IRF IRF8308MPBF Dual sided cooling compatible Datasheet

IRF8308MPbF
DirectFET™ Power MOSFET ‚
RoHs Compliant Containing No Lead and Bromide 
Typical values (unless otherwise specified)
l Low Profile (<0.7 mm)
VDSS
VGS
RDS(on)
RDS(on)
l Dual Sided Cooling Compatible 
30V max ±20V max 1.9mΩ@ 10V 2.7mΩ@ 4.5V
l Ultra Low Package Inductance
Qg tot Qgd
Qgs2
Qrr
Qoss Vgs(th)
l Optimized for High Frequency Switching 
28nC
8.2nC 3.5nC
34nC
20nC
1.8V
l Ideal for CPU Core DC-DC Converters
l Optimized for Sync. FET socket of Sync. Buck Converter
l Low Conduction and Switching Losses
l Compatible with existing Surface Mount Techniques 
l 100% Rg tested
l
MX
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) 
SQ
SX
ST
MQ
MT
MX
DirectFET™ ISOMETRIC
MP
Description
The IRF8308MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest onstate resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries
used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is
followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power
systems, improving previous best thermal resistance by 80%.
The IRF8308MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses.
The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher
frequencies. The IRF8308MPbF has been optimized for parameters that are critical in synchronous buck including Rds(on), gate charge and Cdv/dtinduced turn on immunity. The IRF8308MPbF offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications.
Orderable part number
Package Type
IRF8308MTRPbF
IRF8308MTR1PbF
DirectFET Medium Can
DirectFET Medium Can
Standard Pack
Form
Quantity
Tape and Reel
4800
Tape and Reel
1000
Note
"TR" suffix
"TR1" suffix EOL notice # 264
Absolute Maximum Ratings
Parameter
VDS
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
h
VGS, Gate-to-Source Voltage (V)
Typical R DS (on) (mΩ)
8
ID = 27A
6
4
TJ = 125°C
2
TJ = 25°C
0
2.0
4.0
6.0
8.0
VGS, Gate-to-Source Voltage (V)
10.0
Fig 1. Typical On-Resistance Vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
1
e
e
f
www.irf.com © 2014 International Rectifier
Max.
Units
30
±20
27
21
150
212
12
21
V
A
mJ
A
12
ID= 21A
10
VDS = 24V
VDS= 15V
8
6
4
2
0
0
20
40
60
80
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.051mH, RG = 25Ω, IAS = 21A.
Submit Datasheet Feedback
February 24, 2014
IRF8308MPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
VGS = 0V, ID = 250μA
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
–––
ΔΒVDSS/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
22
RDS(on)
Static Drain-to-Source On-Resistance
–––
1.90
–––
2.70
mV/°C Reference to 25°C, ID = 1mA
2.50
mΩ VGS = 10V, ID = 27A
VGS = 4.5V, ID = 21A
3.50
VGS(th)
Gate Threshold Voltage
1.35
1.8
2.35
V
ΔVGS(th)/ΔTJ
IDSS
Gate Threshold Voltage Coefficient
–––
-6.1
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
1.0
μA
IGSS
gfs
Qg
Qgs1
Gate-to-Source Forward Leakage
V
–––
–––
–––
150
–––
–––
100
i
i
VDS = VGS, ID = 100μA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
130
–––
–––
Total Gate Charge
–––
28
42
Pre-Vth Gate-to-Source Charge
–––
8.4
–––
VDS = 15V
VGS = 4.5V
S
VDS = 15V, ID =21A
Qgs2
Post-Vth Gate-to-Source Charge
–––
3.5
–––
Qgd
Gate-to-Drain Charge
–––
8.2
–––
ID = 21A
Qgodr
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
7.9
–––
See Fig. 15
Qsw
–––
12
–––
Qoss
Output Charge
–––
20
–––
nC
RG
Gate Resistance
–––
1.2
2.2
Ω
td(on)
Turn-On Delay Time
–––
11
–––
VDD = 15V, VGS = 4.5V
tr
Rise Time
–––
19
–––
ID = 21A
td(off)
Turn-Off Delay Time
–––
23
–––
tf
Fall Time
–––
16
–––
Ciss
Input Capacitance
–––
4404
–––
Coss
Output Capacitance
–––
885
–––
Crss
Reverse Transfer Capacitance
–––
424
–––
nC
ns
VDS = 16V, VGS = 0V
i
RG= 1.8Ω
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
Min.
–––
–––
MOSFET symbol
150
(Body Diode)
ISM
A
Pulsed Source Current
g
–––
Conditions
Typ. Max. Units
–––
showing the
212
integral reverse
VSD
Diode Forward Voltage
–––
–––
1.0
V
p-n junction diode.
TJ = 25°C, IS = 21A, VGS = 0V
trr
Reverse Recovery Time
–––
20
30
ns
TJ = 25°C, IF =21A
Qrr
Reverse Recovery Charge
–––
34
51
nC
di/dt = 300A/μs
(Body Diode)
i
i
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF8308MPbF
Absolute Maximum Ratings
e
e
f
Max.
Units
2.8
1.8
89
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
el
jl
kl
fl
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
0.022
W/°C
100
Thermal Response ( ZthJA )
D = 0.50
10
0.20
0.10
0.05
1
R1
R1
0.02
τJ
0.01
τJ
τ1
R2
R2
R3
R3
R4
R4
τa
τ1
τ2
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
0.1
SINGLE PULSE
( THERMAL RESPONSE )
Ri (°C/W) τι (sec)
0.99292 0.000074
2.171681 0.007859
24.14602
0.959
17.69469
32.6
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
Notes:
ˆ Used double sided cooling, mounting pad with large heatsink.
‰ Mounted on minimum footprint full size board with metalized
Š Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
3
‰ Mounted to a PCB with
small clip heatsink (still air)
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
‰ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
February 24, 2014
IRF8308MPbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
10
2.5V
1
100
BOTTOM
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
2.5V
10
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 25°C
Tj = 150°C
0.1
1
0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Fig 5. Typical Output Characteristics
1000
2.0
VGS = 4.5V
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current(Α)
ID = 27A
100
TJ = 150°C
TJ = 25°C
TJ = -40°C
10
1
VGS = 10V
1.5
1.0
VDS = 10V
≤60μs PULSE WIDTH
0.1
1.5
2.0
2.5
3.0
3.5
0.5
4.0
-60 -40 -20 0
TJ , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
6
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Typical RDS (on) (mΩ)
C, Capacitance(pF)
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
5
Coss = Cds + Cgd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
Crss
4
3
2
TJ = 25°C
1
100
1
10
0
100
VDS, Drain-to-Source Voltage (V)
www.irf.com © 2014 International Rectifier
40
60
80
100
ID, Drain Current (A)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
20
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
Submit Datasheet Feedback
February 24, 2014
IRF8308MPbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.0
TJ = 150°C
TJ = 25°C
100.0
TJ = -40°C
10.0
1.0
VGS = 0V
0.4
0.6
0.8
1.0
100
10
100μsec
10msec
1
TA = 25°C
Tj = 150°C
Single Pulse
0.1
1.2
1.0
10.0
100.0
VDS , Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig11. Maximum Safe Operating Area
2.5
Typical VGS(th) Gate threshold Voltage (V)
150
ID, Drain Current (A)
1msec
0.1
0.1
0.2
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
50
2.0
ID = 100μA
1.5
1.0
0.5
0
25
50
75
100
125
-75
150
-50
0
25
50
75
100
125
150
TJ , Junction Temperature ( °C )
TC , Case Temperature (°C)
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
EAS, Single Pulse Avalanche Energy (mJ)
-25
50
I D
7.2A
8.4A
BOTTOM 21A
TOP
40
30
20
10
0
25
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy Vs. Drain Current
5
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF8308MPbF
Id
Vds
Vgs
L
VCC
DUT
0
1K
Vgs(th)
Qgs1 Qgs2
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
- VDD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
VDS
90%
D.U.T.
+
- VDD
V10V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 17a. Switching Time Test Circuit
6
www.irf.com © 2014 International Rectifier
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
Submit Datasheet Feedback
February 24, 2014
IRF8308MPbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
Re-Applied
Voltage
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MX Outline
(Medium Size Can, X-Designation).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
G = GATE
D = DRAIN
S = SOURCE
D
D
S
G
S
D
D
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
7
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF8308MPbF
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation)
Please see AN-1035 for DirectFET assembly details, stencil and substrate design recommendations
DIMENSIONS
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
METRIC
MIN MAX
6.25 6.35
4.80 5.05
3.85 3.95
0.35 0.45
0.68 0.72
0.68 0.72
1.38 1.42
0.80 0.84
0.38 0.42
0.88 1.02
2.28 2.42
0.59 0.70
0.03 0.08
0.08 0.17
IMPERIAL
MIN
MAX
0.246 0.250
0.189 0.199
0.152 0.156
0.014 0.018
0.027 0.028
0.027 0.028
0.054 0.056
0.031 0.033
0.015 0.017
0.035 0.040
0.090 0.095
0.023 0.028
0.001 0.003
0.003 0.007
Dimensions are shown in
millimeters (inches)
DirectFET™ Part Marking
GATE MARKING
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
8
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF8308MPbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NO TE: Controlling dim ensions in m m
Std reel quantity is 4800 parts (ordered as IRF 8308M TR PBF).
R EEL DIM EN SIO NS
STAN D ARD OPTION (Q TY 4800)
M ET RIC
IM PER IAL
M IN
M IN
M AX
C OD E
M AX
12.992
A
330.0
N .C
N .C
0.795
B
20.2
N .C
N .C
0.504
C
12.8
0.520
13.2
0.059
D
1.5
N .C
N .C
3.937
E
100.0
N .C
N .C
F
N .C
N .C
0.724
18.4
0.488
G
12.4
0.567
14.4
H
0.469
11.9
0.606
15.4
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
METRIC
IMPERIAL
MIN
MAX
MIN
MAX
0.311
8.10
7.90
0.319
0.154
0.161
4.10
3.90
0.469
0.484
12.30
11.90
0.215
5.45
0.219
5.55
0.201
5.10
0.209
5.30
0.256
6.70
6.50
0.264
0.059
N.C
1.50
N.C
0.059
1.60
1.50
0.063
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
9
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF8308MPbF
†
Qualification Information
Consumer ††
Qualification level
(per JEDEC JESD47F††† guidelines)
Comments: This family of products has passed JEDEC’s Industrial
qualification. IR’s Consumer qualification level is granted by extension of
the higher Industrial level.
Moisture Sensitivity Level
MSL1
DFET2
(per JEDEC J-STD-020D†††)
RoHS Compliant
†
††
†††
Yes
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Revision History
Date
2/24/2014
Comments
• Updated ordering information to reflect the End-Of-life (EOL) of the mini-reel option (EOL notice #264)
• Added Qualification table on page 10
• Updated data sheet with new IR corporate template
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
10
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
Similar pages