NTE NTE1383

NTE1383
Integrated Circuit
Dual Audio Power Amp, 5.1W/Ch
(10.5W BTL)
Description:
The NTE1383 is an integrated circuit in an 18–Lead DIP designed for use as an audio output with low
noise, low distortion, and high output for a wide range of power supply voltages and load resistance.
Two built–in amplifiers provide dual or BTL operation. Typical applications include radio cassette recorder, tape recorder, car stereo, and home entertainment.
Features:
D High Output Power, Dual or BTL Circuit Operation
D Wide Output Power Setting Range
D Wide Supply Voltage Range
D Incorporates an Automatic Operating Point Stabilizer Circuit
D Low Distortion, Low 1/f Noise, and Low Shock Noise
D High Audio Channel Separation
D Incorporates a Phase Converter
Absolute Maximum Ratings: (TA = +25°C unless otherwise specified)
Supply Voltage (Note 1), VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V
Supply Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4A
Power Dissipation (TA = +60°C), PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14W
Oprating Ambient Temperature Range, Topr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –30° to +75°C
Storage Temperature Range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55° to +150°C
Note 1. VCC at operation mode = 20V (Stabilized power source).
Electrical Characteristics: (TA = +25°C unless otherwise specified)
Parameter
Quiescent Circuit Current
Symbol
ICQ
Test Conditions
Min
Typ
Max
Unit
20
35
55
mA
VCC = 12V
21
40
65
mA
VCC = 13.2V
22
40
66
mA
VCC = 9V
Vi = 0
Electrical Characteristics (Cont’d): (TA = +25°C unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
40
43
46
dB
VCC = 12V
40
43
46
dB
VCC = 13.2V
40
43
46
dB
–
0.15
1.0
%
VCC = 12V
–
0.15
1.0
%
VCC = 13.2V
–
0.15
1.0
%
4.5
5.0
–
W
VCC = 12V
8.0
9.0
–
W
VCC = 13.2V
9.4
10.5
–
W
BTL (RL = 8Ω, f = 1kHz)
Voltage Gain
Total Harmonic Distortion
Output Power
Output Noise Voltage
GV
THD
PO
Vno
VCC = 9V
VCC = 9V
VCC = 9V
Vi = 4mV
Vi = 4mV
THD = 10%
VCC = 9V
Vi = 0, Rg = 3.9kΩ
–
0.3
1.0
mV
VCC = 12V
Vi = 0, Rg = 10kΩ
–
0.5
2.0
mV
–
0.7
2.0
mV
–10
–
+10
mV
VCC = 12V
–12
–
+12
mV
VCC = 13.2V
–12
–
+12
mV
41
44
47
dB
VCC = 12V
42
45
48
dB
VCC = 13.2V
42
45
48
dB
–
0.3
1.0
%
VCC = 12V
–
0.3
1.0
%
VCC = 13.2V
–
0.3
1.0
%
2.0
2.4
–
W
VCC = 12V
3.6
4.2
–
W
VCC = 13.2V
4.5
5.1
–
W
VCC = 13.2V
Output Offset Voltage
VO(offset) VCC = 9V
Vi = 0
Dual (RL = 4Ω, f = 1kHz)
Voltage Gain
Total Harmonic Distortion
Output Power
Output Noise Voltage
GV
THD
PO
Vno
VCC = 9V
VCC = 9V
VCC = 9V
Vi = 4mV
Vi = 4mV
THD = 10%
VCC = 9V
Vi = 0, Rg = 3.9kΩ
–
0.2
1.0
mV
VCC = 12V
Vi = 0, Rg = 10kΩ
–
0.3
1.5
mV
–
0.3
1.5
mV
–
0
1
dB
VCC = 12V
–
0
1
dB
VCC = 13.2V
–
0
1
dB
VCC = 13.2V
Channel Balance
CB
VCC = 9V
Vi = 4mV
Pin Connection Diagram
VCC
1
18 GND
Ch 1 Output
2
17 Ch 2 Output
GND
3
16 GND
Feedback
4
15 Feedback
Feedback
5
14 Feedback
Bypass
6
13 Bypass
Ch 1 Input
7
12 Ch 2 Input
N.C.
8
11 N.C.
GND
9
10 Diff Amp Input
.940 (23.8)
9
1
.140
(3.5)
10
18
1.180 (29.9)
.708 (17.9)
.185
(4.7)
.118 (2.9)
.944 (23.9)
.118
(2.9)
.590 (14.9)