NTE1383 Integrated Circuit Dual Audio Power Amp, 5.1W/Ch (10.5W BTL) Description: The NTE1383 is an integrated circuit in an 18–Lead DIP designed for use as an audio output with low noise, low distortion, and high output for a wide range of power supply voltages and load resistance. Two built–in amplifiers provide dual or BTL operation. Typical applications include radio cassette recorder, tape recorder, car stereo, and home entertainment. Features: D High Output Power, Dual or BTL Circuit Operation D Wide Output Power Setting Range D Wide Supply Voltage Range D Incorporates an Automatic Operating Point Stabilizer Circuit D Low Distortion, Low 1/f Noise, and Low Shock Noise D High Audio Channel Separation D Incorporates a Phase Converter Absolute Maximum Ratings: (TA = +25°C unless otherwise specified) Supply Voltage (Note 1), VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V Supply Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4A Power Dissipation (TA = +60°C), PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14W Oprating Ambient Temperature Range, Topr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –30° to +75°C Storage Temperature Range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55° to +150°C Note 1. VCC at operation mode = 20V (Stabilized power source). Electrical Characteristics: (TA = +25°C unless otherwise specified) Parameter Quiescent Circuit Current Symbol ICQ Test Conditions Min Typ Max Unit 20 35 55 mA VCC = 12V 21 40 65 mA VCC = 13.2V 22 40 66 mA VCC = 9V Vi = 0 Electrical Characteristics (Cont’d): (TA = +25°C unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit 40 43 46 dB VCC = 12V 40 43 46 dB VCC = 13.2V 40 43 46 dB – 0.15 1.0 % VCC = 12V – 0.15 1.0 % VCC = 13.2V – 0.15 1.0 % 4.5 5.0 – W VCC = 12V 8.0 9.0 – W VCC = 13.2V 9.4 10.5 – W BTL (RL = 8Ω, f = 1kHz) Voltage Gain Total Harmonic Distortion Output Power Output Noise Voltage GV THD PO Vno VCC = 9V VCC = 9V VCC = 9V Vi = 4mV Vi = 4mV THD = 10% VCC = 9V Vi = 0, Rg = 3.9kΩ – 0.3 1.0 mV VCC = 12V Vi = 0, Rg = 10kΩ – 0.5 2.0 mV – 0.7 2.0 mV –10 – +10 mV VCC = 12V –12 – +12 mV VCC = 13.2V –12 – +12 mV 41 44 47 dB VCC = 12V 42 45 48 dB VCC = 13.2V 42 45 48 dB – 0.3 1.0 % VCC = 12V – 0.3 1.0 % VCC = 13.2V – 0.3 1.0 % 2.0 2.4 – W VCC = 12V 3.6 4.2 – W VCC = 13.2V 4.5 5.1 – W VCC = 13.2V Output Offset Voltage VO(offset) VCC = 9V Vi = 0 Dual (RL = 4Ω, f = 1kHz) Voltage Gain Total Harmonic Distortion Output Power Output Noise Voltage GV THD PO Vno VCC = 9V VCC = 9V VCC = 9V Vi = 4mV Vi = 4mV THD = 10% VCC = 9V Vi = 0, Rg = 3.9kΩ – 0.2 1.0 mV VCC = 12V Vi = 0, Rg = 10kΩ – 0.3 1.5 mV – 0.3 1.5 mV – 0 1 dB VCC = 12V – 0 1 dB VCC = 13.2V – 0 1 dB VCC = 13.2V Channel Balance CB VCC = 9V Vi = 4mV Pin Connection Diagram VCC 1 18 GND Ch 1 Output 2 17 Ch 2 Output GND 3 16 GND Feedback 4 15 Feedback Feedback 5 14 Feedback Bypass 6 13 Bypass Ch 1 Input 7 12 Ch 2 Input N.C. 8 11 N.C. GND 9 10 Diff Amp Input .940 (23.8) 9 1 .140 (3.5) 10 18 1.180 (29.9) .708 (17.9) .185 (4.7) .118 (2.9) .944 (23.9) .118 (2.9) .590 (14.9)