SRCTL13 Serializer control register 13 0x01D0 01B8 0x01D0 41B8 0x01D0 81B8 SRCTL14 Serializer control register 14 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 15 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0 (1) Transmit buffer register for serializer 0 (1) Transmit buffer register for serializer 1 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2 (1) Transmit buffer register for serializer 2 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3 (1) Transmit buffer register for serializer 3 (1) Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 119 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-46. McASP Registers Accessed Through Peripheral Configuration Port (continued) McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4 (1) Transmit buffer register for serializer 4 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 (1) Transmit buffer register for serializer 5 (1) Transmit buffer register for serializer 6 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7 (1) Transmit buffer register for serializer 7 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 (1) Transmit buffer register for serializer 8 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 (1) Transmit buffer register for serializer 9 (1) Transmit buffer register for serializer 10 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11 (1) Transmit buffer register for serializer 11 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 (1) Transmit buffer register for serializer 12 (1) Transmit buffer register for serializer 13 0x01D0 0234 0x01D0 4234 0x01D0 8234 XBUF13 0x01D0 0238 0x01D0 4238 0x01D0 8238 XBUF14 (1) Transmit buffer register for serializer 14 0x01D0 023C 0x01D0 423C 0x01D0 823C XBUF15 (1) Transmit buffer register for serializer 15 (2) Receive buffer register for serializer 0 0x01D0 0280 0x01D0 4280 0x01D0 8280 RBUF0 0x01D0 0284 0x01D0 4284 0x01D0 8284 RBUF1 (2) Receive buffer register for serializer 1 0x01D0 0288 0x01D0 4288 0x01D0 8288 RBUF2 (3) Receive buffer register for serializer 2 0x01D0 028C 0x01D0 428C 0x01D0 828C RBUF3 (3) Receive buffer register for serializer 3 (3) Receive buffer register for serializer 4 0x01D0 0290 0x01D0 4290 0x01D0 8290 RBUF4 0x01D0 0294 0x01D0 4294 0x01D0 8294 RBUF5 (3) Receive buffer register for serializer 5 0x01D0 0298 0x01D0 4298 0x01D0 8298 RBUF6 (3) Receive buffer register for serializer 6 (3) Receive buffer register for serializer 7 0x01D0 029C 0x01D0 429C 0x01D0 829C RBUF7 0x01D0 02A0 0x01D0 42A0 0x01D0 82A0 RBUF8 (3) Receive buffer register for serializer 8 0x01D0 02A4 0x01D0 42A4 0x01D0 82A4 RBUF9 (3) Receive buffer register for serializer 9 (3) Receive buffer register for serializer 10 0x01D0 02A8 0x01D0 42A8 0x01D0 82A8 RBUF10 0x01D0 02AC 0x01D0 42AC 0x01D0 82AC RBUF11 (3) Receive buffer register for serializer 11 0x01D0 02B0 0x01D0 42B0 0x01D0 82B0 RBUF12 (3) Receive buffer register for serializer 12 0x01D0 02B4 0x01D0 42B4 0x01D0 82B4 RBUF13 (3) Receive buffer register for serializer 13 (3) Receive buffer register for serializer 14 Receive buffer register for serializer 15 0x01D0 02B8 0x01D0 42B8 0x01D0 82BB RBUF14 0x01D0 02BC 0x01D0 42BC 0x01D0 82BC RBUF15 (3) (2) (3) 120 Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT. Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-47. McASP Registers Accessed Through DMA Port Hex Address Register Name McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS REGISTER DESCRIPTION Read Accesses RBUF 01D0 2000 01D0 6000 01D0 A000 Receive buffer DMA port address. Cycles through receive serializers, skipping over transmit serializers and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Reads from DMA port only if XBUSEL = 0 in XFMT. Write Accesses XBUF 01D0 2000 01D0 6000 01D0 A000 Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Writes to DMA port only if RBUSEL = 0 in RFMT. Table 5-48. McASP AFIFO Registers Accessed Through Peripheral Configuration Port McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS 0x01D0 1000 0x01D0 5000 0x01D0 9000 AFIFOREV AFIFO revision identification register 0x01D0 1010 0x01D0 5010 0x01D0 9010 WFIFOCTL Write FIFO control register 0x01D0 1014 0x01D0 5014 0x01D0 9014 WFIFOSTS Write FIFO status register 0x01D0 1018 0x01D0 5018 0x01D0 9018 RFIFOCTL Read FIFO control register 0x01D0 101C 0x01D0 501C 0x01D0 901C RFIFOSTS Read FIFO status register Copyright © 2008–2013, Texas Instruments Incorporated ACRONYM REGISTER DESCRIPTION Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 121 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.17.2 McASP Electrical Data/Timing 5.17.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing Table 5-49 and Table 5-50 assume testing over recommended operating conditions (see Figure 5-34 and Figure 5-35). Table 5-49. McASP0 Timing Requirements (1) No. PARAMATER 1 tc(AHCLKRX) 2 tw(AHCLKRX) 3 tc(ACLKRX) 4 tw(ACLKRX) 5 tsu(AFSRX-ACLKRX) MIN 25 Cycle time, AHCLKX0 external, AHCLKX0 input 25 Pulse duration, AHCLKR0 external, AHCLKR0 input 12.5 Pulse duration, AHCLKX0 external, AHCLKX0 input 12.5 Cycle time, ACLKR0 external, ACLKR0 input greater of 2P or 25 Cycle time, ACLKX0 external, ACLKX0 input greater of 2P or 25 Pulse duration, ACLKR0 external, ACLKR0 input 12.5 Pulse duration, ACLKX0 external, ACLKX0 input 12.5 Setup time, AFSR0 input to ACLKR0 internal (3) 9.4 Setup time, AFSX0 input to ACLKX0 internal 9.4 Setup time, AFSR0 input to ACLKR0 external input (3) 2.9 Setup time, AFSX0 input to ACLKX0 external input 2.9 Setup time, AFSR0 input to ACLKR0 external output (3) 2.9 Hold time, AFSR0 input after ACLKR0 external input 8 (1) (2) (3) (4) 122 th(ACLKRX-AXR) 0.9 Hold time, AFSX0 input after ACLKX0 external input 0.9 Hold time, AFSR0 input after ACLKR0 external output (3) 0.9 Hold time, AFSX0 input after ACLKX0 external output 0.9 Setup time, AXR0[n] input to ACLKR0 internal (3) 9.4 ns ns ns 2.9 Setup time, AXR0[n] input to ACLKX0 external input (4) 2.9 Setup time, AXR0[n] input to ACLKR0 external output (3) 2.9 Setup time, AXR0[n] input to ACLKX0 external output (4) 2.9 Setup time, AXR0[n] input to ACLKR0 external input ns 9.4 (3) (3) -1.3 Hold time, AXR0[n] input after ACLKX0 internal (4) -1.3 Hold time, AXR0[n] input after ACLKR0 internal ns -1.2 (3) Setup time, AXR0[n] input to ACLKX0 internal (4) tsu(AXR-ACLKRX) ns -1.2 Hold time, AFSX0 input after ACLKX0 internal 7 UNIT 2.9 Hold time, AFSR0 input after ACLKR0 internal (3) th(ACLKRX-AFSRX) MAX Cycle time, AHCLKR0 external, AHCLKR0 input Setup time, AFSX0 input to ACLKX0 external output 6 (2) Hold time, AXR0[n] input after ACLKR0 external input (3) 0.5 (4) 0.5 Hold time, AXR0[n] input after ACLKX0 external input Hold time, AXR0[n] input after ACLKR0 external output (3) 0.5 Hold time, AXR0[n] input after ACLKX0 external output (4) 0.5 ns ns ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-50. McASP0 Switching Characteristics (1) No. 9 PARAMETER tc(AHCLKRX) MIN 25 Cycle time, AHCLKR0 external, AHCLKR0 output 25 Cycle time, AHCLKX0 internal, AHCLKX0 output 25 Cycle time, AHCLKX0 external, AHCLKX0 output 10 11 12 tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) (AHR/2) – 2.5 (2) Pulse duration, AHCLKR0 external, AHCLKR0 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKX0 internal, AHCLKX0 output (AHX/2) – 2.5 (3) Pulse duration, AHCLKX0 external, AHCLKX0 output (AHX/2) – 2.5 (3) Cycle time, ACLKR0 internal, ACLKR0 output greater of 2P or 25 (4) Cycle time, ACLKR0 external, ACLKR0 output greater of 2P or 25 (4) Cycle time, ACLKX0 internal, ACLKX0 output greater of 2P or 25 (4) Cycle time, ACLKX0 external, ACLKX0 output greater of 2P or 25 (4) Pulse duration, ACLKR0 internal, ACLKR0 output (AR/2) – 2.5 (5) Pulse duration, ACLKR0 external, ACLKR0 output (AR/2) – 2.5 (5) Pulse duration, ACLKX0 internal, ACLKX0 output (AX/2) – 2.5 (6) Pulse duration, ACLKX0 external, ACLKX0 output (AX/2) – 2.5 (6) (7) Delay time, ACLKX0 internal, AFSX output td(ACLKRX-AFSRX) Delay time, ACLKR0 external input, AFSR output (7) 15 (1) (2) (3) (4) (5) (6) (7) td(ACLKX-AXRV) tdis(ACLKX-AXRHZ) ns ns ns ns 0 5.8 0 5.8 2.5 11.6 Delay time, ACLKX0 external input, AFSX output 2.5 11.6 Delay time, ACLKR0 external output, AFSR output (7) 2.5 11.6 Delay time, ACLKX0 external output, AFSX output 2.5 11.6 Delay time, ACLKX0 internal, AXR0[n] output 14 UNIT 25 Pulse duration, AHCLKR0 internal, AHCLKR0 output Delay time, ACLKR0 internal, AFSR output 13 MAX Cycle time, AHCLKR0 internal, AHCLKR0 output 0 5.8 Delay time, ACLKX0 external input, AXR0[n] output 2.5 11.6 Delay time, ACLKX0 external output, AXR0[n] output 2.5 11.6 Disable time, ACLKX0 internal, AXR0[n] output 0 5.8 Disable time, ACLKX0 external input, AXR0[n] output 3 11.6 Disable time, ACLKX0 external output, AXR0[n] output 3 11.6 ns ns ns McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AHR - Cycle time, AHCLKR0. AHX - Cycle time, AHCLKX0. P = SYSCLK2 period AR - ACLKR0 period. AX - ACLKX0 period. McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 123 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.17.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing Table 5-51 and Table 5-52 assume testing over recommended operating conditions (see Figure 5-34 and Figure 5-35). Table 5-51. McASP1 Timing Requirements (1) No. PARAMATER 1 tc(AHCLKRX) 2 tw(AHCLKRX) 3 tc(ACLKRX) 4 tw(ACLKRX) 5 tsu(AFSRX-ACLKRX) MIN th(ACLKRX-AFSRX) 25 Cycle time, AHCLKX1 external, AHCLKX1 input 25 Pulse duration, AHCLKR1 external, AHCLKR1 input 12.5 Pulse duration, AHCLKX1 external, AHCLKX1 input 12.5 Cycle time, ACLKR1 external, ACLKR1 input greater of 2P or 25 Cycle time, ACLKX1 external, ACLKX1 input greater of 2P or 25 Pulse duration, ACLKR1 external, ACLKR1 input 12.5 Pulse duration, ACLKX1 external, ACLKX1 input 12.5 Setup time, AFSR1 input to ACLKR1 internal (3) 10.4 Setup time, AFSX1 input to ACLKX1 internal 10.4 Setup time, AFSR1 input to ACLKR1 external input (3) 2.6 Setup time, AFSX1 input to ACLKX1 external input 2.6 Setup time, AFSR1 input to ACLKR1 external output (3) 2.6 tsu(AXR-ACLKRX) -1.9 Hold time, AFSX1 input after ACLKX1 internal -1.9 Hold time, AFSR1 input after ACLKR1 external input (3) 0.7 Hold time, AFSX1 input after ACLKX1 external input 0.7 Hold time, AFSR1 input after ACLKR1 external output (3) 0.7 10.4 Setup time, AXR1[n] input to ACLKX1 internal (4) 10.4 Setup time, AXR1[n] input to ACLKR1 external input (3) 2.6 Setup time, AXR1[n] input to ACLKX1 external input (4) 2.6 Setup time, AXR1[n] input to ACLKR1 external output (3) 2.6 (4) Hold time, AXR1[n] input after ACLKR1 internal (3) th(ACLKRX-AXR) (2) (3) (4) 124 ns ns ns ns -1.8 0.5 Hold time, AXR1[n] input after ACLKX1 external input (4) 0.5 Hold time, AXR1[n] input after ACLKR1 external output (3) 0.5 (4) 0.5 Hold time, AXR1[n] input after ACLKX1 external output (1) ns 2.6 (3) Hold time, AXR1[n] input after ACLKR1 external input ns -1.8 Hold time, AXR1[n] input after ACLKX1 internal (4) 8 ns 0.7 Setup time, AXR1[n] input to ACLKR1 internal (3) Setup time, AXR1[n] input to ACLKX1 external output UNIT 2.6 Hold time, AFSR1 input after ACLKR1 internal (3) Hold time, AFSX1 input after ACLKX1 external output 7 MAX Cycle time, AHCLKR1 external, AHCLKR1 input Setup time, AFSX1 input to ACLKX1 external output 6 (2) ns ACLKX1 internal – McASP1 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX1 external input – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX1 external output – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR1 internal – McASP1 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR1 external input – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR1 external output – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1 McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-52. McASP1 Switching Characteristics (1) NO. 9 PARAMETER tc(AHCLKRX) MIN 25 Cycle time, AHCLKR1 external, AHCLKR1 output 25 Cycle time, AHCLKX1 internal, AHCLKX1 output 25 Cycle time, AHCLKX1 external, AHCLKX1 output 10 11 12 tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) (AHR/2) – 2.5 (2) Pulse duration, AHCLKR1 external, AHCLKR1 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKX1 internal, AHCLKX1 output (AHX/2) – 2.5 (3) Pulse duration, AHCLKX1 external, AHCLKX1 output (AHX/2) – 2.5 (3) Cycle time, ACLKR1 internal, ACLKR1 output greater of 2P or 25 (4) Cycle time, ACLKR1 external, ACLKR1 output greater of 2P or 25 (4) Cycle time, ACLKX1 internal, ACLKX1 output greater of 2P or 25 (4) Cycle time, ACLKX1 external, ACLKX1 output greater of 2P or 25 (4) Pulse duration, ACLKR1 internal, ACLKR1 output (AR/2) – 2.5 (5) Pulse duration, ACLKR1 external, ACLKR1 output (AR/2) – 2.5 (5) Pulse duration, ACLKX1 internal, ACLKX1 output (AX/2) – 2.5 (6) Pulse duration, ACLKX1 external, ACLKX1 output (AX/2) – 2.5 (6) (7) Delay time, ACLKX1 internal, AFSX output 14 15 (1) (2) (3) (4) (5) (6) (7) td(ACLKRX-AFSRX) td(ACLKX-AXRV) tdis(ACLKX-AXRHZ) Delay time, ACLKR1 external input, AFSR output UNIT ns 25 Pulse duration, AHCLKR1 internal, AHCLKR1 output Delay time, ACLKR1 internal, AFSR output 13 MAX Cycle time, AHCLKR1 internal, AHCLKR1 output (7) ns ns ns 0.5 6.7 0.5 6.7 3.4 13.8 Delay time, ACLKX1 external input, AFSX output 3.4 13.8 Delay time, ACLKR1 external output, AFSR output (7) 3.4 13.8 Delay time, ACLKX1 external output, AFSX output 3.4 13.8 Delay time, ACLKX1 internal, AXR1[n] output 0.5 6.7 Delay time, ACLKX1 external input, AXR1[n] output 3.4 13.8 Delay time, ACLKX1 external output, AXR1[n] output 3.4 13.8 Disable time, ACLKX1 internal, AXR1[n] output 0.5 6.7 Disable time, ACLKX1 external input, AXR1[n] output 3.9 13.8 Disable time, ACLKX1 external output, AXR1[n] output 3.9 13.8 ns ns ns McASP1 ACLKX1 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 McASP1 ACLKX1 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP1 ACLKX1 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP1 ACLKR1 internal – ACLKR1CTL.CLKRM = 1, PDIR.ACLKR =1 McASP1 ACLKR1 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 McASP1 ACLKR1 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AHR - Cycle time, AHCLKR1. AHX - Cycle time, AHCLKX1. P = SYSCLK2 period AR - ACLKR1 period. AX - ACLKX1 period. McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1 Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 125 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.17.2.3 Multichannel Audio Serial Port 2 (McASP2) Timing Table 5-53 and Table 5-54 assume testing over recommended operating conditions (see Figure 5-34 and Figure 5-35). Table 5-53. McASP2 Timing Requirements (1) NO. MIN 1 tc(AHCLKRX) 2 tw(AHCLKRX) 3 tc(ACLKRX) 4 tw(ACLKRX) 5 tsu(AFSRX-ACLKRX) th(ACLKRX-AFSRX) 15 Cycle time, AHCLKX2 external, AHCLKX2 input 15 Pulse duration, AHCLKR2 external, AHCLKR2 input 7.5 Pulse duration, AHCLKX2 external, AHCLKX2 input 7.5 Cycle time, ACLKR2 external, ACLKR2 input greater of 2P or 15 Cycle time, ACLKX2 external, ACLKX2 input greater of 2P or 15 Pulse duration, ACLKR2 external, ACLKR2 input 7.5 Pulse duration, ACLKX2 external, ACLKX2 input 7.5 Setup time, AFSR2 input to ACLKR2 internal (3) 10 Setup time, AFSX2 input to ACLKX2 internal 10 Setup time, AFSR2 input to ACLKR2 external input (3) 1.6 Setup time, AFSX2 input to ACLKX2 external input 1.6 Setup time, AFSR2 input to ACLKR2 external output (3) 1.6 tsu(AXR-ACLKRX) -1.7 Hold time, AFSX2 input after ACLKX2 internal -1.7 Hold time, AFSR2 input after ACLKR2 external input (3) 1.3 Hold time, AFSX2 input after ACLKX2 external input 1.3 Hold time, AFSR2 input after ACLKR2 external output (3) 1.3 Hold time, AFSX2 input after ACLKX2 external output 1.3 Setup time, AXR2[n] input to ACLKR2 internal (3) 10 (4) 1.6 Setup time, AXR2[n] input to ACLKX2 external input (4) 1.6 Setup time, AXR2[n] input to ACLKR2 external output (3) 1.6 (4) Hold time, AXR2[n] input after ACLKR2 internal (3) th(ACLKRX-AXR) (2) (3) (4) 126 ns ns ns ns -1.7 1.3 Hold time, AXR2[n] input after ACLKX2 external input (4) 1.3 Hold time, AXR2[n] input after ACLKR2 external output (3) 1.3 (4) 1.3 Hold time, AXR2[n] input after ACLKX2 external output (1) ns 1.6 (3) Hold time, AXR2[n] input after ACLKR2 external input ns -1.7 Hold time, AXR2[n] input after ACLKX2 internal (4) 8 ns 10 Setup time, AXR2[n] input to ACLKR2 external input (3) Setup time, AXR2[n] input to ACLKX2 external output UNIT 1.6 Hold time, AFSR2 input after ACLKR2 internal (3) Setup time, AXR2[n] input to ACLKX2 internal 7 MAX Cycle time, AHCLKR2 external, AHCLKR2 input Setup time, AFSX2 input to ACLKX2 external output 6 (2) ns ACLKX2 internal – McASP2 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX2 external input – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX2 external output – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR2 internal – McASP2 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR2 external input – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR2 external output – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2 McASP2 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX2 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-54. McASP2 Switching Characteristics (1) NO. 9 PARAMETER tc(AHCLKRX) MIN 15 Cycle time, AHCLKR2 external, AHCLKR2 output 15 Cycle time, AHCLKX2 internal, AHCLKX2 output 15 Cycle time, AHCLKX2 external, AHCLKX2 output 10 11 12 tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) (AHR/2) – 2.5 (2) Pulse duration, AHCLKR2 external, AHCLKR2 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKX2 internal, AHCLKX2 output (AHX/2) – 2.5 (3) Pulse duration, AHCLKX2 external, AHCLKX2 output (AHX/2) – 2.5 (3) Cycle time, ACLKR2 internal, ACLKR2 output greater of 2P or 15 (4) Cycle time, ACLKR2 external, ACLKR2 output greater of 2P or 15 (4) Cycle time, ACLKX2 internal, ACLKX2 output greater of 2P or 15 (4) Cycle time, ACLKX2 external, ACLKX2 output greater of 2P or 15 (4) Pulse duration, ACLKR2 internal, ACLKR2 output (AR/2) – 2.5 (5) Pulse duration, ACLKR2 external, ACLKR2 output (AR/2) – 2.5 (5) Pulse duration, ACLKX2 internal, ACLKX2 output (AX/2) – 2.5 (6) Pulse duration, ACLKX2 external, ACLKX2 output (AX/2) – 2.5 (6) (7) Delay time, ACLKX2 internal, AFSX output td(ACLKRX-AFSRX) Delay time, ACLKR2 external input, AFSR output (7) (1) (2) (3) (4) (5) (6) (7) tdis(ACLKX-AXRHZ) ns ns -1.4 2.8 -1.4 2.8 10 2.1 10 Delay time, ACLKR2 external output, AFSR output (7) 2.1 10 2.1 10 -1.4 2.8 Delay time, ACLKX2 external input, AXR2[n] output 2.1 10 Delay time, ACLKX2 external output, AXR2[n] output 2.1 10 Disable time, ACLKX2 internal, AXR2[n] output 15 ns 2.1 Delay time, ACLKX2 internal, AXR2[n] output td(ACLKX-AXRV) ns Delay time, ACLKX2 external input, AFSX output Delay time, ACLKX2 external output, AFSX output 14 UNIT 15 Pulse duration, AHCLKR2 internal, AHCLKR2 output Delay time, ACLKR2 internal, AFSR output 13 MAX Cycle time, AHCLKR2 internal, AHCLKR2 output -1.4 2.8 Disable time, ACLKX2 external input, AXR2[n] output 2.9 10 Disable time, ACLKX2 external output, AXR2[n] output 2.9 10 ns ns ns McASP2 ACLKX2 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 McASP2 ACLKX2 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP2 ACLKX2 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP2 ACLKR2 internal – ACLKR2CTL.CLKRM = 1, PDIR.ACLKR =1 McASP2 ACLKR2 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 McASP2 ACLKR2 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AHR - Cycle time, AHCLKR2. AHX - Cycle time, AHCLKX2. P = SYSCLK2 period AR - ACLKR2 period. AX - ACLKX2 period. McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2 Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 127 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 2 1 2 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 4 3 4 ACLKR/X (CLKRP = CLKXP = 0)(A) ACLKR/X (CLKRP = CLKXP = 1)(B) 6 5 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 8 7 AXR[n] (Data In/Receive) A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for A0 A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). Figure 5-34. McASP Input Timings 128 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 10 10 9 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 12 11 12 ACLKR/X (CLKRP = CLKXP = 1)(A) ACLKR/X (CLKRP = CLKXP = 0)(B) 13 13 13 13 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) 13 13 13 AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 14 15 AXR[n] (Data Out/Transmit) A0 A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). Figure 5-35. McASP Output Timings Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 129 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.18 Serial Peripheral Interface Ports (SPI0, SPI1) Figure 5-36 is a block diagram of the SPI module, which is a simple shift register and buffer plus control logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many data formatting options. SPIx_SIMO SPIx_SOMI Peripheral Configuration Bus Interrupt and DMA Requests 16-Bit Shift Register 16-Bit Buffer SPIx_ENA GPIO Control (all pins) State Machine SPIx_SCS Clock Control SPIx_CLK Figure 5-36. Block Diagram of SPI Module The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA). The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are other slave devices on the same SPI port. The OMAP-L137 will only shift data and drive the SPIx_SOMI pin when SPIx_SCS is held low. In slave mode, SPIx_ENA is an optional output. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDAT0/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the same SPI bus. In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI communications and, on average, increases SPI bus throughput since the master does not need to delay each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer can begin as soon as both the master and slave have actually serviced the previous SPI transfer. Although the SPI module supports two interrupt outputs, SPIx_INT1 is the only interrupt connected on this device. 130 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Optional − Slave Chip Select SPIx_SCS SPIx_SCS Optional Enable (Ready) SPIx_ENA SPIx_ENA SPIx_CLK SPIx_CLK SPIx_SOMI SPIx_SOMI SPIx_SIMO SPIx_SIMO MASTER SPI SLAVE SPI Figure 5-37. Illustration of SPI Master-to-SPI Slave Connection Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 131 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.18.1 SPI Peripheral Registers Description(s) Table 5-55 is a list of the SPI registers. Table 5-55. SPIx Configuration Registers 132 SPI0 BYTE ADDRESS SPI1 BYTE ADDRESS ACRONYM 0x01C4 1000 0x01E1 2000 SPIGCR0 Global Control Register 0 0x01C4 1004 0x01E1 2004 SPIGCR1 Global Control Register 1 0x01C4 1008 0x01E1 2008 SPIINT0 Interrupt Register 0x01C4 100C 0x01E1 200C SPILVL Interrupt Level Register 0x01C4 1010 0x01E1 2010 SPIFLG Flag Register 0x01C4 1014 0x01E1 2014 SPIPC0 Pin Control Register 0 (Pin Function) 0x01C4 1018 0x01E1 2018 SPIPC1 Pin Control Register 1 (Pin Direction) 0x01C4 101C 0x01E1 201C SPIPC2 Pin Control Register 2 (Pin Data In) 0x01C4 1020 0x01E1 2020 SPIPC3 Pin Control Register 3 (Pin Data Out) 0x01C4 1024 0x01E1 2024 SPIPC4 Pin Control Register 4 (Pin Data Set) 0x01C4 1028 0x01E1 2028 SPIPC5 Pin Control Register 5 (Pin Data Clear) 0x01C4 102C 0x01E1 202C Reserved Reserved - Do not write to this register 0x01C4 1030 0x01E1 2030 Reserved Reserved - Do not write to this register 0x01C4 1034 0x01E1 2034 Reserved Reserved - Do not write to this register REGISTER DESCRIPTION 0x01C4 1038 0x01E1 2038 SPIDAT0 Shift Register 0 (without format select) 0x01C4 103C 0x01E1 203C SPIDAT1 Shift Register 1 (with format select) 0x01C4 1040 0x01E1 2040 SPIBUF Buffer Register 0x01C4 1044 0x01E1 2044 SPIEMU Emulation Register 0x01C4 1048 0x01E1 2048 SPIDELAY 0x01C4 104C 0x01E1 204C SPIDEF Delay Register Default Chip Select Register 0x01C4 1050 0x01E1 2050 SPIFMT0 Format Register 0 0x01C4 1054 0x01E1 2054 SPIFMT1 Format Register 1 0x01C4 1058 0x01E1 2058 SPIFMT2 Format Register 2 0x01C4 105C 0x01E1 205C SPIFMT3 Format Register 3 0x01C4 1060 0x01E1 2060 Reserved Reserved - Do not write to this register 0x01C4 1064 0x01E1 2064 INTVEC1 Interrupt Vector for SPI INT1 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.18.2 SPI Electrical Data/Timing 5.18.2.1 Serial Peripheral Interface (SPI) Timing Table 5-56 through Table 5-71 assume testing over recommended operating conditions (see Figure 5-38 through Figure 5-41). Table 5-56. General Timing Requirements for SPI0 Master Modes (1) No. MIN MAX Cycle Time, SPI0_CLK, All Master Modes 2 tw(SPCH)M Pulse Width High, SPI0_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 3 tw(SPCL)M Pulse Width Low, SPI0_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 5 6 7 8 td(SIMO_SPC)M td(SPC_SIMO)M toh(SPC_SIMO)M tsu(SOMI_SPC)M tih(SPC_SOMI)M Delay, initial data bit valid on SPI0_SIMO after initial edge on SPI0_CLK (2) Delay, subsequent bits valid on SPI0_SIMO after transmit edge of SPI0_CLK Output hold time, SPI0_SIMO valid after receive edge of SPI0_CLK 256P Polarity = 0, Phase = 0, to SPI0_CLK rising 5 Polarity = 0, Phase = 1, to SPI0_CLK rising - 0.5tc(SPC)M + 5 Polarity = 1, Phase = 0, to SPI0_CLK falling 5 Polarity = 1, Phase = 1, to SPI0_CLK falling - 0.5tc(SPC)M + 5 Polarity = 0, Phase = 0, from SPI0_CLK rising 5 Polarity = 0, Phase = 1, from SPI0_CLK falling 5 Polarity = 1, Phase = 0, from SPI0_CLK falling 5 Polarity = 1, Phase = 1, from SPI0_CLK rising 5 ns ns ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 0, to SPI0_CLK falling 0 Polarity = 0, Phase = 1, Input Setup Time, SPI0_SOMI to SPI0_CLK rising valid before Polarity = 1, Phase = 0, receive edge of SPI0_CLK to SPI0_CLK rising Input Hold Time, SPI0_SOMI valid after receive edge of SPI0_CLK greater of 3P or 20 UNIT tc(SPC)M 4 (1) (2) PARAMETER 1 ns 0 ns 0 Polarity = 1, Phase = 1, to SPI0_CLK falling 0 Polarity = 0, Phase = 0, from SPI0_CLK falling 5 Polarity = 0, Phase = 1, from SPI0_CLK rising 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 5 Polarity = 1, Phase = 1, from SPI0_CLK falling 5 ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 133 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-57. General Timing Requirements for SPI0 Slave Modes (1) No. PARAMETER MIN 9 tc(SPC)S Cycle Time, SPI0_CLK, All Slave Modes 10 tw(SPCH)S 11 tw(SPCL)S 12 13 14 15 16 (1) (2) (3) 134 tsu(SOMI_SPC)S td(SPC_SOMI)S toh(SPC_SOMI)S tsu(SIMO_SPC)S tih(SPC_SIMO)S MAX UNIT greater of 3P or 40 ns Pulse Width High, SPI0_CLK, All Slave Modes 18 ns Pulse Width Low, SPI0_CLK, All Slave Modes 18 ns Setup time, transmit data written to SPI before initial clock edge from master. (2) (3) Delay, subsequent bits valid on SPI0_SOMI after transmit edge of SPI0_CLK Output hold time, SPI0_SOMI valid after receive edge of SPI0_CLK Input Setup Time, SPI0_SIMO valid before receive edge of SPI0_CLK Input Hold Time, SPI0_SIMO valid after receive edge of SPI0_CLK Polarity = 0, Phase = 0, to SPI0_CLK rising 2P Polarity = 0, Phase = 1, to SPI0_CLK rising 2P Polarity = 1, Phase = 0, to SPI0_CLK falling 2P Polarity = 1, Phase = 1, to SPI0_CLK falling 2P ns Polarity = 0, Phase = 0, from SPI0_CLK rising 18.5 Polarity = 0, Phase = 1, from SPI0_CLK falling 18.5 Polarity = 1, Phase = 0, from SPI0_CLK falling 18.5 Polarity = 1, Phase = 1, from SPI0_CLK rising 18.5 ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 0, to SPI0_CLK falling 0 Polarity = 0, Phase = 1, to SPI0_CLK rising 0 Polarity = 1, Phase = 0, to SPI0_CLK rising 0 Polarity = 1, Phase = 1, to SPI0_CLK falling 0 Polarity = 0, Phase = 0, from SPI0_CLK falling 5 Polarity = 0, Phase = 1, from SPI0_CLK rising 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 5 Polarity = 1, Phase = 1, from SPI0_CLK falling 5 ns ns ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO. Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by the DSP CPU. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-58. Additional (1) SPI0 Master Timings, 4-Pin Enable Option (2) No. 17 18 (1) (2) (3) (4) (5) PARAMATER td(ENA_SPC)M td(SPC_ENA)M Delay from slave assertion of SPI0_ENA active to first SPI0_CLK from master. (4) Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer. (5) MIN (3) MAX 3P + 3.6 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 3P + 3.6 Polarity = 1, Phase = 0, to SPI0_CLK falling 3P + 3.6 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 3P + 3.6 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 ns ns These parameters are in addition to the general timings for SPI master modes (Table 5-56). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA assertion. In the case where the master SPI is ready with new data before SPI0_EN A deassertion. Table 5-59. Additional (1) SPI0 Master Timings, 4-Pin Chip Select Option (2) No. 19 20 (1) (2) (3) (4) (5) (6) (7) UNIT Polarity = 0, Phase = 0, to SPI0_CLK rising PARAMATER td(SCS_SPC)M td(SPC_SCS)M Delay from SPI0_SCS active to first SPI0_CLK (4) (5) Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (6) (7) (3) MIN MAX Polarity = 0, Phase = 0, to SPI0_CLK rising 2P - 5 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 2P - 5 Polarity = 1, Phase = 0, to SPI0_CLK falling 2P - 5 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 2P - 5 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P - 3 Polarity = 0, Phase = 1, from SPI0_CLK falling P-3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P - 3 Polarity = 1, Phase = 1, from SPI0_CLK rising P-3 UNIT ns ns These parameters are in addition to the general timings for SPI master modes (Table 5-56). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 135 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-60. Additional (1) SPI0 Master Timings, 5-Pin Option (2) No. 18 20 21 22 23 PARAMATER td(SPC_ENA)M td(SPC_SCS)M td(SCSL_ENAL)M td(SCS_SPC)M td(ENA_SPC)M Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer. (4) Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (5) (6) MIN MAX Delay from assertion of SPI0_ENA low to first SPI0_CLK edge. (10) UNIT Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P - 3 Polarity = 0, Phase = 1, from SPI0_CLK falling P-3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P -3 Polarity = 1, Phase = 1, from SPI0_CLK rising P-3 ns Max delay for slave SPI to drive SPI0_ENA valid after master asserts SPI0_SCS to delay the master from beginning the next transfer, Delay from SPI0_SCS active to first SPI0_CLK (7) (8) (9) (3) C2TDELAY + P Polarity = 0, Phase = 0, to SPI0_CLK rising 2P -5 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 2P -5 Polarity = 1, Phase = 0, to SPI0_CLK falling 2P -5 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 2P -5 ns ns Polarity = 0, Phase = 0, to SPI0_CLK rising 3P + 3.6 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 3P + 3.6 Polarity = 1, Phase = 0, to SPI0_CLK falling 3P + 3.6 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 3P + 3.6 ns (1) (2) (3) (4) (5) These parameters are in addition to the general timings for SPI master modes (Table 5-57). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA deassertion. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. (6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. (7) If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA. (8) In the case where the master SPI is ready with new data before SPI0_SCS assertion. (9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. (10) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed. 136 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-61. Additional (1) SPI0 Slave Timings, 4-Pin Enable Option (2) No. 24 (1) (2) (3) PARAMATER td(SPC_ENAH)S Delay from final SPI0_CLK edge to slave deasserting SPI0_ENA. MIN (3) MAX 1.5 P -3 2.5 P + 18.5 Polarity = 0, Phase = 1, from SPI0_CLK falling – 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 18.5 Polarity = 1, Phase = 0, from SPI0_CLK rising 1.5 P -3 2.5 P + 18.5 Polarity = 1, Phase = 1, from SPI0_CLK rising – 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 18.5 ns These parameters are in addition to the general timings for SPI slave modes (Table 5-57). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Table 5-62. Additional (1) SPI0 Slave Timings, 4-Pin Chip Select Option (2) No. 25 26 (1) (2) (3) UNIT Polarity = 0, Phase = 0, from SPI0_CLK falling PARAMATER td(SCSL_SPC)S td(SPC_SCSH)S MIN Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. Required delay from final SPI0_CLK edge before SPI0_SCS is deasserted. (3) MAX 2P Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P+5 Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P+5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P + 18.5 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P + 18.5 ns These parameters are in addition to the general timings for SPI slave modes (Table 5-57). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 137 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-63. Additional (1) SPI0 Slave Timings, 5-Pin Option (2) No. 25 26 PARAMATER td(SCSL_SPC)S td(SPC_SCSH)S MIN Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. Required delay from final SPI0_CLK edge before SPI0_SCS is deasserted. (3) MAX UNIT 2P Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P + 18.5 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P + 18.5 ns 29 tena(SCSL_ENA)S Delay from master deasserting SPI0_SCS to slave driving SPI0_ENA valid 18.5 ns 30 (1) (2) (3) (4) tdis(SPC_ENA)S Delay from final clock receive edge on SPI0_CLK to slave 3-stating or driving high SPI0_ENA. (4) Polarity = 0, Phase = 0, from SPI0_CLK falling 2.5 P + 18.5 Polarity = 0, Phase = 1, from SPI0_CLK rising 2.5 P + 18.5 Polarity = 1, Phase = 0, from SPI0_CLK rising 2.5 P + 18.5 Polarity = 1, Phase = 1, from SPI0_CLK falling 2.5 P + 18.5 ns These parameters are in addition to the general timings for SPI slave modes (Table 5-57). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is 3stated. If 3-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. Table 5-64. General Timing Requirements for SPI1 Master Modes (1) No. PARAMATER MIN 1 tc(SPC)M Cycle Time, SPI1_CLK, All Master Modes greater of 3P or 20 ns 2 tw(SPCH)M Pulse Width High, SPI1_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 3 tw(SPCL)M Pulse Width Low, SPI1_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 4 (1) (2) 138 td(SIMO_SPC)M Delay, initial data bit valid on SPI1_SIMO to initial edge on SPI1_CLK (2) MAX UNIT 256P Polarity = 0, Phase = 0, to SPI1_CLK rising 5 Polarity = 0, Phase = 1, to SPI1_CLK rising - 0.5tc(SPC)M + 5 Polarity = 1, Phase = 0, to SPI1_CLK falling 5 Polarity = 1, Phase = 1, to SPI1_CLK falling - 0.5tc(SPC)M + 5 ns ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-64. General Timing Requirements for SPI1 Master Modes(1) (continued) No. 5 PARAMATER td(SPC_SIMO)M 6 toh(SPC_SIMO)M 7 tsu(SOMI_SPC)M 8 tih(SPC_SOMI)M Delay, subsequent bits valid on SPI1_SIMO after transmit edge of SPI1_CLK Output hold time, SPI1_SIMO valid after receive edge of SPI1_CLK Input Setup Time, SPI1_SOMI valid before receive edge of SPI1_CLK Input Hold Time, SPI1_SOMI valid after receive edge of SPI1_CLK MIN MAX UNIT Polarity = 0, Phase = 0, from SPI1_CLK rising 5 Polarity = 0, Phase = 1, from SPI1_CLK falling 5 Polarity = 1, Phase = 0, from SPI1_CLK falling 5 Polarity = 1, Phase = 1, from SPI1_CLK rising 5 ns Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 1, from SPI1_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 1, from SPI1_CLK falling 0.5tc(SPC)M -3 ns Polarity = 0, Phase = 0, to SPI1_CLK falling 0 Polarity = 0, Phase = 1, to SPI1_CLK rising 0 Polarity = 1, Phase = 0, to SPI1_CLK rising 0 Polarity = 1, Phase = 1, to SPI1_CLK falling 0 Polarity = 0, Phase = 0, from SPI1_CLK falling 5 Polarity = 0, Phase = 1, from SPI1_CLK rising 5 Polarity = 1, Phase = 0, from SPI1_CLK rising 5 Polarity = 1, Phase = 1, from SPI1_CLK falling 5 ns ns Table 5-65. General Timing Requirements for SPI1 Slave Modes (1) No. (1) PARAMATER MIN MAX UNIT 9 tc(SPC)S Cycle Time, SPI1_CLK, All Slave Modes greater of 3P or 40 ns ns 10 tw(SPCH)S Pulse Width High, SPI1_CLK, All Slave Modes 18 ns 11 tw(SPCL)S Pulse Width Low, SPI1_CLK, All Slave Modes 18 ns P = SYSCLK2 period Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 139 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-65. General Timing Requirements for SPI1 Slave Modes(1) (continued) No. 12 13 14 15 16 (2) (3) 140 PARAMATER tsu(SOMI_SPC)S td(SPC_SOMI)S toh(SPC_SOMI)S tsu(SIMO_SPC)S tih(SPC_SIMO)S Setup time, transmit data written to SPI before initial clock edge from master. (2) (3) Delay, subsequent bits valid on SPI1_SOMI after transmit edge of SPI1_CLK Output hold time, SPI1_SOMI valid after receive edge of SPI1_CLK Input Setup Time, SPI1_SIMO valid before receive edge of SPI1_CLK Input Hold Time, SPI1_SIMO valid after receive edge of SPI1_CLK MIN MAX Polarity = 0, Phase = 0, to SPI1_CLK rising 2P Polarity = 0, Phase = 1, to SPI1_CLK rising 2P Polarity = 1, Phase = 0, to SPI1_CLK falling 2P Polarity = 1, Phase = 1, to SPI1_CLK falling 2P UNIT ns Polarity = 0, Phase = 0, from SPI1_CLK rising 19 Polarity = 0, Phase = 1, from SPI1_CLK falling 19 Polarity = 1, Phase = 0, from SPI1_CLK falling 19 Polarity = 1, Phase = 1, from SPI1_CLK rising 19 ns Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 1, from SPI1_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 1, from SPI1_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 0, to SPI1_CLK falling 0 Polarity = 0, Phase = 1, to SPI1_CLK rising 0 Polarity = 1, Phase = 0, to SPI1_CLK rising 0 Polarity = 1, Phase = 1, to SPI1_CLK falling 0 Polarity = 0, Phase = 0, from SPI1_CLK falling 5 Polarity = 0, Phase = 1, from SPI1_CLK rising 5 Polarity = 1, Phase = 0, from SPI1_CLK rising 5 Polarity = 1, Phase = 1, from SPI1_CLK falling 5 ns ns ns First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO. Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by the DSP CPU. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-66. Additional (1) SPI1 Master Timings, 4-Pin Enable Option (2) No. 17 18 (1) (2) (3) (4) (5) PARAMETER td(EN A_SPC)M td(SPC_ENA)M Delay from slave assertion of SPI1_ENA active to first SPI1_CLK from master. (4) Max delay for slave to deassert SPI1_ENA after final SPI1_CLK edge to ensure master does not begin the next transfer. (5) MIN (3) MAX 3P + 3 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 3P + 3 Polarity = 1, Phase = 0, to SPI1_CLK falling 3P + 3 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 3P + 3 Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI1_CLK falling P+5 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI1_CLK rising P+5 ns ns These parameters are in addition to the general timings for SPI master modes (Table 5-64). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_ENA assertion. In the case where the master SPI is ready with new data before SPI1_ENA deassertion. Table 5-67. Additional (1) SPI1 Master Timings, 4-Pin Chip Select Option (2) No. 19 20 (1) (2) (3) (4) (5) (6) (7) UNIT Polarity = 0, Phase = 0, to SPI1_CLK rising PARAMATER td(SCS_SPC)M td(SPC_SCS)M Delay from SPI1_SCS active to first SPI1_CLK (4) (5) Delay from final SPI1_CLK edge to master deasserting SPI1_SCS (6) (7) (3) MIN MAX Polarity = 0, Phase = 0, to SPI1_CLK rising 2P -5 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 2P -5 Polarity = 1, Phase = 0, to SPI1_CLK falling 2P -5 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 2P -5 Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + P - 3 Polarity = 0, Phase = 1, from SPI1_CLK falling P-3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + P -3 Polarity = 1, Phase = 1, from SPI1_CLK rising P-3 UNIT ns ns These parameters are in addition to the general timings for SPI master modes (Table 5-64). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 141 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-68. Additional (1) SPI1 Master Timings, 5-Pin Option (2) No. 18 20 21 22 23 PARAMATER td(SPC_ENA)M td(SPC_SCS)M td(SCSL_ENAL)M td(SCS_SPC)M td(ENA_SPC)M Max delay for slave to deassert SPI1_ENA after final SPI1_CLK edge to ensure master does not begin the next transfer. (4) Delay from final SPI1_CLK edge to master deasserting SPI1_SCS (5) (6) MIN MAX Delay from assertion of SPI1_ENA low to first SPI1_CLK edge. (10) UNIT Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M+P+5 Polarity = 0, Phase = 1, from SPI1_CLK falling P+5 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M+P+5 Polarity = 1, Phase = 1, from SPI1_CLK rising P+5 ns Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + P -3 Polarity = 0, Phase = 1, from SPI1_CLK falling P-3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M+ P -3 Polarity = 1, Phase = 1, from SPI1_CLK rising P-3 ns Max delay for slave SPI to drive SPI1_ENA valid after master asserts SPI1_SCS to delay the master from beginning the next transfer, Delay from SPI1_SCS active to first SPI1_CLK (7) (8) (9) (3) C2TDELAY + P Polarity = 0, Phase = 0, to SPI1_CLK rising 2P -5 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 2P -5 Polarity = 1, Phase = 0, to SPI1_CLK falling 2P -5 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 2P -5 ns ns Polarity = 0, Phase = 0, to SPI1_CLK rising 3P + 3 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 3P + 3 Polarity = 1, Phase = 0, to SPI1_CLK falling 3P + 3 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 3P + 3 ns (1) (2) (3) (4) (5) These parameters are in addition to the general timings for SPI master modes (Table 5-65). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_ENA deassertion. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted. (6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. (7) If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA. (8) In the case where the master SPI is ready with new data before SPI1_SCS assertion. (9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. (10) If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed. 142 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-69. Additional (1) SPI1 Slave Timings, 4-Pin Enable Option (2) No. 24 (1) (2) (3) PARAMETER td(SPC_ENAH)S Delay from final SPI1_CLK edge to slave deasserting SPI1_ENA. MIN (3) MAX 1.5 P -3 2.5 P + 19 Polarity = 0, Phase = 1, from SPI1_CLK falling – 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 19 Polarity = 1, Phase = 0, from SPI1_CLK rising 1.5 P -3 2.5 P + 19 Polarity = 1, Phase = 1, from SPI1_CLK rising – 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 19 ns These parameters are in addition to the general timings for SPI slave modes (Table 5-65). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Table 5-70. Additional (1) SPI1 Slave Timings, 4-Pin Chip Select Option (2) No. 25 26 (1) (2) (3) PARAMETER td(SCSL_SPC)S td(SPC_SCSH)S Required delay from final SPI1_CLK edge before SPI1_SCS is deasserted. (3) MIN MAX Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. UNIT 2P Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI1_CLK falling P+5 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI1_CLK rising P+5 ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid P + 19 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI P + 19 ns These parameters are in addition to the general timings for SPI slave modes (Table 5-65). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Table 5-71. Additional (1) SPI1 Slave Timings, 5-Pin Option (2) No. 25 26 (1) (2) (3) UNIT Polarity = 0, Phase = 0, from SPI1_CLK falling PARAMETER td(SCSL_SPC)S td(SPC_SCSH)S MIN Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. Required delay from final SPI1_CLK edge before SPI1_SCS is deasserted. (3) MAX UNIT 2P Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI1_CLK falling P+5 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI1_CLK rising P+5 ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid P + 19 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI P + 19 ns 29 tena(SCSL_ENA)S Delay from master deasserting SPI1_SCS to slave driving SPI1_ENA valid 19 ns These parameters are in addition to the general timings for SPI slave modes (Table 5-65). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 143 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-71. Additional(1) SPI1 Slave Timings, 5-Pin Option(2) No. 30 (4) 144 PARAMETER tdis(SPC_ENA)S Delay from final clock receive edge on SPI1_CLK to slave 3-stating or driving high SPI1_ENA. (4) (3) (continued) MIN MAX Polarity = 0, Phase = 0, from SPI1_CLK falling 2.5 P + 19 Polarity = 0, Phase = 1, from SPI1_CLK rising 2.5 P + 19 Polarity = 1, Phase = 0, from SPI1_CLK rising 2.5 P + 19 Polarity = 1, Phase = 1, from SPI1_CLK falling 2.5 P + 19 UNIT ns SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is 3stated. If 3-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 1 2 MASTER MODE POLARITY = 0 PHASE = 0 3 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI 6 MO(1) MO(n−1) MO(n) 8 MI(0) MI(1) MI(n−1) MI(n) MASTER MODE POLARITY = 0 PHASE = 1 4 SPIx_CLK 6 5 SPIx_SIMO MO(0) 7 SPIx_SOMI MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(0) MI(n) 4 MASTER MODE POLARITY = 1 PHASE = 0 SPIx_CLK 5 SPIx_SIMO 6 MO(0) 7 SPIx_SOMI MO(1) MO(n−1) MO(n) 8 MI(0) MI(1) MI(n−1) MI(n) MASTER MODE POLARITY = 1 PHASE = 1 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI MI(0) 6 MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(n) Figure 5-38. SPI Timings—Master Mode Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 145 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 9 12 10 SLAVE MODE POLARITY = 0 PHASE = 0 11 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) SI(n−1) 13 SPIx_SOMI SO(0) SI(n) 14 SO(1) SO(n−1) 12 SO(n) SLAVE MODE POLARITY = 0 PHASE = 1 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) 13 SPIx_SOMI SO(0) SI(n−1) SI(n) SO(n−1) SO(n) 14 SO(1) SLAVE MODE POLARITY = 1 PHASE = 0 12 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) SI(n−1) 13 SPIx_SOMI SO(0) SO(1) SI(n) 14 SO(n−1) SO(n) SLAVE MODE POLARITY = 1 PHASE = 1 12 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) 13 SPIx_SOMI SO(0) SI(n−1) SI(n) 14 SO(1) SO(n−1) SO(n) Figure 5-39. SPI Timings—Slave Mode 146 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 MASTER MODE 4 PIN WITH ENABLE 17 18 SPIx_CLK SPIx_SIMO MO(0) SPIx_SOMI MI(0) MO(1) MO(n−1) MI(1) MI(n−1) MO(n) MI(n) SPIx_ENA MASTER MODE 4 PIN WITH CHIP SELECT 19 20 SPIx_CLK SPIx_SIMO MO(0) SPIx_SOMI MI(0) MO(1) MO(n−1) MO(n) MI(1) MI(n−1) MI(n) SPIx_SCS MASTER MODE 5 PIN 22 20 MO(1) 23 18 SPIx_CLK SPIx_SIMO MO(0) MO(n−1) MO(n) SPIx_SOMI 21 SPIx_ENA MI(0) MI(1) MI(n−1) MI(n) DESEL(A) DESEL(A) SPIx_SCS A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 5-40. SPI Timings—Master Mode (4-Pin and 5-Pin) Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 147 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com SLAVE MODE 4 PIN WITH ENABLE 24 SPIx_CLK SPIx_SOMI SO(0) SO(1) SO(n−1) SO(n) SPIx_SIMO SI(0) SPIx_ENA SI(1) SI(n−1) SI(n) SLAVE MODE 4 PIN WITH CHIP SELECT 26 25 SPIx_CLK 27 SPIx_SOMI 28 SO(n−1) SO(0) SO(1) SO(n) SPIx_SIMO SI(0) SPIx_SCS SI(1) SI(n−1) SI(n) SLAVE MODE 5 PIN 26 30 25 SPIx_CLK 27 SPIx_SOMI 28 SO(1) SO(0) SO(n−1) SO(n) SPIx_SIMO 29 SPIx_ENA SI(0) SI(1) SI(n−1) SI(n) DESEL(A) DESEL(A) SPIx_SCS A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 5-41. SPI Timings—Slave Mode (4-Pin and 5-Pin) 148 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.19 Enhanced Capture (eCAP) Peripheral The OMAP-L137 device contains up to three enhanced capture (eCAP) modules. Figure 5-42 shows a functional block diagram of a module. See the OMAP-L137 Applications Processor DSP Peripherals Overview Reference Guide. (SPRUGA6) for more details. Uses for ECAP include: • Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors) • Elapsed time measurements between position sensor triggers • Period and duty cycle measurements of Pulse train signals • Decoding current or voltage amplitude derived from cuty cycle encoded current/voltage sensors The ECAP module described in this specification includes the following features: • 32 bit time base • 4 event time-stamp registers (each 32 bits) • Edge polarity selection for up to 4 sequenced time-stamp capture events • Interrupt on either of the 4 events • Single shot capture of up to 4 event time-stamps • Continuous mode capture of time-stamps in a 4 deep circular buffer • Absolute time-stamp capture • Difference mode time-stamp capture • All the above resources are dedicated to a single input pin The eCAP modules are clocked at the SYSCLK2 rate. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 149 OMAP-L137 SYNC SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 SYNCIn SYNCOut www.ti.com CTRPHS (phase register−32 bit) TSCTR (counter−32 bit) APWM mode OVF RST CTR_OVF Delta−mode CTR [0−31] PWM compare logic PRD [0−31] CMP [0−31] 32 CTR=PRD CTR [0−31] CTR=CMP 32 32 CAP1 (APRD active) APRD shadow 32 32 LD LD1 MODE SELECT PRD [0−31] Polarity select 32 CMP [0−31] CAP2 (ACMP active) 32 LD LD2 32 CAP3 (APRD shadow) LD 32 CAP4 (ACMP shadow) LD Polarity select Event qualifier ACMP shadow eCAPx Event Pre-scale Polarity select LD3 LD4 4 Capture events Polarity select 4 CEVT[1:4] to Interrupt Controller Interrupt Trigger and Flag control CTR_OVF Continuous / Oneshot Capture Control CTR=PRD CTR=CMP Figure 5-42. eCAP Functional Block Diagram 150 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-72 is the list of the ECAP registers. Table 5-72. ECAPx Configuration Registers ECAP0 BYTE ADDRESS ECAP1 BYTE ADDRESS ECAP2 BYTE ADDRESS 0x01F0 6000 0x01F0 7000 0x01F0 8000 TSCTR 0x01F0 6004 0x01F0 7004 0x01F0 8004 CTRPHS ACRONYM REGISTER DESCRIPTION Time-Stamp Counter Counter Phase Offset Value Register 0x01F0 6008 0x01F0 7008 0x01F0 8008 CAP1 Capture 1 Register 0x01F0 600C 0x01F0 700C 0x01F0 800C CAP2 Capture 2 Register 0x01F0 6010 0x01F0 7010 0x01F0 8010 CAP3 Capture 3 Register 0x01F0 6014 0x01F0 7014 0x01F0 8014 CAP4 Capture 4 Register 0x01F0 6028 0x01F0 7028 0x01F0 8028 ECCTL1 Capture Control Register 1 0x01F0 602A 0x01F0 702A 0x01F0 802A ECCTL2 Capture Control Register 2 0x01F0 602C 0x01F0 702C 0x01F0 802C ECEINT Capture Interrupt Enable Register 0x01F0 602E 0x01F0 702E 0x01F0 802E ECFLG Capture Interrupt Flag Register 0x01F0 6030 0x01F0 7030 0x01F0 8030 ECCLR Capture Interrupt Clear Register 0x01F0 6032 0x01F0 7032 0x01F0 8032 ECFRC Capture Interrupt Force Register 0x01F0 605C 0x01F0 705C 0x01F0 805C REVID Revision ID Table 5-73 shows the eCAP timing requirement and Table 5-74 shows the eCAP switching characteristics. Table 5-73. Enhanced Capture (eCAP) Timing Requirement PARAMETER tw(CAP) TEST CONDITIONS Capture input pulse width MIN MAX UNIT Asynchronous 2tc(SCO) cycles Synchronous 2tc(SCO) cycles Table 5-74. eCAP Switching Characteristics PARAMETER tw(APWM) TEST CONDITIONS Pulse duration, APWMx output high/low Copyright © 2008–2013, Texas Instruments Incorporated MIN MAX 20 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 UNIT ns 151 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.20 Enhanced Quadrature Encoder (eQEP) Peripheral The OMAP-L137 device contains up to two enhanced quadrature encoder (eQEP) modules. See the OMAP-L137 Applications Processor DSP Peripherals Overview Reference Guide. (SPRUGA6) for more details. System control registers To CPU EQEPxENCLK Data bus SYSCLK2 QCPRD QCTMR QCAPCTL 16 16 16 Quadrature capture unit (QCAP) QCTMRLAT QCPRDLAT Registers used by multiple units QUTMR QWDTMR QUPRD QWDPRD 32 16 QEPCTL QEPSTS UTIME Interrupt Controller QFLG UTOUT QWDOG QDECCTL 16 WDTOUT EQEPxAIN QCLK EQEPxINT 16 QPOSLAT EQEPxIIN QI Position counter/ control unit (PCCU) EQEPxIOUT QS Quadrature decoder PHE (QDU) QPOSSLAT PCSOUT EQEPxIOE EQEPxSIN EQEPxSOE 32 QPOSCNT QPOSINIT QPOSMAX QPOSCMP EQEPxB/XDIR GPIO MUX EQEPxI EQEPxSOUT QPOSILAT 32 EQEPxA/XCLK EQEPxBIN QDIR EQEPxS 16 QEINT QFRC QCLR QPOSCTL Enhanced QEP (eQEP) Peripheral Figure 5-43. eQEP Functional Block Diagram Table 5-75 is the list of the EQEP registers. Table 5-76 shows the eQEP timing requirement and Table 5-77 shows the eQEP switching characteristics. 152 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-75. EQEP Registers EQEP0 BYTE ADDRESS EQEP1 BYTE ADDRESS ACRONYM 0x01F0 9000 0x01F0 A000 QPOSCNT eQEP Position Counter 0x01F0 9004 0x01F0 A004 QPOSINIT eQEP Initialization Position Count REGISTER DESCRIPTION 0x01F0 9008 0x01F0 A008 QPOSMAX eQEP Maximum Position Count 0x01F0 900C 0x01F0 A00C QPOSCMP eQEP Position-compare 0x01F0 9010 0x01F0 A010 QPOSILAT eQEP Index Position Latch 0x01F0 9014 0x01F0 A014 QPOSSLAT eQEP Strobe Position Latch 0x01F0 9018 0x01F0 A018 QPOSLAT 0x01F0 901C 0x01F0 A01C QUTMR eQEP Unit Timer 0x01F0 9020 0x01F0 A020 QUPRD eQEP Unit Period Register 0x01F0 9024 0x01F0 A024 QWDTMR eQEP Watchdog Timer 0x01F0 9026 0x01F0 A026 QWDPRD eQEP Watchdog Period Register 0x01F0 9028 0x01F0 A028 QDECCTL eQEP Decoder Control Register eQEP Position Latch 0x01F0 902A 0x01F0 A02A QEPCTL 0x01F0 902C 0x01F0 A02C QCAPCTL eQEP Control Register eQEP Capture Control Register 0x01F0 902E 0x01F0 A02E QPOSCTL eQEP Position-compare Control Register 0x01F0 9030 0x01F0 A030 QEINT eQEP Interrupt Enable Register 0x01F0 9032 0x01F0 A032 QFLG eQEP Interrupt Flag Register 0x01F0 9034 0x01F0 A034 QCLR eQEP Interrupt Clear Register 0x01F0 9036 0x01F0 A036 QFRC eQEP Interrupt Force Register 0x01F0 9038 0x01F0 A038 QEPSTS eQEP Status Register 0x01F0 903A 0x01F0 A03A QCTMR eQEP Capture Timer 0x01F0 903C 0x01F0 A03C QCPRD eQEP Capture Period Register 0x01F0 903E 0x01F0 A03E QCTMRLAT eQEP Capture Timer Latch 0x01F0 9040 0x01F0 A040 QCPRDLAT eQEP Capture Period Latch 0x01F0 905C 0x01F0 A05C REVID eQEP Revision ID Table 5-76. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements PARAMETER TEST CONDITIONS MIN MAX UNIT tw(QEPP) QEP input period Asynchronous/synchronous 2tc(SCO) cycles tw(INDEXH) QEP Index Input High time Asynchronous/synchronous 2tc(SCO) cycles tw(INDEXL) QEP Index Input Low time Asynchronous/synchronous 2tc(SCO) cycles tw(STROBH) QEP Strobe High time Asynchronous/synchronous 2tc(SCO) cycles tw(STROBL) QEP Strobe Input Low time Asynchronous/synchronous 2tc(SCO) cycles Table 5-77. eQEP Switching Characteristics PARAMETER MIN MAX UNIT td(CNTR)xin Delay time, external clock to counter increment 4tc(SCO) cycles td(PCS-OUT)QEP Delay time, QEP input edge to position compare sync output 6tc(SCO) cycles Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 153 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.21 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM) The OMAP-L137 device contains up to three enhanced PWM Modules (eHRPWM). Figure 5-44 shows a block diagram of multiple eHRPWM modules. Figure 4-4 shows the signal interconnections with the eHRPWM. See the OMAP-L137 Applications Processor DSP Peripherals Overview Reference Guide. (SPRUGA6) for more details. EPWMSYNCI EPWM0INT EPWM0SYNCI EPWM0A eHRPWM0 module EPWM0B EPWMTZ EPWM0SYNCO EPWM1SYNCI Interrupt Controllers EPWM1INT EPWM1A eHRPWM1 module EPWM1SYNCO EPWM1B GPIO MUX EPWMTZ EPWM2SYNCI EPWM2INT EPWM2A eHRPWM2 module EPWM2SYNCO To eCAP0 module (sync in) EPWM2B EPWMTZ EPWMSYNCO Peripheral Bus Figure 5-44. Multiple PWM Modules in a OMAP-L137 System 154 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Time−base (TB) Sync in/out control Mux CTR=ZERO CTR=CMPB Disabled TBPRD shadow (16) TBPRD active (16) CTR=PRD EPWMSYNCO TBCTL[SYNCOSEL] TBCTL[CNTLDE] EPWMSYNCI Counter up/down (16 bit) CTR=ZERO CTR_Dir TBCNT active (16) TBPHSHR (8) 16 8 TBPHS active (24) Phase control Counter compare (CC) CTR=CMPA CMPAHR (8) 16 TBCTL[SWFSYNC] (software forced sync) Action qualifier (AQ) CTR = PRD CTR = ZERO CTR = CMPA CTR = CMPB CTR_Dir 8 Event trigger and interrupt (ET) EPWMxINT HiRes PWM (HRPWM) CMPA active (24) EPWMA EPWMxA CMPA shadow (24) CTR=CMPB Dead band (DB) 16 PWM chopper (PC) EPWMB EPWMxB CMPB active (16) CMPB shadow (16) Trip zone (TZ) EPWMxTZINT CTR = ZERO TZ Figure 5-45. eHRPWM Sub-Modules Showing Critical Internal Signal Interconnections Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 155 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-78. eHRPWM Module Control and Status Registers Grouped by Submodule eHRPWM0 BYTE ADDRESS eHRPWM1 BYTE ADDRESS eHRPWM2 BYTE ADDRESS ACRONYM SIZE (×16) SHADOW REGISTER DESCRIPTION TIME-BASE SUBMODULE REGISTERS 0x01F0 0000 0x01F0 2000 0x01F0 4000 TBCTL 1 No Time-Base Control Register 0x01F0 0002 0x01F0 2002 0x01F0 4002 TBSTS 1 No Time-Base Status Register 0x01F0 0004 0x01F0 2004 0x01F0 4004 TBPHSHR 1 No Extension for HRPWM Phase Register 0x01F0 0006 0x01F0 2006 0x01F0 4006 TBPHS 1 No Time-Base Phase Register 0x01F0 0008 0x01F0 2008 0x01F0 4008 TBCNT 1 No Time-Base Counter Register 0x01F0 000A 0x01F0 200A 0x01F0 400A TBPRD 1 Yes Time-Base Period Register (1) COUNTER-COMPARE SUBMODULE REGISTERS 0x01F0 000E 0x01F0 200E 0x01F0 400E CMPCTL 1 No Counter-Compare Control Register 0x01F0 0010 0x01F0 2010 0x01F0 4010 CMPAHR 1 No Extension for HRPWM Counter-Compare A Register 0x01F0 0012 0x01F0 2012 0x01F0 4012 CMPA 1 Yes Counter-Compare A Register 0x01F0 0014 0x01F0 2014 0x01F0 4014 CMPB 1 Yes Counter-Compare B Register (1) ACTION-QUALIFIER SUBMODULE REGISTERS 0x01F0 0016 0x01F0 2016 0x01F0 4016 AQCTLA 1 No Action-Qualifier Control Register for Output A (eHRPWMxA) 0x01F0 0018 0x01F0 2018 0x01F0 4018 AQCTLB 1 No Action-Qualifier Control Register for Output B (eHRPWMxB) 0x01F0 001A 0x01F0 201A 0x01F0 401A AQSFRC 1 No Action-Qualifier Software Force Register 0x01F0 001C 0x01F0 201C 0x01F0 401C AQCSFRC 1 Yes Action-Qualifier Continuous S/W Force Register Set DEAD-BAND GENERATOR SUBMODULE REGISTER 0x01F0 001E 0x01F0 201E 0x01F0 401E DBCTL 1 No Dead-Band Generator Control Register 0x01F0 0020 0x01F0 2020 0x01F0 4020 DBRED 1 No Dead-Band Generator Rising Edge Delay Count Register 0x01F0 0022 0x01F0 2022 0x01F0 4022 DBFED 1 No Dead-Band Generator Falling Edge Delay Count Register 0x01F0 003C 0x01F0 203C 0x01F0 403C PWM-CHOPPER SUBMODULE REGISTERS PCCTL 1 No PWM-Chopper Control Register TRIP-ZONE SUBMODULE REGISTERS 0x01F0 0024 0x01F0 2024 0x01F0 4024 TZSEL 1 No Trip-Zone Select Register 0x01F0 0028 0x01F0 2028 0x01F0 4028 TZCTL 1 No Trip-Zone Control Register 0x01F0 002A 0x01F0 202A 0x01F0 402A TZEINT 1 No Trip-Zone Enable Interrupt Register 0x01F0 002C 0x01F0 202C 0x01F0 402C TZFLG 1 No Trip-Zone Flag Register 0x01F0 002E 0x01F0 202E 0x01F0 402E TZCLR 1 No Trip-Zone Clear Register 0x01F0 0030 0x01F0 2030 0x01F0 4030 TZFRC 1 No Trip-Zone Force Register EVENT-TRIGGER SUBMODULE REGISTERS 0x01F0 0032 0x01F0 2032 0x01F0 4032 ETSEL 1 No Event-Trigger Selection Register 0x01F0 0034 0x01F0 2034 0x01F0 4034 ETPS 1 No Event-Trigger Pre-Scale Register 0x01F0 0036 0x01F0 2036 0x01F0 4036 ETFLG 1 No Event-Trigger Flag Register 0x01F0 0038 0x01F0 2038 0x01F0 4038 ETCLR 1 No Event-Trigger Clear Register 0x01F0 003A 0x01F0 203A 0x01F0 403A ETFRC 1 No Event-Trigger Force Register HIGH-RESOLUTION PWM (HRPWM) SUBMODULE REGISTERS 0x01F0 1040 (1) 156 0x01F0 3040 0x01F0 5040 HRCNFG 1 No HRPWM Configuration Register (1) These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these locations are reserved. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.21.1 Enhanced Pulse Width Modulator (eHRPWM) Timing PWM refers to PWM outputs on eHRPWM1-6. Table 5-79 shows the PWM timing requirements and Table 5-80, switching characteristics. Table 5-79. eHRPWM Timing Requirements PARAMETER tw(SYNCIN) TEST CONDITIONS Sync input pulse width MIN MAX UNIT Asynchronous 2tc(SCO) cycles Synchronous 2tc(SCO) cycles Table 5-80. eHRPWM Switching Characteristics PARAMETER TEST CONDITIONS MIN MAX UNIT tw(PWM) Pulse duration, PWMx output high/low 20 ns tw(SYNCOUT) Sync output pulse width td(PWM)TZA Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low no pin load; no additional programmable delay 25 ns td(TZ-PWM)HZ Delay time, trip input active to PWM Hi-Z no additional programmable delay 20 ns 8tc(SCO) cycles 5.21.2 Trip-Zone Input Timing tw(TZ) TZ td(TZ_PWM)HZ PWM (A) A. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 5-46. PWM Hi-Z Characteristics Table 5-81. Trip-Zone input Timing Requirements PARAMETER tw(TZ) MIN Pulse duration, TZx input low MAX UNIT Asynchronous 1tc(SCO) cycles Synchronous 2tc(SCO) cycles Table 5-82 shows the high-resolution PWM switching characteristics. Table 5-82. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz) PARAMETER Micro Edge Positioning (MEP) step size (1) MIN (1) TYP MAX 200 UNIT ps MEP step size will increase with low voltage and high temperature and decrease with high voltage and cold temperature. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 157 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.22 LCD Controller The LCD controller consists of two independent controllers, the Raster Controller and the LCD Interface Display Driver (LIDD) controller. Each controller operates independently from the other and only one of them is active at any given time. • The Raster Controller handles the synchronous LCD interface. It provides timing and data for constant graphics refresh to a passive display. It supports a wide variety of monochrome and full-color display types and sizes by use of programmable timing controls, a built-in palette, and a gray-scale/serializer. Graphics data is processed and stored in frame buffers. A frame buffer is a contiguous memory block in the system. A built-in DMA engine supplies the graphics data to the Raster engine which, in turn, outputs to the external LCD device. • The LIDD Controller supports the asynchronous LCD interface. It provides full-timing programmability of control signals (CS, WE, OE, ALE) and output data. The maximum resolution for the LCD controller is 1024 x 1024 pixels. The maximum frame rate is determined by the image size in combination with the pixel clock rate. OMAP-L1x/C674x/AM1x SOC Architecture and Throughput Overview (SPRAB93). Table 5-83 lists the LCD Controller registers Table 5-83. LCD Controller (LCDC) Registers BYTE ADDRESS ACRONYM 0x01E1 3000 REVID 0x01E1 3004 LCD_CTRL LCD Control Register 0x01E1 3008 LCD_STAT LCD Status Register 0x01E1 300C LIDD_CTRL LCD LIDD Control Register 0x01E1 3010 LIDD_CS0_CONF LCD LIDD CS0 Configuration Register 0x01E1 3014 LIDD_CS0_ADDR LCD LIDD CS0 Address Read/Write Register 0x01E1 3018 LIDD_CS0_DATA LCD LIDD CS0 Data Read/Write Register 0x01E1 301C LIDD_CS1_CONF LCD LIDD CS1 Configuration Register 0x01E1 3020 LIDD_CS1_ADDR LCD LIDD CS1 Address Read/Write Register 0x01E1 3024 LIDD_CS1_DATA LCD LIDD CS1 Data Read/Write Register 0x01E1 3028 RASTER_CTRL 0x01E1 302C RASTER_TIMING_0 LCD Raster Timing 0 Register 0x01E1 3030 RASTER_TIMING_1 LCD Raster Timing 1 Register 0x01E1 3034 RASTER_TIMING_2 LCD Raster Timing 2 Register 0x01E1 3038 RASTER_SUBPANEL 0x01E1 3040 LCDDMA_CTRL 0x01E1 3044 LCDDMA_FB0_BASE 0x01E1 3048 LCDDMA_FB0_CEILING 0x01E1 304C LCDDMA_FB1_BASE 0x01E1 3050 LCDDMA_FB1_CEILING 158 REGISTER DESCRIPTION LCD Revision Identification Register LCD Raster Control Register LCD Raster Subpanel Display Register LCD DMA Control Register LCD DMA Frame Buffer 0 Base Address Register LCD DMA Frame Buffer 0 Ceiling Address Register LCD DMA Frame Buffer 1 Base Address Register LCD DMA Frame Buffer 1 Ceiling Address Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.22.1 LCD Interface Display Driver (LIDD Mode) Table 5-84. LCD LIDD Mode Timing Requirements No. PARAMETER MIN 16 tsu(LCD_D) Setup time, LCD_D[15:0] valid before LCD_MCLK high 17 th(LCD_D) Hold time, LCD_D[15:0] valid after LCD_MCLK high MAX UNIT 7 ns 0.5 ns Table 5-85. LCD LIDD Mode Timing Characteristics No. MIN MAX UNIT 4 td(LCD_D_V) Delay time, LCD_MCLK high to LCD_D[15:0] valid (write) PARAMETER -0.5 10 ns 5 td(LCD_D_I) Delay time, LCD_MCLK high to LCD_D[15:0] invalid (write) -0.5 10 ns 6 td(LCD_E_A) Delay time, LCD_MCLK high to LCD_AC_ENB_CS low -0.5 7 ns 7 td(LCD_E_I) Delay time, LCD_MCLK high to LCD_AC_ENB_CS high -0.5 7 ns 8 td(LCD_A_A) Delay time, LCD_MCLK high to LCD_VSYNC low -0.5 8 ns 9 td(LCD_A_I) Delay time, LCD_MCLK high to LCD_VSYNC high -0.5 8 ns 10 td(LCD_W_A) Delay time, LCD_MCLK high to LCD_HSYNC low -0.5 8 ns 11 td(LCD_W_I) Delay time, LCD_MCLK high to LCD_HSYNC high -0.5 8 ns 12 td(LCD_STRB_A) Delay time, LCD_MCLK high to LCD_PCLK active -0.5 12 ns 13 td(LCD_STRB_I) Delay time, LCD_MCLK high to LCD_PCLK inactive -0.5 12 ns 14 td(LCD_D_Z) Delay time, LCD_MCLK high to LCD_D[15:0] in 3-state -0.5 12 ns 15 td(Z_LCD_D) Delay time, LCD_MCLK high to LCD_D[15:0] (valid from 3-state) -0.5 12 ns CS_DELA Y 1 W_SU (0 to 31) 2 3 W_STROBE (1 to 63) R_SU (0 to 31) R_HOLD (1 to 15) R_STROBE (1 to 63) W_HOLD (1 to 15) CS_DELA Y LCD_MCLK 4 5 14 17 16 LCD_D[15:0] 15 Data[7:0] Write Data Read Status LCD_PCLK Not Used 8 9 LCD_VSYNC RS 10 11 LCD_HSYNC R/W 12 12 13 13 E0 E1 LCD_AC_ENB_CS Figure 5-47. Character Display HD44780 Write Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 159 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com W_HOLD (1–15) R_SU (0–31) 1 2 R_STROBE R_HOLD (1–63) (1–5) CS_DELAY W_SU W_STROBE (0–31) CS_DELAY (1–63) Not Used 3 LCD_MCLK 14 16 17 15 4 LCD_D[7:0] 5 Data[7:0] Write Instruction Read Data LCD_PCLK Not Used 8 9 RS LCD_VSYNC 10 11 LCD_HSYNC R/W 12 12 13 LCD_AC_ENB_CS 13 E0 E1 Figure 5-48. Character Display HD44780 Read 160 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 W_HOLD (1−15) W_HOLD (1−15) 1 2 W_SU W_STROBE (0−31) (1−63) CS_DELAY W_SU W_STROBE (0−31) (1−63) CS_DELAY 3 Clock LCD_MCLK 4 LCD_D[15:0] LCD_AC_ENB_CS (async mode) 5 5 4 Write Address Write Data 7 6 Data[15:0] 6 7 CS0 CS1 9 8 A0 LCD_VSYNC 10 11 11 10 R/W LCD_HSYNC 12 13 12 13 E LCD_PCLK Figure 5-49. Micro-Interface Graphic Display 6800 Write Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 161 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com W_HOLD (1−15) 1 2 W_SU W_STROBE (0−31) (1−63) R_SU (0−31) CS_DELAY R_STROBE R_HOLD (1−63 CS_DELAY (1−15) 3 Clock LCD_MCLK 4 LCD_D[15:0] 5 14 16 17 15 Write Address Data[15:0] 6 7 Read Data 6 LCD_AC_ENB_CS (async mode) 7 CS0 CS1 9 8 LCD_VSYNC A0 11 10 LCD_HSYNC R/W 12 13 12 LCD_PCLK 13 E Figure 5-50. Micro-Interface Graphic Display 6800 Read 162 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 R_SU (0−31) R_SU (0−31) R_STROBE R_HOLD CS_DELAY R_STROBE R_HOLD CS_DELAY 1 2 (1−63) 3 (1−15) (1−63) (1−15) Clock LCD_MCLK 14 16 17 15 14 17 16 15 LCD_D[15:0] Data[15:0] Read Data 6 LCD_AC_ENB_CS (async mode) 7 Read Status 6 7 CS0 CS1 8 9 LCD_VSYNC A0 R/W LCD_HSYNC 12 13 12 13 E LCD_PCLK Figure 5-51. Micro-Interface Graphic Display 6800 Status Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 163 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com W_HOLD (1−15) W_HOLD (1−15) 1 2 W_SU W_STROBE (0−31) 3 (1−63) CS_DELAY W_SU W_STROBE (0−31) (1−63) CS_DELAY Clock LCD_MCLK 4 LCD_D[15:0] LCD_AC_ENB_CS (async mode) 5 4 Write Address 5 DATA[15:0] Write Data 7 6 6 7 CS0 CS1 8 9 LCD_VSYNC A0 10 11 10 LCD_HSYNC 11 WR RD LCD_PCLK Figure 5-52. Micro-Interface Graphic Display 8080 Write 164 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 W_HOLD (1−15) W_SU W_STROBE R_SU (0−31) CS_DELAY R_STROBE R_HOLD CS_DELAY 1 2 3 (0−31) (1−63) (1−63) (1−15) 16 17 Clock LCD_MCLK 4 LCD_D[15:0] 5 14 15 Data[15:0] Write Address 6 7 LCD_AC_ENB_CS (async mode) 6 Read Data 7 CS0 CS1 9 8 LCD_VSYNC A0 10 11 WR LCD_HSYNC 12 13 RD LCD_PCLK Figure 5-53. Micro-Interface Graphic Display 8080 Read Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 165 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com R_SU (0−31) R_SU (0−31) R_STROBE 1 2 (1−63) R_HOLD CS_DELAY R_STROBE R_HOLD (1−15) (1−63) CS_DELAY (1−15) 3 Clock LCD_MCLK 14 16 17 15 14 16 17 15 Data[15:0] LCD_D[15:0] Read Data Read Status 7 6 6 7 LCD_AC_ENB_CS CS0 CS1 8 9 A0 LCD_VSYNC WR LCD_HSYNC 12 13 12 13 RD LCD_PCLK Figure 5-54. Micro-Interface Graphic Display 8080 Status 166 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.22.2 LCD Raster Mode Table 5-86. LCD Raster Mode Timing See Figure 5-55 through Figure 5-59 No. (1) (2) PARAMETER MIN MAX 1 tc(PIXEL_CLK) Cycle time, pixel clock 2 tw(PIXEL_CLK_H) Pulse duration, pixel clock high 3 tw(PIXEL_CLK_L) Pulse duration, pixel clock low 4 td(LCD_D_V) Delay time, LCD_PCLK high to LCD_D[15:0] valid (write) -0.5 9 5 td(LCD_D_IV) Delay time, LCD_PCLK high to LCD_D[15:0] invalid (write) -0.5 9 UNIT 26.6 ns 10 ns 10 ns (1) ns (1) ns 6 td(LCD_AC_ENB_CS_A) Delay time, LCD_PCLK low to LCD_AC_ENB_CS high S2 - 0.5 7 td(LCD_AC_ENB_CS_I) Delay time, LCD_PCLK low to LCD_AC_ENB_CS low S2 - 0.5 (1) S2 + 9 (1) ns 8 td(LCD_VSYNC_A) Delay time, LCD_PCLK low to LCD_VSYNC high (2) -0.5 12 ns 9 td(LCD_VSYNC_I) Delay time, LCD_PCLK low to LCD_VSYNC low (2) -0.5 12 ns -0.5 12 ns -0.5 12 ns (2) 10 td(LCD_HSYNC_A) Delay time, LCD_PCLK high to LCD_HSYNC high 11 td(LCD_HSYNC_I) Delay time, LCD_PCLK high to LCD_HSYNC low (2) S2 + 9 ns S2 = SYSCLK2 cycle time in ns The activation edge of the control signals LCD_VSYNC and LCD_HSYNC may be programmed to either the rising or falling edge of the pixel clock through the LCD (RASTER_TIMING_2) register. In Figure 5-56 through Figure 5-59, all signal polarity and activation edges are based on the default LCD (RASTER_TIMING_2) register settings. Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1) register: • Vertical front porch (VFP) • Vertical sync pulse width (VSW) • Vertical back porch (VBP) • Lines per panel (LPP) Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register: • Horizontal front porch (HFP) • Horizontal sync pulse width (HSW) • Horizontal back porch (HBP) • Pixels per panel (PPL) LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2) register: • AC bias frequency (ACB) The display format produced in raster mode is shown in Figure 5-55. An entire frame is delivered one line at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the activation of I/O signal LCD_HSYNC. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 167 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Data Pixels (From 1 to P) 1, 1 2, 1 1, 2 2, 2 P−2, 1 3, 1 P−1, 1 P, 1 P−1, 2 P, 2 P, 3 Data Lines (From 1 to L) 1, 3 LCD P, L−2 1, L−2 1, L−1 2, L−1 1, L 2, L P−2, L 3, L P−1, L−1 P, L−1 P−1, L P, L Figure 5-55. LCD Raster-Mode Display Format 168 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Frame Time ~ 70 Hz Active TFT VBP (0 to 255) VSW (1 to 64) Line Time LPP VFP (1 to 1024) (0 to 255) VSW (1 to 64) Hsync LCD_HSYNC LCD_VSYNC Vsync Data LCD_D[15:0] 1, 1 P, 1 1, L-1 P, L-1 1, 2 P, 2 1, L P, L LCD_AC_ENB_CS 10 11 Hsync LCD_HSYNC CLK LCD_PCLK Data LCD_D[15:0] 1, 1 2, 1 1, 2 P, 1 2, 2 P, 2 Enable LCD_AC_ENB_CS PLL HFP HSW HBP PLL 16 × (1 to 1024) (1 to 256) (1 to 64) (1 to 256) 16 × (1 to 1024) Line 1 Line 2 Figure 5-56. LCD Raster-Mode Active Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 169 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Frame Time ~ 70Hz VBP = 0 VFP = 0 VBP = 0 VFP = 0 Passive STN VSW = 1 (1 to 64) VSW = 1 (1 to 64) LPP (1 to 1024) Line Time LCD_HSYNC LP LCD_VSYNC FP 1, L Data LCD_D[7:0] 1, 1: P, 1 1, L: P, L 1, 2: P, 2 1, 3: P, 3 1, 4: P, 4 1, 5: P, 5 1, L P, L 1, 6: P, 6 1, L−1 P, L−1 1, L−4 P, L−4 1, 1 P, 1 1, 2 P, 2 1, L−3 1, L−2 1, L−1 P, L−3 P, L−2 P, L−1 M LCD_AC_ENB_CS ACB ACB (0 to 255) (0 to 255) 11 10 LCD_HSYNC LP LCD_PCLK CP Data LCD_D[7:0] 1, 5 2, 5 P, 5 PPL 16 1, 6 (1 to 1024) HFP HSW HBP (1 to 256) (1 to 64) (1 to 256) 2, 6 P, 6 PPL 16 (1 to 2024) Line 6 Line 5 Figure 5-57. LCD Raster-Mode Passive 170 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 6 LCD_AC_ENB_CS 8 LCD_VSYNC 10 11 LCD_HSYNC 1 2 3 LCD_PCLK (passive mode) 5 4 LCD_D[7:0] (passive mode) 1, L 2, L P, L 1, 1 2, 1 P, 1 1 2 3 LCD_PCLK (active mode) 4 LCD_D[15:0] (active mode) VBP = 0 VFP = 0 VSW = 1 1, L 2, L PPL 16 × (1 to 1024) Line L 5 P, L HFP (1 to 256 HSW (1 to 64) HBP (1 to 256) PPL 16 ×(1 to 1024) Line 1 (Passive Only) Figure 5-58. LCD Raster-Mode Control Signal Activation Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 171 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 7 LCD_AC_ENB_CS 9 LCD_VSYNC 10 11 LCD_HSYNC 1 3 4 LCD_PCLK (passive mode) 5 4 LCD_D[7:0] (passive mode) 1, 1 2, 1 P, 1 1, 2 2, 2 P, 2 1 2 3 LCD_PCLK (active mode) 4 LCD_D[15:0] (active mode) VBP = 0 VFP = 0 VSW = 1 5 1, 1 PPL 16 × (1 to 1024) HFP (1 to 256 HSW (1 to 64) HBP (1 to 256) Line 1 for passive 2, 1 P, 1 PPL 16 ×(1 to 1024) Line 1 for active Line 2 for passive Figure 5-59. LCD Raster-Mode Control Signal Deactivation 172 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.23 Timers The timers support the following features: • Configurable as single 64-bit timer or two 32-bit timers • Period timeouts generate interrupts, DMA events or external pin events • 8 32-bit compare registers • Compare matches generate interrupt events • Capture capability • 64-bit Watchdog capability (Timer64P1 only) Table 5-87 lists the timer registers. Table 5-87. Timer Registers Timer64P 0 Timer64P 1 ACRONYM 0x01C2 0000 0x01C2 1000 REV REGISTER DESCRIPTION 0x01C2 0004 0x01C2 1004 EMUMGT 0x01C2 0008 0x01C2 1008 GPINTGPEN 0x01C2 000C 0x01C2 100C GPDATGPDIR 0x01C2 0010 0x01C2 1010 TIM12 Timer Counter Register 12 0x01C2 0014 0x01C2 1014 TIM34 Timer Counter Register 34 0x01C2 0018 0x01C2 1018 PRD12 Timer Period Register 12 0x01C2 001C 0x01C2 101C PRD34 Timer Period Register 34 0x01C2 0020 0x01C2 1020 TCR 0x01C2 0024 0x01C2 1024 TGCR 0x01C2 0028 0x01C2 1028 WDTCR 0x01C2 0034 0x01C2 1034 REL12 Timer Reload Register 12 0x01C2 0038 0x01C2 1038 REL34 Timer Reload Register 34 0x01C2 003C 0x01C2 103C CAP12 Timer Capture Register 12 0x01C2 0040 0x01C2 1040 CAP34 Timer Capture Register 34 0x01C2 0044 0x01C2 1044 INTCTLSTAT 0x01C2 0060 0x01C2 1060 CMP0 Compare Register 0 0x01C2 0064 0x01C2 1064 CMP1 Compare Register 1 Revision Register Emulation Management Register GPIO Interrupt and GPIO Enable Register GPIO Data and GPIO Direction Register Timer Control Register Timer Global Control Register Watchdog Timer Control Register Timer Interrupt Control and Status Register 0x01C2 0068 0x01C2 1068 CMP2 Compare Register 2 0x01C2 006C 0x01C2 106C CMP3 Compare Register 3 0x01C2 0070 0x01C2 1070 CMP4 Compare Register 4 0x01C2 0074 0x01C2 1074 CMP5 Compare Register 5 0x01C2 0078 0x01C2 1078 CMP6 Compare Register 6 0x01C2 007C 0x01C2 107C CMP7 Compare Register 7 Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 173 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.23.1 Timer Electrical Data/Timing Table 5-88. Timing Requirements for Timer Input (1) No. (2) (see Figure 5-60) PARAMETER MIN MAX UNIT 1 tc(TM64Px_IN12) Cycle time, TM64Px_IN12 2 tw(TINPH) Pulse duration, TM64Px_IN12 high 0.45C 0.55C ns 3 tw(TINPL) Pulse duration, TM64Px_IN12 low 0.45C 0.55C ns (3) ns 4 (1) (2) (3) tt(TM64Px_IN12) 4P ns Transition time, TM64Px_IN12 0.25P or 10 P = OSCIN cycle time in ns. C = TM64P0_IN12 cycle time in ns. For example, when TM64Px_IN12 frequency is 27 MHz, use C = 37.037 ns Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. 1 2 4 3 4 TM64P0_IN12 Figure 5-60. Timer Timing Table 5-89. Switching Characteristics Over Recommended Operating Conditions for Timer Output No. PARAMETER MIN MAX (1) UNIT 5 tw(TOUTH) Pulse duration, TM64P0_OUT12 high 4P ns 6 tw(TOUTL) Pulse duration, TM64P0_OUT12 low 4P ns (1) P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns. 5 6 TM64P0_OUT12 Figure 5-61. Timer Timing 174 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.24 Inter-Integrated Circuit Serial Ports (I2C0, I2C1) 5.24.1 I2C Device-Specific Information Having two I2C modules on the OMAP-L137 simplifies system architecture, since one module may be used by the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used to communicate with other controllers in a system or to implement a user interface. Figure 5-62 is block diagram of the OMAP-L137 I2C Module. Each I2C port supports: • Compatible with Philips® I2C Specification Revision 2.1 (January 2000) • Fast Mode up to 400 Kbps (no fail-safe I/O buffers) • Noise Filter to Remove Noise 50 ns or less • Seven- and Ten-Bit Device Addressing Modes • Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality • Events: DMA, Interrupt, or Polling • General-Purpose I/O Capability if not used as I2C Clock Prescaler I2CPSCx Control Prescaler Register Bit Clock Generator I2Cx_SCL Noise Filter I2CCOARx Own Address Register I2CSARx Slave Address Register I2CCLKHx Clock Divide High Register I2CCMDRx Mode Register I2CCLKLx Clock Divide Low Register I2CEMDRx Extended Mode Register I2CCNTx Data Count Register I2CPID1 Peripheral ID Register 1 I2CPID2 Peripheral ID Register 2 Transmit I2Cx_SDA Noise Filter I2CXSRx Transmit Shift Register I2CDXRx Transmit Buffer Interrupt/DMA Receive I2CIERx I2CDRRx Receive Buffer I2CSTRx I2CRSRx Receive Shift Register I2CSRCx I2CPFUNC Pin Function Register I2CPDOUT Interrupt Enable Register Interrupt Status Register Interrupt Source Register Peripheral Configuration Bus Interrupt DMA Requests Control I2CPDIR I2CPDIN Pin Direction Register Pin Data In Register I2CPDSET I2CPDCLR Pin Data Out Register Pin Data Set Register Pin Data Clear Register Figure 5-62. I2C Module Block Diagram Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 175 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.24.2 I2C Peripheral Registers Description(s) Table 5-90 is the list of the I2C registers. Table 5-90. Inter-Integrated Circuit (I2C) Registers 176 I2C0 BYTE ADDRESS I2C1 BYTE ADDRESS ACRONYM 0x01C2 2000 0x01E2 8000 ICOAR I2C Own Address Register 0x01C2 2004 0x01E2 8004 ICIMR I2C Interrupt Mask Register 0x01C2 2008 0x01E2 8008 ICSTR I2C Interrupt Status Register 0x01C2 200C 0x01E2 800C ICCLKL I2C Clock Low-Time Divider Register 0x01C2 2010 0x01E2 8010 ICCLKH I2C Clock High-Time Divider Register 0x01C2 2014 0x01E2 8014 ICCNT I2C Data Count Register 0x01C2 2018 0x01E2 8018 ICDRR I2C Data Receive Register 0x01C2 201C 0x01E2 801C ICSAR I2C Slave Address Register 0x01C2 2020 0x01E2 8020 ICDXR I2C Data Transmit Register 0x01C2 2024 0x01E2 8024 ICMDR I2C Mode Register 0x01C2 2028 0x01E2 8028 ICIVR I2C Interrupt Vector Register 0x01C2 202C 0x01E2 802C ICEMDR I2C Extended Mode Register 0x01C2 2030 0x01E2 8030 ICPSC I2C Prescaler Register 0x01C2 2034 0x01E2 8034 REVID1 I2C Revision Identification Register 1 0x01C2 2038 0x01E2 8038 REVID2 I2C Revision Identification Register 2 0x01C2 2048 0x01E2 8048 ICPFUNC I2C Pin Function Register 0x01C2 204C 0x01E2 804C ICPDIR I2C Pin Direction Register 0x01C2 2050 0x01E2 8050 ICPDIN I2C Pin Data In Register 0x01C2 2054 0x01E2 8054 ICPDOUT I2C Pin Data Out Register 0x01C2 2058 0x01E2 8058 ICPDSET I2C Pin Data Set Register 0x01C2 205C 0x01E2 805C ICPDCLR I2C Pin Data Clear Register REGISTER DESCRIPTION Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.24.3 I2C Electrical Data/Timing 5.24.3.1 Inter-Integrated Circuit (I2C) Timing Table 5-91 and Table 5-92 assume testing over recommended operating conditions (see Figure 5-63 and Figure 5-64). Table 5-91. I2C Input Timing Requirements No. PARAMETER 1 tc(SCL) Cycle time, I2Cx_SCL 2 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 3 th(SCLL-SDAL) Hold time, I2Cx_SCL low after I2Cx_SDA low 4 tw(SCLL) Pulse duration, I2Cx_SCL low 5 tw(SCLH) Pulse duration, I2Cx_SCL high 6 tsu(SDA-SCLH) Setup time, I2Cx_SDA before I2Cx_SCL high 7 th(SDA-SCLL) Hold time, I2Cx_SDA after I2Cx_SCL low 8 tw(SDAH) Pulse duration, I2Cx_SDA high 9 tr(SDA) Rise time, I2Cx_SDA 10 tr(SCL) Rise time, I2Cx_SCL 11 tf(SDA) Fall time, I2Cx_SDA 12 tf(SCL) Fall time, I2Cx_SCL 13 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high 14 tw(SP) Pulse duration, spike (must be suppressed) 15 Cb Capacitive load for each bus line Copyright © 2008–2013, Texas Instruments Incorporated MIN MAX Standard Mode 10 Fast Mode 2.5 Standard Mode 4.7 Fast Mode 0.6 Standard Mode 0.6 Standard Mode 4.7 Fast Mode 1.3 Standard Mode 0.6 Standard Mode 250 Fast Mode 100 Standard Mode 0 Fast Mode 0 Standard Mode 4.7 Fast Mode 1.3 Standard Mode 20 + 0.1Cb Standard Mode ns 0.9 300 300 300 300 4 0.6 Standard Mode N/A 0 μs μs 300 20 + 0.1Cb Fast Mode Fast Mode μs 300 20 + 0.1Cb Standard Mode Fast Mode μs 1000 Standard Mode Fast Mode μs 1000 20 + 0.1Cb Standard Mode Fast Mode μs 4 Fast Mode Fast Mode μs 4 Fast Mode UNIT ns ns ns ns μs 50 Standard Mode 400 Fast Mode 400 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 ns pF 177 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-92. I2C Switching Characteristics (1) No. PARAMETER MIN 16 tc(SCL) Cycle time, I2Cx_SCL 17 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 18 th(SDAL-SCLL) Hold time, I2Cx_SCL low after I2Cx_SDA low 19 tw(SCLL) Pulse duration, I2Cx_SCL low 20 tw(SCLH) Pulse duration, I2Cx_SCL high 21 tsu(SDAV-SCLH) Setup time, I2Cx_SDA valid before I2Cx_SCL high 22 th(SCLL-SDAV) Hold time, I2Cx_SDA valid after I2Cx_SCL low 23 tw(SDAH) Pulse duration, I2Cx_SDA high 28 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high (1) MAX Standard Mode 10 Fast Mode 2.5 Standard Mode 4.7 Fast Mode 0.6 Standard Mode UNIT μs μs 4 Fast Mode 0.6 Standard Mode 4.7 Fast Mode 1.3 Standard Mode μs μs 4 Fast Mode 0.6 Standard Mode 250 Fast Mode 100 Standard Mode 0 Fast Mode 0 Standard Mode 4.7 Fast Mode 1.3 Standard Mode μs ns 0.9 μs 4 Fast Mode μs μs 0.6 I2C must be configured correctly to meet the timings in Table 5-92. 11 9 I2Cx_SDA 6 8 14 4 13 5 10 I2Cx_SCL 1 12 3 2 7 3 Stop Start Repeated Start Stop Figure 5-63. I2C Receive Timings 178 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 26 24 I2Cx_SDA 21 23 19 28 20 25 I2Cx_SCL 16 27 18 17 22 18 Stop Start Repeated Start Stop Figure 5-64. I2C Transmit Timings Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 179 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.25 www.ti.com Universal Asynchronous Receiver/Transmitter (UART) OMAP-L137 has three UART peripherals. Each UART has the following features: • 16-byte storage space for both the transmitter and receiver FIFOs • Autoflow control signals (CTS, RTS) on UART0 only • 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA • DMA signaling capability for both received and transmitted data • Programmable auto-rts and auto-cts for autoflow control • Programmable Baud Rate up to 3MBaud • Programmable Oversampling Options of x13 and x16 • Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates • Prioritized interrupts • Programmable serial data formats – 5, 6, 7, or 8-bit characters – Even, odd, or no parity bit generation and detection – 1, 1.5, or 2 stop bit generation • False start bit detection • Line break generation and detection • Internal diagnostic capabilities – Loopback controls for communications link fault isolation – Break, parity, overrun, and framing error simulation The UART registers are listed in Section 5.25.1 5.25.1 UART Peripheral Registers Description(s) Table 5-93 is the list of UART registers. Table 5-93. UART Registers UART0 BYTE ADDRESS UART1 BYTE ADDRESS UART2 BYTE ADDRESS ACRONYM 0x01C4 2000 0x01D0 C000 0x01D0 D000 RBR Receiver Buffer Register (read only) 0x01C4 2000 0x01D0 C000 0x01D0 D000 THR Transmitter Holding Register (write only) 0x01C4 2004 0x01D0 C004 0x01D0 D004 IER Interrupt Enable Register 0x01C4 2008 0x01D0 C008 0x01D0 D008 IIR Interrupt Identification Register (read only) 0x01C4 2008 0x01D0 C008 0x01D0 D008 FCR FIFO Control Register (write only) 0x01C4 200C 0x01D0 C00C 0x01D0 D00C LCR Line Control Register 0x01C4 2010 0x01D0 C010 0x01D0 D010 MCR Modem Control Register 0x01C4 2014 0x01D0 C014 0x01D0 D014 LSR Line Status Register 180 REGISTER DESCRIPTION 0x01C4 2018 0x01D0 C018 0x01D0 D018 MSR Modem Status Register 0x01C4 201C 0x01D0 C01C 0x01D0 D01C SCR Scratchpad Register 0x01C4 2020 0x01D0 C020 0x01D0 D020 DLL Divisor LSB Latch 0x01C4 2024 0x01D0 C024 0x01D0 D024 DLH Divisor MSB Latch 0x01C4 2028 0x01D0 C028 0x01D0 D028 REVID1 0x01C4 2030 0x01D0 C030 0x01D0 D030 PWREMU_MGMT 0x01C4 2034 0x01D0 C034 0x01D0 D034 MDR Revision Identification Register 1 Power and Emulation Management Register Mode Definition Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.25.2 UART Electrical Data/Timing Table 5-94. Timing Requirements for UARTx Receive (1) (see Figure 5-65) No. (1) MIN MAX UNIT 4 tw(URXDB) Pulse duration, receive data bit (RXDn) PARAMETER 0.96U 1.05U ns 5 tw(URXSB) Pulse duration, receive start bit 0.96U 1.05U ns U = UART baud time = 1/programmed baud rate. Table 5-95. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (1) (see Figure 5-65) No. (1) (2) (3) (4) PARAMETER MIN MAX D/E (2) (3) UNIT MBaud (4) 1 f(baud) Maximum programmable baud rate 2 tw(UTXDB) Pulse duration, transmit data bit (TXDn) U-2 U+2 ns 3 tw(UTXSB) Pulse duration, transmit start bit U-2 U+2 ns U = UART baud time = 1/programmed baud rate. D = UART input clock in MHz. The UART(s) input clock source is PLL0_SYSCLK2. E = UART divisor x UART sampling rate. The UART divisor is set through the UART divisor latch registers (DLL and DLH). The UART sampling rate is set through the over-sampling mode select bit (OSM_SEL) of the UART mode definition register (MDR). Baud rate is not indicative of data rate. Actual data rate will be limited by system factors such as EDMA loading, EMIF loading, system frequency, etc. 3 2 UART_TXDn Start Bit Data Bits 5 4 UART_RXDn Start Bit Data Bits Figure 5-65. UART Transmit/Receive Timing Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 181 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.26 USB1 Host Controller Registers (USB1.1 OHCI) All the device USB interfaces are compliant with Universal Serial Bus Specification, Revision 1.1. Table 5-96 is the list of USB Host Controller registers. Table 5-96. USB1 Host Controller Registers BYTE ADDRESS (1) (2) (3) ACRONYM REGISTER DESCRIPTION 0x01E2 5000 HCREVISION OHCI Revision Number Register 0x01E2 5004 HCCONTROL HC Operating Mode Register 0x01E2 5008 HCCOMMANDSTATUS HC Command and Status Register 0x01E2 500C HCINTERRUPTSTATUS HC Interrupt and Status Register 0x01E2 5010 HCINTERRUPTENABLE HC Interrupt Enable Register 0x01E2 5014 HCINTERRUPTDISABLE HC Interrupt Disable Register 0x01E2 5018 HCHCCA HC HCAA Address Register (1) 0x01E2 501C HCPERIODCURRENTED HC Current Periodic Register (1) 0x01E2 5020 HCCONTROLHEADED 0x01E2 5024 HCCONTROLCURRENTED 0x01E2 5028 HCBULKHEADED 0x01E2 502C HCBULKCURRENTED HC Current Bulk Register (1) 0x01E2 5030 HCDONEHEAD HC Head Done Register (1) 0x01E2 5034 HCFMINTERVAL HC Frame Interval Register 0x01E2 5038 HCFMREMAINING 0x01E2 503C HCFMNUMBER 0x01E2 5040 HCPERIODICSTART HC Head Control Register (1) HC Current Control Register (1) HC Head Bulk Register (1) HC Frame Remaining Register HC Frame Number Register HC Periodic Start Register 0x01E2 5044 HCLSTHRESHOLD 0x01E2 5048 HCRHDESCRIPTORA HC Low-Speed Threshold Register HC Root Hub A Register 0x01E2 504C HCRHDESCRIPTORB HC Root Hub B Register 0x01E2 5050 HCRHSTATUS 0x01E2 5054 HCRHPORTSTATUS1 HC Root Hub Status Register HC Port 1 Status and Control Register (2) 0x01E2 5058 HCRHPORTSTATUS2 HC Port 2 Status and Control Register (3) Restrictions apply to the physical addresses used in these registers. Connected to the integrated USB1.1 phy pins (USB1_DM, USB1_DP). Although the controller implements two ports, the second port cannot be used. Table 5-97. Switching Characteristics Over Recommended Operating Conditions for USB1 No. U1 LOW SPEED PARAMETER tr Rise time, USB1_DP and USB1_DM signals (1) (1) FULL SPEED UNIT MIN MAX MIN MAX 75 (1) 300 (1) 4 (1) 20 (1) ns (1) (1) (1) (1) ns U2 tf Fall time, USB1_DP and USB1_DM signals U3 tRFM Rise/Fall time matching (2) 80 (2) 120 (2) 90 (2) 110 (2) % U4 VCRS Output signal cross-over voltage (1) 1.3 (1) 2 (1) 1.3 (1) 2 (1) V U5 tj Differential propagation jitter U6 fop Operating frequency (4) (1) (2) (3) (4) (3) 75 -25 (3) 300 25 (3) 4 -2 (3) 1.5 20 2 (3) 12 ns MHz Low Speed: CL = 200 pF. High Speed: CL = 50pF tRFM =( tr/tf ) x 100 t jr = t px(1) - tpx(0) fop = 1/tper 5.26.1 USB1 Unused Signal Configuration If USB1 is unused, then the USB1 signals should be configured as shown in Section 5.4. 182 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.27 USB0 OTG (USB2.0 OTG) The OMAP-L137 USB2.0 peripheral supports the following features: • USB 2.0 peripheral at speeds high speed (HS: 480 Mb/s ) and full speed (FS: 12 Mb/s) • USB 2.0 host at speeds HS, FS, and low speed (LS: 1.5 Mb/s) • All transfer modes (control, bulk, interrupt, and isochronous) • 4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0 • FIFO RAM – 4K endpoint – Programmable size • Integrated USB 2.0 High Speed PHY • Connects to a standard Charge Pump for VBUS 5 V generation • RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB Important Notice: On the original device pinout (marked "A" in the lower right corner of the package), pins USB0_VSSA33 (H4) and USB0_VSSA (F3) were connected to ground outside the package. For more robust ESD performance, the USB0 ground references are now connected inside the package on packages marked "B" and the package pins are unconnected. This change will require that any external filter circuits previously referenced to ground at these pins will need to reference the board ground instead. Important Notice: The USB0 controller module clock (PLL0_SYSCLK2) must be greater than 30 MHz for proper operation of the USB controller. A clock rate of 60 MHz or greater is recommended to avoid data throughput reduction. Table 5-98 is the list of USB OTG registers. Table 5-98. Universal Serial Bus OTG (USB0) Registers BYTE ADDRESS ACRONYM 0x01E0 0000 REVID Revision Register REGISTER DESCRIPTION 0x01E0 0004 CTRLR Control Register 0x01E0 0008 STATR Status Register 0x01E0 000C EMUR Emulation Register 0x01E0 0010 MODE Mode Register 0x01E0 0014 AUTOREQ 0x01E0 0018 SRPFIXTIME SRP Fix Time Register 0x01E0 001C TEARDOWN Teardown Register 0x01E0 0020 INTSRCR USB Interrupt Source Register 0x01E0 0024 INTSETR USB Interrupt Source Set Register 0x01E0 0028 INTCLRR USB Interrupt Source Clear Register 0x01E0 002C INTMSKR USB Interrupt Mask Register 0x01E0 0030 INTMSKSETR USB Interrupt Mask Set Register 0x01E0 0034 INTMSKCLRR USB Interrupt Mask Clear Register 0x01E0 0038 INTMASKEDR USB Interrupt Source Masked Register 0x01E0 003C EOIR 0x01E0 0040 - 0x01E0 0050 GENRNDISSZ1 Generic RNDIS Size EP1 0x01E0 0054 GENRNDISSZ2 Generic RNDIS Size EP2 0x01E0 0058 GENRNDISSZ3 Generic RNDIS Size EP3 0x01E0 005C GENRNDISSZ4 Generic RNDIS Size EP4 0x01E0 0400 FADDR Function Address Register 0x01E0 0401 POWER Power Management Register 0x01E0 0402 INTRTX Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4 Copyright © 2008–2013, Texas Instruments Incorporated Autorequest Register USB End of Interrupt Register Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 183 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-98. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM 0x01E0 0404 INTRRX Interrupt Register for Receive Endpoints 1 to 4 REGISTER DESCRIPTION 0x01E0 0406 INTRTXE Interrupt Enable Register for INTRTX 0x01E0 0408 INTRRXE Interrupt Enable Register for INTRRX 0x01E0 040A INTRUSB Interrupt Register for Common USB Interrupts 0x01E0 040B INTRUSBE 0x01E0 040C FRAME Interrupt Enable Register for INTRUSB Frame Number Register 0x01E0 040E INDEX Index Register for Selecting the Endpoint Status and Control Registers 0x01E0 040F TESTMODE Register to Enable the USB 2.0 Test Modes INDEXED REGISTERS These registers operate on the endpoint selected by the INDEX register 0x01E0 0410 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint (Index register set to select Endpoints 1-4 only) 0x01E0 0412 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode. (Index register set to select Endpoint 0) HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode. (Index register set to select Endpoint 0) PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint. (Index register set to select Endpoints 1-4) HOST_TXCSR Control Status Register for Host Transmit Endpoint. (Index register set to select Endpoints 1-4) 0x01E0 0414 RXMAXP 0x01E0 0416 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint. (Index register set to select Endpoints 1-4) HOST_RXCSR Control Status Register for Host Receive Endpoint. (Index register set to select Endpoints 1-4) 0x01E0 0418 Maximum Packet Size for Peripheral/Host Receive Endpoint (Index register set to select Endpoints 1-4 only) COUNT0 Number of Received Bytes in Endpoint 0 FIFO. (Index register set to select Endpoint 0) RXCOUNT 0x01E0 041A Number of Bytes in Host Receive Endpoint FIFO. (Index register set to select Endpoints 1- 4) HOST_TYPE0 HOST_TXTYPE 0x01E0 041B HOST_NAKLIMIT0 HOST_TXINTERVAL Defines the speed of Endpoint 0 Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. (Index register set to select Endpoints 1-4 only) Sets the NAK response timeout on Endpoint 0. (Index register set to select Endpoint 0) Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041D HOST_RXINTERVAL 0x01E0 041F CONFIGDATA 0x01E0 0420 FIFO0 Transmit and Receive FIFO Register for Endpoint 0 0x01E0 0424 FIFO1 Transmit and Receive FIFO Register for Endpoint 1 0x01E0 0428 FIFO2 Transmit and Receive FIFO Register for Endpoint 2 0x01E0 042C FIFO3 Transmit and Receive FIFO Register for Endpoint 3 0x01E0 0430 FIFO4 Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. (Index register set to select Endpoints 1-4 only) Returns details of core configuration. (Index register set to select Endpoint 0) FIFO Transmit and Receive FIFO Register for Endpoint 4 OTG DEVICE CONTROL 184 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-98. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM 0x01E0 0460 DEVCTL REGISTER DESCRIPTION 0x01E0 0462 TXFIFOSZ Transmit Endpoint FIFO Size (Index register set to select Endpoints 1-4 only) 0x01E0 0463 RXFIFOSZ Receive Endpoint FIFO Size (Index register set to select Endpoints 1-4 only) 0x01E0 0464 TXFIFOADDR Transmit Endpoint FIFO Address (Index register set to select Endpoints 1-4 only) 0x01E0 0466 RXFIFOADDR Receive Endpoint FIFO Address (Index register set to select Endpoints 1-4 only) 0x01E0 046C HWVERS Device Control Register DYNAMIC FIFO CONTROL Hardware Version Register TARGET ENDPOINT 0 CONTROL REGISTERS, VALID ONLY IN HOST MODE 0x01E0 0480 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0482 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0483 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0484 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 0486 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0487 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TARGET ENDPOINT 1 CONTROL REGISTERS, VALID ONLY IN HOST MODE 0x01E0 0488 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 048A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048C RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 048E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TARGET ENDPOINT 2 CONTROL REGISTERS, VALID ONLY IN HOST MODE 0x01E0 0490 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0492 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 185 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-98. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM 0x01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. REGISTER DESCRIPTION 0x01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TARGET ENDPOINT 3 CONTROL REGISTERS, VALID ONLY IN HOST MODE 0x01E0 0498 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 049A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049C RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 049E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TARGET ENDPOINT 4 CONTROL REGISTERS, VALID ONLY IN HOST MODE 0x01E0 04A0 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 04A2 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A3 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A4 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 04A6 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A7 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. CONTROL AND STATUS REGISTER FOR ENDPOINT 0 0x01E0 0502 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode 0x01E0 0508 COUNT0 0x01E0 050A HOST_TYPE0 0x01E0 050B HOST_NAKLIMIT0 0x01E0 050F CONFIGDATA Number of Received Bytes in Endpoint 0 FIFO Defines the Speed of Endpoint 0 Sets the NAK Response Timeout on Endpoint 0 Returns details of core configuration. CONTROL AND STATUS REGISTER FOR ENDPOINT 1 0x01E0 0510 TXMAXP 0x01E0 0512 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) 0x01E0 0514 186 RXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Maximum Packet Size for Peripheral/Host Receive Endpoint Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-98. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM 0x01E0 0516 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0518 RXCOUNT 0x01E0 051A HOST_TXTYPE 0x01E0 051B HOST_TXINTERVAL 0x01E0 051C HOST_RXTYPE 0x01E0 051D HOST_RXINTERVAL REGISTER DESCRIPTION Number of Bytes in Host Receive endpoint FIFO Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. CONTROL AND STATUS REGISTER FOR ENDPOINT 2 0x01E0 0520 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint 0x01E0 0522 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) 0x01E0 0524 RXMAXP 0x01E0 0526 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0528 RXCOUNT 0x01E0 052A HOST_TXTYPE 0x01E0 052B HOST_TXINTERVAL 0x01E0 052C HOST_RXTYPE 0x01E0 052D HOST_RXINTERVAL Maximum Packet Size for Peripheral/Host Receive Endpoint Number of Bytes in Host Receive endpoint FIFO Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. CONTROL AND STATUS REGISTER FOR ENDPOINT 3 0x01E0 0530 TXMAXP 0x01E0 0532 PERI_TXCSR Maximum Packet Size for Peripheral/Host Transmit Endpoint Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) 0x01E0 0534 RXMAXP 0x01E0 0536 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0538 RXCOUNT 0x01E0 053A HOST_TXTYPE 0x01E0 053B HOST_TXINTERVAL 0x01E0 053C HOST_RXTYPE 0x01E0 053D HOST_RXINTERVAL Maximum Packet Size for Peripheral/Host Receive Endpoint Number of Bytes in Host Receive endpoint FIFO Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. CONTROL AND STATUS REGISTER FOR ENDPOINT 4 Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 187 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-98. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM 0x01E0 0540 TXMAXP REGISTER DESCRIPTION 0x01E0 0542 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) Maximum Packet Size for Peripheral/Host Transmit Endpoint 0x01E0 0544 RXMAXP 0x01E0 0546 PERI_RXCSR Maximum Packet Size for Peripheral/Host Receive Endpoint Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0548 RXCOUNT Number of Bytes in Host Receive endpoint FIFO 0x01E0 054A HOST_TXTYPE 0x01E0 054B HOST_TXINTERVAL 0x01E0 054C HOST_RXTYPE 0x01E0 054D HOST_RXINTERVAL 0x01E0 1000 DMAREVID 0x01E0 1004 TDFDQ Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. DMA REGISTERS DMA Revision Register DMA Teardown Free Descriptor Queue Control Register 0x01E0 1008 DMAEMU DMA Emulation Control Register 0x01E0 1800 TXGCR[0] Transmit Channel 0 Global Configuration Register 0x01E0 1808 RXGCR[0] Receive Channel 0 Global Configuration Register 0x01E0 180C RXHPCRA[0] Receive Channel 0 Host Packet Configuration Register A 0x01E0 1810 RXHPCRB[0] Receive Channel 0 Host Packet Configuration Register B 0x01E0 1820 TXGCR[1] Transmit Channel 1 Global Configuration Register 0x01E0 1828 RXGCR[1] Receive Channel 1 Global Configuration Register 0x01E0 182C RXHPCRA[1] Receive Channel 1 Host Packet Configuration Register A 0x01E0 1830 RXHPCRB[1] Receive Channel 1 Host Packet Configuration Register B 0x01E0 1840 TXGCR[2] Transmit Channel 2 Global Configuration Register Receive Channel 2 Global Configuration Register 0x01E0 1848 RXGCR[2] 0x01E0 184C RXHPCRA[2] Receive Channel 2 Host Packet Configuration Register A 0x01E0 1850 RXHPCRB[2] Receive Channel 2 Host Packet Configuration Register B 0x01E0 1860 TXGCR[3] Transmit Channel 3 Global Configuration Register 0x01E0 1868 RXGCR[3] Receive Channel 3 Global Configuration Register 0x01E0 186C RXHPCRA[3] Receive Channel 3 Host Packet Configuration Register A 0x01E0 1870 RXHPCRB[3] Receive Channel 3 Host Packet Configuration Register B 0x01E0 2000 DMA_SCHED_CTRL 0x01E0 2800 WORD[0] DMA Scheduler Table Word 0 0x01E0 2804 WORD[1] DMA Scheduler Table Word 1 ... ... 0x01E0 28FC WORD[63] DMA Scheduler Control Register ... DMA Scheduler Table Word 63 QUEUE MANAGER REGISTERS 188 0x01E0 4000 QMGRREVID 0x01E0 4008 DIVERSION Queue Manager Revision Register 0x01E0 4020 FDBSC0 Free Descriptor/Buffer Starvation Count Register 0 0x01E0 4024 FDBSC1 Free Descriptor/Buffer Starvation Count Register 1 0x01E0 4028 FDBSC2 Free Descriptor/Buffer Starvation Count Register 2 Queue Diversion Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-98. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM 0x01E0 402C FDBSC3 0x01E0 4080 LRAM0BASE Linking RAM Region 0 Base Address Register 0x01E0 4084 LRAM0SIZE Linking RAM Region 0 Size Register 0x01E0 4088 LRAM1BASE Linking RAM Region 1 Base Address Register 0x01E0 4090 PEND0 Queue Pending Register 0 0x01E0 4094 PEND1 Queue Pending Register 1 0x01E0 5000 QMEMRBASE[0] Memory Region 0 Base Address Register 0x01E0 5004 QMEMRCTRL[0] Memory Region 0 Control Register 0x01E0 5010 QMEMRBASE[1] Memory Region 1 Base Address Register 0x01E0 5014 QMEMRCTRL[1] Memory Region 1 Control Register ... ... 0x01E0 50F0 QMEMRBASE[15] Memory Region 15 Base Address Register 0x01E0 50F4 QMEMRCTRL[15] Memory Region 15 Control Register 0x01E0 600C CTRLD[0] Queue Manager Queue 0 Control Register D 0x01E0 601C CTRLD[1] Queue Manager Queue 1 Control Register D ... ... 0x01E0 63FC CTRLD[63] Queue Manager Queue 63 Status Register D 0x01E0 6800 QSTATA[0] Queue Manager Queue 0 Status Register A 0x01E0 6804 QSTATB[0] Queue Manager Queue 0 Status Register B 0x01E0 6808 QSTATC[0] Queue Manager Queue 0 Status Register C 0x01E0 6810 QSTATA[1] Queue Manager Queue 1 Status Register A 0x01E0 6814 QSTATB[1] Queue Manager Queue 1 Status Register B 0x01E0 6818 QSTATC[1] Queue Manager Queue 1 Status Register C ... ... 0x01E0 6BF0 QSTATA[63] Queue Manager Queue 63 Status Register A 0x01E0 6BF4 QSTATB[63] Queue Manager Queue 63 Status Register B 0x01E0 6BF8 QSTATC[63] Queue Manager Queue 63 Status Register C Copyright © 2008–2013, Texas Instruments Incorporated REGISTER DESCRIPTION Free Descriptor/Buffer Starvation Count Register 3 ... ... ... Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 189 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.27.1 USB2.0 Electrical Data/Timing The USB PHY PLL can support input clock of the following frequencies: 12.0 MHz, 13.0 MHz, 19.2 MHz, 20.0 MHz, 24.0 MHz, 26.0 MHz, 38.4 MHz, 40.0 MHz or 48.0 MHz. USB_REFCLKIN jitter tolerance is 50 ppm maximum. Table 5-99. Switching Characteristics Over Recommended Operating Conditions for USB2.0 (see Figure 5-66) No. PARAMETER LOW SPEED 1.5 Mbps FULL SPEED 12 Mbps HIGH SPEED 480 Mbps MIN MAX MIN MAX MIN 1 tr(D) Rise time, USB0_DP and USB0_DM signals (1) 75 300 4 20 0.5 2 tf(D) Fall time, USB0_DP and USB0_DM signals (1) 75 300 4 20 0.5 3 trfM Rise/Fall time, matching (2) 80 120 90 111 – – 4 VCRS Output signal cross-over voltage (1) 1.3 2 1.3 2 – – 5 6 ns ns % V (3) tjr(source)NT Source (Host) Driver jitter, next transition 2 2 tjr(FUNC)NT Function Driver jitter, next transition 25 2 (3) ns tjr(source)PT Source (Host) Driver jitter, paired transition (4) 1 1 (3) ns 1 (3) ns – ns tjr(FUNC)PT Function Driver jitter, paired transition 7 tw(EOPT) Pulse duration, EOP transmitter 8 tw(EOPR) Pulse duration, EOP receiver 10 (5) 1250 (5) 1500 670 9 t(DRATE) Data Rate 10 ZDRV Driver Output Resistance – 11 ZINP Receiver Input Impedance 100k (1) (2) (3) (4) (5) UNIT MAX 160 ns 175 – 82 1.5 – – 12 40.5 49.5 ns 480 Mb/s 40.5 49.5 Ω - - Ω 100k Low Speed: CL = 200 pF, Full Speed: CL = 50 pF, High Speed: CL = 50 pF tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.] For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical. tjr = tpx(1) - tpx(0) Must accept as valid EOP USB0_DM VCRS USB0_DP tper - tjr 90% VOH 10% VOL tr tf Figure 5-66. USB0 Integrated Transceiver Interface Timing 5.27.2 USB0 Unused Signal Configuration If USB0 is unused, then the USB0 signals should be configured as shown in Section 5.4. 190 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.28 Host-Port Interface (UHPI) 5.28.1 HPI Device-Specific Information The device includes a user-configurable 16-bit Host-port interface (HPI16). See the OMAP-L137 Applications Processor DSP Peripherals Overview Reference Guide. (SPRUGA6) for more details. 5.28.2 HPI Peripheral Register Description(s) Table 5-100. HPI Control Registers (1) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E1 0000 PID 0x01E1 0004 PWREMU_MGMT COMMENTS Peripheral Identification Register HPI power and emulation management register 0x01E1 0008 - 0x01E1 000C GPIO_EN 0x01E1 0010 GPIO_DIR1 General Purpose IO Direction Register 1 0x01E1 0014 GPIO_DAT1 General Purpose IO Data Register 1 0x01E1 0018 GPIO_DIR2 General Purpose IO Direction Register 2 0x01E1 001C GPIO_DAT2 General Purpose IO Data Register 2 0x01E1 0020 GPIO_DIR3 General Purpose IO Direction Register 3 0x01E1 0024 GPIO_DAT3 General Purpose IO Data Register 3 01E1 0028 - Reserved 01E1 002C - Reserved 01E1 0030 HPIC HPI control register 01E1 0034 HPIA (HPIAW) (1) HPI address register (Write) 01E1 0038 HPIA (HPIAR) (1) HPI address register (Read) 01E1 000C - 01E1 07FF - The CPU has read/write access to the PWREMU_MGMT register. Reserved General Purpose IO Enable Register The Host and the CPU both have read/write access to the HPIC register. The Host has read/write access to the HPIA registers. The CPU has only read access to the HPIA registers. Reserved There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the perspective of the Host. The CPU can access HPIAW and HPIAR independently. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 191 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.28.3 HPI Electrical Data/Timing Table 5-101. Timing Requirements for Host-Port Interface Cycles (1) No. 1 (2) PARAMETER tsu(SELV-HSTBL) MIN Setup time, select signals (3) valid before UHPI_HSTROBE low (3) valid after UHPI_HSTROBE low MAX UNIT 5 ns 2 th(HSTBL-SELV) Hold time, select signals 2 ns 3 tw(HSTBL) Pulse duration, UHPI_HSTROBE active low 15 ns 4 tw(HSTBH) Pulse duration, UHPI_HSTROBE inactive high between consecutive accesses 2M ns 9 tsu(SELV-HASL) Setup time, selects signals valid before UHPI_HAS low 5 ns 10 th(HASL-SELV) Hold time, select signals valid after UHPI_HAS low 2 ns 11 tsu(HDV-HSTBH) Setup time, host data valid before UHPI_HSTROBE high 5 ns 12 th(HSTBH-HDV) Hold time, host data valid after UHPI_HSTROBE high 2 ns 13 th(HRDYL-HSTBH) Hold time, UHPI_HSTROBE high after UHPI_HRDY low. UHPI_HSTROBE should not be inactivated until UHPI_HRDY is active (low); otherwise, HPI writes will not complete properly. 2 ns 16 tsu(HASL-HSTBL) Setup time, UHPI_HAS low before UHPI_HSTROBE low 2 ns 17 th(HSTBL-HASH) Hold time, UHPI_HAS low after UHPI_HSTROBE low 2 ns (1) (2) (3) 192 UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns. Select signals include: UHPI_HCNTL[1:0], UHPI_HRW and UHPI_HHWIL. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-102. Switching Characteristics for Host-Port Interface Cycles (1) No. (2) (3) PARAMETER MIN MAX UNIT 12 ns For HPI Write, UHPI_HRDY can go high (not ready) for these HPI Write conditions; otherwise, UHPI_HRDY stays low (ready): Case 1: Back-to-back HPIA writes (can be either first or second half-word) Case 2: HPIA write following a PREFETCH command (can be either first or second halfword) Case 3: HPID write when FIFO is full or flushing (can be either first or second halfword) Case 4: HPIA write and Write FIFO not empty For HPI Read, UHPI_HRDY can go high (not ready) for these HPI Read conditions: Case 1: HPID read (with auto-increment) and data not in Read FIFO (can only happen to first half-word of HPID access) Case 2: First half-word access of HPID Read without auto-increment For HPI Read, UHPI_HRDY stays low (ready) for these HPI Read conditions: Case 1: HPID read with auto-increment and data is already in Read FIFO (applies to either half-word of HPID access) Case 2: HPID read without auto-increment and data is already in Read FIFO (always applies to second half-word of HPID access) Case 3: HPIC or HPIA read (applies to either half-word access) 5 td(HSTBL-HRDYV) Delay time, UHPI_HSTROBE low to UHPI_HRDY valid 5a td(HASL-HRDYV) Delay time, UHPI_HAS low to UHPI_HRDY valid 6 ten(HSTBL-HDLZ) Enable time, HD driven from UHPI_HSTROBE low 7 td(HRDYL-HDV) Delay time, UHPI_HRDY low to HD valid 8 toh(HSTBH-HDV) Output hold time, HD valid after UHPI_HSTROBE high 14 tdis(HSTBH-HDHZ) Disable time, HD high-impedance from UHPI_ HSTROBE high 15 18 (1) (2) (3) td(HSTBL-HDV) td(HSTBH-HRDYV) 13 2 ns 0 1.5 ns ns 12 ns Delay time, UHPI_HSTROBE low to HD valid For HPI Read. Applies to conditions where data is already residing in HPID/FIFO: Case 1: HPIC or HPIA read Case 2: First half-word of HPID read with auto-increment and data is already in Read FIFO Case 3: Second half-word of HPID read with or without auto-increment 15 ns Delay time, UHPI_HSTROBE high to UHPI_HRDY valid For HPI Write, UHPI_HRDY can go high (not ready) for these HPI Write conditions; otherwise, UHPI_HRDY stays low (ready): Case 1: HPID write when Write FIFO is full (can happen to either half-word) Case 2: HPIA write (can happen to either halfword) Case 3: HPID write without auto-increment (only happens to second half-word) 12 ns M=SYSCLK2 period (CPU clock frequency)/2 in ns. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. By design, whenever UHPI_HCS is driven inactive (high), HPI will drive UHPI_HRDY active (low). Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 193 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com UHPI_HCS UHPI_HAS (D) 2 2 1 1 UHPI_HCNTL[1:0] 2 1 2 1 UHPI_HR/W 2 2 1 1 UHPI_HHWIL 4 3 3 UHPI_HSTROBE (A)(C) 15 15 14 14 6 8 6 UHPI_HD[15:0] (output) 5 13 7 1st Half-Word 8 2nd Half-Word UHPI_HRDY (B) A. B. C. D. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with autoincrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE. The diagram above assumes UHPI_HAS has been pulled high. Figure 5-67. UHPI Read Timing (UHPI_HAS Not Used, Tied High) 194 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 UHPI_HAS(A) 17 10 17 9 10 9 UHPI_HCNTL[1:0] 10 10 9 9 UHPI_HR/W 10 10 9 9 UHPI_HHWIL 4 3 UHPI_HSTROBE(B) 16 16 UHPI_HCS 14 UHPI_HD[15:0] 6 (output) 5a 8 1st Half-Word 14 15 7 8 2nd Half-Word UHPI_HRDY A. B. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Figure 5-68. UHPI Read Timing (UHPI_HAS Used) Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 195 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com UHPI_HCS UHPI_HAS (D) 1 1 2 2 UHPI_HCNTL[1:0] 1 1 2 2 UHPI_HR/W 1 1 2 2 UHPI_HHWIL 3 3 4 UHPI_HSTROBE(A)(C) 11 UHPI_HD[15:0] (input) 11 12 12 1st Half-Word 5 13 2nd Half-Word 18 13 18 5 UHPI_HRDY (B) A. B. C. D. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with autoincrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE. he diagram above assumes UHPI_HAS has been pulled high. Figure 5-69. UHPI Write Timing (UHPI_HAS Not Used, Tied High) 196 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 17 17 UHPI_HAS(A) 10 10 9 9 UHPI_HCNTL[1:0] 10 10 9 9 UHPI_HR/W 10 10 9 9 UHPI_HHWIL 3 4 UHPI_HSTROBE(B) 16 16 UHPI_HCS 11 UHPI_HD[15:0] (input) 12 1st Half-Word 5a 11 12 2nd Half-Word 13 UHPI_HRDY A. B. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Figure 5-70. UHPI Write Timing (UHPI_HAS Used) Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 197 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.29 Power and Sleep Controller (PSC) The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off, clock on/off, resets (device level and module level). It is used primarily to provide granular power control for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC and provides clock and reset control. The PSC includes the following features: • Provides a software interface to: – Control module clock enable/disable – Control module reset – Control CPU local reset • Supports ICEpick TAP Router power, clock and reset features. For details on ICEpick features see http://tiexpressdsp.com/wiki/index.php?title=ICEPICK. Table 5-103. Power and Sleep Controller (PSC) Registers PSC0 BYTE ADDRESS PSC1 BYTE ADDRESS ACRONYM 0x01C1 0000 0x01E2 7000 REVID 0x01C1 0018 0x01E2 7018 INTEVAL 0x01C1 0040 0x01E2 7040 MERRPR0 REGISTER DESCRIPTION Peripheral Revision and Class Information Register Interrupt Evaluation Register Module Error Pending Register 0 (module 0-15) (PSC0) Module Error Pending Register 0 (module 0-31) (PSC1) 0x01C1 0050 0x01E2 7050 MERRCR0 Module Error Clear Register 0 (module 0-15) (PSC0) 0x01C1 0060 0x01E2 7060 PERRPR Power Error Pending Register 0x01C1 0068 0x01E2 7068 PERRCR Power Error Clear Register 0x01C1 0120 0x01E2 7120 PTCMD Power Domain Transition Command Register 0x01C1 0128 0x01E2 7128 PTSTAT Power Domain Transition Status Register 0x01C1 0200 0x01E2 7200 PDSTAT0 Power Domain 0 Status Register 0x01C1 0204 0x01E2 7204 PDSTAT1 Power Domain 1 Status Register 0x01C1 0300 0x01E2 7300 PDCTL0 Power Domain 0 Control Register 0x01C1 0304 0x01E2 7304 PDCTL1 Power Domain 1 Control Register 0x01C1 0400 0x01E2 7400 PDCFG0 Power Domain 0 Configuration Register 0x01C1 0404 0x01E2 7404 PDCFG1 Power Domain 1 Configuration Register 0x01C1 0800 0x01C1 083C 0x01E2 7800 0x01E2 787C MDSTAT0-MDSTAT15 Module Status n Register (modules 0-15) (PSC0) MDSTAT0-MDSTAT31 Module Status n Register (modules 0-31) (PSC1) 0x01C1 0A00 0x01C1 0A3C 0x01E2 7A00 0x01E2 7A7C MDCTL0-MDCTL15 Module Control n Register (modules 0-15) (PSC0) MDCTL0-MDCTL31 Module Control n Register (modules 0-31) (PSC1) Module Error Clear Register 0 (module 0-31) (PSC1) 5.29.1 Power Domain and Module Topology The SoC includes two PSC modules. Each PSC module controls clock states for several of the on chip modules, controllers and interconnect components. Table 5-104 and Table 5-105 lists the set of peripherals/modules that are controlled by the PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset) module states. The module states and terminology are defined in Section 5.29.1.2. 198 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-104. PSC0 Default Module Configuration LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only 0 EDMA3 Channel Controller AlwaysON (PD0) SwRstDisable — 1 EDMA3 Transfer Controller 0 AlwaysON (PD0) SwRstDisable — 2 EDMA3 Transfer Controller 1 AlwaysON (PD0) SwRstDisable — 3 EMIFA (BR7) AlwaysON (PD0) SwRstDisable — 4 SPI 0 AlwaysON (PD0) SwRstDisable — 5 MMC/SD 0 AlwaysON (PD0) SwRstDisable — 6 ARM Interrupt Controller AlwaysON (PD0) SwRstDisable — 7 ARM RAM/ROM AlwaysON (PD0) Enable Yes 8 Not Used — — — 9 UART 0 AlwaysON (PD0) SwRstDisable — 10 SCR0 (Br 0, Br 1, Br 2, Br 8) AlwaysON (PD0) Enable Yes 11 SCR1 (Br 4) AlwaysON (PD0) Enable Yes 12 SCR2 (Br 3, Br 5, Br 6) AlwaysON (PD0) Enable Yes 13 PRUSS AlwaysON (PD0) SwRstDisable — 14 ARM AlwaysON (PD0) SwRstDisable — 15 DSP PD_DSP (PD1) Enable — Table 5-105. PSC1 Default Module Configuration LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only 0 Not Used — — — 1 USB0 (USB2.0) AlwaysON (PD0) SwRstDisable — 2 USB1 (USB1.1) AlwaysON (PD0) SwRstDisable — 3 GPIO AlwaysON (PD0) SwRstDisable — 4 UHPI AlwaysON (PD0) SwRstDisable — 5 EMAC AlwaysON (PD0) SwRstDisable — 6 EMIFB (Br 20) AlwaysON (PD0) SwRstDisable — 7 McASP0 ( + McASP0 FIFO) AlwaysON (PD0) SwRstDisable — 8 McASP1 ( + McASP1 FIFO) AlwaysON (PD0) SwRstDisable — 9 McASP2( + McASP2 FIFO) AlwaysON (PD0) SwRstDisable — 10 SPI 1 AlwaysON (PD0) SwRstDisable — 11 I2C 1 AlwaysON (PD0) SwRstDisable — 12 UART 1 AlwaysON (PD0) SwRstDisable — 13 UART 2 AlwaysON (PD0) SwRstDisable — 14-15 Not Used — — — 16 LCDC AlwaysON (PD0) SwRstDisable — 17 eHRPWM0/1/2 AlwaysON (PD0) SwRstDisable — 18-19 Not Used — — — 20 ECAP0/1/2 AlwaysON (PD0) SwRstDisable — 21 EQEP0/1 AlwaysON (PD0) SwRstDisable — 22-23 Not Used — — — 24 SCR8 (Br 15) AlwaysON (PD0) Enable Yes 25 SCR7 (Br 12) AlwaysON (PD0) Enable Yes 26 SCR12 (Br 18) AlwaysON (PD0) Enable Yes 27-30 Not Used — — — 31 Shared RAM (Br 13) PD_SHRAM Enable Yes Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 199 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.29.1.1 Power Domain States A power domain can only be in one of the two states: ON or OFF, defined as follows: • ON: power to the domain is on • OFF: power to the domain is off In the device, for both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when the chip is powered-on. This domain is not programmable to OFF state. • On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories • On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM 5.29.1.2 Module States The PSC defines several possible states for a module. This states are essentially a combination of the module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are defined in Table 5-106. Table 5-106. Module States Module State Module Reset Module Clock Module State Definition Enable De-asserted On A module in the enable state has its module reset de-asserted and it has its clock on. This is the normal operational state for a given module Disable De-asserted Off A module in the disabled state has its module reset de-asserted and it has its module clock off. This state is typically used for disabling a module clock to save power. The SoC is designed in full static CMOS, so when you stop a module clock, it retains the module’s state. When the clock is restarted, the module resumes operating from the stopping point. SyncReset Asserted On A module state in the SyncReset state has its module reset asserted and it has its clock on. Generally, software is not expected to initiate this state SwRstDisable Asserted Off A module in the SwResetDisable state has its module reset asserted and it has its clock disabled. After initial power-on, several modules come up in the SwRstDisable state. Generally, software is not expected to initiate this state Auto Sleep De-asserted Off A module in the Auto Sleep state also has its module reset de-asserted and its module clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it can “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and after servicing the request it will “automatically” transition into the sleep state (with module reset re de-asserted and module clock disabled), without any software intervention. The transition from sleep to enabled and back to sleep state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data. Auto Wake De-asserted Off A module in the Auto Wake state also has its module reset de-asserted and its module clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it will “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and will remain in the “Enabled” state from then on (with module reset re de-asserted and module clock on), without any software intervention. The transition from sleep to enabled state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data. 200 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.30 Programmable Real-Time Unit Subsystem (PRUSS) The Programmable Real-Time Unit Subsystem (PRUSS) consists of • Two Programmable Real-Time Units (PRU0 and PRU1) and their associated memories • An Interrupt Controller (INTC) for handling system interrupt events. The INTC also supports posting events back to the device level host CPU. • A Switched Central Resource (SCR) for connecting the various internal and external masters to the resources inside the PRUSS. The two PRUs can operate completely independently or in coordination with each other. The PRUs can also work in coordination with the device level host CPU. This is determined by the nature of the program which is loaded into the PRUs instruction memory. Several different signaling mechanisms are available between the two PRUs and the device level host CPU. The PRUs are optimized for performing embedded tasks that require manipulation of packed memory mapped data structures, handling of system events that have tight realtime constraints and interfacing with systems external to the device. The PRUSS comprises various distinct addressable regions. Externally the subsystem presents a single 64Kbyte range of addresses. The internal interconnect bus (also called switched central resource, or SCR) of the PRUSS decodes accesses for each of the individual regions. The PRUSS memory map is documented in Table 5-107 and in Table 5-108. Note that these two memory maps are implemented inside the PRUSS and are local to the components of the PRUSS. Table 5-107. Programmable Real-Time Unit Subsystem (PRUSS) Local Instruction Space Memory Map BYTE ADDRESS PRU0 PRU1 0x0000 0000 - 0x0000 0FFF PRU0 Instruction RAM PRU1 Instruction RAM Table 5-108. Programmable Real-Time Unit Subsystem (PRUSS) Local Data Space Memory Map BYTE ADDRESS 0x0000 0000 - 0x0000 01FF (1) PRU0 Data RAM 0 0x0000 0200 - 0x0000 1FFF Reserved 0x0000 2000 - 0x0000 21FF Data RAM 1 0x0000 2200 - 0x0000 3FFF Reserved PRU1 (1) Data RAM 1 (1) Data RAM 0 (1) Reserved (1) Reserved 0x0000 4000 - 0x0000 6FFF INTC Registers INTC Registers 0x0000 7000 - 0x0000 73FF PRU0 Control Registers PRU0 Control Registers 0x0000 7400 - 0x0000 77FF Reserved Reserved 0x0000 7800 - 0x0000 7BFF PRU1 Control Registers PRU1 Control Registers 0x0000 7C00 - 0xFFFF FFFF Reserved Reserved Note that PRU0 accesses Data RAM0 at address 0x0000 0000, also PRU1 accesses Data RAM1 at address 0x0000 0000. Data RAM0 is intended to be the primary data memory for PRU0 and Data RAM1 is intended to be the primary data memory for PRU1. However for passing information between PRUs, each PRU can access the data ram of the ‘other’ PRU through address 0x0000 2000. The global view of the PRUSS internal memories and control ports is documented in Table 5-109. The offset addresses of each region are implemented inside the PRUSS but the global device memory mapping places the PRUSS slave port in the address range 0x01C3 0000-0x01C3 FFFF. The PRU0 and PRU1 can use either the local or global addresses to access their internal memories, but using the local addresses will provide access time several cycles faster than using the global addresses. This is because when accessing via the global address the access needs to be routed through the switch fabric outside PRUSS and back in through the PRUSS slave port. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 201 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-109. Programmable Real-Time Unit Subsystem (PRUSS) Global Memory Map BYTE ADDRESS REGION 0x01C3 0000 - 0x01C3 01FF Data RAM 0 0x01C3 0200 - 0x01C3 1FFF Reserved 0x01C3 2000 - 0x01C3 21FF Data RAM 1 0x01C3 2200 - 0x01C3 3FFF Reserved 0x01C3 4000 - 0x01C3 6FFF INTC Registers 0x01C3 7000 - 0x01C3 73FF PRU0 Control Registers 0x01C3 7400 - 0x01C3 77FF PRU0 Debug Registers 0x01C3 7800 - 0x01C3 7BFF PRU1 Control Registers 0x01C3 7C00 - 0x01C3 7FFF PRU1 Debug Registers 0x01C3 8000 - 0x01C3 8FFF PRU0 Instruction RAM 0x01C3 9000 - 0x01C3 BFFF Reserved 0x01C3 C000 - 0x01C3 CFFF PRU1 Instruction RAM 0x01C3 D000 - 0x01C3 FFFF Reserved Each of the PRUs can access the rest of the device memory (including memory mapped peripheral and configuration registers) using the global memory space addresses. 5.30.1 PRUSS Register Descriptions Table 5-110. Programmable Real-Time Unit Subsystem (PRUSS) Control / Status Registers PRU0 BYTE ADDRESS PRU1 BYTE ADDRESS ACRONYM 0x01C3 7000 0x01C3 7800 CONTROL PRU Control Register REGISTER DESCRIPTION 0x01C3 7004 0x01C3 7804 STATUS PRU Status Register 0x01C3 7008 0x01C3 7808 WAKEUP PRU Wakeup Enable Register 0x01C3 700C 0x01C3 780C CYCLCNT PRU Cycle Count 0x01C3 7010 0x01C3 7810 STALLCNT PRU Stall Count 0x01C3 7020 0x01C3 7820 CONTABBLKIDX0 0x01C3 7028 0x01C3 7828 CONTABPROPTR0 PRU Constant Table Programmable Pointer Register 0 0x01C3 702C 0x01C3 782C CONTABPROPTR1 PRU Constant Table Programmable Pointer Register 1 0x01C37400 - 0x01C3747C 0x01C3 7C00 - 0x01C3 7C7C INTGPR0 – INTGPR31 PRU Internal General Purpose Register 0 (for Debug) 0x01C37480 - 0x01C374FC 0x01C3 7C80 - 0x01C3 7CFC INTCTER0 – INTCTER31 PRU Internal General Purpose Register 0 (for Debug) PRU Constant Table Block Index Register 0 Table 5-111. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers 202 BYTE ADDRESS ACRONYM 0x01C3 4000 REVID 0x01C3 4004 CONTROL REGISTER DESCRIPTION Revision ID Register Control Register 0x01C3 4010 GLBLEN 0x01C3 401C GLBLNSTLVL Global Enable Register Global Nesting Level Register 0x01C3 4020 STATIDXSET System Interrupt Status Indexed Set Register 0x01C3 4024 STATIDXCLR System Interrupt Status Indexed Clear Register 0x01C3 4028 ENIDXSET System Interrupt Enable Indexed Set Register 0x01C3 402C ENIDXCLR System Interrupt Enable Indexed Clear Register 0x01C3 4034 HSTINTENIDXSET Host Interrupt Enable Indexed Set Register 0x01C3 4038 HSTINTENIDXCLR Host Interrupt Enable Indexed Clear Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-111. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers (continued) BYTE ADDRESS ACRONYM 0x01C3 4080 GLBLPRIIDX REGISTER DESCRIPTION 0x01C3 4200 STATSETINT0 System Interrupt Status Raw/Set Register 0 0x01C3 4204 STATSETINT1 System Interrupt Status Raw/Set Register 1 0x01C3 4280 STATCLRINT0 System Interrupt Status Enabled/Clear Register 0 0x01C3 4284 STATCLRINT1 System Interrupt Status Enabled/Clear Register 1 0x01C3 4300 ENABLESET0 System Interrupt Enable Set Register 0 0x01C3 4304 ENABLESET1 System Interrupt Enable Set Register 1 0x01C3 4380 ENABLECLR0 System Interrupt Enable Clear Register 0 System Interrupt Enable Clear Register 1 Global Prioritized Index Register 0x01C3 4384 ENABLECLR1 0x01C3 4400 - 0x01C3 4440 CHANMAP0 - CHANMAP15 0x01C3 4800 - 0x01C3 4808 HOSTMAP0 - HOSTMAP2 0x01C3 4900 - 0x01C3 4928 HOSTINTPRIIDX0 HOSTINTPRIIDX9 0x01C3 4D00 POLARITY0 System Interrupt Polarity Register 0 0x01C3 4D04 POLARITY1 System Interrupt Polarity Register 1 0x01C3 4D80 TYPE0 System Interrupt Type Register 0 0x01C3 4D84 TYPE1 System Interrupt Type Register 1 0x01C3 5100 - 0x01C3 5128 HOSTINTNSTLVL0HOSTINTNSTLVL9 0x01C3 5500 HOSTINTEN Copyright © 2008–2013, Texas Instruments Incorporated Channel Map Registers 0-15 Host Map Register 0-2 Host Interrupt Prioritized Index Registers 0-9 Host Interrupt Nesting Level Registers 0-9 Host Interrupt Enable Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 203 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.31 Emulation Logic This section describes the steps to use a third party debugger. The debug capabilities and features for DSP and ARM are as shown below. For TI’s latest debug and emulation information see : http://tiexpressdsp.com/wiki/index.php?title=Category:Emulation DSP: • Basic Debug – Execution Control – System Visibility • Real-Time Debug – Interrupts serviced while halted – Low/non-intrusive system visibility while running • Advanced Debug – Global Start – Global Stop – Specify targeted memory level(s) during memory accesses – HSRTDX (High Speed Real Time Data eXchange) • Advanced System Control – Subsystem reset via debug – Peripheral notification of debug events – Cache-coherent debug accesses • Analysis Actions – Stop program execution – Generate debug interrupt – Benchmarking with counters – External trigger generation – Debug state machine state transition – Combinational and Sequential event generation • Analysis Events – Program event detection – Data event detection – External trigger Detection – System event detection (i.e. cache miss) – Debug state machine state detection • Analysis Configuration – Application access – Debugger access 204 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Table 5-112. DSP Debug Features Category Hardware Feature Software breakpoint Availability Unlimited Up to 10 HWBPs, including: Basic Debug Hardware breakpoint 4 precise (1) HWBPs inside DSP core and one of them is associated with a counter. 2 imprecise (1) HWBPs from AET. 4 imprecise (1) HWBPs from AET which are shared for watch point. Watch point Analysis (1) Up to 4 watch points, which are shared with HWBPs, and can also be used as 2 watch points with data (32 bits) Watch point with Data Up to 2, Which can also be used as 4 watch points. Counters/timers 1x64-bits (cycle only) + 2x32-bits (watermark counters) External Event Trigger In 1 External Event Trigger Out 1 Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions. ARM: • Basic Debug – Execution Control – System Visibility • Advanced Debug – Global Start – Global Stop • Advanced System Control – Subsystem reset via debug – Peripheral notification of debug events – Cache-coherent debug accesses • Program Trace – Program flow corruption – Code coverage – Path coverage – Thread/interrupt synchronization problems • Data Trace – Memory corruption • Timing Trace – Profiling • Analysis Actions – Stop program execution – Control trace streams – Generate debug interrupt – Benchmarking with counters – External trigger generation – Debug state machine state transition – Combinational and Sequential event generation Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 205 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 • • www.ti.com Analysis Events – Program event detection – Data event detection – External trigger Detection – System event detection (i.e. cache miss) – Debug state machine state detection Analysis Configuration – Application access – Debugger access Table 5-113. ARM Debug Features Category Hardware Feature Availability Software breakpoint Unlimited Up to 14 HWBPs, including: Basic Debug 2 precise (1) HWBP inside ARM core which are shared with watch points. Hardware breakpoint 8 imprecise (1) HWBPs from ETM’s address comparators, which are shared with trace function, and can be used as watch point too. 4 imprecise (1) HWBPs from ICECrusher. Up to 6 watch points, including: Watch point 2 from ARM core which is shared with HWBPs and can be associated with a data. 8 from ETM’s address comparators, which are shared with trace function, and HWBPs. 2 from ARM core which is shared with HWBPs. Analysis Trace Control On-chip Trace Capture (1) 206 Watch point with Data 8 watch points from ETM can be associated with a data comparator, and ETM has total 4 data comparators. Counters/timers 3x32-bit (1 cycle ; 2 event) External Event Trigger In 1 External Event Trigger Out 1 Internal Cross-Triggering Signals One between ARM and DSP Address range for trace 4 Data qualification for trace 2 System events for trace control 20 Counters/Timers for trace control 2x16-bit State Machines/Sequencers 1x3-State State Machine Context/Thread ID Comparator 1 Independent trigger control units 12 Capture depth PC 4k bytes ETB Capture depth PC + Timing 4k bytes ETB Application accessible Y Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.31.1 JTAG Port Description The device target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS, TDI, and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S and EMU[0]. TRST holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its default state). Since TRST has an internal pull-down resistor, this ensures that at power up the device functions in its normal (non-test) operation mode if TRST is not connected. Otherwise, TRST should be driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed while the TRST pin is pulled low. Table 5-114. JTAG Port Description PIN TYPE NAME DESCRIPTION TRST I Test Logic Reset When asserted (active low) causes all test and debug logic in the device to be reset along with the IEEE 1149.1 interface TCK I Test Clock This is the test clock used to drive an IEEE 1149.1 TAP state machine and logic. Depending on the emulator attached to , this is a free running clock or a gated clock depending on RTCK monitoring. RTCK O Returned Test Clock Synchronized TCK. Depending on the emulator attached to, the JTAG signals are clocked from RTCK or RTCK is monitored by the emulator to gate TCK. TMS I Test Mode Select Directs the next state of the IEEE 1149.1 test access port state machine TDI I Test Data Input TDO O Test Data Output EMU[0] I/O Emulation 0 Scan data input to the device Scan data output of the device Channel 0 trigger + HSRTDX 5.31.2 Scan Chain Configuration Parameters Table 5-115 shows the TAP configuration details required to configure the router/emulator for this device. Table 5-115. JTAG Port Description Router Port ID Default TAP TAP Name Tap IR Length 17 No C674x 38 18 No ARM926 4 19 No ETB 4 The router is ICEpick revision C and has a 6-bit IR length. 5.31.3 Initial Scan Chain Configuration The first level of debug interface that sees the scan controller is the TAP router module. The debugger can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of the TAP controllers without disrupting the IR state of the other TAPs. 5.31.3.1 Adding TAPS to the Scan Chain The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scans must be completed to add the ARM926EJ-S to the scan chain. A Power-On Reset (POR) or the JTAG Test-Logic Reset state configures the TAP router to contain only the router’s TAP. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 207 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Router TDO TDI CLK Steps TMS Router ARM926EJ-S/ETM Figure 5-71. Adding ARM926EJ-S to the scan chain Pre-amble: The device whose data reaches the emulator first is listed first in the board configuration file. This device is a pre-amble for all the other devices. This device has the lowest device ID. Post-amble: The device whose data reaches the emulator last is listed last in the board configuration file. This device is a post-amble for all the other devices. This device has the highest device ID. • Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '0'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '0'. – Parameter : The IR main count is '6'. – Parameter : The DR main count is '1'. • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000007'. – Parameter : The actual receive data is 'discarded'. • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '8'. – Parameter : The send data value is '0x00000089'. – Parameter : The actual receive data is 'discarded'. • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000002'. – Parameter : The actual receive data is 'discarded'. • Function : Embed the port address in next command. – Parameter : The port address field is '0x0f000000'. – Parameter : The port address value is '3'. 208 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com • • • • SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '32'. – Parameter : The send data value is '0xa2002108'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only all-ones JTAG IR/DR scan. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'run-test/idle'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is 'all-ones'. – Parameter : The actual receive data is 'discarded'. Function : Wait for a minimum number of TCLK pulses. – Parameter : The count of TCLK pulses is '10'. Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '6'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '1'. – Parameter : The IR main count is '4'. – Parameter : The DR main count is '1'. The initial scan chain contains only the TAP router module. The following steps must be completed in order to add ETB TAP to the scan chain. Router TDI ARM926EJ-S/ETM TDO CLK Steps TMS Router • ARM926EJ-S/ETM ETB Figure 5-72. Adding ETB to the scan chain Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000007'. – Parameter : The actual receive data is 'discarded'. Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 209 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 • • • • • • • www.ti.com Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '8'. – Parameter : The send data value is '0x00000089'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000002'. – Parameter : The actual receive data is 'discarded'. Function : Embed the port address in next command. – Parameter : The port address field is '0x0f000000'. – Parameter : The port address value is '3'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '32'. – Parameter : The send data value is '0xa3302108'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only all-ones JTAG IR/DR scan. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'run-test/idle'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is 'all-ones'. – Parameter : The actual receive data is 'discarded'. Function : Wait for a minimum number of TCLK pulses. – Parameter : The count of TCLK pulses is '10'. Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '6 + 4'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '1 + 1'. – Parameter : The IR main count is '4'. – Parameter : The DR main count is '1'. 5.31.4 JTAG 1149.1 Boundary Scan Considerations To • • • use boundary scan, the following sequence should be followed: Execute a valid reset sequence and exit reset Wait at least 6000 OSCIN clock cycles Enter boundary scan mode using the JTAG pins No specific value is required on the EMU[0] pin for boundary scan testing. If TRST is not driven by the boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing. 210 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.32 IEEE 1149.1 JTAG The JTAG (1) interface is used for BSDL testing and emulation of the device. The device requires that both TRST and RESET be asserted upon power up to be properly initialized. While RESET initializes the device, TRST initializes the device's emulation logic. Both resets are required for proper operation. While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and device's emulation logic in the reset state. TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted. RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For maximum reliability, the device includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the device's internal emulation logic will always be properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. 5.32.1 JTAG Peripheral Register Description(s) – JTAG ID Register (DEVIDR0) Table 5-116. DEVIDR0 Register BYTE ADDRESS 0x01C1 4018 (1) ACRONYM DEVIDR0 REGISTER DESCRIPTION JTAG Identification Register COMMENTS Read-only. Provides 32-bit JTAG ID of the device. IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture. The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the device, the JTAG ID register resides at address location 0x01C1 4018. The register hex value for each silicon revision is: • 0x0B7D F02F for silicon revision 1.0 • 0x8B7D F02F for silicon revision 1.1 • 0x9B7D F02F for silicon revisions 3.0, 2.1, and 2.0 For the actual register bit names and their associated bit field descriptions, see Figure 5-73 and Table 5117. 31-28 27-12 11-1 0 VARIANT (4-Bit) PART NUMBER (16-Bit) MANUFACTURER (11-Bit) LSB R-xxxx R-1011 0111 1101 1111 R-0000 0010 111 R-1 LEGEND: R = Read, W = Write, n = value at reset Figure 5-73. JTAG ID (DEVIDR0) Register Description - Register Value Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 211 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Table 5-117. JTAG ID Register Selection Bit Descriptions BIT NAME 31:28 VARIANT DESCRIPTION Variant (4-Bit) value 27:12 PART NUMBER Part Number (16-Bit) value 11-1 MANUFACTURER Manufacturer (11-Bit) value 0 LSB 5.32.2 LSB. This bit is read as a "1". JTAG Test-Port Electrical Data/Timing Table 5-118. Timing Requirements for JTAG Test Port (see Figure 5-74) No. PARAMETER MIN MAX UNIT 1 tc(TCK) Cycle time, TCK 40 ns 2 tw(TCKH) Pulse duration, TCK high 16 ns 3 tw(TCKL) Pulse duration, TCK low 16 ns 4 tc(RTCK) Cycle time, RTCK 40 ns 5 tw(RTCKH) Pulse duration, RTCK high 16 ns 6 tw(RTCKL) Pulse duration, RTCK low 16 ns 7 tsu(TDIV-RTCKH) Setup time, TDI/TMS/TRST valid before RTCK high 4 ns 8 th(RTCKH-TDIV) Hold time, TDI/TMS/TRST valid after RTCK high 4 ns Table 5-119. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port (see Figure 5-74) No. 9 PARAMETER td(RTCKL-TDOV) MIN Delay time, RTCK low to TDO valid MAX UNIT 15 ns 1 2 3 TCK 4 5 6 RTCK 9 TDO 8 7 TDI/TMS/TRST Figure 5-74. JTAG Test-Port Timing 212 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.33 Real Time Clock (RTC) The RTC provides a time reference to an application running on the device. The current date and time is tracked in a set of counter registers that update once per second. The time can be represented in 12-hour or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do not interfere with the accuracy of the time and date. Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time registers are updated, or at programmable periodic intervals. The real-time clock (RTC) provides the following features: • 100-year calendar (xx00 to xx99) • Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation • Binary-coded-decimal (BCD) representation of time, calendar, and alarm • 12-hour clock mode (with AM and PM) or 24-hour clock mode • Alarm interrupt • Periodic interrupt • Single interrupt to the CPU • Supports external 32.768-kHz crystal or external clock source of the same frequency • Separate isolated power supply Figure 5-75 shows a block diagram of the RTC. RTC_XI Counter 32 kHz Oscillator Compensation Seconds Minutes Week Days XTAL RTC_XO Hours Days Months Years Oscillator Alarm Alarm Interrupts Timer Periodic Interrupts Figure 5-75. Real-Time Clock Block Diagram Copyright © 2008–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 213 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 5.33.1 Clock Source The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When the CPU and other peripherals are without power, the RTC can remain powered to preserve the current time and calendar information. The source for the RTC reference clock may be provided by a crystal or by an external clock source. The RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the output from the oscillator back to the crystal. A crystal with 70k-ohm max ESR is recommended. Typical load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1 and C2. An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is connected to RTC_XI, and RTC_XO is left unconnected. If the RTC is not used, the RTC_XI pin should be static held high or low and RTC_XO should be left unconnected. RTC Power Source Real Time Clock C2 XTAL 32.768 kHz RTC_CVDD RTC_XI RTC_XO 32K OSC C1 Real Time Clock (RTC) Module RTC_VSS Isolated RTC Power Domain Figure 5-76. Clock Source 214 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 Copyright © 2008–2013, Texas Instruments Incorporated OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 5.33.2 Real-Time Clock Registers Table 5-120 lists the memory-mapped registers for the RTC. Table 5-120. Real-Time Clock (RTC) Registers BYTE ADDRESS ACRONYM 0x01C2 3000 SECOND Seconds Register 0x01C2 3004 MINUTE Minutes Register 0x01C2 3008 HOUR 0x01C2 300C DAY 0x01C2 3010 MONTH 0x01C2 3014 YEAR Year Register 0x01C2 3018 DOTW Day of the Week Register 0x01C2 3020 ALARMSECOND Alarm Seconds Register 0x01C2 3024 ALARMMINUTE Alarm Minutes Register 0x01C2 3028 ALARMHOUR Alarm Hours Register 0x01C2 302C ALARMDAY Alarm Days Register 0x01C2 3030 ALARMMONTH 0x01C2 3034 ALARMYEAR 0x01C2 3040 CTRL Control Register 0x01C2 3044 STATUS Status Register 0x01C2 3048 INTERRUPT 0x01C2 304C COMPLSB Compensation (LSB) Register 0x01C2 3050 COMPMSB Compensation (MSB) Register 0x01C2 3054 OSC 0x01C2 3060 SCRATCH0 Scratch 0 (General-Purpose) Register 0x01C2 3064 SCRATCH1 Scratch 1 (General-Purpose) Register 0x01C2 3068 SCRATCH2 Scratch 2 (General-Purpose) Register 0x01C2 306C KICK0 Kick 0 (Write Protect) Register 0x01C2 3070 KICK1 Kick 1 (Write Protect) Register Copyright © 2008–2013, Texas Instruments Incorporated REGISTER DESCRIPTION Hours Register Day of the Month Register Month Register Alarm Months Register Alarm Years Register Interrupt Enable Register Oscillator Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAP-L137 215 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com 6 Device and Documentation Support 6.1 6.1.1 Device Support Development Support TI offers an extensive line of development tools for the OMAP-L13x platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE). The following products support development of OMAP-L13x applications: Software Development Tools: Code Composer Studio™ Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software needed to support any application. Hardware Development Tools: Extended Development System (XDS™) Emulator For a complete listing of development-support tools for OMAP-L13x, visit the Texas Instruments web site on the Worldwide Web at www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. 6.1.2 Device and Development-Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: X, P, or NULL (e.g., XOMAPL137). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (X/TMDX) through fully qualified production devices/tools (NULL/TMDS). Device development evolutionary flow: X Experimental device that is not necessarily representative of the final device's electrical specifications. P Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification. NULL Fully-qualified production device. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development-support product. X and P devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." NULL devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. 216 Device and Documentation Support Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 TI nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ZKB), the temperature range (for example, "Blank" is the commercial temperature range), and the device speed range in megahertz (for example, "Blank" is the default). Figure 6-1 provides a legend for reading the complete device name for any OMAPL13x member. X OMAPL137 ( ) ZKB ( ) 3 DEVICE SPEED RANGE 3 = 300 Mhz (Revision A) 3 = 375 Mhz (Revision B) 4 = 456 Mhz (Revision B) PREFIX X = Experimental Device P = Prototype Device Blank = Production Device TEMPERATURE RANGE (JUNCTION) Blank = 0°C to 90°C (Commercial Grade) D = –40°C to 90°C (Industrial Grade) A = –40°C to 105°C (Extended Grade) T = –40°C to 125°C (Automotive Grade) DEVICE OMAPL137 SILICON REVISION Blank = Silicon Revision 1.0 A = Silicon Revision 1.1 B = Silicon Revision 2.0 C = Silicon Revision 2.1 D = Silicon Revision 3.0 PACKAGE TYPE ZKB = 256 Pin Plastic BGA, with Pb-free Soldered Balls [Green] Figure 6-1. Device Nomenclature 6.2 Documentation Support The following documents describe the OMAP-L13x Low-power applications processor. Copies of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com. DSP Reference Guides SPRUFE8 TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with added functionality and an expanded instruction set. SPRUFK5 TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache. SPRUH92 OMAP-L1x DSP+ARM Processor Technical Reference Manual. Describes the System-onChip (SoC) and each peripheral in the device. User's Guides SPRU186 TMS320C6000 Assembly Language Tools User's Guide.Describes the assembly language tools (assembler, linker, and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C6000 platform of devices (including the C64x+, C67x+, and C674x generations). SPRU187 TMS320C6000 Optimizing Compiler User's Guide. Describes the TMS320C6000 C compiler and the assembly optimizer. This C compiler accepts ANSI standard C source code and produces assembly language source code for the TMS320C6000 platform of devices (including the C64x+, C67x+, and C674x generations). The assembly optimizer helps you optimize your assembly code. SPRUG82 TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches and describes how the two-level cache-based internal memory architecture in the TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications. Device and Documentation Support Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 217 OMAP-L137 SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 www.ti.com Shows how to maintain coherence with external memory, how to use DMA to reduce memory latencies, and how to optimize your code to improve cache efficiency. The internal memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level. Accesses by the CPU to the these first level caches can complete without CPU pipeline stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next lower memory level, L2 or external memory. 6.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 218 Device and Documentation Support Copyright © 2008–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAP-L137 OMAP-L137 www.ti.com SPRS563F – SEPTEMBER 2008 – REVISED FEBRUARY 2013 7 Mechanical Packaging and Orderable Information This section describes the OMAP-L137 orderable part numbers, packaging options, materials, thermal and mechanical parameters. This section contains mechanical drawings for the ZKB Plastic Ball Grid Array package . 7.1 Thermal Data for ZKB The following table(s) show the thermal resistance characteristics for the PBGA–ZKB mechanical package. Table 7-1. Thermal Resistance Characteristics (PBGA Package) [ZKB] No. °C/W (1) °C/W (2) AIR FLOW (m/s) (3) 1 RΘJC Junction-to-case 12.8 13.5 N/A 2 RΘJB Junction-to-board 15.1 19.7 N/A 3 RΘJA Junction-to-free air 24.5 33.8 0.00 4 21.9 30 0.50 5 21.1 28.7 1.00 RΘJMA 6 Junction-to-moving air 20.4 27.4 2.00 7 19.6 26 4.00 8 0.6 0.8 0.00 9 0.8 1 0.50 10 0.9 1.2 1.00 11 1.1 1.4 2.00 12 1.3 1.8 4.00 13 14.9 19.1 0.00 14 14.4 18.2 0.50 14.4 18 1.00 16 14.3 17.7 2.00 17 14.1 17.4 4.00 15 (1) (2) (3) 7.2 PsiJT PsiJB Junction-to-package top Junction-to-board These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application. For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and 1.5oz (50um) inner copper thickness Simulation data, using the same model but with 1oz (35um) top and bottom copper thickness and 0.5oz (18um) inner copper thickness. Power dissipation of 1W and ambient temp of 70C assumed. m/s = meters per second Packaging Information The following packaging information and addendum reflect the most current data available for the designated device(s). This data is subject to change without notice and without revision of this document. Copyright © 2008–2013, Texas Instruments Incorporated Mechanical Packaging and Orderable Information Submit Documentation Feedback Product Folder Links: OMAP-L137 219 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2013 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) OMAPL137BZKB3 OBSOLETE BGA ZKB 256 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR 0 to 90 OMAP L137BZKB3 OMAPL137BZKB4 OBSOLETE BGA ZKB 256 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR 0 to 90 OMAP L137BZKB4 OMAPL137BZKBA3 OBSOLETE BGA ZKB 256 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 OMAP L137BZKBA3 OMAPL137BZKBD4 OBSOLETE BGA ZKB 256 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 90 OMAP L137BZKBD4 OMAPL137BZKBT3 OBSOLETE BGA ZKB 256 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 125 OMAPL137BZKBT3 OMAPL137DZKB3 ACTIVE BGA ZKB 256 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR OMAP L137DZKB3 OMAPL137DZKB4 ACTIVE BGA ZKB 256 1 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR OMAP L137DZKB4 OMAPL137DZKBA3 ACTIVE BGA ZKB 256 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR OMAP L137DZKBA3 OMAPL137DZKBD4 ACTIVE BGA ZKB 256 90 TBD Call TI Call TI OMAP L137DZKBD4 OMAPL137DZKBT3 ACTIVE BGA ZKB 256 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR OMAPL137DZKBT3 XOMAPL137DZKBA3 ACTIVE BGA ZKB 256 1 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR XOMAP L137DZKBA3 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2013 Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated