March 2007 HYB25D256[40/80/16]0CE(L) HYB25D256[40/80/16]0C[T/C/F] HYI25D256[80/16]0C[C/E/F/T] 256-Mbit Double-Data-Rate SDRAM DDR SDRAM RoHS Compliant or Lead-Containing Internet Data Sheet Rev. 2.3 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM HYB25D256[40/80/16]0CE(L), HYB25D256[40/80/16]0C[T/C/F], HYI25D256[80/16]0C[C/E/F/T] Revision History: 2007-03, Rev. 2.3 Page Subjects (major changes since last revision) All Adapted internet edition 17 Corrected table 7 mode register definition 72 Changed the 1.1 mA to 1.5 mA for low power 85, 86 Changed the ball size from 0.460 mm to 0.450 mm Previous Revision: 2007-01, Rev. 2.2 We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] qag_techdoc_rev400 / 3.2 QAG / 2006-08-07 03062006-8CCM-VPUW 2 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM 1 Overview This chapter lists all main features of the product family HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) and the ordering information. 1.1 Features • Double data rate architecture: two data transfers per clock cycle • Bidirectional data strobe (DQS) is transmitted and received with data, to be used in capturing data at the receiver • DQS is edge-aligned with data for reads and is centeraligned with data for writes • Differential clock inputs (CK and CK) • Four internal banks for concurrent operation • Data mask (DM) for write data • DLL aligns DQ and DQS transitions with CK transitions • Commands entered on each positive CK edge; data and data mask referenced to both edges of DQS • Burst Lengths: 2, 4, or 8 • CAS Latency: 1.5 (DDR200 only), 2, 2.5, 3 • • • • • • • • • • • Auto Precharge option for each burst access Auto Refresh and Self Refresh Modes RAS-lockout supported tRAP = tRCD 7.8 µs Maximum Average Periodic Refresh Interval 2.5 V (SSTL_2 compatible) I/O VDDQ = 2.5 V ± 0.2 V (DDR200, DDR266, DDR333); VDDQ = 2.6 V ± 0.1 V (DDR400) VDD = 2.5 V ± 0.2 V (DDR200, DDR266, DDR333); VDD = 2.6 V ± 0.1 V (DDR400) Standard Temperature Range (0 °C - +70 °C) or Industrial Temperature Range (–40 °C - +85 °C) P-TFBGA-60-12 package with 3 depopulated rows (8 × 12 mm2) P-TSOPII-66 package RoHS1) compliant product types available (green product) TABLE 1 Performance of –5, –6 and –7 Product Type Speed Code –5 –6 –7 Unit Speed Grade Component DDR400B DDR333B DDR266A — Max. Clock Frequency @CL3 200 166 — MHz 166 166 143 MHz 133 133 133 MHz @CL2.5 @CL2 fCK3 fCK2.5 fCK2 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Rev. 2.3, 2007-03 03062006-8CCM-VPUW 3 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM 1.2 Description DQS, as well as to both edges of CK. Read and write accesses to the DDR SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an Active command, which is then followed by a Read or Write command. The address bits registered coincident with the Active command are used to select the bank and row to be accessed. The address bits registered coincident with the Read or Write command are used to select the bank and the starting column location for the burst access. The DDR SDRAM provides for programmable Read or Write burst lengths of 2, 4 or 8 locations. An Auto Precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst access. As with standard SDRAMs, the pipelined, multibank architecture of DDR SDRAMs allows for concurrent operation, thereby providing high effective bandwidth by hiding row precharge and activation time. An auto refresh mode is provided along with a power-saving power-down mode. All inputs are compatible with SSTL_2. All outputs are SSTL_2, Class II compatible. Note: The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. The 256 Mbit Double-Data-Rate SDRAM is a high-speed CMOS, dynamic random-access memory containing 268,435,456 bits. It is internally configured as a quad-bank DRAM. The 256 Mbit Double-Data-Rate SDRAM uses a doubledata-rate architecture to achieve high-speed operation. The double data rate architecture is essentially a 2n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for the 256 Mbit Double-Data-Rate SDRAM effectively consists of a single 2n-bit wide, one clock cycle data transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins. A bidirectional data strobe (DQS) is transmitted externally, along with data, for use in data capture at the receiver. DQS is a strobe transmitted by the DDR SDRAM during Reads and by the memory controller during Writes. DQS is edge-aligned with data for Reads and center-aligned with data for Writes. The 256 Mbit Double-Data-Rate SDRAM operates from a differential clock (CK and CK; the crossing of CK going HIGH and CK going LOW is referred to as the positive edge of CK). Commands (address and control signals) are registered at every positive edge of CK. Input data is registered on both edges of DQS, and output data is referenced to both edges of Rev. 2.3, 2007-03 03062006-8CCM-VPUW 4 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM TABLE 2 Ordering Information for Lead-Free Products (RoHS Compliant) Product Type1) Organization CAS-RCD-RP Latencies Clock (MHz) Speed Package Standard Temperature Range (0 °C - +70 °C) HYB25D256800CE–5A ×8 2.5-3-3 200 DDR400A PG-TSOPII-66 3-3-3 200 DDR400B 2.5-3-3 166 DDR333 143 DDR266A 3-3-3 200 DDR400A PG-TFBGA-60 2.5-3-3 166 DDR333 3-3-3 200 DDR400B PG-TSOPII-66 2.5-3-3 166 DDR333 3-3-3 200 DDR400A PG-TFBGA-60 2.5-3-3 166 DDR333 HYB25D256160CE–5A ×16 HYB25D256800CE–5 ×8 HYB25D256160CE–5 ×16 HYB25D256800CE–6 ×8 HYB25D256800CEL–6 ×8 HYB25D256160CE–6 ×16 HYB25D256160CEL–6 ×16 HYB25D256400CE–7 ×4 HYB25D256400CF–5 ×4 HYB25D256800CF–5 ×8 HYB25D256160CF–5 ×16 HYB25D256400CF–6 ×4 HYB25D256800CF–6 ×8 HYB25D256160CF–6 ×16 Industrial Temperature Range (–40 °C - +85 °C) HYI25D256800CE–5 ×8 HYI25D256160CE–5 ×16 HYI25D256800CE–6 ×8 HYI25D256160CE–6 ×16 HYI25D256800CF–5 ×8 HYI25D256160CF–5 ×16 HYI25D256800CF–6 ×8 HYI25D256160CF–6 ×16 Rev. 2.3, 2007-03 03062006-8CCM-VPUW 5 Note Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM TABLE 3 Ordering Information for Lead-Containing Products Product Type1) Oganization CAS-RCD-RP Clock (MHz) Speed Latencies Package Note Standard Temperature Range (0 °C - +70 °C) HYB25D256400CT–5 ×4 HYB25D256800CT–5 ×8 HYB25D256160CT–5 ×16 HYB25D256400CT–6 ×4 HYB25D256800CT–6 ×8 3-3-3 200 DDR400B P-TSOPII-66 — 2.5-3-3 166 DDR333 143 DDR266A 3-3-3 200 DDR400B P-TFBGA-60 2.5-3-3 166 DDR333 3-3-3 200 DDR400B P-TSOPII-66 — 2.5-3-3 166 DDR333 3-3-3 200 DDR400A P-TFBGA-60 2.5-3-3 166 DDR333 HYB25D256800CTL–6 ×8 HYB25D256160CT–6 ×16 HYB25D256400CT–7 ×4 HYB25D256400CC–5 ×4 HYB25D256800CC–5 ×8 HYB25D256160CC–5 ×16 HYB25D256400CC–6 ×4 HYB25D256800CC–6 ×8 HYB25D256160CC–6 ×16 Industrial Temperature Range (–40 °C - +85 °C) HYI25D256800CT–5 ×8 HYI25D256160CT–5 ×16 HYI25D256800CT–6 ×8 HYI25D256160CT–6 ×16 HYI25D256800CC–5 ×8 HYI25D256160CC–5 ×16 HYI25D256800CC–6 ×8 HYI25D256160CC–6 ×16 1) HYB and HYI: designator for memory components; 25D: DDR SDRAMs at VDDQ = 2.5 V; 256: 256-Mbit density; 400/800/160: product variations ×4, ×8 and ×16; C: die revision C; L: low power (available on request); F/C/E/T: package type FBGA (lead & halogen free), FBGA (lead containing), TSOP (lead & halogen free), and TSOP (lead containing) Rev. 2.3, 2007-03 03062006-8CCM-VPUW 6 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM 2 Pin Configuration The pin configuration of a DDR SDRAM is listed by function in Table 4 (60 pins). The abbreviations used in the Pin#/Buffer# column are explained in Table 5 and Table 6 respectively. The pin numbering for FBGA is depicted in Figure 1 and that of the TSOP package in Figure 2. TABLE 4 Pin Configuration of DDR SDRAM Ball#/Pin# Name Pin Type Buffer Type Function G2, 45 CK I SSTL Clock Signal G3, 46 CK I SSTL Complementary Clock Signal H3, 44 CKE I SSTL Clock Enable RAS I SSTL Row Address Strobe G8, 22 CAS I SSTL Column Address Strobe G7, 21 WE I SSTL Write Enable H8, 24 CS I SSTL Chip Select BA0 I SSTL Bank Address Bus 2:0 J7, 27 BA1 I SSTL K7, 29 A0 I SSTL L8, 30 A1 I SSTL L7, 31 A2 I SSTL M8, 32 A3 I SSTL Clock Signals Control Signals H7, 23 Address Signals J8, 26 M2, 35 A4 I SSTL L3, 36 A5 I SSTL L2, 37 A6 I SSTL K3, 38 A7 I SSTL K2, 39 A8 I SSTL J3, 40 A9 I SSTL K8, 28 Address Bus 11:0 A10 I SSTL AP I SSTL J2, 41 A11 I SSTL H2, 42 A12 I SSTL Address Signal 12 Note: 256 Mbit or larger dies NC NC — Note: 128 Mbit or smaller dies A13 I SSTL Address Signal 13 Note: 1 Gbit based dies NC NC — Note: 512 Mbit or smaller dies F9, 17 Rev. 2.3, 2007-03 03062006-8CCM-VPUW 7 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM Ball#/Pin# Name Pin Type Buffer Type Function Data Signal 3:0 Data Signals ×4 Organization B7, 5 DQ0 I/O SSTL D7, 11 DQ1 I/O SSTL D3, 56 DQ2 I/O SSTL B3, 62 DQ3 I/O SSTL Data Strobe ×4 Organisation E3, 51 DQS I/O SSTL Data Strobe I SSTL Data Mask Data Signal 7:0 Data Mask ×4 Organization F3, 47 DM Data Signals ×8 organization A8, 2 DQ0 I/O SSTL B7, 5 DQ1 I/O SSTL C7, 8 DQ2 I/O SSTL D7, 11 DQ3 I/O SSTL D3, 56 DQ4 I/O SSTL C3, 59 DQ5 I/O SSTL B3, 62 DQ6 I/O SSTL A2, 65 DQ7 I/O SSTL Data Signal Data Strobe ×8 organisation E3, 51 DQS I/O SSTL Data Strobe I SSTL Data Mask Data Signal 15:0 Data Mask ×8 organization F3, 47 DM Data Signals ×16 organization A8, 2 DQ0 I/O SSTL B9, 4 DQ1 I/O SSTL B7, 5 DQ2 I/O SSTL C9, 7 DQ3 I/O SSTL C7, 8 DQ4 I/O SSTL D9, 10 DQ5 I/O SSTL D7, 11 DQ6 I/O SSTL E9, 13 DQ7 I/O SSTL E1, 54 DQ8 I/O SSTL D3, 56 DQ9 I/O SSTL D1, 57 DQ10 I/O SSTL C3, 59 DQ11 I/O SSTL C1, 60 DQ12 I/O SSTL B3, 62 DQ13 I/O SSTL B1, 63 DQ14 I/O SSTL A2, 65 DQ15 I/O SSTL Rev. 2.3, 2007-03 03062006-8CCM-VPUW 8 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM Ball#/Pin# Name Pin Type Buffer Type Function Data Strobe ×16 organization E3, 51 UDQS I/O SSTL Data Strobe Upper Byte E7, 16 LDQS I/O SSTL Data Strobe Lower Byte Data Mask ×16 organization F3, 47 UDM I SSTL Data Mask Upper Byte F7, 20 LDM I SSTL Data Mask Lower Byte AI — I/O Reference Voltage PWR — I/O Driver Power Supply PWR — Power Supply A1, B8, C2, D8, VSSQ E2, 6, 12, 52, 58, 64 PWR — Power Supply A3, F2, M3, 34, VSS 48, 66 PWR — Power Supply Power Supplies VREF A9, B2, C8, D2, VDDQ F1, 49 E8, 3, 9, 15, 55, 61 A7, F8, M7, 1, 18, 33 VDD Not Connected A2, 65 NC NC — Not Connected Note: ×4 organization A8, 2 NC NC — Not Connected Note: ×4 organization B1, 63 NC NC — Not Connected Note: ×8 and ×4 organisation B9, 4 NC NC — Not Connected Note: ×8 and ×4 organization C1, 60 NC NC — Not Connected Note: ×8 and ×4 organization C3, 59 NC NC — Not Connected Note: ×4 organization C7, 8 NC NC — Not Connected Note: ×4 organization C9, 7 NC NC — Not Connected Note: ×8 and ×4 organization D1, 57 NC NC — Not Connected Note: ×8 and ×4 organization D9, 10 NC NC — Not Connected Note: ×8 and ×4 organization E1, 54 NC NC — Not Connected Note: ×8 and ×4 organization Rev. 2.3, 2007-03 03062006-8CCM-VPUW 9 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM Ball#/Pin# Name Pin Type Buffer Type Function E7, 16 NC NC — Not Connected Note: ×8 and ×4 organization E9, 13 NC NC — Not Connected Note: ×8 and ×4 organization F7, 20 NC NC — Not Connected Note: ×8 and ×4 organization F9, 14, 17, 19, 25,43, 50, 53 NC NC — Not Connected Note: ×16,×8 and ×4 organization TABLE 5 Abbreviations for Pin Type Abbreviation Description I Standard input-only pin. Digital levels. O Output. Digital levels. I/O I/O is a bidirectional input/output signal. AI Input. Analog levels. PWR Power GND Ground NC Not Connected TABLE 6 Abbreviations for Buffer Type Abbreviation Description SSTL Serial Stub Terminated Logic (SSTL2) LV-CMOS Low Voltage CMOS CMOS CMOS Levels OD Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR. Rev. 2.3, 2007-03 03062006-8CCM-VPUW 10 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM FIGURE 1 Pin Configuration P-TFBGA-60 Top View, see the balls throught the package , , [ [ , [ Rev. 2.3, 2007-03 03062006-8CCM-VPUW 11 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM FIGURE 2 Pin Configuration P-TSOPII-66-1 [ [ [ 6'' 6'' 6'' 666 666 666 1& '4 '4 '4 '4 1& 6''4 6''4 6''4 6664 6664 6664 1& 1& '4 '4 1& 1& '4 '4 '4 '4 '4 '4 6664 6664 6664 6''4 6''4 6''4 1& 1& '4 '4 1& 1& 1& '4 '4 '4 '4 1& 6''4 6''4 6''4 6664 6664 6664 1& 1& '4 '4 1& 1& '4 '4 '4 '4 '4 '4 6664 6664 6664 6''4 6''4 6''4 1& 1& '4 '4 1& 1& 1& 1& 1& 1& 1& 1& 6''4 6''4 6''4 6664 6664 6664 1& 1& /'4 6 8'4 6 '46 '46 1& 1& 1& 1&$ 1&$ 1& $ 6'' 6'' 6'' 65() 65() 65() 1& 1& 1& 666 666 666 1& 1& /'0 8'0 '0 '0 :( :( :( &. &. &. &$6 &$6 &$6 &. &. &. 5$6 5$6 5$6 &.( &.( &.( &6 &6 &6 1& 1& %$ %$ 1& %$ 1& 1& 1& 1&$ 1& $ 1&$ $ $ $ %$ %$ %$ $ $ $ $$ 3 $$3 $$3 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 6'' 6'' 6'' 666 666 666 033' Rev. 2.3, 2007-03 03062006-8CCM-VPUW 12 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM 3 Functional Description The 256 Mbit Double-Data-Rate SDRAM is a high-speed CMOS, dynamic random-access memory containing 268,435,456 bits. The 256 Mbit Double-Data-Rate SDRAM is internally configured as a quad-bank DRAM. The 256 Mbit Double-Data-Rate SDRAM uses a double-data-rate architecture to achieve high-speed operation. The doubledata-rate architecture is essentially a 2n prefetch architecture, with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for the 256 Mbit Double-Data-Rate SDRAM consists of a single 2n-bit wide, one clock cycle data transfer at the internal DRAM core and two corresponding n-bit wide, one-half clock cycle data transfers at the I/O pins. Read and write accesses to the DDR SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an Active command, which is then followed by a Read or Write command. The address bits registered coincident with the Active command are used to select the bank and row to be accessed (BA0, BA1 select the bank; A0-A12 select the row). The address bits registered coincident with the Read or Write command are used to select the starting column location for the burst access. Prior to normal operation, the DDR SDRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command descriptions and device operation. Rev. 2.3, 2007-03 03062006-8CCM-VPUW 13 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM %$ %$ $ $ $ $ $ $ $ 23(5$7,1*02'( $ &/ $ $ %7 $ $ $ %/ 03%' TABLE 7 Mode Register Field Bits Type1) Description BL [2:0] W Burst Length Number of sequential bits per DQ related to one read/write command. Note: All other bit combinations are RESERVED. 001B 2 010B 4 011B 8 BT 3 Burst Type See Table 8 for internal address sequence of low order address bits. 0 Sequential 1 Interleaved CL [6:4] CAS Latency Number of full clocks from read command to first data valid window. Note: All other bit combinations are RESERVED. 010B 011B 110B 101B Note: MODE [12:7] 2 3 2.5 1.5 DDR200 components only Operating Mode Note: All other bit combinations are RESERVED. 000000 Normal Operation without DLL Reset 000010 Normal Operation with DLL Reset 1) W = write only register bit Rev. 2.3, 2007-03 03062006-8CCM-VPUW 14 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM TABLE 8 Burst Definition Burst Length 2 4 8 Starting Column Address Order of Accesses Within a Burst A2 A1 A0 Type = Sequential Type = Interleaved — — 0 0-1 0-1 — — 1 1-0 1-0 — 0 0 0-1-2-3 0-1-2-3 — 0 1 1-2-3-0 1-0-3-2 — 1 0 2-3-0-1 2-3-0-1 — 1 1 3-0-1-2 3-2-1-0 0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7 0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6 0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5 0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4 1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3 1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2 1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1 1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0 Notes 1. 2. 3. 4. For a burst length of two, A1-Ai selects the two-data-element block; A0 selects the first access within the block. For a burst length of four, A2-Ai selects the four-data-element block; A0-A1 selects the first access within the block. For a burst length of eight, A3-Ai selects the eight-data- element block; A0-A2 selects the first access within the block. Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block. Rev. 2.3, 2007-03 03062006-8CCM-VPUW 15 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM %$ %$ $ $ $ $ $ $ $ $ $ 23(5$7,1*02'( $ $ $ $ '6 '// 03%' TABLE 9 Extended Mode Regsiter Field Bits Type1) Description DLL 0 W DLL Status 0B Enabled Disabled 1B DS 1 W Drive Strength 0B Normal 1B Weak MODE [12:2] W Operating Mode Note: All other bit combinations are RESERVED. 00000000000BNormal Operation 1) W = write only register bit Rev. 2.3, 2007-03 03062006-8CCM-VPUW 16 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM TABLE 10 Truth Table 1a: Commands Name (Function) CS RAS CAS WE Address MNE Note Deselect (NOP) H X X X X NOP 1)2) No Operation (NOP) L H H H X NOP 1)2) Active (Select Bank And Activate Row) L L H H Bank/Row ACT 1)3) Read (Select Bank And Column, And Start Read Burst) L H L H Bank/Col Read 1)4) Write (Select Bank And Column, And Start Write Burst) L H L L Bank/Col Write 1)4) Burst Terminate L H H L X BST 1)5) Precharge (Deactivate Row In Bank Or Banks) L L H L Code PRE 1)6) Auto Refresh Or Self Refresh (Enter Self Refresh Mode) L L L H X AR/SR 1)7)8) Mode Register Set L L L L Op-Code MRS 1)9) 1) 2) 3) 4) 5) 6) 7) 8) 9) CKE is HIGH for all commands shown except Self Refresh.VREF must be maintained during Self Refresh operation Deselect and NOP are functionally interchangeable. BA0-BA1 provide bank address and A0-A12 provide row address. BA0, BA1 provide bank address; A0-Ai provide column address (where i = 8 for x16, i = 9 for x8 and 9, 11 for x4); A10 HIGH enables the Auto Precharge feature (nonpersistent), A10 LOW disables the Auto Precharge feature. Applies only to read bursts with Auto Precharge disabled; this command is undefined (and should not be used) for read bursts with Auto Precharge enabled or for write bursts. A10 LOW: BA0, BA1 determine which bank is precharged. A10 HIGH: all banks are precharged and BA0, BA1 are “Don’t Care”. This command is Auto Refresh if CKE is HIGH; Self Refresh if CKE is LOW. Internal refresh counter controls row and bank addressing; all inputs and I/Os are “Don’t Care” except for CKE. BA0, BA1 select either the Base or the Extended Mode Register (BA0 = 0, BA1 = 0 selects Mode Register; BA0 = 1, BA1 = 0 selects Extended Mode Register; other combinations of BA0-BA1 are reserved; A0-A12 provide the op-code to be written to the selected Mode Register). TABLE 11 Truth Table 1b: DM Operation Name (Function) DM DQs Note Write Enable L Valid 1) Write Inhibit H X 1) 1) Used to mask write data; provided coincident with the corresponding data. Rev. 2.3, 2007-03 03062006-8CCM-VPUW 17 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM TABLE 12 Truth Table 2: Clock Enable (CKE) Current State CKE n-1 CKEn Command n Action n Note Previous Cycle Current Cycle Self Refresh L L X Maintain Self-Refresh 1) Self Refresh L H Deselect or NOP Exit Self-Refresh 2) Power Down L L X Maintain Power-Down Power Down L H Deselect or NOP Exit Power-Down All Banks Idle H L Deselect or NOP Precharge Power-Down Entry All Banks Idle H L AUTO REFRESH Self Refresh Entry Bank(s) Active H L Deselect or NOP Active Power-Down Entry — H H See Table 13 — 1) VREF must be maintained during Self Refresh operation 2) Deselect or NOP commands should be issued on any clock edges occurring during the Self Refresh Exit (tXSNR) period. A minimum of 200 clock cycles are needed before applying a read command to allow the DLL to lock to the input clock. Notes 1. 2. 3. 4. CKEn is the logic state of CKE at clock edge n: CKE n-1 was the state of CKE at the previous clock edge. Current state is the state of the DDR SDRAM immediately prior to clock edge n. COMMAND n is the command registered at clock edge n, and ACTION n is a result of COMMAND n. All states and sequences not shown are illegal or reserved. Rev. 2.3, 2007-03 03062006-8CCM-VPUW 18 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM TABLE 13 Truth Table 3: Current State Bank n - Command to Bank n (same bank) Current State CS RAS CAS WE Command Action Note Any H X X X Deselect NOP. Continue previous operation. 1)2)3)4)5)6) L H H H No Operation NOP. Continue previous operation. 1) to 6) L L H H Active Select and activate row 1) to 6) L L L H AUTO REFRESH — 1) to7) L L L L MODE REGISTER SET — 1) to 7) L H L H Read Select column and start Read burst 1) to 6),8) L H L L Write Select column and start Write burst 1) to 6),8) L L H L Precharge Deactivate row in bank(s) 1) to 6),9) Read (Auto Precharge Disabled) L H L H Read Select column and start new Read burst 1) to 6),8) L L H L Precharge Truncate Read burst, start Precharge 1) to 6),9) L H H L BURST TERMINATE BURST TERMINATE 1) to 6),10) Write (Auto Precharge Disabled) L H L H Read Select column and start Read burst 1) to 6), 8),11) L H L L Write Select column and start Write burst 1) to 6),8) Idle Row Active 1) to 6),9),11) Truncate Write burst, start Precharge 1) This table applies when CKE n-1 was HIGH and CKE n is HIGH (see Table 12 and after tXSNR/tXSRD has been met (if the previous state L L H L Precharge was self refresh). 2) This table is bank-specific, except where noted, i.e., the current state is for a specific bank and the commands shown are those allowed to be issued to that bank when in that state. Exceptions are covered in the notes below. 3) Current state definitions: Idle: The bank has been precharged, and tRP has been met. Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register accesses are in progress. Read: A Read burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Write: A Write burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. 4) The following states must not be interrupted by a command issued to the same bank. Precharging: Starts with registration of a Precharge command and ends when tRP is met. Once tRP is met, the bank is in the idle state. Row Activating: Starts with registration of an Active command and ends when tRCD is met. Once tRCD is met, the bank is in the “row active” state. Read w/Auto Precharge Enabled: Starts with registration of a Read command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. Write w/Auto Precharge Enabled: Starts with registration of a Write command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. Deselect or NOP commands, or allowable commands to the other bank should be issued on any clock edge occurring during these states. Allowable commands to the other bank are determined by its current state and according to Table 14. 5) The following states must not be interrupted by any executable command; Deselect or NOP commands must be applied on each positive clock edge during these states. Refreshing: Starts with registration of an Auto Refresh command and ends when tRFC is met. Once tRFC is met, the DDR SDRAM is in the “all banks idle” state. Accessing Mode Register: Starts with registration of a Mode Register Set command and ends when tMRD has been met. Once tMRD is met, the DDR SDRAM is in the “all banks idle” state. Precharging All: Starts with registration of a Precharge All command and ends when tRP is met. Once tRP is met, all banks is in the idle state. 6) All states and sequences not shown are illegal or reserved. 7) Not bank-specific; requires that all banks are idle. 8) Reads or Writes listed in the Command/Action column include Reads or Writes with Auto Precharge enabled and Reads or Writes with Auto Precharge disabled. 9) May or may not be bank-specific; if all/any banks are to be precharged, all/any must be in a valid state for precharging. 10) Not bank-specific; BURST TERMINATE affects the most recent Read burst, regardless of bank. 11) Requires appropriate DM masking. Rev. 2.3, 2007-03 03062006-8CCM-VPUW 19 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM TABLE 14 Truth Table 4: Current State Bank n - Command to Bank m (different bank) Current State CS RAS CAS WE Command Action Note Any H X X X Deselect NOP. Continue previous operation. 1)2)3)4)5)6) L H H H No Operation NOP. Continue previous operation. 1) to 6) Idle X X X X Any Command Otherwise Allowed to Bank m — 1) to 6) Row Activating, Active, or Precharging L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start Read burst 1) to7) L H L L Write Select column and start Write burst 1) to 7) L L H L Precharge — 1) to 6) L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start new Read burst 1) to 7) L L H L Precharge — 1) to 6) L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start Read burst 1) to8) L H L L Write Select column and start new Write burst 1) to 7) L L H L Precharge — 1) to 6) L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start new Read burst 1) to 7),9) L H L L Write Select column and start Write burst 1) to 7),9),10) L L H L Precharge — 1) to 6) L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start Read burst 1) to 7),9) L H L L Write Select column and start new Write burst 1) to 7),9) L L H L Precharge — 1) to 6) Read (Auto Precharge Disabled) Write (Auto Precharge Disabled) Read (With Auto Precharge) Write (With Auto Precharge) 1) This table applies when CKE n-1 was HIGH and CKE n is HIGH (see Table 12: Clock Enable (CKE) and after tXSNR/tXSRD has been met (if the previous state was self refresh). 2) This table describes alternate bank operation, except where noted, i.e., the current state is for bank n and the commands shown are those allowed to be issued to bank m (assuming that bank m is in such a state that the given command is allowable). Exceptions are covered in the notes below. 3) Current state definitions: Idle: The bank has been precharged, and tRP has been met. Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register accesses are in progress. Read: A Read burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Write: A Write burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Read with Auto Precharge Enabled: See 10). Write with Auto Precharge Enabled: See 10). 4) AUTO REFRESH and Mode Register Set commands may only be issued when all banks are idle. 5) A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state only. 6) All states and sequences not shown are illegal or reserved. 7) Reads or Writes listed in the Command/Action column include Reads or Writes with Auto Precharge enabled and Reads or Writes with Auto Precharge disabled. 8) Requires appropriate DM masking. Rev. 2.3, 2007-03 03062006-8CCM-VPUW 20 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM 9) Concurrent Auto Precharge: This device supports “Concurrent Auto Precharge”. When a read with auto precharge or a write with auto precharge is enabled any command may follow to the other banks as long as that command does not interrupt the read or write data transfer and all other limitations apply (e.g. contention between READ data and WRITE data must be avoided). The minimum delay from a read or write command with auto precharge enable, to a command to a different banks is summarized in Table 15. 10) A Write command may be applied after the completion of data output. TABLE 15 Truth Table 5: Concurrent Auto Precharge From Command To Command (different bank) Minimum Delay with Concurrent Auto Unit Precharge Support WRITE w/AP Read or Read w/AP 1 + (BL/2) + tWTR Write to Write w/AP BL/2 Read w/AP Rev. 2.3, 2007-03 03062006-8CCM-VPUW Precharge or Activate 1 Read or Read w/AP BL/2 Write or Write w/AP CL (rounded up) + BL/2 Precharge or Activate 1 21 tCK tCK tCK tCK tCK tCK Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM 4 Electrical Characteristics This chapter lists the electrical characteristics. 4.1 Operating Conditions This chapter contains the operating conditions tables. TABLE 16 Absolute Maximum Ratings Parameter Voltage on I/O pins relative to VSS Voltage on inputs relative to VSS Voltage on VDD supply relative to VSS Voltage on VDDQ supply relative to VSS Operating temperature (ambient) Storage temperature (plastic) Power dissipation (per SDRAM component) Short circuit output current Symbol Values VIN, VOUT VIN VDD VDDQ TA TSTG PD IOUT Unit Note/ Test Condition Min. Typ. Max. –0.5 — VDDQ + 0.5 V –1 — +3.6 V –1 — +3.6 V –1 — +3.6 V 0 — +70 °C HYB –40 — +85 °C HYI HYE –25 — +85 °C –55 — +150 °C — 1 — W — 50 — mA Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Rev. 2.3, 2007-03 03062006-8CCM-VPUW 22 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM TABLE 17 Input and Output Capacitances Parameter Input Capacitance: CK, CK Delta Input Capacitance Input Capacitance: All other input-only pins Symbol CI1 CdI1 CI2 Values Unit Note/ Test Condition Min. Typ. Max. 1.5 — 2.5 pF P-TFBGA-60-121) 2.0 — 3.0 pF P-TSOPII-66 1) — — 0.25 pF 1) 1.5 — 2.5 pF P-TFBGA-60-12 1) 2.0 — 3.0 pF P-TSOPII-66 1) Delta Input Capacitance: All other input-only pins CdIO — — 0.5 pF 1) Input/Output Capacitance: DQ, DQS, DM CIO 3.5 — 4.5 pF P-TFBGA-60-12 P-TFBGA-60-12 1)2) 4.0 — 5.0 pF P-TSOPII-66 1)2) — — 0.5 pF 1) Delta Input/Output Capacitance: DQ, DQS, DM CdIO 1) These values are not subject to production test - verified by design/characterization and are tested on a sample base only. VDDQ = VDD = 2.5 V ± 0.2 V, f = 100 MHz, TA = 25 °C, VOUT(DC) = VDDQ/2, VOUT (Peak to Peak) 0.2 V. Unused pins are tied to ground. 2) DM inputs are grouped with I/O pins reflecting the fact that they are matched in loading to DQ and DQS to facilitate trace matching at the board level. Rev. 2.3, 2007-03 03062006-8CCM-VPUW 23 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM TABLE 18 Electrical Characteristics and DC Operating Conditions Parameter Device Supply Voltage Device Supply Voltage Output Supply Voltage Output Supply Voltage Supply Voltage, I/O Supply Voltage Input Reference Voltage I/O Termination Voltage (System) Symbol Unit Note/Test Condition1) Values Min. Typ. Max. VDD VDD VDDQ VDDQ VSS, VSSQ 2.3 2.5 2.7 V 2.5 2.6 2.7 V 2.3 2.5 2.7 V 2.5 2.6 2.7 V 0 — 0 V VREF VTT 0.49 × VDDQ 0.5 × VDDQ 0.51 × VDDQ V 4) VREF – 0.04 — VREF + 0.04 V 5) VREF + 0.15 — VDDQ + 0.3 V 6) –0.3 — VREF – 0.15 V 6) –0.3 — VDDQ + 0.3 V 6) VIH(DC) Input Low (Logic0) Voltage VIL(DC) Input Voltage Level, CK and VIN(DC) Input High (Logic1) Voltage CK Inputs fCK ≤ 166 MHz fCK > 166 MHz2) fCK ≤ 166 MHz3) fCK > 166 MHz 2)3) Input Differential Voltage, CK and CK Inputs VID(DC) 0.36 — VDDQ + 0.6 V 6)7) VI-Matching Pull-up Current to Pull-down Current VRatio 0.71 — 1.4 — 8) Input Leakage Current II –2 — 2 µA Any input 0 V ≤ VIN ≤ VDD; All other pins not under test = 0 V9) Output Leakage Current IOZ –5 — 5 µA DQs are disabled; 0 V ≤ VOUT ≤ VDDQ 9) Output High Current, Normal IOH Strength Driver — — –16.2 mA VOUT = 1.95 V — mA VOUT = 0.35 V Output Low Current, Normal IOL 16.2 — Strength Driver 1) 0 °C ≤ TA ≤ 70 °C; VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V; 2) 3) 4) 5) 6) 7) 8) 9) DDR400 conditions apply for all clock frequencies above 166 MHz Under all conditions, VDDQ must be less than or equal to VDD. Peak to peak AC noise on VREF may not exceed ± 2% VREF.DC. VREF is also expected to track noise variations in VDDQ. VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and must track variations in the DC level of VREF. Inputs are not recognized as valid until VREF stabilizes. VID is the magnitude of the difference between the input level on CK and the input level on CK. The ratio of the pull-up current to the pull-down current is specified for the same temperature and voltage, over the entire temperature and voltage range, for device drain to source voltage from 0.25 to 1.0 V. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation. Values are shown per pin. Rev. 2.3, 2007-03 03062006-8CCM-VPUW 24 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM 4.2 AC Characteristics (Notes 1-5 apply to the following Tables; Electrical Characteristics and DC Operating Conditions, AC Operating Conditions, IDD Specifications and Conditions, and Electrical Characteristics and AC Timing.) Notes 1. All voltages referenced to VSS. 2. Tests for AC timing, IDD, and electrical, AC and DC characteristics, may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified. 3. Figure 3 represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions (generally a coaxial transmission line terminated at the tester electronics). 4. AC timing and IDD tests may use a VIL to VIH swing of up to 1.5 V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK, CK), and parameter specifications are guaranteed for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals is 1 V/ns in the range between VIL(AC) and VIH(AC). 5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e. the receiver effectively switches as a result of the signal crossing the AC input level, and remains in that state as long as the signal does not ring back above (below) the DC input LOW (HIGH) level). 6. For System Characteristics like Setup & Holdtime Derating for Slew Rate, I/O Delta Rise/Fall Derating, DDR SDRAM Slew Rate Standards, Overshoot & Undershoot specification and Clamp V-I characteristics see the latest JEDEC specification for DDR components. FIGURE 3 AC Output Load Circuit Diagram / Timing Reference Load VTT 50 Ω Output (VOUT) Timing Reference Point 30 pF Rev. 2.3, 2007-03 03062006-8CCM-VPUW 25 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM TABLE 19 AC Operating Conditions Parameter Symbol VIH(AC) VIL(AC) VID(AC) VIX(AC) Input High (Logic 1) Voltage, DQ, DQS and DM Signals Input Low (Logic 0) Voltage, DQ, DQS and DM Signals Input Differential Voltage, CK and CK Inputs Values Unit Note1)/ Test Condition Min. Max. VREF + 0.31 — V 2)3) — VREF – 0.31 VDDQ + 0.6 0.5 × VDDQ+ V 2)3) V 2)3)4) 0.7 2)3)5) 0.5 × VDDQ– V 0.2 0.2 1) VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V (DDR200 - DDR333); VDDQ = 2.6 V ± 0.1 V, VDD = +2.6 V ± 0.1 V (DDR400); 0 °C ≤ TA ≤ 70 °C Input Closing Point Voltage, CK and CK Inputs 2) 3) 4) 5) Input slew rate = 1 V/ns. Inputs are not recognized as valid until VREF stabilizes. VID is the magnitude of the difference between the input level on CK and the input level on CK. The value of VIX is expected to equal 0.5 × VDDQ of the transmitting device and must track variations in the DC level of the same. TABLE 20 AC Timing - Absolute Specifications for PC3200 and PC2700 Parameter Symbol –5 –6 DDR400B DDR333 Unit Note/ Test Condition1) Min. Max. Min. Max. DQ output access time from CK/CK tAC –0.5 +0.5 –0.7 +0.7 ns 2)3)4)5) CK high-level width tCH tCK 0.45 0.55 0.45 0.55 tCK 2)3)4)5) 5 8 6 12 ns CL = 3.0 3)4)5) 6 12 6 12 ns CL = 2.5 2)3)4)5) 7.5 12 7.5 12 ns CL = 2.0 2)3)4)5) tCL tDAL 0.45 0.55 0.45 0.55 tCK tCK 2)3)4)5) tDH tDIPW 0.4 — 0.45 — ns 2)3)4)5) 1.75 — 1.75 — ns 2)3)4)5)6) DQS output access time from CK/CK tDQSCK –0.6 +0.6 –0.6 +0.6 ns 2)3)4)5) DQS input low (high) pulse width (write cycle) tDQSL,H 0.35 — 0.35 — tCK 2)3)4)5) DQS-DQ skew (DQS and associated DQ signals) tDQSQ — +0.40 — +0.40 ns TFBGA 2)3)4)5) Write command to 1st DQS latching transition tDQSS 0.72 1.25 0.75 1.25 tCK 2)3)4)5) DQ and DM input setup time tDS 0.4 — 0.45 — ns 2)3)4)5) Clock cycle time CK low-level width Auto precharge write recovery + precharge time DQ and DM input hold time DQ and DM input pulse width (each input) Rev. 2.3, 2007-03 03062006-8CCM-VPUW (tWR/tCK)+(tRP/tCK) 26 2)3)4)5)6) Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM Parameter Symbol –5 –6 DDR400B DDR333 Unit Note/ Test Condition1) Min. Max. Min. Max. tDSH 0.2 — 0.2 — tCK 2)3)4)5) DQS falling edge to CK setup time tDSS (write cycle) 0.2 — 0.2 — tCK 2)3)4)5) tHP tHZ Min. (tCL, tCH) — Min. (tCL, tCH) — ns 2)3)4)5) — +0.7 –0.7 +0.7 ns 2)3)4)5)7) tIH 0.6 — 0.75 — ns Fast slew rate DQS falling edge hold time from CK (write cycle) Clock Half Period Data-out high-impedance time from CK/CK Address and control input hold time 3)4)5)6)8) 0.7 — 0.8 — ns Slow slew rate 3)4)5)6)8) Control and Addr. input pulse width (each input) tIPW 2.2 — 2.2 — ns 2)3)4)5)9) Address and control input setup time tIS 0.6 — 0.75 — ns Fast slew rate 3)4)5)6)8) 0.7 — 0.8 — ns Slow slew rate 3)4)5)6)8) Data-out low-impedance time from CK/CK –0.7 +0.7 –0.7 +0.7 ns 2)3)4)5)7) 2 — 2 — tCK 2)3)4)5) tHP –tQHS — tHP –tQHS — ns 2)3)4)5) — +0.50 — +0.50 ns TFBGA 2)3)4)5) tRCD — tRCD — ns 2)3)4)5) 40 70E+3 42 70E+3 ns 2)3)4)5) 55 — 60 — ns 2)3)4)5) 15 — 18 — ns 2)3)4)5) — 7.8 — 7.8 µs 2)3)4)5)10) 65 — 72 — ns 2)3)4)5) tRP tRPRE tRPST tRRD 15 — 18 — ns 2)3)4)5) 0.9 1.1 0.9 1.1 2)3)4)5) 0.40 0.60 0.40 0.60 tCK tCK 10 — 12 — ns 2)3)4)5) tWPRE tWPRES tWPST tWR 0.25 — 0.25 — tCK 2)3)4)5) 0 — 0 — ns 2)3)4)5)11) 0.40 0.60 0.40 0.60 tCK 2)3)4)5)12) 15 — 15 — ns 2)3)4)5) tLZ Mode register set command cycle tMRD time DQ/DQS output hold time Data hold skew factor Active to Autoprecharge delay Active to Precharge command Active to Active/Auto-refresh command period tQH tQHS tRAP tRAS tRC tRCD Average Periodic Refresh Interval tREFI Auto-refresh to Active/AutotRFC Active to Read or Write delay refresh command period Precharge command period Read preamble Read postamble Active bank A to Active bank B command Write preamble Write preamble setup time Write postamble Write recovery time Rev. 2.3, 2007-03 03062006-8CCM-VPUW 27 2)3)4)5) Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM Parameter Symbol –5 –6 DDR400B DDR333 Unit Note/ Test Condition1) Min. Max. Min. Max. Internal write to read command delay tWTR 2 — 1 — tCK 2)3)4)5) Exit self-refresh to non-read command tXSNR 75 — 75 — ns 2)3)4)5) 2)3)4)5) Exit self-refresh to read command tXSRD 200 — 200 — tCK 1) 0 °C ≤ TA ≤ 70 °C; VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V (DDR333); VDDQ = 2.6 V ± 0.1 V, VDD = +2.6 V ± 0.1 V (DDR400) 2) Input slew rate ≥ 1 V/ns for DDR400, DDR333 3) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference level for signals other than CK/CK, is VREF. CK/CK slew rate are ≥ 1.0 V/ns. 4) Inputs are not recognized as valid until VREF stabilizes. 5) The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (note 3) is VTT. 6) For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual systemclock cycle time. 7) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ). 8) Fast slew rate ≥ 1.0 V/ns , slow slew rate ≥ 0.5 V/ns and < 1 V/ns for command/address and CK & CK slew rate > 1.0 V/ns, measured between VIH(ac) and VIL(ac). 9) These parameters guarantee device timing, but they are not necessarily tested on each device. 10) A maximum of eight Autorefresh commands can be posted to any given DDR SDRAM device. 11) The specific requirement is that DQS be valid (HIGH,LOW, or some point on a valid transition) on or before this CK edge. A valid transition is defined as monotonic and meeting the input slew rate specificationsof the device. When no writes were previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW at this time, depending on tDQSS. 12) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. TABLE 21 AC Timing - Absolute Specifications for PC2700 Parameter Symbol –7 Unit Note/Test Condition1) DDR266A DQ output access time from CK/CK CK high-level width Clock cycle time CK low-level width Auto precharge write recovery + precharge time DQ and DM input hold time DQ and DM input pulse width (each input) DQS output access time from CK/CK DQS input low (high) pulse width (write cycle) Rev. 2.3, 2007-03 03062006-8CCM-VPUW tAC tCH tCK tCL tDAL tDH tDIPW tDQSCK tDQSL,H Min. Max. –0.75 +0.75 ns 2)3)4)5) 0.45 0.55 tCK 2)3)4)5) 7.5 12 ns CL = 3.0 3)4)5) 7.5 12 ns CL = 2.5 2)3)4)5) 7.5 12 ns CL = 2.0 2)3)4)5) 0.45 0.55 2)3)4)5) (tWR/tCK)+(tRP/tCK) — tCK tCK 0.5 — ns 2)3)4)5) 1.75 — ns 2)3)4)5)6) –0.75 +0.75 ns 2)3)4)5) tCK 2)3)4)5) 0.35 28 — 2)3)4)5)6) Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM Parameter Symbol –7 Unit Note/Test Condition1) FBGA 2)3)4)5) DDR266A DQS-DQ skew (DQS and associated DQ signals) tDQSQ st tDQSS DQ and DM input setup time tDS DQS falling edge hold time from CK (write cycle) tDSH DQS falling edge to CK setup time (write cycle) tDSS Clock Half Period tHP Data-out high-impedance time from CK/CK tHZ Address and control input hold time tIH Write command to 1 DQS latching transition Min. Max. — +0.5 ns — +0.5 ns TSOPII 2)3)4)5) 0.75 1.25 tCK 2)3)4)5) 0.5 — ns 2)3)4)5) 0.2 — 2)3)4)5) 0.2 — tCK tCK Min. (tCL, tCH) — ns 2)3)4)5) –0.75 +0.75 ns 2)3)4)5)7) 0.9 — ns Fast slew rate 2)3)4)5) 3)4)5)6)8) 1.0 — ns Slow slew rate 3)4)5)6)8) Control and Addr. input pulse width (each input) Address and control input setup time tIPW tIS 2.2 — ns 2)3)4)5)9) 0.9 — ns Fast slew rate 3)4)5)6)8) 1.0 — ns Slow slew rate 3)4)5)6)8) Data-out low-impedance time from CK/CK Mode register set command cycle time DQ/DQS output hold time Data hold skew factor Active to Read w/AP delay Active to Precharge command Active to Active/Auto-refresh command period Active to Read or Write delay Average Periodic Refresh Interval Auto-refresh to Active/Auto-refresh command period Precharge command period Read preamble Read postamble Active bank A to Active bank B command Write preamble Write preamble setup time Write postamble Write recovery time Internal write to read command delay Rev. 2.3, 2007-03 03062006-8CCM-VPUW tLZ tMRD tQH tQHS –0.75 +0.75 ns 2)3)4)5)7) 2 — tCK 2)3)4)5) tHP – tQHS — ns 2)3)4)5) — 0.75 ns FBGA 2)3)4)5) — 0.75 ns TSOPII 2)3)4)5) tRAP tRAS tRC tRCD tREFI tRFC tRCD — ns 2)3)4)5) 45 120E+3 ns 2)3)4)5) 65 — ns 2)3)4)5) 20 — ns 2)3)4)5) 7.8 — µs 2)3)4)5)10) 75 — ns 2)3)4)5) tRP tRPRE tRPST tRRD tWPRE tWPRES tWPST tWR tWTR 20 — ns 2)3)4)5) 0.9 1.1 2)3)4)5) 0.4 0.6 tCK tCK 15 — ns 2)3)4)5) 0.25 — tCK 2)3)4)5) 0 — ns 2)3)4)5)11) 0.4 — tCK 2)3)4)5)12) 15 — ns 2)3)4)5) tCK 2)3)4)5) 1 29 — 2)3)4)5) Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM Parameter Symbol –7 Unit Note/Test Condition1) DDR266A Exit self-refresh to non-read command tXSNR tXSRD Exit self-refresh to read command 1) VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V ; 0 °C ≤ TA ≤ 70 °C Min. Max. 75 — ns 2)3)4)5)13) 200 — tCK 2)3)4)5) 2) Input slew rate ≥1 V/ns 3) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference level for signals other than CK/CK, is VREF. CK/CK slew rate are ≥ 1.0 V/ns. 4) Inputs are not recognized as valid until VREF stabilizes. 5) The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (note 3) is VTT. 6) For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock cycle time. 7) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ). 8) Fast slew rate ≥ 1.0 V/ns , slow slew rate ≥ 0.5 V/ns and < 1 V/ns for command/address and CK & CK slew rate > 1.0 V/ns, measured between VIH(ac) and VIL(ac). 9) These parameters guarantee device timing, but they are not necessarily tested on each device. 10) A maximum of eight Autorefresh commands can be posted to any given DDR SDRAM device. 11) The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before this CK edge. A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS. 12) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 13) In all circumstances, tXSNR can be satisfied using tXSNR = tRFC,min + 1 × tCK Rev. 2.3, 2007-03 03062006-8CCM-VPUW 30 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM TABLE 22 IDD Conditions Parameter Symbol Operating Current: one bank; active/ precharge; tRC = tRCMIN; tCK = tCKMIN; DQ, DM, and DQS inputs changing once per clock cycle; address and control inputs changing once every two clock cycles. IDD0 Operating Current: one bank; active/read/precharge; Burst = 4; Refer to the following page for detailed test conditions. IDD1 Precharge Power-Down Standby Current: all banks idle; power-down mode; CKE ≤ VILMAX; tCK = tCKMIN IDD2P Precharge Floating Standby Current: CS ≥ VIHMIN, all banks idle; IDD2F CKE ≥ VIHMIN; tCK = tCKMIN, address and other control inputs changing once per clock cycle, VIN = VREF for DQ, DQS and DM. Precharge Quiet Standby Current:CS ≥ VIHMIN, all banks idle; CKE ≥ VIHMIN; tCK = tCKMIN, address and other control inputs stable at ≥ VIHMIN or ≤ VILMAX; VIN = VREF for DQ, DQS and DM. IDD2Q Active Power-Down Standby Current: one bank active; power-down mode; CKE ≤ VILMAX; tCK = tCKMIN; VIN = VREF for DQ, DQS and DM. IDD3P Active Standby Current: one bank active; CS ≥ VIHMIN; CKE ≥ VIHMIN; tRC = tRASMAX; tCK = tCKMIN; DQ, DM and DQS IDD3N inputs changing twice per clock cycle; address and control inputs changing once per clock cycle. Operating Current: one bank active; Burst = 2; reads; continuous burst; address and control inputs changing once per clock cycle; 50 % of data outputs changing on every clock edge; CL = 2 for DDR200 and DDR266A, CL = 3 for DDR333; tCK = tCKMIN; IOUT = 0 mA IDD4R Operating Current: one bank active; Burst = 2; writes; continuous burst; address and control inputs changing once per clock cycle; 50 % of data outputs changing on every clock edge; CL = 2 for DDR200 and DDR266A, CL = 3 for DDR333; tCK = tCKMIN IDD4W Auto-Refresh Current: tRC = tRFCMIN, burst refresh IDD5 IDD6 IDD7 Self-Refresh Current: CKE ≤ 0.2 V; external clock on; tCK = tCKMIN Operating Current: four bank; four bank interleaving with BL = 4; Refer to the following page for detailed test conditions. Rev. 2.3, 2007-03 03062006-8CCM-VPUW 31 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM TABLE 23 IDD Specification Symbol –5 DDR400B IDD0 IDD1 IDD2P IDD2F IDD2Q IDD3P IDD3N IDD4R IDD4W IDD5 IDD6 IDD7 –6 –7 DDR333 DDR266A Unit Note/Test Condition1) Typ. Max. Typ. Max. Typ. Max. 70 90 60 75 50 65 mA ×4/×82)3) 75 90 65 75 55 65 mA ×16 3) 80 100 70 85 65 75 mA ×4/×8 3) 95 110 80 95 70 85 mA ×16 3) 4 5 4 5 3 4 mA 3) 30 36 25 30 20 24 mA 3) 20 28 17 24 15 21 mA 3) 13 18 11 15 9 13 mA 3) 38 45 32 38 28 36 mA 3) 43 54 36 45 30 40 mA ×16 3) 85 100 70 85 60 70 mA ×4/×8 3) 100 120 85 100 70 85 mA ×16 3) 90 105 75 90 65 75 mA ×4/×8 3) 100 130 90 110 75 90 mA ×16 3) 140 190 120 160 100 140 mA 3) 1.4 3.0 1.4 3.0 1.4 3.0 mA 4) — — — 1.5 — — mA Low power5) 210 250 180 215 140 170 mA ×4/×8 3) 215 140 170 mA ×16 3) 1) Test conditions for typical values: VDD = 2.5 V (DDR333), VDD = 2.6 V (DDR400), TA = 25 °C, test conditions for maximum values: VDD = 2.7 V, TA = 10 °C 2) IDD specifications are tested after the device is properly initialized and measured at 133 MHz for DDR266, 166 MHz for DDR333, and 210 250 180 200 MHz for DDR400. 3) Input slew rate = 1 V/ns. 4) Enables on-chip refresh and address counters. 5) Low power available on request Rev. 2.3, 2007-03 03062006-8CCM-VPUW 32 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM 5 Package Outlines There are two package types used for this product family each in lead-free and lead-containing assembly: • P-TFBGA: Plastic Thin Fine-Pitch Ball Grid Array Package TABLE 24 TFBGA Common Package Properties (non-green/green) Description Size Units Ball Size 0.450 mm Recommended Landing Pad 0.500 mm Recommended Solder Mask 0.400 mm Rev. 2.3, 2007-03 03062006-8CCM-VPUW 33 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM FIGURE 4 Package Outline of P-TFBGA-60-12 (non-green/green) [ 0$ ; % $ [ 0 $; & 0 $; 0 ,1 & ¡ [ ¡ 0 & $ % ¡ 0 & & 6($7 ,1 *3 /$1( /HDGIUHH JU HHQ VR OGHUE DOOV $0 DU NLQ J%DOOVLGH $0 DU NLQ J&K LSVLGH D GVZ LWKRXW%DOO 'X PP \ 3 %DG8 Q LW0 DUNLQJ %80 0LGGOHR I3 D FN D JHV( GJHV )32B3 *7 )% * $BB • P(G)-TFBGA-60: Plastic (non-green/green) Thin Fine Ball Grid Array Rev. 2.3, 2007-03 03062006-8CCM-VPUW 34 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM FIGURE 5 [ 0 $; ,QGH [0 DUN LQJ Rev. 2.3, 2007-03 03062006-8CCM-VPUW 0$; Package Outline of P-TSOPII-66-1 (non-green/green) *3; 35 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Pin Configuration P-TFBGA-60 Top View, see the balls throught the package . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration P-TSOPII-66-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Output Load Circuit Diagram / Timing Reference Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline of P-TFBGA-60-12 (non-green/green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline of P-TSOPII-66-1 (non-green/green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 2.3, 2007-03 03062006-8CCM-VPUW 36 11 12 25 34 35 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Performance of –5, –6 and –7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Ordering Information for Lead-Free Products (RoHS Compliant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Ordering Information for Lead-Containing Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Configuration of DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Abbreviations for Pin Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Mode Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Burst Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Extended Mode Regsiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Truth Table 1a: Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Truth Table 1b: DM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Truth Table 2: Clock Enable (CKE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Truth Table 3: Current State Bank n - Command to Bank n (same bank) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Truth Table 4: Current State Bank n - Command to Bank m (different bank). . . . . . . . . . . . . . . . . . . . . . . . . . 20 Truth Table 5: Concurrent Auto Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Input and Output Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Electrical Characteristics and DC Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 AC Timing - Absolute Specifications for PC3200 and PC2700. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 AC Timing - Absolute Specifications for PC2700 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 IDD Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 IDD Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 TFBGA Common Package Properties (non-green/green) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Rev. 2.3, 2007-03 03062006-8CCM-VPUW 37 Internet Data Sheet HY[B/I]25D256[16/40/80]0C[E/C/F/T](L) 256 Mbit Double-Data-Rate SDRAM Table of Contents 1 1.1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 4.1 4.2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Rev. 2.3, 2007-03 03062006-8CCM-VPUW 38 Internet Data Sheet Edition 2007-03 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2007. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.qimonda.com