Qimonda HYB25D256800CC-5 256-mbit double-data-rate sdram Datasheet

March 2007
HYB25D256[40/80/16]0CE(L)
HYB25D256[40/80/16]0C[T/C/F]
HYI25D256[80/16]0C[C/E/F/T]
256-Mbit Double-Data-Rate SDRAM
DDR SDRAM
RoHS Compliant or Lead-Containing
Internet Data Sheet
Rev. 2.3
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
HYB25D256[40/80/16]0CE(L), HYB25D256[40/80/16]0C[T/C/F], HYI25D256[80/16]0C[C/E/F/T]
Revision History: 2007-03, Rev. 2.3
Page
Subjects (major changes since last revision)
All
Adapted internet edition
17
Corrected table 7 mode register definition
72
Changed the 1.1 mA to 1.5 mA for low power
85, 86
Changed the ball size from 0.460 mm to 0.450 mm
Previous Revision: 2007-01, Rev. 2.2
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
qag_techdoc_rev400 / 3.2 QAG / 2006-08-07
03062006-8CCM-VPUW
2
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
1
Overview
This chapter lists all main features of the product family HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) and the ordering information.
1.1
Features
• Double data rate architecture: two data transfers per clock
cycle
• Bidirectional data strobe (DQS) is transmitted and
received with data, to be used in capturing data at the
receiver
• DQS is edge-aligned with data for reads and is centeraligned with data for writes
• Differential clock inputs (CK and CK)
• Four internal banks for concurrent operation
• Data mask (DM) for write data
• DLL aligns DQ and DQS transitions with CK transitions
• Commands entered on each positive CK edge; data and
data mask referenced to both edges of DQS
• Burst Lengths: 2, 4, or 8
• CAS Latency: 1.5 (DDR200 only), 2, 2.5, 3
•
•
•
•
•
•
•
•
•
•
•
Auto Precharge option for each burst access
Auto Refresh and Self Refresh Modes
RAS-lockout supported tRAP = tRCD
7.8 µs Maximum Average Periodic Refresh Interval
2.5 V (SSTL_2 compatible) I/O
VDDQ = 2.5 V ± 0.2 V (DDR200, DDR266, DDR333);
VDDQ = 2.6 V ± 0.1 V (DDR400)
VDD = 2.5 V ± 0.2 V (DDR200, DDR266, DDR333);
VDD = 2.6 V ± 0.1 V (DDR400)
Standard Temperature Range (0 °C - +70 °C) or Industrial
Temperature Range (–40 °C - +85 °C)
P-TFBGA-60-12 package with 3 depopulated rows
(8 × 12 mm2)
P-TSOPII-66 package
RoHS1) compliant product types available (green product)
TABLE 1
Performance of –5, –6 and –7
Product Type Speed Code
–5
–6
–7
Unit
Speed Grade
Component
DDR400B
DDR333B
DDR266A
—
Max. Clock
Frequency
@CL3
200
166
—
MHz
166
166
143
MHz
133
133
133
MHz
@CL2.5
@CL2
fCK3
fCK2.5
fCK2
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
3
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
1.2
Description
DQS, as well as to both edges of CK. Read and write
accesses to the DDR SDRAM are burst oriented; accesses
start at a selected location and continue for a programmed
number of locations in a programmed sequence. Accesses
begin with the registration of an Active command, which is
then followed by a Read or Write command. The address bits
registered coincident with the Active command are used to
select the bank and row to be accessed. The address bits
registered coincident with the Read or Write command are
used to select the bank and the starting column location for
the burst access.
The DDR SDRAM provides for programmable Read or Write
burst lengths of 2, 4 or 8 locations. An Auto Precharge
function may be enabled to provide a self-timed row
precharge that is initiated at the end of the burst access. As
with standard SDRAMs, the pipelined, multibank architecture
of DDR SDRAMs allows for concurrent operation, thereby
providing high effective bandwidth by hiding row precharge
and activation time.
An auto refresh mode is provided along with a power-saving
power-down mode. All inputs are compatible with SSTL_2. All
outputs are SSTL_2, Class II compatible.
Note: The functionality described and the timing
specifications included in this data sheet are for the
DLL Enabled mode of operation.
The 256 Mbit Double-Data-Rate SDRAM is a high-speed
CMOS, dynamic random-access memory containing
268,435,456 bits. It is internally configured as a quad-bank
DRAM.
The 256 Mbit Double-Data-Rate SDRAM uses a doubledata-rate architecture to achieve high-speed operation. The
double data rate architecture is essentially a 2n-prefetch
architecture with an interface designed to transfer two data
words per clock cycle at the I/O pins. A single read or write
access
for
the
256 Mbit Double-Data-Rate SDRAM
effectively consists of a single 2n-bit wide, one clock cycle
data transfer at the internal DRAM core and two
corresponding n-bit wide, one-half-clock-cycle data transfers
at the I/O pins.
A bidirectional data strobe (DQS) is transmitted externally,
along with data, for use in data capture at the receiver. DQS
is a strobe transmitted by the DDR SDRAM during Reads and
by the memory controller during Writes. DQS is edge-aligned
with data for Reads and center-aligned with data for Writes.
The 256 Mbit Double-Data-Rate SDRAM operates from a
differential clock (CK and CK; the crossing of CK going HIGH
and CK going LOW is referred to as the positive edge of CK).
Commands (address and control signals) are registered at
every positive edge of CK. Input data is registered on both
edges of DQS, and output data is referenced to both edges of
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
4
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
TABLE 2
Ordering Information for Lead-Free Products (RoHS Compliant)
Product Type1)
Organization CAS-RCD-RP
Latencies
Clock (MHz) Speed
Package
Standard Temperature Range (0 °C - +70 °C)
HYB25D256800CE–5A ×8
2.5-3-3
200
DDR400A PG-TSOPII-66
3-3-3
200
DDR400B
2.5-3-3
166
DDR333
143
DDR266A
3-3-3
200
DDR400A PG-TFBGA-60
2.5-3-3
166
DDR333
3-3-3
200
DDR400B PG-TSOPII-66
2.5-3-3
166
DDR333
3-3-3
200
DDR400A PG-TFBGA-60
2.5-3-3
166
DDR333
HYB25D256160CE–5A ×16
HYB25D256800CE–5
×8
HYB25D256160CE–5
×16
HYB25D256800CE–6
×8
HYB25D256800CEL–6 ×8
HYB25D256160CE–6
×16
HYB25D256160CEL–6 ×16
HYB25D256400CE–7
×4
HYB25D256400CF–5
×4
HYB25D256800CF–5
×8
HYB25D256160CF–5
×16
HYB25D256400CF–6
×4
HYB25D256800CF–6
×8
HYB25D256160CF–6
×16
Industrial Temperature Range (–40 °C - +85 °C)
HYI25D256800CE–5
×8
HYI25D256160CE–5
×16
HYI25D256800CE–6
×8
HYI25D256160CE–6
×16
HYI25D256800CF–5
×8
HYI25D256160CF–5
×16
HYI25D256800CF–6
×8
HYI25D256160CF–6
×16
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
5
Note
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
TABLE 3
Ordering Information for Lead-Containing Products
Product Type1)
Oganization CAS-RCD-RP Clock (MHz) Speed
Latencies
Package
Note
Standard Temperature Range (0 °C - +70 °C)
HYB25D256400CT–5
×4
HYB25D256800CT–5
×8
HYB25D256160CT–5
×16
HYB25D256400CT–6
×4
HYB25D256800CT–6
×8
3-3-3
200
DDR400B P-TSOPII-66 —
2.5-3-3
166
DDR333
143
DDR266A
3-3-3
200
DDR400B P-TFBGA-60
2.5-3-3
166
DDR333
3-3-3
200
DDR400B P-TSOPII-66 —
2.5-3-3
166
DDR333
3-3-3
200
DDR400A P-TFBGA-60
2.5-3-3
166
DDR333
HYB25D256800CTL–6 ×8
HYB25D256160CT–6
×16
HYB25D256400CT–7
×4
HYB25D256400CC–5
×4
HYB25D256800CC–5
×8
HYB25D256160CC–5
×16
HYB25D256400CC–6
×4
HYB25D256800CC–6
×8
HYB25D256160CC–6
×16
Industrial Temperature Range (–40 °C - +85 °C)
HYI25D256800CT–5
×8
HYI25D256160CT–5
×16
HYI25D256800CT–6
×8
HYI25D256160CT–6
×16
HYI25D256800CC–5
×8
HYI25D256160CC–5
×16
HYI25D256800CC–6
×8
HYI25D256160CC–6
×16
1) HYB and HYI: designator for memory components; 25D: DDR SDRAMs at VDDQ = 2.5 V; 256: 256-Mbit density; 400/800/160: product
variations ×4, ×8 and ×16; C: die revision C; L: low power (available on request); F/C/E/T: package type FBGA (lead & halogen free),
FBGA (lead containing), TSOP (lead & halogen free), and TSOP (lead containing)
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
6
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
2
Pin Configuration
The pin configuration of a DDR SDRAM is listed by function in Table 4 (60 pins). The abbreviations used in the Pin#/Buffer#
column are explained in Table 5 and Table 6 respectively. The pin numbering for FBGA is depicted in Figure 1 and that of the
TSOP package in Figure 2.
TABLE 4
Pin Configuration of DDR SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
G2, 45
CK
I
SSTL
Clock Signal
G3, 46
CK
I
SSTL
Complementary Clock Signal
H3, 44
CKE
I
SSTL
Clock Enable
RAS
I
SSTL
Row Address Strobe
G8, 22
CAS
I
SSTL
Column Address Strobe
G7, 21
WE
I
SSTL
Write Enable
H8, 24
CS
I
SSTL
Chip Select
BA0
I
SSTL
Bank Address Bus 2:0
J7, 27
BA1
I
SSTL
K7, 29
A0
I
SSTL
L8, 30
A1
I
SSTL
L7, 31
A2
I
SSTL
M8, 32
A3
I
SSTL
Clock Signals
Control Signals
H7, 23
Address Signals
J8, 26
M2, 35
A4
I
SSTL
L3, 36
A5
I
SSTL
L2, 37
A6
I
SSTL
K3, 38
A7
I
SSTL
K2, 39
A8
I
SSTL
J3, 40
A9
I
SSTL
K8, 28
Address Bus 11:0
A10
I
SSTL
AP
I
SSTL
J2, 41
A11
I
SSTL
H2, 42
A12
I
SSTL
Address Signal 12
Note: 256 Mbit or larger dies
NC
NC
—
Note: 128 Mbit or smaller dies
A13
I
SSTL
Address Signal 13
Note: 1 Gbit based dies
NC
NC
—
Note: 512 Mbit or smaller dies
F9, 17
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
7
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
Data Signal 3:0
Data Signals ×4 Organization
B7, 5
DQ0
I/O
SSTL
D7, 11
DQ1
I/O
SSTL
D3, 56
DQ2
I/O
SSTL
B3, 62
DQ3
I/O
SSTL
Data Strobe ×4 Organisation
E3, 51
DQS
I/O
SSTL
Data Strobe
I
SSTL
Data Mask
Data Signal 7:0
Data Mask ×4 Organization
F3, 47
DM
Data Signals ×8 organization
A8, 2
DQ0
I/O
SSTL
B7, 5
DQ1
I/O
SSTL
C7, 8
DQ2
I/O
SSTL
D7, 11
DQ3
I/O
SSTL
D3, 56
DQ4
I/O
SSTL
C3, 59
DQ5
I/O
SSTL
B3, 62
DQ6
I/O
SSTL
A2, 65
DQ7
I/O
SSTL
Data Signal
Data Strobe ×8 organisation
E3, 51
DQS
I/O
SSTL
Data Strobe
I
SSTL
Data Mask
Data Signal 15:0
Data Mask ×8 organization
F3, 47
DM
Data Signals ×16 organization
A8, 2
DQ0
I/O
SSTL
B9, 4
DQ1
I/O
SSTL
B7, 5
DQ2
I/O
SSTL
C9, 7
DQ3
I/O
SSTL
C7, 8
DQ4
I/O
SSTL
D9, 10
DQ5
I/O
SSTL
D7, 11
DQ6
I/O
SSTL
E9, 13
DQ7
I/O
SSTL
E1, 54
DQ8
I/O
SSTL
D3, 56
DQ9
I/O
SSTL
D1, 57
DQ10
I/O
SSTL
C3, 59
DQ11
I/O
SSTL
C1, 60
DQ12
I/O
SSTL
B3, 62
DQ13
I/O
SSTL
B1, 63
DQ14
I/O
SSTL
A2, 65
DQ15
I/O
SSTL
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
8
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
Data Strobe ×16 organization
E3, 51
UDQS
I/O
SSTL
Data Strobe Upper Byte
E7, 16
LDQS
I/O
SSTL
Data Strobe Lower Byte
Data Mask ×16 organization
F3, 47
UDM
I
SSTL
Data Mask Upper Byte
F7, 20
LDM
I
SSTL
Data Mask Lower Byte
AI
—
I/O Reference Voltage
PWR
—
I/O Driver Power Supply
PWR
—
Power Supply
A1, B8, C2, D8, VSSQ
E2, 6, 12, 52,
58, 64
PWR
—
Power Supply
A3, F2, M3, 34, VSS
48, 66
PWR
—
Power Supply
Power Supplies
VREF
A9, B2, C8, D2, VDDQ
F1, 49
E8, 3, 9, 15, 55,
61
A7, F8, M7, 1,
18, 33
VDD
Not Connected
A2, 65
NC
NC
—
Not Connected
Note: ×4 organization
A8, 2
NC
NC
—
Not Connected
Note: ×4 organization
B1, 63
NC
NC
—
Not Connected
Note: ×8 and ×4 organisation
B9, 4
NC
NC
—
Not Connected
Note: ×8 and ×4 organization
C1, 60
NC
NC
—
Not Connected
Note: ×8 and ×4 organization
C3, 59
NC
NC
—
Not Connected
Note: ×4 organization
C7, 8
NC
NC
—
Not Connected
Note: ×4 organization
C9, 7
NC
NC
—
Not Connected
Note: ×8 and ×4 organization
D1, 57
NC
NC
—
Not Connected
Note: ×8 and ×4 organization
D9, 10
NC
NC
—
Not Connected
Note: ×8 and ×4 organization
E1, 54
NC
NC
—
Not Connected
Note: ×8 and ×4 organization
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
9
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
Ball#/Pin#
Name
Pin
Type
Buffer
Type
Function
E7, 16
NC
NC
—
Not Connected
Note: ×8 and ×4 organization
E9, 13
NC
NC
—
Not Connected
Note: ×8 and ×4 organization
F7, 20
NC
NC
—
Not Connected
Note: ×8 and ×4 organization
F9, 14, 17, 19,
25,43, 50, 53
NC
NC
—
Not Connected
Note: ×16,×8 and ×4 organization
TABLE 5
Abbreviations for Pin Type
Abbreviation
Description
I
Standard input-only pin. Digital levels.
O
Output. Digital levels.
I/O
I/O is a bidirectional input/output signal.
AI
Input. Analog levels.
PWR
Power
GND
Ground
NC
Not Connected
TABLE 6
Abbreviations for Buffer Type
Abbreviation
Description
SSTL
Serial Stub Terminated Logic (SSTL2)
LV-CMOS
Low Voltage CMOS
CMOS
CMOS Levels
OD
Open Drain. The corresponding pin has 2 operational states, active low and tristate, and
allows multiple devices to share as a wire-OR.
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
10
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
FIGURE 1
Pin Configuration P-TFBGA-60 Top View, see the balls throught the package
, , [
[
, [
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
11
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
FIGURE 2
Pin Configuration P-TSOPII-66-1
[
[
[
6''
6''
6''
666
666
666
1&
'4
'4
'4
'4
1&
6''4
6''4
6''4
6664
6664
6664
1&
1&
'4
'4
1&
1&
'4
'4
'4
'4
'4
'4
6664
6664
6664
6''4
6''4
6''4
1&
1&
'4
'4
1&
1&
1&
'4
'4
'4
'4
1&
6''4
6''4
6''4
6664
6664
6664
1&
1&
'4
'4
1&
1&
'4
'4
'4
'4
'4
'4
6664
6664
6664
6''4
6''4
6''4
1&
1&
'4
'4
1&
1&
1&
1&
1&
1&
1&
1&
6''4
6''4
6''4
6664
6664
6664
1&
1&
/'4
6
8'4
6
'46
'46
1&
1&
1&
1&$ 1&$ 1&
$
6''
6''
6''
65() 65() 65()
1&
1&
1&
666
666
666
1&
1&
/'0
8'0
'0
'0
:(
:(
:(
&.
&.
&.
&$6
&$6
&$6
&.
&.
&.
5$6
5$6
5$6
&.(
&.(
&.(
&6
&6
&6
1&
1&
%$
%$
1&
%$
1&
1&
1&
1&$ 1&
$ 1&$
$
$
$
%$
%$
%$
$
$
$
$$
3 $$3 $$3
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
6''
6''
6''
666
666
666
033'
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
12
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
3
Functional Description
The 256 Mbit Double-Data-Rate SDRAM is a high-speed CMOS, dynamic random-access memory containing
268,435,456 bits. The 256 Mbit Double-Data-Rate SDRAM is internally configured as a quad-bank DRAM.
The 256 Mbit Double-Data-Rate SDRAM uses a double-data-rate architecture to achieve high-speed operation. The doubledata-rate architecture is essentially a 2n prefetch architecture, with an interface designed to transfer two data words per clock
cycle at the I/O pins. A single read or write access for the 256 Mbit Double-Data-Rate SDRAM consists of a single 2n-bit wide,
one clock cycle data transfer at the internal DRAM core and two corresponding n-bit wide, one-half clock cycle data transfers
at the I/O pins.
Read and write accesses to the DDR SDRAM are burst oriented; accesses start at a selected location and continue for a
programmed number of locations in a programmed sequence. Accesses begin with the registration of an Active command,
which is then followed by a Read or Write command. The address bits registered coincident with the Active command are used
to select the bank and row to be accessed (BA0, BA1 select the bank; A0-A12 select the row). The address bits registered
coincident with the Read or Write command are used to select the starting column location for the burst access.
Prior to normal operation, the DDR SDRAM must be initialized. The following sections provide detailed information covering
device initialization, register definition, command descriptions and device operation.
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
13
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
%$
%$
$
$
$
$
$
$
$
23(5$7,1*02'(
$
&/
$
$
%7
$
$
$
%/
03%'
TABLE 7
Mode Register
Field
Bits
Type1)
Description
BL
[2:0]
W
Burst Length
Number of sequential bits per DQ related to one read/write command.
Note: All other bit combinations are RESERVED.
001B 2
010B 4
011B 8
BT
3
Burst Type
See Table 8 for internal address sequence of low order address bits.
0 Sequential
1 Interleaved
CL
[6:4]
CAS Latency
Number of full clocks from read command to first data valid window.
Note: All other bit combinations are RESERVED.
010B
011B
110B
101B
Note:
MODE [12:7]
2
3
2.5
1.5
DDR200 components only
Operating Mode
Note: All other bit combinations are RESERVED.
000000 Normal Operation without DLL Reset
000010 Normal Operation with DLL Reset
1) W = write only register bit
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
14
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
TABLE 8
Burst Definition
Burst Length
2
4
8
Starting Column Address
Order of Accesses Within a Burst
A2
A1
A0
Type = Sequential
Type = Interleaved
—
—
0
0-1
0-1
—
—
1
1-0
1-0
—
0
0
0-1-2-3
0-1-2-3
—
0
1
1-2-3-0
1-0-3-2
—
1
0
2-3-0-1
2-3-0-1
—
1
1
3-0-1-2
3-2-1-0
0
0
0
0-1-2-3-4-5-6-7
0-1-2-3-4-5-6-7
0
0
1
1-2-3-4-5-6-7-0
1-0-3-2-5-4-7-6
0
1
0
2-3-4-5-6-7-0-1
2-3-0-1-6-7-4-5
0
1
1
3-4-5-6-7-0-1-2
3-2-1-0-7-6-5-4
1
0
0
4-5-6-7-0-1-2-3
4-5-6-7-0-1-2-3
1
0
1
5-6-7-0-1-2-3-4
5-4-7-6-1-0-3-2
1
1
0
6-7-0-1-2-3-4-5
6-7-4-5-2-3-0-1
1
1
1
7-0-1-2-3-4-5-6
7-6-5-4-3-2-1-0
Notes
1.
2.
3.
4.
For a burst length of two, A1-Ai selects the two-data-element block; A0 selects the first access within the block.
For a burst length of four, A2-Ai selects the four-data-element block; A0-A1 selects the first access within the block.
For a burst length of eight, A3-Ai selects the eight-data- element block; A0-A2 selects the first access within the block.
Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block.
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
15
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
%$
%$
$
$
$
$
$
$
$
$
$
23(5$7,1*02'(
$
$
$
$
'6
'//
03%'
TABLE 9
Extended Mode Regsiter
Field
Bits
Type1)
Description
DLL
0
W
DLL Status
0B
Enabled
Disabled
1B
DS
1
W
Drive Strength
0B
Normal
1B
Weak
MODE
[12:2]
W
Operating Mode
Note: All other bit combinations are RESERVED.
00000000000BNormal Operation
1) W = write only register bit
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
16
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
TABLE 10
Truth Table 1a: Commands
Name (Function)
CS
RAS
CAS
WE
Address
MNE
Note
Deselect (NOP)
H
X
X
X
X
NOP
1)2)
No Operation (NOP)
L
H
H
H
X
NOP
1)2)
Active (Select Bank And Activate Row)
L
L
H
H
Bank/Row
ACT
1)3)
Read (Select Bank And Column, And Start Read Burst)
L
H
L
H
Bank/Col
Read
1)4)
Write (Select Bank And Column, And Start Write Burst)
L
H
L
L
Bank/Col
Write
1)4)
Burst Terminate
L
H
H
L
X
BST
1)5)
Precharge (Deactivate Row In Bank Or Banks)
L
L
H
L
Code
PRE
1)6)
Auto Refresh Or Self Refresh (Enter Self Refresh Mode)
L
L
L
H
X
AR/SR
1)7)8)
Mode Register Set
L
L
L
L
Op-Code
MRS
1)9)
1)
2)
3)
4)
5)
6)
7)
8)
9)
CKE is HIGH for all commands shown except Self Refresh.VREF must be maintained during Self Refresh operation
Deselect and NOP are functionally interchangeable.
BA0-BA1 provide bank address and A0-A12 provide row address.
BA0, BA1 provide bank address; A0-Ai provide column address (where i = 8 for x16, i = 9 for x8 and 9, 11 for x4); A10 HIGH enables the
Auto Precharge feature (nonpersistent), A10 LOW disables the Auto Precharge feature.
Applies only to read bursts with Auto Precharge disabled; this command is undefined (and should not be used) for read bursts with Auto
Precharge enabled or for write bursts.
A10 LOW: BA0, BA1 determine which bank is precharged. A10 HIGH: all banks are precharged and BA0, BA1 are “Don’t Care”.
This command is Auto Refresh if CKE is HIGH; Self Refresh if CKE is LOW.
Internal refresh counter controls row and bank addressing; all inputs and I/Os are “Don’t Care” except for CKE.
BA0, BA1 select either the Base or the Extended Mode Register (BA0 = 0, BA1 = 0 selects Mode Register; BA0 = 1, BA1 = 0 selects
Extended Mode Register; other combinations of BA0-BA1 are reserved; A0-A12 provide the op-code to be written to the selected Mode
Register).
TABLE 11
Truth Table 1b: DM Operation
Name (Function)
DM
DQs
Note
Write Enable
L
Valid
1)
Write Inhibit
H
X
1)
1) Used to mask write data; provided coincident with the corresponding data.
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
17
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
TABLE 12
Truth Table 2: Clock Enable (CKE)
Current State
CKE n-1
CKEn
Command n
Action n
Note
Previous Cycle
Current Cycle
Self Refresh
L
L
X
Maintain Self-Refresh
1)
Self Refresh
L
H
Deselect or NOP
Exit Self-Refresh
2)
Power Down
L
L
X
Maintain Power-Down
Power Down
L
H
Deselect or NOP
Exit Power-Down
All Banks Idle
H
L
Deselect or NOP
Precharge Power-Down Entry
All Banks Idle
H
L
AUTO REFRESH
Self Refresh Entry
Bank(s) Active
H
L
Deselect or NOP
Active Power-Down Entry
—
H
H
See Table 13
—
1) VREF must be maintained during Self Refresh operation
2) Deselect or NOP commands should be issued on any clock edges occurring during the Self Refresh Exit (tXSNR) period. A minimum of 200
clock cycles are needed before applying a read command to allow the DLL to lock to the input clock.
Notes
1.
2.
3.
4.
CKEn is the logic state of CKE at clock edge n: CKE n-1 was the state of CKE at the previous clock edge.
Current state is the state of the DDR SDRAM immediately prior to clock edge n.
COMMAND n is the command registered at clock edge n, and ACTION n is a result of COMMAND n.
All states and sequences not shown are illegal or reserved.
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
18
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
TABLE 13
Truth Table 3: Current State Bank n - Command to Bank n (same bank)
Current State
CS
RAS
CAS
WE
Command
Action
Note
Any
H
X
X
X
Deselect
NOP. Continue previous operation.
1)2)3)4)5)6)
L
H
H
H
No Operation
NOP. Continue previous operation.
1) to 6)
L
L
H
H
Active
Select and activate row
1) to 6)
L
L
L
H
AUTO REFRESH
—
1) to7)
L
L
L
L
MODE REGISTER
SET
—
1) to 7)
L
H
L
H
Read
Select column and start Read burst
1) to 6),8)
L
H
L
L
Write
Select column and start Write burst
1) to 6),8)
L
L
H
L
Precharge
Deactivate row in bank(s)
1) to 6),9)
Read (Auto
Precharge
Disabled)
L
H
L
H
Read
Select column and start new Read burst
1) to 6),8)
L
L
H
L
Precharge
Truncate Read burst, start Precharge
1) to 6),9)
L
H
H
L
BURST
TERMINATE
BURST TERMINATE
1) to 6),10)
Write (Auto
Precharge
Disabled)
L
H
L
H
Read
Select column and start Read burst
1) to 6), 8),11)
L
H
L
L
Write
Select column and start Write burst
1) to 6),8)
Idle
Row Active
1) to 6),9),11)
Truncate Write burst, start Precharge
1) This table applies when CKE n-1 was HIGH and CKE n is HIGH (see Table 12 and after tXSNR/tXSRD has been met (if the previous state
L
L
H
L
Precharge
was self refresh).
2) This table is bank-specific, except where noted, i.e., the current state is for a specific bank and the commands shown are those allowed
to be issued to that bank when in that state. Exceptions are covered in the notes below.
3) Current state definitions: Idle: The bank has been precharged, and tRP has been met. Row Active: A row in the bank has been activated,
and tRCD has been met. No data bursts/accesses and no register accesses are in progress. Read: A Read burst has been initiated, with
Auto Precharge disabled, and has not yet terminated or been terminated. Write: A Write burst has been initiated, with Auto Precharge
disabled, and has not yet terminated or been terminated.
4) The following states must not be interrupted by a command issued to the same bank. Precharging: Starts with registration of a Precharge
command and ends when tRP is met. Once tRP is met, the bank is in the idle state. Row Activating: Starts with registration of an Active
command and ends when tRCD is met. Once tRCD is met, the bank is in the “row active” state. Read w/Auto Precharge Enabled: Starts with
registration of a Read command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle
state. Write w/Auto Precharge Enabled: Starts with registration of a Write command with Auto Precharge enabled and ends when tRP has
been met. Once tRP is met, the bank is in the idle state. Deselect or NOP commands, or allowable commands to the other bank should be
issued on any clock edge occurring during these states. Allowable commands to the other bank are determined by its current state and
according to Table 14.
5) The following states must not be interrupted by any executable command; Deselect or NOP commands must be applied on each positive
clock edge during these states. Refreshing: Starts with registration of an Auto Refresh command and ends when tRFC is met. Once tRFC is
met, the DDR SDRAM is in the “all banks idle” state. Accessing Mode Register: Starts with registration of a Mode Register Set command
and ends when tMRD has been met. Once tMRD is met, the DDR SDRAM is in the “all banks idle” state. Precharging All: Starts with
registration of a Precharge All command and ends when tRP is met. Once tRP is met, all banks is in the idle state.
6) All states and sequences not shown are illegal or reserved.
7) Not bank-specific; requires that all banks are idle.
8) Reads or Writes listed in the Command/Action column include Reads or Writes with Auto Precharge enabled and Reads or Writes with
Auto Precharge disabled.
9) May or may not be bank-specific; if all/any banks are to be precharged, all/any must be in a valid state for precharging.
10) Not bank-specific; BURST TERMINATE affects the most recent Read burst, regardless of bank.
11) Requires appropriate DM masking.
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
19
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
TABLE 14
Truth Table 4: Current State Bank n - Command to Bank m (different bank)
Current State
CS
RAS CAS WE
Command
Action
Note
Any
H
X
X
X
Deselect
NOP. Continue previous operation.
1)2)3)4)5)6)
L
H
H
H
No Operation
NOP. Continue previous operation.
1) to 6)
Idle
X
X
X
X
Any
Command
Otherwise
Allowed to
Bank m
—
1) to 6)
Row Activating,
Active, or
Precharging
L
L
H
H
Active
Select and activate row
1) to 6)
L
H
L
H
Read
Select column and start Read burst
1) to7)
L
H
L
L
Write
Select column and start Write burst
1) to 7)
L
L
H
L
Precharge
—
1) to 6)
L
L
H
H
Active
Select and activate row
1) to 6)
L
H
L
H
Read
Select column and start new Read burst
1) to 7)
L
L
H
L
Precharge
—
1) to 6)
L
L
H
H
Active
Select and activate row
1) to 6)
L
H
L
H
Read
Select column and start Read burst
1) to8)
L
H
L
L
Write
Select column and start new Write burst
1) to 7)
L
L
H
L
Precharge
—
1) to 6)
L
L
H
H
Active
Select and activate row
1) to 6)
L
H
L
H
Read
Select column and start new Read burst
1) to 7),9)
L
H
L
L
Write
Select column and start Write burst
1) to 7),9),10)
L
L
H
L
Precharge
—
1) to 6)
L
L
H
H
Active
Select and activate row
1) to 6)
L
H
L
H
Read
Select column and start Read burst
1) to 7),9)
L
H
L
L
Write
Select column and start new Write burst
1) to 7),9)
L
L
H
L
Precharge
—
1) to 6)
Read (Auto
Precharge Disabled)
Write (Auto
Precharge Disabled)
Read (With Auto
Precharge)
Write (With Auto
Precharge)
1) This table applies when CKE n-1 was HIGH and CKE n is HIGH (see Table 12: Clock Enable (CKE) and after tXSNR/tXSRD has been met (if
the previous state was self refresh).
2) This table describes alternate bank operation, except where noted, i.e., the current state is for bank n and the commands shown are those
allowed to be issued to bank m (assuming that bank m is in such a state that the given command is allowable). Exceptions are covered in
the notes below.
3) Current state definitions: Idle: The bank has been precharged, and tRP has been met. Row Active: A row in the bank has been activated,
and tRCD has been met. No data bursts/accesses and no register accesses are in progress. Read: A Read burst has been initiated, with
Auto Precharge disabled, and has not yet terminated or been terminated. Write: A Write burst has been initiated, with Auto Precharge
disabled, and has not yet terminated or been terminated.
Read with Auto Precharge Enabled: See 10).
Write with Auto Precharge Enabled: See 10).
4) AUTO REFRESH and Mode Register Set commands may only be issued when all banks are idle.
5) A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state only.
6) All states and sequences not shown are illegal or reserved.
7) Reads or Writes listed in the Command/Action column include Reads or Writes with Auto Precharge enabled and Reads or Writes with
Auto Precharge disabled.
8) Requires appropriate DM masking.
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
20
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
9) Concurrent Auto Precharge: This device supports “Concurrent Auto Precharge”. When a read with auto precharge or a write with auto
precharge is enabled any command may follow to the other banks as long as that command does not interrupt the read or write data
transfer and all other limitations apply (e.g. contention between READ data and WRITE data must be avoided). The minimum delay from
a read or write command with auto precharge enable, to a command to a different banks is summarized in Table 15.
10) A Write command may be applied after the completion of data output.
TABLE 15
Truth Table 5: Concurrent Auto Precharge
From Command
To Command (different bank)
Minimum Delay with Concurrent Auto Unit
Precharge Support
WRITE w/AP
Read or Read w/AP
1 + (BL/2) + tWTR
Write to Write w/AP
BL/2
Read w/AP
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
Precharge or Activate
1
Read or Read w/AP
BL/2
Write or Write w/AP
CL (rounded up) + BL/2
Precharge or Activate
1
21
tCK
tCK
tCK
tCK
tCK
tCK
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
4
Electrical Characteristics
This chapter lists the electrical characteristics.
4.1
Operating Conditions
This chapter contains the operating conditions tables.
TABLE 16
Absolute Maximum Ratings
Parameter
Voltage on I/O pins relative to VSS
Voltage on inputs relative to VSS
Voltage on VDD supply relative to VSS
Voltage on VDDQ supply relative to VSS
Operating temperature (ambient)
Storage temperature (plastic)
Power dissipation (per SDRAM component)
Short circuit output current
Symbol
Values
VIN, VOUT
VIN
VDD
VDDQ
TA
TSTG
PD
IOUT
Unit
Note/ Test Condition
Min.
Typ.
Max.
–0.5
—
VDDQ + 0.5
V
–1
—
+3.6
V
–1
—
+3.6
V
–1
—
+3.6
V
0
—
+70
°C
HYB
–40
—
+85
°C
HYI
HYE
–25
—
+85
°C
–55
—
+150
°C
—
1
—
W
—
50
—
mA
Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings
are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated
circuit.
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
22
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
TABLE 17
Input and Output Capacitances
Parameter
Input Capacitance: CK, CK
Delta Input Capacitance
Input Capacitance: All other input-only pins
Symbol
CI1
CdI1
CI2
Values
Unit
Note/
Test Condition
Min.
Typ.
Max.
1.5
—
2.5
pF
P-TFBGA-60-121)
2.0
—
3.0
pF
P-TSOPII-66 1)
—
—
0.25
pF
1)
1.5
—
2.5
pF
P-TFBGA-60-12 1)
2.0
—
3.0
pF
P-TSOPII-66 1)
Delta Input Capacitance: All other input-only
pins
CdIO
—
—
0.5
pF
1)
Input/Output Capacitance: DQ, DQS, DM
CIO
3.5
—
4.5
pF
P-TFBGA-60-12
P-TFBGA-60-12 1)2)
4.0
—
5.0
pF
P-TSOPII-66 1)2)
—
—
0.5
pF
1)
Delta Input/Output Capacitance: DQ, DQS,
DM
CdIO
1) These values are not subject to production test - verified by design/characterization and are tested on a sample base only. VDDQ = VDD =
2.5 V ± 0.2 V, f = 100 MHz, TA = 25 °C, VOUT(DC) = VDDQ/2, VOUT (Peak to Peak) 0.2 V. Unused pins are tied to ground.
2) DM inputs are grouped with I/O pins reflecting the fact that they are matched in loading to DQ and DQS to facilitate trace matching at the
board level.
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
23
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
TABLE 18
Electrical Characteristics and DC Operating Conditions
Parameter
Device Supply Voltage
Device Supply Voltage
Output Supply Voltage
Output Supply Voltage
Supply Voltage, I/O Supply
Voltage
Input Reference Voltage
I/O Termination Voltage
(System)
Symbol
Unit Note/Test Condition1)
Values
Min.
Typ.
Max.
VDD
VDD
VDDQ
VDDQ
VSS, VSSQ
2.3
2.5
2.7
V
2.5
2.6
2.7
V
2.3
2.5
2.7
V
2.5
2.6
2.7
V
0
—
0
V
VREF
VTT
0.49 × VDDQ
0.5 × VDDQ
0.51 × VDDQ
V
4)
VREF – 0.04
—
VREF + 0.04
V
5)
VREF + 0.15
—
VDDQ + 0.3
V
6)
–0.3
—
VREF – 0.15
V
6)
–0.3
—
VDDQ + 0.3
V
6)
VIH(DC)
Input Low (Logic0) Voltage
VIL(DC)
Input Voltage Level, CK and VIN(DC)
Input High (Logic1) Voltage
CK Inputs
fCK ≤ 166 MHz
fCK > 166 MHz2)
fCK ≤ 166 MHz3)
fCK > 166 MHz 2)3)
Input Differential Voltage,
CK and CK Inputs
VID(DC)
0.36
—
VDDQ + 0.6
V
6)7)
VI-Matching Pull-up Current
to Pull-down Current
VRatio
0.71
—
1.4
—
8)
Input Leakage Current
II
–2
—
2
µA
Any input 0 V ≤ VIN ≤ VDD; All
other pins not under test = 0 V9)
Output Leakage Current
IOZ
–5
—
5
µA
DQs are disabled; 0 V ≤ VOUT ≤
VDDQ 9)
Output High Current, Normal IOH
Strength Driver
—
—
–16.2
mA
VOUT = 1.95 V
—
mA
VOUT = 0.35 V
Output Low Current, Normal IOL
16.2
—
Strength Driver
1) 0 °C ≤ TA ≤ 70 °C; VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V;
2)
3)
4)
5)
6)
7)
8)
9)
DDR400 conditions apply for all clock frequencies above 166 MHz
Under all conditions, VDDQ must be less than or equal to VDD.
Peak to peak AC noise on VREF may not exceed ± 2% VREF.DC. VREF is also expected to track noise variations in VDDQ.
VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and
must track variations in the DC level of VREF.
Inputs are not recognized as valid until VREF stabilizes.
VID is the magnitude of the difference between the input level on CK and the input level on CK.
The ratio of the pull-up current to the pull-down current is specified for the same temperature and voltage, over the entire temperature and
voltage range, for device drain to source voltage from 0.25 to 1.0 V. For a given output, it represents the maximum difference between
pull-up and pull-down drivers due to process variation.
Values are shown per pin.
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
24
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
4.2
AC Characteristics
(Notes 1-5 apply to the following Tables; Electrical Characteristics and DC Operating Conditions, AC Operating Conditions, IDD
Specifications and Conditions, and Electrical Characteristics and AC Timing.)
Notes
1. All voltages referenced to VSS.
2. Tests for AC timing, IDD, and electrical, AC and DC characteristics, may be conducted at nominal reference/supply voltage
levels, but the related specifications and device operation are guaranteed for the full voltage range specified.
3. Figure 3 represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended
to be either a precise representation of the typical system environment nor a depiction of the actual load presented by a
production tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to a system
environment. Manufacturers will correlate to their production test conditions (generally a coaxial transmission line
terminated at the tester electronics).
4. AC timing and IDD tests may use a VIL to VIH swing of up to 1.5 V in the test environment, but input timing is still referenced
to VREF (or to the crossing point for CK, CK), and parameter specifications are guaranteed for the specified AC input levels
under normal use conditions. The minimum slew rate for the input signals is 1 V/ns in the range between VIL(AC) and VIH(AC).
5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e. the receiver effectively switches as
a result of the signal crossing the AC input level, and remains in that state as long as the signal does not ring back above
(below) the DC input LOW (HIGH) level).
6. For System Characteristics like Setup & Holdtime Derating for Slew Rate, I/O Delta Rise/Fall Derating, DDR SDRAM Slew
Rate Standards, Overshoot & Undershoot specification and Clamp V-I characteristics see the latest JEDEC specification
for DDR components.
FIGURE 3
AC Output Load Circuit Diagram / Timing Reference Load
VTT
50 Ω
Output
(VOUT)
Timing Reference Point
30 pF
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
25
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
TABLE 19
AC Operating Conditions
Parameter
Symbol
VIH(AC)
VIL(AC)
VID(AC)
VIX(AC)
Input High (Logic 1) Voltage, DQ, DQS and DM Signals
Input Low (Logic 0) Voltage, DQ, DQS and DM Signals
Input Differential Voltage, CK and CK Inputs
Values
Unit
Note1)/
Test
Condition
Min.
Max.
VREF + 0.31
—
V
2)3)
—
VREF – 0.31
VDDQ + 0.6
0.5 × VDDQ+
V
2)3)
V
2)3)4)
0.7
2)3)5)
0.5 × VDDQ–
V
0.2
0.2
1) VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V (DDR200 - DDR333); VDDQ = 2.6 V ± 0.1 V, VDD = +2.6 V ± 0.1 V (DDR400); 0 °C ≤ TA ≤ 70 °C
Input Closing Point Voltage, CK and CK Inputs
2)
3)
4)
5)
Input slew rate = 1 V/ns.
Inputs are not recognized as valid until VREF stabilizes.
VID is the magnitude of the difference between the input level on CK and the input level on CK.
The value of VIX is expected to equal 0.5 × VDDQ of the transmitting device and must track variations in the DC level of the same.
TABLE 20
AC Timing - Absolute Specifications for PC3200 and PC2700
Parameter
Symbol
–5
–6
DDR400B
DDR333
Unit Note/ Test
Condition1)
Min.
Max.
Min.
Max.
DQ output access time from
CK/CK
tAC
–0.5
+0.5
–0.7
+0.7
ns
2)3)4)5)
CK high-level width
tCH
tCK
0.45
0.55
0.45
0.55
tCK
2)3)4)5)
5
8
6
12
ns
CL = 3.0 3)4)5)
6
12
6
12
ns
CL = 2.5 2)3)4)5)
7.5
12
7.5
12
ns
CL = 2.0 2)3)4)5)
tCL
tDAL
0.45
0.55
0.45
0.55
tCK
tCK
2)3)4)5)
tDH
tDIPW
0.4
—
0.45
—
ns
2)3)4)5)
1.75
—
1.75
—
ns
2)3)4)5)6)
DQS output access time from
CK/CK
tDQSCK
–0.6
+0.6
–0.6
+0.6
ns
2)3)4)5)
DQS input low (high) pulse width
(write cycle)
tDQSL,H
0.35
—
0.35
—
tCK
2)3)4)5)
DQS-DQ skew (DQS and
associated DQ signals)
tDQSQ
—
+0.40
—
+0.40
ns
TFBGA 2)3)4)5)
Write command to 1st DQS
latching transition
tDQSS
0.72
1.25
0.75
1.25
tCK
2)3)4)5)
DQ and DM input setup time
tDS
0.4
—
0.45
—
ns
2)3)4)5)
Clock cycle time
CK low-level width
Auto precharge write recovery +
precharge time
DQ and DM input hold time
DQ and DM input pulse width
(each input)
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
(tWR/tCK)+(tRP/tCK)
26
2)3)4)5)6)
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
Parameter
Symbol
–5
–6
DDR400B
DDR333
Unit Note/ Test
Condition1)
Min.
Max.
Min.
Max.
tDSH
0.2
—
0.2
—
tCK
2)3)4)5)
DQS falling edge to CK setup time tDSS
(write cycle)
0.2
—
0.2
—
tCK
2)3)4)5)
tHP
tHZ
Min. (tCL, tCH)
—
Min. (tCL, tCH)
—
ns
2)3)4)5)
—
+0.7
–0.7
+0.7
ns
2)3)4)5)7)
tIH
0.6
—
0.75
—
ns
Fast slew rate
DQS falling edge hold time from
CK (write cycle)
Clock Half Period
Data-out high-impedance time
from CK/CK
Address and control input hold
time
3)4)5)6)8)
0.7
—
0.8
—
ns
Slow slew rate
3)4)5)6)8)
Control and Addr. input pulse
width (each input)
tIPW
2.2
—
2.2
—
ns
2)3)4)5)9)
Address and control input setup
time
tIS
0.6
—
0.75
—
ns
Fast slew rate
3)4)5)6)8)
0.7
—
0.8
—
ns
Slow slew rate
3)4)5)6)8)
Data-out low-impedance time
from CK/CK
–0.7
+0.7
–0.7
+0.7
ns
2)3)4)5)7)
2
—
2
—
tCK
2)3)4)5)
tHP –tQHS
—
tHP –tQHS
—
ns
2)3)4)5)
—
+0.50
—
+0.50
ns
TFBGA 2)3)4)5)
tRCD
—
tRCD
—
ns
2)3)4)5)
40
70E+3
42
70E+3
ns
2)3)4)5)
55
—
60
—
ns
2)3)4)5)
15
—
18
—
ns
2)3)4)5)
—
7.8
—
7.8
µs
2)3)4)5)10)
65
—
72
—
ns
2)3)4)5)
tRP
tRPRE
tRPST
tRRD
15
—
18
—
ns
2)3)4)5)
0.9
1.1
0.9
1.1
2)3)4)5)
0.40
0.60
0.40
0.60
tCK
tCK
10
—
12
—
ns
2)3)4)5)
tWPRE
tWPRES
tWPST
tWR
0.25
—
0.25
—
tCK
2)3)4)5)
0
—
0
—
ns
2)3)4)5)11)
0.40
0.60
0.40
0.60
tCK
2)3)4)5)12)
15
—
15
—
ns
2)3)4)5)
tLZ
Mode register set command cycle tMRD
time
DQ/DQS output hold time
Data hold skew factor
Active to Autoprecharge delay
Active to Precharge command
Active to Active/Auto-refresh
command period
tQH
tQHS
tRAP
tRAS
tRC
tRCD
Average Periodic Refresh Interval tREFI
Auto-refresh to Active/AutotRFC
Active to Read or Write delay
refresh command period
Precharge command period
Read preamble
Read postamble
Active bank A to Active bank B
command
Write preamble
Write preamble setup time
Write postamble
Write recovery time
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
27
2)3)4)5)
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
Parameter
Symbol
–5
–6
DDR400B
DDR333
Unit Note/ Test
Condition1)
Min.
Max.
Min.
Max.
Internal write to read command
delay
tWTR
2
—
1
—
tCK
2)3)4)5)
Exit self-refresh to non-read
command
tXSNR
75
—
75
—
ns
2)3)4)5)
2)3)4)5)
Exit self-refresh to read command tXSRD
200
—
200
—
tCK
1) 0 °C ≤ TA ≤ 70 °C; VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V (DDR333); VDDQ = 2.6 V ± 0.1 V, VDD = +2.6 V ± 0.1 V (DDR400)
2) Input slew rate ≥ 1 V/ns for DDR400, DDR333
3) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference level for signals
other than CK/CK, is VREF. CK/CK slew rate are ≥ 1.0 V/ns.
4) Inputs are not recognized as valid until VREF stabilizes.
5) The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (note 3) is VTT.
6) For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual systemclock cycle time.
7) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific
voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ).
8) Fast slew rate ≥ 1.0 V/ns , slow slew rate ≥ 0.5 V/ns and < 1 V/ns for command/address and CK & CK slew rate > 1.0 V/ns, measured
between VIH(ac) and VIL(ac).
9) These parameters guarantee device timing, but they are not necessarily tested on each device.
10) A maximum of eight Autorefresh commands can be posted to any given DDR SDRAM device.
11) The specific requirement is that DQS be valid (HIGH,LOW, or some point on a valid transition) on or before this CK edge. A valid transition
is defined as monotonic and meeting the input slew rate specificationsof the device. When no writes were previously in progress on the
bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW at this time, depending
on tDQSS.
12) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
TABLE 21
AC Timing - Absolute Specifications for PC2700
Parameter
Symbol
–7
Unit
Note/Test
Condition1)
DDR266A
DQ output access time from CK/CK
CK high-level width
Clock cycle time
CK low-level width
Auto precharge write recovery + precharge time
DQ and DM input hold time
DQ and DM input pulse width (each input)
DQS output access time from CK/CK
DQS input low (high) pulse width (write cycle)
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
tAC
tCH
tCK
tCL
tDAL
tDH
tDIPW
tDQSCK
tDQSL,H
Min.
Max.
–0.75
+0.75
ns
2)3)4)5)
0.45
0.55
tCK
2)3)4)5)
7.5
12
ns
CL = 3.0 3)4)5)
7.5
12
ns
CL = 2.5 2)3)4)5)
7.5
12
ns
CL = 2.0 2)3)4)5)
0.45
0.55
2)3)4)5)
(tWR/tCK)+(tRP/tCK)
—
tCK
tCK
0.5
—
ns
2)3)4)5)
1.75
—
ns
2)3)4)5)6)
–0.75
+0.75
ns
2)3)4)5)
tCK
2)3)4)5)
0.35
28
—
2)3)4)5)6)
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
Parameter
Symbol
–7
Unit
Note/Test
Condition1)
FBGA 2)3)4)5)
DDR266A
DQS-DQ skew (DQS and associated DQ signals) tDQSQ
st
tDQSS
DQ and DM input setup time
tDS
DQS falling edge hold time from CK (write cycle) tDSH
DQS falling edge to CK setup time (write cycle) tDSS
Clock Half Period
tHP
Data-out high-impedance time from CK/CK
tHZ
Address and control input hold time
tIH
Write command to 1 DQS latching transition
Min.
Max.
—
+0.5
ns
—
+0.5
ns
TSOPII 2)3)4)5)
0.75
1.25
tCK
2)3)4)5)
0.5
—
ns
2)3)4)5)
0.2
—
2)3)4)5)
0.2
—
tCK
tCK
Min. (tCL, tCH)
—
ns
2)3)4)5)
–0.75
+0.75
ns
2)3)4)5)7)
0.9
—
ns
Fast slew rate
2)3)4)5)
3)4)5)6)8)
1.0
—
ns
Slow slew rate
3)4)5)6)8)
Control and Addr. input pulse width (each input)
Address and control input setup time
tIPW
tIS
2.2
—
ns
2)3)4)5)9)
0.9
—
ns
Fast slew rate
3)4)5)6)8)
1.0
—
ns
Slow slew rate
3)4)5)6)8)
Data-out low-impedance time from CK/CK
Mode register set command cycle time
DQ/DQS output hold time
Data hold skew factor
Active to Read w/AP delay
Active to Precharge command
Active to Active/Auto-refresh command period
Active to Read or Write delay
Average Periodic Refresh Interval
Auto-refresh to Active/Auto-refresh command
period
Precharge command period
Read preamble
Read postamble
Active bank A to Active bank B command
Write preamble
Write preamble setup time
Write postamble
Write recovery time
Internal write to read command delay
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
tLZ
tMRD
tQH
tQHS
–0.75
+0.75
ns
2)3)4)5)7)
2
—
tCK
2)3)4)5)
tHP – tQHS
—
ns
2)3)4)5)
—
0.75
ns
FBGA 2)3)4)5)
—
0.75
ns
TSOPII 2)3)4)5)
tRAP
tRAS
tRC
tRCD
tREFI
tRFC
tRCD
—
ns
2)3)4)5)
45
120E+3
ns
2)3)4)5)
65
—
ns
2)3)4)5)
20
—
ns
2)3)4)5)
7.8
—
µs
2)3)4)5)10)
75
—
ns
2)3)4)5)
tRP
tRPRE
tRPST
tRRD
tWPRE
tWPRES
tWPST
tWR
tWTR
20
—
ns
2)3)4)5)
0.9
1.1
2)3)4)5)
0.4
0.6
tCK
tCK
15
—
ns
2)3)4)5)
0.25
—
tCK
2)3)4)5)
0
—
ns
2)3)4)5)11)
0.4
—
tCK
2)3)4)5)12)
15
—
ns
2)3)4)5)
tCK
2)3)4)5)
1
29
—
2)3)4)5)
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
Parameter
Symbol
–7
Unit
Note/Test
Condition1)
DDR266A
Exit self-refresh to non-read command
tXSNR
tXSRD
Exit self-refresh to read command
1) VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V ; 0 °C ≤ TA ≤ 70 °C
Min.
Max.
75
—
ns
2)3)4)5)13)
200
—
tCK
2)3)4)5)
2) Input slew rate ≥1 V/ns
3) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference level for signals
other than CK/CK, is VREF. CK/CK slew rate are ≥ 1.0 V/ns.
4) Inputs are not recognized as valid until VREF stabilizes.
5) The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (note 3) is VTT.
6) For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock cycle time.
7) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific
voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ).
8) Fast slew rate ≥ 1.0 V/ns , slow slew rate ≥ 0.5 V/ns and < 1 V/ns for command/address and CK & CK slew rate > 1.0 V/ns, measured
between VIH(ac) and VIL(ac).
9) These parameters guarantee device timing, but they are not necessarily tested on each device.
10) A maximum of eight Autorefresh commands can be posted to any given DDR SDRAM device.
11) The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before this CK edge. A valid transition
is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previously in progress on the
bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from
HIGH to LOW at this time, depending on tDQSS.
12) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
13) In all circumstances, tXSNR can be satisfied using tXSNR = tRFC,min + 1 × tCK
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
30
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
TABLE 22
IDD Conditions
Parameter
Symbol
Operating Current: one bank; active/ precharge; tRC = tRCMIN; tCK = tCKMIN;
DQ, DM, and DQS inputs changing once per clock cycle; address and control inputs changing once every two
clock cycles.
IDD0
Operating Current: one bank; active/read/precharge; Burst = 4;
Refer to the following page for detailed test conditions.
IDD1
Precharge Power-Down Standby Current: all banks idle; power-down mode; CKE ≤ VILMAX; tCK = tCKMIN
IDD2P
Precharge Floating Standby Current: CS ≥ VIHMIN, all banks idle;
IDD2F
CKE ≥ VIHMIN; tCK = tCKMIN, address and other control inputs changing once per clock cycle, VIN = VREF for DQ, DQS
and DM.
Precharge Quiet Standby Current:CS ≥ VIHMIN, all banks idle; CKE ≥ VIHMIN; tCK = tCKMIN, address and other
control inputs stable at ≥ VIHMIN or ≤ VILMAX; VIN = VREF for DQ, DQS and DM.
IDD2Q
Active Power-Down Standby Current: one bank active; power-down mode;
CKE ≤ VILMAX; tCK = tCKMIN; VIN = VREF for DQ, DQS and DM.
IDD3P
Active Standby Current: one bank active; CS ≥ VIHMIN; CKE ≥ VIHMIN; tRC = tRASMAX; tCK = tCKMIN; DQ, DM and DQS IDD3N
inputs changing twice per clock cycle; address and control inputs changing once per clock cycle.
Operating Current: one bank active; Burst = 2; reads; continuous burst; address and control inputs changing
once per clock cycle; 50 % of data outputs changing on every clock edge; CL = 2 for DDR200 and DDR266A,
CL = 3 for DDR333; tCK = tCKMIN; IOUT = 0 mA
IDD4R
Operating Current: one bank active; Burst = 2; writes; continuous burst; address and control inputs changing
once per clock cycle; 50 % of data outputs changing on every clock edge; CL = 2 for DDR200 and DDR266A,
CL = 3 for DDR333; tCK = tCKMIN
IDD4W
Auto-Refresh Current: tRC = tRFCMIN, burst refresh
IDD5
IDD6
IDD7
Self-Refresh Current: CKE ≤ 0.2 V; external clock on; tCK = tCKMIN
Operating Current: four bank; four bank interleaving with BL = 4; Refer to the following page for detailed test
conditions.
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
31
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
TABLE 23
IDD Specification
Symbol –5
DDR400B
IDD0
IDD1
IDD2P
IDD2F
IDD2Q
IDD3P
IDD3N
IDD4R
IDD4W
IDD5
IDD6
IDD7
–6
–7
DDR333
DDR266A
Unit
Note/Test Condition1)
Typ.
Max.
Typ.
Max.
Typ.
Max.
70
90
60
75
50
65
mA
×4/×82)3)
75
90
65
75
55
65
mA
×16 3)
80
100
70
85
65
75
mA
×4/×8 3)
95
110
80
95
70
85
mA
×16 3)
4
5
4
5
3
4
mA
3)
30
36
25
30
20
24
mA
3)
20
28
17
24
15
21
mA
3)
13
18
11
15
9
13
mA
3)
38
45
32
38
28
36
mA
3)
43
54
36
45
30
40
mA
×16 3)
85
100
70
85
60
70
mA
×4/×8 3)
100
120
85
100
70
85
mA
×16 3)
90
105
75
90
65
75
mA
×4/×8 3)
100
130
90
110
75
90
mA
×16 3)
140
190
120
160
100
140
mA
3)
1.4
3.0
1.4
3.0
1.4
3.0
mA
4)
—
—
—
1.5
—
—
mA
Low power5)
210
250
180
215
140
170
mA
×4/×8 3)
215
140
170
mA ×16 3)
1) Test conditions for typical values: VDD = 2.5 V (DDR333), VDD = 2.6 V (DDR400), TA = 25 °C, test conditions for maximum values:
VDD = 2.7 V, TA = 10 °C
2) IDD specifications are tested after the device is properly initialized and measured at 133 MHz for DDR266, 166 MHz for DDR333, and
210
250
180
200 MHz for DDR400.
3) Input slew rate = 1 V/ns.
4) Enables on-chip refresh and address counters.
5) Low power available on request
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
32
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
5
Package Outlines
There are two package types used for this product family each in lead-free and lead-containing assembly:
• P-TFBGA: Plastic Thin Fine-Pitch Ball Grid Array Package
TABLE 24
TFBGA Common Package Properties (non-green/green)
Description
Size
Units
Ball Size
0.450
mm
Recommended Landing Pad
0.500
mm
Recommended Solder Mask
0.400
mm
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
33
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
FIGURE 4
Package Outline of P-TFBGA-60-12 (non-green/green)
[ 0$
;
%
$
[ 0
$;
&
0
$;
0
,1
&
¡
“ [
¡
0 & $ %
¡
0 &
& 6($7
,1
*3
/$1(
/HDGIUHH JU HHQ VR
OGHUE
DOOV
$0
DU NLQ
J%DOOVLGH
$0
DU NLQ
J&K
LSVLGH
D
GVZ
LWKRXW%DOO
'X
PP
\ 3
%DG8
Q
LW0
DUNLQJ %80
0LGGOHR
I3
D
FN D
JHV(
GJHV
)32B3
*7
)%
*
$BB
• P(G)-TFBGA-60: Plastic (non-green/green) Thin Fine Ball Grid Array
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
34
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
FIGURE 5
“
[ “ “ “ 0
$;
,QGH [0
DUN LQJ Rev. 2.3, 2007-03
03062006-8CCM-VPUW
0$;
“ “ Package Outline of P-TSOPII-66-1 (non-green/green)
*3; 35
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Pin Configuration P-TFBGA-60 Top View, see the balls throught the package . . . . . . . . . . . . . . . . . . . . . . . .
Pin Configuration P-TSOPII-66-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Output Load Circuit Diagram / Timing Reference Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Outline of P-TFBGA-60-12 (non-green/green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Outline of P-TSOPII-66-1 (non-green/green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
36
11
12
25
34
35
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Performance of –5, –6 and –7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Ordering Information for Lead-Free Products (RoHS Compliant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Ordering Information for Lead-Containing Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Configuration of DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Abbreviations for Pin Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Mode Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Burst Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Extended Mode Regsiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Truth Table 1a: Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Truth Table 1b: DM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Truth Table 2: Clock Enable (CKE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Truth Table 3: Current State Bank n - Command to Bank n (same bank) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Truth Table 4: Current State Bank n - Command to Bank m (different bank). . . . . . . . . . . . . . . . . . . . . . . . . . 20
Truth Table 5: Concurrent Auto Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Input and Output Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Electrical Characteristics and DC Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
AC Timing - Absolute Specifications for PC3200 and PC2700. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
AC Timing - Absolute Specifications for PC2700 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
IDD Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
IDD Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
TFBGA Common Package Properties (non-green/green) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
37
Internet Data Sheet
HY[B/I]25D256[16/40/80]0C[E/C/F/T](L)
256 Mbit Double-Data-Rate SDRAM
Table of Contents
1
1.1
1.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4
4.1
4.2
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Rev. 2.3, 2007-03
03062006-8CCM-VPUW
38
Internet Data Sheet
Edition 2007-03
Published by Qimonda AG
Gustav-Heinemann-Ring 212
D-81739 München, Germany
© Qimonda AG 2007.
All Rights Reserved.
Legal Disclaimer
The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please
contact your nearest Qimonda Office.
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
www.qimonda.com
Similar pages