MIC862 Micrel MIC862 Dual Ultra Low Power Op Amp in SOT23-8 General Description Features The MIC862 is a dual low power operational amplifier in SOT23-8 package. It is designed to operate in the 2V to 5V range, rail-to-rail output, with input common-mode to ground. The MIC862 provides 3MHz gain-bandwidth product while consuming only a 31µA/Channel supply current. With low supply voltage and SOT23-8 packaging, MIC862 provides two channels as general-purpose amplifiers for portable and battery-powered applications. Its package provides the maximum performance available while maintaining an extremely slim form factor. The minimal power consumption of this IC maximizes the battery life potential. • • • • • • • • SOT23-8 packaging 3MHz gain-bandwidth product 5MHz, –3dB bandwidth 31µA supply current Rail-to-rail output Ground sensing at input (common mode to GND) Drive large capactive loads Unity gain stable Applications • • • • • • Portable equipment Medical Insrument PDAs Pagers Cordless phones Consumer electronics Ordering Information Part Number Marking Ambient Temp. Range Package MIC862BM8 A34 –40°C to +85°C SOT23-8 MIC862YM8 A34 –40°C to +85°C SOT23-8 Pb-Free Typical Application V+ 10µF 0.1µF 510Ω 1/ MIC862 2 VOUT 1/ MIC862 2 RF 50Ω 100pF Peak Detector Circuit for AM Radio Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com September 2004 1 MIC862 MIC862 Micrel Pin Configuration OUTA 1 8 V+ INA– 2 7 OUTB INA+ 3 6 INB– V– 4 5 INB+ SOT23-8 (M8) Pin Description Pin Number Pin Name 1 OUTA Output: Amplifier A Output 2 INA– Amplifier A Inverting (Input) 3 INA+ Amplifier A Non-Inverting (Input) 4 V– 5 INB+ Amplifier B Non-Inverting (Input) 6 INB– Amplifier B Inverting (Input) 7 OUTB Output: Amplifier B Output 8 V+ MIC862 Pin Function Negative Supply Positive Supply 2 September 2004 MIC862 Micrel Absolute Maximum Ratings(1) Operating Ratings(2) Supply Voltage (VV+ – V–) ......................................... +6.0V Differential Input Voltage (VIN+ – VIN–), Note 4 ...... +6.0V Input Voltage (VIN+ – VIN–) .................. V+ + 0.3V, V– –0.3V Lead Temperature (soldering, 5 sec.) ....................... 260°C Output Short Circuit Current Duration .................. Indefinite Storage Temperature (TS) ........................................ 150°C ESD Rating, Note 3 Supply Voltage (V+ – V–) ............................. +2V to +5.25V Ambient Temperature Range ..................... –40°C to +85°C Package Thermal Resistance .......................... PCB boards θJA (using 4 layer PCB) ................................. 100°C/W θJC (using 4 layer PCB) ................................... 70°C/W Electrical Characteristics V+ = +2V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. Symbol Parameter Condition Min Typ Max Units VOS Input Offset Voltage –6 –5 Differential Offset Voltage 0.1 6 5 mV 0.5 mV Input Offset Voltage Temp Coefficient 6 µV/°C IB Input Bias Current 10 pA IOS Input Offset Current 5 pA VCM Input Voltage Range (from V–) CMRR > 50dB 0.5 1 V CMRR Common-Mode Rejection Ratio 0 < VCM < 1V 45 75 dB PSRR Power Supply Rejection Ratio Supply voltage change of 2V to 2.7V 50 78 dB AVOL Large-Signal Voltage Gain RL = 5kΩ, VOUT = 1.4VP-P 66 74 dB RL = 100kΩ, VOUT = 1.4VP-P 75 89 dB RL = 500kΩ, VOUT = 1.4VP-P 85 100 dB VOUT VOUT Maximum Output Voltage Swing Minimum Output Voltage Swing RL = 5kΩ V+–80mV V+–55mV V RL = 500kΩ V+–3mV V+–1.4mV V RL = 5kΩ V–+14mV V–+ 20mV mV RL = 500kΩ V–+0.85mV V–+ 3mV mV GBW Gain-Bandwidth Product RL = 20kΩ, CL = 2pF, Av = 11 2.1 MHz PM Phase Margin RL = 20kΩ, CL = 2pF, Av = 11 57 ° BW –3dB Bandwidth RL = 1MΩ, CL = 2pF, Av = 1 4.2 MHz SR Slew Rate RL = 1MΩ, CL = 2pF, Av = 1, Positive Slew Rate = 1.5V/µs 2 V/µs ISC Short-Circuit Output Current Source 1.8 2.6 mA Sink 1.5 2.2 mA IS Supply Current (per op amp) No Load Channel-to-Channel Crosstalk Note 5 27 –100 43 µA dB V+ = +2.7V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. VOS Input Offset Voltage –6 0.1 6 mV –5 5 Differential Offset Voltage 0.5 mV Input Offset Voltage Temp Coefficient 6 µV/°C IB Input Bias Current 10 pA IOS Input Offset Current 5 pA VCM Input Voltage Range CMRR > 60dB 1 1.8 V CMRR Common-Mode Rejection Ratio 0 < VCM < 1.35V 65 83 dB September 2004 3 MIC862 MIC862 Micrel Symbol Parameter Condition Min Typ PSRR Power Supply Rejection Ratio AVOL Large-Signal Voltage Gain Max Units Supply voltage change of 2.7V to 3V 60 85 dB RL = 5kΩ, VOUT = 2VP-P 65 77 dB RL = 100kΩ, VOUT = 2VP-P 80 90 dB RL = 500kΩ, VOUT = 2VP-P 90 101 dB GBW Gain-Bandwidth Product RL = 20kΩ, CL = 2pF, Av = 11 2.3 MHz PM Phase Margin RL = 20kΩ, CL = 2pF, Av = 11 50 ° BW –3 dB Bandwidth RL = 1MΩ, CL = 2pF, Av = 1 4.2 MHz SR Slew Rate RL = 1MΩ, CL = 2pF, Av = 1 Positive Slew Rate 1.5V/µs 3 V/µs ISC Short-Circuit Output Current Source 4.5 6.3 mA Sink 4.5 6.2 mA IS Supply Current (per op amp) No Load Channel-to-Channel Crosstalk Note 5 28 45 –120 µA dB V+= +5V, V–= 0V, VCM= V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. VOS Input Offset Voltage –6 –5 Differential Offset Voltage 0.1 6 5 mV 0.5 mV Input Offset Voltage Temp Coefficient 6 µV/°C IB Input Bias Current 10 pA IOS Input Offset Current 5 pA VCM Input Voltage Range (from V–) CMRR > 60dB 3.5 4.1 V CMRR Common-Mode Rejection Ratio 0 < VCM < 3.5V, 60 87 dB PSRR Power Supply Rejection Ratio Supply voltage change from 3V to 5V 60 92 dB AVOL Large-Signal Voltage Gain RL = 5kΩ, VOUT = 4.8VP-P 65 73 dB RL = 100kΩ, VOUT = 4.8VP-P 80 86 dB RL = 500kΩ, VOUT = 4.8VP-P 89 96 dB VOUT VOUT Maximum Output Voltage Swing Minimum Output Voltage Swing GBW Gain-Bandwidth Product PM Phase Margin BW –3 dB Bandwidth SR ISC IS RL = 5kΩ V+–50mV V+–37mV V RL = 500kΩ V+–3mV V+–1.3mV V RL = 5kΩ V–+24mV V–+ 40mV mV RL = 500kΩ V–+0.7mV V–+ 3mV mV RL = 20kΩ, CL = 2pF, Av = 11 3 MHz 45 ° RL = 1MΩ, CL = 2pF, Av = 1 5 MHz Slew Rate RL = 1MΩ, CL = 2pF, Av = 1 Positive Slew Rate 1.8V/µs 4 V/µs Short-Circuit Output Current Source 17 23 mA Sink 18 27 mA Supply Current (per op amp) No Load Channel-to-Channel Crosstalk Note 5 31 47 –120 µA dB Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensitive Note 4. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to increase. Note 5. DC signal referenced to input. Refer to Typical Characteristics graphs for AC performance. MIC862 4 September 2004 MIC862 Micrel Typical Characteristics 25°C -40°C 85°C -6 -12 -18 -24 -30 OUTPUT CURRENT (mA) OUTPUT VOLTAGE (V) 1.2 2.5 V± = ±2.5V 36 34 32 30 V± = ±1.35V 28 26 24 22 20 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 2.34 2.50 2.02 2.18 1.70 1.86 1.38 1.54 -40°C Offset Voltage vs. Common-Mode Voltage OFFSET VOLTAGE (mV) 25°C SUPPLY CURRENT/CH (µA) 85°C 1.06 1.22 0.25 25°C 0 Sinking V± = ±2.5V -0.25 -0.50 85°C -0.75 -40°C -1.00 -1.25 -1.50 -1.75 -2.00 -2.25 -2.50 0 8 16 24 32 40 OUTPUT CURRENT (mA) Supply Current/Ch vs. Temperature 38 0.90 2.18 2.34 0.135 25°C -40°C 0 Sinking V± = ±1.35V -0.135 85°C -0.270 -0.405 -0.540 -0.675 -0.810 -0.945 -1.080 -1.215 -1.350 0 1 2 3 4 5 6 7 8 9 10 OUTPUT CURRENT (mA) Output Voltage vs. Output Current OUTPUT VOLTAGE (V) Sourcing V± = ±2.5V OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) SUPPLY CURRENT/CH (µA) 1.485 Sourcing 1.35 V± = ±1.35V 1.215 1.08 0.945 25°C 0.81 0.675 0.54 0.405 0.27 -40°C 0.135 85°C 0 0 1 2 3 4 5 6 7 8 9 10 OUTPUT CURRENT (mA) Output Voltage vs. Output Current Supply Current vs. Supply Voltage 55 50 45 40 35 30 25 20 15 10 5 0 85°C SUPPLY VOLTAGE (±V) Output Voltage vs. Output Current 2.75 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0 0 25°C 1.86 2.02 SUPPLY VOLTAGE (±V) Output Voltage vs. Output Current -40°C 1.54 1.7 2.34 2.5 2.02 2.18 1.7 1.86 85°C 1.22 1.38 25°C 33 30 Sourcing 27 24 21 18 15 12 9 6 3 0 0.9 1.06 SHORT-CIRCUIT CURRENT (mA) Short Circuit Current vs. Supply Voltage -40°C 1.38 1.54 1.06 1.22 44 40 Sinking 36 32 28 24 20 16 12 8 4 0 0.9 SHORT-CIRCUIT CURRENT (mA) Short Circuit Current vs. Supply Voltage 1 V± = ±2.5V 0.8 0.6 0.4 85°C 0.2 0 25°C -0.2 -40°C -0.4 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 COMMON-MODE VOLTAGE (V) SUPPLY VOLTAGE (±V) 25°C 1.5 1 85°C 0.5 -40°C 0 -1.5 -1 -0.5 0 0.5 1 COMMON-MODE VOLTAGE (V) September 2004 30 Sourcing 25 V± = ±2.5V 20 15 10 5 V± = ±1.35V 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 5 SHORT-CIRCUIT CURRENT (mA) OFFSET VOLTAGE (mV) V± = ±1.35V 2 Short Circuit Current vs. Temperature Short Circuit Current vs. Temperature SHORT-CIRCUIT CURRENT (mA) Offset Voltage vs. Common-Mode Voltage 2.5 35 30 Sinking V± = ±2.5V 25 20 15 10 5 V± = ±1.35V 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) MIC862 MIC862 Micrel 0.3 V± = ±2.5V 0.2 0.1 0 -0.1 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 225 180 15 10 135 90 15 10 135 90 5 0 45 0 5 0 45 0 Av = 2 -5 V± = ±1.35V -10 C = 2pF L -15 RL = 5kΩ -20 RF = 20kΩ -25 10k 100k 1M 10M FREQUENCY (Hz) Gain Bandwidth and Phase Margin 10M -225 Gain Bandwidth and Phase Margin 30 20 135 90 30 20 135 90 30 20 135 90 10 0 45 0 10 0 45 0 10 0 45 0 -10 Av = 11 -20 V+ = +1.5V V– = –0.5V -30 C = 1.7pF L -40 R = 1MΩ L -50 10k 100k 1M FREQUENCY (Hz) -45 -90 -135 -180 10M -225 -10 -20 Av = 11 V± = ±1.35V -30 C = 2pF L -40 R = 1MΩ L -50 100k 1M FREQUENCY (Hz) -45 -90 GAIN (dB) 225 180 PHASE (°) 50 40 GAIN (dB) 225 180 -135 -180 10M -225 -10 -20 Av = 11 V± = ±2.5V -30 C = 2pF L -40 R = 1MΩ L -50 10k 100k 1M 10M FREQUENCY (Hz) Unity Gain Frequency Response -45 -90 -135 -180 -225 Unity Gain Frequency Response 180 20 180 15 10 135 90 15 10 135 90 45 0 5 0 45 0 5 0 Gain -5 -10 Av = 1 -15 V+ = ±1.5V V– = –0.5V -20 C = 1.7pF -45 -90 Phase -135 -180 L 10M -225 -270 -5 -10 Phase -15 Av = 1 V± = ±1.35V -20 C = 2pF L -25 R = 5kΩ L -30 10k 1M 1k 100k FREQUENCY (Hz) PSRR vs. Frequency 100 90 80 -225 -270 10M 50 40 30 20 10 0 1 10 0 1 45 0 Gain -5 -10 -45 -90 Phase -15 Av = 1 V± = ±2.5V -20 C = 2pF L -25 R = 5kΩ L -30 1k 10k 100k 1M FREQUENCY (Hz) -135 -180 10M -225 -270 Channel to Channel Crosstalk -30 -35 70 60 30 20 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) -135 -180 V± = ±2.5V 90 80 PSRR (dB) 50 40 -45 -90 PSRR vs. Frequency 100 V± = ±1.35V 70 60 Gain CROSSTALK (dB) 5 0 GAIN (dB) 20 135 90 PHASE (°) 180 15 10 GAIN (dB) 20 PHASE (°) GAIN (dB) -135 -180 50 40 -25 R = 5kΩ L -30 10k 100k 1M FREQUENCY (Hz) PSRR (dB) -225 -45 -90 225 180 Unity Bandwidth Frequency Response MIC862 -135 -180 -5 Av = 2 -10 V± = ±2.5V CL = 2pF -15 RL = 5kΩ -20 RF = 20kΩ -25 100k 1M 10k FREQUENCY (Hz) 50 40 PHASE (°) GAIN (dB) Gain Bandwidth and Phase Margin -45 -90 PHASE (°) 0.4 25 20 PHASE (°) GAIN (dB) 0.5 Gain Frequency Response 225 180 GAIN (dB) V± = ±1.35V 0.6 OFFSET VOLTAGE (mV) Gain Frequency Response 25 20 PHASE (°) 0.7 PHASE (°) Offset Voltage vs. Temperature -40 -45 -50 -55 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 6 -60 10 100 FREQUENCY (kHz) 1000 September 2004 MIC862 Micrel Functional Characteristics Small Signal Response Small Signal Response INPUT 50mV/div TIME 500ns/div TIME 500ns/div Small Signal Response Small Signal Response INPUT 50mV/div AV = 1 V± = ±2.5V CL = 50pF RL = 500Ω OUTPUT 50mV/div OUTPUT 50mV/div INPUT 50mV/div AV = 1 V± = ±1.35V CL = 50pF RL = 500Ω TIME 1µs/div TIME 1µs/div Small Signal Response Small Signal Response INPUT 50mV/div AV = 1 V± = ±2.5V CL = 1000pF RL = 500Ω OUTPUT 50mV/div OUTPUT 50mV/div INPUT 50mV/div AV = 1 V± = ±1.35V CL = 1000pF RL = 500Ω TIME 500ns/div September 2004 AV = 1 V± = ±2.5V CL = 1.7pF RL = 1MΩ OUTPUT 50mV/div OUTPUT 50mV/div INPUT 50mV/div AV = 1 V± = ±1.35V CL = 1.7pF RL = 1MΩ TIME 500ns/div 7 MIC862 MIC862 Micrel Small Signal Pulse Response OUTPUT 50mV/div INPUT 50mV/div AV = 1 V+ = +1.5V V– = –0.5V CL = 1.7pF RL = 1MΩ TIME 500ns/div MIC862 8 September 2004 MIC862 Micrel Large Signal Response Large Signal Response AV = 1 V± = ±2.5V CL = 1.7pF RL = 1MΩ OUTPUT 1V/div OUTPUT 500mV/div AV = 1 V± = ±1.35V CL = 1.7pF RL = 1MΩ Positive Slew Rate = 1.5V/µs Negative Slew Rate = 2.0V/µs Positive Slew Rate = 1.8V/µs Negative Slew Rate = 4.1V/µs TIME 5µs/div TIME 5µs/div Large Signal Response Large Signal Response AV = 1 V± = ±1.35V CL = 50pF RL = 500Ω OUTPUT 1V/div OUTPUT 500mV/div AV = 1 V± = ±2.5V CL = 50pF RL = 500Ω Positive Slew Rate = 1.5V/µs Negative Slew Rate = 2.8V/µs Positive Slew Rate = 1.8V/µs Negative Slew Rate = 4.7V/µs TIME 5µs/div TIME 5µs/div Large Signal Pulse Response Large Signal Pulse Response AV = 1 V± = ±2.5V CL = 1000pF RL = 500Ω OUTPUT 1V/div OUTPUT 500mV/div AV = 1 V± = ±1.35V CL = 1000pF RL = 500Ω Positive Slew Rate = 1.3V/µs Negative Slew Rate = 3.6V/µs Positive Slew Rate = 1.3V/µs Negative Slew Rate = 3.6V/µs TIME 5µs/div September 2004 TIME 5µs/div 9 MIC862 MIC862 Micrel Large Signal Pulse Response V+ AV = 1 V+ = +1.5V V– = –0.5V CL = 1.7pF RL = 1MΩ RL V— OUTPUT 20mV/div CL Positive Slew Rate = 1.17V/µs Negative Slew Rate = 2.0V/µs TIME 5µs/div INPUT 500mV/div ∆V = 2.7VP-P Rail to Rail Operation Rail to Rail Operation ∆V = 2.7VP-P AV = 2 V± = ±2.5V CL = 2 pF RL = 5kΩ RF = 20kΩ ∆V = 5VP-P OUTPUT 2V/div AV = 2 V± = ±1.35V CL = 2 pF RL = 5kΩ RF = 20kΩ INPUT 1V/div TIME 250µs/div OUTPUT 1V/div INPUT 500mV/div ∆V = 5VP-P TIME 250µs/div TIME 250µs/div MIC862 AV = 2 V± = ±2.5V CL = 2pF RL = 1MΩ RF = 20kΩ OUTPUT 1V/div AV = 2 V± = ±1.35V CL = 2pF RL = 1MΩ RF = 20kΩ Rail to Rail Operation OUTPUT 1V/div INPUT 500mV/div Rail to Rail Operation TIME 250µs/div 10 September 2004 MIC862 Micrel Under the above conditions, if the load is less than 20kOhm and the output swing is greater than 1V(peak), there may be some instability when the output is sinking current. Capacitive Load When driving a large capacitive load, a resistor of 500Ω is recommended to be connected between the op-amp output and the capacitive load to avoid oscillation. Applications Information Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Supply and Loading Resistive Considerations The MIC862 is intended for single supply applications configured with a grounded load. It is not advisable to operate the MIC862 under either of the following conditions: 1. A grounded load and split supplies (+/-V) 2. A single supply where the load is terminated above ground. September 2004 11 MIC862 MIC862 Micrel Package Information 0.20 0.38 0.22 0.38 0.22 0.65REF 3.00 2.60 1.75 1.50 10° 0° 1.95REF 3.00 2.80 1.45 0.90 0.20 0.09 1.30 0.90 0.15 0.00 SOT-23-8 (M8) MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB USA http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2004 Micrel, Incorporated. MIC862 12 September 2004