Micrel MIC862 Dual ultra low power op amp in sot 23-8 Datasheet

MIC862
Micrel
MIC862
Dual Ultra Low Power Op Amp in SOT23-8
General Description
Features
The MIC862 is a dual low power operational amplifier in
SOT23-8 package. It is designed to operate in the 2V to 5V
range, rail-to-rail output, with input common-mode to ground.
The MIC862 provides 3MHz gain-bandwidth product while
consuming only a 31µA/Channel supply current.
With low supply voltage and SOT23-8 packaging, MIC862
provides two channels as general-purpose amplifiers for
portable and battery-powered applications. Its package provides the maximum performance available while maintaining
an extremely slim form factor. The minimal power consumption of this IC maximizes the battery life potential.
•
•
•
•
•
•
•
•
SOT23-8 packaging
3MHz gain-bandwidth product
5MHz, –3dB bandwidth
31µA supply current
Rail-to-rail output
Ground sensing at input (common mode to GND)
Drive large capactive loads
Unity gain stable
Applications
•
•
•
•
•
•
Portable equipment
Medical Insrument
PDAs
Pagers
Cordless phones
Consumer electronics
Ordering Information
Part Number
Marking
Ambient Temp. Range
Package
MIC862BM8
A34
–40°C to +85°C
SOT23-8
MIC862YM8
A34
–40°C to +85°C
SOT23-8
Pb-Free
Typical Application
V+
10µF
0.1µF
510Ω
1/ MIC862
2
VOUT
1/ MIC862
2
RF
50Ω
100pF
Peak Detector Circuit for AM Radio
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com
September 2004
1
MIC862
MIC862
Micrel
Pin Configuration
OUTA 1
8 V+
INA– 2
7 OUTB
INA+ 3
6 INB–
V– 4
5 INB+
SOT23-8 (M8)
Pin Description
Pin Number
Pin Name
1
OUTA
Output: Amplifier A Output
2
INA–
Amplifier A Inverting (Input)
3
INA+
Amplifier A Non-Inverting (Input)
4
V–
5
INB+
Amplifier B Non-Inverting (Input)
6
INB–
Amplifier B Inverting (Input)
7
OUTB
Output: Amplifier B Output
8
V+
MIC862
Pin Function
Negative Supply
Positive Supply
2
September 2004
MIC862
Micrel
Absolute Maximum Ratings(1)
Operating Ratings(2)
Supply Voltage (VV+ – V–) ......................................... +6.0V
Differential Input Voltage (VIN+ – VIN–), Note 4 ...... +6.0V
Input Voltage (VIN+ – VIN–) .................. V+ + 0.3V, V– –0.3V
Lead Temperature (soldering, 5 sec.) ....................... 260°C
Output Short Circuit Current Duration .................. Indefinite
Storage Temperature (TS) ........................................ 150°C
ESD Rating, Note 3
Supply Voltage (V+ – V–) ............................. +2V to +5.25V
Ambient Temperature Range ..................... –40°C to +85°C
Package Thermal Resistance .......................... PCB boards
θJA (using 4 layer PCB) ................................. 100°C/W
θJC (using 4 layer PCB) ................................... 70°C/W
Electrical Characteristics
V+ = +2V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
Symbol
Parameter
Condition
Min
Typ
Max
Units
VOS
Input Offset Voltage
–6
–5
Differential Offset Voltage
0.1
6
5
mV
0.5
mV
Input Offset Voltage Temp Coefficient
6
µV/°C
IB
Input Bias Current
10
pA
IOS
Input Offset Current
5
pA
VCM
Input Voltage Range (from V–)
CMRR > 50dB
0.5
1
V
CMRR
Common-Mode Rejection Ratio
0 < VCM < 1V
45
75
dB
PSRR
Power Supply Rejection Ratio
Supply voltage change of 2V to 2.7V
50
78
dB
AVOL
Large-Signal Voltage Gain
RL = 5kΩ, VOUT = 1.4VP-P
66
74
dB
RL = 100kΩ, VOUT = 1.4VP-P
75
89
dB
RL = 500kΩ, VOUT = 1.4VP-P
85
100
dB
VOUT
VOUT
Maximum Output Voltage Swing
Minimum Output Voltage Swing
RL = 5kΩ
V+–80mV V+–55mV
V
RL = 500kΩ
V+–3mV V+–1.4mV
V
RL = 5kΩ
V–+14mV V–+ 20mV
mV
RL = 500kΩ
V–+0.85mV V–+ 3mV
mV
GBW
Gain-Bandwidth Product
RL = 20kΩ, CL = 2pF, Av = 11
2.1
MHz
PM
Phase Margin
RL = 20kΩ, CL = 2pF, Av = 11
57
°
BW
–3dB Bandwidth
RL = 1MΩ, CL = 2pF, Av = 1
4.2
MHz
SR
Slew Rate
RL = 1MΩ, CL = 2pF, Av = 1,
Positive Slew Rate = 1.5V/µs
2
V/µs
ISC
Short-Circuit Output Current
Source
1.8
2.6
mA
Sink
1.5
2.2
mA
IS
Supply Current (per op amp)
No Load
Channel-to-Channel Crosstalk
Note 5
27
–100
43
µA
dB
V+ = +2.7V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
VOS
Input Offset Voltage
–6
0.1
6
mV
–5
5
Differential Offset Voltage
0.5
mV
Input Offset Voltage Temp Coefficient
6
µV/°C
IB
Input Bias Current
10
pA
IOS
Input Offset Current
5
pA
VCM
Input Voltage Range
CMRR > 60dB
1
1.8
V
CMRR
Common-Mode Rejection Ratio
0 < VCM < 1.35V
65
83
dB
September 2004
3
MIC862
MIC862
Micrel
Symbol
Parameter
Condition
Min
Typ
PSRR
Power Supply Rejection Ratio
AVOL
Large-Signal Voltage Gain
Max
Units
Supply voltage change of 2.7V to 3V
60
85
dB
RL = 5kΩ, VOUT = 2VP-P
65
77
dB
RL = 100kΩ, VOUT = 2VP-P
80
90
dB
RL = 500kΩ, VOUT = 2VP-P
90
101
dB
GBW
Gain-Bandwidth Product
RL = 20kΩ, CL = 2pF, Av = 11
2.3
MHz
PM
Phase Margin
RL = 20kΩ, CL = 2pF, Av = 11
50
°
BW
–3 dB Bandwidth
RL = 1MΩ, CL = 2pF, Av = 1
4.2
MHz
SR
Slew Rate
RL = 1MΩ, CL = 2pF, Av = 1
Positive Slew Rate 1.5V/µs
3
V/µs
ISC
Short-Circuit Output Current
Source
4.5
6.3
mA
Sink
4.5
6.2
mA
IS
Supply Current (per op amp)
No Load
Channel-to-Channel Crosstalk
Note 5
28
45
–120
µA
dB
V+= +5V, V–= 0V, VCM= V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
VOS
Input Offset Voltage
–6
–5
Differential Offset Voltage
0.1
6
5
mV
0.5
mV
Input Offset Voltage Temp Coefficient
6
µV/°C
IB
Input Bias Current
10
pA
IOS
Input Offset Current
5
pA
VCM
Input Voltage Range (from V–)
CMRR > 60dB
3.5
4.1
V
CMRR
Common-Mode Rejection Ratio
0 < VCM < 3.5V,
60
87
dB
PSRR
Power Supply Rejection Ratio
Supply voltage change from 3V to 5V
60
92
dB
AVOL
Large-Signal Voltage Gain
RL = 5kΩ, VOUT = 4.8VP-P
65
73
dB
RL = 100kΩ, VOUT = 4.8VP-P
80
86
dB
RL = 500kΩ, VOUT = 4.8VP-P
89
96
dB
VOUT
VOUT
Maximum Output Voltage Swing
Minimum Output Voltage Swing
GBW
Gain-Bandwidth Product
PM
Phase Margin
BW
–3 dB Bandwidth
SR
ISC
IS
RL = 5kΩ
V+–50mV V+–37mV
V
RL = 500kΩ
V+–3mV V+–1.3mV
V
RL = 5kΩ
V–+24mV V–+ 40mV
mV
RL = 500kΩ
V–+0.7mV V–+ 3mV
mV
RL = 20kΩ, CL = 2pF, Av = 11
3
MHz
45
°
RL = 1MΩ, CL = 2pF, Av = 1
5
MHz
Slew Rate
RL = 1MΩ, CL = 2pF, Av = 1
Positive Slew Rate 1.8V/µs
4
V/µs
Short-Circuit Output Current
Source
17
23
mA
Sink
18
27
mA
Supply Current (per op amp)
No Load
Channel-to-Channel Crosstalk
Note 5
31
47
–120
µA
dB
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
Note 3.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensitive
Note 4.
Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is
likely to increase.
Note 5.
DC signal referenced to input. Refer to Typical Characteristics graphs for AC performance.
MIC862
4
September 2004
MIC862
Micrel
Typical Characteristics
25°C
-40°C
85°C
-6
-12
-18
-24
-30
OUTPUT CURRENT (mA)
OUTPUT VOLTAGE (V)
1.2
2.5
V± = ±2.5V
36
34
32
30
V± = ±1.35V
28
26
24
22
20
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
2.34
2.50
2.02
2.18
1.70
1.86
1.38
1.54
-40°C
Offset Voltage
vs. Common-Mode Voltage
OFFSET VOLTAGE (mV)
25°C
SUPPLY CURRENT/CH (µA)
85°C
1.06
1.22
0.25
25°C
0 Sinking
V± = ±2.5V
-0.25
-0.50
85°C
-0.75
-40°C
-1.00
-1.25
-1.50
-1.75
-2.00
-2.25
-2.50
0
8
16
24
32
40
OUTPUT CURRENT (mA)
Supply Current/Ch
vs. Temperature
38
0.90
2.18
2.34
0.135
25°C
-40°C
0 Sinking
V± = ±1.35V
-0.135
85°C
-0.270
-0.405
-0.540
-0.675
-0.810
-0.945
-1.080
-1.215
-1.350
0 1 2 3 4 5 6 7 8 9 10
OUTPUT CURRENT (mA)
Output Voltage
vs. Output Current
OUTPUT VOLTAGE (V)
Sourcing
V± = ±2.5V
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
SUPPLY CURRENT/CH (µA)
1.485
Sourcing
1.35
V± = ±1.35V
1.215
1.08
0.945
25°C
0.81
0.675
0.54
0.405
0.27
-40°C
0.135
85°C
0
0 1 2 3 4 5 6 7 8 9 10
OUTPUT CURRENT (mA)
Output Voltage
vs. Output Current
Supply Current
vs. Supply Voltage
55
50
45
40
35
30
25
20
15
10
5
0
85°C
SUPPLY VOLTAGE (±V)
Output Voltage
vs. Output Current
2.75
2.50
2.25
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0
0
25°C
1.86
2.02
SUPPLY VOLTAGE (±V)
Output Voltage
vs. Output Current
-40°C
1.54
1.7
2.34
2.5
2.02
2.18
1.7
1.86
85°C
1.22
1.38
25°C
33
30 Sourcing
27
24
21
18
15
12
9
6
3
0
0.9
1.06
SHORT-CIRCUIT CURRENT (mA)
Short Circuit Current
vs. Supply Voltage
-40°C
1.38
1.54
1.06
1.22
44
40 Sinking
36
32
28
24
20
16
12
8
4
0
0.9
SHORT-CIRCUIT CURRENT (mA)
Short Circuit Current
vs. Supply Voltage
1
V± = ±2.5V
0.8
0.6
0.4
85°C
0.2
0
25°C
-0.2
-40°C
-0.4
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
COMMON-MODE VOLTAGE (V)
SUPPLY VOLTAGE (±V)
25°C
1.5
1
85°C
0.5
-40°C
0
-1.5
-1
-0.5
0
0.5
1
COMMON-MODE VOLTAGE (V)
September 2004
30
Sourcing
25
V± = ±2.5V
20
15
10
5
V± = ±1.35V
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
5
SHORT-CIRCUIT CURRENT (mA)
OFFSET VOLTAGE (mV)
V± = ±1.35V
2
Short Circuit Current
vs. Temperature
Short Circuit Current
vs. Temperature
SHORT-CIRCUIT CURRENT (mA)
Offset Voltage
vs. Common-Mode Voltage
2.5
35
30
Sinking
V± = ±2.5V
25
20
15
10
5
V± = ±1.35V
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
MIC862
MIC862
Micrel
0.3
V± = ±2.5V
0.2
0.1
0
-0.1
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
225
180
15
10
135
90
15
10
135
90
5
0
45
0
5
0
45
0
Av = 2
-5
V± = ±1.35V
-10 C = 2pF
L
-15 RL = 5kΩ
-20 RF = 20kΩ
-25
10k
100k
1M
10M
FREQUENCY (Hz)
Gain Bandwidth and
Phase Margin
10M
-225
Gain Bandwidth and
Phase Margin
30
20
135
90
30
20
135
90
30
20
135
90
10
0
45
0
10
0
45
0
10
0
45
0
-10 Av = 11
-20 V+ = +1.5V
V– = –0.5V
-30 C = 1.7pF
L
-40 R = 1MΩ
L
-50
10k
100k
1M
FREQUENCY (Hz)
-45
-90
-135
-180
10M
-225
-10
-20 Av = 11
V± = ±1.35V
-30 C = 2pF
L
-40 R = 1MΩ
L
-50
100k
1M
FREQUENCY (Hz)
-45
-90
GAIN (dB)
225
180
PHASE (°)
50
40
GAIN (dB)
225
180
-135
-180
10M
-225
-10
-20 Av = 11
V± = ±2.5V
-30 C = 2pF
L
-40 R = 1MΩ
L
-50
10k
100k
1M
10M
FREQUENCY (Hz)
Unity Gain Frequency
Response
-45
-90
-135
-180
-225
Unity Gain Frequency
Response
180
20
180
15
10
135
90
15
10
135
90
45
0
5
0
45
0
5
0
Gain
-5
-10 Av = 1
-15 V+ = ±1.5V
V– = –0.5V
-20 C = 1.7pF
-45
-90
Phase
-135
-180
L
10M
-225
-270
-5
-10
Phase
-15 Av = 1
V± = ±1.35V
-20 C = 2pF
L
-25 R = 5kΩ
L
-30
10k
1M
1k
100k
FREQUENCY (Hz)
PSRR
vs. Frequency
100
90
80
-225
-270
10M
50
40
30
20
10
0
1
10
0
1
45
0
Gain
-5
-10
-45
-90
Phase
-15 Av = 1
V± = ±2.5V
-20 C = 2pF
L
-25 R = 5kΩ
L
-30
1k
10k
100k
1M
FREQUENCY (Hz)
-135
-180
10M
-225
-270
Channel to
Channel Crosstalk
-30
-35
70
60
30
20
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
-135
-180
V± = ±2.5V
90
80
PSRR (dB)
50
40
-45
-90
PSRR
vs. Frequency
100
V± = ±1.35V
70
60
Gain
CROSSTALK (dB)
5
0
GAIN (dB)
20
135
90
PHASE (°)
180
15
10
GAIN (dB)
20
PHASE (°)
GAIN (dB)
-135
-180
50
40
-25 R = 5kΩ
L
-30
10k
100k
1M
FREQUENCY (Hz)
PSRR (dB)
-225
-45
-90
225
180
Unity Bandwidth
Frequency Response
MIC862
-135
-180
-5 Av = 2
-10 V± = ±2.5V
CL = 2pF
-15
RL = 5kΩ
-20
RF = 20kΩ
-25
100k
1M
10k
FREQUENCY (Hz)
50
40
PHASE (°)
GAIN (dB)
Gain Bandwidth
and Phase Margin
-45
-90
PHASE (°)
0.4
25
20
PHASE (°)
GAIN (dB)
0.5
Gain Frequency Response
225
180
GAIN (dB)
V± = ±1.35V
0.6
OFFSET VOLTAGE (mV)
Gain Frequency Response
25
20
PHASE (°)
0.7
PHASE (°)
Offset Voltage
vs. Temperature
-40
-45
-50
-55
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
6
-60
10
100
FREQUENCY (kHz)
1000
September 2004
MIC862
Micrel
Functional Characteristics
Small Signal Response
Small Signal Response
INPUT
50mV/div
TIME 500ns/div
TIME 500ns/div
Small Signal Response
Small Signal Response
INPUT
50mV/div
AV = 1
V± = ±2.5V
CL = 50pF
RL = 500Ω
OUTPUT
50mV/div
OUTPUT
50mV/div
INPUT
50mV/div
AV = 1
V± = ±1.35V
CL = 50pF
RL = 500Ω
TIME 1µs/div
TIME 1µs/div
Small Signal Response
Small Signal Response
INPUT
50mV/div
AV = 1
V± = ±2.5V
CL = 1000pF
RL = 500Ω
OUTPUT
50mV/div
OUTPUT
50mV/div
INPUT
50mV/div
AV = 1
V± = ±1.35V
CL = 1000pF
RL = 500Ω
TIME 500ns/div
September 2004
AV = 1
V± = ±2.5V
CL = 1.7pF
RL = 1MΩ
OUTPUT
50mV/div
OUTPUT
50mV/div
INPUT
50mV/div
AV = 1
V± = ±1.35V
CL = 1.7pF
RL = 1MΩ
TIME 500ns/div
7
MIC862
MIC862
Micrel
Small Signal Pulse Response
OUTPUT
50mV/div
INPUT
50mV/div
AV = 1
V+ = +1.5V
V– = –0.5V
CL = 1.7pF
RL = 1MΩ
TIME 500ns/div
MIC862
8
September 2004
MIC862
Micrel
Large Signal Response
Large Signal Response
AV = 1
V± = ±2.5V
CL = 1.7pF
RL = 1MΩ
OUTPUT
1V/div
OUTPUT
500mV/div
AV = 1
V± = ±1.35V
CL = 1.7pF
RL = 1MΩ
Positive Slew Rate = 1.5V/µs
Negative Slew Rate = 2.0V/µs
Positive Slew Rate = 1.8V/µs
Negative Slew Rate = 4.1V/µs
TIME 5µs/div
TIME 5µs/div
Large Signal Response
Large Signal Response
AV = 1
V± = ±1.35V
CL = 50pF
RL = 500Ω
OUTPUT
1V/div
OUTPUT
500mV/div
AV = 1
V± = ±2.5V
CL = 50pF
RL = 500Ω
Positive Slew Rate = 1.5V/µs
Negative Slew Rate = 2.8V/µs
Positive Slew Rate = 1.8V/µs
Negative Slew Rate = 4.7V/µs
TIME 5µs/div
TIME 5µs/div
Large Signal Pulse Response
Large Signal Pulse Response
AV = 1
V± = ±2.5V
CL = 1000pF
RL = 500Ω
OUTPUT
1V/div
OUTPUT
500mV/div
AV = 1
V± = ±1.35V
CL = 1000pF
RL = 500Ω
Positive Slew Rate = 1.3V/µs
Negative Slew Rate = 3.6V/µs
Positive Slew Rate = 1.3V/µs
Negative Slew Rate = 3.6V/µs
TIME 5µs/div
September 2004
TIME 5µs/div
9
MIC862
MIC862
Micrel
Large Signal Pulse Response
V+
AV = 1
V+ = +1.5V
V– = –0.5V
CL = 1.7pF
RL = 1MΩ
RL
V—
OUTPUT
20mV/div
CL
Positive Slew Rate = 1.17V/µs
Negative Slew Rate = 2.0V/µs
TIME 5µs/div
INPUT
500mV/div
∆V = 2.7VP-P
Rail to Rail Operation
Rail to Rail Operation
∆V = 2.7VP-P
AV = 2
V± = ±2.5V
CL = 2 pF
RL = 5kΩ
RF = 20kΩ
∆V = 5VP-P
OUTPUT
2V/div
AV = 2
V± = ±1.35V
CL = 2 pF
RL = 5kΩ
RF = 20kΩ
INPUT
1V/div
TIME 250µs/div
OUTPUT
1V/div
INPUT
500mV/div
∆V = 5VP-P
TIME 250µs/div
TIME 250µs/div
MIC862
AV = 2
V± = ±2.5V
CL = 2pF
RL = 1MΩ
RF = 20kΩ
OUTPUT
1V/div
AV = 2
V± = ±1.35V
CL = 2pF
RL = 1MΩ
RF = 20kΩ
Rail to Rail Operation
OUTPUT
1V/div
INPUT
500mV/div
Rail to Rail Operation
TIME 250µs/div
10
September 2004
MIC862
Micrel
Under the above conditions, if the load is less than 20kOhm
and the output swing is greater than 1V(peak), there may be
some instability when the output is sinking current.
Capacitive Load
When driving a large capacitive load, a resistor of 500Ω is
recommended to be connected between the op-amp output
and the capacitive load to avoid oscillation.
Applications Information
Power Supply Bypassing
Regular supply bypassing techniques are recommended. A
10µF capacitor in parallel with a 0.1µF capacitor on both the
positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to
the op amp as possible and all capacitors should be low ESL
(equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal.
Supply and Loading Resistive Considerations
The MIC862 is intended for single supply applications configured with a grounded load. It is not advisable to operate the
MIC862 under either of the following conditions:
1. A grounded load and split supplies (+/-V)
2. A single supply where the load is terminated
above ground.
September 2004
11
MIC862
MIC862
Micrel
Package Information
0.20
0.38
0.22
0.38
0.22
0.65REF
3.00
2.60
1.75
1.50
10°
0°
1.95REF
3.00
2.80
1.45
0.90
0.20
0.09
1.30
0.90
0.15
0.00
SOT-23-8 (M8)
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 474-1000
WEB
USA
http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2004 Micrel, Incorporated.
MIC862
12
September 2004
Similar pages