Holtek HT68F20 Enhanced i/o flash type mcu 8-bit mcu with eeprom Datasheet

HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Enhanced I/O Flash Type MCU 8-Bit MCU with EEPROM
Technical Document
· Application Note
- HA0075E MCU Reset and Oscillator Circuits Application Note
Features
CPU Features
Peripheral Features
· Operating Voltage:
· Flash Program Memory: 1K´14 ~ 12K´16
·
·
·
·
·
·
·
·
·
·
fSYS= 8MHz: 2.2V~5.5V
fSYS= 12MHz: 2.7V~5.5V
fSYS= 20MHz: 4.5V~5.5V
Up to 0.2ms instruction cycle with 20MHz system
clock at VDD=5V
Power down and wake-up functions to reduce power
consumption
Five oscillators:
External Crystal - HXT
External 32.768kHz Crystal - LXT
External RC - ERC
Internal RC - HIRC
Internal 32kHz RC - LIRC
Multi-mode operation: NORMAL, SLOW, IDLE and
SLEEP
Fully integrated internal 4MHz, 8MHz and 12MHz
oscillator requires no external components
All instructions executed in one or two instruction
cycles
Table read instructions
63 powerful instructions
Up to 12-level subroutine nesting
Bit manipulation instruction
· RAM Data Memory: 64´8 ~ 576´8
· EEPROM Memory: 32´8~256´8
· Watchdog Timer function
· Up to 50 bidirectional I/O lines
· Software controlled 4-SCOM lines LCD driver with
1/2 bias
· Multiple pin-shared external interrupts
· Multiple Timer Module for time measure, input
·
·
·
·
·
capture, compare match output, PWM output or
single pulse output function
Serial Interfaces Module - SIM for SPI or I2C
Dual Comparator functions
Dual Time-Base functions for generation of fixed time
interrupt signals
Low voltage reset function
Low voltage detect function
· Wide range of available package types
General Description
The HT68FXX series of devices are Flash Memory I/O
type 8-bit high performance RISC architecture
microcontrollers. Offering users the convenience of Flash
Memory multi-programming features, these devices also
include a wide range of functions and features. Other
memory includes an area of RAM Data Memory as well as
an area of EEPROM memory for storage of non-volatile
data such as serial numbers, calibration data etc.
A full choice of HXT, LXT, ERC, HIRC and LIRC oscillator functions are provided including a fully integrated
system oscillator which requires no external components for its implementation. The ability to operate and
switch dynamically between a range of operating
modes using different clock sources gives users the
ability to optimise microcontroller operation and minimise power consumption.
Multiple and extremely flexible Timer Modules provide
timing, pulse generation and PWM generation functions. Analog features include dual comparator functions. Communication with the outside world is catered
for by including fully integrated SPI or I2C interface functions, two popular interfaces which provide designers
with a means of easy communication with external peripheral hardware. Protective features such as an internal Watchdog Timer, Low Voltage Reset and Low
Voltage Detector coupled with excellent noise immunity
and ESD protection ensure that reliable operation is
maintained in hostile electrical environments.
The inclusion of flexible I/O programming features,
Time-Base functions along with many other features ensure that the devices will find excellent use in applications such as electronic metering, environmental
monitoring, handheld instruments, household appliances, electronically controlled tools, motor driving in
addition to many others.
Rev. 1.00
1
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Selection Table
Most features are common to all devices, the main feature distinguishing them are Memory capacity, I/O count, TM
features, stack capacity and package types. The following table summarises the main features of each device.
Program
Data
Data
Memory Memory EEPROM
I/O
Ext.
Interrupt
Timer
Module
32´8
18
2
10-bit CTM´1,
10-bit STM´1
Ö
4
16DIP/NSOP/SSOP
20DIP/SOP/SSOP
96´8
64´8
22
2
10-bit CTM´1,
10-bit ETM´1
Ö
4
16DIP/NSOP/SSOP
20DIP/SOP/SSOP
24SKDIP/SOP/SSOP
4K´15
192´8
128´8
42
2
10-bit CTM´1,
10-bit ETM´1,
16-bit STM´1
Ö
8
24/28SKDIP/SOP/SSOP
44QFP, 32/40/48QFN
48SSOP
2.2V~
5.5V
8K´16
384´8
256´8
42
2
10-bit CTM´2,
10-bit ETM´1,
16-bit STM´1
Ö
8
28SKDIP/SOP/SSOP
44QFP, 40/48QFN
48SSOP
2.2V~
5.5V
12K´16
576´8
256´8
50
4
10-bit CTMx2,
10-bit ETMx1,
16-bit STMx1
Ö
12
44/52QFP, 40/48QFN
48SSOP
Part No.
VDD
HT68F20*
2.2V~
5.5V
1K´14
64´8
HT68F30
2.2V~
5.5V
2K´14
HT68F40
2.2V~
5.5V
HT68F50
HT68F60*
Note:
Interface
Stack
2
(SPI/I C)
Package
²*² Under development, available in 1Q, 2010
As devices exist in more than one package format, the table reflects the situation for the package with the most
pins.
L o w
V o lta g e
D e te c t
L o w
V o lta g e
R e s e t
W a tc h d o g
T im e r
R e s e t
C ir c u it
8 - b it
R IS C
M C U
C o re
S ta c k
F la s h /E E P R O M
P r o g r a m m in g
C ir c u itr y ( IS P )
F la s h
P ro g ra m
M e m o ry
E E P R O M
D a ta
M e m o ry
T B 0 /T B 1
In te rru p t
C o n tr o lle r
E R C /H X T
O s c illa to r
R A M
D a ta
M e m o ry
H IR C
O s c illa to r
L IR C /L X T
O s c illa to r
C o m p a ra to rs
I/O
S IM
T M 0
T M 1
T M n
Block Diagram
Rev. 1.00
2
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Pin Assignment
P A 0 /C 0 X /T P 0 _ 0
1
2 0
P A 1 /T P 1 _ 0
V S S
2
1 9
P A 2 /T C K 0 /C 0 +
P A 0 /C 0 X /T P 0 _ 0
1
1 6
P A 1 /T P 1 _ 0
P B 4 /X T 2
3
1 8
P A 3 /IN T 0 /C 0 -
V S S
2
1 5
P A 2 /T C K 0 /C 0 +
P B 3 /X T 1
4
1 7
P A 4 /IN T 1 /T C K 1
P B 4 /X T 2
3
1 4
P A 3 /IN T 0 /C 0 -
P B 2 /O S C 2
5
1 6
P A 5 /C 1 X /S D O
P B 3 /X T 1
4
1 3
P A 4 /IN T 1 /T C K 1
P B 1 /O S C 1
6
1 5
P A 6 /S D I/S D A
P B 2 /O S C 2
5
1 2
P A 5 /C 1 X /S D O
V D D
7
1 4
P A 7 /S C K /S C L
P B 1 /O S C 1
6
1 1
P A 6 /S D I/S D A
P B 0 /R E S
8
1 3
P B 5 /S C S
V D D
7
1 0
P A 7 /S C K /S C L
P C 1 /S C O M 1
9
1 2
P C 2 /P C K /C 1 + /S C O M 2
P B 0 /R E S
8
9
1 0
1 1
P C 3 /P IN T /C 1 -/S C O M 3
P C 0 /T P 1 _ 1 /S C O M 0
P B 5 /S C S
H T 6 8 F 2 0
2 0 D IP -A /S O P -A /S S O P -A
H T 6 8 F 2 0
1 6 D IP -A /N S O P -A /S S O P -A
P A 0 /C 0 X /T P 0 _ 0
1
2 0
P A 1 /T P 1 A
V S S
2
1 9
P A 2 /T C K 0 /C 0 +
P A 0 /C 0 X /T P 0 _ 0
1
1 6
P A 1 /T P 1 A
P B 4 /X T 2
3
1 8
P A 3 /IN T 0 /C 0 -
V S S
2
1 5
P A 2 /T C K 0 /C 0 +
P B 3 /X T 1
4
1 7
P A 4 /IN T 1 /T C K 1
P B 4 /X T 2
3
1 4
P A 3 /IN T 0 /C 0 -
P B 2 /O S C 2
5
1 6
P A 5 /C 1 X /S D O
P B 3 /X T 1
4
1 3
P A 4 /IN T 1 /T C K 1
P B 1 /O S C 1
6
1 5
P A 6 /S D I/S D A
P B 2 /O S C 2
5
1 2
P A 5 /C 1 X /S D O
V D D
7
1 4
P A 7 /S C K /S C L
P B 1 /O S C 1
6
1 1
P A 6 /S D I/S D A
P B 0 /R E S
8
1 3
P B 5 /S C S
V D D
7
1 0
P A 7 /S C K /S C L
P C 1 /T P 1 B _ 1 /[S D O ]/S C O M 1
9
1 2
P C 2 /P C K /C 1 +
P B 0 /R E S
8
9
1 0
1 1
P C 3 /P IN T /C 1 -
P B 5 /S C S
P C 0 /T P 1 B _ 0 /[S D I/S D A ]/S C O M 0
H T 6 8 F 3 0
2 0 D IP -A /S O P -A /S S O P -A
H T 6 8 F 3 0
1 6 D IP -A /N S O P -A /S S O P -A
P A 0 /C 0 X /T P 0 _ 0
1
2 4
P A 1 /T P 1 A
V S S
2
2 3
P A 2 /T C K 0 /C 0 +
P B 4 /X T 2
3
2 2
P A 3 /IN T 0 /C 0 -
P B 3 /X T 1
4
2 1
P A 4 /IN T 1 /T C K 1
P B 2 /O S C 2
5
2 0
P A 5 /C 1 X /S D O
P B 1 /O S C 1
6
1 9
P A 6 /S D I/S D A
V D D
7
1 8
P A 7 /S C K /S C L
P B 0 /R E S
8
1 7
P B 5 /S C S
P C 1 /T P 1 B _ 1 /[S D O ]/S C O M 1
9
1 6
P C 2 /P C K /C 1 +
P C 0 /T P 1 B _ 0 /[S D I/S D A ]/S C O M 0
1 0
1 5
P C 3 /P IN T /C 1 -
P C 7 /[S C K /S C L ]/S C O M 3
1 1
1 4
P C 4 /[P IN T ]
P C 6 /[S C S ]/S C O M 2
1 2
1 3
P C 5 /T P 0 _ 1 /[P C K ]
H T 6 8 F 3 0
2 4 S K D IP -A /S O P -A /S S O P -A
1
2 8
P A 1 /T P 1 A
V S S
2
2 7
P A 2 /T C K 0 /C 0 +
P A 0 /C 0 X /T P 0 _ 0
1
2 4
P A 1 /T P 1 A
P B 4 /X T 2
3
2 6
P A 3 /IN T 0 /C 0 -
V S S
2
2 3
P A 2 /T C K 0 /C 0 +
P B 3 /X T 1
4
2 5
P A 4 /IN T 1 /T C K 1
P B 4 /X T 2
3
2 2
P A 3 /IN T 0 /C 0 -
P B 2 /O S C 2
5
2 4
P A 5 /C 1 X /S D O
P B 3 /X T 1
4
2 1
P A 4 /IN T 1 /T C K 1
P B 1 /O S C 1
6
2 3
P A 6 /S D I/S D A
P B 2 /O S C 2
5
2 0
P A 5 /C 1 X /S D O
V D D
7
2 2
P A 7 /S C K /S C L
P B 1 /O S C 1
6
1 9
P A 6 /S D I/S D A
P B 0 /R E S
8
2 1
P B 5 /S C S
V D D
7
1 8
P A 7 /S C K /S C L
P C 1 /T P 1 B _ 1 /S C O M 1
9
2 0
P C 2 /T C K 2 /P C K /C 1 +
P B 0 /R E S
8
1 7
P B 5 /S C S
P C 0 /T P 1 B _ 0 /S C O M 0
1 0
1 9
P C 3 /P IN T /T P 2 _ 0 /C 1 -
P C 1 /T P 1 B _ 1 /S C O M 1
9
1 6
P C 2 /T C K 2 /P C K /C 1 +
P C 7 /[T P 1 A ]/S C O M 3
1 1
1 8
P C 4 /[IN T 0 ]/[P IN T ]/T P 2 _ 1
P C 0 /T P 1 B _ 0 /S C O M 0
1 0
1 5
P C 3 /P IN T /T P 2 _ 0 /C 1 -
P C 6 /[T P 0 _ 0 ]/S C O M 2
1 2
1 7
P C 5 /[IN T 1 ]/T P 0 _ 1 /T P 1 B _ 2 /[P C K ]
P C 7 /[T P 1 A ]/S C O M 3
1 1
1 4
P C 4 /[IN T 0 ]/[P IN T ]/T P 2 _ 1
P D 3 /[T C K 1 ]/[S D O ]
1 3
1 6
P D 0 /[T C K 2 ]/[S C S ]
P C 6 /[T P 0 _ 0 ]/S C O M 2
1 2
1 3
P C 5 /[IN T 1 ]/T P 0 _ 1 /T P 1 B _ 2 /[P C K ]
P D 2 /[T C K 0 ]/[S D I/S D A ]
1 4
1 5
P D 1 /[T P 2 _ 0 ]/[S D O ]/[S C K /S C L ]
H T 6 8 F 4 0
2 4 S K D IP -A /S O P -A /S S O P -A
Note:
P A 0 /C 0 X /T P 0 _ 0
H T 6 8 F 4 0
2 8 S K D IP -A /S O P -A /S S O P -A
1. Bracketed pin names indicate non-default pinout remapping locations.
2. If the pin-shared pin functions have multiple outputs simultaneously, its pin names at the right side of the
²/² sign can be used for higher priority.
Rev. 1.00
3
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
P D 1 /[T P 2 _ 0 ]/[S D O ]/[S C K /S C
P D 0 /[T C K 2 ]/[S C
P C 5 /[IN T 1 ]/T P 0 _ 1 /T P 1 B _ 2 /[P C
P C 4 /[IN T 0 ]/[P IN T ]/T P 2
P C 3 /P IN T /T P 2 _ 0 /C
P C 2 /T C K 2 /P C K /C
P D 7 /[S C
P D 6 /[S C K /S C
P B 7 /[S D I/S D
P B 6 /[S D
P C 5 /[IN T 1 ]/T P 0
P C 4 /[IN
P C 3
P C
_ 1 /T P 1 B _
T 0 ]/[P IN T
/P IN T /T P
2 /T C K 2 /P
P
P A 7 /S
P A 6 /S
P A 5 /C
2
2 4
2 3
3
2 2
H T 6 8 F 4 0
3 2 Q F N -A
4
5
6
2 1
2 0
1 9
1 8
7
8
9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
1 7
L ]
S ]
K ]
_ 1
1 1 +
S ]
L ]
A ]
O ]
2 /[P C K ]
]/T P 2 _ 1
2 _ 0 /C 1 C K /C 1 +
B 5 /S C S
C K /S C L
D I/S D A
1 X /S D O
3 2 3 1 3 0 2 9 2 8 2 7 2 6 2 5
1
P A 4 /IN T 1 /T C K 1
P A 3 /IN T 0 /C 0 P A 2 /T C K 0 /C 0 +
P A 1 /T P 1 A
P A 0 /C 0 X /T P 0 _ 0
P F 1 /[C 1 X ]
P F 0 /[C 0 X ]
P E 7 /[IN T 1 ]
P D 0
P D 1
P D 2
P D 3
P C 6
P C 7
P C 0
P C 1
/[T
/[T
/[T
/[T
/[T
/[T
/T
/T
C K 2 ]/[S C
P 2 _ 0 ]/[S D
C K 0 ]/[S D
C K 1 ]/[S D
P 0 _ 0 ]/S C
P 1 A ]/S C O
P 1 B _ 0 /S C
P 1 B _ 1 /S C
4 0 3 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2 3 1
1
P B 5 /S C S
P A 7 /S C K /S C L
P A 6 /S D I/S D A
P A 5 /C 1 X /S D O
P A 4 /IN T 1 /T C K 1
P A 3 /IN T 0 /C 0 P A 2 /T C K 0 /C 0 +
P A 1 /T P 1 A
P A 0 /C 0 X /T P 0 _ 0
P F 1 /[C 1 X ]
S ]
O ]/[S C K /S C L ]
I/S D A ]
O ]
O M 2
M 3
O M 0
O M 1
2
2 8
4
2 7
5
H T 6 8 F 4 0
4 0 Q F N -A
6
7
2 3
1 0
5
4 4
P A 5 /C 1 X /S D O
V S S
6
4 3
P A 6 /S D I/S D A
P B 4 /X T 2
7
4 2
P A 7 /S C K /S C L
8
4 1
P B 5 /S C S
9
4 0
P B 6 /[S D O ]
P B 1 /O S C 1
1 0
3 9
P B 7 /[S D I/S D A ]
V D D
1 1
3 8
P D 6 /[S C K /S C L ]
P B 0 /R E S
1 2
3 7
P D 7 /[S C S ]
P E 5
1 3
3 6
P C 4 /[IN T 0 ]/[P IN T ]/T P 2 _ 1
N C
1 7
3 2
P C 2 /T C K 2 /P C K /C 1 +
P C 7 /[T P 1 A ]/S C O M 3
1 8
3 1
P C 3 /P IN T /T P 2 _ 0 /C 1 -
P C 6 /[T P 0 _ 0 ]/S C O M 2
1 9
3 0
P C 5 /[IN T 1 ]/T P 0 _ 1 /T P 1 B _ 2 /[P C K ]
P E 3
2 0
2 9
P D 0 /[T C K 2 ]/[S C S ]
P E 2
2 1
2 8
P D 1 /[T P 2 _ 0 ]/[S D O ]/[S C K /S C L ]
P E 1
2 2
2 7
P D 2 /[T C K 0 ]/[S D I/S D A ]
P E 0
2 3
2 6
P D 3 /[T C K 1 ]/[S D O ]
P D 5 /[T P 0 _ 1 ]
2 4
2 5
P D 4 /[T P 2 _ 1 ]
7
2 9
2 8
2 7
8
2 6
9
2 5
1 0
1 1
2 4
1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2
2 3
/[T C K 1 ]/[S D O ]
/[T P 2 _ 1 ]
/[T P 0 _ 1 ]
/[T
/[T
/T
/T
P 0 _
P 1 A
P 1 B
P 1 B
0 ]/S
]/S C
_ 0 /S
_ 1 /S
C O
O M
C O
C O
M 2
3
M 0
M 1
_ 1 /T P 1 B _ 2 /[P C
T 0 ]/[P IN T ]/T P 2
/P IN T /T P 2 _ 0 /C
2 /T C K 2 /P C K /C
P D 7 /[S C
P D 6 /[S C K /S C
P B 7 /[S D I/S D
P B 6 /[S D
P D 2 /[T C K 0 ]/[S D I/S D
P D 1 /[T P 2 _ 0 ]/[S D O ]/[S C K /S C
P D 0 /[T C K 2 ]/[S C
P C 5 /[IN T 1 ]/T P 0
P C 4 /[IN
P C 3
P C
H T 6 8 F 4 0
4 8 S S O P -A
/[T P 1 B _ 2 ]
N C
H T 6 8 F 4 0
4 4 Q F P -A
6
/R E S
3 3
3 0
5
C 1
1 6
4
C 2
P C 0 /T P 1 B _ 0 /S C O M 0
3 1
1
N C
P D 3
P D 4
P D 5
P E 0
P E 1
P E 2
P E 3
P C 6
P C 7
P C 0
P C 1
3 3
3 2
3
2
N C
3 4
2
/O S
/O S
/X T
/X T
3 5
1 5
4 4 4 3 4 2 4 1 4 0 3 9 3 8 3 7 3 6 3 5 3 4
1
/[IN T 0 ]
/[IN T 1 ]
1 4
P B 5 /S C S
P A 7 /S C K /S C L
P A 6 /S D I/S D A
P A 5 /C 1 X /S D O
P A 4 /IN T 1 /T C K 1
P A 3 /IN T 0 /C 0 P A 2 /T C K 0 /C 0 +
P A 1 /T P 1 A
P A 0 /C 0 X /T P 0 _ 0
P F 1 /[C 1 X ]
P F 0 /[C 0 X ]
P E 4
P E 5
P B 0
V D D
P B 1
P B 2
P B 3
P B 4
V S S
P E 6
P E 7
P E 4 /[T P 1 B _ 2 ]
P C 1 /T P 1 B _ 1 /S C O M 1
A ]
L ]
S ]
K ]
_ 1
1 1 +
S ]
L ]
A ]
O ]
P B 3 /X T 1
P B 2 /O S C 2
M 2
3
M 0
M 1
/R E S
P A 4 /IN T 1 /T C K 1
P E 6 /[IN T 0 ]
C O
O M
C O
C O
C 1
4 5
D I/S D A ]
D O ]
C 2
4
1
P A 3 /IN T 0 /C 0 -
P E 7 /[IN T 1 ]
2
4 6
/O S
/O S
/X T
/X T
3
2 1
C K 0 ]/[S
C K 1 ]/[S
P 2 _ 1 ]
P 0 _ 1 ]
P 0 _ 0 ]/S
P 1 A ]/S C
P 1 B _ 0 /S
P 1 B _ 1 /S
P 1 B _ 2 ]
P D 2 /[T C K 0 ]/[S D I/S D
P D 1 /[T P 2 _ 0 ]/[S D O ]/[S C K /S C
P D 0 /[T C K 2 ]/[S C
P C 5 /[IN T 1 ]/T P 0 _ 1 /T P 1 B _ 2 /[P C
P C 4 /[IN T 0 ]/[P IN T ]/T P 2
P C 3 /P IN T /T P 2 _ 0 /C
P C 2 /T C K 2 /P C K /C
P D 7 /[S C
P D 6 /[S C K /S C
P B 7 /[S D I/S D
P B 6 /[S D
P A 2 /T C K 0 /C 0 +
P F 0 /[C 0 X ]
2 2
1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
/[IN T 0 ]
/[IN T 1 ]
/[C 0 X ]
C 1
C 2
P A 1 /T P 1 A
4 7
2 4
/[T
/[T
/[T
/[T
/[T
/[T
/T
/T
/[T
P B 0
V D D
P B 1
P B 2
P B 3
P B 4
V S S
P E 6
P E 7
P F 0
1
2
4 8
2
2 5
9
/R E S
/O S
/O S
/X T
/X T
/[IN T 0 ]
1
P F 1 /[C 1 X ]
2 6
8
P B 0
V D D
P B 1
P B 2
P B 3
P B 4
V S S
P E 6
P A 0 /C 0 X /T P 0 _ 0
P D 2
P D 3
P D 4
P D 5
P C 6
P C 7
P C 0
P C 1
P E 4
P E 5
3 0
2 9
3
N
A ]
L ]
S ]
C
K ]
_ 1
1 1 +
S ]
L ]
A ]
O ]
N C
P B 5 /S C S
P A 7 /S C K /S C L
P A 6 /S D I/S D A
P A 5 /C 1 X /S D O
P A 4 /IN T 1 /T C K 1
P A 3 /IN T 0 C 0 P A 2 /T C K 0 /C 0 +
P A 1 /T P 1 A
P A 0 /C 0 X /T P 0 _ 0
N C
P F 1 /[C 1 X ]
4 8 4 7 4 6 4 5 4 4 4 3 4 2 4 1 4 0 3 9 3 8 3 7
1
2
3 6
3 5
3
3 4
4
3 3
5
3 2
6
3 1
H T 6 8 F 4 0
4 8 Q F N -A
7
8
3 0
2 9
9
2 8
1 0
2 7
1 1
1 2
2 6
1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4
2 5
P D 3
P D 4
P D 5
P E 0
P E 1
P E 2
P E 3
P C 6
P C 7
N C
P C 0
P C 1
/[T C K 1 ]/[S D O ]
/[T P 2 _ 1 ]
/[T P 0 _ 1 ]
/[T P 0 _ 0 ]/S C O M 2
/[T P 1 A ]/S C O M 3
/T P 1 B _ 0 /S C O M 0
/T P 1 B _ 1 /S C O M 1
P E 4
P E 5
P B 0
V D D
P B 1
P B 2
P B 3
P B 4
V S S
P E 6
P E 7
P F 0
C 1
C 2
/[T P 1 B _ 2 ]
1
2
/R E S
/O S
/O S
/X T
/X T
/[IN T 0 ]
/[IN T 1 ]
/[C 0 X ]
Note:
1. Bracketed pin names indicate non-default pinout remapping locations.
2. If the pin-shared pin functions have multiple outputs simultaneously, its pin names at the right side of the
²/² sign can be used for higher priority.
Rev. 1.00
4
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
P D 1 /[T
P
P C 5 /[IN T
P C 4 /[IN
1
D
P
T
2 8
P A 1 /T P 1 A
2
2 7
P A 2 /T C K 0 /C 0 +
P B 4 /X T 2
3
2 6
P A 3 /IN T 0 /C 0 -
P B 3 /X T 1
4
2 5
P A 4 /IN T 1 /T C K 1
P B 2 /O S C 2
5
2 4
P A 5 /C 1 X /S D O
P B 1 /O S C 1
6
2 3
P A 6 /S D I/S D A
V D D
7
2 2
P A 7 /S C K /S C L
P B 0 /R E S
8
2 1
P B 5 /S C S
P C 1 /T P 1 B _ 1 /S C O M 1
9
2 0
P C 2 /T C K 2 /P C K /C 1 +
P C 0 /T P 1 B _ 0 /S C O M 0
1 0
1 9
P C 3 /P IN T /T P 2 _ 0 /C 1 -
P C 7 /[T P 1 A ]/S C O M 3
1 1
1 8
P C 4 /[IN T 0 ]/[P IN T ]/T C K 3 /T P 2 _ 1
P C 6 /[T P 0 _ 0 ]/S C O M 2
1 2
1 7
P C 5 /[IN T 1 ]/T P 0 _ 1 /T P 1 B _ 2 /[P C K ]
P D 3 /[T C K 1 ]/T P 3 _ 0 /[S D O ]
1 3
1 6
P D 0 /[T C K 2 ]/T P 3 _ 1 /[S C S ]
1 4
P D 2 /[T C K 0 ]/[S D I/S D A ]
1 5
L ]
S ]
K ]
_ 1
1 1 +
S ]
L ]
A ]
O ]
1
V S S
2 _ 0 ]/[S D O ]/[S C K /S C
0 /[T C K 2 ]/T P 3 _ 1 /[S C
]/T P 0 _ 1 /T P 1 B _ 2 /[P C
0 ]/[P IN T ]/T C K 3 /T P 2
P C 3 /P IN T /T P 2 _ 0 /C
P C 2 /T C K 2 /P C K /C
P D 7 /[S C
P D 6 /[S C K /S C
P B 7 /[S D I/S D
P B 6 /[S D
P A 0 /C 0 X /T P 0 _ 0
P D 1 /[T P 2 _ 0 ]/[S D O ]/[S C K /S C L ]
4 0 3 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2 3 1
1
P B 5 /S C S
P A 7 /S C K /S C L
P A 6 /S D I/S D A
P A 5 /C 1 X /S D O
P A 4 /IN T 1 /T C K 1
P A 3 /IN T 0 /C 0 P A 2 /T C K 0 /C 0 +
P A 1 /T P 1 A
P A 0 /C 0 X /T P 0 _ 0
P F 1 /[C 1 X ]
2
2 8
4
2 7
5
H T 6 8 F 5 0
4 0 Q F N -A
6
7
2 3
1 0
2 2
1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
P A 6 /S D I/S D A
P B 4 /X T 2
7
4 2
P A 7 /S C K /S C L
P B 3 /X T 1
8
4 1
P B 5 /S C S
P B 2 /O S C 2
9
4 0
P B 6 /[S D O ]
P B 1 /O S C 1
1 0
3 9
P B 7 /[S D I/S D A ]
V D D
1 1
3 8
P D 6 /[S C K /S C L ]
P B 0 /R E S
1 2
3 7
P D 7 /[S C S ]
P E 5 /[T P 3 _ 0 ]
1 3
3 6
P C 4 /[IN T 0 ]/[P IN T ]/T P 2 _ 1
N C
N C
1 7
3 2
P C 2 /T C K 2 /P C K /C 1 +
P C 7 /[T P 1 A ]/S C O M 3
1 8
3 1
P C 3 /P IN T /T P 2 _ 0 /C 1 -
P C 6 /[T P 0 _ 0 ]/S C O M 2
1 9
3 0
P C 5 /[IN T 1 ]/T P 0 _ 1 /T P 1 B _ 2 /[P C K ]
P E 3 /[T P 3 _ 1 ]
2 0
2 9
P D 0 /[T C K 2 ]/[S C S ]
P E 2
2 1
2 8
P D 1 /[T P 2 _ 0 ]/[S D O ]/[S C K /S C L ]
P E 1
2 2
2 7
P D 2 /[T C K 0 ]/[S D I/S D A ]
P E 0
2 3
2 6
P D 3 /[T C K 1 ]/[S D O ]
P D 5 /[T P 0 _ 1 ]
2 4
2 5
P D 4 /[T P 2 _ 1 ]
2 9
H T 6 8 F 5 0
4 4 Q F P -A
6
7
2 8
2 7
8
2 6
9
2 5
1 0
1 1
2 4
1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2
2 3
/[T C K 1 ]/T P 3 _ 0 /[S D O ]
/[T P 2 _ 1 ]
/[T P 0 _ 1 ]
/[T
/[T
/[T
/T
/T
P 3 _
P 0 _
P 1 A
P 1 B
P 1 B
1 ]
0 ]/S
]/S C
_ 0 /S
_ 1 /S
C O
O M
C O
C O
M 2
3
M 0
M 1
P D 2 /[T C K 0 ]/[S D I/S D
P D 1 /[T P 2 _ 0 ]/[S D O ]/[S C K /S C
P D 0 /[T C K 2 ]/T P 3 _ 1 /[S C
P C 5 /[IN T 1 ]/T P 0 _ 1 /T P 1 B _ 2 /[P C
P C 4 /[IN T 0 ]/[P IN T ]/T C K 3 /T P 2
P C 3 /P IN T /T P 2 _ 0 /C
P C 2 /T C K 2 /P C K /C
P D 7 /[S C
P D 6 /[S C K /S C
P B 7 /[S D I/S D
P B 6 /[S D
H T 6 8 F 5 0
4 8 S S O P -A
/[T P 1 B _ 2 ]
/[T P 3 _ 0 ]
/R E S
3 3
3 0
5
C 1
1 6
4
C 2
P C 0 /T P 1 B _ 0 /S C O M 0
3 1
1
N C
P D 3
P D 4
P D 5
P E 0
P E 1
P E 2
P E 3
P C 6
P C 7
P C 0
P C 1
3 3
3 2
3
2
N C
3 4
2
/O S
/O S
/X T
/X T
3 5
1 5
4 4 4 3 4 2 4 1 4 0 3 9 3 8 3 7 3 6 3 5 3 4
1
/[IN T 0 ]
/[IN T 1 ]
1 4
P B 5 /S C S
P A 7 /S C K /S C L
P A 6 /S D I/S D A
P A 5 /C 1 X /S D O
P A 4 /IN T 1 /T C K 1
P A 3 /IN T 0 /C 0 P A 2 /T C K 0 /C 0 +
P A 1 /T P 1 A
P A 0 /C 0 X /T P 0 _ 0
P F 1 /[C 1 X ]
P F 0 /[C 0 X ]
P E 4
P E 5
P B 0
V D D
P B 1
P B 2
P B 3
P B 4
V S S
P E 6
P E 7
P E 4 /[T P 1 B _ 2 ]
P C 1 /T P 1 B _ 1 /S C O M 1
P
4 3
/R E S
6
D
P A 5 /C 1 X /S D O
V S S
1
4 4
C 1
5
T
P A 4 /IN T 1 /T C K 1
P E 6 /[IN T 0 ]
M 2
3
M 0
M 1
P D 1 /[T
P
P C 5 /[IN T
P C 4 /[IN
4 5
C O
O M
C O
C O
C 2
4
1
P A 3 /IN T 0 /C 0 -
P E 7 /[IN T 1 ]
2
4 6
/O S
/O S
/X T
/X T
3
D I/S D A ]
3 _ 0 /[S D O ]
A ]
L ]
S ]
K ]
_ 1
1 1 +
S ]
L ]
A ]
O ]
P A 2 /T C K 0 /C 0 +
P F 0 /[C 0 X ]
2 1
C K 0 ]/[S
C K 1 ]/T P
P 2 _ 1 ]
P 0 _ 1 ]
P 0 _ 0 ]/S
P 1 A ]/S C
P 1 B _ 0 /S
P 1 B _ 1 /S
P 1 B _ 2 ]
P 3 _ 0 ]
P D 2 /[T C K 0 ]/[S D I/S D
2 _ 0 ]/[S D O ]/[S C K /S C
0 /[T C K 2 ]/T P 3 _ 1 /[S C
]/T P 0 _ 1 /T P 1 B _ 2 /[P C
0 ]/[P IN T ]/T C K 3 /T P 2
P C 3 /P IN T /T P 2 _ 0 /C
P C 2 /T C K 2 /P C K /C
P D 7 /[S C
P D 6 /[S C K /S C
P B 7 /[S D I/S D
P B 6 /[S D
P A 1 /T P 1 A
4 7
2 4
9
/[IN T 0 ]
/[IN T 1 ]
/[C 0 X ]
4 8
2
2 5
/[T
/[T
/[T
/[T
/[T
/[T
/T
/T
/[T
/[T
P B 0
V D D
P B 1
P B 2
P B 3
P B 4
V S S
P E 6
P E 7
P F 0
1
P F 1 /[C 1 X ]
2 6
8
H T 6 8 F 5 0
2 8 S K D IP -A /S O P -A /S S O P -A
P A 0 /C 0 X /T P 0 _ 0
P D 2
P D 3
P D 4
P D 5
P C 6
P C 7
P C 0
P C 1
P E 4
P E 5
3 0
2 9
3
N
A ]
L ]
S ]
C
K ]
_ 1
1 1 +
S ]
L ]
A ]
O ]
N C
P B 5 /S C S
P A 7 /S C K /S C L
P A 6 /S D I/S D A
P A 5 /C 1 X /S D O
P A 4 /IN T 1 /T C K 1
P A 3 /IN T 0 /C 0 P A 2 /T C K 0 /C 0 +
P A 1 /T P 1 A
P A 0 /C 0 X /T P 0 _ 0
N C
P F 1 /[C 1 X ]
4 8 4 7 4 6 4 5 4 4 4 3 4 2 4 1 4 0 3 9 3 8 3 7
1
2
3 6
3 5
3
3 4
4
3 3
5
3 2
6
3 1
H T 6 8 F 5 0
4 8 Q F N -A
7
8
3 0
2 9
9
2 8
1 0
2 7
1 1
1 2
2 6
1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4
2 5
P D 3
P D 4
P D 5
P E 0
P E 1
P E 2
P E 3
P C 6
P C 7
N C
P C 0
P C 1
/[T C K 1 ]/T P 3 _ 0 /[S D O ]
/[T P 2 _ 1 ]
/[T P 0 _ 1 ]
/[T P 3 _ 1 ]
/[T P 0 _ 0 ]/S C O M 2
/[T P 1 A ]/S C O M 3
/T P 1 B _ 0 /S C O M 0
/T P 1 B _ 1 /S C O M 1
P E 4
P E 5
P B 0
V D D
P B 1
P B 2
P B 3
P B 4
V S S
P E 6
P E 7
P F 0
1
2
C 1
C 2
/[T P 1 B _ 2 ]
/[T P 3 _ 0 ]
/R E S
/O S
/O S
/X T
/X T
/[IN T 0 ]
/[IN T 1 ]
/[C 0 X ]
Note:
1. Bracketed pin names indicate non-default pinout remapping locations.
2. If the pin-shared pin functions have multiple outputs simultaneously, its pin names at the right side of the
²/² sign can be used for higher priority.
Rev. 1.00
5
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
P D 1 /[T
P
P C 5 /IN T 3 /[IN T
P C 4 /IN T 2 /[IN
P D 1 /[T
P
P C 5 /IN T 3 /[IN T
P C 4 /IN T 2 /[IN
1
D
P
T
1
D
P
P D 2 /[T C K 0 ]/[S D I/S D
2 _ 0 ]/[S D O ]/[S C K /S C
0 /[T C K 2 ]/T P 3 _ 1 /[S C
]/T P 0 _ 1 /T P 1 B _ 2 /[P C
0 ]/[P IN T ]/T C K 3 /T P 2
P C 3 /P IN T /T P 2 _ 0 /C
P C 2 /T C K 2 /P C K /C
P D 7 /[S C
P D 6 /[S C K /S C
P B 7 /[S D I/S D
P B 6 /[S D
T
L ]
S ]
K ]
_ 1
1 1 +
S ]
L ]
A ]
O ]
A ]
L ]
S ]
K ]
_ 1
1 1 +
S ]
L ]
A ]
O ]
2 _ 0 ]/[S D O ]/[S C K /S C
0 /[T C K 2 ]/T P 3 _ 1 /[S C
]/T P 0 _ 1 /T P 1 B _ 2 /[P C
0 ]/[P IN T ]/T C K 3 /T P 2
P C 3 /P IN T /T P 2 _ 0 /C
P C 2 /T C K 2 /P C K /C
P D 7 /[S C
P D 6 /[S C K /S C
P B 7 /[S D I/S D
P B 6 /[S D
P B 5 /S C S
P A 7 /S C K /S C L
P A 6 /S D I/S D A
P A 5 /C 1 X /S D O
P A 4 /IN T 1 /T C K 1
P A 3 /IN T 0 /C 0 P A 2 /T C K 0 /C 0 +
P A 1 /T P 1 A
P A 0 /C 0 X /T P 0 _ 0
P F 1 /[C 1 X ]
4 0 3 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2 3 1
1
2
3 0
2 9
2 8
3
4
2 7
5
H T 6 8 F 6 0
4 0 Q F N -A
6
7
2 6
2 5
2 4
8
2 3
9
1 0
2 2
1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
2 1
P D 2
P D 3
P D 4
P D 5
P C 6
P C 7
P C 0
P C 1
P E 4
P E 5
/[T
/[T
/[T
/[T
/[T
/[T
/T
/T
/[T
/[T
C K 0 ]/[S
C K 1 ]/T P
P 2 _ 1 ]
P 0 _ 1 ]
P 0 _ 0 ]/S
P 1 A ]/S C
P 1 B _ 0 /S
P 1 B _ 1 /S
P 1 B _ 2 ]
P 3 _ 0 ]
P B 5 /S C S
P A 7 /S C K /S C L
P A 6 /S D I/S D A
P A 5 /C 1 X /S D O
P A 4 /IN T 1 /T C K 1
P A 3 /IN T 0 /C 0 P A 2 /T C K 0 /C 0 +
P A 1 /T P 1 A
P A 0 /C 0 X /T P 0 _ 0
P F 1 /[C 1 X ]
P F 0 /[C 0 X ]
D I/S D A ]
3 _ 0 /[S D O ]/[S C K /S C L ]
C O
O M
C O
C O
M 2
3
M 0
M 1
2
7
1 1
4 1
P D 3 /[T C K 1 ]/T P 3 _ 0 /[S D O ]/[S C K /S C L ]
P A 7 /S C K /S C L
9
4 0
P D 4 /[T P 2 _ 1 ]
P A 6 /S D I/S D A
1 0
3 9
P D 5 /[T P 0 _ 1 ]
P A 5 /C 1 X /S D O
1 1
3 8
P E 0 /[IN T 0 ]
P A 4 /IN T 1 /T C K 1
1 2
3 7
P E 1 /[IN T 1 ]
P A 3 /IN T 0 /C 0 -
1 3
3 6
P E 2 /[IN T 2 ]
P A 2 /T C K 0 /C 0 +
1 4
3 5
P E 3 /[T P 3 _ 1 ]
P A 1 /T P 1 A
1 5
3 4
P G 1 /[C 1 X ]
P A 0 /C 0 X /T P 0 _ 0
1 6
3 3
P C 6 /[T P 0 _ 0 ]/S C O M 2
1 7
3 2
P C 7 /[T P 1 A ]/S C O M 3
P F 0 /[C 0 X ]
1 8
3 1
P C 0 /T P 1 B _ 0 /S C O M 0
P E 7 /[IN T 1 ]
1 9
3 0
P C 1 /T P 1 B _ 1 /S C O M 1
P E 6 /[IN T 0 ]
V D D
P B 2 /O S C 2
2 4
2 5
P B 1 /O S C 1
3 2
6
3 1
H T 6 8 F 6 0
4 8 Q F N -A
7
8
3 0
2 9
9
2 8
1 0
2 7
1 1
1 2
2 6
1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4
2 5
P D 3
P D 4
P D 5
P E 0
P E 1
P E 2
P E 3
P C 6
P C 7
N C
P C 0
P C 1
/[T
/[T
/[T
/[IN
/[IN
/[IN
/[T
/[T
/[T
C K 1 ]/T P 3 _ 0 /[S D O ]/[S C K /S C L ]
P 2 _ 1 ]
P 0 _ 1 ]
T 0 ]
T 1 ]
T 2 ]
P 3 _ 1 ]
P 0 _ 0 ]/S C O M 2
P 1 A ]/S C O M 3
/T P 1 B _ 0 /S C O M 0
/T P 1 B _ 1 /S C O M 1
/[T P 1 B _ 2 ]
/[T P 3 _ 0 ]
/R E S
2 6
3 3
5
C 1
2 3
4
C 2
P B 0 /R E S
P B 3 /X T 1
3 4
1
P E 5 /[T P 3 _ 0 ]
2 7
3 6
3 5
3
2
P E 4 /[T P 1 B _ 2 ]
2 8
2 2
2
/O S
/O S
/X T
/X T
2 9
2 1
4 8 4 7 4 6 4 5 4 4 4 3 4 2 4 1 4 0 3 9 3 8 3 7
1
/[IN T 0 ]
/[IN T 1 ]
/[C 0 X ]
2 0
V S S
P B 4 /X T 2
N C
P B 5 /S C S
P A 7 /S C K /S C L
P A 6 /S D I/S D A
P A 5 /C 1 X /S D O
P A 4 /IN T 1 /T C K 1
P A 3 /IN T 0 /C 0 P A 2 /T C K 0 /C 0 +
P A 1 /T P 1 A
P A 0 /C 0 X /T P 0 _ 0
N C
P F 1 /[C 1 X ]
P E 4
P E 5
P B 0
V D D
P B 1
P B 2
P B 3
P B 4
V S S
P E 6
P E 7
P F 0
P F 1 /[C 1 X ]
M 2
3
M 0
M 1
N
8
C O
O M
C O
C O
P D 2 /[T C K 0 ]/[S D I/S D
P D 1 /[T P 2 _ 0 ]/[S D O ]/[S C K /S C
P D 0 /[T C K 2 ]/T P 3 _ 1 /[S C
P D 2 /[T C K 0 ]/[S D I/S D A ]
P B 5 /S C S /V R E F
2 3
3 _ 0 /[S D O ]/[S C K /S C L ]
/[T P 1 B _ 2 ]
/[T P 3 _ 0 ]
/R E S
P D 1 /[T P 2 _ 0 ]/[S D O ]/[S C K /S C L ]
4 2
C 1
4 3
7
C 2
P D 0 /[T C K 2 ]/T P 3 _ 1 /[S C S ]
6
P F 2
1
4 4
1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2
2
5
P B 6 /[S D O ]
2 4
/O S
/O S
/X T
/X T
P C 5 /IN T 3 /[IN T 1 ]/T P 0 _ 1 /T P 1 B _ 2 /[P C K ]
P B 7 /[S D I/S D A ]
2 5
K 1 ]/T P
2 _ 1 ]
0 _ 1 ]
T 0 ]
T 1 ]
T 2 ]
3 _ 1 ]
0 _ 0 ]/S
1 A ]/S C
1 B _ 0 /S
1 B _ 1 /S
A ]
L ]
S ]
C
K ]
_ 1
1 1 +
S ]
L ]
A ]
O ]
4 5
2 6
1 0
P C 5 /IN T 3 /[IN T 1 ]/T P 0 _ 1 /T P 1 B _ 2 /[P C
P C 4 /IN T 2 /[IN T 0 ]/[P IN T ]/T C K 3 /T P 2
P C 3 /P IN T /T P 2 _ 0 /C
P C 2 /T C K 2 /P C K /C
P D 7 /[S C
P D 6 /[S C K /S C
P B 7 /[S D I/S D
P B 6 /[S D
4
2 7
9
/[IN T 0 ]
/[IN T 1 ]
P C 4 /IN T 2 /[IN T 0 ]/[P IN T ]/T C K 3 /T P 2 _ 1
P D 6 /[S C K /S C L ]
2 8
8
C 1
P C 3 /P IN T /T P 2 _ 0 /C 1 -
4 6
2 9
H T 6 8 F 6 0
4 4 Q F P -A
6
C 2
P C 2 /T C K 2 /P C K /C 1 +
4 7
3
3 0
5
/[T C
/[T P
/[T P
/[IN
/[IN
/[IN
/[T P
/[T P
/[T P
/T P
/T P
P E 4
P E 5
P B 0
V D D
P B 1
P B 2
P B 3
P B 4
V S S
P E 6
P E 7
1
2
4 8
2
3 1
4
/R E S
/O S
/O S
/X T
/X T
/[IN T 0 ]
/[IN T 1 ]
/[C 0 X ]
1
N C
P D 3
P D 4
P D 5
P E 0
P E 1
P E 2
P E 3
P C 6
P C 7
P C 0
P C 1
3 3
3 2
3
P B 0
V D D
P B 1
P B 2
P B 3
P B 4
V S S
P E 6
P E 7
P F 0
N C
P D 7 /[S C S ]
4 4 4 3 4 2 4 1 4 0 3 9 3 8 3 7 3 6 3 5 3 4
1
P D 1 /[T
P
P C 5 /IN T 3 /[IN T
P C 4 /IN T 2 /[IN
H T 6 8 F 6 0
4 8 S S O P -A
1
D
P
T
P D 2 /[T C K 0 ]/[S D I/S D
2 _ 0 ]/[S D O ]/[S C K /S C
0 /[T C K 2 ]/T P 3 _ 1 /[S C
]/T P 0 _ 1 /T P 1 B _ 2 /[P C
0 ]/[P IN T ]/T C K 3 /T P 2
P C 3 /P IN T /T P 2 _ 0 /C
P C 2 /T C K 2 /P C K /C
P D 7 /[S C
P D 6 /[S C K /S C
P B 7 /[S D I/S D
P B 6 /[S D
P
P
A ]
L ]
S ]
K ]
_ 1
1 1 +
S ]
L ]
A ]
O ]
F 5
F 4
P F 3
P F 2
P B 5 /S C S
P A 7 /S C K /S C L
P A 6 /S D I/S D A
P A 5 /C 1 X /S D O
P A 4 /IN T 1 /T C K 1
P A 3 /IN T 0 /C 0 P A 2 /T C K 0 /C 0 +
P A 1 /T P 1 A
P A 0 /C 0 X /T P 0 _ 0
P F 1 /[C 1 X ]
P F 0 /[C 0 X ]
5 2 5 1 5 0 4 9 4 8 4 7 4 6 4 5 4 4 4 3 4 2 4 1 4 0
1
3 9
3 8
2
3 7
3
3 6
4
5
3 5
6
H T 6 8 F 6 0
5 2 Q F P -A
7
8
9
1 0
1 1
1 2
1 3
1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6
3 4
3 3
3 2
3 1
3 0
2 9
2 8
2 7
P D 3
P D 4
P D 5
P E 0
P E 1
P E 2
P E 3
P F 6
P F 7
P G 0
P G 1
P C 6
P C 7
/[T
/[T
/[T
/[IN
/[IN
/[IN
/[T
C K 1 ]/T P 3 _ 0 /[S D O ]/[S C K /S C L ]
P 2 _ 1 ]
P 0 _ 1 ]
T 0 ]
T 1 ]
T 2 ]
P 3 _ 1 ]
/[C
/[C
/[T
/[T
0 X
1 X
P 0
P 1
]
]
_ 0 ]/S C O M 2
A ]/S C O M 3
P C 0
P C 1
P E 4
P E 5
P B 0
V D D
P B 1
P B 2
P B 3
P B 4
V S S
P E 6
P E 7
/T P
/T P
/[T P
/[T P
/R E
/O S
/O S
/X T
/X T
1
2
1 B
1 B
1 B
3 _
S
C 1
C 2
/[IN T 0 ]
/[IN T 1 ]
_ 0 /S C O M 0
_ 1 /S C O M 1
_ 2 ]
0 ]
Note:
1. Bracketed pin names indicate non-default pinout remapping locations.
2. If the pin-shared pin functions have multiple outputs simultaneously, its pin names at the right side of the
²/² sign can be used for higher priority.
Rev. 1.00
6
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Pin Description
With the exception of the power pins, all pins on these devices can be referenced by their Port name, e.g. PA.0, PA.1
etc, which refer to the digital I/O function of the pins. However these Port pins are also shared with other function such
as the Serial Port pins etc. The function of each pin is listed in the following table, however the details behind how each
pin is configured is contained in other sections of the datasheet.
HT68F20
Pin Name
Function
OP
I/T
O/T
Pin-Shared Mapping
PA0~PA7
Port A
PAWU
PAPU
ST
CMOS
¾
PB0~PB5
Port B
PBPU
ST
CMOS
¾
PC0~PC3
Port C
PCPU
ST
CMOS
¾
C0-, C1-
Comparator 0, 1 input
AN
¾
PA3, PC3
AN
¾
PA2, PC2
¾
CMOS
PA0, PA5
C0+, C1+
Comparator 0, 1 input
C0X, C1X
Comparator 0, 1 output
CP0C
CP1C
TCK0, TCK1
TM0, TM1 input
¾
ST
¾
TP0_0
TM0 I/O
TMPC0
ST
CMOS
PA0
TP1_0, TP1_1
TM1 I/O
TMPC0
ST
CMOS
PA1, PC0
INT0, INT1
Ext. Interrupt 0, 1
¾
ST
¾
PA3, PA4
PINT
Peripheral Interrupt
¾
ST
¾
PC3
PCK
Peripheral Clock output
¾
¾
CMOS
PC2
SDI
SPI Data input
¾
ST
¾
PA6
SDO
SPI Data output
¾
¾
CMOS
PA5
SCS
SPI Slave Select
¾
ST
CMOS
PB5
SCK
SPI Serial Clock
¾
ST
CMOS
PA7
2
¾
ST
NMOS
PA7
2
¾
ST
NMOS
PA6
SCOMC
¾
SCOM
PC0, PC1, PC2, PC3
I C Clock
SCL
PA2, PA4
SDA
I C Data
SCOM0~SCOM3
SCOM0~SCOM3
OSC1
HXT/ERC pin
CO
HXT
¾
PB1
OSC2
HXT pin
CO
¾
HXT
PB2
XT1
LXT pin
CO
LXT
¾
PB3
XT2
LXT pin
CO
¾
LXT
PB4
RES
Reset input
CO
ST
¾
PB0
VDD
Power supply
¾
PWR
¾
¾
VSS
Ground
¾
PWR
¾
¾
Note:
I/T: Input type; O/T: Output type
OP: Optional by configuration option (CO) or register option
PWR: Power; CO: Configuration option; ST: Schmitt Trigger input
CMOS: CMOS output; NMOS: NMOS output
SCOM: Software controlled LCD COM; AN: Analog input pin
HXT: High frequency crystal oscillator
LXT: Low frequency crystal oscillator
As the Pin Description Summary table applies to the package type with the most pins, not all of the above listed
pins may be present on package types with smaller numbers of pins.
Rev. 1.00
7
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
HT68F30
Pin Name
Function
OP
I/T
O/T
Pin-Shared Mapping
PA0~PA7
Port A
PAWU
PAPU
ST
CMOS
¾
PB0~PB5
Port B
PBPU
ST
CMOS
¾
PC0~PC7
Port C
PCPU
ST
CMOS
¾
C0-, C1-
Comparator 0, 1 input
AN
¾
PA3, PC3
AN
¾
PA2, PC2
¾
CMOS
PA0, PA5
¾
ST
¾
PA2, PA4
CP0C
CP1C
C0+, C1+
Comparator 0, 1 input
C0X, C1X
Comparator 0, 1 output
TCK0, TCK1
TM0, TM1 input
TP0_0, TP0_1
TM0 I/O
TMPC0
ST
CMOS
PA0, PC5
TP1A
TM1 I/O
TMPC0
ST
CMOS
PA1
TP1B_0, TP1B_1
TM1 I/O
TMPC0
ST
CMOS
PC0, PC1
INT0, INT1
Ext. Interrupt 0, 1
¾
ST
¾
PA3, PA4
PINT
Peripheral Interrupt
PRM0
ST
¾
PC3 or PC4
PCK
Peripheral Clock output
PRM0
¾
CMOS
PC2 or PC5
SDI
SPI Data input
PRM0
ST
¾
PA6 or PC0
SDO
SPI Data output
PRM0
¾
CMOS
PA5 or PC1
SCS
SPI Slave Select
PRM0
ST
CMOS
PB5 or PC6
SCK
SPI Serial Clock
SCL
PRM0
ST
CMOS
PA7 or PC7
2
PRM0
ST
NMOS
PA7 or PC7
2
PRM0
ST
NMOS
PA6 or PC0
SCOMC
¾
SCOM
PC0, PC1, PC6, PC7
I C Clock
SDA
I C Data
SCOM0~SCOM3
SCOM0~SCOM3
OSC1
HXT/ERC pin
CO
HXT
¾
PB1
OSC2
HXT pin
CO
¾
HXT
PB2
XT1
LXT pin
CO
LXT
¾
PB3
XT2
LXT pin
CO
¾
LXT
PB4
RES
Reset input
CO
ST
¾
PB0
VDD
Power supply
¾
PWR
¾
¾
VSS
Ground
¾
PWR
¾
¾
Note:
I/T: Input type; O/T: Output type
OP: Optional by configuration option (CO) or register option
PWR: Power; CO: Configuration option; ST: Schmitt Trigger input
CMOS: CMOS output; NMOS: NMOS output
SCOM: Software controlled LCD COM; AN: Analog input pin
HXT: High frequency crystal oscillator
LXT: Low frequency crystal oscillator
As the Pin Description Summary table applies to the package type with the most pins, not all of the above listed
pins may be present on package types with smaller numbers of pins.
Rev. 1.00
8
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
HT68F40
Pin Name
Function
OP
I/T
O/T
Pin-Shared Mapping
PA0~PA7
Port A
PAWU
PAPU
ST
CMOS
¾
PB0~PB7
Port B
PBPU
ST
CMOS
¾
PC0~PC7
Port C
PCPU
ST
CMOS
¾
PD0~PD7
Port D
PDPU
ST
CMOS
¾
PE0~PE7
Port E
PEPU
ST
CMOS
¾
PF0~PF1
Port F
PFPU
ST
CMOS
¾
C0-, C1-
Comparator 0, 1 input
CP0C
CP1C
AN
¾
PA3, PC3
C0+, C1+
Comparator 0, 1 input
CP0C
CP1C
AN
¾
PA2, PC2
C0X, C1X
Comparator 0, 1 output
CP0C
CP1C
PRM0
¾
CMOS
TCK0~TCK2
TM0~TM2 input
PRM1
ST
¾
TP0_0, TP0_1
TM0 I/O
TMPC0
PRM2
ST
CMOS
PA0, PC5 or PC6, PD5
TP1A
TM1 I/O
TMPC0
PRM2
ST
CMOS
PA1 or PC7
TP1B_0~TP1B_2
TM1 I/O
TMPC0
PRM2
ST
CMOS
PC0, PC1, PC5 or
-, -, PE4
TP2_0, TP2_1
TM2 I/O
TMPC1
PRM2
ST
CMOS
PC3, PC4 or PD1, PD4
INT0, INT1
Ext. Interrupt 0, 1
PRM1
ST
¾
PA3, PA4 or PC4, PC5 or
PE6, PE7
PINT
Peripheral Interrupt
PRM0
ST
¾
PC3 or PC4
PCK
Peripheral Clock output
PRM0
¾
CMOS
PC2 or PC5
SDI
SPI Data input
PRM0
ST
¾
PA6 or PD2 or PB7
PA0, PA5 or PF0, PF1
PA2, PA4, PC2 or
PD2, PD3, PD0
SDO
SPI Data output
PRM0
¾
CMOS
PA5 or PD3 or PB6
SCS
SPI Slave Select
PRM0
ST
CMOS
PB5 or PD0 or PD7
SCK
SPI Serial Clock
SCL
PRM0
ST
CMOS
PA7 or PD1 or PD6
2
PRM0
ST
NMOS
PA7 or PD1 or PD6
2
PRM0
ST
NMOS
PA6 or PD2 or PB7
SCOMC
¾
SCOM
PC0, PC1, PC6, PC7
I C Clock
SDA
I C Data
SCOM0~SCOM3
SCOM0~SCOM3
OSC1
HXT/ERC pin
CO
HXT
¾
PB1
OSC2
HXT pin
CO
¾
HXT
PB2
XT1
LXT pin
CO
LXT
¾
PB3
XT2
LXT pin
CO
¾
LXT
PB4
RES
Reset input
CO
ST
¾
PB0
VDD
Power supply
¾
PWR
¾
¾
VSS
Ground
¾
PWR
¾
¾
Rev. 1.00
9
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Note:
I/T: Input type; O/T: Output type
OP: Optional by configuration option (CO) or register option
PWR: Power; CO: Configuration option; ST: Schmitt Trigger input
CMOS: CMOS output; NMOS: NMOS output
SCOM: Software controlled LCD COM; AN: Analog input pin
HXT: High frequency crystal oscillator
LXT: Low frequency crystal oscillator
As the Pin Description Summary table applies to the package type with the most pins, not all of the above listed
pins may be present on package types with smaller numbers of pins.
HT68F50
Pin Name
Function
OP
I/T
O/T
Pin-Shared Mapping
ST
CMOS
¾
PA0~PA7
Port A
PAWU
PAPU
PB0~PB7
Port B
PBPU
ST
CMOS
¾
PC0~PC7
Port C
PCPU
ST
CMOS
¾
PD0~PD7
Port D
PDPU
ST
CMOS
¾
PE0~PE7
Port E
PEPU
ST
CMOS
¾
PF0~PF1
Port F
PFPU
ST
CMOS
¾
C0-, C1-
Comparator 0, 1 input
CP0C
CP1C
AN
¾
PA3, PC3
C0+, C1+
Comparator 0, 1 input
CP0C
CP1C
AN
¾
PA2, PC2
C0X, C1X
Comparator 0, 1 output
CP0C
CP1C
PRM0
¾
CMOS
PA0, PA5 or PF0, PF1
TCK0~TCK3
TM0~TM3 input
PRM1
ST
¾
PA2, PA4, PC2, PC4 or
PD2, PD3, PD0, -
TP0_0, TP0_1
TM0 I/O
TMPC0
PRM2
ST
CMOS
PA0, PC5 or PC6, PD5
TP1A
TM1 I/O
TMPC0
PRM2
ST
CMOS
PA1 or PC7
TP1B_0~TP1B_2
TM1 I/O
TMPC0
PRM2
ST
CMOS
PC0, PC1, PC5 or
-, -, PE4
TP2_0, TP2_1
TM2 I/O
TMPC1
PRM2
ST
CMOS
PC3, PC4 or PD1, PD4
TP3_0, TP3_1
TM3 I/O
TMPC1
PRM2
ST
CMOS
PD3, PD0 or PE5, PE3
INT0, INT1
Ext. Interrupt 0, 1
PRM1
ST
¾
PA3, PA4 or PC4, PC5 or
PE6, PE7
PINT
Peripheral Interrupt
PRM0
ST
¾
PC3 or PC4
PCK
Peripheral Clock output
PRM0
¾
CMOS
PC2 or PC5
SDI
SPI Data input
PRM0
ST
¾
PA6 or PD2 or PB7
SDO
SPI Data output
PRM0
¾
CMOS
PA5 or PD3 or PB6
SCS
SPI Slave Select
PRM0
ST
CMOS
PB5 or PD0 or PD7
SCK
SPI Serial Clock
PRM0
ST
CMOS
PA7 or PD1 or PD6
Rev. 1.00
10
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Pin Name
SCL
OP
I/T
O/T
2
Function
PRM0
ST
NMOS
PA7 or PD1 or PD6
2
PRM0
ST
NMOS
PA6 or PD2 or PB7
SCOMC
¾
SCOM
PC0, PC1, PC6, PC7
I C Clock
Pin-Shared Mapping
SDA
I C Data
SCOM0~SCOM3
SCOM0~SCOM3
OSC1
HXT/ERC pin
CO
HXT
¾
PB1
OSC2
HXT pin
CO
¾
HXT
PB2
XT1
LXT pin
CO
LXT
¾
PB3
XT2
LXT pin
CO
¾
LXT
PB4
RES
Reset input
CO
ST
¾
PB0
VDD
Power supply
¾
PWR
¾
¾
VSS
Ground
¾
PWR
¾
¾
Note:
I/T: Input type; O/T: Output type
OP: Optional by configuration option (CO) or register option
PWR: Power; CO: Configuration option; ST: Schmitt Trigger input
CMOS: CMOS output; NMOS: NMOS output
SCOM: Software controlled LCD COM; AN: Analog input pin
HXT: High frequency crystal oscillator
LXT: Low frequency crystal oscillator
As the Pin Description Summary table applies to the package type with the most pins, not all of the above listed
pins may be present on package types with smaller numbers of pins.
HT68F60
Pin Name
Function
OP
I/T
O/T
Pin-Shared Mapping
PA0~PA7
Port A
PAWU
PAPU
ST
CMOS
¾
PB0~PB7
Port B
PBPU
ST
CMOS
¾
PC0~PC7
Port C
PCPU
ST
CMOS
¾
PD0~PD7
Port D
PDPU
ST
CMOS
¾
PE0~PE7
Port E
PEPU
ST
CMOS
¾
PF0~PF7
Port F
PFPU
ST
CMOS
¾
PG0~PG1
Port G
PGPU
ST
CMOS
¾
C0-, C1-
Comparator 0, 1 input
CP0C
CP1C
AN
¾
PA3, PC3
C0+, C1+
Comparator 0, 1 input
CP0C
CP1C
AN
¾
PA2, PC2
C0X, C1X
Comparator 0, 1 output
CP0C
CP1C
PRM0
¾
CMOS
TCK0~TCK3
TM0~TM3 input
PRM1
ST
¾
PA2, PA4, PC2, PC4 or
PD2, PD3, PD0, -
TP0_0, TP0_1
TM0 I/O
TMPC0
PRM2
ST
CMOS
PA0, PC5 or PC6, PD5
TP1A
TM1 I/O
TMPC0
PRM2
ST
CMOS
PA1 or PC7
Rev. 1.00
11
PA0, PA5 or PF0, PF1 or
PG0, PG1
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Pin Name
Function
OP
I/T
O/T
Pin-Shared Mapping
TP1B_0~TP1B_2
TM1 I/O
TMPC0
PRM2
ST
CMOS
PC0, PC1, PC5 or
-, -, PE4
TP2_0, TP2_1
TM2 I/O
TMPC1
PRM2
ST
CMOS
PC3, PC4 or PD1, PD4
TP3_0, TP3_1
TM3 I/O
TMPC1
PRM2
ST
CMOS
PD3, PD0 or PE5, PE3
INT0~INT3
Ext. Interrupt 0~3
PRM1
ST
¾
PA3, PA4, PC4, PC5 or
PC4, PC5, PE2, -, or
PE0, PE1, -, - or
PE6, PE7, -, -
PINT
Peripheral Interrupt
PRM0
ST
¾
PC3 or PC4
PCK
Peripheral Clock output
PRM0
¾
CMOS
PC2 or PC5
SDI
SPI Data input
PRM0
ST
¾
SDO
SPI Data output
PRM0
¾
CMOS
PA5 or PD3 or PB6 or
PD1
SCS
SPI Slave Select
PRM0
ST
CMOS
PB5 or PD0 or PD7
SCK
SPI Serial Clock
PRM0
ST
CMOS
PA7 or PD1 or PD6 or
PD3
SCL
I2C Clock
PRM0
ST
NMOS
PA7 or PD1 or PD6 or
PD3
SDA
I2C Data
PRM0
ST
NMOS
PA6 or PD2 or PB7
SCOM0~SCOM3
SCOM0~SCOM3
SCOMC
¾
SCOM
PC0, PC1, PC6, PC7
OSC1
HXT/ERC pin
CO
HXT
¾
PB1
OSC2
HXT pin
CO
¾
HXT
PB2
XT1
LXT pin
CO
LXT
¾
PB3
PA6 or PD2 or PB7
XT2
LXT pin
CO
¾
LXT
PB4
RES
Reset input
CO
ST
¾
PB0
VDD
Power supply
¾
PWR
¾
¾
VSS
Ground
¾
PWR
¾
¾
Note:
I/T: Input type; O/T: Output type
OP: Optional by configuration option (CO) or register option
PWR: Power; CO: Configuration option; ST: Schmitt Trigger input
CMOS: CMOS output; NMOS: NMOS output
SCOM: Software controlled LCD COM; AN: Analog input pin
HXT: High frequency crystal oscillator
LXT: Low frequency crystal oscillator
As the Pin Description Summary table applies to the package type with the most pins, not all of the above listed
pins may be present on package types with smaller numbers of pins.
Rev. 1.00
12
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Absolute Maximum Ratings
Supply Voltage ...........................VSS-0.3V to VSS+6.0V
Storage Temperature ............................-50°C to 125°C
Input Voltage..............................VSS-0.3V to VDD+0.3V
IOL Total ................................................................80mA
Total Power Dissipation .....................................500mW
Operating Temperature...........................-40°C to 85°C
IOH Total..............................................................-80mA
Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may
cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed
in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
D.C. Characteristics
Ta=25°C
Test Conditions
Symbol
Parameter
Min.
Typ.
Max.
Unit
fSYS=8MHz
2.2
¾
5.5
V
fSYS=12MHz
2.7
¾
5.5
V
fSYS=20MHz
4.5
¾
5.5
V
¾
0.7
1.1
mA
¾
1.8
2.7
mA
¾
1.6
2.4
mA
¾
3.3
5.0
mA
¾
2.2
3.3
mA
¾
5.0
7.5
mA
¾
6.0
9.0
mA
¾
10
20
mA
¾
30
50
mA
¾
1.5
3.0
mA
¾
3.0
6.0
mA
¾
0.55
0.83
mA
¾
1.30
2.00
mA
¾
¾
1
mA
¾
¾
2
mA
¾
1.5
3.0
mA
¾
2.5
5.0
mA
VDD
VDD
Operating Voltage
(HXT, ERC, HIRC)
¾
3V
5V
IDD1
Operating Current,
Normal Mode, fSYS=fH
(HXT, ERC, HIRC)
3V
5V
3V
5V
Conditions
No load, fSYS=fH=4MHz,
WDT enable
No load, fSYS=fH=8MHz,
WDT enable
No load, fSYS=fH=12MHz,
WDT enable
IDD2
Operating Current,
Normal Mode, fSYS=fH
(HXT)
IDD3
Operating Current, Slow Mode,
fSYS=fL (LXT, LIRC)
3V
IDLE0 Mode Stanby Current
(LXT or LIRC on)
3V
IDLE1 Mode Stanby Current
(HXT, ERC, HIRC)
3V
SLEEP0 Mode Stanby Current
(LXT and LIRC off)
3V
SLEEP1 Mode Stanby Current
(LXT or LIRC on)
3V
VIL1
Input Low Voltage for I/O Ports or
Input Pins except RES pin
¾
¾
0
¾
0.3VDD
V
VIH1
Input High Voltage for I/O Ports
or Input Pins except RES pin
¾
¾
0.7VDD
¾
VDD
V
VIL2
Input Low Voltage (RES)
¾
¾
0
¾
0.4VDD
V
VIH2
Input High Voltage (RES)
¾
¾
0.9VDD
¾
VDD
V
IIDLE0
IIDLE1
ISLEEP0
ISLEEP1
Rev. 1.00
5V
5V
No load, fSYS=fH=20MHz,
WDT enable
No load, fSYS=fL,
WDT enable
No load, WDT enable
5V
5V
No load, WDT enable,
fSYS=12MHz on
No load, WDT disable
5V
No load, WDT enable
5V
13
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Ta=25°C
Test Conditions
Symbol
Parameter
Min.
Typ.
Max.
Unit
LVR Enable, 2.10V option
-5%
2.10
+5%
V
LVR Enable, 2.55V option
-5%
2.55
+5%
V
LVR Enable, 3.15V option
-5%
3.15
+5%
V
LVR Enable, 4.20V option
-5%
4.20
+5%
V
LVDEN=1, VLVD=2.0V
-5%
2.00
+5%
V
LVDEN=1, VLVD=2.2V
-5%
2.20
+5%
V
LVDEN=1, VLVD=2.4V
-5%
2.40
+5%
V
LVDEN=1, VLVD=2.7V
-5%
2.70
+5%
V
LVDEN=1, VLVD=3.0V
-5%
3.00
+5%
V
LVDEN=1, VLVD=3.3V
-5%
3.30
+5%
V
LVDEN=1, VLVD=3.6V
-5%
3.60
+5%
V
LVDEN=1, VLVD=4.4V
-5%
4.40
+5%
V
LVR Enable, LVDEN=0
¾
60
90
mA
LVR disable, LVDEN=1
¾
75
115
mA
LVR enable, LVDEN=1
¾
90
135
mA
3V
IOL=9mA
¾
¾
0.3
V
5V
IOL=20mA
¾
¾
0.5
V
3V
IOH=-3.2mA
2.7
¾
¾
V
5V
IOH=-7.4mA
4.5
¾
¾
V
20
60
100
kW
10
30
50
kW
SCOMC, ISEL[1:0]=00
17.5
25.0
32.5
mA
SCOMC, ISEL[1:0]=01
35
50
65
mA
SCOMC, ISEL[1:0]=10
70
100
130
mA
SCOMC, ISEL[1:0]=11
140
200
260
mA
0.475
0.500
0.525
VDD
VDD
VLVR
VLVD
ILV
VOL
VOH
RPH
ISCOM
VSCOM
Rev. 1.00
LVR Voltage Level
LVD Voltage Level
Additional Power Consumption if
LVR and LVD is Used
¾
¾
¾
Conditions
Output Low Voltage I/O Port
Output High Voltage I/O Port
Pull-high Resistance for I/O
Ports
SCOM Operating Current
VDD/2 Voltage for LCD COM
3V
¾
5V
5V
5V
No load
14
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
A.C. Characteristics
Ta=25°C
Test Conditions
Symbol
Parameter
Min.
Typ.
Max.
Unit
2.2V~5.5V
DC
¾
8
MHz
2.7V~5.5V
DC
¾
12
MHz
4.5V~5.5V
DC
¾
20
MHz
2.2V~5.5V
0.4
¾
8
MHz
2.7V~5.5V
0.4
¾
12
MHz
4.5V~5.5V
0.4
¾
20
MHz
3V/5V Ta=25°C
-2%
4
+2%
MHz
3V/5V Ta=25°C
-2%
8
+2%
MHz
-2%
12
+2%
MHz
3V/5V Ta=0~70°C
-5%
4
+5%
MHz
3V/5V Ta=0~70°C
-4%
8
+4%
MHz
Ta=0~70°C
-5%
12
+3%
MHz
2.2V~
Ta=0~70°C
3.6V
-7%
4
+7%
MHz
3.0V~
Ta=0~70°C
5.5V
-5%
4
+9%
MHz
2.2V~
Ta=0~70°C
3.6V
-6%
8
+4%
MHz
3.0V~
Ta=0~70°C
5.5V
-4%
8
+9%
MHz
3.0V~
Ta=0~70°C
5.5V
-6%
12
+7%
MHz
2.2V~
Ta= -40°C~85°C
3.6V
-12%
4
+8%
MHz
3.0V~
Ta= -40°C~85°C
5.5V
-10%
4
+9%
MHz
2.2V~
Ta= -40°C~85°C
3.6V
-15%
8
+4%
MHz
3.0V~
Ta= -40°C~85°C
5.5V
-8%
8
+9%
MHz
3.0V~
Ta= -40°C~85°C
5.5V
-12%
12
+7%
MHz
VDD
fCPU
fSYS
Operating Clock
System Clock (HXT)
¾
¾
5V
5V
fHIRC
fERC
fLXT
Rev. 1.00
System Clock
(HIRC)
Ta=25°C
5V
Ta=25°C, R=120kW *
-2%
8
+2%
MHz
5V
Ta=0~70°C, R=120kW *
-5%
8
+6%
MHz
5V
Ta= -40°C~85°C,
R=120kW *
-7%
8
+9%
MHz
3.0V~ Ta= -40°C~85°C,
5.5V
R=120kW *
-9%
8
+10%
MHz
2.2V~ Ta= -40°C~85°C,
5.5V
R=120kW *
-15%
8
+10%
MHz
¾
32.768
¾
kHz
System Clock (ERC)
System Clock (LXT)
Conditions
¾
¾
15
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Ta=25°C
Test Conditions
Symbol
Parameter
VDD
Min.
Typ.
Max.
Unit
-10%
32
+10%
kHz
Conditions
fLIRC
System Clock (LIRC)
5V
fTIMER
Timer Input Pin Frequency
¾
¾
¾
¾
1
fSYS
tRES
External Reset Low Pulse Width
¾
¾
1
¾
¾
ms
tINT
Interrupt Pulse Width
¾
¾
1
¾
¾
tSYS
tLVR
Low Voltage Width to Reset
¾
¾
120
240
480
ms
tLVD
Low Voltage Width to Interrupt
¾
¾
20
45
90
ms
tLVDS
LVDO stable time
¾
¾
15
¾
¾
ms
tBGS
VBG Turn on Stable Time
¾
¾
200
¾
¾
ms
tEERD
EEPROM Read Time
¾
¾
¾
45
90
ms
tEEWR
EEPROM Write Time
¾
¾
¾
2
4
ms
fSYS=HXT or LXT
¾
1024
¾
tSST
System Start-up Timer Period
(Wake-up from HALT)
fSYS=ERC or HIRC
¾
15~16
¾
fSYS=LIRC OSC
¾
1~2
¾
Note:
¾
Ta=25°C
tSYS
1. tSYS=1/fSYS
2. * For fERC, as the resistor tolerance will influence the frequency a precision resistor is recommended.
3. To maintain the accuracy of the internal HIRC oscillator frequency, a 0.1mF decoupling capacitor should be
connected between VDD and VSS and located as close to the device as possible.
Comparator Electrical Characteristics
Ta=25°C
Test Conditions
Symbol
Parameter
VCMP
Comparator Operating Voltage
ICMP
Comparator Operating Current
Min.
Typ.
Max.
Unit
¾
2.2
¾
5.5
V
3V
¾
¾
37
56
mA
5V
¾
¾
130
200
mA
VDD
Conditions
¾
VCMPOS
Comparator Input Offset Voltage
¾
¾
-10
¾
10
mV
VHYS
Hysteresis Width
¾
¾
20
40
60
mV
VCM
Comparator Common Mode
Voltage Range
¾
¾
VSS
¾
VDD-1.4V
V
AOL
Comparator Open Loop Gain
¾
¾
60
80
¾
dB
tPD
Comparator Response Time
¾
¾
370
560
ns
Note:
With 100mV
overdrive (Note)
Measured with comparator one input pin at VCM = (VDD-1.4)/2 while the other pin input transition from VSS to
(VCM +100mV) or from VDD to (VCM -100mV).
Rev. 1.00
16
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Power-on Reset Characteristics
Ta=25°C
Test Conditions
Symbol
Parameter
VDD
Conditions
Min.
Typ.
Max.
Unit
VPOR
VDD Start Voltage to Ensure
Power-on Reset
¾
¾
¾
¾
100
mV
RRVDD
VDD Raising Rate to Ensure
Power-on Reset
¾
¾
0.035
¾
¾
V/ms
tPOR
Minimum Time for VDD Stays at
VPOR to Ensure Power-on Reset
¾
¾
1
¾
¾
ms
V
D D
tP
O R
R R
V D D
V
P O R
T im e
Rev. 1.00
17
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
System Architecture
ternally generated non-overlapping clocks, T1~T4. The
Program Counter is incremented at the beginning of the
T1 clock during which time a new instruction is fetched.
The remaining T2~T4 clocks carry out the decoding and
execution functions. In this way, one T1~T4 clock cycle
forms one instruction cycle. Although the fetching and
execution of instructions takes place in consecutive instruction cycles, the pipelining structure of the
microcontroller ensures that instructions are effectively
executed in one instruction cycle. The exception to this
are instructions where the contents of the Program
Counter are changed, such as subroutine calls or
jumps, in which case the instruction will take one more
instruction cycle to execute.
A key factor in the high-performance features of the
Holtek range of microcontrollers is attributed to their internal system architecture. The range of devices take
advantage of the usual features found within RISC
microcontrollers providing increased speed of operation
and enhanced performance. The pipelining scheme is
implemented in such a way that instruction fetching and
instruction execution are overlapped, hence instructions
are effectively executed in one cycle, with the exception
of branch or call instructions. An 8-bit wide ALU is used
in practically all instruction set operations, which carries
out arithmetic operations, logic operations, rotation, increment, decrement, branch decisions, etc. The internal
data path is simplified by moving data through the Accumulator and the ALU. Certain internal registers are implemented in the Data Memory and can be directly or
indirectly addressed. The simple addressing methods of
these registers along with additional architectural features ensure that a minimum of external components is
required to provide a functional I/O control system with
maximum reliability and flexibility. This makes the device suitable for low-cost, high-volume production for
controller applications.
For instructions involving branches, such as jump or call
instructions, two machine cycles are required to complete instruction execution. An extra cycle is required as
the program takes one cycle to first obtain the actual
jump or call address and then another cycle to actually
execute the branch. The requirement for this extra cycle
should be taken into account by programmers in timing
sensitive applications.
Clocking and Pipelining
The main system clock, derived from either a HXT, LXT,
HIRC, LIRC or ERC oscillator is subdivided into four in-
fS Y S
C lo c k )
(S y s te m
P h a s e C lo c k T 1
P h a s e C lo c k T 2
P h a s e C lo c k T 3
P h a s e C lo c k T 4
P ro g ra m
C o u n te r
P ip e lin in g
P C
P C + 1
F e tc h In s t. (P C )
E x e c u te In s t. (P C -1 )
P C + 2
F e tc h In s t. (P C + 1 )
E x e c u te In s t. (P C )
F e tc h In s t. (P C + 2 )
E x e c u te In s t. (P C + 1 )
System Clocking and Pipelining
M O V A ,[1 2 H ]
2
C A L L D E L A Y
3
C P L [1 2 H ]
4
:
5
:
6
1
D E L A Y :
F e tc h In s t. 1
E x e c u te In s t. 1
F e tc h In s t. 2
E x e c u te In s t. 2
F e tc h In s t. 3
F lu s h P ip e lin e
F e tc h In s t. 6
E x e c u te In s t. 6
F e tc h In s t. 7
N O P
Instruction Fetching
Rev. 1.00
18
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Program Counter
If the stack is full and an enabled interrupt takes place,
the interrupt request flag will be recorded but the acknowledge signal will be inhibited. When the Stack
Pointer is decremented, by RET or RETI, the interrupt
will be serviced. This feature prevents stack overflow allowing the programmer to use the structure more easily.
However, when the stack is full, a CALL subroutine instruction can still be executed which will result in a stack
overflow. Precautions should be taken to avoid such
cases which might cause unpredictable program
branching.
During program execution, the Program Counter is used
to keep track of the address of the next instruction to be
executed. It is automatically incremented by one each
time an instruction is executed except for instructions,
such as ²JMP² or ²CALL² that demand a jump to a
non-consecutive Program Memory address. Only the
lower 8 bits, known as the Program Counter Low Register, are directly addressable by the application program.
When executing instructions requiring jumps to
non-consecutive addresses such as a jump instruction,
a subroutine call, interrupt or reset, etc., the
microcontroller manages program control by loading the
required address into the Program Counter. For conditional skip instructions, once the condition has been
met, the next instruction, which has already been
fetched during the present instruction execution, is discarded and a dummy cycle takes its place while the correct instruction is obtained.
If the stack is overflow, the first Program Counter save in
the stack will be lost.
P ro g ra m
T o p o f S ta c k
S ta c k L e v e l 1
S ta c k L e v e l 2
S ta c k
P o in te r
P ro g ra m
M e m o ry
S ta c k L e v e l 3
Program Counter
Device
Program Counter
High Byte
C o u n te r
PCL Register
B o tto m
o f S ta c k
S ta c k L e v e l N
HT68F20
PC9, PC8
HT68F30
PC10~PC8
HT68F40
PC11~PC8
HT68F50
PC12~PC8
HT68F40/HT68F50
8
HT68F60
PC13~PC8
HT68F60
12
Device
Stack Levels
HT68F20/HT68F30
PCL7~PCL0
4
Program Counter
Arithmetic and Logic Unit - ALU
The lower byte of the Program Counter, known as the
Program Counter Low register or PCL, is available for
program control and is a readable and writeable register.
By transferring data directly into this register, a short program jump can be executed directly, however, as only
this low byte is available for manipulation, the jumps are
limited to the present page of memory, that is 256 locations. When such program jumps are executed it should
also be noted that a dummy cycle will be inserted. Manipulating the PCL register may cause program branching,
so an extra cycle is needed to pre-fetch.
The arithmetic-logic unit or ALU is a critical area of the
microcontroller that carries out arithmetic and logic operations of the instruction set. Connected to the main
microcontroller data bus, the ALU receives related instruction codes and performs the required arithmetic or
logical operations after which the result will be placed in
the specified register. As these ALU calculation or operations may result in carry, borrow or other status
changes, the status register will be correspondingly updated to reflect these changes. The ALU supports the
following functions:
Stack
· Arithmetic operations: ADD, ADDM, ADC, ADCM,
This is a special part of the memory which is used to
save the contents of the Program Counter only. The
stack has multiple levels depending upon the device
and is neither part of the data nor part of the program
space, and is neither readable nor writeable. The activated level is indexed by the Stack Pointer, and is neither readable nor writeable. At a subroutine call or
interrupt acknowledge signal, the contents of the Program Counter are pushed onto the stack. At the end of a
subroutine or an interrupt routine, signaled by a return
instruction, RET or RETI, the Program Counter is restored to its previous value from the stack. After a device
reset, the Stack Pointer will point to the top of the stack.
Rev. 1.00
SUB, SUBM, SBC, SBCM, DAA
· Logic operations: AND, OR, XOR, ANDM, ORM,
XORM, CPL, CPLA
· Rotation RRA, RR, RRCA, RRC, RLA, RL, RLCA,
RLC
· Increment and Decrement INCA, INC, DECA, DEC
· Branch decision, JMP, SZ, SZA, SNZ, SIZ, SDZ,
SIZA, SDZA, CALL, RET, RETI
19
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Flash Program Memory
Look-up Table
The Program Memory is the location where the user
code or program is stored. For this device series the
Program Memory is Flash type, which means it can be
programmed and re-programmed a large number of
times, allowing the user the convenience of code modification on the same device. By using the appropriate
programming tools, these Flash devices offer users the
flexibility to conveniently debug and develop their applications while also offering a means of field programming
and updating.
Any location within the Program Memory can be defined
as a look-up table where programmers can store fixed
data. To use the look-up table, the table pointer must
first be setup by placing the address of the look up data
to be retrieved in the table pointer register, TBLP and
TBHP. These registers define the total address of the
look-up table.
After setting up the table pointer, the table data can be
retrieved from the Program Memory using the
²TABRD[m]² or ²TABRDL[m]² instructions, respectively.
When the instruction is executed, the lower order table
byte from the Program Memory will be transferred to the
user defined Data Memory register [m] as specified in
the instruction. The higher order table data byte from the
Program Memory will be transferred to the TBLH special
register. Any unused bits in this transferred higher order
byte will be read as ²0².
Structure
The Program Memory has a capacity of 1K´14 bits to
12K´16 bits. The Program Memory is addressed by the
Program Counter and also contains data, table information and interrupt entries. Table data, which can be
setup in any location within the Program Memory, is addressed by a separate table pointer register.
Capacity
Banks
1K´14
0
HT68F30
2K´14
0
HT68F40
4K´15
0
HT68F50
8K´16
0
HT68F60
12K´16
0, 1
The accompanying diagram illustrates the addressing
data flow of the look-up table.
P ro g ra m
L a s t p a g e o r
T B H P R e g is te r
A d d re s s
Device
HT68F20
T B L P R e g is te r
The HT68F60 has its Program Memory divided into two
Banks, Bank 0 and Bank 1. The required Bank is selected using Bit 5 of the BP Register.
R e g is te r T B L H
H ig h B y te
M e m o ry
D a ta
1 4 ~ 1 6 b its
U s e r S e le c te d
R e g is te r
L o w
B y te
Special Vectors
Table Program Example
Within the Program Memory, certain locations are reserved for the reset and interrupts. The location 000H is
reserved for use by the device reset for program initialisation. After a device reset is initiated, the program will
jump to this location and begin execution.
H T 6 8 F 2 0
H T 6 8 F 3 0
The following example shows how the table pointer and
table data is defined and retrieved from the
microcontroller. This example uses raw table data located in the Program Memory which is stored there us-
H T 6 8 F 4 0
H T 6 8 F 5 0
H T 6 8 F 6 0
R e s e t
R e s e t
R e s e t
R e s e t
R e s e t
0 0 2 C H
In te rru p t
V e c to r
In te rru p t
V e c to r
In te rru p t
V e c to r
In te rru p t
V e c to r
In te rru p t
V e c to r
0 3 F F H
1 4 b its
0 0 0 0 H
0 0 0 4 H
0 0 3 C H
0 7 F F H
B a n k 0
1 4 b its
0 F F F H
1 5 b its
1 F F F H
1 6 b its
1 F F F H
2 0 0 0 H
1 6 b its
B a n k 1
2 F F F H
Program Memory Structure
Rev. 1.00
20
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
As an additional convenience, Holtek has provided a
means of programming the microcontroller in-circuit using a 5-pin interface. This provides manufacturers with
the possibility of manufacturing their circuit boards complete with a programmed or un-programmed
microcontroller, and then programming or upgrading the
program at a later stage. This enables product manufacturers to easily keep their manufactured products supplied with the latest program releases without removal
and re-insertion of the device.
ing the ORG statement. The value at this ORG
statement is ²700H² which refers to the start address of
the last page within the 2K Program Memory of the
HT68F30. The table pointer is setup here to have an initial value of ²06H². This will ensure that the first data
read from the data table will be at the Program Memory
address ²706H² or 6 locations after the start of the last
page. Note that the value for the table pointer is referenced to the first address of the present page if the
²TABRD [m]² instruction is being used. The high byte of
the table data which in this case is equal to zero will be
transferred to the TBLH register automatically when the
²TABRD [m]² instruction is executed.
MCU Programming
Pins
Because the TBLH register is a read-only register and
cannot be restored, care should be taken to ensure its
protection if both the main routine and Interrupt Service
Routine use table read instructions. If using the table
read instructions, the Interrupt Service Routines may
change the value of the TBLH and subsequently cause
errors if used again by the main routine. As a rule it is
recommended that simultaneous use of the table read
instructions should be avoided. However, in situations
where simultaneous use cannot be avoided, the interrupts should be disabled prior to the execution of any
main routine table-read instructions. Note that all table
related instructions require two instruction cycles to
complete their operation.
Function
PA0
Serial Data Input/Output
PA2
Serial Clock
RES
Device Reset
VDD
Power Supply
VSS
Ground
The Program Memory and EEPROM data memory can
both be programmed serially in-circuit using this 5-wire
interface. Data is downloaded and uploaded serially on
a single pin with an additional line for the clock. Two additional lines are required for the power supply and one
line for the reset. The technical details regarding the
in-circuit programming of the devices are beyond the
scope of this document and will be supplied in supplementary literature.
During the programming process the RES pin will be
held low by the programmer disabling the normal operation of the microcontroller and taking control of the PA0
and PA2 I/O pins for data and clock programming purposes. The user must there take care to ensure that no
other outputs are connected to these two pins.
In Circuit Programming
The provision of Flash type Program Memory provides
the user with a means of convenient and easy upgrades
and modifications to their programs on the same device.
· Table Read Program Example
tempreg1 db
?
; temporary register #1
tempreg2 db
?
; temporary register #2
:
:
mov a,06h
; initialise low table pointer - note that this address
mov tblp,a
; is referenced
mov a,07h
; initialise high table pointer
tbhp,a
:
:
tabrd tempreg1
; transfers value in table referenced by table pointer data at program
; memory address ²706H² transferred to tempreg1 and TBLH
dec tblp
; reduce value of table pointer by one
tabrd tempreg2
;
;
;
;
:
:
org 700h
transfers value in table referenced by table pointer data at program
memory address ²705H² transferred to tempreg2 and TBLH in this
example the data ²1AH² is transferred to tempreg1 and data ²0FH² to
register tempreg2
; sets initial address of program memory
dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
:
:
Rev. 1.00
21
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
W r ite r C o n n e c to r
S ig n a ls
M C U
P r o g r a m m in g
P in s
Device
Capacity
Banks
W r ite r _ V D D
V D D
HT68F20
64´8
0: 60H~7FH
1: 60H~7FH
R E S
R E S
HT68F30
96´8
0: 60H~7FH
1: 60H~7FH
2: 60H~7FH
HT68F40
192´8
0: 80H~FFH
1: 80H~BFH
HT68F50
384´8
0: 80H~FFH
1: 80H~FFH
2: 80H~FFH
576´8
0: 80H~FFH
1: 80H~FFH
2: 80H~FFH
3: 80H~FFH
4: 80H~FFH
D A T A
D A T A
C L K
C L K
V S S
W r ite r _ V S S
*
*
*
HT68F60
T o o th e r C ir c u it
Note:
* may be resistor or capacitor. The resistance
of * must be greater than 1kW or the capacitance
of * must be less than 1nF.
Programmer Pin
MCU Pins
RES
PB0
DATA
PA0
CLK
PA2
Programmer and MCU Pins
RAM Data Memory
The Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location where temporary information is stored.
Structure
Divided into two sections, the first of these is an area of
RAM, known as the Special Function Data Memory.
Here are located registers which are necessary for correct operation of the device. Many of these registers can
be read from and written to directly under program control, however, some remain protected from user manipulation.
0 0 H
0 1 H
0 2 H
0 3 H
0 4 H
0 5 H
0 6 H
0 7 H
0 8 H
0 9 H
0 A H
0 B H
0 C H
0 D H
0 E H
0 F H
1 0 H
1 1 H
1 2 H
1 3 H
1 4 H
1 5 H
1 6 H
1 7 H
1 8 H
1 9 H
1 A H
1 B H
1 C H
1 D H
1 E H
1 F H
2 0 H
2 1 H
2 2 H
2 3 H
2 4 H
2 5 H
2 6 H
2 7 H
2 8 H
2 9 H
2 A H
2 B H
2 C H
2 D H
2 E H
2 F H
B a n
IA
M
IA
M
k 0 , 1
R 0
P 0
R 1
P 1
B P
A C C
P C L
T B L P
T B L H
T B H P
S T A T U S
S M O D
L V D C
IN T E G
W D T C
T B C
IN T C 0
IN T C 1
IN T C 2
U n u s e d
M F I0
M F I1
M F I2
U n u s e d
P A W U
P A P U
P A
P A C
P B P U
P B
P B C
P C P U
P C
P C C
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
3 0 H
3 1 H
3 2 H
3 3 H
3 4 H
3 5 H
3 6 H
3 7 H
3 8 H
3 9 H
3 A H
3 B H
3 C H
3 D H
3 E H
3 F H
4 0 H
4 1 H
4 2 H
4 3 H
4 4 H
4 5 H
4 6 H
4 7 H
4 8 H
4 9 H
4 A H
4 B H
4 C H
4 D H
4 E H
4 F H
5 0 H
5 1 H
5 2 H
5 3 H
5 4 H
5 5 H
5 6 H
5 7 H
5 8 H
5 9 H
5 A H
5 B H
5 C H
5 D H
5 E H
5 F H
B a n k 0
U
U
U
U
B a n k 1
n u s e d
n u s e d
n u s e d
n u s e d
C P 0 C
C P 1 C
S IM C 0
S IM C 1
S IM D
S IM A /S IM C 2
T M 0 C 0
T M 0 C 1
T M 0 D L
T M 0 D H
T M 0 A L
T M 0 A H
U n u s e d
E E C
E E A
E E D
T M P C 0
U n u s e d
U n u s e d
U n u s e d
U n u s e d
T M 1 C 0
T M 1 C 1
U n u s e d
T M 1 D L
T M 1 D H
T M 1 A L
T M 1 A H
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
S C O M C
U n u s e d
HT68F20 Special Purpose Data Memory
Rev. 1.00
22
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
B a n k
IA
M
IA
M
0 , 1 , 2
R 0
P 0
R 1
P 1
B P
A C C
P C L
T B L P
T B L H
T B H P
S T A T U S
S M O D
L V D C
IN T E G
W D T C
T B C
IN T C 0
IN T C 1
IN T C 2
U n u s e d
M F I0
M F I1
M F I2
U n u s e d
P A W U
P A P U
P A
P A C
P B P U
P B
P B C
P C P U
P C
P C C
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
0 0 H
0 1 H
0 2 H
0 3 H
0 4 H
0 5 H
0 6 H
0 7 H
0 8 H
0 9 H
0 A H
0 B H
0 C H
0 D H
0 E H
0 F H
1 0 H
1 1 H
1 2 H
1 3 H
1 4 H
1 5 H
1 6 H
1 7 H
1 8 H
1 9 H
1 A H
1 B H
1 C H
1 D H
1 E H
1 F H
2 0 H
2 1 H
2 2 H
2 3 H
2 4 H
2 5 H
2 6 H
2 7 H
2 8 H
2 9 H
2 A H
2 B H
2 C H
2 D H
2 E H
2 F H
3 0 H
3 1 H
3 2 H
3 3 H
3 4 H
3 5 H
3 6 H
3 7 H
3 8 H
3 9 H
3 A H
3 B H
3 C H
3 D H
3 E H
3 F H
4 0 H
4 1 H
4 2 H
4 3 H
4 4 H
4 5 H
4 6 H
4 7 H
4 8 H
4 9 H
4 A H
4 B H
4 C H
4 D H
4 E H
4 F H
5 0 H
5 1 H
5 2 H
5 3 H
5 4 H
5 5 H
5 6 H
5 7 H
5 8 H
5 9 H
5 A H
5 B H
5 C H
5 D H
5 E H
5 F H
B a n k 0 ,
U
U
U
U
2
B a n k 1
n u s e d
n u s e d
n u s e d
n u s e d
C P 0 C
C P 1 C
S IM C 0
S IM C 1
S IM D
S IM A /S IM C 2
T M 0 C 0
T M 0 C 1
T M 0 D L
T M 0 D H
T M 0 A L
T M 0 A H
U n u s e d
E E C
E E A
E E D
T M P C 0
U n u s e d
P R M 0
U n u s e d
U n u s e d
T M 1 C 0
T M 1 C 1
T M 1 C 2
T M 1 D L
T M 1 D H
T M 1 A L
T M 1 A H
T M 1 B L
T M 1 B H
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
S C O M C
U n u s e d
0 0 H
0 1 H
0 2 H
0 3 H
0 4 H
0 5 H
0 6 H
0 7 H
0 8 H
0 9 H
0 A H
0 B H
0 C H
0 D H
0 E H
0 F H
1 0 H
1 1 H
1 2 H
1 3 H
1 4 H
1 5 H
1 6 H
1 7 H
1 8 H
1 9 H
1 A H
1 B H
1 C H
1 D H
1 E H
1 F H
2 0 H
2 1 H
2 2 H
2 3 H
2 4 H
2 5 H
2 6 H
2 7 H
2 8 H
2 9 H
2 A H
2 B H
2 C H
2 D H
2 E H
2 F H
3 0 H
3 1 H
3 2 H
3 3 H
3 4 H
3 5 H
3 6 H
3 7 H
3 8 H
3 9 H
3 A H
3 B H
3 C H
3 D H
3 E H
3 F H
HT68F30 Special Purpose Data Memory
B a n
IA
M
IA
M
k 0 , 1
R 0
P 0
R 1
P 1
B P
A C C
P C L
T B L P
T B L H
T B H P
S T A T U S
S M O D
L V D C
IN T E G
W D T C
T B C
IN T C 0
IN T C 1
IN T C 2
U n u s e d
M F I0
M F I1
M F I2
U n u s e d
P A W U
P A P U
P A
P A C
P B P U
P B
P B C
P C P U
P C
P C C
P D P U
P D
P D C
P E P U
P E
P E C
P F P U
P F
P F C
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
C P 0 C
C P 1 C
S IM C 0
S IM C 1
S IM D
S IM A /S IM C 2
T M 0 C 0
T M 0 C 1
T M 0 D L
T M 0 D H
T M 0 A L
T M 0 A H
4 0 H
4 1 H
4 2 H
4 3 H
4 4 H
4 5 H
4 6 H
4 7 H
4 8 H
4 9 H
4 A H
4 B H
4 C H
4 D H
4 E H
4 F H
5 0 H
5 1 H
5 2 H
5 3 H
5 4 H
5 5 H
5 6 H
5 7 H
5 8 H
5 9 H
5 A H
5 B H
5 C H
5 D H
5 E H
5 F H
6 0 H
6 1 H
6 2 H
6 3 H
6 4 H
6 5 H
6 6 H
6 7 H
6 8 H
6 9 H
6 A H
6 B H
6 C H
6 D H
6 E H
6 F H
7 0 H
7 1 H
7 2 H
7 3 H
7 4 H
7 5 H
7 6 H
7 7 H
7 8 H
7 9 H
7 A H
7 B H
7 C H
7 D H
7 E H
7 F H
B a n k 0
U n u s e d
B a n k 1
E E C
E E A
E E D
T M P C 0
T M P C 1
P R M 0
P R M 1
P R M 2
T M 1 C 0
T M 1 C 1
T M 1 C 2
T M 1 D L
T M 1 D H
T M 1 A L
T M 1 A H
T M 1 B L
T M 1 B H
T M 2 C 0
T M 2 C 1
T M 2 D L
T M 2 D H
T M 2 A L
T M 2 A H
T M 2 R P
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
S C O M C
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
HT68F40 Special Purpose Data Memory
Rev. 1.00
23
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
0 0 H
0 1 H
0 2 H
0 3 H
0 4 H
0 5 H
0 6 H
0 7 H
0 8 H
0 9 H
0 A H
0 B H
0 C H
0 D H
0 E H
0 F H
1 0 H
1 1 H
1 2 H
1 3 H
1 4 H
1 5 H
1 6 H
1 7 H
1 8 H
1 9 H
1 A H
1 B H
1 C H
1 D H
1 E H
1 F H
2 0 H
2 1 H
2 2 H
2 3 H
2 4 H
2 5 H
2 6 H
2 7 H
2 8 H
2 9 H
2 A H
2 B H
2 C H
2 D H
2 E H
2 F H
3 0 H
3 1 H
3 2 H
3 3 H
3 4 H
3 5 H
3 6 H
3 7 H
3 8 H
3 9 H
3 A H
3 B H
3 C H
3 D H
3 E H
3 F H
B a n k
IA
M
IA
M
0 , 1 , 2
R 0
P 0
R 1
P 1
B P
A C C
P C L
T B L P
T B L H
T B H P
S T A T U S
S M O D
L V D C
IN T E G
W D T C
T B C
IN T C 0
IN T C 1
IN T C 2
U n u s e d
M F I0
M F I1
M F I2
M F I3
P A W U
P A P U
P A
P A C
P B P U
P B
P B C
P C P U
P C
P C C
P D P U
P D
P D C
P E P U
P E
P E C
P F P U
P F
P F C
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
C P 0 C
C P 1 C
S IM C 0
S IM C 1
S IM D
S IM A /S IM C 2
T M 0 C 0
T M 0 C 1
T M 0 D L
T M 0 D H
T M 0 A L
T M 0 A H
4 0 H
4 1 H
4 2 H
4 3 H
4 4 H
4 5 H
4 6 H
4 7 H
4 8 H
4 9 H
4 A H
4 B H
4 C H
4 D H
4 E H
4 F H
5 0 H
5 1 H
5 2 H
5 3 H
5 4 H
5 5 H
5 6 H
5 7 H
5 8 H
5 9 H
5 A H
5 B H
5 C H
5 D H
5 E H
5 F H
6 0 H
6 1 H
6 2 H
6 3 H
6 4 H
6 5 H
6 6 H
6 7 H
6 8 H
6 9 H
6 A H
6 B H
6 C H
6 D H
6 E H
6 F H
7 0 H
7 1 H
7 2 H
7 3 H
7 4 H
7 5 H
7 6 H
7 7 H
7 8 H
7 9 H
7 A H
7 B H
7 C H
7 D H
7 E H
7 F H
B a n k 0 , 2
B a n k 1
U n u s e d
E E C
E E A
E E D
T M P C 0
T M P C 1
P R M 0
P R M 1
P R M 2
T M 1 C 0
T M 1 C 1
T M 1 C 2
T M 1 D L
T M 1 D H
T M 1 A L
T M 1 A H
T M 1 B L
T M 1 B H
T M 2 C 0
T M 2 C 1
T M 2 D L
T M 2 D H
T M 2 A L
T M 2 A H
T M 2 R P
T M 3 C 0
T M 3 C 1
T M 3 D L
T M 3 D H
T M 3 A L
T M 3 A H
S C O M C
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
0 0 H
0 1 H
0 2 H
0 3 H
0 4 H
0 5 H
0 6 H
0 7 H
0 8 H
0 9 H
0 A H
0 B H
0 C H
0 D H
0 E H
0 F H
1 0 H
1 1 H
1 2 H
1 3 H
1 4 H
1 5 H
1 6 H
1 7 H
1 8 H
1 9 H
1 A H
1 B H
1 C H
1 D H
1 E H
1 F H
2 0 H
2 1 H
2 2 H
2 3 H
2 4 H
2 5 H
2 6 H
2 7 H
2 8 H
2 9 H
2 A H
2 B H
2 C H
2 D H
2 E H
2 F H
3 0 H
3 1 H
3 2 H
3 3 H
3 4 H
3 5 H
3 6 H
3 7 H
3 8 H
3 9 H
3 A H
3 B H
3 C H
3 D H
3 E H
3 F H
HT68F50 Special Purpose Data Memory
Rev. 1.00
B a n k 0 , 1 , 2 , 3 , 4
IA R 0
M P 0
IA R 1
M P 1
B P
A C C
P C L
T B L P
T B L H
T B H P
S T A T U S
S M O D
L V D C
IN T E G
W D T C
T B C
IN T C 0
IN T C 1
IN T C 2
IN T C 3
M F I0
M F I1
M F I2
M F I3
P A W U
P A P U
P A
P A C
P B P U
P B
P B C
P C P U
P C
P C C
P D P U
P D
P D C
P E P U
P E
P E C
P F P U
P F
P F C
P G P U
P G
P G C
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
C P 0 C
C P 1 C
S IM C 0
S IM C 1
S IM D
S IM A /S IM C 2
T M 0 C 0
T M 0 C 1
T M 0 D L
T M 0 D H
T M 0 A L
T M 0 A H
B a n k 0 , 2 , 3 , 4
B a n k 1
U n u s e d
E E C
E E A
E E D
T M P C 0
T M P C 1
P R M 0
P R M 1
P R M 2
T M 1 C 0
T M 1 C 1
T M 1 C 2
T M 1 D L
T M 1 D H
T M 1 A L
T M 1 A H
T M 1 B L
T M 1 B H
T M 2 C 0
T M 2 C 1
T M 2 D L
T M 2 D H
T M 2 A L
T M 2 A H
T M 2 R P
T M 3 C 0
T M 3 C 1
T M 3 D L
T M 3 D H
T M 3 A L
T M 3 A H
S C O M C
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
U n u s e d
4 0 H
4 1 H
4 2 H
4 3 H
4 4 H
4 5 H
4 6 H
4 7 H
4 8 H
4 9 H
4 A H
4 B H
4 C H
4 D H
4 E H
4 F H
5 0 H
5 1 H
5 2 H
5 3 H
5 4 H
5 5 H
5 6 H
5 7 H
5 8 H
5 9 H
5 A H
5 B H
5 C H
5 D H
5 E H
5 F H
6 0 H
6 1 H
6 2 H
6 3 H
6 4 H
6 5 H
6 6 H
6 7 H
6 8 H
6 9 H
6 A H
6 B H
6 C H
6 D H
6 E H
6 F H
7 0 H
7 1 H
7 2 H
7 3 H
7 4 H
7 5 H
7 6 H
7 7 H
7 8 H
7 9 H
7 A H
7 B H
7 C H
7 D H
7 E H
7 F H
HT68F60 Special Purpose Data Memory
24
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
pair, IAR0 and MP0 can together access data from Bank
0 while the IAR1 and MP1 register pair can access data
from any bank. As the Indirect Addressing Registers are
not physically implemented, reading the Indirect Addressing Registers indirectly will return a result of ²00H²
and writing to the registers indirectly will result in no operation.
The second area of Data Memory is known as the General Purpose Data Memory, which is reserved for general purpose use. All locations within this area are read
and write accessible under program control.
The overall Data Memory is subdivided into several
banks, the structure of which depends upon the device
chosen. The Special Purpose Data Memory registers
are accessible in all banks, with the exception of the
EEC register at address 40H, which is only accessible in
Bank 1. Switching between the different Data Memory
banks is achieved by setting the Bank Pointer to the correct value. The start address of the Data Memory for all
devices is the address 00H.
Memory Pointers - MP0, MP1
Two Memory Pointers, known as MP0 and MP1 are provided. These Memory Pointers are physically implemented in the Data Memory and can be manipulated in
the same way as normal registers providing a convenient way with which to address and track data. When
any operation to the relevant Indirect Addressing Registers is carried out, the actual address that the
microcontroller is directed to, is the address specified by
the related Memory Pointer. MP0, together with Indirect
Addressing Register, IAR0, are used to access data
from Bank 0, while MP1 and IAR1 are used to access
data from all banks according to BP register. Direct Addressing can only be used with Bank 0, all other Banks
must be addressed indirectly using MP1 and IAR1. Note
that for the HT68F20 and HT68F30 devices, bit 7 of the
Memory Pointers is not required to address the full
memory space. When bit 7 of the Memory Pointers for
HT68F20 and HT68F30 devices is read, a value of ²1²
will be returned.
Special Function Register Description
Most of the Special Function Register details will be described in the relevant functional section, however several registers require a separate description in this
section.
Indirect Addressing Registers - IAR0, IAR1
The Indirect Addressing Registers, IAR0 and IAR1, although having their locations in normal RAM register
space, do not actually physically exist as normal registers. The method of indirect addressing for RAM data
manipulation uses these Indirect Addressing Registers
and Memory Pointers, in contrast to direct memory addressing, where the actual memory address is specified. Actions on the IAR0 and IAR1 registers will result in
no actual read or write operation to these registers but
rather to the memory location specified by their corresponding Memory Pointers, MP0 or MP1. Acting as a
The following example shows how to clear a section of
four Data Memory locations already defined as locations adres1 to adres4.
· Indirect Addressing Program Example
data .section ¢data¢
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?
code .section at 0 ¢code¢
org 00h
start:
mov a,04h
mov block,a
mov a,offset adres1
mov mp0,a
loop:
clr
inc
sdz
jmp
IAR0
mp0
block
loop
; setup size of block
; Accumulator loaded with first RAM address
; setup memory pointer with first RAM address
; clear the data at address defined by MP0
; increment memory pointer
; check if last memory location has been cleared
continue:
The important point to note here is that in the example shown above, no reference is made to specific RAM addresses.
Rev. 1.00
25
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Bank Pointer - BP
Depending upon which device is used, the Program and
Data Memory are divided into several banks. Selecting
the required Program and Data Memory area is
achieved using the Bank Pointer. Bit 5 of the Bank
Pointer is used to select Program Memory Bank 0 or 1,
while bits 0~2 are used to select Data Memory Banks
0~4.
unaffected. It should be noted that the Special Function
Data Memory is not affected by the bank selection,
which means that the Special Function Registers can be
accessed from within any bank. Directly addressing the
Data Memory will always result in Bank 0 being accessed irrespective of the value of the Bank Pointer. Accessing data from banks other than Bank 0 must be
implemented using Indirect addressing.
The Data Memory is initialised to Bank 0 after a reset,
except for a WDT time-out reset in the Power Down
Mode, in which case, the Data Memory bank remains
As both the Program Memory and Data Memory share
the same Bank Pointer Register, care must be taken
during programming.
Device
Bit
7
6
5
4
3
2
1
0
HT68F20
HT68F40
¾
¾
¾
¾
¾
¾
¾
DMBP0
HT68F30
HT68F50
¾
¾
¾
¾
¾
¾
DMBP1
DMBP0
HT68F60
¾
¾
PMBP0
¾
¾
DMBP2
DMBP1
DMBP0
BP Registers List
· BP Register
¨
HT68F20/HT68F40
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
¾
¾
¾
DMBP0
R/W
¾
¾
¾
¾
¾
¾
¾
R/W
POR
¾
¾
¾
¾
¾
¾
¾
0
Bit 7 ~ 1
Unimplemented, read as ²0²
Bit 0
DMBP0: Select Data Memory Banks
0: Bank 0
1: Bank 1
¨
HT68F30/HT68F50
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
¾
¾
DMBP1
DMBP0
R/W
¾
¾
¾
¾
¾
¾
R/W
R/W
POR
¾
¾
¾
¾
¾
¾
0
0
Bit 7 ~ 2
Unimplemented, read as ²0²
Bit 1 ~ 0
DMBP1, DMBP0: Select Data Memory Banks
00: Bank 0
01: Bank 1
10: Bank 2
11: Undefined
Rev. 1.00
26
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F60
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
PMBP0
¾
¾
DMBP2
DMBP1
DMBP0
R/W
¾
¾
R/W
¾
¾
R/W
R/W
R/W
POR
¾
¾
0
¾
¾
0
0
0
Bit 7 ~ 6
Unimplemented, read as ²0²
Bit 5
PMBP0: Select Program Memory Banks
0: Bank 0, Program Memory Address is from 0000H ~ 1FFFH
1: Bank 1, Program Memory Address is from 2000H ~ 2FFFH
Bit 4 ~ 3
Bit 2 ~ 0
Unimplemented, read as ²0²
DMBP2 ~ DMBP0: Select Data Memory Banks
000: Bank 0
001: Bank 1
010: Bank 2
011: Bank 3
100: Bank 4
101~111: Undefined
Accumulator - ACC
for example using the ²INC² or ²DEC² instructions, allowing for easy table data pointing and reading. TBLH is
the location where the high order byte of the table data is
stored after a table read data instruction has been executed. Note that the lower order table data byte is transferred to a user defined location.
The Accumulator is central to the operation of any
microcontroller and is closely related with operations
carried out by the ALU. The Accumulator is the place
where all intermediate results from the ALU are stored.
Without the Accumulator it would be necessary to write
the result of each calculation or logical operation such
as addition, subtraction, shift, etc., to the Data Memory
resulting in higher programming and timing overheads.
Data transfer operations usually involve the temporary
storage function of the Accumulator; for example, when
transferring data between one user defined register and
another, it is necessary to do this by passing the data
through the Accumulator as no direct transfer between
two registers is permitted.
Status Register - STATUS
This 8-bit register contains the zero flag (Z), carry flag
(C), auxiliary carry flag (AC), overflow flag (OV), power
down flag (PDF), and watchdog time-out flag (TO).
These arithmetic/logical operation and system management flags are used to record the status and operation of
the microcontroller.
With the exception of the TO and PDF flags, bits in the
status register can be altered by instructions like most
other registers. Any data written into the status register
will not change the TO or PDF flag. In addition, operations related to the status register may give different results due to the different instruction operations. The TO
flag can be affected only by a system power-up, a WDT
time-out or by executing the ²CLR WDT² or ²HALT² instruction. The PDF flag is affected only by executing the
²HALT² or ²CLR WDT² instruction or during a system
power-up.
Program Counter Low Register - PCL
To provide additional program control functions, the low
byte of the Program Counter is made accessible to programmers by locating it within the Special Purpose area
of the Data Memory. By manipulating this register, direct
jumps to other program locations are easily implemented. Loading a value directly into this PCL register
will cause a jump to the specified Program Memory location, however, as the register is only 8-bit wide, only
jumps within the current Program Memory page are permitted. When such operations are used, note that a
dummy cycle will be inserted.
The Z, OV, AC and C flags generally reflect the status of
the latest operations.
· C is set if an operation results in a carry during an ad-
dition operation or if a borrow does not take place during a subtraction operation; otherwise C is cleared. C
is also affected by a rotate through carry instruction.
Look-up Table Registers - TBLP, TBHP, TBLH
These three special function registers are used to control operation of the look-up table which is stored in the
Program Memory. TBLP and TBHP are the table pointer
and indicates the location where the table data is located. Their value must be setup before any table read
commands are executed. Their value can be changed,
Rev. 1.00
· AC is set if an operation results in a carry out of the
low nibbles in addition, or no borrow from the high nibble into the low nibble in subtraction; otherwise AC is
cleared.
27
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· Z is set if the result of an arithmetic or logical operation
In addition, on entering an interrupt sequence or executing a subroutine call, the status register will not be
pushed onto the stack automatically. If the contents of
the status registers are important and if the subroutine
can corrupt the status register, precautions must be
taken to correctly save it.
is zero; otherwise Z is cleared.
· OV is set if an operation results in a carry into the high-
est-order bit but not a carry out of the highest-order bit,
or vice versa; otherwise OV is cleared.
· PDF is cleared by a system power-up or executing the
²CLR WDT² instruction. PDF is set by executing the
²HALT² instruction.
· TO is cleared by a system power-up or executing the
²CLR WDT² or ²HALT² instruction. TO is set by a
WDT time-out.
· STATUS Register
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
TO
PDF
OV
Z
AC
C
R/W
¾
¾
R
R
R/W
R/W
R/W
R/W
POR
¾
¾
0
0
x
x
x
x
²x² unknown
Bit 7, 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Rev. 1.00
Unimplemented, read as ²0²
TO: Watchdog Time-Out flag
0: After power up or executing the ²CLR WDT² or ²HALT² instruction
1: A watchdog time-out occurred.
PDF: Power down flag
0: After power up or executing the ²CLR WDT² instruction
1: By executing the ²HALT² instruction
OV: Overflow flag
0: no overflow
1: an operation results in a carry into the highest-order bit but not a carry out of the
highest-order bit or vice versa.
Z: Zero flag
0: The result of an arithmetic or logical operation is not zero
1: The result of an arithmetic or logical operation is zero
AC: Auxiliary flag
0: no auxiliary carry
1: an operation results in a carry out of the low nibbles in addition, or no borrow from the
high nibble into the low nibble in subtraction
C: Carry flag
0: no carry-out
1: an operation results in a carry during an addition operation or if a borrow does not take place
during a subtraction operation
C is also affected by a rotate through carry instruction.
28
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
EEPROM Data Memory
The device contains an area of internal EEPROM Data
Memory. EEPROM, which stands for Electrically Erasable Programmable Read Only Memory, is by its nature
a non-volatile form of re-programmable memory, with
data retention even when its power supply is removed.
By incorporating this kind of data memory, a whole new
host of application possibilities are made available to the
designer. The availability of EEPROM storage allows information such as product identification numbers, calibration values, specific user data, system setup data or
other product information to be stored directly within the
product microcontroller. The process of reading and
writing data to the EEPROM memory has been reduced
to a very trivial affair.
Device
Capacity
Address
HT68F20
32´8
00H ~ 1FH
HT68F30
64´8
00H ~ 3FH
HT68F40
128´8
00H ~ 7FH
HT68F50/HT68F60
256´8
00H ~ FFH
EEPROM Registers
Three registers control the overall operation of the internal EEPROM Data Memory. These are the address register, EEA, the data register, EED and a single control
register, EEC. As both the EEA and EED registers are located in Bank 0, they can be directly accessed in the
same was as any other Special Function Register. The
EEC register however, being located in Bank1, cannot be
directly addressed directly and can only be read from or
written to indirectly using the MP1 Memory Pointer and
Indirect Addressing Register, IAR1. Because the EEC
control register is located at address 40H in Bank 1, the
MP1 Memory Pointer must first be set to the value 40H
and the Bank Pointer register, BP, set to the value, 01H,
before any operations on the EEC register are executed.
EEPROM Data Memory Structure
The EEPROM Data Memory capacity varies from 32x8
to 256´8 bits, according to the device selected. Unlike
the Program Memory and RAM Data Memory, the
EEPROM Data Memory is not directly mapped into
memory space and is therefore not directly addressable
in the same way as the other types of memory. Read
and Write operations to the EEPROM are carried out in
single byte operations using an address and data register in Bank 0 and a single control register in Bank 1.
· EEPROM Register List
¨
HT68F20
Name
¨
7
6
5
4
3
2
1
0
EEA
¾
¾
¾
D4
D3
D2
D1
D0
EED
D7
D6
D5
D4
D3
D2
D1
D0
EEC
¾
¾
¾
¾
WREN
WR
RDEN
RD
HT68F30
Name
¨
Bit
Bit
7
6
5
4
3
2
1
0
EEA
¾
¾
D5
D4
D3
D2
D1
D0
EED
D7
D6
D5
D4
D3
D2
D1
D0
EEC
¾
¾
¾
¾
WREN
WR
RDEN
RD
7
6
5
4
3
2
1
0
EEA
¾
D6
D5
D4
D3
D2
D1
D0
EED
D7
D6
D5
D4
D3
D2
D1
D0
EEC
¾
¾
¾
¾
WREN
WR
RDEN
RD
HT68F40
Name
Rev. 1.00
Bit
29
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F50/HT68F60
Name
Bit
7
6
5
4
3
2
1
0
EEA
D7
D6
D5
D4
D3
D2
D1
D0
EED
D7
D6
D5
D4
D3
D2
D1
D0
EEC
¾
¾
¾
¾
WREN
WR
RDEN
RD
7
6
5
4
3
2
1
0
· EEA Register
¨
HT68F20
Bit
Name
¾
¾
¾
D4
D3
D2
D1
D0
R/W
¾
¾
¾
R/W
R/W
R/W
R/W
R/W
POR
¾
¾
¾
x
x
x
x
x
²x² unknown
Bit 7 ~ 5
Unimplemented, read as ²0²
Bit 4 ~ 0
Data EEPROM address
Data EEPROM address bit 4 ~ bit 0
¨
HT68F30
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
D5
D4
D3
D2
D1
D0
R/W
¾
¾
R/W
R/W
R/W
R/W
R/W
R/W
POR
¾
¾
x
x
x
x
x
x
²x² unknown
Bit 7 ~ 6
Unimplemented, read as ²0²
Bit 5 ~ 0
Data EEPROM address
Data EEPROM address bit 5 ~ bit 0
¨
HT68F40
Bit
7
6
5
4
3
2
1
0
Name
¾
D6
D5
D4
D3
D2
D1
D0
R/W
¾
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
¾
x
x
x
x
x
x
x
²x² unknown
Bit 7
Unimplemented, read as ²0²
Bit 6 ~ 0
Data EEPROM address
Data EEPROM address bit 6 ~ bit 0
¨
HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
x
x
x
x
x
x
x
x
²x² unknown
Bit 7 ~ 0
Rev. 1.00
Data EEPROM address
Data EEPROM address bit 7 ~ bit 0
30
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· EEC Register
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
WREN
WR
RDEN
RD
R/W
¾
¾
¾
¾
R/W
R/W
R/W
R/W
POR
¾
¾
¾
¾
0
0
0
0
Bit 7 ~ 4
Unimplemented, read as ²0²
Bit 3
WREN: Data EEPROM Write Enable
0: Disable
1: Enable
This is the Data EEPROM Write Enable Bit which must be set high before Data EEPROM write
operations are carried out. Clearing this bit to zero will inhibit Data EEPROM write operations.
Bit 2
WR: EEPROM Write Control
0: Write cycle has finished
1: Activate a write cycle
This is the Data EEPROM Write Control Bit and when set high by the application program will
activate a write cycle. This bit will be automatically reset to zero by the hardware after the write
cycle has finished. Setting this bit high will have no effect if the WREN has not first been set high.
Bit 1
RDEN: Data EEPROM Read Enable
0: Disable
1: Enable
This is the Data EEPROM Read Enable Bit which must be set high before Data EEPROM read
operations are carried out. Clearing this bit to zero will inhibit Data EEPROM read operations.
Bit 0
RD: EEPROM Read Control
0: Read cycle has finished
1: Activate a read cycle
This is the Data EEPROM Read Control Bit and when set high by the application program will
activate a read cycle. This bit will be automatically reset to zero by the hardware after the read
cycle has finished. Setting this bit high will have no effect if the RDEN has not first been set high.
Note: The WREN, WR, RDEN and RD can not be set to ²1² at the same time in one instruction. The WR and RD can
not be set to ²1² at the same time.
Reading Data from the EEPROM
ter and the data placed in the EED register. If the WR bit
in the EEC register is now set high, an internal write cycle will then be initiated. Setting the WR bit high will not
initiate a write cycle if the WREN bit has not been set. As
the EEPROM write cycle is controlled using an internal
t i m e r w h o se o p e r a t i o n i s a syn ch r o n o u s t o
microcontroller system clock, a certain time will elapse
before the data will have been written into the EEPROM.
Detecting when the write cycle has finished can be implemented either by polling the WR bit in the EEC register or by using the EEPROM interrupt. When the write
cycle terminates, the WR bit will be automatically
cleared to zero by the microcontroller, informing the
user that the data has been written to the EEPROM. The
application program can therefore poll the WR bit to determine when the write cycle has ended.
To read data from the EEPROM, the read enable bit,
RDEN, in the EEC register must first be set high to enable the read function. The EEPROM address of the
data to be read must then be placed in the EEA register.
If the RD bit in the EEC register is now set high, a read
cycle will be initiated. Setting the RD bit high will not initiate a read operation if the RDEN bit has not been set.
When the read cycle terminates, the RD bit will be automatically cleared to zero, after which the data can be
read from the EED register. The data will remain in the
EED register until another read or write operation is executed. The application program can poll the RD bit to determine when the data is valid for reading.
Writing Data to the EEPROM
To write data to the EEPROM, the write enable bit,
WREN, in the EEC register must first be set high to enable the write function. The EEPROM address of the
data to be written must then be placed in the EEA regis-
Rev. 1.00
31
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Write Protection
DEF request flag and its associated multi-function interrupt request flag will both be set. If the global, EEPROM
and Multi-function interrupts are enabled and the stack
is not full, a jump to the associated Multi-function Interrupt vector will take place. When the interrupt is serviced
only the Multi-function interrupt flag will be automatically
reset, the EEPROM interrupt flag must be manually reset by the application program. More details can be obtained in the Interrupt section.
Protection against inadvertent write operation is provided in several ways. After the device is powered-on
the Write Enable bit in the control register will be cleared
preventing any write operations. Also at power-on the
Bank Pointer, BP, will be reset to zero, which means that
Data Memory Bank 0 will be selected. As the EEPROM
control register is located in Bank 1, this adds a further
measure of protection against spurious write operations. During normal program operation, ensuring that
the Write Enable bit in the control register is cleared will
safeguard against incorrect write operations.
Programming Considerations
Care must be taken that data is not inadvertently written
to the EEPROM. Protection can be enhanced by ensuring that the Write Enable bit is normally cleared to zero
when not writing. Also the Bank Pointer could be normally cleared to zero as this would inhibit access to
Bank 1 where the EEPROM control register exist. Although certainly not necessary, consideration might be
given in the application program to the checking of the
validity of new write data by a simple read back process.
EEPROM Interrupt
The EEPROM write or read interrupt is generated when
an EEPROM write or read cycle has ended. The
EEPROM interrupt must first be enabled by setting the
DEE bit in the relevant interrupt register. However as the
EEPROM is contained within a Multi-function Interrupt,
the associated multi-function interrupt enable bit must
also be set. When an EEPROM write cycle ends, the
· Programming Examples
¨
Reading data from the EEPROM - polling method
MOV A, EEPROM_ADRES
MOV EEA, A
MOV A, 040H
MOV MP1, A
MOV A, 01H
MOV BP, A
SET IAR1.1
SET IAR1.0
BACK:
SZ
IAR1.0
JMP BACK
CLR IAR1
CLR BP
MOV A, EEDATA
MOV READ_DATA, A
¨
; user defined address
; setup memory pointer MP1
; MP1 points to EEC register
; setup Bank Pointer
; set RDEN bit, enable read operations
; start Read Cycle - set RD bit
; check for read cycle end
; disable EEPROM read/write
; move read data to register
Writing Data to the EEPROM - polling method
MOV A, EEPROM_ADRES
; user defined address
MOV EEA, A
MOV A, EEPROM_DATA
; user defined data
MOV EED, A
MOV A, 040H
; setup memory pointer MP1
MOV MP1, A
; MP1 points to EEC register
MOV A, 01H
; setup Bank Pointer
MOV BP, A
SET IAR1.3
; set WREN bit, enable write operations
SET IAR1.2
; start Write Cycle - set WR bit
BACK:
SZ
IAR1.2
; check for write cycle end
JMP BACK
CLR IAR1
; disable EEPROM read/write
CLR BP
Rev. 1.00
32
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Oscillator
Various oscillator options offer the user a wide range of
functions according to their various application requirements. The flexible features of the oscillator functions
ensure that the best optimisation can be achieved in
terms of speed and power saving. Oscillator selections
and operation are selected through a combination of
configuration options and registers.
Oscillator Overview
In addition to being the source of the main system clock
the oscillators also provide clock sources for the Watchdog Timer and Time Base Interrupts. External oscillators requiring some external components as well as fully
integrated internal oscillators, requiring no external
components, are provided to form a wide range of both
fast and slow system oscillators. All oscillator options
are selected through the configuration options. The
higher frequency oscillators provide higher performance
but carry with it the disadvantage of higher power requirements, while the opposite is of course true for the
lower frequency oscillators. With the capability of dynamically switching between fast and slow system
clock, the device has the flexibility to optimize the performance/power ratio, a feature especially important in
power sensitive portable applications.
Type
Name
Freq.
Pins
External Crystal
HXT
400kHz~
20MHz
OSC1/
OSC2
External RC
ERC
8MHz
OSC1
Internal High
Speed RC
HIRC
4, 8 or 12MHz
¾
External Low
Speed Crystal
LXT
32.768kHz
XT1/
XT2
Internal Low
Speed RC
LIRC
32kHz
¾
Oscillator Types
System Clock Configurations
There are five methods of generating the system clock,
three high speed oscillators and two low speed oscillators. The high speed oscillators are the external crystal/
ceramic oscillator, external RC network oscillator and
the internal 4MHz, 8MHz or 12MHz RC oscillator. The
two low speed oscillators are the internal 32kHz RC oscillator and the external 32.768kHz crystal oscillator. Selecting whether the low or high speed oscillator is used
as the system oscillator is implemented using the
HLCLK bit and CKS2 ~ CKS0 bits in the SMOD register
and as the system clock can be dynamically selected.
High Speed Oscillation
HXT
fH
ERC
6-stage Prescaler
fH/2
HIRC
fH /4
High Speed Oscillation
Configuration Option
Low Speed Oscillation
fH/8
fH/16
fH/32
fH/64
LIRC
fSY S
fL
LXT
Low Speed Oscillation
Configuration Option
HLCLK,
CKS2~CKS0 bits
fS UB
Fast Wake-up from SLEEP Mode or
IDLE Mode Control (for HXT only)
System Clock Configurations
Rev. 1.00
33
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
termines the oscillation frequency; the external
capacitor has no influence over the frequency and is
connected for stability purposes only. Device trimming
during the manufacturing process and the inclusion of
internal frequency compensation circuits are used to ensure that the influence of the power supply voltage, temperature and process variations on the oscillation
frequency are minimised. As a resistance/frequency reference point, it can be noted that with an external 120kW
resistor connected and with a 5V voltage power supply
and temperature of 25°C degrees, the oscillator will
have a frequency of 8MHz within a tolerance of 2%.
Here only the OSC1 pin is used, which is shared with I/O
pin PB1, leaving pin PB2 free for use as a normal I/O
pin.
The actual source clock used for each of the high speed
and low speed oscillators is chosen via configuration
options. The frequency of the slow speed or high speed
system clock is also determined using the HLCLK bit
and CKS2 ~ CKS0 bits in the SMOD register. Note that
two oscillator selections must be made namely one high
speed and one low speed system oscillators. It is not
possible to choose a no-oscillator selection for either the
high or low speed oscillator.
External Crystal/ Ceramic Oscillator - HXT
The External Crystal/ Ceramic System Oscillator is one
of the high frequency oscillator choices, which is selected via configuration option. For most crystal oscillator configurations, the simple connection of a crystal
across OSC1 and OSC2 will create the necessary
phase shift and feedback for oscillation, without requiring external capacitors. However, for some crystal types
and frequencies, to ensure oscillation, it may be necessary to add two small value capacitors, C1 and C2.
Using a ceramic resonator will usually require two small
value capacitors, C1 and C2, to be connected as shown
for oscillation to occur. The values of C1 and C2 should
be selected in consultation with the crystal or resonator
manufacturer¢s specification.
C 1
O S C 1
R p
C 2
R f
V
R
O S C 1
External RC Oscillator - ERC
Internal RC Oscillator - HIRC
In te r n a l
O s c illa to r
C ir c u it
The internal RC oscillator is a fully integrated system oscillator requiring no external components. The internal
RC oscillator has three fixed frequencies of either
4MHz, 8MHz or 12MHz. Device trimming during the
manufacturing process and the inclusion of internal frequency compensation circuits are used to ensure that
the influence of the power supply voltage, temperature
and process variations on the oscillation frequency are
minimised. As a result, at a power supply of either 3.3V
or 5V and at a temperature of 25°C degrees, the fixed
oscillation frequency of 4MHz, 8MHz or 12MHz will
have a tolerance within 2%. Note that if this internal system clock option is selected, as it requires no external
pins for its operation, I/O pins PB1 and PB2 are free for
use as normal I/O pins.
N o te : 1 . R p is n o r m a lly n o t r e q u ir e d . C 1 a n d C 2 a r e r e q u ir e d .
2 . A lth o u g h n o t s h o w n O S C 1 /O S C 2 p in s h a v e a p a r a s itic
c a p a c ita n c e o f a r o u n d 7 p F .
Crystal/Resonator Oscillator - HXT
Crystal Oscillator C1 and C2 Values
Crystal Frequency
C1
C2
12MHz
0pF
0pF
8MHz
0pF
0pF
4MHz
0pF
0pF
1MHz
100pF
100pF
Note:
External 32.768kHz Crystal Oscillator - LXT
The External 32.768kHz Crystal System Oscillator is
one of the low frequency oscillator choices, which is selected via configuration option. This clock source has a
fixed frequency of 32.768kHz and requires a 32.768kHz
crystal to be connected between pins XT1 and XT2. The
external resistor and capacitor components connected
to the 32.768kHz crystal are necessary to provide oscillation. For applications where precise frequencies are
essential, these components may be required to provide
frequency compensation due to different crystal manufacturing tolerances. During power-up there is a time
delay associated with the LXT oscillator waiting for it to
start-up.
C1 and C2 values are for guidance only.
Crystal Recommended Capacitor Values
External RC Oscillator - ERC
Using the ERC oscillator only requires that a resistor,
with a value between 56kW and 2.4MW, is connected
between OSC1 and VDD, and a capacitor is connected
between OSC1 and ground, providing a low cost oscillator configuration. It is only the external resistor that de-
Rev. 1.00
O S C
4 7 0 p F
T o in te r n a l
c ir c u its
O S C 2
D D
34
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
LXT Oscillator Low Power Function
When the microcontroller enters the SLEEP or IDLE
Mode, the system clock is switched off to stop
microcontroller activity and to conserve power. However, in many microcontroller applications it may be necessary to keep the internal timers operational even
when the microcontroller is in the SLEEP or IDLE Mode.
To do this, another clock, independent of the system
clock, must be provided.
The LXT oscillator can function in one of two modes, the
Quick Start Mode and the Low Power Mode. The mode
selection is executed using the LXTLP bit in the TBC
register.
However, for some crystals, to ensure oscillation and
accurate frequency generation, it is necessary to add
two small value external capacitors, C1 and C2. The exact values of C1 and C2 should be selected in consultation with the crystal or resonator manufacturer¢s
specification. The external parallel feedback resistor,
Rp, is required.
· If the LXT oscillator is not used for any clock source,
the XT1/XT2 pins can be used as normal I/O pins.
· If the LXT oscillator is used for any clock source, the
32.768kHz crystal should be connected to the
XT1/XT2 pins.
In te r n a l
O s c illa to r
C ir c u it
X T 1
R p
X T 2
T o in te r n a l
c ir c u its
C 2
LXT Oscillator C1 and C2 Values
Note:
C1
C2
10pF
10pF
Low-power
The Internal 32kHz System Oscillator is one of the low
frequency oscillator choices, which is selected via configuration option. It is a fully integrated RC oscillator with
a typical frequency of 32kHz at 5V, requiring no external
components for its implementation. Device trimming
during the manufacturing process and the inclusion of
internal frequency compensation circuits are used to ensure that the influence of the power supply voltage, temperature and process variations on the oscillation
frequency are minimised. As a result, at a power supply
of 5V and at a temperature of 25°C degrees, the fixed
oscillation frequency of 32kHz will have a tolerance
within 10%.
External LXT Oscillator
32.768kHz
Quick Start
1
Internal 32kHz Oscillator - LIRC
N o te : 1 . R p , C 1 a n d C 2 a r e r e q u ir e d .
2 . A lth o u g h n o t s h o w n p in s h a v e a
p a r a s itic c a p a c ita n c e o f a r o u n d 7 p F .
Crystal Frequency
0
It should be noted that, no matter what condition the
LXTLP bit is set to, the LXT oscillator will always function normally, the only difference is that it will take more
time to start up if in the Low-power mode.
In te rn a l R C
O s c illa to r
3 2 .7 6 8
k H z
LXT Mode
After power on the LXTLP bit will be automatically
cleared to zero ensuring that the LXT oscillator is in the
Quick Start operating mode. In the Quick Start Mode the
LXT oscillator will power up and stabilise quickly. However, after the LXT oscillator has fully powered up it can
be placed into the Low-power mode by setting the
LXTLP bit high. The oscillator will continue to run but
with reduced current consumption, as the higher current
consumption is only required during the LXT oscillator
start-up. In power sensitive applications, such as battery
applications, where power consumption must be kept to
a minimum, it is therefore recommended that the application program sets the LXTLP bit high about 2 seconds
after power-on.
Some configuration options determine if the XT1/XT2
pins are used for the LXT oscillator or as I/O pins.
C 1
LXTLP Bit
1. C1 and C2 values are for guidance only.
2. RP=5M~10MW is recommended.
32.768kHz Crystal Recommended Capacitor Values
Supplementary Oscillators
The low speed oscillators, in addition to providing a system clock source are also used to provide a clock
source to two other device functions. These are the
Watchdog Timer and the Time Base Interrupts.
Rev. 1.00
35
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Operating Modes and System Clocks
P re s e n t d a y appl i c a t i ons r equi r e t ha t t h e i r
microcontrollers have high performance but often still
demand that they consume as little power as possible,
conflicting requirements that are especially true in battery powered portable applications. The fast clocks required for high performance will by their nature increase
current consumption and of course vice-versa, lower
speed clocks reduce current consumption. As Holtek
has provided these devices with both high and low
speed clock sources and the means to switch between
them dynamically, the user can optimise the operation of
their microcontroller to achieve the best performance/power ratio.
The main system clock, can come from either a high frequency, fH, or low frequency, fL, source, and is selected
using the HLCLK bit and CKS2~CKS0 bits in the SMOD
register. The high speed system clock can be sourced
from either an HXT, ERC or HIRC oscillator, selected via
a configuration option. The low speed system clock
source can be sourced from internal clock fL. If fL is selected then it can be sourced by either the LXT or LIRC
oscillators, selected via a configuration option. The
other choice, which is a divided version of the high
speed system oscillator has a range of fH/2~fH/64.
There are two additional internal clocks for the peripheral circuits, the substitute clock, fSUB, and the Time
Base clock, fTBC. Each of these internal clocks are
sourced by either the LXT or LIRC oscillators, selected
via configuration options. The fSUB clock is used to provide a substitute clock for the microcontroller just after a
wake-up has occurred to enable faster wake-up times.
System Clocks
The device has many different clock sources for both
the CPU and peripheral function operation. By providing
the user with a wide range of clock options using configuration options and register programming, a clock system can be configured to obtain maximum application
performance.
High Speed Oscillation
HXT
fH
ERC
6-stage Prescaler
fH /2
HIRC
fH /4
High Speed Oscillation
Configuration Option
Low Speed Oscillation
fH/8
fH/16
f H/32
fH /64
LIRC
fS YS
fL
LXT
Low Speed Oscillation
Configuration Option
HLCLK,
CKS2~CKS0 bits
fSUB
Fast Wake-up from SLEEP Mode or
IDLE Mode Control (for HXT only)
fTB C
fTB
fSYS /4
Time Base
TBCK
fS UB
fS
fSYS/ 4
WDT
Configuration Option
System Clock Configurations
Note:
When the system clock source fSYS is switched to fL from fH, the high speed oscillation will stop to conserve the
power. Thus there is no fH~fH/64 for peripheral circuit to use.
Rev. 1.00
36
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Together with fSYS/4 it is also used as one of the clock
sources for the Watchdog timer. The fTBC clock is used
as a source for the Time Base interrupt functions and for
the TMs.
istics and which can be chosen according to the specific
performance and power requirements of the application. There are two modes allowing normal operation of
the microcontroller, the NORMAL Mode and SLOW
Mode. The remaining four modes, the SLEEP0,
SLEEP1, IDLE0 and IDLE1 Mode are used when the
microcontroller CPU is switched off to conserve power.
System Operation Modes
There are six different modes of operation for the
microcontroller, each one with its own special character-
Description
Operation Mode
CPU
fSYS
fSUB
fS
fTBC
NORMAL Mode
On
fH~ fH/64
On
On
On
SLOW Mode
On
fL
On
On
On
IDLE0 Mode
Off
Off
On
On/Off
On
IDLE1 Mode
Off
On
On
On
On
SLEEP0 Mode
Off
Off
Off
Off
Off
SLEEP1 Mode
Off
Off
On
On
Off
· NORMAL Mode
to operate if the LVDEN is ²1² or the Watchdog Timer
function is enabled and if its clock source is chosen
via configuration option to come from the fSUB.
As the name suggests this is one of the main operating modes where the microcontroller has all of its
functions operational and where the system clock is
provided by one of the high speed oscillators. This
mode operates allowing the microcontroller to operate
normally with a clock source will come from one of the
high speed oscillators, either the HXT, ERC or HIRC
oscillators. The high speed oscillator will however first
be divided by a ratio ranging from 1 to 64, the actual
ratio being selected by the CKS2~LCKS0 and HLCLK
bits in the SMOD register. Although a high speed oscillator is used, running the microcontroller at a divided clock ratio reduces the operating current.
· IDLE0 Mode
The IDLE0 Mode is entered when a HALT instruction
is executed and when the IDLEN bit in the SMOD register is high and the FSYSON bit in the WDTC register
is low. In the IDLE0 Mode the system oscillator will be
inhibited from driving the CPU but some peripheral
functions will remain operational such as the Watchdog Timer, TMs and SIM. In the IDLE0 Mode, the system oscillator will be stopped. In the IDLE0 Mode the
Watchdog Timer clock, fS, will either be on or off depending upon the fS clock source. If the source is
fSYS/4 then the fS clock will be off, and if the source comes from fSUB then fS will be on.
· SLOW Mode
This is also a mode where the microcontroller operates normally although now with a slower speed clock
source. The clock source used will be from one of the
low speed oscillators, either the LXT or the LIRC.
Running the microcontroller in this mode allows it to
run with much lower operating currents. In the SLOW
Mode, the fH is off.
· IDLE1 Mode
The IDLE1 Mode is entered when an HALT instruction
is executed and when the IDLEN bit in the SMOD register is high and the FSYSON bit in the WDTC register
is high. In the IDLE1 Mode the system oscillator will be
inhibited from driving the CPU but may continue to
provide a clock source to keep some peripheral functions operational such as the Watchdog Timer, TMs
and SIM. In the IDLE1 Mode, the system oscillator will
continue to run, and this system oscillator may be high
speed or low speed system oscillator. In the IDLE1
Mode the Watchdog Timer clock, fS, will be on. If the
source is fSYS/4 then the fS clock will be on, and if the
source comes from fSUB then fS will be on.
· SLEEP0 Mode
The SLEEP Mode is entered when an HALT instruction is executed and when the IDLEN bit in the SMOD
register is low. In the SLEEP0 mode the CPU will be
stopped, and the fSUB and fS clocks will be stopped too,
and the Watchdog Timer function is disabled. In this
mode, the LVDEN is must set to ²0². If the LVDEN is
set to ²1², it won¢t enter the SLEEP0 Mode.
· SLEEP1 Mode
The SLEEP Mode is entered when an HALT instruction is executed and when the IDLEN bit in the SMOD
register is low. In the SLEEP1 mode the CPU will be
stopped. However the fSUB and fS clocks will continue
Rev. 1.00
37
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Control Register
A single register, SMOD, is used for overall control of the internal clocks within the device.
· SMOD Register
Bit
7
6
5
4
3
2
1
0
Name
CKS2
CKS1
CKS0
FSTEN
LTO
HTO
IDLEN
HLCLK
R/W
R/W
R/W
R/W
R/W
R
R
R/W
R/W
POR
0
0
0
0
0
0
1
1
Bit 7~5
CKS2~CKS0: The system clock selection when HLCLK is ²0²
000: fL (fLXT or fLIRC)
001: fL (fLXT or fLIRC)
010: fH/64
011: fH/32
100: fH/16
101: fH/8
110: fH/4
111: fH/2
These three bits are used to select which clock is used as the system clock source. In addition
to the system clock source, which can be either the LXT or LIRC, a divided version of the high
speed system oscillator can also be chosen as the system clock source.
Bit 4
FSTEN: Fast Wake-up Control (only for HXT)
0: Disable
1: Enable
This is the Fast Wake-up Control bit which determines if the fSUB clock source is initially used
after the device wakes up. When the bit is high, the fSUB clock source can be used as a
temporary system clock to provide a faster wake up time as the fSUB clock is available.
Bit 3
LTO: Low speed system oscillator ready flag
0: Not ready
1: Ready
This is the low speed system oscillator ready flag which indicates when the low speed system
oscillator is stable after power on reset or a wake-up has occurred. The flag will be low when in
the SLEEP0 Mode but after a wake-up has occurred, the flag will change to a high level after
1024 clock cycles if the LXT oscillator is used and 1~2 clock cycles if the LIRC oscillator is used.
Bit 2
HTO: High speed system oscillator ready flag
0: Not ready
1: Ready
This is the high speed system oscillator ready flag which indicates when the high speed system
oscillator is stable. This flag is cleared to ²0² by hardware when the device is powered on and
then changes to a high level after the high speed system oscillator is stable. Therefore this flag
will always be read as ²1² by the application program after device power-on. The flag will be
low when in the SLEEP or IDLE0 Mode but after a wake-up has occurred, the flag will change to
a high level after 1024 clock cycles if the HXT oscillator is used and after 15~16 clock cycles if
the ERC or HIRC oscillator is used.
Bit 1
IDLEN: IDLE Mode control
0: Disable
1: Enable
This is the IDLE Mode Control bit and determines what happens when the HALT instruction is
executed. If this bit is high, when a HALT instruction is executed the device will enter the
IDLE Mode. In the IDLE1 Mode the CPU will stop running but the system clock will continue to
keep the peripheral functions operational, if FSYSON bit is high. If FSYSON bit is low, the CPU
and the system clock will all stop in IDLE0 mode. If the bit is low the device will enter the
SLEEP Mode when a HALT instruction is executed.
Bit 0
HLCLK: system clock selection
0: fH/2 ~ fH/64 or fL
1: fH
This bit is used to select if the fH clock or the fH/2 ~ fH/64 or fL clock is used as the system
clock. When the bit is high the fH clock will be selected and if low the fH/2 ~ fH/64 or fL clock will
be selected. When system clock switches from the fH clock to the fL clock and the fH clock will
be automatically switched off to conserve power.
Rev. 1.00
38
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Fast Wake-up
able function is controlled using the FSTEN bit in the
SMOD register.
To minimise power consumption the device can enter
the SLEEP or IDLE0 Mode, where the system clock
source to the device will be stopped. However when the
device is woken up again, it can take a considerable
time for the original system oscillator to restart, stabilise
and allow normal operation to resume. To ensure the
device is up and running as fast as possible a Fast
Wake-up function is provided, which allows fSUB,
namely either the LXT or LIRC oscillator, to act as a temporary clock to first drive the system until the original
system oscillator has stabilised. As the clock source for
the Fast Wake-up function is fSUB, the Fast Wake-up
function is only available in the SLEEP1 and IDLE0
modes. When the device is woken up from the SLEEP0
mode, the Fast Wake-up function has no effect because
the fSUB clock is stopped. The Fast Wake-up enable/dis-
System
Oscillator
If the HXT oscillator is selected as the NORMAL Mode
system clock, and if the Fast Wake-up function is enabled, then it will take one to two tSUB clock cycles of the
LIRC or LXT oscillator for the system to wake-up. The
system will then initially run under the fSUB clock source
until 1024 HXT clock cycles have elapsed, at which
point the HTO flag will switch high and the system will
switch over to operating from the HXT oscillator.
If the ERC or HIRC oscillators or LIRC oscillator is used
as the system oscillator then it will take 15~16 clock cycles of the ERC or HIRC or 1~2 cycles of the LIRC to
wake up the system from the SLEEP or IDLE0 Mode.
The Fast Wake-up bit, FSTEN will have no effect in
these cases.
FSTEN
Bit
Wake-up Time
(SLEEP0 Mode)
0
1024 HXT cycles
1024 HXT cycles
1~2 HXT cycles
1
1024 HXT cycles
1~2 fSUB cycles
(System runs with fSUB first for 1024 HXT cycles
and then switches over to run with the HXT clock)
1~2 HXT cycles
X
15~16 ERC cycles
15~16 ERC cycles
1~2 ERC cycles
HIRC
X
15~16 HIRC cycles
15~16 HIRC cycles
1~2 HIRC cycles
LIRC
X
1~2 LIRC cycles
1~2 LIRC cycles
1~2 LIRC cycles
LXT
X
1024 LTX cycles
1024 LXT cycles
1~2 LXT cycles
HXT
ERC
Wake-up Time
(SLEEP1 Mode)
Wake-up Time
(IDLE0 Mode)
Wake-up Time
(IDLE1 Mode)
Wake-Up Times
Note that if the Watchdog Timer is disabled, which means that the LXT and LIRC are all both off, then there will be no
Fast Wake-up function available when the device wakes-up from the SLEEP0 Mode.
fS
ID L E 1
H A L T in s tr u c tio n is e x e c u te d
C P U s to p
ID L E N = 1
F S Y S O N = 1
fS Y S o n
fT B C o n
fS U B o n
N O R M A L
Y S = f H ~ f H / 6 4
fH o n
C P U ru n
fS Y S o n
fT B C o n
fS U B o n
ID L E 0
H A L T in s tr u c tio n is e x e c u te d
C P U s to p
ID L E N = 1
F S Y S O N = 0
fS Y S o ff
fT B C o n
fS U B o n
S L E E P 0
H A L T in s tr u c tio n is e x e c u te d
fS Y S o ff
C P U s to p
ID L E N = 0
fT B C o ff
fS U B o ff
W D T & L V D o ff
S L E E P 1
H A L T in s tr u c tio n is e x e c u te d
fS Y S o ff
C P U s to p
ID L E N = 0
fT B C o ff
fS U B o n
W D T o r L V D o n
Rev. 1.00
S L O W
fS Y S = fL
fL o n
C P U ru n
fS Y S o n
fT B C o n
fS U B o n
fH o ff
39
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Operating Mode Switching and Wake-up
sources will also stop running, which may affect the operation of other internal functions such as the TMs and
the SIM. The accompanying flowchart shows what happens when the device moves between the various operating modes.
The device can switch between operating modes dynamically allowing the user to select the best performance/power ratio for the present task in hand. In this
way microcontroller operations that do not require high
performance can be executed using slower clocks thus
requiring less operating current and prolonging battery
life in portable applications.
NORMAL Mode to SLOW Mode Switching
When running in the NORMAL Mode, which uses the
high speed system oscillator, and therefore consumes
more power, the system clock can switch to run in the
SLOW Mode by set the HLCLK bit to ²0² and set the
CKS2~CKS0 bits to ²000² or ²001² in the SMOD register. This will then use the low speed system oscillator
which will consume less power. Users may decide to do
this for certain operations which do not require high performance and can subsequently reduce power consumption.
In simple terms, Mode Switching between the NORMAL
Mode and SLOW Mode is executed using the HLCLK bit
and CKS2~CKS0 bits in the SMOD register while Mode
Switching from the NORMAL/SLOW Modes to the
SLEEP/IDLE Modes is executed via the HALT instruction. When a HALT instruction is executed, whether the
device enters the IDLE Mode or the SLEEP Mode is determined by the condition of the IDLEN bit in the SMOD
register and FSYSON in the WDTC register.
The SLOW Mode is sourced from the LXT or the LIRC
oscillators and therefore requires these oscillators to be
stable before full mode switching occurs. This is monitored using the LTO bit in the SMOD register.
When the HLCLK bit switches to a low level, which implies that clock source is switched from the high speed
clock source, fH, to the clock source, fH/2~fH/64 or fL. If
the clock is from the fL, the high speed clock source will
stop running to conserve power. When this happens it
must be noted that the fH/16 and fH/64 internal clock
N O R M A L M o d e
C K S 2 ~ C K S 0 = 0 0 x B &
H L C L K = 0
S L O W
M o d e
W D T a n d L V D a r e a ll o ff
ID L E N = 0
H A L T in s tr u c tio n is e x e c u te d
S L E E P 0 M o d e
W D T o r L V D is o n
ID L E N = 0
H A L T in s tr u c tio n is e x e c u te d
S L E E P 1 M o d e
ID L E N = 1 , F S Y S O N = 0
H A L T in s tr u c tio n is e x e c u te d
ID E L 0 M o d e
ID L E N = 1 , F S Y S O N = 1
H A L T in s tr u c tio n is e x e c u te d
ID L E 1 M o d e
Rev. 1.00
40
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
S L O W
M o d e
C K S 2 ~ C K S 0 ¹ 0 0 0 B , 0 0 1 B a s H L C L K = 0
o r H L C L K = 1
N O R M A L M o d e
W D T a n d L V D a r e a ll o ff
ID L E N = 0
H A L T in s tr u c tio n is e x e c u te d
S L E E P 0 M o d e
W D T o r L V D is o n
ID L E N = 0
H A L T in s tr u c tio n is e x e c u te d
S L E E P 1 M o d e
ID L E N = 1 , F S Y S O N = 0
H A L T in s tr u c tio n is e x e c u te d
ID L E 0 M o d e
ID L E N = 1 , F S Y S O N = 1
H A L T in s tr u c tio n is e x e c u te d
ID L E 1 M o d e
SLOW Mode to NORMAL Mode Switching
Entering the SLEEP0 Mode
In SLOW Mode the system uses either the LXT or LIRC
low speed system oscillator. To switch back to the
NORMAL Mode, where the high speed system oscillator
is used, the HLCLK bit should be set to ²1² or HLCLK bit
is ²0², but CKS2~CKS0 is set to ²010², ²011², ²100²,
²101², ²110² or ²111². As a certain amount of time will be
required for the high frequency clock to stabilise, the
status of the HTO bit is checked. The amount of time
required for high speed system oscillator stabilization
depends upon which high speed system oscillator type
is used.
There is only one way for the device to enter the
SLEEP0 Mode and that is to execute the ²HALT² instruction in the application program with the IDLEN bit in
SMOD register equal to ²0² and the WDT and LVD both
off. When this instruction is executed under the conditions described above, the following will occur:
· The system clock, WDT clock and Time Base clock
will be stopped and the application program will stop
at the ²HALT² instruction.
· The Data Memory contents and registers will maintain
their present condition.
· The WDT will be cleared and stopped no matter if the
WDT clock source originates from the fSUB clock or
from the system clock.
· The I/O ports will maintain their present conditions.
· In the status register, the Power Down flag, PDF, will
be set and the Watchdog time-out flag, TO, will be
cleared.
Rev. 1.00
41
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Entering the SLEEP1 Mode
Entering the IDLE1 Mode
There is only one way for the device to enter the
SLEEP1 Mode and that is to execute the ²HALT²
instruction in the application program with the IDLEN bit
in SMOD register equal to ²0² and the WDT or LVD on.
When this instruction is executed under the conditions
described above, the following will occur:
There is only one way for the device to enter the IDLE1
Mode and that is to execute the ²HALT² instruction in the
application program with the IDLEN bit in SMOD register
equal to ²1² and the FSYSON bit in WDTC register equal
to ²1². When this instruction is executed under the with
conditions described above, the following will occur:
· The system clock and Time Base clock will be
· The system clock and Time Base clock and fSUB clock
stopped and the application program will stop at the
²HALT² instruction, but the WDT or LVD will remain
with the clock source coming from the fSUB clock.
will be on and the application program will stop at the
²HALT² instruction.
· The Data Memory contents and registers will maintain
· The Data Memory contents and registers will maintain
their present condition.
their present condition.
· The WDT will be cleared and resume counting if the
· The WDT will be cleared and resume counting if the
WDT is enabled regardless of the WDT clock source
which originates from the fSUB clock or from the system
clock.
WDT clock source is selected to come from the fSUB
clock as the WDT is enabled.
· The I/O ports will maintain their present conditions.
· The I/O ports will maintain their present conditions.
· In the status register, the Power Down flag, PDF, will
· In the status register, the Power Down flag, PDF, will
be set and the Watchdog time-out flag, TO, will be
cleared.
be set and the Watchdog time-out flag, TO, will be
cleared.
Entering the IDLE0 Mode
Standby Current Considerations
There is only one way for the device to enter the IDLE0
Mode and that is to execute the ²HALT² instruction in the
application program with the IDLEN bit in SMOD register
equal to ²1² and the FSYSON bit in WDTC register equal
to ²0². When this instruction is executed under the conditions described above, the following will occur:
As the main reason for entering the SLEEP or IDLE
Mode is to keep the current consumption of the device
to as low a value as possible, perhaps only in the order
of several micro-amps except in the IDLE1 Mode, there
are other considerations which must also be taken into
account by the circuit designer if the power consumption
is to be minimised. Special attention must be made to
the I/O pins on the device. All high-impedance input pins
must be connected to either a fixed high or low level as
any floating input pins could create internal oscillations
and result in increased current consumption. This also
applies to devices which have different package types,
as there may be unbonbed pins. These must either be
setup as outputs or if setup as inputs must have
pull-high resistors connected.
· The system clock will be stopped and the application
program will stop at the ²HALT² instruction, but the
Time Base clock and fSUB clock will be on.
· The Data Memory contents and registers will maintain
their present condition.
· The WDT will be cleared and resume counting if the
WDT clock source is selected to come from the fSUB
clock and the WDT is enabled. The WDT will stop if its
clock source originates from the system clock.
Care must also be taken with the loads, which are connected to I/O pins, which are setup as outputs. These
should be placed in a condition in which minimum current is drawn or connected only to external circuits that
do not draw current, such as other CMOS inputs. Also
note that additional standby current will also be required
if the configuration options have enabled the LXT or
LIRC oscillator.
· The I/O ports will maintain their present conditions.
· In the status register, the Power Down flag, PDF, will
be set and the Watchdog time-out flag, TO, will be
cleared.
In the IDLE1 Mode the system oscillator is on, if the system oscillator is from the high speed system oscillator,
the additional standby current will also be perhaps in the
order of several hundred micro-amps
Rev. 1.00
42
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Wake-up
Programming Considerations
After the system enters the SLEEP or IDLE Mode, it can
be woken up from one of various sources listed as follows:
The HXT and LXT oscillators both use the same SST
counter. For example, if the system is woken up from the
SLEEP0 Mode and both the HXT and LXT oscillators
need to start-up from an off state. The LXT oscillator
uses the SST counter after HXT oscillator has finished
its SST period.
· An external reset
· An external falling edge on Port A
· A system interrupt
· If the device is woken up from the SLEEP0 Mode to
· A WDT overflow
the NORMAL Mode, the high speed system oscillator
needs an SST period. The device will execute first instruction after HTO is ²1². At this time, the LXT oscillator may not be stability if fSUB is from LXT oscillator. The
same situation occurs in the power-on state. The LXT
oscillator is not ready yet when the first instruction is
executed.
If the system is woken up by an external reset, the device will experience a full system reset, however, if the
device is woken up by a WDT overflow, a Watchdog
Timer reset will be initiated. Although both of these
wake-up methods will initiate a reset operation, the actual source of the wake-up can be determined by examining the TO and PDF flags. The PDF flag is cleared by a
system power-up or executing the clear Watchdog
Timer instructions and is set when executing the ²HALT²
instruction. The TO flag is set if a WDT time-out occurs,
and causes a wake-up that only resets the Program
Counter and Stack Pointer, the other flags remain in their
original status.
· If the device is woken up from the SLEEP1 Mode to
NORMAL Mode, and the system clock source is from
HXT oscillator and FSTEN is ²1², the system clock can
be switched to the LXT or LIRC oscillator after wake
up.
· There are peripheral functions, such as WDT, TMs
and SIM, for which the fSYS is used. If the system clock
source is switched from fH to fL, the clock source to the
peripheral functions mentioned above will change accordingly.
Each pin on Port A can be setup using the PAWU register to permit a negative transition on the pin to wake-up
the system. When a Port A pin wake-up occurs, the program will resume execution at the instruction following
the ²HALT² instruction. If the system is woken up by an
interrupt, then two possible situations may occur. The first
is where the related interrupt is disabled or the interrupt is
enabled but the stack is full, in which case the program
will resume execution at the instruction following the
²HALT² instruction. In this situation, the interrupt which
woke-up the device will not be immediately serviced, but
will rather be serviced later when the related interrupt is finally enabled or when a stack level becomes free. The
other situation is where the related interrupt is enabled
and the stack is not full, in which case the regular interrupt response takes place. If an interrupt request flag is
set high before entering the SLEEP or IDLE Mode, the
wake-up function of the related interrupt will be disabled.
Rev. 1.00
· The on/off condition of fSUB and fS depends upon
whether the WDT is enabled or disabled as the WDT
clock source is selected from fSUB.
43
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Watchdog Timer
However, it should be noted that this specified internal
clock period can vary with VDD, temperature and process variations. The LXT oscillator is supplied by an external 32.768kHz crystal. The other Watchdog Timer
clock source option is the fSYS/4 clock. The Watchdog
Timer clock source can originate from its own internal
LIRC oscillator, the LXT oscillator or fSYS/4. It is divided
by a value of 28 to 215, using the WS2~WS0 bits in the
WDTC register to obtain the required Watchdog Timer
time-out period.
The Watchdog Timer is provided to prevent program
malfunctions or sequences from jumping to unknown locations, due to certain uncontrollable external events
such as electrical noise.
Watchdog Timer Clock Source
The Watchdog Timer clock source is provided by the internal clock, fS, which is in turn supplied by one of two
sources selected by configuration option: fSUB or fSYS/4.
The fSUB clock can be sourced from either the LXT or
LIRC oscillators, again chosen via a configuration option. The Watchdog Timer source clock is then subdivided by a ratio of 28 to 215 to give longer timeouts, the
actual value being chosen using the WS2~WS0 bits in
the WDTC register. The LIRC internal oscillator has an
approximate period of 32kHz at a supply voltage of 5V.
Watchdog Timer Control Register
A single register, WDTC, controls the required timeout
period as well as the enable/disable operation. This register together with several configuration options control
the overall operation of the Watchdog Timer.
· WDTC Register
Bit
7
6
5
4
3
2
1
0
Name
FSYSON
WS2
WS1
WS0
WDTEN3
WDTEN2
WDTEN1
WDTEN0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
1
1
1
1
0
1
0
Bit 7
FSYSON: fSYS Control in IDLE Mode
0: Disable
1: Enable
Bit 6 ~ 4
WS2, WS1, WS0 : WDT time-out period selection
000: 256/fS
001: 512/fS
010: 1024/fS
011: 2048/fS
100: 4096/fS
101: 8192/fS
110: 16384/fS
111: 32768/fS
These three bits determine the division ratio of the Watchdog Timer source clock, which in turn
determines the timeout period.
Bit 3 ~ 0
Rev. 1.00
WDTEN3, WDTEN2, WDTEN1, WDTEN0 : WDT Software Control
1010: Disable
Other: Enable
44
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Watchdog Timer Operation
bit TO. However, if the system is in the SLEEP or IDLE
Mode, when a Watchdog Timer time-out occurs, the TO
bit in the status register will be set and only the Program
Counter and Stack Pointer will be reset. Three methods
can be adopted to clear the contents of the Watchdog
Timer. The first is an external hardware reset, which
means a low level on the RES pin, the second is using
the Watchdog Timer software clear instructions and the
third is via a HALT instruction.
The Watchdog Timer operates by providing a device reset when its timer overflows. This means that in the application program and during normal operation the user
has to strategically clear the Watchdog Timer before it
overflows to prevent the Watchdog Timer from executing a reset. This is done using the clear watchdog instructions. If the program malfunctions for whatever
reason, jumps to an unkown location, or enters an endless loop, these clear instructions will not be executed in
the correct manner, in which case the Watchdog Timer
will overflow and reset the device. Some of the Watchdog Timer options, such as enable/disable, clock source
selection and clear instruction type are selected using
configuration options. In addition to a configuration option to enable/disable the Watchdog Timer, there are
also four bits, WDTEN3~WDTEN0, in the WDTC register to offer an additional enable/disable control of the
Watchdog Timer. To disable the Watchdog Timer, as
well as the configuration option being set to disable, the
WDTEN3~WDTEN0 bits must also be set to a specific
value of ²1010². Any other values for these bits will keep
the Watchdog Timer enabled, irrespective of the configuration enable/disable setting. After power on these bits
will have the value of 1010. If the Watchdog Timer is used
it is recommended that they are set to a value of 0101 for
maximum noise immunity. Note that if the Watchdog
Timer has been disabled, then any instruction relating to
its operation will result in no operation.
WDT Configuration
Option
WDTEN3~
WDTEN0 Bits
WDT
WDT Enable
xxxx
Enable
WDT Disable
Except 1010
Enable
WDT Disable
1010
Disable
There are two methods of using software instructions to
clear the Watchdog Timer, one of which must be chosen
by configuration option. The first option is to use the single ²CLR WDT² instruction while the second is to use
the two commands ²CLR WDT1² and ²CLR WDT2². For
the first option, a simple execution of ²CLR WDT² will
clear the WDT while for the second option, both ²CLR
WDT1² and ²CLR WDT2² must both be executed alternately to successfully clear the Watchdog Timer. Note
that for this second option, if ²CLR WDT1² is used to
clear the Watchdog Timer, successive executions of this
instruction will have no effect, only the execution of a
²CLR WDT2² instruction will clear the Watchdog Timer.
Similarly after the ²CLR WDT2² instruction has been executed, only a successive ²CLR WDT1² instruction can
clear the Watchdog Timer.
The maximum time out period is when the 215 division ratio is selected. As an example, with a 32.768kHz LXT
oscillator as its source clock, this will give a maximum
watchdog period of around 1 second for the 215 division
ratio, and a minimum timeout of 7.8ms for the 28 division
ration. If the fSYS/4 clock is used as the Watchdog Timer
clock source, it should be noted that when the system
enters the SLEEP or IDLE0 Mode, then the instruction
clock is stopped and the Watchdog Timer may lose its
protecting purposes. For systems that operate in noisy
environments, using the fSUB clock source is strongly
recommended.
Watchdog Timer Enable/Disable Control
Under normal program operation, a Watchdog Timer
time-out will initialise a device reset and set the status
C L R
W D T 1 F la g
C L R
W D T 2 F la g
C le a r W D T T y p e
C o n fig u r a tio n O p tio n
1 o r 2 In s tr u c tio n s
fS
L X T
L IR C
M
U
Y S
/4
M
fS
U B
U
fS
8 - s ta g e D iv id e r
fS /2
8
C L R
W D T P r e s c a le r
X
X
8 -to -1 M U X
C o n fig u r a tio n
O p tio n
C o n fig u r a tio n
O p tio n
W D T T im e - o u t
(2 8 /fS ~ 2 15/fS )
W S 2 ~ W S 0
(fS /2 8 ~ fS /2 15)
Watchdog Timer
Rev. 1.00
45
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Reset and Initialisation
A reset function is a fundamental part of any
microcontroller ensuring that the device can be set to
some predetermined condition irrespective of outside
parameters. The most important reset condition is after
power is first applied to the microcontroller. In this case,
internal circuitry will ensure that the microcontroller, after a short delay, will be in a well defined state and ready
to execute the first program instruction. After this
power-on reset, certain important internal registers will
be set to defined states before the program commences. One of these registers is the Program Counter,
which will be reset to zero forcing the microcontroller to
begin program execution from the lowest Program
Memory address.
· RES Pin
As the reset pin is shared with PB.0, the reset function
must be selected using a configuration option. Although the microcontroller has an internal RC reset
function, if the VDD power supply rise time is not fast
enough or does not stabilise quickly at power-on, the
internal reset function may be incapable of providing
proper reset operation. For this reason it is recommended that an external RC network is connected to
the RES pin, whose additional time delay will ensure
that the RES pin remains low for an extended period
to allow the power supply to stabilise. During this time
delay, normal operation of the microcontroller will be
inhibited. After the RES line reaches a certain voltage
value, the reset delay time tRSTD is invoked to provide
an extra delay time after which the microcontroller will
begin normal operation. The abbreviation SST in the
figures stands for System Start-up Timer.
For most applications a resistor connected between
VDD and the RES pin and a capacitor connected between VSS and the RES pin will provide a suitable external reset circuit. Any wiring connected to the RES
pin should be kept as short as possible to minimise
any stray noise interference.
For applications that operate within an environment
where more noise is present the Enhanced Reset Circuit shown is recommended.
In addition to the power-on reset, situations may arise
where it is necessary to forcefully apply a reset condition
when the microcontroller is running. One example of this
is where after power has been applied and the
microcontroller is already running, the RES line is forcefully pulled low. In such a case, known as a normal operation reset, some of the microcontroller registers remain
unchanged allowing the microcontroller to proceed with
normal operation after the reset line is allowed to return
high.
Another type of reset is when the Watchdog Timer overflows and resets the microcontroller. All types of reset
operations result in different register conditions being
setup. Another reset exists in the form of a Low Voltage
Reset, LVR, where a full reset, similar to the RES reset
is implemented in situations where the power supply
voltage falls below a certain threshold.
V
1 N 4 1 4 8 *
1 0 k W ~
1 0 0 k W
P B 0 /R E S
0 .1 ~ 1 m F
There are five ways in which a microcontroller reset can
occur, through events occurring both internally and externally:
V S S
Note:
· Power-on Reset
The most fundamental and unavoidable reset is the
one that occurs after power is first applied to the
microcontroller. As well as ensuring that the Program
Memory begins execution from the first memory address, a power-on reset also ensures that certain
other registers are preset to known conditions. All the
I/O port and port control registers will power up in a
high condition ensuring that all pins will be first set to
inputs.
R E S
V D D
3 0 0 W *
Reset Functions
V D D
D D
0 .0 1 m F * *
0 .9 V
²*² It is recommended that this component is
added for added ESD protection
²**² It is recommended that this component is
added in environments where power line noise
is significant
External RES Circuit
More information regarding external reset circuits is
located in Application Note HA0075E on the Holtek
website.
D D
t RR
SS TT DD ++
t SS
SS TT
In te rn a l R e s e t
Note: tRSTD is power-on delay, typical time=100ms
Power-On Reset Timing Chart
Rev. 1.00
46
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Program Counter and the Stack Pointer will be
cleared to ²0² and the TO flag will be set to ²1². Refer
to the A.C. Characteristics for tSST details.
Pulling the RES Pin low using external hardware will
also execute a device reset. In this case, as in the
case of other resets, the Program Counter will reset to
zero and program execution initiated from this point.
R E S
0 .4 V
0 .9 V
Note:
D D
D D
tR
S T D
+
tS
S T
In te rn a l R e s e t
The tSST is 15~16 clock cycles if the system
clock source is provided by ERC or HIRC. The
tSST is 1024 clock for HXT or LXT. The tSST is
1~2 clock for LIRC.
Reset Initial Conditions
Note: tRSTD is power-on delay, typical time=100ms
The different types of reset described affect the reset
flags in different ways. These flags, known as PDF and
TO are located in the status register and are controlled
by various microcontroller operations, such as the
SLEEP or IDLE Mode function or Watchdog Timer. The
reset flags are shown in the table:
RES Reset Timing Chart
· Low Voltage Reset - LVR
The microcontroller contains a low voltage reset circuit
in order to monitor the supply voltage of the device,
which is selected via a configuration option. If the supply
voltage of the device drops to within a range of
0.9V~VLVR such as might occur when changing the battery, the LVR will automatically reset the device internally. The LVR includes the following specifications: For
a valid LVR signal, a low voltage, i.e., a voltage in the
range between 0.9V~VLVR must exist for greater than
the value tLVR specified in the A.C. characteristics. If the
low voltage state does not exceed tLVR, the LVR will ignore it and will not perform a reset function. One of a
range of specified voltage values for VLVR can be selected using configuration options.
TO PDF
RESET Conditions
0
0
Power-on reset
u
u
RES or LVR reset during NORMAL or
SLOW Mode operation
1
u
WDT time-out reset during NORMAL or
SLOW Mode operation
1
1
WDT time-out reset during IDLE or SLEEP
Mode operation
Note: ²u² stands for unchanged
L V R
tR
S T D
+
tS
S T
The following table indicates the way in which the various components of the microcontroller are affected after
a power-on reset occurs.
In te rn a l R e s e t
Note: tRSTD is power-on delay, typical time=100ms
Low Voltage Reset Timing Chart
Item
Condition After RESET
Program Counter
Reset to zero
The Watchdog time-out Reset during normal operation is the same as a hardware RES pin reset except
that the Watchdog time-out flag TO will be set to ²1².
Interrupts
All interrupts will be disabled
WDT
Clear after reset, WDT begins
counting
W D T T im e - o u t
Timer/Event
Counter
Timer Counter will be turned off
· Watchdog Time-out Reset during Normal Operation
tR
S T D
+
tS
S T
Input/Output Ports I/O ports will be setup as inputs.
In te rn a l R e s e t
Note: tRSTD is power-on delay, typical time=100ms
Stack Pointer
WDT Time-out Reset during Normal Operation
Timing Chart
Stack Pointer will point to the top
of the stack
· Watchdog Time-out Reset during SLEEP or IDLE
Mode
The Watchdog time-out Reset during SLEEP or IDLE
Mode is a little different from other kinds of reset. Most
of the conditions remain unchanged except that the
W D T T im e - o u t
tS
S T
In te rn a l R e s e t
WDT Time-out Reset during SLEEP or IDLE
Timing Chart
Rev. 1.00
47
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
The different kinds of resets all affect the internal registers of the microcontroller in different ways. To ensure reliable
continuation of normal program execution after a reset occurs, it is important to know what condition the microcontroller
is in after a particular reset occurs. The following table describes how each type of reset affects each of the
microcontroller internal registers. Note that where more than one package type exists the table will reflect the situation
for the larger package type.
· HT68F20 Register
Reset
(Power-on)
RES or LVR
Reset
WDT Time-out
(Normal Operation)
WDT Time-out
(IDLE)
MP0
-xxx xxxx
-xxx xxxx
-xxx xxxx
-uuu uuuu
MP1
-xxx xxxx
-xxx xxxx
-xxx xxxx
-uuu uuuu
BP
---- ---0
---- ---0
---- ---0
---- ---u
ACC
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
PCL
0000 0000
0000 0000
0000 0000
0000 0000
TBLP
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
TBLH
--xx xxxx
--uu uuuu
--uu uuuu
--uu uuuu
TBHP
---- --xx
---- --uu
---- --uu
---- --uu
STATUS
--00 xxxx
--uu uuuu
--1u uuuu
--11 uuuu
SMOD
0000 0011
0000 0011
0000 0011
uuuu uuuu
LVDC
--00 -000
--00 -000
--00 -000
--uu -uuu
Register
INTEG
---- 0000
---- 0000
---- 0000
---- uuuu
WDTC
0111 1010
0111 1010
0111 1010
uuuu uuuu
TBC
0011 0111
0011 0111
0011 0111
uuuu uuuu
INTC0
-000 0000
-000 0000
-000 0000
-uuu uuuu
INTC1
0000 0000
0000 0000
0000 0000
uuuu uuuu
INTC2
0000 0000
0000 0000
0000 0000
uuuu uuuu
MFI0
--00 --00
--00 --00
--00 --00
--uu --uu
MFI1
--00 --00
--00 --00
--00 --00
--uu --uu
MFI2
0000 0000
0000 0000
0000 0000
uuuu uuuu
PAWU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PAPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PA
1111 1111
1111 1111
1111 1111
uuuu uuuu
PAC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PBPU
--00 0000
--00 0000
--00 0000
--uu uuuu
PB
--11 1111
--11 1111
--11 1111
--uu uuuu
PBC
--11 1111
--11 1111
--11 1111
--uu uuuu
PCPU
---- 0000
---- 0000
---- 0000
---- uuuu
PC
---- 1111
---- 1111
---- 1111
---- uuuu
PCC
---- 1111
---- 1111
---- 1111
---- uuuu
CP0C
1000 0--1
1000 0--1
1000 0--1
uuuu u--u
CP1C
1000 0--1
1000 0--1
1000 0--1
uuuu u--u
SIMC0
1110 000-
1110 000-
1110 000-
uuuu uuu-
Rev. 1.00
48
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Reset
(Power-on)
RES or LVR
Reset
WDT Time-out
(Normal Operation)
WDT Time-out
(IDLE)
SIMC1
1000 0001
1000 0001
1000 0001
uuuu uuuu
SIMD
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
SIMA/SIMC2
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0C0
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0DH
---- --00
---- --00
---- --00
---- --uu
TM0AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0AH
---- --00
---- --00
---- --00
---- --uu
EEA
---x xxxx
---x xxxx
---x xxxx
---0 0000
EED
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
EEC
---- 0000
---- 0000
---- 0000
---- uuuu
TMPC0
--01 ---1
--01 ---1
--01 ---1
--uu ---u
TM1C0
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1DH
---- --00
---- --00
---- --00
---- --uu
TM1AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1AH
---- --00
---- --00
---- --00
---- --uu
SCOMC
0000 0000
0000 0000
0000 0000
uuuu uuuu
Register
Note:
²u² stands for unchanged
²x² stands for unknown
²-² stands for unimplemented
Rev. 1.00
49
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· HT68F30 Register
Reset
(Power-on)
RES or LVR
Reset
WDT Time-out
(Normal Operation)
WDT Time-out
(IDLE)
MP0
-xxx xxxx
-xxx xxxx
-xxx xxxx
-uuu uuuu
MP1
-xxx xxxx
-xxx xxxx
-xxx xxxx
-uuu uuuu
BP
---- --00
---- --00
---- --00
---- --uu
ACC
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
PCL
0000 0000
0000 0000
0000 0000
0000 0000
TBLP
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
TBLH
--xx xxxx
--uu uuuu
--uu uuuu
--uu uuuu
TBHP
---- -xxx
---- -uuu
---- -uuu
---- -uuu
STATUS
--00 xxxx
--uu uuuu
--1u uuuu
--11 uuuu
SMOD
0000 0011
0000 0011
0000 0011
uuuu uuuu
LVDC
--00 -000
--00 -000
--00 -000
--uu -uuu
Register
INTEG
---- 0000
---- 0000
---- 0000
---- uuuu
WDTC
0111 1010
0111 1010
0111 1010
uuuu uuuu
TBC
0011 0111
0011 0111
0011 0111
uuuu uuuu
INTC0
-000 0000
-000 0000
-000 0000
-uuu uuuu
INTC1
0000 0000
0000 0000
0000 0000
uuuu uuuu
INTC2
0000 0000
0000 0000
0000 0000
uuuu uuuu
MFI0
--00 --00
--00 --00
--00 --00
--uu --uu
MFI1
-000 -000
-000 -000
-000 -000
-uuu -uuu
MFI2
0000 0000
0000 0000
0000 0000
uuuu uuuu
PAWU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PAPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PA
1111 1111
1111 1111
1111 1111
uuuu uuuu
PAC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PBPU
--00 0000
--00 0000
--00 0000
--uu uuuu
PB
--11 1111
--11 1111
--11 1111
--uu uuuu
PBC
--11 1111
--11 1111
--11 1111
--uu uuuu
PCPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PCC
1111 1111
1111 1111
1111 1111
uuuu uuuu
CP0C
1000 0--1
1000 0--1
1000 0--1
uuuu u--u
CP1C
1000 0--1
1000 0--1
1000 0--1
uuuu u--u
SIMC0
1110 000-
1110 000-
1110 000-
uuuu uuu-
SIMC1
1000 0001
1000 0001
1000 0001
uuuu uuuu
SIMD
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
SIMA/SIMC2
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0C0
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
Rev. 1.00
50
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Reset
(Power-on)
RES or LVR
Reset
WDT Time-out
(Normal Operation)
WDT Time-out
(IDLE)
TM0DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0DH
---- --00
---- --00
---- --00
---- --uu
TM0AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0AH
---- --00
---- --00
---- --00
---- --uu
EEA
--xx xxxx
--xx xxxx
--xx xxxx
--uu uuuu
EED
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
EEC
---- 0000
---- 0000
---- 0000
---- uuuu
TMPC0
1-01 --01
1-01 --01
1-01 --01
u-uu --uu
PRM0
---- -000
---- -000
---- -000
---- -uuu
TM1C0
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1C2
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1DH
---- --00
---- --00
---- --00
---- --uu
TM1AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1AH
---- --00
---- --00
---- --00
---- --uu
TM1BL
0000 0000
0000 0000
0000 0000
uuuu uuuu
Register
TM1BH
---- --00
---- --00
---- --00
---- --uu
SCOMC
0000 0000
0000 0000
0000 0000
uuuu uuuu
Note:
²u² stands for unchanged
²x² stands for unknown
²-² stands for unimplemented
Rev. 1.00
51
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· HT68F40 Register
Reset
(Power-on)
RES or LVR
Reset
WDT Time-out
(Normal Operation)
WDT Time-out
(IDLE)
MP0
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
MP1
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
Register
BP
---- ---0
---- ---0
---- ---0
---- ---u
ACC
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
PCL
0000 0000
0000 0000
0000 0000
0000 0000
TBLP
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
TBLH
-xxx xxxx
-uuu uuuu
-uuu uuuu
-uuu uuuu
TBHP
---- xxxx
---- uuuu
---- uuuu
---- uuuu
STATUS
--00 xxxx
--uu uuuu
--1u uuuu
--11 uuuu
SMOD
0000 0011
0000 0011
0000 0011
uuuu uuuu
LVDC
--00 -000
--00 -000
--00 -000
--uu -uuu
INTEG
---- 0000
---- 0000
---- 0000
---- uuuu
WDTC
0111 1010
0111 1010
0111 1010
uuuu uuuu
TBC
0011 0111
0011 0111
0011 0111
uuuu uuuu
INTC0
-000 0000
-000 0000
-000 0000
-uuu uuuu
INTC1
0000 0000
0000 0000
0000 0000
uuuu uuuu
INTC2
0000 0000
0000 0000
0000 0000
uuuu uuuu
MFI0
0000 0000
0000 0000
0000 0000
uuuu uuuu
MFI1
-000 -000
-000 -000
-000 -000
-uuu -uuu
MFI2
0000 0000
0000 0000
0000 0000
uuuu uuuu
PAWU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PAPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PA
1111 1111
1111 1111
1111 1111
uuuu uuuu
PAC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PBPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PB
1111 1111
1111 1111
1111 1111
uuuu uuuu
PBC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PCPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PCC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PDPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PD
1111 1111
1111 1111
1111 1111
uuuu uuuu
PDC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PEPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PE
1111 1111
1111 1111
1111 1111
uuuu uuuu
PEC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PFPU
---- --00
---- --00
---- --00
---- --uu
PF
---- --11
---- --11
---- --11
---- --uu
PFC
---- --11
---- --11
---- --11
---- --uu
Rev. 1.00
52
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Reset
(Power-on)
RES or LVR
Reset
WDT Time-out
(Normal Operation)
WDT Time-out
(IDLE)
CP0C
1000 0--1
1000 0--1
1000 0--1
uuuu u--u
CP1C
1000 0--1
1000 0--1
1000 0--1
uuuu u--u
SIMC0
1110 000-
1110 000-
1110 000-
uuuu uuu-
SIMC1
1000 0001
1000 0001
1000 0001
uuuu uuuu
SIMD
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
SIMA/SIMC2
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0C0
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0DH
---- --00
---- --00
---- --00
---- --uu
TM0AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0AH
---- --00
---- --00
---- --00
---- --uu
Register
EEA
-xxx xxxx
-xxx xxxx
-xxx xxxx
-uuu uuuu
EED
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
EEC
---- 0000
---- 0000
---- 0000
---- uuuu
TMPC0
1001 --01
1001 --01
1001 --01
uuuu --uu
TMPC1
---- --01
---- --01
---- --01
---- --uu
PRM0
-0-0 0000
-0-0 0000
-0-0 0000
-u-u uuuu
PRM1
000- 0000
000- 0000
000- 0000
uuu- uuuu
PRM2
--00 0000
--00 0000
--00 0000
--uu uuuu
TM1C0
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1C2
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1DH
---- --00
---- --00
---- --00
---- --uu
TM1AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1AH
---- --00
---- --00
---- --00
---- --uu
TM1BL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1BH
---- --00
---- --00
---- --00
---- --uu
TM2C0
0000 0---
0000 0---
0000 0---
uuuu u---
TM2C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2DH
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2AH
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2RP
0000 0000
0000 0000
0000 0000
uuuu uuuu
SCOMC
0000 0000
0000 0000
0000 0000
uuuu uuuu
Note:
²u² stands for unchanged
²x² stands for unknown
²-² stands for unimplemented
Rev. 1.00
53
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· HT68F50 Register
Reset
(Power-on)
RES or LVR
Reset
WDT Time-out
(Normal Operation)
WDT Time-out
(IDLE)
MP0
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
MP1
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
Register
BP
---- --00
---- --00
---- --00
---- --uu
ACC
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
PCL
0000 0000
0000 0000
0000 0000
0000 0000
TBLP
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
TBLH
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
TBHP
---x xxxx
---u uuuu
---u uuuu
---u uuuu
STATUS
--00 xxxx
--uu uuuu
--1u uuuu
--11 uuuu
SMOD
0000 0011
0000 0011
0000 0011
uuuu uuuu
LVDC
--00 -000
--00 -000
--00 -000
--uu -uuu
INTEG
---- 0000
---- 0000
---- 0000
---- uuuu
WDTC
0111 1010
0111 1010
0111 1010
uuuu uuuu
TBC
0011 0111
0011 0111
0011 0111
uuuu uuuu
INTC0
-000 0000
-000 0000
-000 0000
-uuu uuuu
INTC1
0000 0000
0000 0000
0000 0000
uuuu uuuu
INTC2
0000 0000
0000 0000
0000 0000
uuuu uuuu
MFI0
0000 0000
0000 0000
0000 0000
uuuu uuuu
MFI1
-000 -000
-000 -000
-000 -000
-uuu -uuu
MFI2
0000 0000
0000 0000
0000 0000
uuuu uuuu
MFI3
--00 --00
--00 --00
--00 --00
--uu --uu
PAWU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PAPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PA
1111 1111
1111 1111
1111 1111
uuuu uuuu
PAC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PBPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PB
1111 1111
1111 1111
1111 1111
uuuu uuuu
PBC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PCPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PCC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PDPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PD
1111 1111
1111 1111
1111 1111
uuuu uuuu
PDC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PEPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PE
1111 1111
1111 1111
1111 1111
uuuu uuuu
PEC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PFPU
---- --00
---- --00
---- --00
---- --uu
PF
---- --11
---- --11
---- --11
---- --uu
PFC
---- --11
---- --11
---- --11
---- --uu
CP0C
1000 0--1
1000 0--1
1000 0--1
uuuu u--u
CP1C
1000 0--1
1000 0--1
1000 0--1
uuuu u--u
SIMC0
1110 000-
1110 000-
1110 000-
uuuu uuu-
Rev. 1.00
54
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Reset
(Power-on)
RES or LVR
Reset
WDT Time-out
(Normal Operation)
WDT Time-out
(IDLE)
SIMC1
1000 0001
1000 0001
1000 0001
uuuu uuuu
SIMD
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
SIMA/SIMC2
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0C0
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0DH
---- --00
---- --00
---- --00
---- --uu
TM0AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0AH
---- --00
---- --00
---- --00
---- --uu
EEA
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
EED
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
Register
EEC
---- 0000
---- 0000
---- 0000
---- uuuu
TMPC0
1001 --01
1001 --01
1001 --01
uuuu --uu
TMPC1
--01 --01
--01 --01
--01 --01
--uu --uu
PRM0
-0-0 0000
-0-0 0000
-0-0 0000
-u-u uuuu
PRM1
000- 0000
000- 0000
000- 0000
uuu- uuuu
PRM2
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1C0
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1C2
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1DH
---- --00
---- --00
---- --00
---- --uu
TM1AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1AH
---- --00
---- --00
---- --00
---- --uu
TM1BL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1BH
---- --00
---- --00
---- --00
---- --uu
TM2C0
0000 0---
0000 0---
0000 0---
uuuu u---
TM2C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2DH
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2AH
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2RP
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM3C0
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM3C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM3DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM3DH
---- --00
---- --00
---- --00
---- --uu
TM3AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM3AH
---- --00
---- --00
---- --00
---- --uu
SCOMC
0000 0000
0000 0000
0000 0000
uuuu uuuu
Note:
²u² stands for unchanged
²x² stands for unknown
²-² stands for unimplemented
Rev. 1.00
55
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· HT68F60 Register
Register
MP0
Reset
(Power-on)
RES or LVR
Reset
WDT Time-out
(Normal Operation)
WDT Time-out
(IDLE)
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
MP1
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
BP
- - 0- - 0 0 0
- - 0- - 0 0 0
- - 0- - 0 0 0
--u- -uuu
ACC
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
PCL
0000 0000
0000 0000
0000 0000
0000 0000
TBLP
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
TBLH
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
TBHP
--xx xxxx
--uu uuuu
--uu uuuu
--uu uuuu
STATUS
--00 xxxx
--uu uuuu
--1u uuuu
--11 uuuu
SMOD
0000 0011
0000 0011
0000 0011
uuuu uuuu
LVDC
--00 -000
--00 -000
--00 -000
--uu -uuu
INTEG
0000 0000
0000 0000
0000 0000
uuuu uuuu
WDTC
0111 1010
0111 1010
0111 1010
uuuu uuuu
TBC
0011 0111
0011 0111
0011 0111
uuuu uuuu
INTC0
-000 0000
-000 0000
-000 0000
-uuu uuuu
INTC1
0000 0000
0000 0000
0000 0000
uuuu uuuu
INTC2
0000 0000
0000 0000
0000 0000
uuuu uuuu
INTC3
0000 0000
0000 0000
0000 0000
uuuu uuuu
MFI0
0000 0000
0000 0000
0000 0000
uuuu uuuu
MFI1
-000 -000
-000 -000
-000 -000
-uuu -uuu
MFI2
0000 0000
0000 0000
0000 0000
uuuu uuuu
MFI3
--00 --00
--00 --00
--00 --00
--uu --uu
PAWU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PAPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PA
1111 1111
1111 1111
1111 1111
uuuu uuuu
PAC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PBPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PB
1111 1111
1111 1111
1111 1111
uuuu uuuu
PBC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PCPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PCC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PDPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PD
1111 1111
1111 1111
1111 1111
uuuu uuuu
PDC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PEPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PE
1111 1111
1111 1111
1111 1111
uuuu uuuu
PEC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PFPU
0000 0000
0000 0000
0000 0000
uuuu uuuu
PF
1111 1111
1111 1111
1111 1111
uuuu uuuu
PFC
1111 1111
1111 1111
1111 1111
uuuu uuuu
PGPU
---- --00
0000 0000
0000 0000
uuuu uuuu
PG
---- --11
---- --11
---- --11
---- --uu
PGC
---- --11
---- --11
---- --11
---- --uu
Rev. 1.00
56
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Reset
(Power-on)
RES or LVR
Reset
WDT Time-out
(Normal Operation)
WDT Time-out
(IDLE)
CP0C
1000 0--1
1000 0--1
1000 0--1
uuuu u--u
CP1C
1000 0--1
1000 0--1
1000 0--1
uuuu u--u
Register
SIMC0
1110 000-
1110 000-
1110 000-
uuuu uuu-
SIMC1
1000 0001
1000 0001
1000 0001
uuuu uuuu
SIMD
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
SIMA/SIMC2
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0C0
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0DH
---- --00
---- --00
---- --00
---- --uu
TM0AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM0AH
---- --00
---- --00
---- --00
---- --uu
EEA
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
EED
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
EEC
---- 0000
---- 0000
---- 0000
---- uuuu
TMPC0
1001 --01
1001 --01
1001 --01
uuuu --uu
TMPC1
--01 --01
--01 --01
--01 --01
--uu --uu
PRM0
0000 0000
0000 0000
0000 0000
uuuu uuuu
PRM1
0000 0000
0000 0000
0000 0000
uuuu uuuu
PRM2
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1C0
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1C2
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1DH
---- --00
---- --00
---- --00
---- --uu
TM1AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1AH
---- --00
---- --00
---- --00
---- --uu
TM1BL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM1BH
---- --00
---- --00
---- --00
---- --uu
TM2C0
0000 0---
0000 0---
0000 0---
uuuu u---
TM2C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2DH
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2AH
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM2RP
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM3C0
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM3C1
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM3DL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM3DH
---- --00
---- --00
---- --00
---- --uu
TM3AL
0000 0000
0000 0000
0000 0000
uuuu uuuu
TM3AH
---- --00
---- --00
---- --00
---- --uu
SCOMC
0000 0000
0000 0000
0000 0000
uuuu uuuu
Note:
²u² stands for unchanged
²x² stands for unknown
²-² stands for unimplemented
Rev. 1.00
57
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Input/Output Ports
Holtek microcontrollers offer considerable flexibility on their I/O ports. With the input or output designation of every pin
fully under user program control, pull-high selections for all ports and wake-up selections on certain pins, the user is
provided with an I/O structure to meet the needs of a wide range of application possibilities.
The device provides bidirectional input/output lines labeled with port names PA~PG. These I/O ports are mapped to the
RAM Data Memory with specific addresses as shown in the Special Purpose Data Memory table. All of these I/O ports
can be used for input and output operations. For input operation, these ports are non-latching, which means the inputs
must be ready at the T2 rising edge of instruction ²MOV A,[m]², where m denotes the port address. For output operation, all the data is latched and remains unchanged until the output latch is rewritten.
· I/O Register List
¨
¨
HT68F20
Bit
Register
Name
7
6
5
4
3
2
1
0
PAWU
D7
D6
D5
D4
D3
D2
D1
D0
PAPU
D7
D6
D5
D4
D3
D2
D1
D0
PA
D7
D6
D5
D4
D3
D2
D1
D0
PAC
D7
D6
D5
D4
D3
D2
D1
D0
PBPU
¾
¾
D5
D4
D3
D2
D1
D0
PB
¾
¾
D5
D4
D3
D2
D1
D0
PBC
¾
¾
D5
D4
D3
D2
D1
D0
PCPU
¾
¾
¾
¾
D3
D2
D1
D0
PC
¾
¾
¾
¾
D3
D2
D1
D0
PCC
¾
¾
¾
¾
D3
D2
D1
D0
Register
Name
7
6
5
4
3
2
1
0
PAWU
D7
D6
D5
D4
D3
D2
D1
D0
PAPU
D7
D6
D5
D4
D3
D2
D1
D0
PA
D7
D6
D5
D4
D3
D2
D1
D0
HT68F30
Bit
PAC
D7
D6
D5
D4
D3
D2
D1
D0
PBPU
¾
¾
D5
D4
D3
D2
D1
D0
PB
¾
¾
D5
D4
D3
D2
D1
D0
PBC
¾
¾
D5
D4
D3
D2
D1
D0
PCPU
D7
D6
D5
D4
D3
D2
D1
D0
PC
D7
D6
D5
D4
D3
D2
D1
D0
PCC
D7
D6
D5
D4
D3
D2
D1
D0
Rev. 1.00
58
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F40/HT68F50
Bit
Register
Name
7
6
5
4
3
2
1
0
PAWU
D7
D6
D5
D4
D3
D2
D1
D0
PAPU
D7
D6
D5
D4
D3
D2
D1
D0
PA
D7
D6
D5
D4
D3
D2
D1
D0
PAC
D7
D6
D5
D4
D3
D2
D1
D0
PBPU
D7
D6
D5
D4
D3
D2
D1
D0
PB
D7
D6
D5
D4
D3
D2
D1
D0
PBC
D7
D6
D5
D4
D3
D2
D1
D0
PCPU
D7
D6
D5
D4
D3
D2
D1
D0
PC
D7
D6
D5
D4
D3
D2
D1
D0
PCC
D7
D6
D5
D4
D3
D2
D1
D0
PDPU
D7
D6
D5
D4
D3
D2
D1
D0
PD
D7
D6
D5
D4
D3
D2
D1
D0
PDC
D7
D6
D5
D4
D3
D2
D1
D0
PEPU
D7
D6
D5
D4
D3
D2
D1
D0
PE
D7
D6
D5
D4
D3
D2
D1
D0
PEC
D7
D6
D5
D4
D3
D2
D1
D0
PFPU
¾
¾
¾
¾
¾
¾
D1
D0
PF
¾
¾
¾
¾
¾
¾
D1
D0
PFC
¾
¾
¾
¾
¾
¾
D1
D0
Rev. 1.00
59
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F60
Bit
Register
Name
7
6
5
4
3
2
1
0
PAWU
D7
D6
D5
D4
D3
D2
D1
D0
PAPU
D7
D6
D5
D4
D3
D2
D1
D0
PA
D7
D6
D5
D4
D3
D2
D1
D0
PAC
D7
D6
D5
D4
D3
D2
D1
D0
PBPU
D7
D6
D5
D4
D3
D2
D1
D0
PB
D7
D6
D5
D4
D3
D2
D1
D0
PBC
D7
D6
D5
D4
D3
D2
D1
D0
PCPU
D7
D6
D5
D4
D3
D2
D1
D0
PC
D7
D6
D5
D4
D3
D2
D1
D0
PCC
D7
D6
D5
D4
D3
D2
D1
D0
PDPU
D7
D6
D5
D4
D3
D2
D1
D0
PD
D7
D6
D5
D4
D3
D2
D1
D0
D0
PDC
D7
D6
D5
D4
D3
D2
D1
PEPU
D7
D6
D5
D4
D3
D2
D1
D0
PE
D7
D6
D5
D4
D3
D2
D1
D0
D0
PEC
D7
D6
D5
D4
D3
D2
D1
PFPU
D7
D6
D5
D4
D3
D2
D1
D0
PF
D7
D6
D5
D4
D3
D2
D1
D0
PFC
D7
D6
D5
D4
D3
D2
D1
D0
PGPU
¾
¾
¾
¾
¾
¾
D1
D0
PG
¾
¾
¾
¾
¾
¾
D1
D0
PGC
¾
¾
¾
¾
¾
¾
D1
D0
Rev. 1.00
60
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Pull-high Resistors
Many product applications require pull-high resistors for their switch inputs usually requiring the use of an external resistor. To eliminate the need for these external resistors, all I/O pins, when configured as an input have the capability of
being connected to an internal pull-high resistor. These pull-high resistors are selected using registers PAPU~PGPU,
and are implemented using weak PMOS transistors.
· PAPU Register
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
· PBPU Register
¨
HT68F40/HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
· PCPU Register
¨
HT68F30/HT68F40/HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
5
4
3
2
1
0
· PDPU Register
¨
HT68F40/HT68F50/HT68F60
Bit
7
6
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
· PEPU Register
¨
HT68F40/HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Rev. 1.00
61
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· PFPU Register
¨
HT68F60
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
4
3
2
1
0
Bit 7~0
I/O Port bit 7 ~ bit 0 Pull-High Control
0: Disable
1: Enable
· PBPU Register
¨
HT68F20/HT68F30
Bit
7
6
5
Name
¾
¾
D5
D4
D3
D2
D1
D0
R/W
¾
¾
R/W
R/W
R/W
R/W
R/W
R/W
POR
¾
¾
0
0
0
0
0
0
Bit 7~6
²¾² Unimplemented, read as ²0²
Bit 5~0
PBPU: Port B bit 5 ~ bit 0 Pull-High Control
0: Disable
1: Enable
· PCPU Register
¨
HT68F20
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
D3
D2
D1
D0
R/W
¾
¾
¾
¾
R/W
R/W
R/W
R/W
POR
¾
¾
¾
¾
0
0
0
0
Bit 7~4
²¾² Unimplemented, read as ²0²
Bit 3~0
PCPU: Port C bit 3 ~ bit 0 Pull-High Control
0: Disable
1: Enable
· PFPU Register
¨
HT68F40/HT68F50
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
¾
¾
D1
D0
R/W
¾
¾
¾
¾
¾
¾
R/W
R/W
POR
¾
¾
¾
¾
¾
¾
0
0
Bit 7~2
²¾² Unimplemented, read as ²0²
Bit 1~0
PFPU: Port F bit 1 ~ bit 0 Pull-High Control
0: Disable
1: Enable
Rev. 1.00
62
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· PGPU Register
¨
HT68F60
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
¾
¾
D1
D0
R/W
¾
¾
¾
¾
¾
¾
R/W
R/W
POR
¾
¾
¾
¾
¾
¾
0
0
Bit 7~2
²¾² Unimplemented, read as ²0²
Bit 1~0
PGPU: Port G bit 1 ~ bit 0 Pull-High Control
0: Disable
1: Enable
Port A Wake-up
The HALT instruction forces the microcontroller into the SLEEP or IDLE Mode which preserves power, a feature that is
important for battery and other low-power applications. Various methods exist to wake-up the microcontroller, one of
which is to change the logic condition on one of the Port A pins from high to low. This function is especially suitable for
applications that can be woken up via external switches. Each pin on Port A can be selected individually to have this
wake-up feature using the PAWU register.
· PAWU Register
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7~0
PAWU: Port A bit 7 ~ bit 0 Wake-up Control
0: Disable
1: Enable
I/O Port Control Registers
Each I/O port has its own control register known as PAC~PGC, to control the input/output configuration. With this control register, each CMOS output or input can be reconfigured dynamically under software control. Each pin of the I/O
ports is directly mapped to a bit in its associated port control register. For the I/O pin to function as an input, the corresponding bit of the control register must be written as a ²1². This will then allow the logic state of the input pin to be directly read by instructions. When the corresponding bit of the control register is written as a ²0², the I/O pin will be setup
as a CMOS output. If the pin is currently setup as an output, instructions can still be used to read the output register.
However, it should be noted that the program will in fact only read the status of the output data latch and not the actual
logic status of the output pin.
· PAC Register
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
1
1
1
1
1
1
1
1
· PBC Register
¨
HT68F40/HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
1
1
1
1
1
1
1
1
Rev. 1.00
63
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· PCC Register
¨
HT68F30/HT68F40/HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
1
1
1
1
1
1
1
1
· PDC Register
¨
HT68F40/HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
1
1
1
1
1
1
1
1
5
4
3
2
1
0
· PEC Register
¨
HT68F40/HT68F50/HT68F60
Bit
7
6
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
1
1
1
1
1
1
1
1
· PFC Register
¨
HT68F60
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
1
1
1
1
1
1
1
1
3
2
1
0
Bit 7~0
I/O Port bit 7 ~ bit 0 Input/Output Control
0: Output
1: Input
· PBC Register
¨
HT68F20/HT68F30
Bit
7
6
5
4
Name
¾
¾
D5
D4
D3
D2
D1
D0
R/W
¾
¾
R/W
R/W
R/W
R/W
R/W
R/W
POR
¾
¾
0
0
0
0
0
0
Bit 7~6
²¾² Unimplemented, read as ²0²
Bit 5~0
PBC: Port B bit 5 ~ bit 0 Input/Output Control
0: Output
1: Input
Rev. 1.00
64
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· PCC Register
¨
HT68F20
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
D3
D2
D1
D0
R/W
¾
¾
¾
¾
R/W
R/W
R/W
R/W
POR
¾
¾
¾
¾
0
0
0
0
1
0
Bit 7~4
²¾² Unimplemented, read as ²0²
Bit 3~0
PCC: Port C bit 3 ~ bit 0 Input/Output Control
0: Output
1: Input
· PFC Register
¨
HT68F40/HT68F50
Bit
7
6
5
4
3
2
Name
¾
¾
¾
¾
¾
¾
D1
D0
R/W
¾
¾
¾
¾
¾
¾
R/W
R/W
POR
¾
¾
¾
¾
¾
¾
0
0
1
0
Bit 7~2
²¾² Unimplemented, read as ²0²
Bit 1~0
PFC: Port F bit 1 ~ bit 0 Input/Output Control
0: Output
1: Input
· PGC Register
¨
HT68F60
Bit
7
6
5
4
3
2
Name
¾
¾
¾
¾
¾
¾
D1
D0
R/W
¾
¾
¾
¾
¾
¾
R/W
R/W
POR
¾
¾
¾
¾
¾
¾
0
0
Bit 7~2
²¾² Unimplemented, read as ²0²
Bit 1~0
PGC: Port G bit 1 ~ bit 0 Input/Output Control
0: Output
1: Input
Rev. 1.00
65
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Pin-remapping Functions
The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more than one function.
Limited numbers of pins can force serious design constraints on designers but by supplying pins with multi-functions,
many of these difficulties can be overcome. The way in which the pin function of each pin is selected is different for each
function and a priority order is established where more than one pin function is selected simultaneously. Additionally
there are a series of PRM0, PRM1 and PRM2 registers to establish certain pin functions.
Pin-remapping Registers
The limited number of supplied pins in a package can impose restrictions on the amount of functions a certain device
can contain. However by allowing the same pins to share several different functions and providing a means of function
selection, a wide range of different functions can be incorporated into even relatively small package sizes. Some devices include PRM0, PRM1 or PRM2 registers which can select the functions of certain pins.
· Pin-remapping Register List
¨
¨
¨
¨
HT68F30
Bit
Register
Name
7
6
5
4
3
2
1
0
PRM0
¾
¾
¾
¾
¾
PCPRM
SIMPS0
PCKPS
HT68F40
Bit
Register
Name
7
6
5
4
3
2
1
0
PRM0
¾
C1XPS0
¾
C0XPS0
PDPRM
SIMPS1
SIMPS0
PCKPS
PRM1
TCK2PS
TCK1PS
TCK0PS
¾
INT1PS1
INT1PS0
INT0PS1
INT0PS0
PRM2
¾
¾
TP21PS
TP20PS
TP1B2PS
TP1APS
TP01PS
TP00PS
Register
Name
7
6
5
4
3
2
1
0
PRM0
¾
C1XPS0
¾
C0XPS0
PDPRM
SIMPS1
SIMPS0
PCKPS
PRM1
TCK2PS
TCK1PS
TCK0PS
¾
INT1PS1
INT1PS0
INT0PS1
INT0PS0
PRM2
TP31PS
TP30PS
TP21PS
TP20PS
TP1B2PS
TP1APS
TP01PS
TP00PS
HT68F50
Bit
HT68F60
Bit
Register
Name
7
6
5
4
3
2
1
0
PRM0
C1XPS1
C1XPS0
C0XPS1
C0XPS0
PDPRM
SIMPS1
SIMPS0
PCKPS
PRM1
TCK2PS
TCK1PS
TCK0PS
INT2PS1
INT1PS1
INT1PS0
INT0PS1
INT0PS0
PRM2
TP31PS
TP30PS
TP21PS
TP20PS
TP1B2PS
TP1APS
TP01PS
TP00PS
Rev. 1.00
66
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· PRM0 Register
¨
HT68F30
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
¾
PCPRM
SIMPS0
PCKPS
R/W
¾
¾
¾
¾
¾
R/W
R/W
R/W
POR
¾
¾
¾
¾
¾
0
0
0
Bit 7~3
²¾² Unimplemented, read as ²0²
Bit 2
PCPRM: PC1~PC0 pin-shared function Pin Remapping Control
0: No change
1: TP1B_0 on PC0 change to PA6, TP1B_1 on PC1 change to PA7 if SIMPS0=1
Bit 1
SIMPS0: SIM Pin Remapping Control
0: SDO on PA5; SDI/SDA on PA6; SCK/SCL on PA7; SCS on PB5
1: SDO on PC1; SDI/SDA on PC0; SCK/SCL on PC7; SCS on PC6
PCKPS: PCK and PINT Pin Remapping Control
0: PCK on PC2; PINT on PC3
1: PCK on PC5; PINT on PC4
Bit 0
· PRM0 Register
¨
HT68F40/HT68F50
Bit
7
6
5
4
3
2
1
0
Name
¾
R/W
¾
C1XPS0
¾
C0XPS0
PDPRM
SIMPS1
SIMPS0
PCKPS
R/W
¾
R/W
R/W
R/W
R/W
R/W
POR
¾
0
¾
0
0
0
0
0
Bit 7
²¾² Unimplemented, read as ²0²
Bit 6
C1XPS0: C1X Pin Remapping Control
0: C1X on PA5
1: C1X on PF1
Bit 5
²¾² Unimplemented, read as ²0²
Bit 4
C0XPS0: C0X Pin Remapping Control
0: C0X on PA0
1: C0X on PF0
Bit 3
PDPRM: PD3~PD0 pin-shared function Pin Remapping Control
0: No change
1: TCK2 on PD0 change to PB6, TP2_0 on PD1 change to PB7, TCK0 on PD2 change to PD6,
TCK1 on PD3 change to PD7 if SIMPS1, SIMPS0=01
Bit 2~1
SIMPS1, SIMPS0: SIM Pin Remapping Control
00: SDO on PA5; SDI/SDA on PA6; SCK/SCL on PA7; SCS on PB5
01: SDO on PD3; SDI/SDA on PD2; SCK/SCL on PD1; SCS on PD0
10: SDO on PB6; SDI/SDA on PB7; SCK/SCL on PD6; SCS on PD7
11: Undefined
Bit 0
PCKPS: PCK and PINT Pin Remapping Control
0: PCK on PC2; PINT on PC3
1: PCK on PC5; PINT on PC4
Rev. 1.00
67
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· PRM0 Register
¨
HT68F60
Bit
7
6
5
4
3
2
1
0
Name
C1XPS1
C1XPS0
C0XPS1
C0XPS0
PDPRM
SIMPS1
SIMPS0
PCKPS
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7~6
C1XPS1, C1XPS0: C1X Pin Remapping Control
00: C1X on PA5
01: C1X on PF1
10: C1X on PG1
11: Undefined
Bit 5~4
C0XPS1, C0XPS0: C0X Pin Remapping Control
00: C0X on PA0
01: C0X on PF0
10: C0X on PG0
11: Undefined
Bit 3
PDPRM: PD3~PD0 pin-shared function Pin Remapping Control
0: No change
1: TCK2 on PD0 change to PB6, TP2_0 on PD1 change to PB7, TCK0 on PD2 change to PD6,
TCK1 on PD3 change to PD7 if SIMPS1, SIMPS0=01 or 11
Bit 2~1
SIMPS1, SIMPS0: SIM Pin Remapping Control
00: SDO on PA5; SDI/SDA on PA6; SCK/SCL on PA7; SCS on PB5
01: SDO on PD3; SDI/SDA on PD2; SCK/SCL on PD1; SCS on PD0
10: SDO on PB6; SDI/SDA on PB7; SCK/SCL on PD6; SCS on PD7
11: SDO on PD1; SDI/SDA on PD2; SCK/SCL on PD3; SCS on PD0
Bit 0
PCKPS: PCK and PINT Pin Remapping Control
0: PCK on PC2; PINT on PC3
1: PCK on PC5; PINT on PC4
· PRM1 Register
¨
HT68F40/HT68F50
Bit
7
6
5
4
3
2
1
0
Name
TCK2PS
TCK1PS
TCK0PS
¾
INT1PS1
INT1PS0
INT0PS1
INT0PS0
R/W
R/W
R/W
R/W
¾
R/W
R/W
R/W
R/W
POR
0
0
0
¾
0
0
0
0
Bit 7
TCK2PS: TCK2 Pin Remapping Control
0: TCK2 on PC2
1: TCK2 on PD0
Bit 6
TCK1PS: TCK1 Pin Remapping Control
0: TCK1 on PA4
1: TCK1 on PD3
Bit 5
TCK0PS: TCK0 Pin Remapping Control
0: TCK0 on PA2
1: TCK0 on PD2
Bit 4
²¾² Unimplemented, read as ²0²
Bit 3~2
INT1PS1, INT1PS0: INT1 Pin Remapping Control
00: INT1 on PA4
01: INT1 on PC5
10: Undefined
11: INT1 on PE7
Bit 1~0
INT0PS1, INT0PS0: INT0 Pin Remapping Control
00: INT0 on PA3
01: INT0 on PC4
10: Undefined
11: INT0 on PE6
Rev. 1.00
68
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· PRM1 Register
¨
HT68F60
Bit
7
6
5
4
3
2
1
0
Name
TCK2PS
TCK1PS
TCK0PS
INT2PS
INT1PS1
INT1PS0
INT0PS1
INT0PS0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7
TCK2PS: TCK2 Pin Remapping Control
0: TCK2 on PC2
1: TCK2 on PD0
Bit 6
TCK1PS: TCK1 Pin Remapping Control
0: TCK1 on PA4
1: TCK1 on PD3
Bit 5
TCK0PS: TCK0 Pin Remapping Control
0: TCK0 on PA2
1: TCK0 on PD2
Bit 4
INT2PS: INT2 Pin Remapping Control
0: INT2 on PC4
1: INT2 on PE2
Bit 3~2
INT1PS1, INT1PS0: INT1 Pin Remapping Control
00: INT1 on PA4
01: INT1 on PC5
10: INT1 on PE1
11: INT1 on PE7
Bit 1~0
INT0PS1, INT0PS0: INT0 Pin Remapping Control
00: INT0 on PA3
01: INT0 on PC4
10: INT0 on PE0
11: INT0 on PE6
· PRM2 Register
¨
HT68F40
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
TP21PS
TP20PS
TP1B2PS
TP1APS
TP01PS
TP00PS
R/W
¾
¾
R/W
R/W
R/W
R/W
R/W
R/W
POR
¾
¾
0
0
0
0
0
0
Bit 7~6
²¾² Unimplemented, read as ²0²
Bit 5
TP21PS: TP2_1 Pin Remapping Control
0: TP2_1 on PC4
1: TP2_1 on PD4
Bit 4
TP20PS: TP2_0 Pin Remapping Control
0: TP2_0 on PC3
1: TP2_0 on PD1
Bit 3
TP1B2PS: TP1B_2 Pin Remapping Control
0: TP1B_2 on PC5
1: TP1B_2 on PE4
Bit 2
TP1APS: TP1A Pin Remapping Control
0: TP1A on PA1
1: TP1A on PC7
Bit 1
TP01PS: TP0_1 Pin Remapping Control
0: TP0_1 on PC5
1: TP0_1 on PD5
Bit 0
TP00PS: TP0_0 Pin Remapping Control
0: TP0_0 on PA0
1: TP0_0 on PC6
Rev. 1.00
69
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· PRM2 Register
¨
HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
TP31PS
TP30PS
TP21PS
TP20PS
TP1B2PS
TP1APS
TP01PS
TP00PS
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7
TP31PS: TP3_1 Pin Remapping Control
0: TP3_1 on PD0
1: TP3_1 on PE3
Bit 6
TP30PS: TP3_0 Pin Remapping Control
0: TP3_0 on PD3
1: TP3_0 on PE5
Bit 5
TP21PS: TP2_1 Pin Remapping Control
0: TP2_1 on PC4
1: TP2_1 on PD4
Bit 4
TP20PS: TP2_0 Pin Remapping Control
0: TP2_0 on PC3
1: TP2_0 on PD1
Bit 3
TP1B2PS: TP1B_2 Pin Remapping Control
0: TP1B_2 on PC5
1: TP1B_2 on PE4
Bit 2
TP1APS: TP1A Pin Remapping Control
0: TP1A on PA1
1: TP1A on PC7
Bit 1
TP01PS: TP0_1 Pin Remapping Control
0: TP0_1 on PC5
1: TP0_1 on PD5
Bit 0
TP00PS: TP0_0 Pin Remapping Control
0: TP0_0 on PA0
1: TP0_0 on PC6
Rev. 1.00
70
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
I/O Pin Structures
be achieved byte-wide by loading the correct values into
the appropriate port control register or by programming
individual bits in the port control register using the ²SET
[m].i² and ²CLR [m].i² instructions. Note that when using
these bit control instructions, a read-modify-write operation takes place. The microcontroller must first read in
the data on the entire port, modify it to the required new
bit values and then rewrite this data back to the output
ports.
The accompanying diagrams illustrate the internal
structures of some generic I/O pin types. As the exact
logical construction of the I/O pin will differ from these
drawings, they are supplied as a guide only to assist
with the functional understanding of the I/O pins. The
wide range of pin-shared structures does not permit all
types to be shown.
Programming Considerations
Port A has the additional capability of providing wake-up
functions. When the device is in the SLEEP or IDLE
Mode, various methods are available to wake the device
up. One of these is a high to low transition of any of the
Port A pins. Single or multiple pins on Port A can be
setup to have this function.
Within the user program, one of the first things to consider is port initialisation. After a reset, all of the I/O data
and port control registers will be set high. This means
that all I/O pins will default to an input state, the level of
which depends on the other connected circuitry and
whether pull-high selections have been chosen. If the
port control registers, PAC~PGC, are then programmed
to setup some pins as outputs, these output pins will
have an initial high output value unless the associated
port data registers, PA~PG, are first programmed. Selecting which pins are inputs and which are outputs can
P u ll- H ig h
R e g is te r
S e le c t
C o n tr o l B it
D a ta B u s
W r ite C o n tr o l R e g is te r
Q
D
W r ite D a ta R e g is te r
S y s te m
W e a k
P u ll- u p
S
I/O
p in
D a ta B it
Q
D
C K
Q
S
R e a d D a ta R e g is te r
D D
Q
C K
C h ip R e s e t
R e a d C o n tr o l R e g is te r
V
M
U
X
W a k e -u p
W a k e - u p S e le c t
P A o n ly
Generic Input/Output Structure
Rev. 1.00
71
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Timer Modules - TM
One of the most fundamental functions in any
microcontroller device is the ability to control and measure time. To implement time related functions each device includes several Timer Modules, abbreviated to the
name TM. The TMs are multi-purpose timing units and
serve to provide operations such as Timer/Counter, Input Capture, Compare Match Output and Single Pulse
Output as well as being the functional unit for the generation of PWM signals. Each of the TMs has either two or
three individual interrupts. The addition of input and output pins for each TM ensures that users are provided
with timing units with a wide and flexible range of features.
Introduction
The devices contain from two to four TMs depending
upon which device is selected with each TM having a
reference name of TM0, TM1, TM2 and TM3. Each individual TM can be categorised as a certain type, namely
Compact Type TM, Standard Type TM or Enhanced
Type TM. Although similar in nature, the different TM
types vary in their feature complexity. The common features to all of the Compact, Standard and Enhanced
TMs will be described in this section, the detailed operation regarding each of the TM types will be described in
separate sections. The main features and differences
between the three types of TMs are summarised in the
accompanying table.
The common features of the different TM types are described here with more detailed information provided in
the individual Compact, Standard and Enhanced TM
sections.
Function
CTM
STM
ETM
Timer/Counter
Ö
Ö
Ö
I/P Capture
¾
Ö
Ö
Compare Match Output
Ö
Ö
Ö
PWM Channels
1
1
2
Single Pulse Output
¾
1
1
Edge
Edge
Edge & Centre
Duty or Period
Duty or Period
Duty or Period
PWM Alignment
PWM Adjustment Period & Duty
TM Function Summary
Each device in the series contains a specific number of either Compact Type, Standard Type and Enhanced Type TM
units which are shown in the table together with their individual reference name, TM0~TM3.
Device
TM0
TM1
TM2
TM3
HT68F20
10-bit CTM
10-bit STM
¾
¾
HT68F30
10-bit CTM
10-bit ETM
¾
¾
HT68F40
10-bit CTM
10-bit ETM
16-bit STM
¾
HT68F50
10-bit CTM
10-bit ETM
16-bit STM
10-bit CTM
HT68F60
10-bit CTM
10-bit ETM
16-bit STM
10-bit CTM
TM Name/Type Reference
Rev.1.00
72
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
TM Operation
type TM has three internal comparators and comparator
A or comparator B or comparator P compare match
functions, it consequently has three internal interrupts.
When a TM interrupt is generated it can be used to clear
the counter and also to change the state of the TM output pin.
The three different types of TM offer a diverse range of
functions, from simple timing operations to PWM signal
generation. The key to understanding how the TM operates is to see it in terms of a free running counter whose
v a lu e is t h e n c o m p a r ed w i t h t h e v a l u e o f
pre-programmed internal comparators. When the free
ru n n in g c ount er h a s t he s a m e v al u e a s t h e
pre-programmed comparator, known as a compare
match situation, a TM interrupt signal will be generated
which can clear the counter and perhaps also change
the condition of the TM output pin. The internal TM
counter is driven by a user selectable clock source,
which can be an internal clock or an external pin.
TM External Pins
Each of the TMs, irrespective of what type, has one TM
input pin, with the label TCKn. The TM input pin, is essentially a clock source for the TM and is selected using
the TnCK2~TnCK0 bits in the TMnC0 register. This external TM input pin allows an external clock source to
drive the internal TM. This external TM input pin is
shared with other functions but will be connected to the
internal TM if selected using the TnCK2~TnCK0 bits.
The TM input pin can be chosen to have either a rising or
falling active edge.
TM Clock Source
The clock source which drives the main counter in each
TM can originate from various sources. The selection of
the required clock source is implemented using the
TnCK2~TnCK0 bits in the TM control registers. The
clock source can be a ratio of either the system clock
fSYS or the internal high clock fH, the fTBC clock source or
the external TCKn pin. Note that setting these bits to the
value 101 will select a reserved clock input, in effect disconnecting the TM clock source. The TCKn pin clock
source is used to allow an external signal to drive the TM
as an external clock source or for event counting.
The TMs each have one or more output pins with the label TPn. When the TM is in the Compare Match Output
Mode, these pins can be controlled by the TM to switch
to a high or low level or to toggle when a compare match
situation occurs. The external TPn output pin is also the
pin where the TM generates the PWM output waveform.
As the TM output pins are pin-shared with other function, the TM output function must first be setup using
registers. A single bit in one of the registers determines if
its associated pin is to be used as an external TM output
pin or if it is to have another function. The number of output pins for each TM type and device is different, the details are provided in the accompanying table.
TM Interrupts
The Compact and Standard type TMs each have two internal interrupts, one for each of the internal comparator
A or comparator P, which generate a TM interrupt when
a compare match condition occurs. As the Enhanced
Device
CTM
STM
ETM
Registers
HT68F20
TP0_0
TP1_0, TP1_1
¾
TMPC0
HT68F30
TP0_0, TP0_1
¾
TP1A, TP1B_0,
TP1B_1
TMPC0
HT68F40
TP0_0, TP0_1
TP2_0, TP2_1
TP1A, TP1B_0,
TP1B_1, TP1B_2
TMPC0, TMPC1
HT68F50
TP0_0, TP0_1
TP3_0, TP3_1
TP2_0, TP2_1
TP1A, TP1B_0,
TP1B_1, TP1B_2
TMPC0, TMPC1
HT68F60
TP0_0, TP0_1
TP3_0, TP3_1
TP2_0, TP2_1
TP1A, TP1B_0,
TP1B_1, TP1B_2
TMPC0, TMPC1
TM Output Pins
Rev.1.00
73
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
TM Input/Output Pin Control Registers
Selecting to have a TM input/output or whether to retain its other shared function, is implemented using one or two registers, with a single bit in each register corresponding to a TM input/output pin. Setting the bit high will setup the corresponding pin as a TM input/output, if reset to zero the pin will retain its original other function.
Registers
Device
TMPC0
Bit
7
6
5
4
3
2
1
0
HT68F20
¾
¾
T1CP1
T1CP0
¾
¾
¾
T0CP0
TMPC0
HT68F30
T1ACP0
¾
T1BCP1
T1BCP0
¾
¾
T0CP1
T0CP0
TMPC0
HT68F40
HT68F50
HT68F60
T1ACP0
T1BCP2
T1BCP1
T1BCP0
¾
¾
T0CP1
T0CP0
TMPC1
HT68F40
¾
¾
¾
¾
¾
¾
T2CP1
T2CP0
TMPC1
HT68F50
HT68F60
¾
¾
T3CP1
T3CP0
¾
¾
T2CP1
T2CP0
TM Input/Output Pin Control Registers List
0
P A 0 O u tp u t F u n c tio n
1
P A 0 /T P 0 _ 0
O u tp u t
T 0 C P 0
T M 0
(C T M )
T C K In p u t
P A 2 /T C K 0
P A 1 O u tp u t F u n c tio n
0
P A 1 /T P 1 _ 0
1
0
1
T 1 C P 0
P A 1
P C 0 O u tp u t F u n c tio n
O u tp u t
0
1
0
1
P C 0 /T P 1 _ 1
T 1 C P 1
P C 0
1
C a p tu re In p u t
0
T M 1
(S T M )
T 1 C P 1
1
0
T 1 C P 0
T C K In p u t
P A 4 /T C K 1
HT68F20 TM Function Pin Control Block Diagram
Rev.1.00
74
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
0
P A 0 O u tp u t F u n c tio n
P A 0 /T P 0 _ 0
1
0
1
T 0 C P 0
P A 0
0
P C 5 O u tp u t F u n c tio n
O u tp u t
1
T M 0
(C T M )
T C K In p u t
P C 5 /T P 0 _ 1
1
0
T 0 C P 1
P C 5
P A 2 /T C K 0
0
P A 1 O u tp u t F u n c tio n
1
C C R A O u tp u t
P A 1 /T P 1 A
T 1 A C P 0
1
C C R A C a p tu re In p u t
0
T 1 A C P 0
P C 0 O u tp u t F u n c tio n
0
P C 0 /T P 1 B _ 0
1
0
1
T 1 B C P 0
P C 0
T M 1
(E T M )
P C 1 O u tp u t F u n c tio n
C C R B O u tp u t
0
1
0
1
P C 1 /T P 1 B _ 1
T 1 B C P 1
P C 1
1
C C R B C a p tu re In p u t
0
T 1 B C P 1
1
0
T 1 B C P 0
T C K In p u t
P A 4 /T C K 1
HT68F30 TM Function Pin Control Block Diagram
Rev.1.00
75
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
0
P A 0 O u tp u t F u n c tio n
P A 0 /T P 0 _ 0
1
0
1
T 0 C P 0
P A 0
0
P C 5 O u tp u t F u n c tio n
O u tp u t
1
0
1
T M 0
(C T M )
T C K In p u t
P C 5 /T P 0 _ 1
T 0 C P 1
P C 5
P A 2 /T C K 0
P C 3 O u tp u t F u n c tio n
0
P C 3 /T P 2 _ 0
1
0
1
T 2 C P 0
P C 3
P C 4 O u tp u t F u n c tio n
O u tp u t
0
1
0
1
P C 4 /T P 2 _ 1
T 2 C P 1
P C 4
1
C a p tu re In p u t
0
T M 2
(S T M )
T 2 C P 1
1
0
T 2 C P 0
T C K In p u t
P C 2 /T C K 2
HT68F40 TM0 & TM2 Function Pin Control Block Diagram
Rev.1.00
76
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
0
P A 1 O u tp u t F u n c tio n
1
C C R A O u tp u t
P A 1 /T P 1 A
T 1 A C P 0
1
C C R A C a p tu re In p u t
0
T 1 A C P 0
P C 0 O u tp u t F u n c tio n
0
P C 0 /T P 1 B _ 0
1
0
1
T 1 B C P 0
P C 0
P C 1 O u tp u t F u n c tio n
0
P C 1 /T P 1 B _ 1
1
0
1
T M 1
(E T M )
T 1 B C P 1
P C 1
P C 5 O u tp u t F u n c tio n
C C R B O u tp u t
0
1
0
1
P C 5 /T P 1 B _ 2
T 1 B C P 2
P C 5
1
C C R B C a p tu re In p u t
0
T 1 B C P 2
1
0
T 1 B C P 1
1
0
T 1 B C P 0
T C K In p u t
P A 4 /T C K 1
HT68F40 TM1 Function Pin Control Block Diagram
Rev.1.00
77
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
0
P A 0 O u tp u t F u n c tio n
P A 0 /T P 0 _ 0
1
0
1
T 0 C P 0
P A 0
0
P C 5 O u tp u t F u n c tio n
0
1
T 0 C P 1
T M 0
(C T M )
T C K In p u t
P C 5 /T P 0 _ 1
1
O u tp u t
P C 5
P A 2 /T C K 0
P C 3 O u tp u t F u n c tio n
0
P C 3 /T P 2 _ 0
1
0
1
T 2 C P 0
P C 3
P C 4 O u tp u t F u n c tio n
O u tp u t
0
P C 4 /T P 2 _ 1
1
0
1
T 2 C P 1
P C 4
1
C a p tu re In p u t
0
T M 2
(S T M )
T 2 C P 1
1
0
T 2 C P 0
T C K In p u t
P C 2 /T C K 2
0
P D 3 O u tp u t F u n c tio n
P D 3 /T P 3 _ 0
1
0
1
T 3 C P 0
P D 3
0
P D 0 O u tp u t F u n c tio n
O u tp u t
1
0
1
T M 3
(C T M )
T C K In p u t
P D 0 /T P 3 _ 1
T 3 C P 1
P D 0
P C 4 /T C K 3
HT68F50 and HT68F60 TM0, TM2, TM3 Function Pin Control Block Diagram
Rev.1.00
78
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
0
P A 1 O u tp u t F u n c tio n
1
C C R A O u tp u t
P A 1 /T P 1 A
T 1 A C P 0
1
C C R A C a p tu re In p u t
0
T 1 A C P 0
P C 0 O u tp u t F u n c tio n
0
P C 0 /T P 1 B _ 0
1
0
1
T 1 B C P 0
P C 0
P C 1 O u tp u t F u n c tio n
0
P C 1 /T P 1 B _ 1
1
0
1
T M 1
(E T M )
T 1 B C P 1
P C 1
P C 5 O u tp u t F u n c tio n
C C R B O u tp u t
0
1
0
1
P C 5 /T P 1 B _ 2
T 1 B C P 2
P C 5
1
C C R B C a p tu re In p u t
0
T 1 B C P 2
1
0
T 1 B C P 1
1
0
T 1 B C P 0
T C K In p u t
P A 4 /T C K 1
HT68F50 and HT68F60 TM1 Function Pin Control Block Diagram
Rev.1.00
79
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· TMPC0 Register
¨
HT68F20
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
T1CP1
T1CP0
¾
¾
¾
T0CP0
R/W
¾
¾
R/W
R/W
¾
¾
¾
R/W
POR
¾
¾
0
1
¾
¾
¾
1
3
2
1
0
Bit 7, 6
Bit 5
Bit 4
Bit 3~1
Bit 0
¨
Unimplemented, read as ²0²
T1CP1: TP1_1 pin Control
0: disable
1: enable
T1CP0: TP1_0 pin Control
0: disable
1: enable
Unimplemented, read as ²0²
T0CP0: TP0_0 pin Control
0: disable
1: enable
HT68F30
Bit
7
6
5
4
Name
R/W
T1ACP0
¾
T1BCP1
T1BCP0
¾
¾
T0CP1
T0CP0
R/W
¾
R/W
R/W
¾
¾
R/W
R/W
POR
1
¾
0
1
¾
¾
0
1
Bit 7
T1ACP0: TP1A pin Control
0: disable
1: enable
Bit 6
Bit 5
Unimplemented, read as ²0²
T1BCP1: TP1B_1 pin Control
0: disable
1: enable
T1BCP0: TP1B_0 pin Control
0: disable
1: enable
Bit 4
Bit 3~2
Unimplemented, read as ²0²
Bit 1
T0CP1: TP0_1 pin Control
0: disable
1: enable
Bit 0
T0CP0: TP0_0 pin Control
0: disable
1: enable
Rev.1.00
80
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F40/HT68F50/HT68F60
Bit
7
6
5
4
Name
T1ACP0
T1BCP2
T1BCP1
T1BCP0
R/W
R/W
R/W
R/W
R/W
POR
1
0
0
1
Bit 7
3
2
1
0
¾
¾
T0CP1
T0CP0
¾
¾
R/W
R/W
¾
¾
0
1
T1ACP0: TP1A pin Control
0: disable
1: enable
T1BCP2: TP1B_2 pin Control
0: disable
1: enable
T1BCP1: TP1B_1 pin Control
0: disable
1: enable
T1BCP0: TP1B_0 pin Control
0: disable
1: enable
Bit 6
Bit 5
Bit 4
Bit 3~2
Unimplemented, read as ²0²
Bit 1
T0CP1: TP0_1 pin Control
0: disable
1: enable
Bit 0
T0CP0: TP0_0 pin Control
0: disable
1: enable
· TMPC1 Register
¨
HT68F40
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
¾
¾
T2CP1
T2CP0
R/W
¾
¾
¾
¾
¾
¾
R/W
R/W
POR
¾
¾
¾
¾
¾
¾
0
1
Bit 7~2
Unimplemented, read as ²0²
Bit 1
T2CP1: TP2_1 pin Control
0: disable
1: enable
Bit 0
T2CP0: TP2_0 pin Control
0: disable
1: enable
Rev.1.00
81
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
T3CP1
T3CP0
¾
¾
T2CP1
T2CP0
R/W
¾
¾
R/W
R/W
¾
¾
R/W
R/W
POR
¾
¾
0
1
¾
¾
0
1
Bit 7~6
Unimplemented, read as ²0²
Bit 5
T3CP1: TP3_1 pin Control
0: disable
1: enable
Bit 4
T3CP0: TP3_0 pin Control
0: disable
1: enable
Bit 3~2
Unimplemented, read as ²0²
Bit 1
T2CP1: TP2_1 pin Control
0: disable
1: enable
Bit 0
T2CP0: TP2_0 pin Control
0: disable
1: enable
Compact Type TM
Although the simplest form of the three TM types, the Compact TM type still contains three operating modes, which are
Compare Match Output, Timer/Event Counter and PWM Output modes. The Compact TM can also be controlled with
an external input pin and can drive one or two external output pins. These two external output pins can be the same signal or the inverse signal.
CTM
Name
TM No.
TM Input Pin
TM Output Pin
HT68F20
10-bit CTM
0
TCK0
TP0_0
HT68F30
10-bit CTM
0
TCK0
TP0_0, TP0_1
HT68F40
10-bit CTM
0
TCK0
TP0_0, TP0_1
HT68F50
10-bit CTM
0, 3
TCK0, TCK3
TP0_0, TP0_1; TP3_0, TP3_1
HT68F60
10-bit CTM
0, 3
TCK0, TCK3
TP0_0, TP0_1; TP3_0, TP3_1
C C R P
3 - b it C o m p a r a to r P
fS
Y S /4
fS Y S
fH /1 6
fH /6 4
fT B C
R e s e rv e d
T C K n
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
C o m p a ra to r P M a tc h
T n P F In te rru p t
b 7 ~ b 9
1 0 - b it C o u n t- u p C o u n te r
T n O C
C o u n te r C le a r
0
1
1 1 1
T n O N
b 0 ~ b 9
O u tp u t
C o n tro l
T n M 1 , T n M 0
T n IO 1 , T n IO 0
T n C C L R
P o la r ity
C o n tro l
T P n P in
O u tp u t
T P n _ 0
T P n _ 1
T n P O L
T n P A U
1 0 - b it C o m p a r a to r A
C o m p a ra to r A
M a tc h
T n A F In te rru p t
T n C K 2 ~ T n C K 0
C C R A
Compact Type TM Block Diagram
Rev.1.00
82
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Compact TM Operation
also usually be generated. The Compact Type TM can
operate in a number of different operational modes, can
be driven by different clock sources including an input
pin and can also control an output pin. All operating
setup conditions are selected using relevant internal
registers.
At its core is a 10-bit count-up counter which is driven by
a user selectable internal or external clock source.
There are also two internal comparators with the names,
Comparator A and Comparator P. These comparators
will compare the value in the counter with CCRP and
CCRA registers. The CCRP is three bits wide whose
value is compared with the highest three bits in the
counter while the CCRA is the ten bits and therefore
compares with all counter bits.
Compact Type TM Register Description
Overall operation of the Compact TM is controlled using
six registers. A read only register pair exists to store the
internal counter 10-bit value, while a read/write register
pair exists to store the internal 10-bit CCRA value. The
remaining two registers are control registers which
setup the different operating and control modes as well
as the three CCRP bits.
The only way of changing the value of the 10-bit counter
using the application program, is to clear the counter by
changing the TnON bit from low to high. The counter will
also be cleared automatically by a counter overflow or a
compare match with one of its associated comparators.
When these conditions occur, a TM interrupt signal will
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
TM0C0
T0PAU
T0CK2
T0CK1
T0CK0
T0ON
T0RP2
T0RP1
T0RP0
TM0C1
T0M1
T0M0
T0IO1
T0IO0
T0OC
T0POL
T0DPX
T0CCLR
TM0DL
D7
D6
D5
D4
D3
D2
D1
D0
TM0DH
¾
¾
¾
¾
¾
¾
D9
D8
TM0AL
D7
D6
D5
D4
D3
D2
D1
D0
TM0AH
¾
¾
¾
¾
¾
¾
D9
D8
Compact TM Register List (if CTM is TM0)
· TM0DL Register
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R
R
R
R
R
R
R
R
POR
0
0
0
0
0
0
0
0
Bit 7~0
TM0DL: TM0 Counter Low Byte Register bit 7 ~ bit 0
TM0 10-bit Counter bit 7 ~ bit 0
· TM0DH Register
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
¾
¾
D9
D8
R/W
¾
¾
¾
¾
¾
¾
R
R
POR
¾
¾
¾
¾
¾
¾
0
0
Bit 7~2
Unimplemented, read as ²0²
Bit 1~0
TM0DH: TM0 Counter High Byte Register bit 1 ~ bit 0
TM0 10-bit Counter bit 9 ~ bit 8
Rev.1.00
83
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· TM0AL Register
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
1
0
Bit 7~0
TM0AL: TM0 CCRA Low Byte Register bit 7 ~ bit 0
TM0 10-bit CCRA bit 7 ~ bit 0
· TM0AH Register
Bit
7
6
5
4
3
2
Name
¾
¾
¾
¾
¾
¾
D9
D8
R/W
¾
¾
¾
¾
¾
¾
R/W
R/W
POR
¾
¾
¾
¾
¾
¾
0
0
Bit 7~2
Unimplemented, read as ²0²
Bit 1~0
TM0AH: TM0 CCRA High Byte Register bit 1 ~ bit 0
TM0 10-bit CCRA bit 9 ~ bit 8
· TM0C0 Register
Bit
7
6
5
4
3
2
1
0
Name
T0PAU
T0CK2
T0CK1
T0CK0
T0ON
T0RP2
T0RP1
T0RP0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7
T0PAU: TM0 Counter Pause Control
0: run
1: pause
The counter can be paused by setting this bit high. Clearing the bit to zero restores normal
counter operation. When in a Pause condition the TM will remain powered up and continue to
consume power. The counter will retain its residual value when this bit changes from low to high
and resume counting from this value when the bit changes to a low value again.
Bit 6~4
T0CK2~T0CK0: Select TM0 Counter clock
000: fSYS/4
001: fSYS
010: fH/16
011: fH/64
100: fTBC
101: Reserved
110: TCK0 rising edge clock
111: TCK0 falling edge clock
These three bits are used to select the clock source for the TM. Selecting the Reserved clock
input will effectively disable the internal counter. The external pin clock source can be chosen to
be active on the rising or falling edge. The clock source fSYS is the system clock, while fH and
fTBC are other internal clocks, the details of which can be found in the oscillator section.
Bit 3
T0ON: TM0 Counter On/Off Control
0: Off
1: On
This bit controls the overall on/off function of the TM. Setting the bit high enables the counter to
run, clearing the bit disables the TM. Clearing this bit to zero will stop the counter from counting
and turn off the TM which will reduce its power consumption. When the bit changes state from
low to high the internal counter value will be reset to zero, however when the bit changes from
high to low, the internal counter will retain its residual value.
If the TM is in the Compare Match Output Mode then the TM output pin will be reset to its initial
condition, as specified by the T0OC bit, when the T0ON bit changes from low to high.
Rev.1.00
84
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Bit 2~0
T0RP2~T0RP0: TM0 CCRP 3-bit register, compared with the TM0 Counter bit 9~bit 7
Comparator P Match Period
000: 1024 TM0 clocks
001: 128 TM0 clocks
010: 256 TM0 clocks
011: 384 TM0 clocks
100: 512 TM0 clocks
101: 640 TM0 clocks
110: 768 TM0 clocks
111: 896 TM0 clocks
These three bits are used to setup the value on the internal CCRP 3-bit register, which are then
compared with the internal counter's highest three bits. The result of this comparison can be
selected to clear the internal counter if the T0CCLR bit is set to zero. Setting the T0CCLR bit to
zero ensures that a compare match with the CCRP values will reset the internal counter. As the
CCRP bits are only compared with the highest three counter bits, the compare values exist in 128
clock cycle multiples. Clearing all three bits to zero is in effect allowing the counter to overflow at
its maximum value.
· TM0C1 Register
Bit
7
6
5
4
3
2
1
0
Name
T0M1
T0M0
T0IO1
T0IO0
T0OC
T0POL
T0DPX
T0CCLR
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7~6
T0M1~T0M0: Select TM0 Operating Mode
00: Compare Match Output Mode
01: Undefined Mode
10: PWM Mode
11: Timer/Counter Mode
These bits setup the required operating mode for the TM. To ensure reliable operation the TM
should be switched off before any changes are made to the T0M1 and T0M0 bits. In the
Timer/Counter Mode, the TM output pin control must be disabled.
Bit 5~4
T0IO1~T0IO0: Select TP0_0, TP0_1 output function
Compare Match Output Mode
00: No change
01: Output low
10: Output high
11: Toggle output
PWM Mode
00: Force inactive state
01: Force active state
10: PWM output
11: Undefined
Timer/counter Mode
unused
These two bits are used to determine how the TM output pin changes state when a certain
condition is reached. The function that these bits select depends upon in which mode the TM is
running.
In the Compare Match Output Mode, the T0IO1 and T0IO0 bits determine how the TM output
pin changes state when a compare match occurs from the Comparator A. The TM output pin can
be setup to switch high, switch low or to toggle its present state when a compare match occurs
from the Comparator A. When the bits are both zero, then no change will take place on the
output. The initial value of the TM output pin should be setup using the T0OC bit in the TM0C1
register. Note that the output level requested by the T0IO1 and T0IO0 bits must be different from
the initial value setup using the T0OC bit otherwise no change will occur on the TM output pin
when a compare match occurs. After the TM output pin changes state it can be reset to its initial
level by changing the level of the T0ON bit from low to high.
Rev.1.00
85
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Bit 3
T0OC: TP0_0, TP0_1 Output control bit
Compare Match Output Mode
0: Initial low
1: Initial high
PWM Mode
0: Active low
1: Active high
This is the output control bit for the TM output pin. Its operation depends upon whether TM is
being used in the Compare Match Output Mode or in the PWM Mode. It has no effect if the TM is
in the Timer/Counter Mode. In the Compare Match Output Mode it determines the logic level of
the TM output pin before a compare match occurs. In the PWM Mode it determines if the PWM
signal is active high or active low.
Bit 2
T0POL: TP0_0, TP0_1 Output polarity Control
0: Non-invert
1: Invert
This bit controls the polarity of the TP0_0 or TP0_1 output pin. When the bit is set high the TM
output pin will be inverted and not inverted when the bit is zero. It has no effect if the TM is in the
Timer/Counter Mode.
Bit 1
T0DPX: TM0 PWM period/duty Control
0: CCRP - period; CCRA - duty
1: CCRP - duty; CCRA - period
This bit, determines which of the CCRA and CCRP registers are used for period and duty
control of the PWM waveform.
Bit 0
T0CCLR: Select TM0 Counter clear condition
0: TM0 Comparatror P match
1: TM0 Comparatror A match
This bit is used to select the method which clears the counter. Remember that the Compact TM
contains two comparators, Comparator A and Comparator P, either of which can be selected to
clear the internal counter. With the T0CCLR bit set high, the counter will be cleared when a
compare match occurs from the Comparator A. When the bit is low, the counter will be cleared
when a compare match occurs from the Comparator P or with a counter overflow. A counter
overflow clearing method can only be implemented if the CCRP bits are all cleared to zero.
The T0CCLR bit is not used in the PWM Mode.
Rev.1.00
86
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Compact Type TM Operating Modes
rupt request flag will be generated even if the value of
the CCRP bits is less than that of the CCRA registers.
Therefore when TnCCLR is high no TnPF interrupt request flag will be generated. If the CCRA bits are all
zero, the counter will overflow when its reaches its maximum 10-bit, 3FF Hex, value, however here the TnAF interrupt request flag will not be generated.
The Compact Type TM can operate in one of three operating modes, Compare Match Output Mode, PWM
Mode or Timer/Counter Mode. The operating mode is
selected using the TnM1 and TnM0 bits in the TMnC1
register.
Compare Match Output Mode
As the name of the mode suggests, after a comparison
is made, the TM output pin will change state. The TM
output pin condition however only changes state when
an TnAF interrupt request flag is generated after a compare match occurs from Comparator A. The TnPF interrupt request flag, generated from a compare match
occurs from Comparator P, will have no effect on the TM
output pin. The way in which the TM output pin changes
state are determined by the condition of the TnIO1 and
TnIO0 bits in the TMnC1 register. The TM output pin can
be selected using the TnIO1 and TnIO0 bits to go high,
to go low or to toggle from its present condition when a
compare match occurs from Comparator A. The initial
condition of the TM output pin, which is setup after the
TnON bit changes from low to high, is setup using the
TnOC bit. Note that if the TnIO1 and TnIO0 bits are zero
then no pin change will take place.
To select this mode, bits TnM1 and TnM0 in the TMnC1
register, should be set to ²00² respectively. In this mode
once the counter is enabled and running it can be
cleared by three methods. These are a counter overflow, a compare match from Comparator A and a compare match from Comparator P. When the TnCCLR bit is
low, there are two ways in which the counter can be
cleared. One is when a compare match occurs from
Comparator P, the other is when the CCRP bits are all
zero which allows the counter to overflow. Here both
TnAF and TnPF interrupt request flags for the Comparator A and Comparator P respectively, will both be generated.
If the TnCCLR bit in the TMnC1 register is high then the
counter will be cleared when a compare match occurs
from Comparator A. However, here only the TnAF interCounter
Value
Counter
overflow
TnCCRL = 0; TnM1, TnM0 = 00
CCRP = 0
CCRP > 0
Counter cleared by CCRP value
CCRP > 0
0x3FF
CCRP
Pause Resume
CCRA
Stop
Counter
Reset
Time
TnON bit
TnPAU bit
TnPOL bit
CCRP Int.
Flag TnPF
CCRA Int.
Flag TnAF
TM O/P Pin
Output Pin set
to Initial Level
Low if TnOC = 0
Output Toggle
with TnAF flag
Output not affected by TnAF flag
Remains High until reset by TnON bit
Now TnIO1, TnIO0 = 10
Active High Output
Select
Output inverts
when TnPOL is high
Output Pin
Reset to initial value
Here TnIO1, TnIO0 = 11
Toggle Output Select
Compare Match Output Mode - TnCCLR = 0
Note:
1. With TnCCLR = 0 the Comparator P match will clear the counter
2. TM output pin controlled only by TnAF flag
3. Output pin reset to initial state by TnON bit rising edge
Rev.1.00
87
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
TnCCLR = 1; TnM1, TnM0 = 00
Counter
Value
CCRA = 0
Counter overflows
CCRA > 0 Counter cleared by CCRA value
0x3FF
CCRA = 0
CCRA
Pause Resume
Counter
Reset
Stop
CCRP
Time
TnON bit
TnPAU bit
TnPOL bit
No TnAF flag
generated on
CCRA overflow
CCRA Int.
Flag TnAF
CCRP Int.
Flag TnPF
TM O/P Pin
Output does
not change
TnPF not
generated
Output Pin set
to Initial Level
Low if TnOC = 0
Output Toggle
with TnAF flag
Output not affected by TnAF flag
remains High until reset by TnON bit
Now TnIO1, TnIO0 = 10
Active High Output
Select
Output inverts
when TnPOL is high
Output Pin
Reset to initial value
Here TnIO 1, TnIO0 = 11
Toggle Output Select
Compare Match Output Mode - TnCCLR = 1
Note:
1. With TnCCLR = 1 the Comparator A match will clear the counter
2. TM output pin controlled only by TnAF flag
3.TM output pin reset to initial state by TnON rising edge
4. TnPF flags not generated when TnCCLR = 1
Rev.1.00
88
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Timer/Counter Mode
As both the period and duty cycle of the PWM waveform
can be controlled, the choice of generated waveform is
extremely flexible. In the PWM mode, the TnCCLR bit
has no effect on the PWM operation. Both of the CCRA
and CCRP registers are used to generate the PWM
waveform, one register is used to clear the internal
counter and thus control the PWM waveform frequency,
while the other one is used to control the duty cycle.
Which register is used to control either frequency or duty
cycle is determined using the TnDPX bit in the TMnC1
register. The PWM waveform frequency and duty cycle
can therefore be controlled by the values in the CCRA
and CCRP registers.
To select this mode, bits TnM1 and TnM0 in the TMnC1
register should be set to 11 respectively. The
Timer/Counter Mode operates in an identical way to the
Compare Match Output Mode generating the same interrupt flags. The exception is that in the Timer/Counter
Mode the TM output pin is not used. Therefore the
above description and Timing Diagrams for the Compare Match Output Mode can be used to understand its
function. As the TM output pin is not used in this mode,
the pin can be used as a normal I/O pin or other
pin-shared function.
PWM Output Mode
An interrupt flag, one for each of the CCRA and CCRP,
will be generated when a compare match occurs from
either Comparator A or Comparator P. The TnOC bit in
the TMnC1 register is used to select the required polarity of the PWM waveform while the two TnIO1 and
TnIO0 bits are used to enable the PWM output or to
force the TM output pin to a fixed high or low level. The
TnPOL bit is used to reverse the polarity of the PWM
output waveform.
To select this mode, bits TnM1 and TnM0 in the TMnC1
register should be set to 10 respectively. The PWM function within the TM is useful for applications which require
functions such as motor control, heating control, illumination control etc. By providing a signal of fixed frequency but of varying duty cycle on the TM output pin, a
square wave AC waveform can be generated with varying equivalent DC RMS values.
Counter
Value
Counter Cleared
by CCRP
DPX = 0; TnM1, TnM0 = 10
CCRP
Counter Stop
if TnON bit low
Pause Resume
Counter reset
when TnON
returns high
CCRA
Time
TnON bit
TnPAU bit
TnPOL bit
Interrupts
still generated
CCRA Int.
Flag TnAF
CCRP Int.
Flag TnPF
TnIO1, TnIO0 = 10 PWM Output
TnIO1, TnIO0 = 00
Output Inactive
TnIO1, TnIO0 = 10
PWM Output
TM Pin
TnOC = 1
TM Pin
TnOC = 0
PWM Period
set by CCRP
PWM Duty Cycle
set by CCRA
Here TnIO1, TnIO0 = 00
Output Forced to Inactive
level but PWM function
keeps running internally
TnIIO1, TnIO0 = 10
Resume PWM Output
PWM resumes operation
Output remains at same level
Output Inverts
When TnPOL = 1
PWM Mode - TnDPX = 0
Note:
1. Here TnDPX = 0 - Counter cleared by CCRP
2. Counter Clear sets PWM Period
3. Internal PWM function continues even when TnIO1, TnIO0 = 00 or 01
4. TnCCLR bit has no influence on PWM operation
Rev.1.00
89
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Counter
Value
Counter Cleared
by CCRA
DPX = 1; TnM1, TnM0 = 10
CCRA
Counter Stop
if TnON bit low
Pause Resume
Counter reset
when TnON
returns high
CCRP
Time
TnON bit
TnPAU bit
TnPOL bit
Interrupts
still generated
CCRP Int.
Flag TnPF
CCRA Int.
Flag TnAF
TnIO1, TnIO0 = 10 PWM Output
TnIO1, TnIO0 = 00
Output Inactive
TnIO1, TnIO0 = 10
PWM Output
TM Pin
TnOC = 1
TM Pin
TnOC = 0
PWM Period
set by CCRA
PWM Duty Cycle
set by CCRP
Here TnIO1, TnIO0 = 00
Output Forced to Inactive
level but PWM function
keeps running internally
TnIO1, TnIO0 = 10
Resume PWM Output
PWM resumes operation
Output remains at same level
Output Inverts
When TnPOL = 1
PWM Mode - TnDPX = 1
Note:
1. Here TnDPX = 1 - Counter cleared by CCRA
2. Counter Clear sets PWM Period
3. Internal PWM function continues even when TnIO1, TnIO0 = 00 or 01
4. TnCCLR bit has no influence on PWM operation
Rev.1.00
90
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Standard Type TM - STM
The Standard Type TM contains five operating modes, which are Compare Match Output, Timer/Event Counter, Capture Input, Single Pulse Output and PWM Output modes. The Standard TM can also be controlled with an external input pin and can drive one or two external output pins.
CTM
Name
TM No.
TM Input Pin
TM Output Pin
HT68F20
10-bit STM
1
TCK1
TP1_0, TP1_1
HT68F30
¾
¾
¾
¾
HT68F40
16-bit STM
2
TCK2
TP2_0, TP2_1
HT68F50
16-bit STM
2
TCK2
TP2_0, TP2_1
HT68F60
16-bit STM
2
TCK2
TP2_0, TP2_1
Standard TM Operation
comparators. When these conditions occur, a TM interrupt signal will also usually be generated. The Standard
Type TM can operate in a number of different operational modes, can be driven by different clock sources
including an input pin and can also control an output pin.
All operating setup conditions are selected using relevant internal registers.
There are two sizes of Standard TMs, one is 10-bits
wide and the other is 16-bits wide. At the core is a 10 or
16-bit count-up counter which is driven by a user
selectable internal or external clock source. There are
also two internal comparators with the names, Comparator A and Comparator P. These comparators will
compare the value in the counter with CCRP and CCRA
registers. The CCRP comparator is 3 or 8-bits wide
whose value is compared the with highest 3 or 8 bits in
the counter while the CCRA is the ten or sixteen bits and
therefore compares all counter bits.
Standard Type TM Register Description
Overall operation of the Standard TM is controlled using
a series of registers. A read only register pair exists to
store the internal counter 10 or 16-bit value, while a
read/write register pair exists to store the internal 10 or
16-bit CCRA value. The remaining two registers are
control registers which setup the different operating and
control modes as well as the three or eight CCRP bits.
The only way of changing the value of the 10 or 16-bit
counter using the application program, is to clear the
counter by changing the TnON bit from low to high. The
counter will also be cleared automatically by a counter
overflow or a compare match with one of its associated
C C R P
3 o r 8 - b it C o m p a r a to r P
fS
Y S
/4
fS
Y S
fH /1 6
fH /6 4
fT B C
R e s e rv e d
T C K n
T n P F In te rru p t
b 7 ~ b 9 o r b 8 ~ b 1 5
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
C o m p a ra to r P M a tc h
1 0 o r 1 6 - b it C o u n t- u p C o u n te r
b 0 ~ b 9 o r
b 0 ~ b 1 5
T n O N
T n P A U
1 0 o r 1 6 - b it
C o m p a ra to r A
T n O C
0
C o u n te r C le a r
1
T n C C L R
C o m p a ra to r A
M a tc h
O u tp u t
C o n tro l
P o la r ity
C o n tro l
T n M 1 , T n M 0
T n IO 1 , T n IO 0
T n P O L
T P n P in
In p u t/O u tp u t
T P n _ 0
T P n _ 1
T n A F In te rru p t
T n IO 1 , T n IO 0
T n C K 2 ~ T n C K 0
C C R A
E d g e
D e te c to r
Standard Type TM Block Diagram
Rev.1.00
91
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
TM1C0
T1PAU
T1CK2
T1CK1
T1CK0
T1ON
T1RP2
T1RP1
T1RP0
TM1C1
T1M1
T1M0
T1IO1
T1IO0
T1OC
T1POL
T1DPX
T1CCLR
TM1DL
D7
D6
D5
D4
D3
D2
D1
D0
TM1DH
¾
¾
¾
¾
¾
¾
D9
D8
TM1AL
D7
D6
D5
D4
D3
D2
D1
D0
TM1AH
¾
¾
¾
¾
¾
¾
D9
D8
10-bit Standard TM Register List (for HT68F20)
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
TM2C0
T2PAU
T2CK2
T2CK1
T2CK0
T2ON
¾
¾
¾
TM2C1
T2M1
T2M0
T2IO1
T2IO0
T2OC
T2POL
T2DPX
T2CCLR
TM2DL
D7
D6
D5
D4
D3
D2
D1
D0
TM2DH
D15
D14
D13
D12
D11
D10
D9
D8
TM2AL
D7
D6
D5
D4
D3
D2
D1
D0
TM2AH
D15
D14
D13
D12
D11
D10
D9
D8
TM2RP
D7
D6
D5
D4
D3
D2
D1
D0
16-bit Standard TM Register List (for HT68F40/HT68F50/HT68F60)
· 10-bit Standard TM Register List - HT68F20
¨
TM1C0 Register - 10-bit STM
Bit
7
6
5
4
3
2
1
0
Name
T1PAU
T1CK2
T1CK1
T1CK0
T1ON
T1RP2
T1RP1
T1RP0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7
T1PAU: TM1 Counter Pause Control
0: run
1: pause
The counter can be paused by setting this bit high. Clearing the bit to zero restores normal
counter operation. When in a Pause condition the TM will remain powered up and continue to
consume power. The counter will retain its residual value when this bit changes from low to high
and resume counting from this value when the bit changes to a low value again.
Bit 6~4
T1CK2~T1CK0: Select TM1 Counter clock
000: fSYS/4
001: fSYS
010: fH/16
011: fH/64
100: fTBC
101: Reserved
110: TCK1 rising edge clock
111: TCK1 falling edge clock
These three bits are used to select the clock source for the TM. Selecting the Reserved clock
input will effectively disable the internal counter. The external pin clock source can be chosen to
be active on the rising or falling edge. The clock source fSYS is the system clock, while fH and
fTBC are other internal clocks, the details of which can be found in the oscillator section.
Rev.1.00
92
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Bit 3
T1ON: TM1 Counter On/Off Control
0: Off
1: On
This bit controls the overall on/off function of the TM. Setting the bit high enables the counter to
run, clearing the bit disables the TM. Clearing this bit to zero will stop the counter from counting
and turn off the TM which will reduce its power consumption. When the bit changes state from
low to high the internal counter value will be reset to zero, however when the bit changes from
high to low, the internal counter will retain its residual value until the bit returns high again.
If the TM is in the Compare Match Output Mode then the TM output pin will be reset to its initial
condition, as specified by the T1OC bit, when the T1ON bit changes from low to high.
Bit 2~0
¨
T1RP2~T1RP0: TM1 CCRP 3-bit register, compared with the TM1 Counter bit 9~bit 7
Comparator P Match Period
000: 1024 TM1 clocks
001: 128 TM1 clocks
010: 256 TM1 clocks
011: 384 TM1 clocks
100: 512 TM1 clocks
101: 640 TM1 clocks
110: 768 TM1 clocks
111: 896 TM1 clocks
These three bits are used to setup the value on the internal CCRP 3-bit register, which are then
compared with the internal counter's highest three bits. The result of this comparison can be
selected to clear the internal counter if the T1CCLR bit is set to zero. Setting the T1CCLR bit to
zero ensures that a compare match with the CCRP values will reset the internal counter. As the
CCRP bits are only compared with the highest three counter bits, the compare values exist in 128
clock cycle multiples. Clearing all three bits to zero is in effect allowing the counter to overflow at
its maximum value.
TM1C1 Register - 10-bit STM
Bit
7
6
5
4
3
2
1
0
Name
T1M1
T1M0
T1IO1
T1IO0
T1OC
T1POL
T1DPX
T1CCLR
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7~6
T1M1~T1M0: Select TM1 Operating Mode
00: Compare Match Output Mode
01: Capture Input Mode
10: PWM Mode or Single Pulse Output Mode
11: Timer/Counter Mode
These bits setup the required operating mode for the TM. To ensure reliable operation the TM
should be switched off before any changes are made to the T1M1 and T1M0 bits. In the
Timer/Counter Mode, the TM output pin control must be disabled.
Bit 5~4
T1IO1~T1IO0: Select TP1_0, TP1_1 output function
Compare Match Output Mode
00: No change
01: Output low
10: Output high
11: Toggle output
PWM Mode/Single Pulse Output Mode
00: Force inactive state
01: Force active state
10: PWM output
11: Single pulse output
Capture Input Mode
00: Input capture at rising edge of TP1_0, TP1_1
01: Input capture at falling edge of TP1_0, TP1_1
10: Input capture at falling/rising edge of TP1_0, TP1_1
11: Input capture disabled
Timer/counter Mode:
Unused
Rev.1.00
93
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
These two bits are used to determine how the TM output pin changes state when a certain
condition is reached. The function that these bits select depends upon in which mode the TM is
running.
In the Compare Match Output Mode, the T1IO1 and T1IO0 bits determine how the TM output
pin changes state when a compare match occurs from the Comparator A. The TM output pin can
be setup to switch high, switch low or to toggle its present state when a compare match occurs
from the Comparator A. When the bits are both zero, then no change will take place on the
output. The initial value of the TM output pin should be setup using the T1OC bit in the TM1C1
register. Note that the output level requested by the T1IO1 and T1IO0 bits must be different from
the initial value setup using the T1OC bit otherwise no change will occur on the TM output pin
when a compare match occurs. After the TM output pin changes state it can be reset to its initial
level by changing the level of the T1ON bit from low to high.
Bit 3
T1OC: TP1_0, TP1_1 Output control bit
Compare Match Output Mode
0: initial low
1: initial high
PWM Mode/ Single Pulse Output Mode
0: Active low
1: Active high
This is the output control bit for the TM output pin. Its operation depends upon whether TM is
being used in the Compare Match Output Mode or in the PWM Mode/ Single Pulse Output Mode.
It has no effect if the TM is in the Timer/Counter Mode. In the Compare Match Output Mode it
determines the logic level of the TM output pin before a compare match occurs. In the PWM
Mode it determines if the PWM signal is active high or active low.
Bit 2
T1POL: TP1_0, TP1_1 Output polarity Control
0: non-invert
1: invert
This bit controls the polarity of the TP1_0 or TP1_1 output pin. When the bit is set high the TM
output pin will be inverted and not inverted when the bit is zero. It has no effect if the TM is in the
Timer/Counter Mode.
Bit 1
T1DPX: TM1 PWM period/duty Control
0: CCRP - period; CCRA - duty
1: CCRP - duty; CCRA - period
This bit, determines which of the CCRA and CCRP registers are used for period and duty
control of the PWM waveform.
Bit 0
T1CCLR: Select TM1 Counter clear condition
0: TM1 Comparatror P match
1: TM1 Comparatror A match
This bit is used to select the method which clears the counter. Remember that the Standard
TM contains two comparators, Comparator A and Comparator P, either of which can be selected
to clear the internal counter. With the T1CCLR bit set high, the counter will be cleared when a
compare match occurs from the Comparator A. When the bit is low, the counter will be cleared
when a compare match occurs from the Comparator P or with a counter overflow. A counter
overflow clearing method can only be implemented if the CCRP bits are all cleared to zero. The
T1CCLR bit is not used in the PWM, Single Pulse or Input Capture Mode.
Rev.1.00
94
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
TM1DL Register - 10-bit STM
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R
R
R
R
R
R
R
R
POR
0
0
0
0
0
0
0
0
Bit 7~0
¨
TM1DL: TM1 Counter Low Byte Register bit 7~bit 0
TM1 10-bit Counter bit 7~bit 0
TM1DH Register - 10-bit STM
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
¾
¾
D9
D8
R/W
¾
¾
¾
¾
¾
¾
R
R
POR
¾
¾
¾
¾
¾
¾
0
0
2
1
0
Bit 7~2
Unimplemented, read as ²0²
Bit 1~0
TM1DH: TM1 Counter High Byte Register bit 1~bit 0
TM1 10-bit Counter bit 9~bit 8
¨
TM1AL Register - 10-bit STM
Bit
6
5
4
3
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7~0
¨
7
TM1AL: TM1 CCRA Low Byte Register bit 7~bit 0
TM1 10-bit CCRA bit 7~bit 0
TM1AH Register - 10-bit STM
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
¾
¾
D9
D8
R/W
¾
¾
¾
¾
¾
¾
R/W
R/W
POR
¾
¾
¾
¾
¾
¾
0
0
Bit 7~2
Unimplemented, read as ²0²
Bit 1~0
TM1AH: TM1 CCRA High Byte Register bit 1~bit 0
TM1 10-bit CCRA bit 9~bit 8
Rev.1.00
95
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· 16-bit Standard TM Register List - HT68F40/HT68F50/HT68F60
¨
TM2C0 Register - 16-bit STM
Bit
7
6
5
4
3
2
1
0
Name
T2PAU
T2CK2
T2CK1
T2CK0
T2ON
¾
¾
¾
R/W
R/W
R/W
R/W
R/W
R/W
¾
¾
¾
POR
0
0
0
0
0
¾
¾
¾
Bit 7
T2PAU: TM2 Counter Pause Control
0: Run
1: Pause
The counter can be paused by setting this bit high. Clearing the bit to zero restores normal
counter operation. When in a Pause condition the TM will remain powered up and continue to
consume power. The counter will retain its residual value when this bit changes from low to high
and resume counting from this value when the bit changes to a low value again.
Bit 6~4
T2CK2, T2CK1, T2CK0: Select TM2 Counter clock
000: fSYS/4
001: fSYS
010: fH/16
011: fH/64
100: fTBC
101: Reserved
110: TCK2 rising edge clock
111: TCK2 falling edge clock
These three bits are used to select the clock source for the TM. Selecting the Reserved clock
input will effectively disable the internal counter. The external pin clock source can be chosen to
be active on the rising or falling edge. The clock source fSYS is the system clock, while fH and
fTBC are other internal clocks, the details of which can be found in the oscillator section.
Bit 3
T2ON: TM2 Counter On/Off Control
0: Off
1: On
This bit controls the overall on/off function of the TM. Setting the bit high enables the counter to
run, clearing the bit disables the TM. Clearing this bit to zero will stop the counter from counting
and turn off the TM which will reduce its power consumption. When the bit changes state from
low to high the internal counter value will be reset to zero, however when the bit changes from
high to low, the internal counter will retain its residual value until the bit returns high again.
If the TM is in the Compare Match Output Mode then the TM output pin will be reset to its initial
condition, as specified by the T2OC bit, when the T2ON bit changes from low to high.
Bit 2~0
Unimplemented, read as ²0²
Rev.1.00
96
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
TM2C1 Register - 16-bit STM
Bit
7
6
5
4
3
2
1
0
Name
T2M1
T2M0
T2IO1
T2IO0
T2OC
T2POL
T2DPX
T2CCLR
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7~6
T2M1~T2M0: Select TM2 Operating Mode
00: Compare Match Output Mode
01: Capture Input Mode
10: PWM Mode or Single Pulse Output Mode
11: Timer/Counter Mode
These bits setup the required operating mode for the TM. To ensure reliable operation the TM
should be switched off before any changes are made to the T2M1 and T2M0 bits. In the
Timer/Counter Mode, the TM output pin control must be disabled.
Bit 5~4
T2IO1~T2IO0: Select TP2_0, TP2_1 output function
Compare Match Output Mode
00: No change
01: Output low
10: Output high
11: Toggle output
PWM Mode/ Single Pulse Output Mode
00: Force inactive state
01: Force active state
10: PWM output
11: Single pulse output
Capture Input Mode
00: Input capture at rising edge of TP2_0, TP2_1
01: Input capture at falling edge of TP2_0, TP2_1
10: Input capture at falling/rising edge of TP2_0, TP2_1
11: Input capture disabled
Timer/counter Mode:
Unused
These two bits are used to determine how the TM output pin changes state when a certain
condition is reached. The function that these bits select depends upon in which mode the TM
is running.
In the Compare Match Output Mode, the T2IO1 and T2IO0 bits determine how the TM output
pin changes state when a compare match occurs from the Comparator A. The TM output pin can
be setup to switch high, switch low or to toggle its present state when a compare match occurs
from the Comparator A. When the bits are both zero, then no change will take place on the
output. The initial value of the TM output pin should be setup using the T2OC bit in the TM2C1
register. Note that the output level requested by the T2IO1 and T2IO0 bits must be different from
the initial value setup using the T2OC bit otherwise no change will occur on the TM output pin
when a compare match occurs. After the TM output pin changes state it can be reset to its initial
level by changing the level of the T2ON bit from low to high.
Bit 3
T2OC: TP2_0, TP2_1 Output control bit
Compare Match Output Mode
0: Initial low
1: Initial high
PWM Mode/ Single Pulse Output Mode
0: Active low
1: Active high
This is the output control bit for the TM output pin. Its operation depends upon whether TM is
being used in the Compare Match Output Mode or in the PWM Mode/ Single Pulse Output Mode.
It has no effect if the TM is in the Timer/Counter Mode. In the Compare Match Output Mode it
determines the logic level of the TM output pin before a compare match occurs. In the PWM
Mode it determines if the PWM signal is active high or active low.
Rev.1.00
97
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Bit 2
T2POL: TP2_0, TP2_1 Output polarity Control
0: Non-invert
1: Invert
This bit controls the polarity of the TP2_0 or TP2_1 output pin. When the bit is set high the TM
output pin will be inverted and not inverted when the bit is zero. It has no effect if the TM is in the
Timer/Counter Mode.
Bit 1
T2DPX: TM2 PWM period/duty Control
0: CCRP - period; CCRA - duty
1: CCRP - duty; CCRA - period
This bit, determines which of the CCRA and CCRP registers are used for period and duty
control of the PWM waveform.
Bit 0
T2CCLR: Select TM2 Counter clear condition
0: TM2 Comparator P match
1: TM2 Comparator A match
This bit is used to select the method which clears the counter. Remember that the Standard
TM contains two comparators, Comparator A and Comparator P, either of which can be selected
to clear the internal counter. With the T2CCLR bit set high, the counter will be cleared when a
compare match occurs from the Comparator A. When the bit is low, the counter will be cleared
when a compare match occurs from the Comparator P or with a counter overflow. A counter
overflow clearing method can only be implemented if the CCRP bits are all cleared to zero.
The T1CCLR bit is not used in the PWM, Single Pulse or Input Capture Mode.
¨
TM2DL Register - 16-bit STM
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R
R
R
R
R
R
R
R
POR
0
0
0
0
0
0
0
0
Bit 7~0
¨
TM2DH Register - 16-bit STM
Bit
7
6
5
4
3
2
1
0
Name
D15
D14
D13
D12
D11
D10
D9
D8
R/W
R
R
R
R
R
R
R
R
POR
0
0
0
0
0
0
0
0
Bit 7~0
¨
TM2DL: TM2 Counter Low Byte Register bit 7~bit 0
TM2 16-bit Counter bit 7~bit 0
TM2DH: TM2 Counter High Byte Register bit 7~bit 0
TM2 16-bit Counter bit 15~bit 8
TM2AL Register - 16-bit STM
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7~0
Rev.1.00
TM2AL: TM2 CCRA Low Byte Register bit 7~bit 0
TM2 16-bit CCRA bit 7~bit 0
98
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
TM2AH Register - 16-bit STM
Bit
7
6
5
4
3
2
1
0
Name
D15
D14
D13
D12
D11
D10
D9
D8
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
3
2
1
0
Bit 7~0
¨
TM2AH: TM2 CCRA High Byte Register bit 7~bit 0
TM2 16-bit CCRA bit 15~bit 8
TM2RP Register - 16-bit STM
Bit
7
6
5
4
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7~0
TM2RP: TM2 CCRP Register bit 7 ~ bit 0
TM2 CCRP 8-bit register, compared with the TM2 Counter bit 15 ~ bit 8. Comparator P Match
Period
0: 65536 TM2 clocks
1~255: 256 x (1~255) TM2 clocks
These eight bits are used to setup the value on the internal CCRP 8-bit register, which are then
compared with the internal counter's highest eight bits. The result of this comparison can be
selected to clear the internal counter if the T2CCLR bit is set to zero. Setting the T2CCLR bit to
zero ensures that a compare match with the CCRP values will reset the internal counter. As the
CCRP bits are only compared with the highest eight counter bits, the compare values exist in 256
clock cycle multiples. Clearing all eight bits to zero is in effect allowing the counter to overflow at
its maximum value.
Standard Type TM Operating Modes
from Comparator A. However, here only the TnAF interrupt request flag will be generated even if the value of
the CCRP bits is less than that of the CCRA registers.
Therefore when TnCCLR is high no TnPF interrupt request flag will be generated. In the Compare Match Output Mode, the CCRA can not be set to ²0².
The Standard Type TM can operate in one of five operating modes, Compare Match Output Mode, PWM Output Mode, Single Pulse Output Mode, Capture Input
Mode or Timer/Counter Mode. The operating mode is
selected using the TnM1 and TnM0 bits in the TMnC1
register.
As the name of the mode suggests, after a comparison
is made, the TM output pin, will change state. The TM
output pin condition however only changes state when
an TnAF interrupt request flag is generated after a compare match occurs from Comparator A. The TnPF interrupt request flag, generated from a compare match
occurs from Comparator P, will have no effect on the TM
output pin. The way in which the TM output pin changes
state are determined by the condition of the TnIO1 and
TnIO0 bits in the TMnC1 register. The TM output pin can
be selected using the TnIO1 and TnIO0 bits to go high,
to go low or to toggle from its present condition when a
compare match occurs from Comparator A. The initial
condition of the TM output pin, which is setup after the
TnON bit changes from low to high, is setup using the
TnOC bit. Note that if the TnIO1 and TnIO0 bits are zero
then no pin change will take place.
Compare Output Mode
To select this mode, bits TnM1 and TnM0 in the TMnC1
register, should be set to 00 respectively. In this mode
once the counter is enabled and running it can be
cleared by three methods. These are a counter overflow, a compare match from Comparator A and a compare match from Comparator P. When the TnCCLR bit is
low, there are two ways in which the counter can be
cleared. One is when a compare match from Comparator P, the other is when the CCRP bits are all zero which
allows the counter to overflow. Here both TnAF and
TnPF interrupt request flags for Comparator A and Comparator P respectively, will both be generated.
If the TnCCLR bit in the TMnC1 register is high then the
counter will be cleared when a compare match occurs
Rev.1.00
99
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
TnCCRL = 0; TnM1, TnM0 = 00
Counter
Value
CCRP = 0
Counter
overflow
0x3FF
CCRP > 0
Counter cleared by CCRP value
CCRP > 0
CCRP
Pause Resume
CCRA
Stop
Counter
Reset
Time
TnON bit
TnPAU bit
TnPOL bit
CCRP Int.
Flag TnPF
CCRA Int.
Flag TnAF
TM O/P Pin
Output Pin set
to Initial Level
Low if TnOC = 0
Output Toggle
with TnAF flag
Output not affected by TnAF flag
Remains High until reset by TnON bit
Now TnIO1, TnIO0 = 10
Active High Output
Select
Output inverts
when TnPOL is high
Output Pin
Reset to initial value
Here TnIO1, TnIO0 = 11
Toggle Output Select
Compare Match Output Mode - TnCCLR = 0
Note:
1. With TnCCLR = 0 the Comparator P match will clear the counter
2. TM output pin controlled only by TnAF flag
3. Output pin reset to initial state by TnON bit rising edge
Rev.1.00
100
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
TnCCLR = 1; TnM1, TnM0 = 00
Counter
Value
CCRA = 0
Counter overflows
CCRA > 0 Counter cleared by CCRA value
0x3FF
CCRA = 0
CCRA
Pause Resume
Counter
Reset
Stop
CCRP
Time
TnON bit
TnPAU bit
TnPOL bit
No TnAF flag
generated on
CCRA overflow
CCRA Int.
Flag TnAF
CCRP Int.
Flag TnPF
TM O/P Pin
Output does
not change
TnPF not
generated
Output Pin set
to Initial Level
Low if TnOC = 0
Output Toggle
with TnAF flag
Output not affected by TnAF flag
remains High until reset by TnON bit
Now TnIO1, TnIO0 = 10
Active High Output
Select
Output inverts
when TnPOL is high
Output Pin
Reset to initial value
Here TnIO 1, TnIO0 = 11
Toggle Output Select
Compare Match Output Mode - TnCCLR = 1
Note:
Points to note for above diagram:
1. With TnCCLR = 1 the Comparator A match will clear the counter
2. TM output pin controlled only by TnAF flag
3.TM output pin reset to initial state by TnON rising edge
4. TnPF flags not generated when TnCCLR = 1
Rev.1.00
101
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Timer/Counter Mode
As both the period and duty cycle of the PWM waveform
can be controlled, the choice of generated waveform is
extremely flexible. In the PWM mode, the TnCCLR bit
has no effect as the PWM period. Both of the CCRA and
CCRP registers are used to generate the PWM waveform, one register is used to clear the internal counter
and thus control the PWM waveform frequency, while
the other one is used to control the duty cycle. Which
register is used to control either frequency or duty cycle
is determined using the TnDPX bit in the TMnC1 register. The PWM waveform frequency and duty cycle can
therefore be controlled by the values in the CCRA and
CCRP registers.
To select this mode, bits TnM1 and TnM0 in the TMnC1
register should be set to 11 respectively. The
Timer/Counter Mode operates in an identical way to the
Compare Match Output Mode generating the same interrupt flags. The exception is that in the Timer/Counter
Mode the TM output pin is not used. Therefore the
above description and Timing Diagrams for the Compare Match Output Mode can be used to understand its
function. As the TM output pin is not used in this mode,
the pin can be used as a normal I/O pin or other
pin-shared function.
PWM Output Mode
An interrupt flag, one for each of the CCRA and CCRP,
will be generated when a compare match occurs from
either Comparator A or Comparator P. The TnOC bit in
the TMnC1 register is used to select the required polarity of the PWM waveform while the two TnIO1 and
TnIO0 bits are used to enable the PWM output or to
force the TM output pin to a fixed high or low level. The
TnPOL bit is used to reverse the polarity of the PWM
output waveform.
To select this mode, bits TnM1 and TnM0 in the TMnC1
register should be set to 10 respectively and also the
TnIO1 and TnIO0 bits should be set to 10 respectively.
The PWM function within the TM is useful for applications which require functions such as motor control,
heating control, illumination control etc. By providing a
signal of fixed frequency but of varying duty cycle on the
TM output pin, a square wave AC waveform can be generated with varying equivalent DC RMS values.
Counter
Value
Counter Cleared
by CCRP
TnDPX = 0; TnM1, TnM0 = 10
CCRP
Counter Stop
if TnON bit low
Pause Resume
Counter reset
when TnON
returns high
CCRA
Time
TnON bit
TnPAU bit
TnPOL bit
Interrupts
still generated
CCRA Int.
Flag TnAF
CCRP Int.
Flag TnPF
TnIO1, TnIO0 = 10 PWM Output
TnIO1, TnIO0 = 00
Output Inactive
TnIO1, TnIO0 = 10
PWM Output
TM Pin
TnOC = 1
TM Pin
TnOC = 0
PWM Period
set by CCRP
PWM Duty Cycle
set by CCRA
Here TnIO1, TnIO0 = 00
Output Forced to Inactive
level but PWM function
keeps running internally
TnIIO1, TnIO0 = 10
Resume PWM Output
PWM resumes operation
Output remains at same level
Output Inverts
When TnPOL = 1
PWM Mode - TnDPX = 0
Note:
1. Here TnDPX = 0 - Counter cleared by CCRP
2. Counter Clear sets PWM Period
3. Internal PWM function continues even when TnIO1, TnIO0 = 00 or 01
4. TnCCLR bit has no influence on PWM operation
Rev.1.00
102
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Counter
Value
Counter Cleared
by CCRA
TnDPX = 1; TnM1, TnM0 = 10
CCRA
Counter Stop
if TnON bit low
Pause Resume
Counter reset
when TnON
returns high
CCRP
Time
TnON bit
TnPAU bit
TnPOL bit
Interrupts
still generated
CCRP Int.
Flag TnPF
CCRA Int.
Flag TnAF
TnIO1, TnIO0 = 10 PWM Output
TnIO1, TnIO0 = 00
Output Inactive
TnIO1, TnIO0 = 10
PWM Output
TM Pin
TnOC = 1
TM Pin
TnOC = 0
PWM Period
set by CCRA
PWM Duty Cycle
set by CCRP
Here TnIO1, TnIO0 = 00
Output Forced to Inactive
level but PWM function
keeps running internally
TnIO1, TnIO0 = 10
Resume PWM Output
PWM resumes operation
Output remains at same level
Output Inverts
When TnPOL = 1
PWM Mode - TnDPX = 1
Note:
1. Here TnDPX = 1 - Counter cleared by CCRA
2. Counter Clear sets PWM Period
3. Internal PWM function continues even when TnIO1, TnIO0 = 00 or 01
4. TnCCLR bit has no influence on PWM operation
Rev.1.00
103
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Single Pulse Mode
automatically change from low to high using the external
TCKn pin, which will in turn initiate the Single Pulse output. When the TnON bit transitions to a high level, the
counter will start running and the pulse leading edge will
be generated. The TnON bit should remain high when
the pulse is in its active state. The generated pulse trailing edge will be generated when the TnON bit is cleared
to zero, which can be implemented using the application
program or when a compare match occurs from Comparator A.
To select this mode, bits TnM1 and TnM0 in the TMnC1
register should be set to 10 respectively and also the
TnIO1 and TnIO0 bits should be set to 11 respectively.
The Single Pulse Output Mode, as the name suggests,
will generate a single shot pulse on the TM output pin.
The trigger for the pulse output leading edge is a low to
high transition of the TnON bit, which can be implemented using the application program. However in the
Single Pulse Mode, the TnON bit can also be made to
S /W
C o m m a n d
S E T "T n O N "
o r
T C K n P in T r a n s itio n
L e a d in g E d g e
T r a ilin g E d g e
T n O N b it
0 ® 1
T n O N b it
1 ® 0
S /W C o m m a n d
C L R "T n O N "
o r
C C R A M a tc h C o m p a re
T M n O u tp u t P in
P u ls e W id th = C C R A V a lu e
Single Pulse Generation
Counter
Value
TnM1, TnM0 = 10; TnIO1, TnIO0 = 11
Counter Stopped
by CCRA
CCRA
Pause Resume
Counter Stops
by software
Counter reset
when TnON
returns high
CCRP
Time
TnON bit
TCKn pin
Auto. s et
by TCKn pin
Software
Trigger
Cleared by
CCRA match
Software
Trigger
Software
Clear
Software
Trigger
TCKn pin
Trigger
TnPAU bit
TnPOL bit
No CCRP
Interrupt
generated
CCRP Int.
Flag TnPF
CCRA Int.
Flag TnAF
TnIO1, TnIO0 = 00
Output Inactive
TnIO1, TnIO0 = 11 Single Pulse Output
TnIO1, TnIO0 = 11
TM Pin
TnOC = 1
TM Pin
TnOC = 0
Pulse Width
set by CCRA
Here TnIO1, TnIO0 = 00
Output Forced to Inactive
level but counter keeps
running internally
TnIO1, TnIO0 = 11
Resume Single Pulse Output
Output Inverts
When TnPOL = 1
Single Pulse Mode
Note:
1. Counter stopped by CCRA match
2. CCRP is not used
3. Pulse triggered by TCKn pin or setting TnON bit high
4. TCKn pin active edge will auto set TnON bit
Rev.1.00
104
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
However a compare match from Comparator A will also
automatically clear the TnON bit and thus generate the
Single Pulse output trailing edge. In this way the CCRA
value can be used to control the pulse width. A compare
match from Comparator A will also generate a TM interrupt. The counter can only be reset back to zero when
the TnON bit changes from low to high when the counter
restarts. In the Single Pulse Mode CCRP is not used.
The TnCCLR and TnDPX bits are not used in this Mode.
be latched into the CCRA registers and a TM interrupt
generated. Irrespective of what events occur on the
TPn_0 or TPn_1 pin the counter will continue to free run
until the TnON bit changes from high to low. When a
CCRP compare match occurs the counter will reset
back to zero; in this way the CCRP value can be used to
control the maximum counter value. When a CCRP
compare match occurs from Comparator P, a TM interrupt will also be generated. Counting the number of
overflow interrupt signals from the CCRP can be a useful method in measuring long pulse widths. The TnIO1
and TnIO0 bits can select the active trigger edge on the
TPn_0 or TPn_1 pin to be a rising edge, falling edge or
both edge types. If the TnIO1 and TnIO0 bits are both
set high, then no capture operation will take place irrespective of what happens on the TPn_0 or TPn_1 pin,
however it must be noted that the counter will continue
to run.
Capture Input Mode
To select this mode bits TnM1 and TnM0 in the TMnC1
register should be set to 01 respectively. This mode enables external signals to capture and store the present
value of the internal counter and can therefore be used
for applications such as pulse width measurements.
The external signal is supplied on the TPn_0 or TPn_1
pin, whose active edge can be either a rising edge, a
falling edge or both rising and falling edges; the active
edge transition type is selected using the TnIO1 and
TnIO0 bits in the TMnC1 register. The counter is started
when the TnON bit changes from low to high which is initiated using the application program.
As the TPn_0 or TPn_1 pin is pin shared with other functions, care must be taken if the TM is in the Input Capture Mode. This is because if the pin is setup as an
output, then any transitions on this pin may cause an input capture operation to be executed. The TnCCLR and
TnDPX bits are not used in this Mode.
When the required edge transition appears on the
TPn_0 or TPn_1 pin the present value in the counter will
TnM1, TnM0 = 01
Counter
Value
Counter
overflow
CCRP
Stop
Counter
Reset
YY
XX
Pause Resume
Time
TnON bit
TnPAU bit
TM Capture Pin
Active
edge
Active
edge
Active
edges
CCRA Int.
Flag TnAF
CCRP Int.
Flag TnPF
CCRA
Value
TnIO1, TnIO0
Value
XX
00 - Rising edge
YY
01 - Falling edge
XX
YY
10 - Both edges
11 - Disable Capture
Capture Input Mode
Note:
1. TnM1, TnM0 = 01 and active edge set by TnIO1 and TnIO0 bits
2. TM Capture input pin active edge transfers counter value to CCRA
3. TnCCLR bit not used
4. No output function - TnOC and TnPOL bits not used
5. CCRP sets counter maximum value
Rev.1.00
105
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Enhanced Type TM - ETM
The Enhanced Type TM contains five operating modes, which are Compare Match Output, Timer/Event Counter, Capture Input, Single Pulse Output and PWM Output modes. The Enhanced TM can also be controlled with an external input pin and can drive three or four external output pins.
CTM
Name
TM No.
TM Input Pin
TM Output Pin
HT68F20
¾
¾
¾
¾
HT68F30
10-bit ETM
1
TCK1
TP1A; TP1B_0, TP1B_1
HT68F40
10-bit ETM
1
TCK1
TP1A, TP1B_0, TP1B_1, TP1B_2
HT68F50
10-bit ETM
1
TCK1
TP1A, TP1B_0, TP1B_1, TP1B_2
HT68F60
10-bit ETM
1
TCK1
TP1A, TP1B_0, TP1B_1, TP1B_2
Enhanced TM Operation
The only way of changing the value of the 10-bit counter
using the application program, is to clear the counter by
changing the TnON bit from low to high. The counter will
also be cleared automatically by a counter overflow or a
compare match with one of its associated comparators.
When these conditions occur, a TM interrupt signal will
also usually be generated. The Enhanced Type TM can
operate in a number of different operational modes, can
be driven by different clock sources including an input
pin and can also control output pins. All operating setup
conditions are selected using relevant internal registers.
At its core is a 10-bit count-up/count-down counter
which is driven by a user selectable internal or external
clock source. There are three internal comparators with
the names, Comparator A, Comparator B and Comparator P. These comparators will compare the value in
the counter with the CCRA, CCRB and CCRP registers.
The CCRP comparator is 3-bits wide whose value is
compared with the highest 3-bits in the counter while
CCRA and CCRB are 10-bits wide and therefore compared with all counter bits.
C C R P
C o m p a ra to r P M a tc h
3 - b it C o m p a r a to r P
fS
Y S
/4
fS
Y S
fH /1 6
fH /6 4
fT B C
R e s e rv e d
T C K n
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
b 7 ~ b 9
1 0 - b it U p /D o w n C o u n te r
T n O N
T n P A U
T n C K 2 ~ T n C K 0
b 0 ~ b 9
1 0 - b it
C o m p a ra to r A
T n P F In te rru p t
T n A O C
C o u n te r
C le a r
0
1
T n C C L R
C o m p a ra to r A
O u tp u t
C o n tro l
P o la r ity
C o n tro l
T n A M 1 , T n A M 0
T n A IO 1 , T n A IO 0
T n A P O L
T P n A P in
In p u t/O u tp u t
T P n A
T P n B P in
In p u t/O u tp u t
T P n B -0
T P n B -1
T P n B -2
T n A F
In te rru p t
M a tc h
T n A IO 1 , T n A IO 0
C C R A
E d g e
D e te c to r
T n B O C
1 0 - b it
C o m p a ra to r B
C o m p a ra to r B
M a tc h
T n B F
In te rru p t
C C R B
O u tp u t
C o n tro l
P o la r ity
C o n tro l
T n B M 1 , T n B M 0
T n B IO 1 , T n B IO 0
T n B P O L
E d g e
D e te c to r
T n IO 1 , T n IO 0
Enhanced Type TM Block Diagram
Rev.1.00
106
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Enhanced Type TM Register Description
Overall operation of the Enhanced TM is controlled using a series of registers. A read only register pair exists to store
the internal counter 10-bit value, while two read/write register pairs exist to store the internal 10-bit CCRA and CCRB
value. The remaining three registers are control registers which setup the different operating and control modes as well
as the three CCRP bits.
Name
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
TM1C0
T1PAU
T1CK2
T1CK1
T1CK0
T1ON
T1RP2
T1RP1
T1RP0
TM1C1
T1AM1
T1AM0
T1AIO1
T1AIO0
T1AOC
T1APOL
T1CDN
T1CCLR
TM1C2
T1BM1
T1BM0
T1BIO1
T1BIO0
T1BOC
T1BPOL
T1PWM1
T1PWM0
TM1DL
D7
D6
D5
D4
D3
D2
D1
D0
TM1DH
¾
¾
¾
¾
¾
¾
D9
D8
TM1AL
D7
D6
D5
D4
D3
D2
D1
D0
TM1AH
¾
¾
¾
¾
¾
¾
D9
D8
TM1BL
D7
D6
D5
D4
D3
D2
D1
D0
TM1BH
¾
¾
¾
¾
¾
¾
D9
D8
10-bit Enhanced TM Register List (if ETM is TM1)
· 10-bit Enhanced TM Register List - HT68F30/HT68F40/HT68F50/HT68F60
¨
TM1C0 Register - 10-bit ETM
Bit
7
6
5
4
3
2
1
0
Name
T1PAU
T1CK2
T1CK1
T1CK0
T1ON
T1RP2
T1RP1
T1RP0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7
T1PAU: TM1 Counter Pause Control
0: run
1: pause
The counter can be paused by setting this bit high. Clearing the bit to zero restores normal
counter operation. When in a Pause condition the TM will remain powered up and continue to
consume power. The counter will retain its residual value when this bit changes from low to high
and resume counting from this value when the bit changes to a low value again.
Bit 6~4
T1CK2~T1CK0: Select TM1 Counter clock
000: fSYS/4
001: fSYS
010: fH/16
011: fH/64
100: fTBC
101: Reserved
110: TCK1 rising edge clock
111: TCK1 falling edge clock
These three bits are used to select the clock source for the TM. Selecting the Reserved clock
input will effectively disable the internal counter. The external pin clock source can be chosen to
be active on the rising or falling edge. The clock source fSYS is the system clock, while fH and
fTBC are other internal clocks, the details of which can be found in the oscillator section.
Bit 3
T1ON: TM1 Counter On/Off Control
0: Off
1: On
This bit controls the overall on/off function of the TM. Setting the bit high enables the counter to
run, clearing the bit disables the TM. Clearing this bit to zero will stop the counter from counting
and turn off the TM which will reduce its power consumption. When the bit changes state from
low to high the internal counter value will be reset to zero, however when the bit changes from
high to low, the internal counter will retain its residual value until the bit returns high again.
Rev.1.00
107
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
If the TM is in the Compare Match Output Mode then the TM output pin will be reset to its initial
condition, as specified by the T1OC bit, when the T1ON bit changes from low to high.
Bit 2~0
T1RP2~T1RP0: TM1 CCRP 3-bit register, compared with the TM1 Counter bit 9~bit 7
Comparator P Match Period
000: 1024 TM1 clocks
001: 128 TM1 clocks
010: 256 TM1 clocks
011: 384 TM1 clocks
100: 512 TM1 clocks
101: 640 TM1 clocks
110: 768 TM1 clocks
111: 896 TM1 clocks
These three bits are used to setup the value on the internal CCRP 3-bit register, which are then
compared with the internal counter¢s highest three bits. The result of this comparison can be
selected to clear the internal counter if the T1CCLR bit is set to zero. Setting the T1CCLR bit to
zero ensures that a compare match with the CCRP values will reset the internal counter. As the
CCRP bits are only compared with the highest three counter bits, the compare values exist in 128
clock cycle multiples. Clearing all three bits to zero is in effect allowing the counter to overflow at
its maximum value.
¨
TM1C1 Register - 10-bit ETM
Bit
7
6
5
4
3
2
1
0
Name
T1AM1
T1AM0
T1AIO1
T1AIO0
T1AOC
T1APOL
T1CDN
T1CCLR
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R
R/W
POR
0
0
0
0
0
0
0
0
Bit 7~6
T1AM1~T1AM0: Select TM1 CCRA Operating Mode
00: Compare Match Output Mode
01: Capture Input Mode
10: PWM Mode or Single Pulse Output Mode
11: Timer/Counter Mode
These bits setup the required operating mode for the TM. To ensure reliable operation the TM
should be switched off before any changes are made to the T1AM1 and T1AM0 bits. In the
Timer/Counter Mode, the TM output pin control must be disabled.
Bit 5~4
T1AIO1~T1AIO0: Select TP1A output function
Compare Match Output Mode
00: No change
01: Output low
10: Output high
11: Toggle output
PWM Mode/ Single Pulse Output Mode
00: Force inactive state
01: Force active state
10: PWM output
11: Single pulse output
Capture Input Mode
00: Input capture at rising edge of TP1A
01: Input capture at falling edge of TP1A
10: Input capture at falling/rising edge of TP1A
11: Input capture disabled
Timer/counter Mode
Unused
These two bits are used to determine how the TM output pin changes state when a certain
condition is reached. The function that these bits select depends upon in which mode the TM is
running.
Rev.1.00
108
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
In the Compare Match Output Mode, the T1AIO1 and T1AIO0 bits determine how the TM
output pin changes state when a compare match occurs from the Comparator A. The TM output
pin can be setup to switch high, switch low or to toggle its present state when a compare match
occurs from the Comparator A. When the bits are both zero, then no change will take place on
the output. The initial value of the TM output pin should be setup using the T1AOC bit in the
TM1C1 register. Note that the output level requested by the T1AIO1 and T1AIO0 bits must be
different from the initial value setup using the T1AOC bit otherwise no change will occur on the
TM output pin when a compare match occurs. After the TM output pin changes state it can be
reset to its initial level by changing the level of the T1ON bit from low to high.
Bit 3
T1AOC: TP1A Output control bit
Compare Match Output Mode
0: Initial low
1: Initial high
PWM Mode/ Single Pulse Output Mode
0: Active low
1: Active high
This is the output control bit for the TM output pin. Its operation depends upon whether TM is
being used in the Compare Match Output Mode or in the PWM Mode/ Single Pulse Output Mode.
It has no effect if the TM is in the Timer/Counter Mode. In the Compare Match Output Mode it
determines the logic level of the TM output pin before a compare match occurs. In the PWM
Mode it determines if the PWM signal is active high or active low.
Bit 2
T1APOL: TP1A Output polarity Control
0: Non-invert
1: Invert
This bit controls the polarity of the TP1A output pin. When the bit is set high the TM output pin
will be inverted and not inverted when the bit is zero. It has no effect if the TM is in the
Timer/Counter Mode.
Bit 1
T1CDN: TM1 Counter count up or down flag
0: Count up
1: Count down
Bit 0
T1CCLR: Select TM1 Counter clear condition
0: TM1 Comparator P match
1: TM1 Comparator A match
This bit is used to select the method which clears the counter. Remember that the Enhanced
TM contains two comparators, Comparator A and Comparator P, either of which can be selected
to clear the internal counter. With the T1CCLR bit set high, the counter will be cleared when a
compare match occurs from the Comparator A. When the bit is low, the counter will be cleared
when a compare match occurs from the Comparator P or with a counter overflow. A counter
overflow clearing method can only be implemented if the CCRP bits are all cleared to zero. The
T1CCLR bit is not used in the PWM, Single Pulse or Input Capture Mode.
Rev.1.00
109
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
TM1C2 Register - 10-bit ETM
Bit
7
6
5
4
3
2
1
0
Name
T1BM1
T1BM0
T1BIO1
T1BIO0
T1BOC
T1BPOL
T1PWM1
T1PWM0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R
R/W
POR
0
0
0
0
0
0
0
0
Bit 7~6
T1BM1~T1BM0: Select TM1 CCRB Operating Mode
00: Compare Match Output Mode
01: Capture Input Mode
10: PWM Mode or Single Pulse Output Mode
11: Timer/Counter mode
These bits setup the required operating mode for the TM. To ensure reliable operation the TM
should be switched off before any changes are made to the T1BM1 and T1BM0 bits. In the
Timer/Counter Mode, the TM output pin control must be disabled.
Bit 5~4
T1BIO1~T1BIO0: Select TP1B_0, TP1B_1, TP1B_2 output function
Compare Match Output Mode
00: No change
01: Output low
10: Output high
11: Toggle output
PWM Mode/Single Pulse Output Mode
00: Force inactive state
01: Force active state
10: PWM output
11: Single pulse output
Capture Input Mode
00: Input capture at rising edge of TP1B_0, TP1B_1, TP1B_2
01: Input capture at falling edge of TP1B_0, TP1B_1, TP1B_2
10: Input capture at falling/rising edge of TP1B_0, TP1B_1, TP1B_2
11: Input capture disabled
Timer/counter Mode
Unused
These two bits are used to determine how the TM output pin changes state when a certain
condition is reached. The function that these bits select depends upon in which mode the
TM is running.
In the Compare Match Output Mode, the T1BIO1 and T1BIO0 bits determine how the TM
output pin changes state when a compare match occurs from the Comparator A. The TM output
pin can be setup to switch high, switch low or to toggle its present state when a compare match
occurs from the Comparator A. When the bits are both zero, then no change will take place on
the output. The initial value of the TM output pin should be setup using the T1BOC bit in the
TM1C2 register. Note that the output level requested by the T1BIO1 and T1BIO0 bits must be
different from the initial value setup using the T1BOC bit otherwise no change will occur on the
TM output pin when a compare match occurs. After the TM output pin changes state it can be
reset to its initial level by changing the level of the T1ON bit from low to high.
Bit 3
T1BOC: TP1B_0, TP1B_1, TP1B_2 Output control bit
Compare Match Output Mode
0: Initial low
1: Initial high
PWM Mode/ Single Pulse Output Mode
0: Active low
1: Active high
This is the output control bit for the TM output pin. Its operation depends upon whether TM is
being used in the Compare Match Output Mode or in the PWM Mode/ Single Pulse Output Mode.
It has no effect if the TM is in the Timer/Counter Mode. In the Compare Match Output Mode it
determines the logic level of the TM output pin before a compare match occurs. In the PWM
Mode it determines if the PWM signal is active high or active low.
Rev.1.00
110
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Bit 2
T1BPOL: TP1B_0, TP1B_1, TB1B_2 Output polarity Control
0: Non-invert
1: Invert
This bit controls the polarity of the TP1B_0, TP1B_1, TP1B_2 output pin. When the bit is set
high the TM output pin will be inverted and not inverted when the bit is zero. It has no effect if the
TM is in the Timer/Counter Mode.
Bit 1~0
¨
TM1DL Register - 10-bit ETM
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R
R
R
R
R
R
R
R
POR
0
0
0
0
0
0
0
0
Bit 7~0
¨
T1PWM1~T1PWM0: Select PWM Mode
00: Edge aligned
01: Centre aligned, compare match on count up
10: Centre aligned, compare match on count down
11: Centre aligned, compare match on count up or down
TM1DL: TM1 Counter Low Byte Register bit 7~bit 0
TM1 10-bit Counter bit 7~bit 0
TM1DH Register - 10-bit ETM
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
¾
¾
D9
D8
R/W
¾
¾
¾
¾
¾
¾
R
R
POR
¾
¾
¾
¾
¾
¾
0
0
Bit 7~2
Unimplemented, read as ²0²
Bit 1~0
TM1DH: TM1 Counter High Byte Register bit 1~bit 0
TM1 10-bit Counter bit 9~bit 8
¨
TM1AL Register - 10-bit ETM
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
1
0
Bit 7~0
¨
TM1AL: TM1 CCRA Low Byte Register bit 7~bit 0
TM1 10-bit CCRA bit 7~bit 0
TM1AH Register - 10-bit ETM
Bit
7
6
5
4
3
2
Name
¾
¾
¾
¾
¾
¾
D9
D8
R/W
¾
¾
¾
¾
¾
¾
R/W
R/W
POR
¾
¾
¾
¾
¾
¾
0
0
Bit 7~2
Unimplemented, read as ²0²
Bit 1~0
TM1AH: TM1 CCRA High Byte Register bit 1~bit 0
TM1 10-bit CCRA bit 9~bit 8
Rev.1.00
111
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
TM1BL Register - 10-bit ETM
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
1
0
Bit 7 ~ 0
¨
TM1BL: TM1 CCRB Low Byte Register bit 7~bit 0
TM1 10-bit CCRB bit 7~bit 0
TM1BH Register - 10-bit ETM
Bit
7
6
5
4
3
2
Name
¾
¾
¾
¾
¾
¾
D9
D8
R/W
¾
¾
¾
¾
¾
¾
R/W
R/W
POR
¾
¾
¾
¾
¾
¾
0
0
Bit 7~2
Unimplemented, read as ²0²
Bit 1~0
TM1BH: TM1 CCRB High Byte Register bit 1~bit 0
TM1 10-bit CCRB bit 9 ~ bit 8
Enhanced Type TM Operating Modes
The Enhanced Type TM can operate in one of five operating modes, Compare Match Output Mode, PWM Output
Mode, Single Pulse Output Mode, Capture Input Mode or Timer/Counter Mode. The operating mode is selected using
the TnAM1 and TnAM0 bits in the TMnC1, and the TnBM1 and TnBM0 bits in the TMnC2 register.
ETM Operating Mode
CCRA ComCCRA
CCRA Single CCRA Input
CCRA PWM
pare Match Timer/CounPulse Output
Capture
Output Mode
Output Mode
ter Mode
Mode
Mode
CCRB Compare Match Output Mode
Ö
Ö
Ö
¾
¾
CCRB Timer/Counter Mode
Ö
Ö
Ö
¾
¾
CCRB PWM Output Mode
Ö
Ö
Ö
¾
¾
CCRB Single Pulse Output Mode
¾
¾
¾
Ö
¾
CCRB Input Capture Mode
Ö
Ö
Ö
¾
Ö
Compare Output Mode
If the TnCCLR bit in the TMnC1 register is high then the
counter will be cleared when a compare match occurs
from Comparator A. However, here only the TnAF interrupt request flag will be generated even if the value of
the CCRP bits is less than that of the CCRA registers.
Therefore when TnCCLR is high no TnPF interrupt request flag will be generated.
To select this mode, bits TnAM1, TnAM0 and TnBM1,
TnBM0 in the TMnC1/TMnC2 registers should be all
cleared to zero. In this mode once the counter is enabled and running it can be cleared by three methods.
These are a counter overflow, a compare match from
Comparator A and a compare match from Comparator
P. When the TnCCLR bit is low, there are two ways in
which the counter can be cleared. One is when a compare match occurs from Comparator P, the other is when
the CCRP bits are all zero which allows the counter to
overflow. Here both the TnAF and TnPF interrupt request flags for Comparator A and Comparator P respectively, will both be generated.
Rev.1.00
112
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
As the name of the mode suggests, after a comparison
is made, the TM output pin, will change state. The TM
output pin condition however only changes state when
an TnAF or TnBF interrupt request flag is generated after a compare match occurs from Comparator A or Comparator B. The TnPF interrupt request flag, generated
from a compare match from Comparator P, will have no
effect on the TM output pin. The way in which the TM
output pin changes state is determined by the condition
of the TnAIO1 and TnAIO0 bits in the TMnC1 register for
ETM CCRA, and the TnBIO1 and TnBIO0 bits in the
TMnC2 register for ETM CCRB. The TM output pin can
Counter
Value
CCRP = 0
be selected using the TnAIO1, TnAIO0 bits (for the
TPnA pin) and TnBIO1, TnBIO0 bits (for the TPnB_0,
TPnB_1 or TPnB_2 pins) to go high, to go low or to toggle from its present condition when a compare match
occurs from Comparator A or a compare match occurs
from Comparator B. The initial condition of the TM output pin, which is setup after the TnON bit changes from
low to high, is setup using the TnAOC or TnBOC bit for
TPnA or TPnB_0, TPnB_1, TPnB_2 output pins. Note
that if the TnAIO1,TnAIO0 and TnBIO1, TnBIO0 bits are
zero then no pin change will take place.
TnCCLR = 0; TnAM1, TnAM0 = 00
Counter
overflow
CCRP > 0
Counter cleared by CCRP value
CCRP > 0
0x3FF
CCRP
Pause Resume
Stop
CCRA
Counter
Reset
Time
TnON bit
TnPAU bit
TnAPOL bit
CCRP Int.
Flag TnPF
CCRA Int.
Flag TnAF
TPnA O/P Pin
Output Pin set
to Initial Level
Low if TnAOC = 0
Output Toggle
with TnAF flag
Output not affected by TnAF flag
Remains High until reset by TnON bit
Now TnAIO1, TnAIO0 = 10
Active High Output Select
Output inverts
when TnAPOL is high
Output Pin
Reset to initial value
Here TnAIO1, TnAIO0 = 11
Toggle Output Select
ETM CCRA Compare Match Output Mode - TnCCLR = 0
Note:
1. With TnCCLR = 0 the Comparator P match will clear the counter
2. TPnA output pin controlled only by TnAF flag
3. Output pin reset to initial state by TnON bit rising edge
Rev.1.00
113
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Counter
Value
CCRP = 0
TnCCLR = 0; TnBM1, TnBM0 = 00
Counter
overflow
CCRP > 0
Counter cleared by CCRP value
CCRP > 0
0x3FF
CCRP
Pause Resume
Stop
CCRB
Counter
Reset
Time
TnON bit
TnPAU bit
TnBPOL bit
CCRP Int.
Flag TnPF
CCRB Int.
Flag TnBAF
TPnB O/P Pin
Output Pin set
to Initial Level
Low if TnBOC = 0
Output Toggle
with TnBF flag
Output not affected by TnBF flag
Remains High until reset by TnON bit
Now TnBIO1, TnBIO0 = 10
Active High Output Select
Output inv erts
when TnBPOL is high
Output Pin
Reset to initial value
Here TnBIO1, TnBIO0 = 11
Toggle Output Select
ETM CCRB Compare Match Output Mode - TnCCLR = 0
Note:
1. With TnCCLR = 0 the Comparator P match will clear the counter
2. TPnB output pin controlled only by TnBF flag
3. Output pin reset to initial state by TnON bit rising edge
Rev.1.00
114
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
TnCCLR = 1; TnAM1, TnAM0 = 00
Counter
Value
CCRA = 0
Counter overflows
CCRA > 0 Counter cleared by CCRA value
0x3FF
CCRA = 0
CCRA
Pause Resume
Counter
Reset
Stop
CCRP
Time
TnON bit
TnPAU bit
TnAPOL bit
No TnAF flag
generated on
CCRA overflow
CCRA Int.
Flag TnAF
CCRP Int.
Flag TnPF
TPnA O/P Pin
Output does
not change
TnPF not
generated
Output Pin set
to Initial Level
Low if TnAOC = 0
Output Toggle
with TnAF flag
Output not affected by TnAF flag
remains High until reset by TnON bit
Now TnAIO1, TnAIO0 = 10
Active High Output Select
Output inverts
when TnAPOL is high
Output Pin
Reset to initial value
Here TnAIO1, TnAIO0 = 11
Toggle Output Select
ETM CCRA Compare Match Output Mode - TnCCLR = 1
Note:
1. With TnCCLR = 1 the Comparator A match will clear the counter
2. TPnA output pin controlled only by TnAF flag
3. TPnA output pin reset to initial state by TnON rising edge
4. TnPF flags not generated when TnCCLR = 1
Rev.1.00
115
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
TnCCLR = 1; TnBM1, TnBM0 = 00
Counter
Value
CCRA = 0
Counter overflows
CCRA > 0 Counter cleared by CCRA value
0x3FF
CCRA = 0
CCRA
Pause Resume
Counter
Reset
Stop
CCRB
Time
TnON bit
TnPAU bit
TnBPOL bit
No TnAF flag
generated on
CCRA overflow
CCRA Int.
Flag TnAF
CCRB Int.
Flag TnBF
TPnB O/P Pin
Output Pin set
to Initial Level
Low if TnBOC = 0
Output Toggle
with TnBF flag
Output not affected by TnBF flag
remains High until reset by TnON bit
Now TnBIO1, TnBIO0 = 10
Active High Output Select
Output inverts
when TnBPOL is high
Output Pin
Reset to initial value
Here TnBIO1, TnBIO0 = 11
Toggle Output Select
ETM CCRB Compare Match Output Mode - TnCCLR = 1
Note:
1. With TnCCLR = 1 the Comparator A match will clear the counter
2. TPnB output pin controlled only by TnBF flag
3. TPnB output pin reset to initial state by TnON rising edge
4. TnPF flags not generated when TnCCLR = 1
Rev.1.00
116
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Timer/Counter Mode
can be finely controlled using the CCRA registers. In this
case the CCRB registers are used to set the PWM duty
value (for TPnB output pins). The CCRP bits are not used
and TPnA output pin is not used. The PWM output can
only be generated on the TPnB output pins. With the
TnCCLR bit cleared to zero, the PWM period is set using
one of the eight values of the three CCRP bits, in multiples of 128. Now both CCRA and CCRB registers can be
used to setup different duty cycle values to provide dual
PWM outputs on their relative TPnA and TPnB pins.
To select this mode, bits TnAM1, TnAM0 and TnBM1,
TnBM0 in the TMnC1 and TMnC2 register should all be
set high. The Timer/Counter Mode operates in an identical way to the Compare Match Output Mode generating
the same interrupt flags. The exception is that in the
Timer/Counter Mode the TM output pin is not used.
Therefore the above description and Timing Diagrams
for the Compare Match Output Mode can be used to understand its function. As the TM output pin is not used in
this mode, the pin can be used as a normal I/O pin or
other pin-shared function.
The TnPWM1 and TnPWM0 bits determine the PWM
alignment type, which can be either edge or centre type.
In edge alignment, the leading edge of the PWM signals
will all be generated concurrently when the counter is reset to zero. With all power currents switching on at the
same time, this may give rise to problems in higher
power applications. In centre alignment the centre of the
PWM active signals will occur sequentially, thus reducing the level of simultaneous power switching currents.
PWM Output Mode
To select this mode, the required bit pairs, TnAM1,
TnAM0 and TnBM1, TnBM0 should be set to 10 respectively and also the TnAIO1, TnAIO0 and TnBIO1,
TnBIO0 bits should be set to 10 respectively. The PWM
function within the TM is useful for applications which require functions such as motor control, heating control, illumination control etc. By providing a signal of fixed
frequency but of varying duty cycle on the TM output pin,
a square wave AC waveform can be generated with
varying equivalent DC RMS values.
Interrupt flags, one for each of the CCRA, CCRB and
CCRP, will be generated when a compare match occurs
from either the Comparator A, Comparator B or Comparator P. The TnAOC and TnBOC bits in the TMnC1 and
TMnC2 register are used to select the required polarity of
the PWM waveform while the two TnAIO1, TnAIO0 and
TnBIO1, TnBIO0 bits pairs are used to enable the PWM
output or to force the TM output pin to a fixed high or low
level. The TnAPOL and TnBPOL bit are used to reverse
the polarity of the PWM output waveform.
As both the period and duty cycle of the PWM waveform
can be controlled, the choice of generated waveform is
extremely flexible. In the PWM mode, the TnCCLR bit is
used to determine in which way the PWM period is controlled. With the TnCCLR bit set high, the PWM period
· ETM, PWM Mode, Edge-aligned Mode, TnCCLR=0
CCRP
001b
010b
011b
100b
101b
110b
111b
000b
Period
128
256
384
512
640
768
896
1024
A Duty
CCRA
B Duty
CCRB
· ETM, PWM Mode, Edge-aligned Mode, TnCCLR=1
CCRA
1
2
3
511
512
1021
1022
1023
Period
1
2
3
511
512
1021
1022
1023
B Duty
CCRB
· ETM, PWM Mode, Center-aligned Mode, TnCCLR=0
CCRP
001b
010b
011b
100b
101b
110b
111b
000b
Period
256
512
768
1024
1280
1536
1792
2046
A Duty
(CCRA´2)-1
B Duty
(CCRB´2)-1
· ETM, PWM Mode, Center-aligned Mode, TnCCLR=1
CCRA
1
2
3
511
512
1021
1022
1023
Period
2
4
6
1022
1024
2042
2044
2046
B Duty
Rev.1.00
(CCRB´2)-1
117
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Counter
Value
TnCCLR = 0;
Mode Bits TnA(B)M1, TnA(B)M0 = 10
TnPWM1/TnPWM0 = 00
Counter Cleared by CCRP
CCRP
Paus e
Resume
Counter Stops
if TnON bit low
Counter reset
when TnON
returns high
CCRA
CCRB
Time
TnON bit
TnPAU bit
TnAPOL bit
Interrupt
still generated
CCRA Int.
Flag TnAF
CCRB Int.
Flag TnBF
CCRP Int.
Flag TnPF
TnAIO1, TnAIO0 = 10 PWM Output
TnAIO1, TnAIO0 = 00
Output Inactive
TnAIO1, TnAIO0 = 10
TPnA Pin
TnAOC = 1
TnAIO1, TnAIO0 = 10
Resume PWM Output
Duty Cycle
set by CCRA
PWM resumes
operation - outputs remain
at same level
Output Inverts
When TnAPOL = 1
TPnB Pin
TnBOC = 1
TPnB Pin
TnBOC = 0
Duty Cycle
set by CCRB
PWM Period
set by CCRP
Here TnAIO1,
TnAIO0 = 00
Output is Inactive
PWM runs internally
PWM Mode - Edge Aligned
Note:
1. Here TnCCLR = 0 therefore CCRP clears counter and determines PWM period
2. Internal PWM function continues even when TnAIO1, TnAIO0 ( or TnBIO1, TnBIO0) = 00 or 01
3. CCRA controls TPnA PWM duty and CCRB controls TPnB PWM duty
Rev.1.00
118
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
TnCCLR = 1;
Mode Bits TnA(B)M1, TnA(B)M0 = 10
TnPW M1/TnPWM0 = 00
Counter
Value
Counter Cleared by CCRA
CCRA
Paus e
Resume
Counter Stops
if TnON bit low
Counter reset
when TnON
returns high
CCRB
Time
TnON bit
TnPAU bit
TnBPOL bit
CCRA Int.
Flag TnAF
CCRB Int.
Flag TnBF
PWM resumes
operation - outputs remain
at same level
TPnB Pin
TnBOC = 1
TPnB Pin
TnBOC = 0
Duty Cycle
s et by CCRB
Output Inverts
When TnBPOL = 1
PWM Period
set by CCRA
PWM Mode - Edge Aligned
Note:
1. Here TnCCLR = 1 therefore CCRA clears counter and determines PWM period
2. Internal PWM function continues even when TnBIO1, TnBIO0 = 00 or 01
3. CCRA controls TPnB PWM period and CCRB controls TPnB PWM duty
Rev.1.00
119
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
TnCCLR = 0;
Mode Bits TnA(B)M1, TnA(B)M0 = 10
TnPWM1/TnPWM0 = 11
Counter
Value
Counter Stops
if TnON bit low
CCRP
Counter reset when
TnON returns high
Pause Resume
CCRA
CCRB
Time
TnON bit
TnPAU bit
TnAPOL bit
CCRA Int.
Flag TnAF
CCRB Int.
Flag TnBF
CCRP Int.
Flag TnPF
TnAIO1, TnAIO0 = 00
Output Inactive
TnAIO1, TnAIO0 = 10 PWM Output
TnAIO1, TnAIO0 = 10
PWM Output
TPnA Pin
TnAOC = 1
Duty Cycle
set by CCRA
Output Inverts
When TnAPOL = 1
TPnB Pin
TnBOC = 1
TPnB Pin
TnBOC = 0
Duty Cycle
set by CCRB
PW M Period set by CCRP
PWM Mode - Centre Aligned
Note:
1. Here TnCCLR = 0 therefore CCRP clears counter and determines PWM period
2. TnPWM1/TnPWM0 = 11 therefore PWM is centre aligned
3. Internal PWM function continues even when TnAIO1, TnAIO0 ( or TnBIO1, TnBIO0) = 00 or 01
4. CCRA controls TPnA PWM duty and CCRB controls TPnB PWM duty
Rev.1.00
120
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
TnCCLR = 1;
Mode Bits TnA(B)M1, TnA(B)M0 = 10
TnPWM1/TnPWM0 = 11
Counter
Value
Counter Stops
if TnON bit low
CCRA
Pause
Counter reset when
TnON returns high
Resume
CCRB
Time
TnON bit
TnPAU bit
TnBPOL bit
CCRB Int.
Flag TnBF
CCRA Int.
Flag TnAF
TPnB Pin
TnBOC = 1
TPnB Pin
TnBOC = 0
Duty Cycle
set by CCRB
Output Inverts
When TnBPOL = 1
PWM Period
set by CCRA
PWM Mode - Centre Aligned
Note:
1. Here TnCCLR = 1 therefore CCRA clears counter and determines PWM period
2. TnPWM1/TnPWM0 = 11 therefore PWM is centre aligned
3. Internal PWM function continues even when TnBIO1, TnBIO0 = 00 or 01
4. CCRA controls the TPnB PWM period and CCRB controls the TPnB PWM duty
Rev.1.00
121
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Single Pulse Output Mode
TPnA will be generated. The TnON bit should remain
high when the pulse is in its active state. The generated
pulse trailing edge of TPnA and TPnB will be generated
when the TnON bit is cleared to zero, which can be implemented using the application program or when a
compare match occurs from Comparator A.
To select this mode, the required bit pairs, TnAM1,
TnAM0 and TnBM1, TnBM0 should be set to 10 respectively and also the corresponding TnAIO1, TnAIO0 and
TnBIO1, TnBIO0 bits should be set to 11 respectively.
The Single Pulse Output Mode, as the name suggests,
will generate a single shot pulse on the TM output pin.
However a compare match from Comparator A will also
automatically clear the TnON bit and thus generate the
Single Pulse output trailing edge of TPnA and TPnB. In
this way the CCRA value can be used to control the
pulse width of TPnA. The CCRA-CCRB value can be
used to control the pulse width of TPnB. A compare
match from Comparator A and Comparator B will also
generate TM interrupts. The counter can only be reset
back to zero when the TnON bit changes from low to
high when the counter restarts. In the Single Pulse
Mode CCRP is not used. The TnCCLR bit is also not
used.
The trigger for the pulse TPnA output leading edge is a
low to high transition of the TnON bit, which can be implemented using the application program. The trigger
for the pulse TPnB output leading edge is a compare
match from Comparator B, which can be implemented
using the application program. However in the Single
Pulse Mode, the TnON bit can also be made to automatically change from low to high using the external TCKn
pin, which will in turn initiate the Single Pulse output of
TPnA. When the TnON bit transitions to a high level, the
counter will start running and the pulse leading edge of
S /W
C o m m a n d
S E T "T n O N "
o r
T C K n P in T r a n s itio n
L e a d in g E d g e
T r a ilin g E d g e
T n O N b it
0 ® 1
T n O N b it
1 ® 0
S /W C o m m a n d
C L R "T n O N "
o r
C C R A M a tc h C o m p a re
T P n A O u tp u t P in
P u ls e W id th = C C R A V a lu e
T P n B O u tp u t P in
P u ls e W id th = C C R A - C C R B V a lu e
Single Pulse Generation
Rev.1.00
122
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Counter
Value
TnAM1, TnAM0 and TnBM1, TnBM0 = 10;
TnAIO1, TnAIO0 and TnBIO1, TnBIO0 = 11
Counter Stopped
by CCRA
CCRA
Pause Resume
Counter Stops
by software
Counter reset
when TnON
returns high
CCRB
Time
TnON bit
Auto. s et
by TCKn pin
TCKn pin
Software
Trigger
Cleared by
CCRA match
Software
Trigger
Software
Clear
Software
Trigger
TCKn pin
Trigger
TnPAU bit
TnAPOL,
TnBPOL bit
CCRB Int.
Flag TnBF
CCRA Int.
Flag TnAF
TnAIO1, TnAIO0 and TnBIO1, TnBIO0
= 11 Single Pulse Output
TnAIO1, TnAIO0 and TnBIO1, TnBIO0
= 00 Output Inactive
TnAIO1, TnAIO0 and TnBIO1, TnBIO0 = 11
TPnA Pin
TnAOC = 1
TPnA Pin
TnAOC = 0
Pulse Width
set by CCRA
TPnB Pin
TnBOC = 1
Here TnAIO1, TnAIO0 and
TnBIO1, TnBIO0 = 00
Output Forced to Inactive
level but counter keeps
running internally
TnAIO1, TnAIO0 and TnBIO1, TnBIO0 = 11
Resume Single Pulse Output
Output Inverts
When TnAPOL = 1
Pulse Width
set by CCRA - CCRB
TPnB Pin
TnBOC = 0
Output Inverts
When TnBPOL = 1
ETM - Single Pulse Mode
Rev.1.00
123
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Capture Input Mode
zero; in this way the CCRP value can be used to control
the maximum counter value. When a CCRP compare
match occurs from Comparator P, a TM interrupt will
also be generated. Counting the number of overflow interrupt signals from the CCRP can be a useful method in
measuring long pulse widths. The TnAIO1, TnAIO0 and
TnBIO1, TnBIO0 bits can select the active trigger edge
on the TPnA and TPnB_0, TPnB_1, TPnB_2 pins to be
a rising edge, falling edge or both edge types. If the
TnAIO1, TnAIO0 and TnBIO1, TnBIO0 bits are both set
high, then no capture operation will take place irrespective of what happens on the TPnA and TPnB_0,
TPnB_1, TPnB_2 pins, however it must be noted that
the counter will continue to run.
To select this mode bits TnAM1, TnAM0 and TnBM1,
TnBM0 in the TMnC1 and TMnC2 registers should be
set to 01 respectively. This mode enables external signals to capture and store the present value of the internal counter and can therefore be used for applications
such as pulse width measurements. The external signal
is supplied on the TPnA and TPnB_0, TPnB_1, TPnB_2
pins, whose active edge can be either a rising edge, a
falling edge or both rising and falling edges; the active
edge transition type is selected using the TnAIO1,
TnAIO0 and TnBIO1, TnBIO0 bits in the TMnC1 and
TMnC2 registers. The counter is started when the TnON
bit changes from low to high which is initiated using the
application program.
As the TPnA and TPnB_0, TPnB_1, TPnB_2 pins are
pin shared with other functions, care must be taken if the
TM is in the Capture Input Mode. This is because if the
pin is setup as an output, then any transitions on this pin
may cause an input capture operation to be executed.
The TnCCLR, TnAOC, TnBOC, TnAPOL and TnBPOL
bits are not used in this mode.
When the required edge transition appears on the TPnA
and TPnB_0, TPnB_1, TPnB_2 pins the present value
in the counter will be latched into the CCRA and CCRB
registers and a TM interrupt generated. Irrespective of
what events occur on the TPnA and TPnB_0, TPnB_1,
TPnB_2 pins the counter will continue to free run until
the TnON bit changes from high to low. When a CCRP
compare match occurs the counter will reset back to
TnAM1, TnAM0 = 01
Counter
Value
Counter
overflow
CCRP
Stop
Counter
Reset
YY
XX
Pause Resume
Time
TnON bit
TnPAU bit
TM Capture Pin
Active
edge
Active
edge
Active
edges
CCRA Int.
Flag TnAF
CCRP Int.
Flag TnPF
CCRA
Value
TnAIO1, TnAIO0
Value
XX
00 - Rising edge
YY
01 - Falling edge
XX
YY
10 - Both edges
11 - Disable Capture
ETM CCRA Capture Input Mode
Note:
1. TnAM1, TnAM0 = 01 and active edge set by TnAIO1 and TnAIO0 bits
2. TM Capture input pin active edge transfers counter value to CCRA
3. TnCCLR bit not used
4. No output function - TnAOC and TnAPOL bits not used
5. CCRP sets counter maximum value
Rev.1.00
124
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
TnBM1, TnBM0 = 01
Counter
Value
Counter
overflow
CCRP
Stop
Counter
Reset
YY
XX
Pause Resume
Time
TnON bit
TnPAU bit
TM Capture Pin
Active
edge
Active
edge
Active
edges
CCRB Int.
Flag TnBF
CCRP Int.
Flag TnPF
CCRB
Value
TnBIO1, TnBIO0
Value
XX
00 - Rising edge
YY
01 - Falling edge
XX
YY
10 - Both edges
11 - Disable Capture
ETM CCRB Capture Input Mode
Note:
1. TnBM1, TnBM0 = 01 and active edge set by TnBIO1 and TnBIO0 bits
2. TM Capture input pin active edge transfers counter value to CCRB
3. TnCCLR bit not used
4. No output function - TnBOC and TnBPOL bits not used
5. CCRP sets counter maximum value
Rev.1.00
125
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Comparators
Any pull-high resistors connected to the shared comparator input pins will be automatically disconnected
when the comparator is enabled. As the comparator inputs approach their switching level, some spurious output signals may be generated on the comparator output
due to the slow rising or falling nature of the input signals. This can be minimised by selecting the hysteresis
function will apply a small amount of positive feedback
to the comparator. Ideally the comparator should switch
at the point where the positive and negative inputs signals are at the same voltage level, however, unavoidable input offsets introduce some uncertainties here.
The hysteresis function, if enabled, also increases the
switching offset value.
Two independent analog comparators are contained
within these devices. These functions offer flexibility via
their register controlled features such as power-down,
polarity select, hysteresis etc. In sharing their pins with
normal I/O pins the comparators do not waste precious
I/O pins if there functions are otherwise unused.
C n P O L
C n O U T
C n +
C n X
C n -
C n S E L
Comparator
Comparator Operation
The device contains two comparator functions which
are used to compare two analog voltages and provide
an output based on their difference. Full control over the
two internal comparators is provided via two control registers, CP0C and CP1C, one assigned to each comparator. The comparator output is recorded via a bit in
their respective control register, but can also be transferred out onto a shared I/O pin. Additional comparator
functions include, output polarity, hysteresis functions
and power down control.
Register
Name
Comparator Registers
There are two registers for overall comparator operation, one for each comparator. As corresponding bits in
the two registers have identical functions, they following
register table applies to both registers.
Bit
7
6
5
4
3
2
1
0
CP0C
C0SEL
C0EN
C0POL
C0OUT
C0OS
¾
¾
C0HYEN
CP1C
C1SEL
C1EN
C1POL
C1OUT
C1OS
¾
¾
C1HYEN
Comparator Registers List
Comparator Interrupt
Programming Considerations
Each also possesses its own interrupt function. When
any one of the changes state, its relevant interrupt flag
will be set, and if the corresponding interrupt enable bit
is set, then a jump to its relevant interrupt vector will be
executed. Note that it is the changing state of the
C0OUT or C1OUT bit and not the output pin which generates an interrupt. If the microcontroller is in the SLEEP
or IDLE Mode and the Comparator is enabled, then if the
external input lines cause the Comparator output to
change state, the resulting generated interrupt flag will
also generate a wake-up. If it is required to disable a
wake-up from occurring, then the interrupt flag should
be first set high before entering the SLEEP or IDLE
Mode.
If the comparator is enabled, it will remain active when
the microcontroller enters the SLEEP or IDLE Mode,
however as it will consume a certain amount of power,
the user may wish to consider disabling it before the
SLEEP or IDLE Mode is entered.
Rev. 1.00
As comparator pins are shared with normal I/O pins the
I/O registers for these pins will be read as zero (port control register is ²1²) or read as port data register value
(port control register is ²0²) if the comparator function is
enabled.
126
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· CP0C Register
Bit
7
6
5
4
3
2
1
0
Name
C0SEL
C0EN
C0POL
C0OUT
C0OS
¾
¾
C0HYEN
R/W
R/W
R/W
R/W
R
R/W
¾
¾
R/W
POR
1
0
0
0
0
¾
¾
1
Bit 7
C0SEL: Select Comparator pins or I/O pins
0: I/O pin select
1: Comparator pin select
This is the Comparator pin or I/O pin select bit. If the bit is high the comparator will be selected
and the two comparator input pins will be enabled. As a result, these two pins will lose their I/O
pin functions. Any pull-high configuration options associated with the comparator shared pins will
also be automatically disconnected.
Bit 6
C0EN: Comparator On/Off control
0: Off
1: On
This is the Comparator on/off control bit. If the bit is zero the comparator will be switched off
and no power consumed even if analog voltages are applied to its inputs. For power sensitive
applications this bit should be cleared to zero if the comparator is not used or before the device
enters the SLEEP or IDLE mode.
Bit 5
C0POL: Comparator output polarity
0: output not inverted
1: output inverted
This is the comparator polarity bit. If the bit is zero then the C0OUT bit will reflect the
non-inverted output condition of the comparator. If the bit is high the comparator C0OUT bit will
be inverted.
Bit 4
C0OUT: Comparator output bit
C0POL=0
0: C0+ < C01: C0+ > C0C0POL=1
0: C0+ > C01: C0+ < C0This bit stores the comparator output bit. The polarity of the bit is determined by the voltages
on the comparator inputs and by the condition of the C0POL bit.
Bit 3
C0OS: Output path select
0: C0X pin
1: Internal use
This is the comparator output path select control bit. If the bit is set to ²0² and the C0SEL bit is
²1² the comparator output is connected to an external C0X pin. If the bit is set to ²1² or the
C0SEL bit is ²0² the comparator output signal is only used internally by the device allowing the
shared comparator output pin to retain its normal I/O operation.
Bit 2~1
unimplemented, read as ²0²
Bit 0
C0HYEN: Hysteresis Control
0: Off
1: On
This is the hysteresis control bit and if set high will apply a limited amount of hysteresis to the
comparator, as specified in the Comparator Electrical Characteristics table. The positive feedback
induced by hysteresis reduces the effect of spurious switching near the comparator threshold.
Rev. 1.00
127
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· CP1C Register
Bit
7
6
5
4
3
2
1
0
Name
C1SEL
C1EN
C1POL
C1OUT
C1OS
¾
¾
C1HYEN
R/W
R/W
R/W
R/W
R
R/W
¾
¾
R/W
POR
1
0
0
0
0
¾
¾
1
Bit 7
C1SEL: Select Comparator pins or I/O pins
0: I/O pin select
1: Comparator pin select
This is the Comparator pin or I/O pin select bit. If the bit is high the comparator will be selected
and the two comparator input pins will be enabled. As a result, these two pins will lose their I/O
pin functions. Any pull-high configuration options associated with the comparator shared pins will
also be automatically disconnected.
Bit 6
C1EN: Comparator On/Off control
0: Off
1: On
This is the Comparator on/off control bit. If the bit is zero the comparator will be switched off
and no power consumed even if analog voltages are applied to its inputs. For power sensitive
applications this bit should be cleared to zero if the comparator is not used or before the device
enters the SLEEP or IDLE mode.
Bit 5
C1POL: Comparator output polarity
0: output not inverted
1: output inverted
This is the comparator polarity bit. If the bit is zero then the C1OUT bit will reflect the
non-inverted output condition of the comparator. If the bit is high the comparator C1OUT bit will
be inverted.
Bit 4
C1OUT: Comparator output bit
C1POL=0
0: C1+ < C11: C1+ > C1C1POL=1
0: C1+ > C11: C1+ < C1This bit stores the comparator output bit. The polarity of the bit is determined by the voltages
on the comparator inputs and by the condition of the C1POL bit.
Bit 3
C1OS: Output path select
0: C1X pin
1: Internal use
This is the comparator output path select control bit. If the bit is set to ²0² and the C1SEL bit is
²1² the comparator output is connected to an external C1X pin. If the bit is set to ²1² or the
C1SEL bit is ²0² the comparator output signal is only used internally by the device allowing the
shared comparator output pin to retain its normal I/O operation.
Bit 2~1
unimplemented, read as ²0²
Bit 0
C1HYEN: Hysteresis Control
0: Off
1: On
This is the hysteresis control bit and if set high will apply a limited amount of hysteresis to the
comparator, as specified in the Comparator Electrical Characteristics table. The positive feedback
induced by hysteresis reduces the effect of spurious switching near the comparator threshold.
Rev. 1.00
128
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Serial Interface Module - SIM
needs to control multiple slave devices from a single
master, the master can use I/O pin to select the slave
devices.
These devices contain a Serial Interface Module, which
includes both the four line SPI interface or the two line
I2C interface types, to allow an easy method of communication with external peripheral hardware. Having relatively simple communication protocols, these serial
interface types allow the microcontroller to interface to
2
external SPI or I C based hardware such as sensors,
Flash or EEPROM memory, etc. The SIM interface pins
are pin-shared with other I/O pins therefore the SIM interface function must first be selected using a configuration option. As both interface types share the same pins
and registers, the choice of whether the SPI or I2C type
is used is made using the SIM operating mode control
bits, named SIM2~SIM0, in the SIMC0 register. These
pull-high resistors of the SIM pin-shared I/O are selected using pull-high control registers, and also if the
SIM function is enabled.
· SPI Interface Operation
The SPI interface is a full duplex synchronous serial
data link. It is a four line interface with pin names SDI,
SDO, SCK and SCS. Pins SDI and SDO are the Serial
Data Input and Serial Data Output lines, SCK is the
Serial Clock line and SCS is the Slave Select line. As
the SPI interface pins are pin-shared with normal I/O
pins and with the I2C function pins, the SPI interface
must first be enabled by selecting the SIM enable configuration option and setting the correct bits in the
SIMC0 and SIMC2 registers. After the SPI configuration option has been configured it can also be additionally disabled or enabled using the SIMEN bit in the
SIMC0 register. Communication between devices
connected to the SPI interface is carried out in a
slave/master mode with all data transfer initiations being implemented by the master. The Master also controls the clock signal. As the device only contains a
single SCS pin only one slave device can be utilized.
The SCS pin is controlled by software, set CSEN bit to
²1² to enable SCS pin function, set CSEN bit to ²0² the
SCS pin will be floating state.
SPI Interface
The SPI interface is often used to communicate with external peripheral devices such as sensors, Flash or
EEPROM memory devices etc. Originally developed by
Motorola, the four line SPI interface is a synchronous
serial data interface that has a relatively simple communication protocol simplifying the programming requirements when communicating with external hardware
devices.
S P I S la v e
S P I M a s te r
S C K
S C K
S D O
S D I
S D O
S D I
The communication is full duplex and operates as a
slave/master type, where the device can be either master or slave. Although the SPI interface specification can
control multiple slave devices from a single master, but
this device provided only one SCS pin. If the master
S C S
S C S
SPI Master/Slave Connection
D a ta B u s
S IM D
T x /R x S h ift R e g is te r
C K E N b it
C K P O L B b it
C lo c k
E d g e /P o la r ity
C o n tro l
Y S
B u s y
S ta tu s
B C
C lo c k
S o u r c e S e le c t
b it
C o n fig u r a tio n
O p tio n
T M 0 C C R P m a tc h fre q u e n c y /2
S D O
P in
E n a b le /D is a b le
S C K P in
fS
fT
S D I P in
C o n fig u r a tio n
O p tio n
W C O L F la g
T R F F la g
S C S P in
C S E N
E n a b le /D is a b le
SPI Block Diagram
Rev. 1.00
129
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
The SPI function in this device offers the following
features:
¨
Full duplex synchronous data transfer
¨
Both Master and Slave modes
¨
LSB first or MSB first data transmission modes
¨
Transmission complete flag
¨
Rising or falling active clock edge
¨
WCOL and CSEN bit enabled or disable select
There are several configuration options associated with
the SPI interface. One of these is to enable the SIM
function which selects the SIM pins rather than normal
I/O pins. Note that if the configuration option does not
select the SIM function then the SIMEN bit in the SIMC0
register will have no effect. Another two SPI configuration options determine if the CSEN and WCOL bits are
to be used.
SPI Registers
The status of the SPI interface pins is determined by a
number of factors such as whether the device is in the
master or slave mode and upon the condition of certain
control bits such as CSEN and SIMEN.
There are three internal registers which control the overall operation of the SPI interface. These are the SIMD
data register and two registers SIMC0 and SIMC2. Note
2
that the SIMC1 register is only used by the I C interface.
Bit
Register
Name
7
6
5
4
3
2
1
0
SIMC0
SIM2
SIM1
SIM0
PCKEN
PCKP1
PCKP0
SIMEN
¾
SIMD
D7
D6
D5
D4
D3
D2
D1
D0
SIMC2
D7
D6
CKPOLB
CKEG
MLS
CSEN
WCOL
TRF
SIM Registers List
The SIMD register is used to store the data being transmitted and received. The same register is used by both the SPI
and I2C functions. Before the device writes data to the SPI bus, the actual data to be transmitted must be placed in the
SIMD register. After the data is received from the SPI bus, the device can read it from the SIMD register. Any transmission or reception of data from the SPI bus must be made via the SIMD register.
· SIMD Register
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
x
x
x
x
x
x
x
x
²x² unknown
Rev. 1.00
130
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
There are also two control registers for the SPI interface, SIMC0 and SIMC2. Note that the SIMC2 register also has
the name SIMA which is used by the I2C function. The SIMC1 register is not used by the SPI function, only by the I2C
function. Register SIMC0 is used to control the enable/disable function and to set the data transmission clock frequency. Although not connected with the SPI function, the SIMC0 register is also used to control the Peripheral Clock
Prescaler. Register SIMC2 is used for other control functions such as LSB/MSB selection, write collision flag etc.
· SIMC0 Register
Bit
7
6
5
4
3
2
1
0
Name
SIM2
SIM1
SIM0
PCKEN
PCKP1
PCKP0
SIMEN
¾
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
¾
POR
1
1
1
0
0
0
0
¾
Bit 7~5
SIM2, SIM1, SIM0: SIM Operating Mode Control
000: SPI master mode; SPI clock is fSYS/4
001: SPI master mode; SPI clock is fSYS/16
010: SPI master mode; SPI clock is fSYS/64
011: SPI master mode; SPI clock is fTBC
100: SPI master mode; SPI clock is TM0 CCRP match frequency/2
101: SPI slave mode
110: I2C slave mode
111: Unused mode
These bits setup the overall operating mode of the SIM function. As well as selecting if the I2C
or SPI function, they are used to control the SPI Master/Slave selection and the SPI Master clock
frequency. The SPI clock is a function of the system clock but can also be chosen to be sourced
from the TM0. If the SPI Slave Mode is selected then the clock will be supplied by an external
Master device.
Bit 4
PCKEN: PCK Output Pin Control
0: Disable
1: Enable
Bit 3~2
PCKP1, PCKP0: Select PCK output pin frequency
00: fSYS
01: fSYS/4
10: fSYS/8
11: TM0 CCRP match frequency/2
Bit 1
SIMEN: SIM Control
0: Disable
1: Enable
The bit is the overall on/off control for the SIM interface. When the SIMEN bit is cleared to zero
to disable the SIM interface, the SDI, SDO, SCK and SCS, or SDA and SCL lines will be in a
floating condition and the SIM operating current will be reduced to a minimum value. When the bit
is high the SIM interface is enabled. The SIM configuration option must have first enabled the
SIM interface for this bit to be effective. If the SIM is configured to operate as an SPI interface via
the SIM2~SIM0 bits, the contents of the SPI control registers will remain at the previous settings
when the SIMEN bit changes from low to high and should therefore be first initialised by the
application program. If the SIM is configured to operate as an I2C interface via the SIM2~SIM0
bits and the SIMEN bit changes from low to high, the contents of the I2C control bits such as HTX
and TXAK will remain at the previous settings and should therefore be first initialised by the
application program while the relevant I2C flags such as HCF, HAAS, HBB, SRW and RXAK will
be set to their default states.
Bit 0
unimplemented, read as ²0²
Rev. 1.00
131
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· SIMC2 Register
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
CKPOLB
CKEG
MLS
CSEN
WCOL
TRF
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7~6
Undefined bit
This bit can be read or written by user software program.
Bit 5
CKPOLB: Determines the base condition of the clock line
0: the SCK line will be high when the clock is inactive
1: the SCK line will be low when the clock is inactive
The CKPOLB bit determines the base condition of the clock line, if the bit is high, then the SCK
line will be low when the clock is inactive. When the CKPOLB bit is low, then the SCK line will be
high when the clock is inactive.
Bit 4
CKEG: Determines SPI SCK active clock edge type
CKPOLB=0
0: SCK is high base level and data capture at SCK rising edge
1: SCK is high base level and data capture at SCK falling edge
CKPOLB=1
0: SCK is low base level and data capture at SCK falling edge
1: SCK is low base level and data capture at SCK rising edge
The CKEG and CKPOLB bits are used to setup the way that the clock signal outputs and
inputs data on the SPI bus. These two bits must be configured before data transfer is executed
otherwise an erroneous clock edge may be generated. The CKPOLB bit determines the base
condition of the clock line, if the bit is high, then the SCK line will be low when the clock is
inactive. When the CKPOLB bit is low, then the SCK line will be high when the clock is inactive.
The CKEG bit determines active clock edge type which depends upon the condition of CKPOLB
bit.
Bit 3
MLS: SPI Data shift order
0: LSB
1: MSB
This is the data shift select bit and is used to select how the data is transferred, either MSB or
LSB first. Setting the bit high will select MSB first and low for LSB first.
Bit 2
CSEN: SPI SCS pin Control
0: Disable
1: Enable
The CSEN bit is used as an enable/disable for the SCS pin. If this bit is low, then the SCS
pin will be disabled and placed into a floating condition. If the bit is high the SCS pin will be
enabled and used as a select pin.
Note that using the CSEN bit can be disabled or enabled via configuration option.
Bit 1
WCOL: SPI Write Collision flag
0: No collision
1: Collision
The WCOL flag is used to detect if a data collision has occurred. If this bit is high it means that
data has been attempted to be written to the SIMD register during a data transfer operation. This
writing operation will be ignored if data is being transferred. The bit can be cleared by the
application program. Note that using the WCOL bit can be disabled or enabled via configuration
option.
Bit 0
TRF: SPI Transmit/Receive Complete flag
0: Data is being transferred
1: SPI data transmission is completed
The TRF bit is the Transmit/Receive Complete flag and is set ²1² automatically when an SPI
data transmission is completed, but must set to ²0² by the application program. It can be used to
generate an interrupt.
Rev. 1.00
132
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
SPI Communication
The master should output an SCS signal to enable the
slave device before a clock signal is provided. The slave
data to be transferred should be well prepared at the appropriate moment relative to the SCS signal depending
upon the configurations of the CKPOLB bit and CKEG
bit. The accompanying timing diagram shows the relationship between the slave data and SCS signal for various configurations of the CKPOLB and CKEG bits.
After the SPI interface is enabled by setting the SIMEN
bit high, then in the Master Mode, when data is written to
the SIMD register, transmission/reception will begin simultaneously. When the data transfer is complete, the
TRF flag will be set automatically, but must be cleared
using the application program. In the Slave Mode, when
the clock signal from the master has been received, any
data in the SIMD register will be transmitted and any
data on the SDI pin will be shifted into the SIMD register.
The SPI will continue to function even in the IDLE Mode.
S IM E N = 1 , C S E N = 0 ( E x te r n a l P u ll- H ig h )
S C S
S IM E N , C S E N = 1
S C K (C K P O L B = 1 , C K E G = 0 )
S C K (C K P O L B = 0 , C K E G = 0 )
S C K (C K P O L B = 1 , C K E G = 1 )
S C K (C K P O L B = 0 , C K E G = 1 )
S D O
(C K E G = 0 )
D 7 /D 0
D 6 /D 1
D 5 /D 2
D 4 /D 3
D 3 /D 4
D 2 /D 5
D 1 /D 6
D 0 /D 7
S D O
(C K E G = 1 )
D 7 /D 0
D 6 /D 1
D 5 /D 2
D 4 /D 3
D 3 /D 4
D 2 /D 5
D 1 /D 6
D 0 /D 7
S D I D a ta C a p tu re
W r ite to S IM D
SPI Master Mode Timing
S C S
S C K (C K P O L B = 1 )
S C K (C K P O L B = 0 )
S D O
D 7 /D 0
D 6 /D 1
D 5 /D 2
D 4 /D 3
D 3 /D 4
D 2 /D 5
D 1 /D 6
D 0 /D 7
S D I D a ta C a p tu re
W r ite to S IM D
( S D O d o e s n o t c h a n g e u n til fir s t S C K e d g e )
SPI Slave Mode Timing - CKEG=0
Rev. 1.00
133
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
S C S
S C K (C K P O L B = 1 )
S C K (C K P O L B = 0 )
S D O
D 7 /D 0
D 6 /D 1
D 5 /D 2
D 4 /D 3
D 3 /D 4
D 2 /D 5
D 1 /D 6
D 0 /D 7
S D I D a ta C a p tu re
W r ite to S IM D
( S D O c h a n g e s a s s o o n a s w r itin g o c c u r s ; S D O
is flo a tin g if S C S = 1 )
N o te : F o r S P I s la v e m o d e , if S IM E N = 1 a n d C S E N = 0 , S P I is a lw a y s e n a b le d
a n d ig n o r e s th e S C S le v e l.
SPI Slave Mode Timing - CKEG=1
A
S P I tra n s fe r
W r ite D a ta
in to S IM D
C le a r W C O L
M a s te r
m a s te r o r
s la v e
?
S IM [2 :0 ]= 0 0 0 ,
0 0 1 ,0 1 0 ,0 1 1 o r 1 0 0
S la v e
Y
W C O L = 1 ?
N
S IM [2 :0 ]= 1 0 1
N
C o n fig u r e C K P O L B ,
C K E G , C S E N a n d M L S
T r a n s m is s io n
c o m p le te d ?
(T R F = 1 ? )
Y
S IM E N = 1
R e a d D a ta
fro m S IM D
A
C le a r T R F
T ra n s fe r
F in is h e d ?
N
Y
E N D
SPI Transfer Control Flowchart
Rev. 1.00
134
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
I2C Interface
SIMC0 register will have no effect. A configuration option exists to allow a clock other than the system clock
2
to drive the I C interface. Another configuration option
determines the debounce time of the I2C interface.
This uses the internal clock to in effect add a
debounce time to the external clock to reduce the possibility of glitches on the clock line causing erroneous
operation. The debounce time, if selected, can be
chosen to be either 1 or 2 system clocks.
2
The I C interface is used to communicate with external
peripheral devices such as sensors, EEPROM memory
etc. Originally developed by Philips, it is a two line low
speed serial interface for synchronous serial data transfer. The advantage of only two lines for communication,
relatively simple communication protocol and the ability
to accommodate multiple devices on the same bus has
made it an extremely popular interface type for many
applications.
S T A R T s ig n a l
fro m M a s te r
V D D
S e n d s la v e a d d r e s s
a n d R /W b it fr o m M a s te r
S D A
S C L
D e v ic e
S la v e
D e v ic e
M a s te r
A c k n o w le d g e
fr o m s la v e
D e v ic e
S la v e
S e n d d a ta b y te
fro m M a s te r
I2C Master Slave Bus Connection
· I2C Interface Operation
A c k n o w le d g e
fr o m s la v e
The I2C serial interface is a two line interface, a serial
data line, SDA, and serial clock line, SCL. As many
devices may be connected together on the same bus,
their outputs are both open drain types. For this reason it is necessary that external pull-high resistors are
connected to these outputs. Note that no chip select
line exists, as each device on the I2C bus is identified
by a unique address which will be transmitted and received on the I2C bus.
When two devices communicate with each other on
the bidirectional I2C bus, one is known as the master
device and one as the slave device. Both master and
slave can transmit and receive data, however, it is the
master device that has overall control of the bus. For
these devices, which only operates in slave mode,
there are two methods of transferring data on the I2C
bus, the slave transmit mode and the slave receive
mode.
There are several configuration options associated
with the I2C interface. One of these is to enable the
function which selects the SIM pins rather than normal
I/O pins. Note that if the configuration option does not
select the SIM function then the SIMEN bit in the
Register
Name
S T O P s ig n a l
fro m M a s te r
· I2C Registers
There are three control registers associated with the
I2C bus, SIMC0, SIMC1 and SIMA and one data register, SIMD. The SIMD register, which is shown in the
above SPI section, is used to store the data being
transmitted and received on the I2C bus. Before the
microcontroller writes data to the I2C bus, the actual
data to be transmitted must be placed in the SIMD
register. After the data is received from the I2C bus,
the microcontroller can read it from the SIMD register.
Any transmission or reception of data from the I2C bus
must be made via the SIMD register.
Note that the SIMA register also has the name SIMC2
which is used by the SPI function. Bit SIMEN and bits
SIM2~SIM0 in register SIMC0 are used by the I2C interface.
Bit
7
6
5
4
3
2
1
0
SIMC0
SIM2
SIM1
SIM0
PCKEN
PCKP1
PCKP0
SIMEN
¾
SIMC1
HCF
HANS
HBB
HTX
TXAK
SRW
IAMWU
RXAK
SIMD
D7
D6
D5
D4
D3
D2
D1
D0
SIMA
IICA6
IICA5
IICA4
IICA3
IICA2
IICA1
IICA0
D0
I2C Registers List
Rev. 1.00
135
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· SIMC0 Register
Bit
7
6
5
4
3
2
1
0
Name
SIM2
SIM1
SIM0
PCKEN
PCKP1
PCKP0
SIMEN
¾
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
¾
POR
1
1
1
0
0
0
0
¾
Bit 7~5
SIM2, SIM1, SIM0: SIM Operating Mode Control
000: SPI master mode; SPI clock is fSYS/4
001: SPI master mode; SPI clock is fSYS/16
010: SPI master mode; SPI clock is fSYS/64
011: SPI master mode; SPI clock is fTBC
100: SPI master mode; SPI clock is TM0 CCRP match frequency/2
101: SPI slave mode
110: I2C slave mode
111: Unused mode
These bits setup the overall operating mode of the SIM function. As well as selecting if the I2C
or SPI function, they are used to control the SPI Master/Slave selection and the SPI Master clock
frequency. The SPI clock is a function of the system clock but can also be chosen to be sourced
from the TM0. If the SPI Slave Mode is selected then the clock will be supplied by an external
Master device.
Bit 4
PCKEN: PCK Output Pin Control
0: Disable
1: Enable
Bit 3~2
PCKP1, PCKP0: Select PCK output pin frequency
00: fSYS
01: fSYS/4
10: fSYS/8
11: TM0 CCRP match frequency/2
Bit 1
SIMEN: SIM Control
0: Disable
1: Enable
The bit is the overall on/off control for the SIM interface. When the SIMEN bit is cleared to zero
to disable the SIM interface, the SDI, SDO, SCK and SCS, or SDA and SCL lines will be in a
floating condition and the SIM operating current will be reduced to a minimum value. When the bit
is high the SIM interface is enabled. The SIM configuration option must have first enabled the
SIM interface for this bit to be effective. If the SIM is configured to operate as an SPI interface via
SIM2~SIM0 bits, the contents of the SPI control registers will remain at the previous settings
when the SIMEN bit changes from low to high and should therefore be first initialised by the
application program. If the SIM is configured to operate as an I2C interface via the SIM2~SIM0
bits and the SIMEN bit changes from low to high, the contents of the I2C control bits such as HTX
and TXAK will remain at the previous settings and should therefore be first initialised by the
application program while the relevant I2C flags such as HCF, HAAS, HBB, SRW and RXAK will
be set to their default states.
Bit 0
unimplemented, read as ²0²
Rev. 1.00
136
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· SIMC1 Register
Bit
7
6
5
4
3
2
1
0
Name
HCF
HAAS
HBB
HTX
TXAK
SRW
IAMWU
RXAK
R/W
R
R
R
R/W
R/W
R
R/W
R
POR
1
0
0
0
0
0
0
1
2
Bit 7
HCF: I C Bus data transfer completion flag
0: Data is being transferred
1: Completion of an 8-bit data transfer
The HCF flag is the data transfer flag. This flag will be zero when data is being transferred.
Upon completion of an 8-bit data transfer the flag will go high and an interrupt will be generated.
Bit 6
HAAS: I2C Bus address match flag
0: Not address match
1: Address match
The HASS flag is the address match flag. This flag is used to determine if the slave device
address is the same as the master transmit address. If the addresses match then this bit will be
high, if there is no match then the flag will be low.
Bit 5
HBB: I2C Bus busy flag
0: I2C Bus is not busy
1: I2C Bus is busy
The HBB flag is the I2C busy flag. This flag will be ²1² when the I2C bus is busy which will
occur when a START signal is detected. The flag will be set to ²0² when the bus is free which will
occur when a STOP signal is detected.
Bit 4
HTX: Select I2C slave device is transmitter or receiver
0: Slave device is the receiver
1: Slave device is the transmitter
Bit 3
TXAK: I2C Bus transmit acknowledge flag
0: Slave send acknowledge flag
1: Slave do not send acknowledge flag
The TXAK bit is the transmit acknowledge flag. After the slave device receipt of 8-bits of data,
this bit will be transmitted to the bus on the 9th clock from the slave device. The slave device
must always set TXAK bit to ²0² before further data is received.
Bit 2
SRW: I2C Slave Read/Write flag
0: Slave device should be in receive mode
1: Slave device should be in transmit mode
The SRW flag is the I2C Slave Read/Write flag. This flag determines whether the master
device wishes to transmit or receive data from the I2C bus. When the transmitted address and
slave address is match, that is when the HAAS flag is set high, the slave device will check the
SRW flag to determine whether it should be in transmit mode or receive mode. If the SRW flag is
high, the master is requesting to read data from the bus, so the slave device should be in transmit
mode. When the SRW flag is zero, the master will write data to the bus, therefore the slave
device should be in receive mode to read this data.
Bit 1
IAMWU: I2C Address Match Wake-up Control
0: Disable
1: Enable
This bit should be set to ²1² to enable I2C address match wake up from SLEEP or IDLE Mode.
Bit 0
RXAK: I2C Bus Receive acknowledge flag
0: Slave receive acknowledge flag
1: Slave do not receive acknowledge flag
The RXAK flag is the receiver acknowledge flag. When the RXAK flag is ²0², it means that a
acknowledge signal has been received at the 9th clock, after 8 bits of data have been
transmitted. When the slave device in the transmit mode, the slave device checks the RXAK flag
to determine if the master receiver wishes to receive the next byte. The slave transmitter will
therefore continue sending out data until the RXAK flag is ²1². When this occurs, the slave
transmitter will release the SDA line to allow the master to send a STOP signal to release the I2C
Bus.
Rev. 1.00
137
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
The SIMD register is used to store the data being transmitted and received. The same register is used by both the SPI
and I2C functions. Before the device writes data to the SPI bus, the actual data to be transmitted must be placed in the
SIMD register. After the data is received from the SPI bus, the device can read it from the SIMD register. Any transmission or reception of data from the SPI bus must be made via the SIMD register.
· SIMD Register
Bit
7
6
5
4
3
2
1
0
Name
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
x
x
x
x
x
x
x
x
²x² unknown
· SIMA Register
Bit
7
6
5
4
3
2
1
0
Name
IICA6
IICA5
IICA4
IICA3
IICA2
IICA1
IICA0
¾
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
¾
POR
x
x
x
x
x
x
x
¾
²x² unknown
Bit 7~1
2
IICA6~ IICA0: I C slave address
IICA6~ IICA0 is the I2C slave address bit 6~ bit 0.
The SIMA register is also used by the SPI interface but has the name SIMC2. The SIMA
register is the location where the 7-bit slave address of the slave device is stored. Bits 7~ 1 of the
SIMA register define the device slave address. Bit 0 is not defined.
When a master device, which is connected to the I2C bus, sends out an address, which
matches the slave address in the SIMA register, the slave device will be selected. Note that the
SIMA register is the same register address as SIMC2 which is used by the SPI interface.
Bit 0
Undefined bit
This bit can be read or written by user software program.
D a ta B u s
I2C
H T X B it
S C L P in
S D A P in
M
X
S la v e A d d r e s s R e g is te r
(S IM A )
A d d re s s
C o m p a ra to r
D ir e c tio n C o n tr o l
D a ta in L S B
D a ta O u t M S B
U
D a ta R e g is te r
(S IM D )
S h ift R e g is te r
R e a d /w r ite S la v e
A d d re s s M a tc h
H A A S B it
S R W
I2C
In te rru p t
B it
E n a b le /D is a b le A c k n o w le d g e
T r a n s m it/R e c e iv e
C o n tr o l U n it
8 - b it D a ta C o m p le te
D e te c t S ta rt o r S to p
H C F B it
H B B B it
2
I C Block Diagram
Rev. 1.00
138
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
I2C Bus Communication
I2C Bus Start Signal
Communication on the I2C bus requires four separate
steps, a START signal, a slave device address transmission, a data transmission and finally a STOP signal.
When a START signal is placed on the I2C bus, all devices on the bus will receive this signal and be notified of
the imminent arrival of data on the bus. The first seven
bits of the data will be the slave address with the first bit
being the MSB. If the address of the slave device
matches that of the transmitted address, the HAAS bit in
2
the SIMC1 register will be set and an I C interrupt will be
generated. After entering the interrupt service routine,
the slave device must first check the condition of the
HAAS bit to determine whether the interrupt source originates from an address match or from the completion of
an 8-bit data transfer. During a data transfer, note that
after the 7-bit slave address has been transmitted, the
following bit, which is the 8th bit, is the read/write bit
whose value will be placed in the SRW bit. This bit will
be checked by the slave device to determine whether to
go into transmit or receive mode. Before any transfer of
data to or from the I2C bus, the microcontroller must initialise the bus, the following are steps to achieve this:
The START signal can only be generated by the master
device connected to the I2C bus and not by the slave device. This START signal will be detected by all devices
connected to the I2C bus. When detected, this indicates
that the I2C bus is busy and therefore the HBB bit will be
set. A START condition occurs when a high to low transition on the SDA line takes place when the SCL line remains high.
Slave Address
The transmission of a START signal by the master will
2
be detected by all devices on the I C bus. To determine
which slave device the master wishes to communicate
with, the address of the slave device will be sent out immediately following the START signal. All slave devices,
after receiving this 7-bit address data, will compare it
with their own 7-bit slave address. If the address sent
out by the master matches the internal address of the
microcontroller slave device, then an internal I2C bus interrupt signal will be generated. The next bit following
the address, which is the 8th bit, defines the read/write
status and will be saved to the SRW bit of the SIMC1
register. The slave device will then transmit an acknowledge bit, which is a low level, as the 9th bit. The slave
device will also set the status flag HAAS when the addresses match.
Step 1
Set the SIM2~SIM0 and SIMEN bits in the SIMC0 register to ²1² to enable the I2C bus.
Step 2
As an I2C bus interrupt can come from two sources,
when the program enters the interrupt subroutine, the
HAAS bit should be examined to see whether the interrupt source has come from a matching slave address or
from the completion of a data byte transfer. When a
slave address is matched, the device must be placed in
either the transmit mode and then write data to the SIMD
register, or in the receive mode where it must implement
a dummy read from the SIMD register to release the
SCL line.
2
Write the slave address of the device to the I C bus address register SIMA.
Step 3
Set the SIME and SIM Muti-Function interrupt enable bit
of the interrupt control register to enable the SIM interrupt and Multi-function interrupt.
S ta rt
I2C Bus Read/Write Signal
S E T S IM [2 :0 ]= 1 1 0
S E T S IM E N
The SRW bit in the SIMC1 register defines whether the
slave device wishes to read data from the I2C bus or
write data to the I2C bus. The slave device should examine this bit to determine if it is to be a transmitter or a receiver. If the SRW flag is ²1² then this indicates that the
2
master device wishes to read data from the I C bus,
therefore the slave device must be setup to send data to
the I2C bus as a transmitter. If the SRW flag is ²0² then
this indicates that the master wishes to send data to the
I2C bus, therefore the slave device must be setup to
read data from the I2C bus as a receiver.
W r ite S la v e
A d d re s s to S IM A
N o
I2C B u s
In te rru p t= ?
Y e s
C L R S IM E
P o ll S IM F to d e c id e
w h e n to g o to I2C B u s IS R
S E T S IM E a n d M F n E
W a it fo r In te r r u p t
G o to M a in P r o g r a m
G o to M a in P r o g r a m
I2C Bus Slave Address Acknowledge Signal
I2C Bus Initialisation Flow Chart
After the master has transmitted a calling address, any
slave device on the I2C bus, whose own internal address
matches the calling address, must generate an acknowledge signal. The acknowledge signal will inform
Rev. 1.00
139
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
²0², before it can receive the next data byte. If the slave
transmitter does not receive an acknowledge bit signal
from the master receiver, then the slave transmitter will
release the SDA line to allow the master to send a STOP
signal to release the I2C Bus. The corresponding data
will be stored in the SIMD register. If setup as a transmitter, the slave device must first write the data to be transmitted into the SIMD register. If setup as a receiver, the
slave device must read the transmitted data from the
SIMD register.
the master that a slave device has accepted its calling
address. If no acknowledge signal is received by the
master then a STOP signal must be transmitted by the
master to end the communication. When the HAAS flag
is high, the addresses have matched and the slave device must check the SRW flag to determine if it is to be a
transmitter or a receiver. If the SRW flag is high, the
slave device should be setup to be a transmitter so the
HTX bit in the SIMC1 register should be set to ²1². If the
SRW flag is low, then the microcontroller slave device
should be setup as a receiver and the HTX bit in the
SIMC1 register should be set to ²0².
When the slave receiver receives the data byte, it must
generate an acknowledge bit, known as TXAK, on the
9th clock. The slave device, which is setup as a transmitter will check the RXAK bit in the SIMC1 register to
determine if it is to send another data byte, if not then it
will release the SDA line and await the receipt of a STOP
signal from the master.
I2C Bus Data and Acknowledge Signal
The transmitted data is 8-bits wide and is transmitted after the slave device has acknowledged receipt of its
slave address. The order of serial bit transmission is the
MSB first and the LSB last. After receipt of 8-bits of data,
the receiver must transmit an acknowledge signal, level
S C L
S R W
S la v e A d d r e s s
S ta rt
0
1
S D A
1
1
0
1
0
1
D a ta
S C L
1
0
0
1
A C K
0
A C K
0
1
0
S to p
0
S D A
S = S
S A =
S R =
M = S
D = D
A = A
P = S
S
Note:
ta rt (1
S la v e
S R W
la v e d
a ta (8
C K (R
to p (1
S A
b it)
A d d r e s s ( 7 b its )
b it ( 1 b it)
e v ic e s e n d a c k n o w le d g e b it ( 1 b it)
b its )
X A K b it fo r tr a n s m itte r , T X A K b it fo r r e c e iv e r 1 b it)
b it)
S R
M
D
A
D
A
S
S A
S R
M
D
A
D
A
P
* When a slave address is matched, the device must be placed in either the transmit mode and then write data
to the SIMD register, or in the receive mode where it must implement a dummy read from the SIMD register to
release the SCL line.
I2C Communication Timing Diagram
Rev. 1.00
140
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
S ta rt
N o
N o
Y e s
H A A S = 1
?
Y e s
Y e s
H T X = 1
?
R e a d fro m
S IM D to r e le a s e
S C L lin e
R E T I
Y e s
S R W = 1
?
N o
S E T H T X
C L R H T X
C L R T X A K
W r ite d a ta to S IM D
to r e le a s e S C L L in e
D u m m y re a d fro m
S IM D to r e le a s e
S C L L in e
R E T I
R E T I
R X A K = 1
?
N o
C L R H T X
C L R T X A K
W r ite d a ta to S IM D
r e le a s e S C L L in e
D u m m y re a d fro m
S IM D to r e le a s e
S C L L in e
R E T I
R E T I
I2C Bus ISR Flow Chart
Rev. 1.00
141
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Peripheral Clock Output
The Peripheral Clock Output allows the device to supply
external hardware with a clock signal synchronised to
the microcontroller clock.
for the Peripheral Clock Output can originate from either
the TM0 CCRP match frequency/2 or a divided ratio of
the internal fSYS clock. The PCKEN bit in the SIMC0 register is the overall on/off control, setting PCKEN bit to
²1² enables the Peripheral Clock, setting PCKEN bit to
²0² disables it. The required division ratio of the system
clock is selected using the PCKP1 and PCKP0 bits in
the same register. If the device enters the SLEEP Mode
this will disable the Peripheral Clock output.
Peripheral Clock Operation
As the peripheral clock output pin, PCK, is shared with
I/O line, the required pin function is chosen via PCKEN
in the SIMC0 register. The Peripheral Clock function is
controlled using the SIMC0 register. The clock source
· SIMC0 Register
Bit
7
6
5
4
3
2
1
0
Name
SIM2
SIM1
SIM0
PCKEN
PCKP1
PCKP0
SIMEN
¾
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
¾
POR
1
1
1
0
0
0
0
¾
Bit 7~5
SIM2, SIM1, SIM0: SIM operating mode control
000: SPI master mode; SPI clock is fSYS/4
001: SPI master mode; SPI clock is fSYS/16
010: SPI master mode; SPI clock is fSYS/64
011: SPI master mode; SPI clock is fTBC
100: SPI master mode; SPI clock is TM0 CCRP match frequency/2
101: SPI slave mode
110: I2C slave mode
111: Unused mode
These bits setup the overall operating mode of the SIM function. As well as selecting if the I2C
or SPI function, they are used to control the SPI Master/Slave selection and the SPI Master clock
frequency. The SPI clock is a function of the system clock but can also be chosen to be sourced
from the TM0. If the SPI Slave Mode is selected then the clock will be supplied by an external
Master device.
Bit 4
PCKEN: PCK output pin control
0: Disable
1: Enable
Bit 3~2
PCKP1, PCKP0: select PCK output pin frequency
00: fSYS
01: fSYS/4
10: fSYS/8
11: TM0 CCRP match frequency/2
Bit 1
SIMEN: SIM control
0: Disable
1: Enable
The bit is the overall on/off control for the SIM interface. When the SIMEN bit is cleared to zero
to disable the SIM interface, the SDI, SDO, SCK and SCS, or SDA and SCL lines will be in a
floating condition and the SIM operating current will be reduced to a minimum value. When the bit
is high the SIM interface is enabled. The SIM configuration option must have first enabled the
SIM interface for this bit to be effective. Note that when the SIMEN bit changes from low to high
the contents of the SPI control registers will be in an unknown condition and should therefore be
first initialised by the application program.
Bit 0
unimplemented, read as ²0²
Rev. 1.00
142
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Interrupts
ing convention of these follows a specific pattern. First is
listed an abbreviated interrupt type, then the (optional)
number of that interrupt followed by either an ²E² for enable/disable bit or ²F² for request flag.
Interrupts are an important part of any microcontroller
system. When an external event or an internal function
such as a Timer Module requires microcontroller attention, their corresponding interrupt will enforce a temporary suspension of the main program allowing the
microcontroller to direct attention to their respective
needs. The device contains several external interrupt
and internal interrupts functions. The external interrupts
are generated by the action of the external INT0~INT3
and PINT pins, while the internal interrupts are generated by various internal functions such as the TMs,
Comparators, Time Base, LVD, EEPROM and SIM.
Enable
Bit
Request
Flag
Notes
EMI
¾
¾
Comparator
CPnE
CPnF
n = 0 or 1
INTn Pin
INTnE
INTnF
n = 0~3
Multi-function
MFnE
MFnF
n = 0~5
Interrupt Registers
Time Base
TBnE
TBnF
n = 0 or 1
Overall interrupt control, which basically means the setting of request flags when certain microcontroller conditions occur and the setting of interrupt enable bits by the
application program, is controlled by a series of registers, located in the Special Purpose Data Memory, as
shown in the accompanying table. The number of registers depends upon the device chosen but fall into three
categories. The first is the INTC0~INTC3 registers
which setup the primary interrupts, the second is the
MFI0~MFI3 registers which setup the Multi-function interrupts. Finally there is an INTEG register to setup the
external interrupt trigger edge type.
SIM
SIME
SIMF
¾
LVD
LVE
LVF
¾
EEPROM
DEE
DEF
¾
PINT Pin
XPE
XPF
¾
TnPE
TnPF
TnAE
TnAF
TnBE
TnBF
Function
Global
TM
n = 0~3
Interrupt Register Bit Naming Conventions
Each register contains a number of enable bits to enable
or disable individual registers as well as interrupt flags to
indicate the presence of an interrupt request. The nam-
· Interrupt Register Contents
¨
HT68F20
Bit
Name
7
6
5
4
3
2
1
0
INTEG
¾
¾
¾
¾
INT1S1
INT1S0
INT0S1
INT0S0
INTC0
¾
CP0F
INT1F
INT0F
CP0E
INT1E
INT0E
EMI
INTC1
¾
MF1F
MF0F
CP1F
¾
MF1E
MF0E
CP1E
INTC2
MF3F
TB1F
TB0F
MF2F
MF3E
TB1E
TB0E
MF2E
MFI0
¾
¾
T0AF
T0PF
¾
¾
T0AE
T0PE
MFI1
¾
¾
T1AF
T1PF
¾
¾
T1AE
T1PE
MFI2
DEF
LVF
XPF
SIMF
DEE
LVE
XPE
SIME
Rev. 1.00
143
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F30
Bit
Name
¨
7
6
5
4
3
2
1
0
INTEG
¾
¾
¾
¾
INT1S1
INT1S0
INT0S1
INT0S0
INTC0
¾
CP0F
INT1F
INT0F
CP0E
INT1E
INT0E
EMI
INTC1
¾
MF1F
MF0F
CP1F
¾
MF1E
MF0E
CP1E
INTC2
MF3F
TB1F
TB0F
MF2F
MF3E
TB1E
TB0E
MF2E
MFI0
¾
¾
T0AF
T0PF
¾
¾
T0AE
T0PE
MFI1
¾
T1BF
T1AF
T1PF
¾
T1BE
T1AE
T1PE
MFI2
DEF
LVF
XPF
SIMF
DEE
LVE
XPE
SIME
HT68F40
Bit
Name
¨
7
6
5
4
3
2
1
0
INTEG
¾
¾
¾
¾
INT1S1
INT1S0
INT0S1
INT0S0
INTC0
¾
CP0F
INT1F
INT0F
CP0E
INT1E
INT0E
EMI
INTC1
¾
MF1F
MF0F
CP1F
¾
MF1E
MF0E
CP1E
INTC2
MF3F
TB1F
TB0F
MF2F
MF3E
TB1E
TB0E
MF2E
MFI0
T2AF
T2PF
T0AF
T0PF
T2AE
T2PE
T0AE
T0PE
MFI1
¾
T1BF
T1AF
T1PF
¾
T1BE
T1AE
T1PE
MFI2
DEF
LVF
XPF
SIMF
DEE
LVE
XPE
SIME
7
6
5
4
3
2
1
0
INTEG
¾
¾
¾
¾
INT1S1
INT1S0
INT0S1
INT0S0
INTC0
¾
CP0F
INT1F
INT0F
CP0E
INT1E
INT0E
EMI
INTC1
¾
MF1F
MF0F
CP1F
¾
MF1E
MF0E
CP1E
INTC2
MF3F
TB1F
TB0F
MF2F
MF3E
TB1E
TB0E
MF2E
MFI0
T2AF
T2PF
T0AF
T0PF
T2AE
T2PE
T0AE
T0PE
MFI1
¾
T1BF
T1AF
T1PF
¾
T1BE
T1AE
T1PE
MFI2
DEF
LVF
XPF
SIMF
DEE
LVE
XPE
SIME
MFI3
¾
¾
T3AF
T3PF
¾
¾
T3AE
T3PE
HT68F50
Bit
Name
Rev. 1.00
144
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F60
Bit
Name
7
6
5
4
3
2
1
0
INTEG
INT3S1
INT3S0
INT2S1
INT2S0
INT1S1
INT1S0
INT0S1
INT0S0
INTC0
¾
INT2F
INT1F
INT0F
INT2E
INT1E
INT0E
EMI
INTC1
MF0F
CP1F
CP0F
INT3F
MF0E
CP1E
CP0E
INT3E
INTC2
¾
MF3F
MF2F
MF1F
¾
MF3E
MF2E
MF1E
INTC3
MF5F
TB1F
TB0F
MF4F
MF5E
TB1E
TB0E
MF4E
MFI0
T2AF
T2PF
T0AF
T0PF
T2AE
T2PE
T0AE
T0PE
MFI1
¾
T1BF
T1AF
T1PF
¾
T1BE
T1AE
T1PE
MFI2
DEF
LVF
XPF
SIMF
DEE
LVE
XPE
SIME
MFI3
¾
¾
T3AF
T3PF
¾
¾
T3AE
T3PE
· INTEG Register
¨
HT68F20/HT68F30/HT68F40/HT68F50
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
¾
¾
INT1S1
INT1S0
INT0S1
INT0S0
R/W
¾
¾
¾
¾
R/W
R/W
R/W
R/W
POR
¾
¾
¾
¾
0
0
0
0
Bit 7~4
unimplemented, read as ²0²
Bit 3~2
INT1S1, INT1S0: interrupt edge control for INT1 pin
00: disable
01: rising edge
10: falling edge
11: rising and falling edges
Bit 1~0
INT0S1, INT0S0: interrupt edge control for INT0 pin
00: disable
01: rising edge
10: falling edge
11: rising and falling edges
Rev. 1.00
145
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F60
Bit
7
6
5
4
3
2
1
0
Name
INT3S1
INT3S0
INT2S1
INT2S0
INT1S1
INT1S0
INT0S1
INT0S0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7~6
INT3S1, INT3S0: Interrupt edge control for INT3 pin
00: disable
01: rising edge
10: falling edge
Bit 5~4
INT2S1, INT2S0: interrupt edge control for INT2 pin
00: disable
01: rising edge
10: falling edge
11: rising and falling edges
Bit 3~2
INT1S1, INT1S0: interrupt edge control for INT1 pin
00: disable
01: rising edge
10: falling edge
11: rising and falling edges
Bit 1~0
INT0S1, INT0S0: interrupt edge control for INT0 pin
00: disable
01: rising edge
10: falling edge
11: rising and falling edges
· INTC0 Register
¨
HT68F20/HT68F30/HT68F40/HT68F50
Bit
7
6
5
4
3
2
1
0
Name
¾
CP0F
INT1F
INT0F
CP0E
INT1E
INT0E
EMI
R/W
¾
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
¾
0
0
0
0
0
0
0
Bit 7
unimplemented, read as ²0²
Bit 6
CP0F: Comparator 0 interrupt request flag
0: no request
1: interrupt request
Bit 5
INT1F: INT1 interrupt request flag
0: no request
1: interrupt request
Bit 4
INT0F: INT0 interrupt request flag
0: no request
1: interrupt request
Bit 3
CP0E: Comparator 0 interrupt control
0: disable
1: enable
Bit 2
INT1E: INT1 interrupt control
0: disable
1: enable
Bit 1
INT0E: INT0 interrupt control
0: disable
1: enable
Bit 0
EMI: Global interrupt control
0: disable
1: enable
Rev. 1.00
146
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F60
Bit
7
6
5
4
3
2
1
Name
¾
INT2F
INT1F
INT0F
INT2E
INT1E
INT0E
EMI
R/W
¾
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
¾
0
0
0
0
0
0
0
Bit 7
unimplemented, read as ²0²
Bit 6
INT2F: INT2 interrupt request flag
0: no request
1: interrupt request
Bit 5
INT1F: INT1 interrupt request flag
0: no request
1: interrupt request
Bit 4
INT0F: INT0 interrupt request flag
0: no request
1: interrupt request
Bit 3
INT2E: INT2 interrupt control
0: disable
1: enable
Bit 2
INT1E: INT1 interrupt control
0: disable
1: enable
Bit 1
INT0E: INT0 interrupt control
0: disable
1: enable
Bit 0
EMI: Global interrupt control
0: disable
1: enable
Rev. 1.00
147
0
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· INTC1 Register
¨
HT68F20/HT68F30/HT68F40/HT68F50
Bit
7
6
5
4
3
2
1
0
Name
¾
MF1F
MF0F
R/W
¾
R/W
R/W
CP1F
¾
MF1E
MF0E
CP1E
R/W
¾
R/W
R/W
R/W
POR
¾
0
0
0
¾
0
0
0
Bit 7
unimplemented, read as ²0²
Bit 6
MF1F: Multi-function Interrupt 1 Request Flag
0: no request
1: interrupt request
Bit 5
MF0F: Multi-function Interrupt 0 Request Flag
0: no request
1: interrupt request
Bit 4
CP1F: Comparator 1 Interrupt Request Flag
0: no request
1: interrupt request
Bit 3
unimplemented, read as ²0²
Bit 2
MF1E: Multi-function Interrupt 1 Control
0: disable
1: enable
Bit 1
MF0E: Multi-function Interrupt 0 Control
0: disable
1: enable
Bit 0
CP1E: Comparator 1 Interrupt Control
0: disable
1: enable
Rev. 1.00
148
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F60
Bit
7
6
5
4
3
2
1
0
Name
MF0F
CP1F
CP0F
INT3F
MF0E
CP1E
CP0E
INT3E
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7
MF0F: Multi-function Interrupt 0 Request Flag
0: no request
1: interrupt request
Bit 6
CP1F: Comparator 1 Interrupt Request Flag
0: no request
1: interrupt request
Bit 5
CP0F: Comparator 0 Interrupt Request Flag
0: no request
1: interrupt request
Bit 4
INT3F: INT3 Interrupt Request Flag
0: no request
1: interrupt request
Bit 3
MF0E: Multi-function Interrupt 0 Control
0: disable
1: enable
Bit 2
CP1E: Comparator 1 Interrupt Control
0: disable
1: enable
Bit 1
CP0E: Comparator 0 Interrupt Control
0: disable
1: enable
Bit 0
INT3E: INT3 Interrupt Control
0: disable
1: enable
Rev. 1.00
149
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· INTC2 Register
¨
HT68F20/HT68F30/HT68F40/HT68F50
Bit
7
6
5
4
3
2
1
0
Name
MF3F
TB1F
TB0F
MF2F
MF3E
TB1E
TB0E
MF2E
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7
MF3F: Multi-function Interrupt 3 Request Flag
0: no request
1: interrupt request
Bit 6
TB1F: Time Base 1 Interrupt Request Flag
0: no request
1: interrupt request
Bit 5
TB0F: Time Base 0 IInterrupt Request Flag
0: no request
1: interrupt request
Bit 4
MF2F: Multi-function Interrupt 2 Request Flag
0: no request
1: interrupt request
Bit 3
MF3E: Multi-function Interrupt 3 Control
0: disable
1: enable
Bit 2
TB1E: Time Base 1 Interrupt Control
0: disable
1: enable
Bit 1
TB0E: Time Base 0 Interrupt Control
0: disable
1: enable
Bit 0
MF2E: Multi-function Interrupt 2 Control
0: disable
1: enable
Rev. 1.00
150
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F60
Bit
7
6
5
4
3
2
1
0
Name
¾
MF3F
MF2F
R/W
¾
R/W
R/W
MF1F
¾
MF3E
MF2E
MF1E
R/W
¾
R/W
R/W
R/W
POR
¾
0
0
0
¾
0
0
0
Bit 7
unimplemented, read as ²0²
Bit 6
MF3F: Multi-function Interrupt 3 Request Flag
0: no request
1: interrupt request
Bit 5
MF2F: Multi-function Interrupt 2 Request Flag
0: no request
1: interrupt request
Bit 4
MF1F: Multi-function Interrupt 1 Request Flag
0: no request
1: interrupt request
Bit 3
unimplemented, read as ²0²
Bit 2
MF3E: Multi-function Interrupt 3 Control
0: disable
1: enable
Bit 1
MF2E: Multi-function Interrupt 2 Control
0: disable
1: enable
Bit 0
MF1E: Multi-function Interrupt 1 Control
0: disable
1: enable
Rev. 1.00
151
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· INTC3 Register
¨
HT68F60
Bit
7
6
5
4
3
2
1
0
Name
MF5F
TB1F
TB0F
MF4F
MF5E
TB1E
TB0E
MF4E
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
3
2
1
0
Bit 7
MF5F: Multi-function interrupt 5 request flag
0: no request
1: interrupt request
Bit 6
TB1F: Time Base 1 interrupt request flag
0: no request
1: interrupt request
Bit 5
TB0F: Time Base 0 interrupt request flag
0: no request
1: interrupt request
Bit 4
MF4F: Multi-function interrupt 4 request flag
0: no request
1: interrupt request
Bit 3
MF5E: Multi-function interrupt 5 control
0: disable
1: enable
Bit 2
TB1E: Time Base 1 interrupt control
0: disable
1: enable
Bit 1
TB0E: Time Base 0 interrupt control
0: disable
1: enable
Bit 0
MF4E: Multi-function interrupt 4 control
0: disable
1: enable
· MFI0 Register
¨
HT68F20/HT68F30
Bit
7
6
5
4
Name
¾
¾
T0AF
T0PF
¾
¾
T0AE
T0PE
R/W
¾
¾
R/W
R/W
¾
¾
R/W
R/W
POR
¾
¾
0
0
¾
¾
0
0
Bit 7~6
unimplemented, read as ²0²
Bit 5
T0AF: TM0 Comparator A match interrupt request flag
0: no request
1: interrupt request
Bit 4
T0PF: TM0 Comparator P match interrupt request flag
0: no request
1: interrupt request
Bit 3~2
unimplemented, read as ²0²
Bit 1
T0AE: TM0 Comparator A match interrupt control
0: disable
1: enable
Bit 0
T0PE: TM0 Comparator P match interrupt control
0: disable
1: enable
Rev. 1.00
152
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F40/HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
T2AF
T2PF
T0AF
T0PF
T2AE
T2PE
T0AE
T0PE
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
2
1
0
Bit 7
T2AF: TM2 Comparator A match interrupt request flag
0: no request
1: interrupt request
Bit 6
T2PF: TM2 Comparator P match interrupt request flag
0: no request
1: interrupt request
Bit 5
T0AF: TM0 Comparator A match interrupt request flag
0: no request
1: interrupt request
Bit 4
T0PF: TM0 Comparator P match interrupt request flag
0: no request
1: interrupt request
Bit 3
T2AE: TM2 Comparator A match interrupt control
0: disable
1: enable
Bit 2
T2PE: TM2 Comparator P match interrupt control
0: disable
1: enable
Bit 1
T0AE: TM0 Comparator A match interrupt control
0: disable
1: enable
Bit 0
T0PE: TM0 Comparator P match interrupt control
0: disable
1: enable
· MFI1 Register
¨
HT68F20
Bit
7
6
5
4
3
Name
¾
¾
T1AF
T1PF
¾
¾
T1AE
T1PE
R/W
¾
¾
R/W
R/W
¾
¾
R/W
R/W
POR
¾
¾
0
0
¾
¾
0
0
Bit 7~6
unimplemented, read as ²0²
Bit 5
T1AF: TM1 Comparator A match interrupt request flag
0: no request
1: interrupt request
Bit 4
T1PF: TM1 Comparator P match interrupt request flag
0: no request
1: interrupt request
Bit 3~2
unimplemented, read as ²0²
Bit 1
T1AE: TM1 Comparator A match interrupt control
0: disable
1: enable
Bit 0
T1PE: TM1 Comparator P match interrupt control
0: disable
1: enable
Rev. 1.00
153
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F30/HT68F40/HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
¾
T1BF
T1AF
T1PF
¾
T1BE
T1AE
T1PE
R/W
¾
R/W
R/W
R/W
¾
R/W
R/W
R/W
POR
¾
0
0
0
¾
0
0
0
Bit 7
Bit 6
unimplemented, read as ²0²
T1BF: TM1 Comparator B match interrupt request flag
0: no request
1: interrupt request
Bit 5
T1AF: TM1 Comparator A match interrupt request flag
0: no request
1: interrupt request
Bit 4
T1PF: TM1 Comparator B match interrupt request flag
0: no request
1: interrupt request
Bit 3
unimplemented, read as ²0²
Bit 2
T1BE: TM1 Comparator P match interrupt control
0: disable
1: enable
T1AE: TM1 Comparator A match interrupt control
0: disable
1: enable
T1PE: TM1 Comparator P match interrupt control
0: disable
1: enable
Bit 1
Bit 0
· MFI2 Register
Bit
7
6
5
4
3
2
1
0
Name
DEF
LVF
XPF
SIMF
DEE
LVE
XPE
SIME
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7
Bit 6
Bit 5
Bit 4
DEF: Data EEPROM interrupt request flag
0: No request
1: Interrupt request
LVF: LVD interrupt request flag
0: No request
1: Interrupt request
XPF: External peripheral interrupt request flag
0: No request
1: Interrupt request
SIMF: SIM interrupt request flag
0: No request
1: Interrupt request
Bit 3
DEE: Data EEPROM Interrupt Control
0: Disable
1: Enable
Bit 2
LVE: LVD Interrupt Control
0: Disable
1: Enable
XPE: External Peripheral Interrupt Control
0: Disable
1: Enable
SIME: SIM Interrupt Control
0: Disable
1: Enable
Bit 1
Bit 0
Rev. 1.00
154
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· MFI3 Register
¨
HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
T3AF
T3PF
¾
¾
T3AE
T3PE
R/W
¾
¾
R/W
R/W
¾
¾
R/W
R/W
POR
¾
¾
0
0
¾
¾
0
0
Bit 7~6
unimplemented, read as ²0²
Bit 5
T3AF: TM3 Comparator A match interrupt request flag
0: no request
1: interrupt request
Bit 4
T3PF: TM3 Comparator P match interrupt request flag
0: no request
1: interrupt request
Bit 3~2
unimplemented, read as ²0²
Bit 1
T3AE: TM3 Comparator A match interrupt control
0: disable
1: enable
Bit 0
T3PE: TM3 Comparator P match interrupt control
0: disable
1: enable
Interrupt Operation
The various interrupt enable bits, together with their associated request flags, are shown in the accompanying
diagrams with their order of priority. Some interrupt
sources have their own individual vector while others
share the same multi-function interrupt vector. Once an
interrupt subroutine is serviced, all the other interrupts
will be blocked, as the global interrupt enable bit, EMI bit
will be cleared automatically. This will prevent any further interrupt nesting from occurring. However, if other
interrupt requests occur during this interval, although
the interrupt will not be immediately serviced, the request flag will still be recorded.
When the conditions for an interrupt event occur, such
as a TM Comparator P, Comparator A or Comparator B
match etc, the relevant interrupt request flag will be set.
Whether the request flag actually generates a program
jump to the relevant interrupt vector is determined by the
condition of the interrupt enable bit. If the enable bit is
set high then the program will jump to its relevant vector;
if the enable bit is zero then although the interrupt request flag is set an actual interrupt will not be generated
and the program will not jump to the relevant interrupt
vector. The global interrupt enable bit, if cleared to zero,
will disable all interrupts.
If an interrupt requires immediate servicing while the
program is already in another interrupt service routine,
the EMI bit should be set after entering the routine, to allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged, even if the related
interrupt is enabled, until the Stack Pointer is decremented. If immediate service is desired, the stack must
be prevented from becoming full. In case of simultaneous requests, the accompanying diagram shows the
priority that is applied. All of the interrupt request flags
when set will wake-up the device if it is in SLEEP or
IDLE Mode, however to prevent a wake-up from occurring the corresponding flag should be set before the device is in SLEEP or IDLE Mode.
When an interrupt is generated, the Program Counter,
which stores the address of the next instruction to be executed, will be transferred onto the stack. The Program
Counter will then be loaded with a new address which
will be the value of the corresponding interrupt vector.
The microcontroller will then fetch its next instruction
from this interrupt vector. The instruction at this vector
will usually be a ²JMP² which will jump to another section of program which is known as the interrupt service
routine. Here is located the code to control the appropriate interrupt. The interrupt service routine must be terminated with a ²RETI², which retrieves the original
Program Counter address from the stack and allows the
microcontroller to continue with normal execution at the
point where the interrupt occurred.
Rev. 1.00
155
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
EMI auto disabled in ISR
Legend
xxF
Request Flag – no auto reset in ISR
xxF
Request Flag – auto reset in ISR
xxE
Enable Bit
Interrupt
Name
Request
Flags
Enable
Bits
Interrupt Request
Flags
Name
Enable
Bits
Master
Enable
Vector
INT0 Pin
INT0F
INT0E
EMI
04H
INT1 Pin
INT1F
INT1E
EMI
08H
Comp. 0
CP0F
CP0E
EMI
0CH
Comp. 1
CP1F
CP1E
EMI
10H
TM0 P
T0PF
T0PE
TM0 A
T0AF
T0AE
M. Funct. 0
MF0F
MF0E
EMI
14H
TM1 P
T1PF
T1PE
M. Funct. 1
MF1F
MF1E
EMI
18H
TM1 A
T1AF
T1AE
TM1 B
T1BF
T1BE
SIM
SIMF
M. Funct. 2
MF2F
MF2E
EMI
20H
Time Base 0
TB0F
TB0E
EMI
24H
Time Base 1
TB1F
TB1E
EMI
28H
M. Funct. 3
MF3F
MF3E
EMI
2CH
PINT Pin
LVD
EEPROM
XPF
SIME
XPE
LVF
LVE
DEF
DEE
Priority
High
Low
Interrupts contained within
Multi-Function Interrupts
HT68F30 only
Interrupt Structure - HT68F20/HT68F30
Rev. 1.00
156
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
EMI auto disabled in ISR
Legend
xxF
Request Flag – no auto reset in ISR
Interrupt
Name
Request
Flags
Enable
Bits
Master
Enable
Vector
xxF
Request Flag – auto reset in ISR
INT0 Pin
INT0F
INT0E
EMI
04H
INT1 Pin
INT1F
INT1E
EMI
08H
Comp. 0
CP0F
CP0E
EMI
0CH
Comp. 1
CP1F
CP1E
EMI
10H
M. Funct. 0
MF0F
MF0E
EMI
14H
M. Funct. 1
MF1F
MF1E
EMI
18H
M. Funct. 2
MF2F
MF2E
EMI
20H
Time Base 0
TB0F
TB0E
EMI
24H
Time Base 1
TB1F
TB1E
EMI
28H
MF3F
MF3E
EMI
2CH
xxE Enable Bit
Interrupt
Name
Request
Flags
Enable
Bits
TM0 P
TP0AF
T0PE
TM0 A
TP0AF
T0AE
TM2 P
T2PF
T2PE
TM2 A
T2AF
T2AE
TM1 P
T1PF
T1PE
TM1 A
T1AF
T1AE
TM1 B
T1BF
T1BE
TM3 P
T3PF
T3PE
TM3 A
T3AF
T3AE
SIM
PINT Pin
LVD
EEPROM
SIMF
XPF
SIME
XPE
LVF
LVE
DEF
DEE
M. Funct. 3
Priority
High
Low
Interrupts contained within
Multi-Function Interrupts
HT68F50 only
Interrupt Structure - HT68F40/HT68F50
Rev. 1.00
157
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
EMI auto disabled in ISR
Legend
xxF
Request Flag – no auto reset in ISR
xxF
Request Flag – auto reset in ISR
xxE
Interrupt
Name
Request
Flags
Enable
Bits
Master
Enable
INT0 Pin
INT0F
INT0E
EMI
04H
INT1 Pin
INT1F
INT1E
EMI
08H
INT2 Pin
INT2F
INT2E
EMI
0CH
INT3 Pin
INT3F
INT3E
EMI
10H
Comp. 0
CP0F
CP0E
EMI
14H
Comp. 1
CP1F
CP1E
EMI
18H
M. Funct. 0
MF0F
MF0E
EMI
1CH
M. Funct. 1
MF1F
MF1E
EMI
20H
M. Funct. 2
MF2F
MF2E
EMI
24H
M. Funct. 3
MF3F
MF3E
EMI
28H
M. Funct. 4
MF4F
MF4E
EMI
30H
Time Base 0
TB0F
TB0E
EMI
34H
Time Base 1
TB1F
TB1E
EMI
38H
M. Funct. 5
MF5F
MF5E
EMI
3CH
Vector
Priority
High
Enable Bit
Interrupt
Name
Request
Flags
Enable
Bits
TM0 P
T0PF
T0PE
TM0 A
T0AF
T0AE
TM1 P
T1PF
T1PE
TM1 A
T1AF
T1AE
TM1 B
T1BF
T1BE
TM2 P
T2PF
T2PE
TM2 A
T2AF
T2AE
TM3 P
T3PF
T3PE
TM3 A
T3AF
T3AE
SIM
SIMF
PINT Pin
LVD
EEPROM
XPF
SIME
XPE
LVF
LVE
DEF
DEE
Low
Interrupts contained within
Multi-Function Interrupts
Interrupt Structure - HT68F60
Rev. 1.00
158
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
External Interrupt
Multi-function Interrupt
The external interrupts are controlled by signal transitions on the pins INT0~INT3. An external interrupt request will take place when the external interrupt request
flags, INT0F~INT3F, are set, which will occur when a
transition, whose type is chosen by the edge select bits,
appears on the external interrupt pins. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and
respective external interrupt enable bit, INT0E~INT3E,
must first be set. Additionally the correct interrupt edge
type must be selected using the INTEG register to enable the external interrupt function and to choose the
trigger edge type. As the external interrupt pins are
pin-shared with I/O pins, they can only be configured as
external interrupt pins if their external interrupt enable
bit in the corresponding interrupt register has been set.
The pin must also be setup as an input by setting the
corresponding bit in the port control register. When the
interrupt is enabled, the stack is not full and the correct
transition type appears on the external interrupt pin, a
subroutine call to the external interrupt vector, will take
place. When the interrupt is serviced, the external interrupt request flags, INT0F~INT3F, will be automatically
reset and the EMI bit will be automatically cleared to disable other interrupts. Note that any pull-high resistor selections on the external interrupt pins will remain valid
even if the pin is used as an external interrupt input.
Within these devices there are up to six Multi-function
interrupts. Unlike the other independent interrupts,
these interrupts have no independent source, but rather
are formed from other existing interrupt sources, namely
the TM Interrupts, SIM Interrupt, External Peripheral Interrupt, LVD interrupt and EEPROM Interrupt.
A Multi-function interrupt request will take place when
any of the Multi-function interrupt request flags,
MF0F~MF5F are set. The Multi-function interrupt flags
will be set when any of their included functions generate
an interrupt request flag. To allow the program to branch
to its respective interrupt vector address, when the
Multi-function interrupt is enabled and the stack is not
full, and either one of the interrupts contained within
each of Multi-function interrupt occurs, a subroutine call
to one of the Multi-function interrupt vectors will take
place. When the interrupt is serviced, the related
Multi-Function request flag, will be automatically reset
and the EMI bit will be automatically cleared to disable
other interrupts.
However, it must be noted that, although the
Multi-function Interrupt flags will be automatically reset
when the interrupt is serviced, the request flags from the
original source of the Multi-function interrupts, namely
the TM Interrupts, SIM Interrupt, External Peripheral Interrupt, LVD interrupt and EEPROM Interrupt will not be
automatically reset and must be manually reset by the
application program.
The INTEG register is used to select the type of active
edge that will trigger the external interrupt. A choice of
either rising or falling or both edge types can be chosen
to trigger an external interrupt. Note that the INTEG register can also be used to disable the external interrupt
function.
Time Base Interrupts
The function of the Time Base Interrupts is to provide regular time signal in the form of an internal interrupt. They
are controlled by the overflow signals from their respective timer functions. When these happens their respective interrupt request flags, TB0F or TB1F will be set. To
allow the program to branch to their respective interrupt
vector addresses, the global interrupt enable bit, EMI and
Time Base enable bits, TB0E or TB1E, must first be set.
When the interrupt is enabled, the stack is not full and the
Time Base overflows, a subroutine call to their respective
vector locations will take place. When the interrupt is serviced, the respective interrupt request flag, TB0F or
TB1F, will be automatically reset and the EMI bit will be
cleared to disable other interrupts.
Comparator Interrupt
The comparator interrupt is controlled by the two internal comparators. A comparator interrupt request will
take place when the comparator interrupt request flags,
CP0F or CP1F, are set, a situation that will occur when
the comparator output changes state. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and
comparator interrupt enable bits, CP0E and CP1E, must
first be set. When the interrupt is enabled, the stack is
not full and the comparator inputs generate a comparator output transition, a subroutine call to the comparator
interrupt vector, will take place. When the interrupt is
serviced, the external interrupt request flags, will be automatically reset and the EMI bit will be automatically
cleared to disable other interrupts.
Rev. 1.00
159
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
The purpose of the Time Base Interrupt is to provide an interrupt signal at fixed time periods. Their clock sources originate from the internal clock source fTB. This fTB input clock passes through a divider, the division ratio of which is selected by programming the appropriate bits in the TBC register to obtain longer interrupt periods whose value ranges.
The clock source that generates fTB, which in turn controls the Time Base interrupt period, can originate from several
different sources, as shown in the System Operating Mode section.
· TBC Register
Bit
7
6
5
4
3
2
1
0
Name
TBON
TBCK
TB11
TB10
LXTLP
TB02
TB01
TB00
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
1
1
0
1
1
1
Bit 7
TBON: TB0 and TB1 Control
0: Disable
1: Enable
Bit 6
TBCK: Select fTB Clock
0: fTBC
1: fSYS/4
Bit 5~4
TB11~TB10: Select Time Base 1 Time-out Period
00: 4096/fTB
01: 8192/fTB
10: 16384/fTB
11: 32768/fTB
Bit 3
LXTLP: LXT Low Power Control
0: Disable
1: Enable
Bit 2~0
TB02~TB00: Select Time Base 0 Time-out Period
000: 256/fTB
001: 512/fTB
010: 1024/fTB
011: 2048/fTB
100: 4096/fTB
101: 8192/fTB
110: 16384/fTB
111: 32768/fTB
T B 0 2 ~ T B 0 0
fS
L X T
M
/4
M
U
L IR C
Y S
X
C o n fig u r a tio n
O p tio n
fT
B C
fT
U
¸
2
8
~ 2
1 5
T im e B a s e 0 In te r r u p t
1 2
~ 2
1 5
T im e B a s e 1 In te r r u p t
B
X
¸
T B C K B it
2
T B 1 1 ~ T B 1 0
Time Base Interrupt
Rev. 1.00
160
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Serial Interface Module Interrupt
must first be set. When the interrupt is enabled, the
stack is not full and an EEPROM Write or Read cycle
ends, a subroutine call to the respective Multi-function
Interrupt vector, will take place. When the EEPROM Interrupt is serviced, the EMI bit will be automatically
cleared to disable other interrupts, however only the
Multi-function interrupt request flag will be also automatically cleared. As the DEF flag will not be automatically
cleared, it has to be cleared by the application program.
The Serial Interface Module Interrupt, also known as the
SIM interrupt, is contained within the Multi-function Interrupt. A SIM Interrupt request will take place when the
SIM Interrupt request flag, SIMF, is set, which occurs
when a byte of data has been received or transmitted by
the SIM interface. To allow the program to branch to its
respective interrupt vector address, the global interrupt
enable bit, EMI, and the Serial Interface Interrupt enable
bit, SIME, and Muti-function interrupt enable bits, must
first be set. When the interrupt is enabled, the stack is
not full and a byte of data has been transmitted or received by the SIM interface, a subroutine call to the respective Multi-function Interrupt vector, will take place.
When the Serial Interface Interrupt is serviced, the EMI
bit will be automatically cleared to disable other interrupts, however only the Multi-function interrupt request
flag will be also automatically cleared. As the SIMF flag
will not be automatically cleared, it has to be cleared by
the application program.
LVD Interrupt
The Low Voltage Detector Interrupt is contained within
the Multi-function Interrupt. An LVD Interrupt request will
take place when the LVD Interrupt request flag, LVF, is
set, which occurs when the Low Voltage Detector function detects a low power supply voltage. To allow the
program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, Low Voltage
Interrupt enable bit, LVE, and associated Multi-function
interrupt enable bit, must first be set. When the interrupt
is enabled, the stack is not full and a low voltage condition occurs, a subroutine call to the Multi-function Interrupt vector, will take place. When the Low Voltage
Interrupt is serviced, the EMI bit will be automatically
cleared to disable other interrupts, however only the
Multi-function interrupt request flag will be also automatically cleared. As the LVF flag will not be automatically
cleared, it has to be cleared by the application program.
External Peripheral Interrupt
The External Peripheral Interrupt operates in a similar
way to the external interrupt and is contained within the
Multi-function Interrupt. A Peripheral Interrupt request
will take place when the External Peripheral Interrupt request flag, XPF, is set, which occurs when a negative
edge transition appears on the PINT pin. To allow the
program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, external peripheral interrupt enable bit, XPE, and associated
Multi-function interrupt enable bit, must first be set.
When the interrupt is enabled, the stack is not full and a
negative transition appears on the External Peripheral
Interrupt pin, a subroutine call to the respective
Multi-function Interrupt, will take place. When the External Peripheral Interrupt is serviced, the EMI bit will be
automatically cleared to disable other interrupts, however only the Multi-function interrupt request flag will be
also automatically cleared.
TM Interrupts
The Compact and Standard Type TMs have two interrupts each, while the Enhanced Type TM has three interrupts. All of the TM interrupts are contained within the
Multi-function Interrupts. For each of the Compact and
Standard Type TMs there are two interrupt request flags
TnPF and TnAF and two enable bits TnPE and TnAE.
For the Enhanced Type TM there are three interrupt request flags TnPF, TnAF and TnBF and three enable bits
TnPE, TnAE and TnBE. A TM interrupt request will take
place when any of the TM request flags are set, a situation which occurs when a TM comparator P, A or B
match situation happens.
As the XPF flag will not be automatically cleared, it has
to be cleared by the application program. The external
peripheral interrupt pin is pin-shared with several other
pins with different functions. It must therefore be properly configured to enable it to operate as an External Peripheral Interrupt pin.
To allow the program to branch to its respective interrupt
vector address, the global interrupt enable bit, EMI, respective TM Interrupt enable bit, and relevant
Multi-function Interrupt enable bit, MFnE, must first be
set. When the interrupt is enabled, the stack is not full
and a TM comparator match situation occurs, a subroutine call to the relevant Multi-function Interrupt vector locations, will take place. When the TM interrupt is
serviced, the EMI bit will be automatically cleared to disable other interrupts, however only the related MFnF
flag will be automatically cleared. As the TM interrupt request flags will not be automatically cleared, they have
to be cleared by the application program.
EEPROM Interrupt
The EEPROM Interrupt, is contained within the
Multi-function Interrupt. An EEPROM Interrupt request
will take place when the EEPROM Interrupt request
flag, DEF, is set, which occurs when an EEPROM Write
or Read cycle ends. To allow the program to branch to
its respective interrupt vector address, the global interrupt enable bit, EMI, EEPROM Interrupt enable bit,
DEE, and associated Multi-function interrupt enable bit,
Rev. 1.00
161
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
It is recommended that programs do not use the ²CALL²
instruction within the interrupt service subroutine. Interrupts often occur in an unpredictable manner or need to
be serviced immediately. If only one stack is left and the
interrupt is not well controlled, the original control sequence will be damaged once a CALL subroutine is executed in the interrupt subroutine.
Interrupt Wake-up Function
Each of the interrupt functions has the capability of waking up the microcontroller when in the SLEEP or IDLE
Mode. A wake-up is generated when an interrupt request flag changes from low to high and is independent
of whether the interrupt is enabled or not. Therefore,
even though the device is in the SLEEP or IDLE Mode
and its system oscillator stopped, situations such as external edge transitions on the external interrupt pins, a
low power supply voltage or comparator input change
may cause their respective interrupt flag to be set high
and consequently generate an interrupt. Care must
therefore be taken if spurious wake-up situations are to
be avoided. If an interrupt wake-up function is to be disabled then the corresponding interrupt request flag
should be set high before the device enters the SLEEP
or IDLE Mode. The interrupt enable bits have no effect
on the interrupt wake-up function.
Every interrupt has the capability of waking up the
microcontroller when it is in SLEEP or IDLE Mode, the
wake up being generated when the interrupt request
flag changes from low to high. If it is required to prevent
a certain interrupt from waking up the microcontroller
then its respective request flag should be first set high
before enter SLEEP or IDLE Mode.
As only the Program Counter is pushed onto the stack,
then when the interrupt is serviced, if the contents of the
accumulator, status register or other registers are altered by the interrupt service program, their contents
should be saved to the memory at the beginning of the
interrupt service routine.
Programming Considerations
By disabling the relevant interrupt enable bits, a requested interrupt can be prevented from being serviced,
however, once an interrupt request flag is set, it will remain in this condition in the interrupt register until the
corresponding interrupt is serviced or until the request
flag is cleared by the application program.
To return from an interrupt subroutine, either a RET or
RETI instruction may be executed. The RETI instruction
in addition to executing a return to the main program
also automatically sets the EMI bit high to allow further
interrupts. The RET instruction however only executes a
return to the main program leaving the EMI bit in its
present zero state and therefore disabling the execution
of further interrupts.
Where a certain interrupt is contained within a
Multi-function interrupt, then when the interrupt service
routine is executed, as only the Multi-function interrupt
request flags, MF0F~MF5F, will be automatically
cleared, the individual request flag for the function
needs to be cleared by the application program.
Rev. 1.00
162
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Power Down Mode and Wake-up
Entering the IDLE or SLEEP Mode
Wake-up
There is only one way for the device to enter the SLEEP
or IDLE Mode and that is to execute the ²HALT² instruction in the application program. When this instruction is
executed, the following will occur:
After the system enters the SLEEP or IDLE Mode, it can
be woken up from one of various sources listed as follows:
· An external reset
· An external falling edge on Port A
· The system clock will be stopped and the application
· A system interrupt
program will stop at the ²HALT² instruction.
· A WDT overflow
· The Data Memory contents and registers will maintain
If the system is woken up by an external reset, the device will experience a full system reset, however, if the
device is woken up by a WDT overflow, a Watchdog
Timer reset will be initiated. Although both of these
wake-up methods will initiate a reset operation, the actual source of the wake-up can be determined by examining the TO and PDF flags. The PDF flag is cleared by a
system power-up or executing the clear Watchdog
Timer instructions and is set when executing the ²HALT²
instruction. The TO flag is set if a WDT time-out occurs,
and causes a wake-up that only resets the Program
Counter and Stack Pointer, the other flags remain in
their original status.
their present condition.
· The WDT will be cleared and resume counting if the
WDT clock source is selected to come from the fSUB
clock source and the WDT is enabled. The WDT will
stop if its clock source originates from the system clock.
· The I/O ports will maintain their present condition.
· In the status register, the Power Down flag, PDF, will be
set and the Watchdog time-out flag, TO, will be cleared.
Standby Current Considerations
As the main reason for entering the SLEEP or IDLE
Mode is to keep the current consumption of the device
to as low a value as possible, perhaps only in the order
of several micro-amps, there are other considerations
which must also be taken into account by the circuit designer if the power consumption is to be minimised.
Special attention must be made to the I/O pins on the
device. All high-impedance input pins must be connected to either a fixed high or low level as any floating
input pins could create internal oscillations and result in
increased current consumption. This also applies to devices which have different package types, as there may
be unbonbed pins. These must either be setup as outputs or if setup as inputs must have pull-high resistors
connected. Care must also be taken with the loads,
which are connected to I/O pins, which are setup as outputs. These should be placed in a condition in which
minimum current is drawn or connected only to external
circuits that do not draw current, such as other CMOS
inputs. Also note that additional standby current will also
be required if the configuration options have enabled
the LIRC oscillator.
Rev. 1.00
Each pin on Port A can be setup using the PAWU register to permit a negative transition on the pin to wake-up
the system. When a Port A pin wake-up occurs, the program will resume execution at the instruction following
the ²HALT² instruction.
If the system is woken up by an interrupt, then two possible situations may occur. The first is where the related
interrupt is disabled or the interrupt is enabled but the
stack is full, in which case the program will resume execution at the instruction following the ²HALT² instruction.
In this situation, the interrupt which woke-up the device
will not be immediately serviced, but will rather be serviced later when the related interrupt is finally enabled or
when a stack level becomes free. The other situation is
where the related interrupt is enabled and the stack is
not full, in which case the regular interrupt response
takes place. If an interrupt request flag is set high before
entering the SLEEP or IDLE Mode, the wake-up function of the related interrupt will be disabled.
163
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Low Voltage Detector - LVD
Each device has a Low Voltage Detector function, also
known as LVD. This enabled the device to monitor the
power supply voltage, VDD, and provide a warning signal
should it fall below a certain level. This function may be
especially useful in battery applications where the supply voltage will gradually reduce as the battery ages, as
it allows an early warning battery low signal to be generated. The Low Voltage Detector also has the capability
of generating an interrupt signal.
fixed voltages below which a low voltage condition will
be detemined. A low voltage condition is indicated when
the LVDO bit is set. If the LVDO bit is low, this indicates
that the VDD voltage is above the preset low voltage
value. The LVDEN bit is used to control the overall
on/off function of the low voltage detector. Setting the bit
high will enable the low voltage detector. Clearing the bit
to zero will switch off the internal low voltage detector
circuits. As the low voltage detector will consume a certain amount of power, it may be desirable to switch off
the circuit when not in use, an important consideration in
power sensitive battery powered applications.
LVD Register
The Low Voltage Detector function is controlled using a
single register with the name LVDC. Three bits in this
register, VLVD2~VLVD0, are used to select one of eight
· LVDC Register
Bit
7
6
5
4
3
2
1
0
Name
¾
¾
LVDO
LVDEN
¾
VLVD2
VLVD1
VLVD0
R/W
¾
¾
R
R/W
¾
R/W
R/W
R/W
POR
¾
¾
0
0
¾
0
0
0
Bit 7~6
unimplemented, read as ²0²
Bit 5
LVDO: LVD Output Flag
0: No Low Voltage Detect
1: Low Voltage Detect
Bit
LVDEN: Low Voltage Detector Control
0: Disable
1: Enable
Bit 3
unimplemented, read as ²0²
Bit 2~0
VLVD2 ~ VLVD0: Select LVD Voltage
000: 2.0V
001: 2.2V
010: 2.4V
011: 2.7V
100: 3.0V
101: 3.3V
110: 3.6V
111: 4.4V
Rev. 1.00
164
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
LVD Operation
LCD Operation
The Low Voltage Detector function operates by comparing the power supply voltage, VDD, with a pre-specified
voltage level stored in the LVDC register. This has a
range of between 2.0V and 4.4V. When the power supply voltage, VDD, falls below this pre-determined value,
the LVDO bit will be set high indicating a low power supply voltage condition. The Low Voltage Detector function is supplied by a reference voltage which will be
automatically enabled. When the device is powered
down the low voltage detector will remain active if the
LVDEN bit is high. After enabling the Low Voltage Detector, a time delay tLVDS should be allowed for the circuitry to stabilise before reading the LVDO bit. Note also
that as the VDD voltage may rise and fall rather slowly, at
the voltage nears that of VLVD, there may be multiple bit
LVDO transitions.
An external LCD panel can be driven using this device
by configuring the PC0~PC3 or PC0 ~ PC1, PC6 ~ PC7
pins as common pins and using other output ports lines
as segment pins. The LCD driver function is controlled
using the SCOMC register which in addition to controlling the overall on/off function also controls the bias voltage setup function. This enables the LCD COM driver to
generate the necessary VDD/2 voltage levels for LCD 1/2
bias operation.
The SCOMEN bit in the SCOMC register is the overall
master control for the LCD driver, however this bit is
used in conjunction with the COMnEN bits to select
which Port C pins are used for LCD driving. Note that the
Port Control register does not need to first setup the pins
as outputs to enable the LCD driver operation.
V
D D
V D D
V
S C O M
L V D
V
L V D E N
D D
o p e r a tin g c u r r e n t
/2
S C O M 0 ~
S C O M 3
C O M n E N
S C O M E N
L V D O
tL
V D S
LVD Operation
The Low Voltage Detector also has its own interrupt
which is contained within one of the Multi-function interrupts, providing an alternative means of low voltage detection, in addition to polling the LVDO bit. The interrupt
will only be generated after a delay of tLVD after the LVDO
bit has been set high by a low voltage condition. When
the device is powered down the Low Voltage Detector
will remain active if the LVDEN bit is high. In this case,
the LVF interrupt request flag will be set, causing an interrupt to be generated if VDD falls below the preset LVD
voltage. This will cause the device to wake-up from the
SLEEP or IDLE Mode, however if the Low Voltage Detector wake up function is not required then the LVF flag
should be first set high before the device enters the
SLEEP or IDLE Mode.
LCD COM Bias
SCOMEN
COMnEN
Pin Function
O/P Level
0
X
I/O
0 or 1
1
0
I/O
0 or 1
1
1
SCOMn
VDD/2
Output Control
LCD Bias Control
The LCD COM driver enables a range of selections to
be provided to suit the requirement of the LCD panel
which is being used. The bias resistor choice is implemented using the ISEL1 and ISEL0 bits in the SCOMC
register.
SCOM Function for LCD
The devices have the capability of driving external LCD
panels. The common pins for LCD driving, SCOM0~
SCOM3, are pin shared with certain pin on the PC0~
PC3 or PC0 ~ PC1, PC6 ~ PC7 port. The LCD signals
(COM and SEG) are generated using the application
program.
Rev. 1.00
165
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· SCOMC Register
¨
HT68F20
Bit
7
6
5
4
3
2
1
0
Name
D7
ISEL1
ISEL0
SCOMEN
COM3EN
COM2EN
COM1EN
COM0EN
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7
Reserved Bit
0: Correct level - bit must be reset to zero for correct operation
1: Unpredictable operation - bit must not be set high
Bit 6~5
ISEL1, ISEL0: ISEL1 ~ ISEL0: Select SCOM typical bias current (VDD=5V)
00: 25mA
01: 50mA
10: 100mA
11: 200mA
Bit 4
SCOMEN: SCOM module Control
0: Disable
1: Enable
Bit 3
COM3EN: PC3 or SCOM3 selection
0: GPIO
1: SCOM3
Bit 2
COM2EN: PC2 or SCOM2 selection
0: GPIO
1: SCOM2
Bit 1
COM1EN: PC1 or SCOM1 selection
0: GPIO
1: SCOM1
Bit 0
COM0EN: PC0 or SCOM0 selection
0: GPIO
1: SCOM0
Rev. 1.00
166
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
¨
HT68F30/HT68F40/HT68F50/HT68F60
Bit
7
6
5
4
3
2
1
0
Name
D7
ISEL1
ISEL0
SCOMEN
COM3EN
COM2EN
COM1EN
COM0EN
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
POR
0
0
0
0
0
0
0
0
Bit 7
Reserved Bit
0: Correct level - bit must be reset to zero for correct operation
1: Unpredictable operation - bit must not be set high
Bit 6~5
ISEL1, ISEL0: Select SCOM typical bias current (VDD=5V)
00: 25mA
01: 50mA
10: 100mA
11: 200mA
Bit 4
SCOMEN: SCOM module control
0: disable
1: enable
Bit 3
COM3EN: PC7 or SCOM3 selection
0: GPIO
1: SCOM3
Bit 2
COM2EN: PC6 or SCOM2 selection
0: GPIO
1: SCOM2
Bit 1
COM1EN: PC1 or SCOM1 selection
0: GPIO
1: SCOM1
Bit 0
COM0EN: PC0 or SCOM0 selection
0: GPIO
1: SCOM0
Rev. 1.00
167
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Configuration Options
Configuration options refer to certain options within the MCU that are programmed into the device during the programming process. During the development process, these options are selected using the HT-IDE software development
tools. As these options are programmed into the device using the hardware programming tools, once they are selected
they cannot be changed later using the application program. All options must be defined for proper system function, the
details of which are shown in the table.
No.
Options
Oscillator Options
1
High Speed System Oscillator Selection - fH:
1. HXT
2. ERC
3. HIRC
2
Low Speed System Oscillator Selection - fL:
1. LXT
2. LIRC
3
WDT Clock Selection - fS:
1. fSUB
2. fSYS/4
4
HIRC Frequency Selection:
1. 4MHz
2. 8MHz
3. 12MHz
Note: The fSUB and the fTBC clock source are LXT or LIRC selection by the fL configuration option.
Reset Pin Options
5
PB0/RES Pin Options:
1. RES pin
2. I/O pin
Watchdog Options
6
Watchdog Timer Function:
1. Enable
2. Disable
7
CLRWDT Instructions Selection:
1. 1 instructions
2. 2 instructions
LVR Options
8
LVR Function:
1. Enable
2. Disable
9
LVR Voltage Selection:
1. 2.10V
2. 2.55V
3. 3.15V
4. 4.20V
Rev. 1.00
168
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
No.
Options
SIM Options
10
SIM Function:
1. Enable
2. Disable
11
SPI - WCOL bit:
1. Enable
2. Disable
12
SPI - CSEN bit:
1. Enable
2. Disable
13
I2C Debounce Time Selection:
1. No debounce
2. 1 system clock debounce
3. 2 system clock debounce
Application Circuits
V
D D
0 .0 1 m F * *
0 .1 m F
V D D
R e s e t
C ir c u it
1 0 k W ~
1 0 0 k W
1 N 4 1 4 8 *
0 .1 ~ 1 m F
3 0 0 W *
R E S
P A 0 ~ P A 7
P B 5 ~ P B 7
V S S
O S C 1
O S C
C ir c u it
O S C 2
P C 0 ~ P C 7
P D 0 ~ P D 7
P E 0 ~ P E 5
P F 0 ~ P F 7
S e e O s c illa to r
S e c tio n
P G 0 ~ P G 1
X T 1
O S C
C ir c u it
X T 2
S e e O s c illa to r
S e c tio n
Note:
²*² It is recommended that this component is added for added ESD protection.
²**² It is recommended that this component is added in environments where power line noise is significant.
Rev. 1.00
169
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Instruction Set
Introduction
sure correct handling of carry and borrow data when results exceed 255 for addition and less than 0 for subtraction. The increment and decrement instructions
INC, INCA, DEC and DECA provide a simple means of
increasing or decreasing by a value of one of the values
in the destination specified.
C e n t ra l t o t he s uc c es s f ul oper a t i on o f a n y
microcontroller is its instruction set, which is a set of program instruction codes that directs the microcontroller to
perform certain operations. In the case of Holtek
microcontroller, a comprehensive and flexible set of
over 60 instructions is provided to enable programmers
to implement their application with the minimum of programming overheads.
Logical and Rotate Operations
The standard logical operations such as AND, OR, XOR
and CPL all have their own instruction within the Holtek
microcontroller instruction set. As with the case of most
instructions involving data manipulation, data must pass
through the Accumulator which may involve additional
programming steps. In all logical data operations, the
zero flag may be set if the result of the operation is zero.
Another form of logical data manipulation comes from
the rotate instructions such as RR, RL, RRC and RLC
which provide a simple means of rotating one bit right or
left. Different rotate instructions exist depending on program requirements. Rotate instructions are useful for
serial port programming applications where data can be
rotated from an internal register into the Carry bit from
where it can be examined and the necessary serial bit
set high or low. Another application where rotate data
operations are used is to implement multiplication and
division calculations.
For easier understanding of the various instruction
codes, they have been subdivided into several functional groupings.
Instruction Timing
Most instructions are implemented within one instruction cycle. The exceptions to this are branch, call, or table read instructions where two instruction cycles are
required. One instruction cycle is equal to 4 system
clock cycles, therefore in the case of an 8MHz system
oscillator, most instructions would be implemented
within 0.5ms and branch or call instructions would be implemented within 1ms. Although instructions which require one more cycle to implement are generally limited
to the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other instructions
which involve manipulation of the Program Counter Low
register or PCL will also take one more cycle to implement. As instructions which change the contents of the
PCL will imply a direct jump to that new address, one
more cycle will be required. Examples of such instructions would be ²CLR PCL² or ²MOV PCL, A². For the
case of skip instructions, it must be noted that if the result of the comparison involves a skip operation then
this will also take one more cycle, if no skip is involved
then only one cycle is required.
Branches and Control Transfer
Program branching takes the form of either jumps to
specified locations using the JMP instruction or to a subroutine using the CALL instruction. They differ in the
sense that in the case of a subroutine call, the program
must return to the instruction immediately when the subroutine has been carried out. This is done by placing a
return instruction RET in the subroutine which will cause
the program to jump back to the address right after the
CALL instruction. In the case of a JMP instruction, the
program simply jumps to the desired location. There is
no requirement to jump back to the original jumping off
point as in the case of the CALL instruction. One special
and extremely useful set of branch instructions are the
conditional branches. Here a decision is first made regarding the condition of a certain data memory or individual bits. Depending upon the conditions, the program
will continue with the next instruction or skip over it and
jump to the following instruction. These instructions are
the key to decision making and branching within the program perhaps determined by the condition of certain input switches or by the condition of internal data bits.
Moving and Transferring Data
The transfer of data within the microcontroller program
is one of the most frequently used operations. Making
use of three kinds of MOV instructions, data can be
transferred from registers to the Accumulator and
vice-versa as well as being able to move specific immediate data directly into the Accumulator. One of the most
important data transfer applications is to receive data
from the input ports and transfer data to the output ports.
Arithmetic Operations
The ability to perform certain arithmetic operations and
data manipulation is a necessary feature of most
microcontroller appl i c a t i ons . W i t hi n t he H o l t e k
microcontroller instruction set are a range of add and
subtract instruction mnemonics to enable the necessary
arithmetic to be carried out. Care must be taken to en-
Rev. 1.00
170
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Bit Operations
Other Operations
The ability to provide single bit operations on Data Memory is an extremely flexible feature of all Holtek
microcontrollers. This feature is especially useful for
output port bit programming where individual bits or port
pins can be directly set high or low using either the ²SET
[m].i² or ²CLR [m].i² instructions respectively. The feature removes the need for programmers to first read the
8-bit output port, manipulate the input data to ensure
that other bits are not changed and then output the port
with the correct new data. This read-modify-write process is taken care of automatically when these bit operation instructions are used.
In addition to the above functional instructions, a range
of other instructions also exist such as the ²HALT² instruction for Power-down operations and instructions to
control the operation of the Watchdog Timer for reliable
program operations under extreme electric or electromagnetic environments. For their relevant operations,
refer to the functional related sections.
Instruction Set Summary
The following table depicts a summary of the instruction
set categorised according to function and can be consulted as a basic instruction reference using the following listed conventions.
Table Read Operations
Table conventions:
Data storage is normally implemented by using registers. However, when working with large amounts of
fixed data, the volume involved often makes it inconvenient to store the fixed data in the Data Memory. To overcome this problem, Holtek microcontrollers allow an
area of Program Memory to be setup as a table where
data can be directly stored. A set of easy to use instructions provides the means by which this fixed data can be
referenced and retrieved from the Program Memory.
Mnemonic
x: Bits immediate data
m: Data Memory address
A: Accumulator
i: 0~7 number of bits
addr: Program memory address
Description
Cycles
Flag Affected
1
1Note
1
1
1Note
1
1
1Note
1
1Note
1Note
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
C
1
1
1
1Note
1Note
1Note
1
1
1
1Note
1
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
1
1Note
1
1Note
Z
Z
Z
Z
Arithmetic
ADD A,[m]
ADDM A,[m]
ADD A,x
ADC A,[m]
ADCM A,[m]
SUB A,x
SUB A,[m]
SUBM A,[m]
SBC A,[m]
SBCM A,[m]
DAA [m]
Add Data Memory to ACC
Add ACC to Data Memory
Add immediate data to ACC
Add Data Memory to ACC with Carry
Add ACC to Data memory with Carry
Subtract immediate data from the ACC
Subtract Data Memory from ACC
Subtract Data Memory from ACC with result in Data Memory
Subtract Data Memory from ACC with Carry
Subtract Data Memory from ACC with Carry, result in Data Memory
Decimal adjust ACC for Addition with result in Data Memory
Logic Operation
AND A,[m]
OR A,[m]
XOR A,[m]
ANDM A,[m]
ORM A,[m]
XORM A,[m]
AND A,x
OR A,x
XOR A,x
CPL [m]
CPLA [m]
Logical AND Data Memory to ACC
Logical OR Data Memory to ACC
Logical XOR Data Memory to ACC
Logical AND ACC to Data Memory
Logical OR ACC to Data Memory
Logical XOR ACC to Data Memory
Logical AND immediate Data to ACC
Logical OR immediate Data to ACC
Logical XOR immediate Data to ACC
Complement Data Memory
Complement Data Memory with result in ACC
Increment & Decrement
INCA [m]
INC [m]
DECA [m]
DEC [m]
Rev. 1.00
Increment Data Memory with result in ACC
Increment Data Memory
Decrement Data Memory with result in ACC
Decrement Data Memory
171
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Mnemonic
Description
Cycles
Flag Affected
Rotate Data Memory right with result in ACC
Rotate Data Memory right
Rotate Data Memory right through Carry with result in ACC
Rotate Data Memory right through Carry
Rotate Data Memory left with result in ACC
Rotate Data Memory left
Rotate Data Memory left through Carry with result in ACC
Rotate Data Memory left through Carry
1
1Note
1
1Note
1
1Note
1
1Note
None
None
C
C
None
None
C
C
Move Data Memory to ACC
Move ACC to Data Memory
Move immediate data to ACC
1
1Note
1
None
None
None
Clear bit of Data Memory
Set bit of Data Memory
1Note
1Note
None
None
Jump unconditionally
Skip if Data Memory is zero
Skip if Data Memory is zero with data movement to ACC
Skip if bit i of Data Memory is zero
Skip if bit i of Data Memory is not zero
Skip if increment Data Memory is zero
Skip if decrement Data Memory is zero
Skip if increment Data Memory is zero with result in ACC
Skip if decrement Data Memory is zero with result in ACC
Subroutine call
Return from subroutine
Return from subroutine and load immediate data to ACC
Return from interrupt
2
1Note
1note
1Note
1Note
1Note
1Note
1Note
1Note
2
2
2
2
None
None
None
None
None
None
None
None
None
None
None
None
None
Read table to TBLH and Data Memory
Read table (last page) to TBLH and Data Memory
2note
2Note
None
None
No operation
Clear Data Memory
Set Data Memory
Clear Watchdog Timer
Pre-clear Watchdog Timer
Pre-clear Watchdog Timer
Swap nibbles of Data Memory
Swap nibbles of Data Memory with result in ACC
Enter power down mode
1
1Note
1Note
1
1
1
1Note
1
1
None
None
None
TO, PDF
TO, PDF
TO, PDF
None
None
TO, PDF
Rotate
RRA [m]
RR [m]
RRCA [m]
RRC [m]
RLA [m]
RL [m]
RLCA [m]
RLC [m]
Data Move
MOV A,[m]
MOV [m],A
MOV A,x
Bit Operation
CLR [m].i
SET [m].i
Branch
JMP addr
SZ [m]
SZA [m]
SZ [m].i
SNZ [m].i
SIZ [m]
SDZ [m]
SIZA [m]
SDZA [m]
CALL addr
RET
RET A,x
RETI
Table Read
TABRD [m]
TABRDL [m]
Miscellaneous
NOP
CLR [m]
SET [m]
CLR WDT
CLR WDT1
CLR WDT2
SWAP [m]
SWAPA [m]
HALT
Note:
1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,
if no skip takes place only one cycle is required.
2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.
3. For the ²CLR WDT1² and ²CLR WDT2² instructions the TO and PDF flags may be affected by
the execution status. The TO and PDF flags are cleared after both ²CLR WDT1² and
²CLR WDT2² instructions are consecutively executed. Otherwise the TO and PDF flags
remain unchanged.
Rev. 1.00
172
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Instruction Definition
ADC A,[m]
Add Data Memory to ACC with Carry
Description
The contents of the specified Data Memory, Accumulator and the carry flag are added. The
result is stored in the Accumulator.
Operation
ACC ¬ ACC + [m] + C
Affected flag(s)
OV, Z, AC, C
ADCM A,[m]
Add ACC to Data Memory with Carry
Description
The contents of the specified Data Memory, Accumulator and the carry flag are added. The
result is stored in the specified Data Memory.
Operation
[m] ¬ ACC + [m] + C
Affected flag(s)
OV, Z, AC, C
ADD A,[m]
Add Data Memory to ACC
Description
The contents of the specified Data Memory and the Accumulator are added. The result is
stored in the Accumulator.
Operation
ACC ¬ ACC + [m]
Affected flag(s)
OV, Z, AC, C
ADD A,x
Add immediate data to ACC
Description
The contents of the Accumulator and the specified immediate data are added. The result is
stored in the Accumulator.
Operation
ACC ¬ ACC + x
Affected flag(s)
OV, Z, AC, C
ADDM A,[m]
Add ACC to Data Memory
Description
The contents of the specified Data Memory and the Accumulator are added. The result is
stored in the specified Data Memory.
Operation
[m] ¬ ACC + [m]
Affected flag(s)
OV, Z, AC, C
AND A,[m]
Logical AND Data Memory to ACC
Description
Data in the Accumulator and the specified Data Memory perform a bitwise logical AND operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²AND² [m]
Affected flag(s)
Z
AND A,x
Logical AND immediate data to ACC
Description
Data in the Accumulator and the specified immediate data perform a bitwise logical AND
operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²AND² x
Affected flag(s)
Z
ANDM A,[m]
Logical AND ACC to Data Memory
Description
Data in the specified Data Memory and the Accumulator perform a bitwise logical AND operation. The result is stored in the Data Memory.
Operation
[m] ¬ ACC ²AND² [m]
Affected flag(s)
Z
Rev. 1.00
173
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
CALL addr
Subroutine call
Description
Unconditionally calls a subroutine at the specified address. The Program Counter then increments by 1 to obtain the address of the next instruction which is then pushed onto the
stack. The specified address is then loaded and the program continues execution from this
new address. As this instruction requires an additional operation, it is a two cycle instruction.
Operation
Stack ¬ Program Counter + 1
Program Counter ¬ addr
Affected flag(s)
None
CLR [m]
Clear Data Memory
Description
Each bit of the specified Data Memory is cleared to 0.
Operation
[m] ¬ 00H
Affected flag(s)
None
CLR [m].i
Clear bit of Data Memory
Description
Bit i of the specified Data Memory is cleared to 0.
Operation
[m].i ¬ 0
Affected flag(s)
None
CLR WDT
Clear Watchdog Timer
Description
The TO, PDF flags and the WDT are all cleared.
Operation
WDT cleared
TO ¬ 0
PDF ¬ 0
Affected flag(s)
TO, PDF
CLR WDT1
Pre-clear Watchdog Timer
Description
The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunction with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Repetitively executing this instruction without alternately executing CLR WDT2 will have no
effect.
Operation
WDT cleared
TO ¬ 0
PDF ¬ 0
Affected flag(s)
TO, PDF
CLR WDT2
Pre-clear Watchdog Timer
Description
The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunction with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Repetitively executing this instruction without alternately executing CLR WDT1 will have no
effect.
Operation
WDT cleared
TO ¬ 0
PDF ¬ 0
Affected flag(s)
TO, PDF
Rev. 1.00
174
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
CPL [m]
Complement Data Memory
Description
Each bit of the specified Data Memory is logically complemented (1¢s complement). Bits
which previously contained a 1 are changed to 0 and vice versa.
Operation
[m] ¬ [m]
Affected flag(s)
Z
CPLA [m]
Complement Data Memory with result in ACC
Description
Each bit of the specified Data Memory is logically complemented (1¢s complement). Bits
which previously contained a 1 are changed to 0 and vice versa. The complemented result
is stored in the Accumulator and the contents of the Data Memory remain unchanged.
Operation
ACC ¬ [m]
Affected flag(s)
Z
DAA [m]
Decimal-Adjust ACC for addition with result in Data Memory
Description
Convert the contents of the Accumulator value to a BCD ( Binary Coded Decimal) value resulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or
if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble
remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of
6 will be added to the high nibble. Essentially, the decimal conversion is performed by adding 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C
flag may be affected by this instruction which indicates that if the original BCD sum is
greater than 100, it allows multiple precision decimal addition.
Operation
[m] ¬ ACC + 00H or
[m] ¬ ACC + 06H or
[m] ¬ ACC + 60H or
[m] ¬ ACC + 66H
Affected flag(s)
C
DEC [m]
Decrement Data Memory
Description
Data in the specified Data Memory is decremented by 1.
Operation
[m] ¬ [m] - 1
Affected flag(s)
Z
DECA [m]
Decrement Data Memory with result in ACC
Description
Data in the specified Data Memory is decremented by 1. The result is stored in the Accumulator. The contents of the Data Memory remain unchanged.
Operation
ACC ¬ [m] - 1
Affected flag(s)
Z
HALT
Enter power down mode
Description
This instruction stops the program execution and turns off the system clock. The contents
of the Data Memory and registers are retained. The WDT and prescaler are cleared. The
power down flag PDF is set and the WDT time-out flag TO is cleared.
Operation
TO ¬ 0
PDF ¬ 1
Affected flag(s)
TO, PDF
Rev. 1.00
175
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
INC [m]
Increment Data Memory
Description
Data in the specified Data Memory is incremented by 1.
Operation
[m] ¬ [m] + 1
Affected flag(s)
Z
INCA [m]
Increment Data Memory with result in ACC
Description
Data in the specified Data Memory is incremented by 1. The result is stored in the Accumulator. The contents of the Data Memory remain unchanged.
Operation
ACC ¬ [m] + 1
Affected flag(s)
Z
JMP addr
Jump unconditionally
Description
The contents of the Program Counter are replaced with the specified address. Program
execution then continues from this new address. As this requires the insertion of a dummy
instruction while the new address is loaded, it is a two cycle instruction.
Operation
Program Counter ¬ addr
Affected flag(s)
None
MOV A,[m]
Move Data Memory to ACC
Description
The contents of the specified Data Memory are copied to the Accumulator.
Operation
ACC ¬ [m]
Affected flag(s)
None
MOV A,x
Move immediate data to ACC
Description
The immediate data specified is loaded into the Accumulator.
Operation
ACC ¬ x
Affected flag(s)
None
MOV [m],A
Move ACC to Data Memory
Description
The contents of the Accumulator are copied to the specified Data Memory.
Operation
[m] ¬ ACC
Affected flag(s)
None
NOP
No operation
Description
No operation is performed. Execution continues with the next instruction.
Operation
No operation
Affected flag(s)
None
OR A,[m]
Logical OR Data Memory to ACC
Description
Data in the Accumulator and the specified Data Memory perform a bitwise logical OR operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²OR² [m]
Affected flag(s)
Z
Rev. 1.00
176
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
OR A,x
Logical OR immediate data to ACC
Description
Data in the Accumulator and the specified immediate data perform a bitwise logical OR operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²OR² x
Affected flag(s)
Z
ORM A,[m]
Logical OR ACC to Data Memory
Description
Data in the specified Data Memory and the Accumulator perform a bitwise logical OR operation. The result is stored in the Data Memory.
Operation
[m] ¬ ACC ²OR² [m]
Affected flag(s)
Z
RET
Return from subroutine
Description
The Program Counter is restored from the stack. Program execution continues at the restored address.
Operation
Program Counter ¬ Stack
Affected flag(s)
None
RET A,x
Return from subroutine and load immediate data to ACC
Description
The Program Counter is restored from the stack and the Accumulator loaded with the
specified immediate data. Program execution continues at the restored address.
Operation
Program Counter ¬ Stack
ACC ¬ x
Affected flag(s)
None
RETI
Return from interrupt
Description
The Program Counter is restored from the stack and the interrupts are re-enabled by setting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending
when the RETI instruction is executed, the pending Interrupt routine will be processed before returning to the main program.
Operation
Program Counter ¬ Stack
EMI ¬ 1
Affected flag(s)
None
RL [m]
Rotate Data Memory left
Description
The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit
0.
Operation
[m].(i+1) ¬ [m].i; (i = 0~6)
[m].0 ¬ [m].7
Affected flag(s)
None
RLA [m]
Rotate Data Memory left with result in ACC
Description
The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit
0. The rotated result is stored in the Accumulator and the contents of the Data Memory remain unchanged.
Operation
ACC.(i+1) ¬ [m].i; (i = 0~6)
ACC.0 ¬ [m].7
Affected flag(s)
None
Rev. 1.00
177
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
RLC [m]
Rotate Data Memory left through Carry
Description
The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7
replaces the Carry bit and the original carry flag is rotated into bit 0.
Operation
[m].(i+1) ¬ [m].i; (i = 0~6)
[m].0 ¬ C
C ¬ [m].7
Affected flag(s)
C
RLCA [m]
Rotate Data Memory left through Carry with result in ACC
Description
Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces
the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in
the Accumulator and the contents of the Data Memory remain unchanged.
Operation
ACC.(i+1) ¬ [m].i; (i = 0~6)
ACC.0 ¬ C
C ¬ [m].7
Affected flag(s)
C
RR [m]
Rotate Data Memory right
Description
The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into
bit 7.
Operation
[m].i ¬ [m].(i+1); (i = 0~6)
[m].7 ¬ [m].0
Affected flag(s)
None
RRA [m]
Rotate Data Memory right with result in ACC
Description
Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 rotated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data
Memory remain unchanged.
Operation
ACC.i ¬ [m].(i+1); (i = 0~6)
ACC.7 ¬ [m].0
Affected flag(s)
None
RRC [m]
Rotate Data Memory right through Carry
Description
The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0
replaces the Carry bit and the original carry flag is rotated into bit 7.
Operation
[m].i ¬ [m].(i+1); (i = 0~6)
[m].7 ¬ C
C ¬ [m].0
Affected flag(s)
C
RRCA [m]
Rotate Data Memory right through Carry with result in ACC
Description
Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces the Carry bit and the original carry flag is rotated into bit 7. The rotated result is
stored in the Accumulator and the contents of the Data Memory remain unchanged.
Operation
ACC.i ¬ [m].(i+1); (i = 0~6)
ACC.7 ¬ C
C ¬ [m].0
Affected flag(s)
C
Rev. 1.00
178
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
SBC A,[m]
Subtract Data Memory from ACC with Carry
Description
The contents of the specified Data Memory and the complement of the carry flag are subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the result
of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or
zero, the C flag will be set to 1.
Operation
ACC ¬ ACC - [m] - C
Affected flag(s)
OV, Z, AC, C
SBCM A,[m]
Subtract Data Memory from ACC with Carry and result in Data Memory
Description
The contents of the specified Data Memory and the complement of the carry flag are subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is
positive or zero, the C flag will be set to 1.
Operation
[m] ¬ ACC - [m] - C
Affected flag(s)
OV, Z, AC, C
SDZ [m]
Skip if decrement Data Memory is 0
Description
The contents of the specified Data Memory are first decremented by 1. If the result is 0 the
following instruction is skipped. As this requires the insertion of a dummy instruction while
the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program
proceeds with the following instruction.
Operation
[m] ¬ [m] - 1
Skip if [m] = 0
Affected flag(s)
None
SDZA [m]
Skip if decrement Data Memory is zero with result in ACC
Description
The contents of the specified Data Memory are first decremented by 1. If the result is 0, the
following instruction is skipped. The result is stored in the Accumulator but the specified
Data Memory contents remain unchanged. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not
0, the program proceeds with the following instruction.
Operation
ACC ¬ [m] - 1
Skip if ACC = 0
Affected flag(s)
None
SET [m]
Set Data Memory
Description
Each bit of the specified Data Memory is set to 1.
Operation
[m] ¬ FFH
Affected flag(s)
None
SET [m].i
Set bit of Data Memory
Description
Bit i of the specified Data Memory is set to 1.
Operation
[m].i ¬ 1
Affected flag(s)
None
Rev. 1.00
179
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
SIZ [m]
Skip if increment Data Memory is 0
Description
The contents of the specified Data Memory are first incremented by 1. If the result is 0, the
following instruction is skipped. As this requires the insertion of a dummy instruction while
the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program
proceeds with the following instruction.
Operation
[m] ¬ [m] + 1
Skip if [m] = 0
Affected flag(s)
None
SIZA [m]
Skip if increment Data Memory is zero with result in ACC
Description
The contents of the specified Data Memory are first incremented by 1. If the result is 0, the
following instruction is skipped. The result is stored in the Accumulator but the specified
Data Memory contents remain unchanged. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not
0 the program proceeds with the following instruction.
Operation
ACC ¬ [m] + 1
Skip if ACC = 0
Affected flag(s)
None
SNZ [m].i
Skip if bit i of Data Memory is not 0
Description
If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two
cycle instruction. If the result is 0 the program proceeds with the following instruction.
Operation
Skip if [m].i ¹ 0
Affected flag(s)
None
SUB A,[m]
Subtract Data Memory from ACC
Description
The specified Data Memory is subtracted from the contents of the Accumulator. The result
is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will
be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation
ACC ¬ ACC - [m]
Affected flag(s)
OV, Z, AC, C
SUBM A,[m]
Subtract Data Memory from ACC with result in Data Memory
Description
The specified Data Memory is subtracted from the contents of the Accumulator. The result
is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will
be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation
[m] ¬ ACC - [m]
Affected flag(s)
OV, Z, AC, C
SUB A,x
Subtract immediate data from ACC
Description
The immediate data specified by the code is subtracted from the contents of the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will
be set to 1.
Operation
ACC ¬ ACC - x
Affected flag(s)
OV, Z, AC, C
Rev. 1.00
180
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
SWAP [m]
Swap nibbles of Data Memory
Description
The low-order and high-order nibbles of the specified Data Memory are interchanged.
Operation
[m].3~[m].0 « [m].7 ~ [m].4
Affected flag(s)
None
SWAPA [m]
Swap nibbles of Data Memory with result in ACC
Description
The low-order and high-order nibbles of the specified Data Memory are interchanged. The
result is stored in the Accumulator. The contents of the Data Memory remain unchanged.
Operation
ACC.3 ~ ACC.0 ¬ [m].7 ~ [m].4
ACC.7 ~ ACC.4 ¬ [m].3 ~ [m].0
Affected flag(s)
None
SZ [m]
Skip if Data Memory is 0
Description
If the contents of the specified Data Memory is 0, the following instruction is skipped. As
this requires the insertion of a dummy instruction while the next instruction is fetched, it is a
two cycle instruction. If the result is not 0 the program proceeds with the following instruction.
Operation
Skip if [m] = 0
Affected flag(s)
None
SZA [m]
Skip if Data Memory is 0 with data movement to ACC
Description
The contents of the specified Data Memory are copied to the Accumulator. If the value is
zero, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the
program proceeds with the following instruction.
Operation
ACC ¬ [m]
Skip if [m] = 0
Affected flag(s)
None
SZ [m].i
Skip if bit i of Data Memory is 0
Description
If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two
cycle instruction. If the result is not 0, the program proceeds with the following instruction.
Operation
Skip if [m].i = 0
Affected flag(s)
None
TABRD [m]
Read table to TBLH and Data Memory
Description
The program code addressed by the table pointer (TBHP and TBLP) is moved to the specified Data Memory and the high byte moved to TBLH.
Operation
[m] ¬ program code (low byte)
TBLH ¬ program code (high byte)
Affected flag(s)
None
TABRDL [m]
Read table (last page) to TBLH and Data Memory
Description
The low byte of the program code (last page) addressed by the table pointer (TBLP) is
moved to the specified Data Memory and the high byte moved to TBLH.
Operation
[m] ¬ program code (low byte)
TBLH ¬ program code (high byte)
Affected flag(s)
None
Rev. 1.00
181
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
XOR A,[m]
Logical XOR Data Memory to ACC
Description
Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²XOR² [m]
Affected flag(s)
Z
XORM A,[m]
Logical XOR ACC to Data Memory
Description
Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR operation. The result is stored in the Data Memory.
Operation
[m] ¬ ACC ²XOR² [m]
Affected flag(s)
Z
XOR A,x
Logical XOR immediate data to ACC
Description
Data in the Accumulator and the specified immediate data perform a bitwise logical XOR
operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²XOR² x
Affected flag(s)
Z
Rev. 1.00
182
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Package Information
16-pin DIP (300mil) Outline Dimensions
A
B
A
1 6
9
1
8
B
1 6
9
1
8
H
H
C
C
D
D
G
E
G
E
I
F
I
F
Fig1. Full Lead Packages
Fig2. 1/2 Lead Packages
· MS-001d (see fig1)
Symbol
A
Dimensions in mil
Min.
Nom.
Max.
780
¾
880
B
240
¾
280
C
115
¾
195
D
115
¾
150
E
14
¾
22
F
45
¾
70
G
¾
100
¾
H
300
¾
325
I
¾
¾
430
· MS-001d (see fig2)
Symbol
A
Rev. 1.00
Dimensions in mil
Min.
Nom.
Max.
735
¾
775
B
240
¾
280
C
115
¾
195
D
115
¾
150
E
14
¾
22
70
F
45
¾
G
¾
100
¾
H
300
¾
325
I
¾
¾
430
183
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· MO-095a (see fig2)
Symbol
A
Rev. 1.00
Dimensions in mil
Min.
Nom.
Max.
745
¾
785
B
275
¾
295
C
120
¾
150
D
110
¾
150
E
14
¾
22
F
45
¾
60
G
¾
100
¾
H
300
¾
325
I
¾
¾
430
184
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
16-pin NSOP (150mil) Outline Dimensions
1 6
A
9
B
8
1
C
C '
G
H
D
E
Symbol
Rev. 1.00
a
F
Dimensions in mil
Min.
Nom.
Max.
A
228
¾
244
B
149
¾
157
C
14
¾
20
C¢
386
¾
394
D
53
¾
69
E
¾
50
¾
F
4
¾
10
G
22
¾
28
H
4
¾
12
a
0°
¾
10°
185
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
16-pin SSOP (150mil) Outline Dimensions
9
1 6
A
B
1
8
C
C '
G
H
D
E
Symbol
Rev. 1.00
a
F
Dimensions in mil
Min.
Nom.
Max.
A
228
¾
244
B
150
¾
157
C
8
¾
12
C¢
189
¾
197
D
54
¾
60
E
¾
25
¾
F
4
¾
10
G
22
¾
28
H
7
¾
10
a
0°
¾
8°
186
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
20-pin DIP (300mil) Outline Dimensions
A
B
A
2 0
1 1
1
1 0
B
2 0
1 1
1 0
1
H
H
C
C
D
D
E
F
I
G
E
F
Fig1. Full Lead Packages
I
G
Fig2. 1/2 Lead Packages
· MS-001d (see fig1)
Symbol
Dimensions in mil
Min.
Nom.
Max.
A
980
¾
1060
B
240
¾
280
C
115
¾
195
D
115
¾
150
E
14
¾
22
F
45
¾
70
G
¾
100
¾
H
300
¾
325
I
¾
¾
430
· MO-095a (see fig2)
Symbol
Rev. 1.00
Dimensions in mil
Min.
Nom.
Max.
A
945
¾
985
B
275
¾
295
C
120
¾
150
D
110
¾
150
E
14
¾
22
F
45
¾
60
G
¾
100
¾
H
300
¾
325
I
¾
¾
430
187
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
20-pin SOP (300mil) Outline Dimensions
1 1
2 0
A
B
1
1 0
C
C '
G
H
D
E
a
F
· MS-013
Symbol
Rev. 1.00
Dimensions in mil
Min.
Nom.
Max.
A
393
¾
419
B
256
¾
300
C
12
¾
20
C¢
496
¾
512
D
¾
¾
104
E
¾
50
¾
F
4
¾
12
G
16
¾
50
H
8
¾
13
a
0°
¾
8°
188
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
20-pin SSOP (150mil) Outline Dimensions
1 1
2 0
A
B
1
1 0
C
C '
G
H
D
E
Symbol
Rev. 1.00
a
F
Dimensions in mil
Min.
Nom.
Max.
A
228
¾
244
B
150
¾
158
C
8
¾
12
C¢
335
¾
347
D
49
¾
65
E
¾
25
¾
F
4
¾
10
G
15
¾
50
H
7
¾
10
a
0°
¾
8°
189
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
24-pin SKDIP (300mil) Outline Dimensions
A
A
1 3
2 4
B
1 3
2 4
B
1 2
1
1 2
1
H
H
C
C
D
D
E
F
I
G
E
F
I
G
Fig2. 1/2 Lead Packages
Fig1. Full Lead Packages
· MS-001d (see fig1)
Symbol
Dimensions in mil
Min.
Nom.
Max.
A
1230
¾
1280
B
240
¾
280
C
115
¾
195
D
115
¾
150
E
14
¾
22
F
45
¾
70
G
¾
100
¾
H
300
¾
325
I
¾
¾
430
· MS-001d (see fig2)
Symbol
Rev. 1.00
Dimensions in mil
Min.
Nom.
Max.
A
1160
¾
1195
B
240
¾
280
C
115
¾
195
D
115
¾
150
E
14
¾
22
F
45
¾
70
G
¾
100
¾
H
300
¾
325
I
¾
¾
430
190
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
· MO-095a (see fig2)
Symbol
A
Rev. 1.00
Dimensions in mil
Min.
Nom.
Max.
1145
¾
1185
B
275
¾
295
C
120
¾
150
D
110
¾
150
E
14
¾
22
F
45
¾
60
G
¾
100
¾
H
300
¾
325
I
¾
¾
430
191
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
24-pin SOP (300mil) Outline Dimensions
1 3
2 4
A
B
1 2
1
C
C '
G
H
D
E
a
F
· MS-013
Symbol
Rev. 1.00
Dimensions in mil
Min.
Nom.
Max.
A
393
¾
419
B
256
¾
300
C
12
¾
20
C¢
598
¾
613
D
¾
¾
104
E
¾
50
¾
F
4
¾
12
G
16
¾
50
H
8
¾
13
a
0°
¾
8°
192
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
24-pin SSOP (150mil) Outline Dimensions
1 3
2 4
A
B
1 2
1
C
C '
G
H
D
E
Symbol
Rev. 1.00
a
F
Dimensions in mil
Min.
Nom.
Max.
A
228
¾
244
B
150
¾
157
C
8
¾
12
C¢
335
¾
346
D
54
¾
60
E
¾
25
¾
F
4
¾
10
G
22
¾
28
H
7
¾
10
a
0°
¾
8°
193
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
28-pin SKDIP (300mil) Outline Dimensions
A
B
2 8
1 5
1
1 4
H
C
D
E
Symbol
A
Rev. 1.00
F
I
G
Dimensions in mil
Min.
Nom.
Max.
1375
¾
1395
B
278
¾
298
C
125
¾
135
D
125
¾
145
E
16
¾
20
F
50
¾
70
G
¾
100
¾
H
295
¾
315
I
¾
¾
375
194
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
28-pin SOP (300mil) Outline Dimensions
2 8
1 5
A
B
1
1 4
C
C '
G
H
D
E
a
F
· MS-013
Symbol
Rev. 1.00
Dimensions in mil
Min.
Nom.
Max.
A
393
¾
419
B
256
¾
300
C
12
¾
20
C¢
697
¾
713
D
¾
¾
104
E
¾
50
¾
F
4
¾
12
G
16
¾
50
H
8
¾
13
a
0°
¾
8°
195
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
28-pin SSOP (150mil) Outline Dimensions
1 5
2 8
A
B
1 4
1
C
C '
G
H
D
E
Symbol
Rev. 1.00
a
F
Dimensions in mil
Min.
Nom.
Max.
A
228
¾
244
B
150
¾
157
C
8
¾
12
C¢
386
¾
394
D
54
¾
60
E
¾
25
¾
F
4
¾
10
G
22
¾
28
H
7
¾
10
a
0°
¾
8°
196
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
SAW Type 32-pin (5mm´5mm) QFN Outline Dimensions
D
D 2
2 5
3 2
2 4
b
1
E
E 2
e
1 7
8
1 6
A 1
A 3
L
9
K
A
Symbol
Rev. 1.00
Dimensions in mm.
Min.
Nom.
Max.
A
0.70
¾
0.80
A1
0.00
¾
0.05
A3
¾
0.20
¾
b
0.18
¾
0.30
D
¾
5.00
¾
E
¾
5.00
¾
e
¾
0.50
¾
D2
1.25
¾
3.25
E2
1.25
¾
3.25
L
0.30
¾
0.50
K
¾
¾
¾
197
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
SAW Type 40-pin (5mm´5mm) QFN Outline Dimensions
D
D 2
3 1
4 0
3 0
b
1
E
E 2
e
2 1
A 1
A 3
1 0
2 0
L
1 1
K
A
Symbol
Rev. 1.00
Dimensions in mm.
Min.
Nom.
Max.
A
0.70
¾
0.80
A1
0.00
¾
0.05
A3
¾
0.203
¾
b
0.15
¾
0.25
D
¾
5.00
¾
E
¾
5.00
¾
e
¾
0.40
¾
D2
3.20
¾
3.40
E2
3.20
¾
3.40
L
0.35
¾
0.45
K
¾
¾
¾
198
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
44-pin QFP (10mm´10mm) Outline Dimensions
H
C
D
G
2 3
3 3
I
3 4
2 2
L
F
A
B
E
1 2
4 4
K
a
J
1
Symbol
A
Rev. 1.00
1 1
Dimensions in mm
Min.
Nom.
Max.
13.00
¾
13.40
B
9.90
¾
10.10
C
13.00
¾
13.40
D
9.90
¾
10.10
E
¾
0.80
¾
F
¾
0.30
¾
G
1.90
¾
2.20
H
¾
¾
2.70
I
0.25
¾
0.50
J
0.73
¾
0.93
K
0.10
¾
0.20
L
¾
0.10
¾
a
0°
¾
7°
199
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
48-pin SSOP (300mil) Outline Dimensions
4 8
2 5
A
B
2 4
1
C
C '
G
H
D
E
Symbol
F
Dimensions in inch
Min.
Nom.
Max.
0.395
¾
0.420
B
0.291
¾
0.299
C
0.008
¾
0.012
C¢
0.613
¾
0.637
D
0.085
¾
0.099
E
¾
0.025
¾
F
0.004
¾
0.010
G
0.025
¾
0.035
H
0.004
¾
0.012
a
0°
¾
8°
A
Symbol
A
Rev. 1.00
a
Dimensions in mm
Min.
Nom.
Max.
10.03
¾
10.67
B
7.39
¾
7.59
C
0.20
¾
0.30
C¢
15.57
¾
16.18
D
2.16
¾
2.51
E
¾
0.64
¾
F
0.10
¾
0.25
G
0.64
¾
0.89
H
0.10
¾
0.30
a
0°
¾
8°
200
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
SAW Type 48-pin (7mm´7mm) QFN Outline Dimensions
D
D 2
3 7
b
4 8
1
3 6
E
E 2
e
2 5
A 1
A 3
1 2
2 4
L
1 3
K
A
Symbol
Rev. 1.00
Dimensions in mm.
Min.
Nom.
Max.
A
0.70
¾
0.80
A1
0.00
¾
0.05
A3
¾
0.203
¾
b
0.18
¾
0.30
D
¾
7.0
¾
E
¾
7.0
¾
e
¾
0.50
¾
D2
4.50
¾
5.75
E2
4.50
¾
5.75
L
0.30
¾
0.50
K
0.20
¾
¾
201
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
52-pin QFP (14mm´14mm) Outline Dimensions
C
H
D
3 9
G
2 7
I
2 6
4 0
F
A
B
E
1 4
5 2
K
J
1
Symbol
A
Rev. 1.00
1 3
Dimensions in mm
Min.
Nom.
Max.
17.30
¾
17.50
B
13.90
¾
14.10
C
17.30
¾
17.50
D
13.90
¾
14.10
E
¾
1.00
¾
F
¾
0.40
¾
G
2.50
¾
3.10
H
¾
¾
3.40
I
¾
0.10
¾
J
0.73
¾
1.03
K
0.10
¾
0.20
a
0°
¾
7°
202
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Product Tape and Reel Specifications
Reel Dimensions
D
T 2
A
C
B
T 1
SOP 16N (150mil)
Symbol
Description
Dimensions in mm
A
Reel Outer Diameter
330.0±1.0
B
Reel Inner Diameter
100.0±1.5
C
Spindle Hole Diameter
D
Key Slit Width
T1
Space Between Flange
T2
Reel Thickness
13.0
+0.5/-0.2
2.0±0.5
16.8
+0.3/-0.2
22.2±0.2
SOP 20W, SOP 24W, SOP 28W (300mil)
Symbol
Description
A
Reel Outer Diameter
B
Reel Inner Diameter
C
Spindle Hole Diameter
D
Key Slit Width
T1
Space Between Flange
T2
Reel Thickness
Rev. 1.00
Dimensions in mm
330.0±1.0
100.0±1.5
13.0
+0.5/-0.2
2.0±0.5
24.8
+0.3/-0.2
30.2±0.2
203
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
SSOP 16S
Symbol
Description
Dimensions in mm
A
Reel Outer Diameter
330.0±1.0
B
Reel Inner Diameter
100.0±1.5
C
Spindle Hole Diameter
D
Key Slit Width
T1
Space Between Flange
T2
Reel Thickness
13.0
+0.5/-0.2
2.0±0.5
12.8
+0.3/-0.2
18.2±0.2
SSOP 20S (150mil), SSOP 24S (150mil), SSOP 28S (150mil)
Symbol
Description
Dimensions in mm
A
Reel Outer Diameter
330.0±1.0
B
Reel Inner Diameter
100.0±1.5
C
Spindle Hole Diameter
D
Key Slit Width
13.0
+0.5/-0.2
2.0±0.5
T1
Space Between Flange
T2
Reel Thickness
16.8
+0.3/-0.2
22.2±0.2
SSOP 48W
Symbol
Description
A
Reel Outer Diameter
B
Reel Inner Diameter
C
Spindle Hole Diameter
D
Key Slit Width
T1
Space Between Flange
T2
Reel Thickness
Rev. 1.00
Dimensions in mm
330.0±1.0
100.0±0.1
13.0
+0.5/-0.2
2.0±0.5
32.2
+0.3/-0.2
38.2±0.2
204
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Carrier Tape Dimensions
P 0
D
P 1
t
E
F
W
B 0
C
D 1
P
K 0
A 0
R e e l H o le
IC p a c k a g e p in 1 a n d th e r e e l h o le s
a r e lo c a te d o n th e s a m e s id e .
SOP 16N (150mil)
Symbol
Description
Dimensions in mm
W
Carrier Tape Width
P
Cavity Pitch
8.0±0.1
E
Perforation Position
1.75±0.1
16.0±0.3
F
Cavity to Perforation (Width Direction)
D
Perforation Diameter
1.55
+0.10/-0.00
D1
Cavity Hole Diameter
1.50
+0.25/-0.00
P0
Perforation Pitch
4.0±0.1
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
6.5±0.1
B0
Cavity Width
10.3±0.1
K0
Cavity Depth
2.1±0.1
7.5±0.1
t
Carrier Tape Thickness
0.30±0.05
C
Cover Tape Width
13.3±0.1
SOP 20W
Symbol
Description
Dimensions in mm
24.0
+0.3/-0.1
W
Carrier Tape Width
P
Cavity Pitch
12.0±0.1
E
Perforation Position
1.75±0.10
F
Cavity to Perforation (Width Direction)
D
Perforation Diameter
1.5
D1
Cavity Hole Diameter
1.50
P0
Perforation Pitch
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
10.8±0.1
B0
Cavity Width
13.3±0.1
K0
Cavity Depth
3.2±0.1
11.5±0.1
+0.1/-0.0
+0.25/-0.00
4.0±0.1
t
Carrier Tape Thickness
0.30±0.05
C
Cover Tape Width
21.3±0.1
Rev. 1.00
205
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
SOP 24W
Symbol
Description
Dimensions in mm
W
Carrier Tape Width
24.0±0.3
P
Cavity Pitch
12.0±0.1
E
Perforation Position
1.75±0.1
F
Cavity to Perforation (Width Direction)
D
Perforation Diameter
1.55
+0.10/-0.00
D1
Cavity Hole Diameter
1.50
+0.25/-0.00
P0
Perforation Pitch
4.0±0.1
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
10.9±0.1
B0
Cavity Width
15.9±0.1
K0
Cavity Depth
11.5±0.1
3.1±0.1
t
Carrier Tape Thickness
0.35±0.05
C
Cover Tape Width
21.3±0.1
SOP 28W (300mil)
Symbol
Description
Dimensions in mm
W
Carrier Tape Width
24.0±0.3
P
Cavity Pitch
12.0±0.1
E
Perforation Position
1.75±0.10
F
Cavity to Perforation (Width Direction)
11.5±0.1
D
Perforation Diameter
1.5
D1
Cavity Hole Diameter
1.50
P0
Perforation Pitch
4.0±0.1
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
10.85±0.10
B0
Cavity Width
18.34±0.10
K0
Cavity Depth
2.97±0.10
t
Carrier Tape Thickness
0.35±0.01
C
Cover Tape Width
21.3±0.1
Rev. 1.00
206
+0.1/-0.0
+0.25/-0.00
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
SSOP 16S
Symbol
Description
Dimensions in mm
12.0
+0.3/-0.1
W
Carrier Tape Width
P
Cavity Pitch
E
Perforation Position
F
Cavity to Perforation (Width Direction)
D
Perforation Diameter
D1
Cavity Hole Diameter
P0
Perforation Pitch
4.0±0.1
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
6.4±0.1
B0
Cavity Width
5.2±0.1
K0
Cavity Depth
2.1±0.1
8.0±0.1
t
Carrier Tape Thickness
C
Cover Tape Width
1.75±0.10
5.5±0.1
1.55±0.10
1.50
+0.25/-0.00
0.30±0.05
9.3±0.1
SSOP 20S (150mil)
Symbol
Description
Dimensions in mm
16.0
+0.3/-0.1
W
Carrier Tape Width
P
Cavity Pitch
E
Perforation Position
F
Cavity to Perforation (Width Direction)
D
Perforation Diameter
1.5
D1
Cavity Hole Diameter
1.50
P0
Perforation Pitch
4.0±0.1
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
6.5±0.1
B0
Cavity Width
9.0±0.1
K0
Cavity Depth
2.3±0.1
8.0±0.1
1.75±0.10
7.5±0.1
+0.1/-0.0
+0.25/-0.00
t
Carrier Tape Thickness
0.30±0.05
C
Cover Tape Width
13.3±0.1
Rev. 1.00
207
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
SSOP 24S (150mil)
Symbol
Description
W
Carrier Tape Width
P
Cavity Pitch
E
Perforation Position
Dimensions in mm
16.0+0.3/-0.1
8.0±0.1
1.75±0.10
F
Cavity to Perforation (Width Direction)
7.5±0.1
D
Perforation Diameter
1.5+0.1/-0.0
D1
Cavity Hole Diameter
1.50+0.25/-0.00
P0
Perforation Pitch
4.0±0.1
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
6.5±0.1
B0
Cavity Width
9.5±0.1
K0
Cavity Depth
2.1±0.1
t
Carrier Tape Thickness
0.30±0.05
C
Cover Tape Width
13.3±0.1
SSOP 28S (150mil)
Symbol
Description
Dimensions in mm
W
Carrier Tape Width
16.0±0.3
P
Cavity Pitch
8.0±0.1
E
Perforation Position
1.75±0.1
F
Cavity to Perforation (Width Direction)
7.5±0.1
D
Perforation Diameter
1.55
+0.10/-0.00
D1
Cavity Hole Diameter
1.50
+0.25/-0.00
P0
Perforation Pitch
4.0±0.1
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
6.5±0.1
B0
Cavity Width
10.3±0.1
K0
Cavity Depth
2.1±0.1
t
Carrier Tape Thickness
0.30±0.05
C
Cover Tape Width
13.3±0.1
Rev. 1.00
208
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Carrier Tape Dimensions
P 0
D
P 1
t
E
F
W
D 1
C
B 0
K 1
P
K 2
A 0
R e e l H o le ( C ir c le )
IC
p a c k a g e p in 1 a n d th e r e e l h o le s
a r e lo c a te d o n th e s a m e s id e .
R e e l H o le ( E llip s e )
SSOP 48W
Symbol
Description
Dimensions in mm
W
Carrier Tape Width
32.0±0.3
P
Cavity Pitch
16.0±0.1
E
Perforation Position
1.75±0.10
F
Cavity to Perforation (Width Direction)
14.2±0.1
D
Perforation Diameter
D1
Cavity Hole Diameter
2 Min.
P0
Perforation Pitch
4.0±0.1
P1
Cavity to Perforation (Length Direction)
2.0±0.1
A0
Cavity Length
12.0±0.1
B0
Cavity Width
16.2±0.1
K1
Cavity Depth
2.4±0.1
K2
Cavity Depth
3.2±0.1
1.50
+0.25/-0.00
t
Carrier Tape Thickness
0.35±0.05
C
Cover Tape Width
25.5±0.1
Rev. 1.00
209
November 3, 2009
HT68F20/HT68F30/HT68F40/HT68F50/HT68F60
Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw
Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)
Holtek Semiconductor Inc. (Shenzhen Sales Office)
5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722
Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538, USA
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com
Copyright Ó 2009 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life
due to malfunction or otherwise. Holtek¢s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.
Rev. 1.00
210
November 3, 2009
Similar pages