TI1 LM4040CIM7-2.0/NOPB Lm4040-n/lm4040q-n precision micropower shunt voltage reference Datasheet

LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
LM4040-N/LM4040Q-N Precision Micropower Shunt Voltage Reference
Check for Samples: LM4040-N, LM4040Q-N
FEATURES
DESCRIPTION
•
Ideal for space critical applications, the LM4040-N
precision voltage reference is available in the subminiature SC70 and SOT-23 surface-mount package.
The LM4040-N's advanced design eliminates the
need for an external stabilizing capacitor while
ensuring stability with any capacitive load, thus
making the LM4040-N easy to use. Further reducing
design effort is the availability of several fixed reverse
breakdown voltages: 2.048V, 2.500V, 3.000V,
4.096V, 5.000V, 8.192V, and 10.000V. The minimum
operating current increases from 60 μA for the 2.5-V
LM4040-N to 100 μA for the 10.0-V LM4040-N. All
versions have a maximum operating current of
15 mA.
1
2
•
•
•
•
2.5V/SOT-23 AEC Q-100 Grades 1 and 3
available
Small Packages: SOT-23, TO-92 and SC70
No Output Capacitor Required
Tolerates Capacitive Loads
Fixed Reverse Breakdown Voltages of 2.048V,
2.500V,3.000V, 4.096V, 5.000V, 8.192V, and
10.000V
APPLICATIONS
•
•
•
•
•
•
•
•
Portable, Battery-Powered Equipment
Data Acquisition Systems
Instrumentation
Process Control
Energy Management
Product Testing
Automotive
Precision Audio Components
The LM4040-N utilizes fuse and zener-zap reverse
breakdown voltage trim during wafer sort to ensure
that the prime parts have an accuracy of better than
±0.1% (A grade) at 25°C. Bandgap reference
temperature drift curvature correction and low
dynamic
impedance
ensure
stable
reverse
breakdown voltage accuracy over a wide range of
operating temperatures and currents.
Also available is the LM4041-N with two reverse
breakdown voltage versions: adjustable and 1.2V.
Please see the LM4041-N data sheet.
Key Specifications (2.5-V LM4040-N)
VALUE
UNIT
Output voltage tolerance (A grade, 25°C)
±0.1
% (max)
Low output noise (10 Hz to 10 kHz)
35
μVrms (typ)
Wide operating current range
60 to 15
μA to mA
Industrial temperature range
−40 to +85
°C
Extended temperature range
−40 to +125
°C
Low temperature coefficient
100
ppm/°C (max)
1
2
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2000–2013, Texas Instruments Incorporated
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
Connection Diagrams
-
1
5
N/C
2
N/C*
3
*This pin must be left floating or connected
to pin 2.
+
4
N/C
*This pin must be left floating or connected
to pin 1.
Figure 1. SOT-23 (Top View)
See Package Number DBZ
(JEDEC Registration TO-236AB)
Figure 2. TO-92 (Bottom View)
See Package Number LP
Figure 3. SC70 (Top View)
See Package Number DCK
SOT-23 AND SC70 Package Marking Information
Only three fields of marking are possible on the SOT-23's and SC70's small surface. This table gives the
meaning of the three fields.
First Field:
R = Reference
Second Field: Voltage Option
J = 2.048V Voltage Option
2 = 2.500V Voltage Option
K = 3.000V Voltage Option
4 = 4.096V Voltage Option
5 = 5.000V Voltage Option
8 = 8.192V Voltage Option
0 = 10.000V Voltage Option
Third Field: Initial Reverse Breakdown Voltage or Reference Voltage Tolerance
A = ±0.1%
B = ±0.2%
C = +0.5%
D = ±1.0%
E = ±2.0%
2
Part Marking
Field Definition
RJA (SOT-23 only)
Reference, 2.048V, ±0.1%
R2A (SOT-23 only)
Reference, 2.500V, ±0.1%
RKA (SOT-23 only
Reference, 3.000V, ±0.1%
R4A (SOT-23 only)
Reference, 4.096V, ±0.1%
R5A (SOT-23 only)
Reference, 5.000V, ±0.1%
R8A (SOT-23 only)
Reference, 8.192V, ±0.1%
R0A (SOT-23 only)
Reference, 10.000V, ±0.1%
RJB
Reference, 2.048V, ±0.2%
R2B
Reference, 2.500V, ±0.2%
RKB
Reference, 3.000V, ±0.2%
R4B
Reference, 4.096V, ±0.2%
R5B
Reference, 5.000V, ±0.2%
R8B (SOT-23 only)
Reference, 8.192V, ±0.2%
R0B (SOT-23 only)
Reference, 10.000V, ±0.2%
RJC
Reference, 2.048V, ±0.5%
R2C
Reference, 2.500V, ±0.5%
RKC
Reference, 3.000V, ±0.5%
R4C
Reference, 4.096V, ±0.5%
R5C
Reference, 5.000V, ±0.5%
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
R8C (SOT-23 only)
Reference, 8.192V, ±0.5%
R0C (SOT-23 only)
Reference, 10.000V, ±0.5%
RJD
Reference, 2.048V, ±1.0%
R2D
Reference, 2.500V, ±1.0%
RKD
Reference, 3.000V, ±1.0%
R4D
Reference, 4.096V, ±1.0%
R5D
Reference, 5.000V, ±1.0%
R8D (SOT-23 only)
Reference, 8.192V, ±1.0%
R0D (SOT-23 only)
Reference, 10.000V, ±1.0%
RJE
Reference, 2.048V, ±2.0%
R2E
Reference, 2.500V, ±2.0%
RKE
Reference, 3.000V, ±2.0%
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
Absolute Maximum Ratings (1) (2)
Reverse Current
20 mA
Forward Current
Power Dissipation (TA = 25°C)
10 mA
(3)
SOT-23 (M3) Package
306 mW
TO-92 (Z) Package
550 mW
SC70 (M7) Package
241 mW
−65°C to +150°C
Storage Temperature
Soldering Temperature (4)
ESD Susceptibility
SOT-23 (M3) Package Peak Reflow (30 sec)
+260°C
TO-92 (Z) Package Soldering (10 sec)
+260°C
SC70 (M7) Package Peak Reflow (30 sec)
+260°C
Human Body Model
(5)
2 kV
Machine Model (5)
(1)
(2)
(3)
(4)
(5)
200V
Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for
which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the
Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may
degrade when the device is not operated under the listed test conditions.
If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and
specifications.
The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature),
θJA (junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any
temperature is PDmax = (TJmax − TA)/θJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040-N,
TJmax = 125°C, and the typical thermal resistance (θJA), when board mounted, is 326°C/W for the SOT-23 package, and 180°C/W with
0.4″ lead length and 170°C/W with 0.125″ lead length for the TO-92 package and 415°C/W for the SC70 Package.
For definitions of Peak Reflow Temperatures for Surface Mount devices, see the TI Absolute Maximum Ratings for Soldering Application
Report (SNOA549).
The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF
capacitor discharged directly into each pin.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
3
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
Operating Ratings (1) (2)
Temperature Range (Tmin ≤ TA ≤ Tmax)
Reverse Current
(1)
(2)
4
Industrial Temperature Range
−40°C ≤ TA ≤ +85°C
Extended Temperature Range
−40°C ≤ TA ≤ +125°C
LM4040-N-2.0
60 μA to 15 mA
LM4040-N-2.5
60 μA to 15 mA
LM4040-N-3.0
62 μA to 15 mA
LM4040-N-4.1
68 μA to 15 mA
LM4040-N-5.0
74 μA to 15 mA
LM4040-N-8.2
91 μA to 15 mA
LM4040-N-10.0
100 μA to 15 mA
Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for
which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the
Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may
degrade when the device is not operated under the listed test conditions.
The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature),
θJA (junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any
temperature is PDmax = (TJmax − TA)/θJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040-N,
TJmax = 125°C, and the typical thermal resistance (θJA), when board mounted, is 326°C/W for the SOT-23 package, and 180°C/W with
0.4″ lead length and 170°C/W with 0.125″ lead length for the TO-92 package and 415°C/W for the SC70 package.
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
2.0-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial
Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.
Symbol
Parameter
Reverse Breakdown Voltage
VR
Reverse Breakdown Voltage
Tolerance (3)
Conditions
IR = 100 μA
Typical (1)
LM4040AIM3
LM4040AIZ
—
Limits (2)
LM4040BIM3
LM4040BIZ
LM4040BIM7
Limits (2)
Units
±2.0
±4.1
mV (max)
±15
±17
mV (max)
60
60
μA (max)
65
65
μA (max)
±100
±100
ppm/°C (max)
2.048
IR = 100 μA
V
μA
45
IRMIN
ΔVR/ΔT
Minimum Operating Current
Average Reverse Breakdown
Voltage Temperature
Coefficient (3)
IR = 10 mA
±20
IR = 1 mA
±15
IR = 100 μA
±15
ppm/°C
0.3
mV
IRMIN ≤ IR ≤ 1 mA
ΔVR/ΔIR
Reverse Breakdown Voltage
Change with Operating
Current Change (4)
eN
ΔVR
VHYST
(1)
(2)
(3)
(4)
(5)
0.8
0.8
mV (max)
1.0
1.0
mV (max)
2.5
1 mA ≤ IR ≤ 15 mA
ZR
ppm/°C
mV
6.0
6.0
mV (max)
8.0
8.0
mV (max)
Ω
0.3
Reverse Dynamic Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
35
μVrms
Reverse Breakdown Voltage
Long Term Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
0.8
0.8
Ω (max)
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
5
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
2.0-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'I'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C, D and E designate initial
Reverse Breakdown Voltage tolerances of ±0.5%, ±1.0% and ±2.0%, respectively.
Symbol
VR
Parameter
Conditions
Reverse Breakdown
Voltage
IR = 100 μA
Reverse Breakdown
Voltage Tolerance (3)
IR = 100 μA
Typical (1)
LM4040CIM3
LM4040CIZ
LM4040CIM7
Limits (2)
LM4040DIM3
LM4040DIZ
LM4040DIM7
Limits (2)
—
LM4040EIZ
LM4040EIM7
Limits (2)
2.048
V
±10
±20
±41
mV (max)
±23
±40
±60
mV (max)
60
65
65
μA (max)
65
70
70
μA (max)
±100
±150
±150
ppm/°C (max)
μA
45
IRMIN
Minimum Operating
Current
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient (3)
IR = 10 mA
±20
IR = 1 mA
±15
IR = 100 μA
±15
ppm/°C
ppm/°C
0.3
ΔVR/ΔIR
(4)
(5)
6
1.0
1.0
mV (max)
1.0
1.2
1.2
mV (max)
6.0
8.0
8.0
mV (max)
8.0
10.0
10.0
mV (max)
0.9
1.1
1.1
Ω(max)
2.5
1 mA ≤ IR ≤ 15 mA
mV
Ω
0.3
Reverse Dynamic
Impedance
IR = 1 mA, f = 120 Hz
IAC = 0.1 IR
eN
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
35
μVrms
Reverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
VHYST
(3)
mV
0.8
ZR
ΔVR
(1)
(2)
Reverse Breakdown
Voltage Change with
Operating Current
Change (4)
IRMIN ≤ IR ≤ 1 mA
Units
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
2.0-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'E'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C, D and E designate initial
Reverse Breakdown Voltage tolerances of ±0.5%, ±1.0% and ±2.0%, respectively.
Symbol
VR
Parameter
Conditions
Reverse Breakdown
Voltage
IR = 100 μA
Reverse Breakdown
Voltage Tolerance (3)
IR = 100 μA
Typical (1)
LM4040CEM3
Limits (2)
LM4040DEM3
Limits (2)
LM4040EEM3
Limits (2)
2.048
V
±10
±20
±41
mV (max)
±30
±50
±70
mV (max)
μA
45
IRMIN
ΔVR/ΔT
ΔVR/ΔIR
(4)
(5)
Reverse Breakdown
Voltage Change with
Operating Current
Change (4)
65
65
μA (max)
68
73
73
μA (max)
IR = 10 mA
±20
IR = 1 mA
±15
IR = 100 μA
±15
ppm/°C
0.3
mV
IRMIN ≤ IR ≤ 1 mA
ppm/°C
±100
±150
±150
0.8
1.0
1.0
mV (max)
1.0
1.2
1.2
mV (max)
2.5
1 mA ≤ IR ≤ 15 mA
ppm/°C (max)
mV
6.0
8.0
8.0
mV (max)
8.0
10.0
10.0
mV (max)
0.9
1.1
1.1
Ω (max)
Ω
0.3
Reverse Dynamic
Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
eN
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
35
μVrms
Reverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
VHYST
(3)
Average Reverse
Breakdown Voltage
Temperature
Coefficient (3)
60
ZR
ΔVR
(1)
(2)
Minimum Operating
Current
Units
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
7
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
2.5-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I' (AEC Grade 3)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial
Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.
LM4040AIM3
Symbol
VR
Parameter
Conditions
Reverse Breakdown Voltage
IR = 100 μA
Reverse Breakdown Voltage
Tolerance (3)
IR = 100 μA
Typical (1)
LM4040BIM3
LM4040AIZ
LM4040BIZ
—
LM4040BIM7
LM4040AIM3
LM4040QBIM3
Limits (2)
Limits (2)
2.500
V
±2.5
±5.0
mV (max)
±19
±21
mV (max)
60
60
μA (max)
65
65
μA (max)
±100
±100
ppm/°C (max)
μA
45
IRMIN
Minimum Operating Current
ΔVR/ΔT
Average Reverse Breakdown
Voltage Temperature
Coefficient (3)
IR = 10 mA
±20
IR = 1 mA
±15
IR = 100 μA
±15
ppm/°C
ppm/°C
0.3
IRMIN ≤ IR ≤ 1 mA
ΔVR/ΔIR
Reverse Breakdown Voltage
Change with Operating
Current Change (4)
(4)
(5)
8
mV (max)
1.0
1.0
mV (max)
6.0
6.0
mV (max)
8.0
8.0
mV (max)
0.8
0.8
Ω (max)
mV
Ω
0.3
Reverse Dynamic Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
eN
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
35
μVrms
Reverse Breakdown Voltage
Long Term Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
VHYST
(3)
0.8
ZR
ΔVR
(1)
(2)
mV
0.8
2.5
1 mA ≤ IR ≤ 15 mA
Units
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
2.5-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'I' (AEC Grade 3)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C, D and E designate initial
Reverse Breakdown Voltage tolerances of ±0.5%, ±1.0% and ±2.0%, respectively.
Symbol
Parameter
Conditions
Typical (1)
LM4040CIZ
LM4040DIZ
LM4040EIZ
LM4040CIM3
LM4040DIM3
LM4040EIM3
LM4040CIM7
LM4040DIM7
LM4040EIM7
Units
LM4040QCIM3 LM4040QDIM3 LM4040QEIM3
Limits (2)
VR
Reverse Breakdown
Voltage
IR = 100 μA
Reverse Breakdown
Voltage Tolerance (3)
IR = 100 μA
Limits (2)
Limits (2)
2.500
V
±12
±25
±50
mV (max)
±29
±49
±74
mV (max)
μA
45
IRMIN
Minimum Operating
Current
Average Reverse
Breakdown Voltage
ΔVR/ΔT
Temperature
Coefficient (3)
ΔVR/ΔIR
(4)
(5)
65
μA (max)
70
70
μA (max)
IR = 10 mA
±20
IR = 1 mA
±15
IR = 100 μA
±15
ppm/°C
0.3
mV
IRMIN ≤ IR ≤ 1 mA
ppm/°C
±100
±150
±150
0.8
1.0
1.0
mV (max)
1.0
1.2
1.2
mV (max)
2.5
1 mA ≤ IR ≤ 15 mA
ppm/°C (max)
mV
6.0
8.0
8.0
mV (max)
8.0
10.0
10.0
mV (max)
0.9
1.1
1.1
Ω(max)
Ω
0.3
Reverse Dynamic
Impedance
IR = 1 mA, f = 120 Hz
IAC = 0.1 IR
eN
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
35
μVrms
Reverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (5)
ΔT= −40°C to +125°C
0.08
%
VHYST
(3)
65
65
ZR
ΔVR
(1)
(2)
Reverse Breakdown
Voltage Change with
Operating Current
Change (4)
60
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
9
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
2.5-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'E' (AEC Grade 1)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C, D and E designate initial
Reverse Breakdown Voltage tolerances of ±0.5%, ±1.0% and ±2.0%, respectively.
Symbol
Parameter
Conditions
Typical (1
)
LM4040CEM3
Limits (2)
Reverse Breakdown
Voltage
VR
IR = 100 μA
LM4040DEM3
LM4040QCEM3 LM4040QDEM3
Limits (2)
LM4040EEM3
LM4040QEEM3
2.500
Reverse Breakdown
I = 100 μA
Voltage Tolerance (3) R
V
±12
±25
±50
mV (max)
±38
±63
±88
mV (max)
60
65
65
μA (max)
68
73
73
μA (max)
±100
±150
±150
ppm/°C (max)
μA
45
Minimum Operating
Current
IRMIN
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient (3)
IR = 10 mA
±20
IR = 1 mA
±15
IR = 100 μA
±15
ppm/°C
ppm/°C
0.3
ΔVR/ΔIR
(4)
(5)
10
1.0
1.0
mV (max)
1.0
1.2
1.2
mV (max)
6.0
8.0
8.0
mV (max)
8.0
10.0
10.0
mV (max)
0.9
1.1
1.1
Ω (max)
2.5
1 mA ≤ IR ≤ 15 mA
mV
Ω
0.3
Reverse Dynamic
Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
eN
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
35
μVrms
Reverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal
Hysteresis (5)
ΔT= −40°C to +125°C
0.08
%
VHYST
(3)
mV
0.8
ZR
ΔVR
(1)
(2)
Reverse Breakdown
Voltage Change with
Operating Current
Change (4)
IRMIN ≤ IR ≤ 1 mA
Units
Limits (2)
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
3.0-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial
Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.
Symbol
Parameter
Reverse Breakdown Voltage
VR
Reverse Breakdown Voltage
Tolerance (3)
Conditions
IR = 100 μA
Typical (1)
LM4040AIM3
LM4040AIZ
—
Limits (2)
LM4040BIM3
LM4040BIZ
LM4040BIM7
Limits (2)
Units
±3.0
±6.0
mV (max)
±22
±26
mV (max)
62
62
μA (max)
67
67
μA (max)
±100
±100
ppm/°C (max)
3.000
IR = 100 μA
V
μA
47
IRMIN
ΔVR/ΔT
Minimum Operating Current
Average Reverse Breakdown
Voltage Temperature
Coefficient (3)
IR = 10 mA
±20
IR = 1 mA
±15
IR = 100 μA
±15
ppm/°C
0.6
mV
IRMIN ≤ IR ≤ 1 mA
ΔVR/ΔIR
Reverse Breakdown Voltage
Change with Operating
Current Change (4)
eN
ΔVR
VHYST
(1)
(2)
(3)
(4)
(5)
0.8
0.8
mV (max)
1.1
1.1
mV (max)
2.7
1 mA ≤ IR ≤ 15 mA
ZR
ppm/°C
mV
6.0
6.0
mV (max)
9.0
9.0
mV (max)
Ω
0.4
Reverse Dynamic Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
35
μVrms
Reverse Breakdown Voltage
Long Term Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
0.9
0.9
Ω (max)
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
11
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
3.0-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'I'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C, D and E designate initial
Reverse Breakdown Voltage tolerances of ±0.5%, ±1.0% and ±2.0%, respectively.
Symbol
VR
Parameter
Conditions
Reverse Breakdown
Voltage
IR = 100 μA
Reverse Breakdown
Voltage Tolerance (3)
IR = 100 μA
Typical (1)
LM4040CIM3
LM4040CIZ
LM4040CIM7
Limits (2)
LM4040DIM3
LM4040DIZ
LM4040DIM7
Limits (2)
LM4040EIM7
LM4040EIZ
—
Limits (2)
3.000
V
±15
±30
±60
mV (max)
±34
±59
±89
mV (max)
60
65
65
μA (max)
65
70
70
μA (max)
±100
±150
±150
ppm/°C (max)
μA
45
IRMIN
Minimum Operating
Current
ΔVR/ΔT
Average Reverse
Breakdown Voltage
Temperature
Coefficient (3)
IR = 10 mA
±20
IR = 1 mA
±15
IR = 100 μA
±15
ppm/°C
ppm/°C
0.4
ΔVR/ΔIR
(4)
(5)
12
1.1
1.1
mV (max)
1.1
1.3
1.3
mV (max)
6.0
8.0
8.0
mV (max)
9.0
11.0
11.0
mV (max)
0.9
1.2
1.2
Ω(max)
2.7
1 mA ≤ IR ≤ 15 mA
mV
Ω
0.4
Reverse Dynamic
Impedance
IR = 1 mA, f = 120 Hz
IAC = 0.1 IR
eN
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
35
μVrms
Reverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
VHYST
(3)
mV
0.8
ZR
ΔVR
(1)
(2)
Reverse Breakdown
Voltage Change with
Operating Current
Change (4)
IRMIN ≤ IR ≤ 1 mA
Units
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
3.0-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'C', 'D', and 'E'; Temperature Grade 'E'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C, D and E designate initial
Reverse Breakdown Voltage tolerances of ±0.5%, ±1.0% and ±2.0%, respectively.
Symbol
VR
Parameter
Conditions
Reverse Breakdown
Voltage
IR = 100 μA
Reverse Breakdown
Voltage Tolerance (3)
IR = 100 μA
Typical (1)
LM4040CEM3
Limits (2)
LM4040DEM3
Limits (2)
LM4040EEM3
Limits (2)
3.000
V
±15
±30
±60
mV (max)
±45
±75
±105
mV (max)
μA
47
IRMIN
ΔVR/ΔT
ΔVR/ΔIR
(4)
(5)
Reverse Breakdown
Voltage Change with
Operating Current
Change (4)
67
67
μA (max)
70
75
75
μA (max)
IR = 10 mA
±20
IR = 1 mA
±15
IR = 100 μA
±15
ppm/°C
0.4
mV
IRMIN ≤ IR ≤ 1 mA
ppm/°C
±100
±150
±150
0.8
1.1
1.1
mV (max)
1.1
1.3
1.3
mV (max)
2.7
1 mA ≤ IR ≤ 15 mA
ppm/°C (max)
mV
6.0
8.0
8.0
mV (max)
9.0
11.0
11.0
mV (max)
0.9
1.2
1.2
Ω (max)
Ω
0.4
Reverse Dynamic
Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
eN
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
35
μVrms
Reverse Breakdown
Voltage Long Term
Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
VHYST
(3)
Average Reverse
Breakdown Voltage
Temperature
Coefficient (3)
62
ZR
ΔVR
(1)
(2)
Minimum Operating
Current
Units
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
13
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
4.1-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial
Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.
Symbol
Parameter
Reverse Breakdown Voltage
VR
Reverse Breakdown Voltage
Tolerance (3)
Conditions
IR = 100 μA
Typical (1)
LM4040AIM3
LM4040AIZ
—
Limits (2)
LM4040BIM3
LM4040BIZ
LM4040BIM7
Limits (2)
Units
±4.1
±8.2
mV (max)
±31
±35
mV (max)
68
68
μA (max)
73
73
μA (max)
±100
±100
ppm/°C (max)
4.096
IR = 100 μA
V
μA
50
IRMIN
Minimum Operating Current
ΔVR/ΔT
Average Reverse Breakdown
Voltage Temperature
Coefficient (3)
IR = 10 mA
±30
IR = 1 mA
±20
IR = 100 μA
±20
ppm/°C
0.5
mV
IRMIN ≤ IR ≤ 1 mA
ΔVR/ΔIR
Reverse Breakdown Voltage
Change with Operating
Current Change (4)
eN
ΔVR
VHYST
(1)
(2)
(3)
(4)
(5)
14
0.9
0.9
mV (max)
1.2
1.2
mV (max)
3.0
1 mA ≤ IR ≤ 15 mA
ZR
ppm/°C
mV
7.0
7.0
mV (max)
10.0
10.0
mV (max)
Ω
0.5
Reverse Dynamic Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
80
μVrms
Reverse Breakdown Voltage
Long Term Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
1.0
1.0
Ω (max)
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
4.1-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'C' and 'D'; Temperature Grade 'I'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial
Reverse Breakdown Voltage tolerances of ±0.5% and ±1.0%, respectively.
Symbol
Parameter
Reverse Breakdown Voltage
VR
Reverse Breakdown Voltage
Tolerance (3)
Conditions
IR = 100 μA
Typical (1)
LM4040CIM3
LM4040CIZ
LM4040CIM7
Limits (2)
LM4040DIM3
LM4040DIZ
LM4040DIM7
Limits (2)
Units
±20
±41
mV (max)
±47
±81
mV (max)
68
73
μA (max)
73
78
μA (max)
±100
±150
ppm/°C (max)
4.096
IR = 100 μA
V
μA
50
IRMIN
Minimum Operating Current
Average Reverse Breakdown
ΔVR/ΔT Voltage Temperature
Coefficient (3)
IR = 10 mA
±30
IR = 1 mA
±20
IR = 100 μA
±20
ppm/°C
0.5
mV
IRMIN ≤ IR ≤ 1 mA
ΔVR/ΔI
R
Reverse Breakdown Voltage
Change with Operating
Current Change (4)
eN
ΔVR
VHYST
(1)
(2)
(3)
(4)
(5)
0.9
1.2
mV (max)
1.2
1.5
mV (max)
3.0
1 mA ≤ IR ≤ 15 mA
ZR
ppm/°C
mV
7.0
9.0
mV (max)
10.0
13.0
mV (max)
Ω
0.5
Reverse Dynamic Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
80
μVrms
Reverse Breakdown Voltage
Long Term Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
1.0
1.3
Ω (max)
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
15
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
5.0-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial
Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.
Symbol
Parameter
Reverse Breakdown Voltage
VR
Reverse Breakdown Voltage
Tolerance (3)
Conditions
IR = 100 μA
Typical (1)
LM4040AIM3
LM4040AIZ
—
Limits (2)
LM4040BIM3
LM4040BIZ
LM4040BIM7
Limits (2)
Units
±5.0
±10
mV (max)
±38
±43
mV (max)
74
74
μA (max)
80
80
μA (max)
±100
±100
ppm/°C (max)
5.000
IR = 100 μA
V
μA
54
IRMIN
Minimum Operating Current
Average Reverse Breakdown
ΔVR/ΔT Voltage Temperature
Coefficient (3)
IR = 10 mA
±30
IR = 1 mA
±20
IR = 100 μA
±20
ppm/°C
0.5
mV
IRMIN ≤ IR ≤ 1 mA
ΔVR/ΔI
R
Reverse Breakdown Voltage
Change with Operating
Current Change (4)
eN
ΔVR
VHYST
(1)
(2)
(3)
(4)
(5)
16
1.0
1.0
mV (max)
1.4
1.4
mV (max)
3.5
1 mA ≤ IR ≤ 15 mA
ZR
ppm/°C
mV
8.0
8.0
mV (max)
12.0
12.0
mV (max)
Ω
0.5
Reverse Dynamic Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
80
μVrms
Reverse Breakdown Voltage
Long Term Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
1.1
1.1
Ω (max)
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
5.0-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'C' and 'D'; Temperature Grade 'I'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial
Reverse Breakdown Voltage tolerances of ±0.5% and ±1.0%, respectively.
Symbol
Parameter
Reverse Breakdown Voltage
VR
Reverse Breakdown Voltage
Tolerance (3)
Conditions
IR = 100 μA
Typical (1)
LM4040CIM3
LM4040CIZ
LM4040CIM7
Limits (2)
LM4040DIM3
LM4040DIZ
LM4040DIM7
Limits (2)
Units
±25
±50
mV (max)
±58
±99
mV (max)
74
79
μA (max)
80
85
μA (max)
±100
±150
ppm/°C (max)
5.000
IR = 100 μA
V
μA
54
IRMIN
Minimum Operating Current
Average Reverse Breakdown
ΔVR/ΔT Voltage Temperature
Coefficient (3)
IR = 10 mA
±30
IR = 1 mA
±20
IR = 100 μA
±20
ppm/°C
0.5
mV
IRMIN ≤ IR ≤ 1 mA
ΔVR/ΔI
R
Reverse Breakdown Voltage
Change with Operating
Current Change (4)
eN
ΔVR
VHYST
(1)
(2)
(3)
(4)
(5)
1.0
1.3
mV (max)
1.4
1.8
mV (max)
3.5
1 mA ≤ IR ≤ 15 mA
ZR
ppm/°C
mV
8.0
10.0
mV (max)
12.0
15.0
mV (max)
Ω
0.5
Reverse Dynamic Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
80
μVrms
Reverse Breakdown Voltage
Long Term Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
1.1
1.5
Ω (max)
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
17
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
5.0-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'C' and 'D'; Temperature Grade 'E'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial
Reverse Breakdown Voltage tolerances of ±0.5% and ±1.0%, respectively.
Symbol
VR
Parameter
Conditions
Reverse Breakdown Voltage
IR = 100 μA
Reverse Breakdown Voltage
Tolerance (2)
IR = 100 μA
Typical
LM4040CEM3
Limits (1)
LM4040DEM3
Limits (1)
5.000
V
±25
±50
mV (max)
±75
±125
mV (max)
μA
54
IRMIN
Minimum Operating Current
Average Reverse Breakdown
ΔVR/ΔT Voltage Temperature
Coefficient (2)
IR = 10 mA
±30
IR = 1 mA
±20
IR = 100 μA
±20
74
79
μA (max)
83
88
μA (max)
±100
±150
ppm/°C (max)
ppm/°C
ppm/°C
0.5
mV
IRMIN ≤ IR ≤ 1 mA
Reverse Breakdown Voltage
ΔVR/ΔIR Change with Operating Current
Change (3)
(4)
18
mV (max)
1.4
1.8
mV (max)
8.0
8.0
mV (max)
12.0
15.0
mV (max)
1.1
1.1
Ω (max)
mV
Ω
0.5
ZR
Reverse Dynamic Impedance
eN
Wideband Noise
IR = 100 μA
10 Hz ≤ f ≤ 10 kHz
80
μVrms
Reverse Breakdown Voltage
Long Term Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 100 μA
120
ppm
Thermal Hysteresis (4)
ΔT = −40°C to +125°C
0.08
%
VHYST
(3)
1.0
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
ΔVR
(2)
1.0
3.5
1 mA ≤ IR ≤ 15 mA
(1)
Units
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
8.2-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial
Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.
Symbol
Parameter
Reverse Breakdown Voltage
VR
Reverse Breakdown Voltage
Tolerance (3)
Conditions
IR = 150 μA
Typical (1)
LM4040AIM3
LM4040BIM3
LM4040AIZ
LM4040BIZ
Limits (2)
Limits (2)
8.192
IR = 150 μA
V
±8.2
±16
mV (max)
±61
±70
mV (max)
91
91
μA (max)
95
95
μA (max)
μA
67
IRMIN
ΔVR/ΔT
Minimum Operating Current
Average Reverse Breakdown
Voltage Temperature
Coefficient (3)
IR = 10 mA
±40
IR = 1 mA
±20
IR = 150 μA
±20
ppm/°C
0.6
mV
IRMIN ≤ IR ≤ 1 mA
ΔVR/ΔIR
Reverse Breakdown Voltage
Change with Operating
Current Change (4)
(5)
±100
ppm/°C (max)
1.3
1.3
mV (max)
2.5
2.5
mV (max)
mV
10.0
10.0
mV (max)
18.0
18.0
mV (max)
1.5
1.5
Ω (max)
Ω
0.6
Reverse Dynamic Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
eN
Wideband Noise
IR = 150 μA
10 Hz ≤ f ≤ 10 kHz
130
μVrms
Reverse Breakdown Voltage
Long Term Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 150 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
VHYST
(4)
±100
ZR
ΔVR
(3)
ppm/°C
7.0
1 mA ≤ IR ≤ 15 mA
(1)
(2)
Units
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
19
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
8.2-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'C' and 'D'; Temperature Grade 'I'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial
Reverse Breakdown Voltage tolerances of ±0.5% and ±1.0%, respectively.
Symbol
Parameter
Reverse Breakdown Voltage
VR
Reverse Breakdown Voltage
Tolerance (3)
Conditions
IR = 150 μA
Typical (1)
LM4040CIM3
LM4040DIM3
LM4040CIZ
LM4040DIZ
Limits (2)
Limits (2)
8.192
IR = 150 μA
V
±41
±82
mV (max)
±94
±162
mV (max)
91
96
μA (max)
95
100
μA (max)
μA
67
IRMIN
Minimum Operating Current
ΔVR/ΔT
Average Reverse Breakdown
Voltage Temperature
Coefficient (3)
IR = 10 mA
±40
IR = 1 mA
±20
IR = 150 μA
±20
ppm/°C
0.6
mV
IRMIN ≤ IR ≤ 1 mA
ΔVR/ΔIR
Reverse Breakdown Voltage
Change with Operating
Current Change (4)
(5)
20
±150
ppm/°C (max)
1.3
1.7
mV (max)
2.5
3.0
mV (max)
mV
10.0
15.0
mV (max)
18.0
24.0
mV (max)
1.5
1.9
Ω (max)
Ω
0.6
Reverse Dynamic Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
eN
Wideband Noise
IR = 150 μA
10 Hz ≤ f ≤ 10 kHz
130
μVrms
Reverse Breakdown Voltage
Long Term Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 150 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
VHYST
(4)
±100
ZR
ΔVR
(3)
ppm/°C
7.0
1 mA ≤ IR ≤ 15 mA
(1)
(2)
Units
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
10-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'A' and 'B'; Temperature Grade 'I'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades A and B designate initial
Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2%, respectively.
Symbol
Parameter
Reverse Breakdown Voltage
VR
Reverse Breakdown Voltage
Tolerance (3)
Conditions
IR = 150 μA
Typical (1)
LM4040AIM3
LM4040BIM3
LM4040AIZ
LM4040BIZ
Limits (2)
Limits (2)
10.00
IR = 150 μA
V
±10
±20
mV (max)
±75
±85
mV (max)
100
100
μA (max)
103
103
μA (max)
μA
75
IRMIN
ΔVR/ΔT
Minimum Operating Current
Average Reverse Breakdown
Voltage Temperature
Coefficient (3)
IR = 10 mA
±40
IR = 1 mA
±20
IR = 150 μA
±20
ppm/°C
0.8
mV
IRMIN ≤ IR ≤ 1 mA
ΔVR/ΔIR
Reverse Breakdown Voltage
Change with Operating
Current Change (4)
(5)
±100
ppm/°C (max)
1.5
1.5
mV (max)
3.5
3.5
mV (max)
mV
12.0
12.0
mV (max)
23.0
23.0
mV (max)
1.7
1.7
Ω (max)
Ω
0.7
Reverse Dynamic Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
eN
Wideband Noise
IR = 150 μA
10 Hz ≤ f ≤ 10 kHz
180
μVrms
Reverse Breakdown Voltage
Long Term Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 150 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
VHYST
(4)
±100
ZR
ΔVR
(3)
ppm/°C
8.0
1 mA ≤ IR ≤ 15 mA
(1)
(2)
Units
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
21
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
10.0-V LM4040-N Electrical Characteristics
VR Tolerance Grades 'C' and 'D'; Temperature Grade 'I'
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial
Reverse Breakdown Voltage tolerances of ±0.5% and ±1.0%, respectively.
Symbol
Parameter
Reverse Breakdown Voltage
VR
Reverse Breakdown Voltage
Tolerance (3)
Conditions
IR = 150 μA
Typical (1)
LM4040CIM3
LM4040DIM3
LM4040CIZ
LM4040DIZ
Limits (2)
Limits (2)
10.00
IR = 150 μA
V
±50
±100
mV (max)
±115
±198
mV (max)
100
110
μA (max)
103
113
μA (max)
μA
75
IRMIN
Minimum Operating Current
ΔVR/ΔT
Average Reverse Breakdown
Voltage Temperature
Coefficient (3)
IR = 10 mA
±40
IR = 1 mA
±20
IR = 150 μA
±20
ppm/°C
0.8
mV
IRMIN ≤ IR ≤ 1 mA
ΔVR/ΔIR
Reverse Breakdown Voltage
Change with Operating
Current Change (4)
(5)
22
±150
ppm/°C (max)
1.5
2.0
mV (max)
3.5
4.0
mV (max)
mV
12.0
18.0
mV (max)
23.0
29.0
mV (max)
1.7
2.3
Ω (max)
Ω
0.7
Reverse Dynamic Impedance
IR = 1 mA, f = 120 Hz,
IAC = 0.1 IR
eN
Wideband Noise
IR = 150 μA
10 Hz ≤ f ≤ 10 kHz
180
μVrms
Reverse Breakdown Voltage
Long Term Stability
t = 1000 hrs
T = 25°C ±0.1°C
IR = 150 μA
120
ppm
Thermal Hysteresis (5)
ΔT = −40°C to +125°C
0.08
%
VHYST
(4)
±100
ZR
ΔVR
(3)
ppm/°C
8.0
1 mA ≤ IR ≤ 15 mA
(1)
(2)
Units
Typicals are at TJ = 25°C and represent most likely parametric norm.
Limits are 100% production tested at 25°C. Limits over temperature are ensured through correlation using Statistical Quality Control
(SQC) methods. The limits are used to calculate AOQL.
The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse
Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum
difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
E-grade: ±2.98% = ±2.0% ±150 ppm/°C × 65°C
The total over-temperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown
below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
E-grade: ±3.5% = ±2.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040-N has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V ×
0.75% = ±19 mV.
Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change
must be taken into account separately.
Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C
measurement after cycling to temperature +125°C.
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
Typical Performance Characteristics
Temperature Drift for Different
Average Temperature Coefficient
Output Impedance vs Frequency
Figure 4.
Figure 5.
Output Impedance vs Frequency
Reverse Characteristics and
Minimum Operating Current
Figure 6.
Figure 7.
Noise Voltage vs Frequency
Figure 8.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
23
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
Start-Up Characteristics
LM4040-N-2.5
Figure 9.
LM4040-N-5.0
Figure 10.
RS = 30k
LM4040-N-10.0
Figure 11.
24
Submit Documentation Feedback
RS = 30k
RS = 30k
Figure 12.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
Functional Block Diagram
APPLICATIONS INFORMATION
The LM4040-N is a precision micro-power curvature-corrected bandgap shunt voltage reference. For space
critical applications, the LM4040-N is available in the sub-miniature SOT-23 and SC70 surface-mount package.
The LM4040-N has been designed for stable operation without the need of an external capacitor connected
between the “+” pin and the “−” pin. If, however, a bypass capacitor is used, the LM4040-N remains stable.
Reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048V, 2.500V, 3.000V,
4.096V, 5.000V, 6.000, 8.192V, and 10.000V. The minimum operating current increases from 60 µA for the
LM4040-N-2.048 and LM4040-N-2.5 to 100 μA for the 10.0-V LM4040-N. All versions have a maximum operating
current of 15 mA.
LM4040-Ns in the SOT-23 packages have a parasitic Schottky diode between pin 2 (−) and pin 3 (Die attach
interface contact). Therefore, pin 3 of the SOT-23 package must be left floating or connected to pin 2.
LM4040-Ns in the SC70 have a parasitic Schottky diode between pin 1 (−) and pin 2 (Die attach interface
contact). Therefore, pin 2 must be left floating or connected to pin1.
The 4.096V version allows single +5V 12-bit ADCs or DACs to operate with an LSB equal to 1 mV. For 12-bit
ADCs or DACs that operate on supplies of 10V or greater, the 8.192V version gives 2 mV per LSB.
The typical thermal hysteresis specification is defined as the change in +25°C voltage measured after thermal
cycling. The device is thermal cycled to temperature -40°C and then measured at 25°C. Next the device is
thermal cycled to temperature +125°C and again measured at 25°C. The resulting VOUT delta shift between the
25°C measurements is thermal hysteresis. Thermal hysteresis is common in precision references and is induced
by thermal-mechanical package stress. Changes in environmental storage temperature, operating temperature
and board mounting temperature are all factors that can contribute to thermal hysteresis.
In a conventional shunt regulator application (Figure 13) , an external series resistor (RS) is connected between
the supply voltage and the LM4040-N. RS determines the current that flows through the load (IL) and the
LM4040-N (IQ). Since load current and supply voltage may vary, RS should be small enough to supply at least
the minimum acceptable IQ to the LM4040-N even when the supply voltage is at its minimum and the load
current is at its maximum value. When the supply voltage is at its maximum and IL is at its minimum, RS should
be large enough so that the current flowing through the LM4040-N is less than 15 mA.
RS is determined by the supply voltage, (VS), the load and operating current, (IL and IQ), and the LM4040-N's
reverse breakdown voltage, VR.
(1)
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
25
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
Typical Applications
Figure 13. Shunt Regulator
**Ceramic monolithic
*Tantalum
Figure 14. 4.1-V LM4040-N's Nominal 4.096 breakdown voltage gives ADC12451 1 mV/LSB
26
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
Nominal clamping voltage is ±11.5V (LM4040-N's reverse breakdown voltage +2 diode VF).
Figure 15. Bounded amplifier reduces saturation-induced delays and
can prevent succeeding stage damage.
The bounding voltage is ±4V with the 2.5-V LM4040-N (LM4040-N's reverse breakdown voltage + 3 diode VF).
Figure 16. Protecting Op Amp input.
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
27
LM4040-N, LM4040Q-N
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
www.ti.com
Figure 17. Precision ±4.096V Reference
Figure 18. Precision 1 μA to 1 mA Current Sources
28
Submit Documentation Feedback
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
LM4040-N, LM4040Q-N
www.ti.com
SNOS633H – OCTOBER 2000 – REVISED APRIL 2013
REVISION HISTORY
Changes from Revision G (April 2013) to Revision H
•
Page
Changed layout of National Data Sheet to TI format .......................................................................................................... 28
Copyright © 2000–2013, Texas Instruments Incorporated
Product Folder Links: LM4040-N LM4040Q-N
Submit Documentation Feedback
29
PACKAGE OPTION ADDENDUM
www.ti.com
29-Mar-2013
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
LM4040AIM3-10.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R0A
LM4040AIM3-10.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R0A
LM4040AIM3-2.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
RJA
LM4040AIM3-2.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJA
LM4040AIM3-2.5
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R2A
LM4040AIM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2A
LM4040AIM3-3.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
RKA
LM4040AIM3-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKA
LM4040AIM3-4.1
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R4A
LM4040AIM3-4.1/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R4A
LM4040AIM3-5.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R5A
LM4040AIM3-5.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5A
LM4040AIM3X-10
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R0A
LM4040AIM3X-10/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R0A
LM4040AIM3X-2.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJA
LM4040AIM3X-2.5
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R2A
LM4040AIM3X-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2A
LM4040AIM3X-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKA
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
29-Mar-2013
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
LM4040AIM3X-4.1/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R4A
LM4040AIM3X-5.0
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R5A
LM4040AIM3X-5.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5A
LM4040AIZ-10.0/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040A
IZ10
LM4040AIZ-2.5/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040A
IZ2.5
LM4040AIZ-4.1/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040A
IZ4.1
LM4040AIZ-5.0/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040A
IZ5.0
LM4040BIM3-10.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R0B
LM4040BIM3-10.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R0B
LM4040BIM3-2.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJB
LM4040BIM3-2.5
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R2B
LM4040BIM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2B
LM4040BIM3-3.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
RKB
LM4040BIM3-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKB
LM4040BIM3-4.1
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R4B
LM4040BIM3-4.1/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R4B
LM4040BIM3-5.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R5B
LM4040BIM3-5.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5B
LM4040BIM3-8.2
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R8B
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
29-Mar-2013
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
LM4040BIM3-8.2/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R8B
LM4040BIM3X-10
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R0B
LM4040BIM3X-10/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R0B
LM4040BIM3X-2.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJB
LM4040BIM3X-2.5
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R2B
LM4040BIM3X-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2B
LM4040BIM3X-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKB
LM4040BIM3X-4.1
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R4B
LM4040BIM3X-4.1/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R4B
LM4040BIM3X-5.0
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R5B
LM4040BIM3X-5.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5B
LM4040BIM7-2.0/NOPB
ACTIVE
SC70
DCK
5
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJB
LM4040BIM7-2.5
ACTIVE
SC70
DCK
5
1000
TBD
Call TI
Call TI
R2B
LM4040BIM7-2.5/NOPB
ACTIVE
SC70
DCK
5
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2B
LM4040BIM7-5.0/NOPB
ACTIVE
SC70
DCK
5
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5B
LM4040BIM7X-2.5/NOPB
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2B
LM4040BIZ-10.0/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040B
IZ10
LM4040BIZ-2.5/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040B
IZ2.5
LM4040BIZ-4.1/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040B
IZ4.1
Addendum-Page 3
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
29-Mar-2013
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
LM4040BIZ-5.0/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
LM4040CEM3-2.5
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R2C
LM4040CEM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2C
LM4040CEM3-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKC
LM4040CEM3-5.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R5C
LM4040CEM3-5.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5C
LM4040CEM3X-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKC
LM4040CEM3X-5.0
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R5C
LM4040CEM3X-5.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5C
LM4040CIM3-10.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R0C
LM4040CIM3-10.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R0C
LM4040CIM3-2.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
RJC
LM4040CIM3-2.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJC
LM4040CIM3-2.5
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R2C
LM4040CIM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2C
LM4040CIM3-3.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
RKC
LM4040CIM3-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKC
LM4040CIM3-4.1
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R4C
LM4040CIM3-4.1/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R4C
Addendum-Page 4
4040B
IZ5.0
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
29-Mar-2013
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
LM4040CIM3-5.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R5C
LM4040CIM3-5.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5C
LM4040CIM3-8.2
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R8C
LM4040CIM3-8.2/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R8C
LM4040CIM3X-10
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R0C
LM4040CIM3X-10/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R0C
LM4040CIM3X-2.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJC
LM4040CIM3X-2.5
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R2C
LM4040CIM3X-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2C
LM4040CIM3X-3.0
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
RKC
LM4040CIM3X-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKC
LM4040CIM3X-4.1
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R4C
LM4040CIM3X-4.1/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R4C
LM4040CIM3X-5.0
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R5C
LM4040CIM3X-5.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5C
LM4040CIM7-2.0/NOPB
ACTIVE
SC70
DCK
5
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJC
LM4040CIM7-2.5/NOPB
ACTIVE
SC70
DCK
5
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2C
LM4040CIM7X-2.5/NOPB
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2C
LM4040CIZ-10.0/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
Addendum-Page 5
4040C
IZ10
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
29-Mar-2013
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
LM4040CIZ-2.5/LFT8
ACTIVE
TO-92
LP
3
2000
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040C
IZ2.5
LM4040CIZ-2.5/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040C
IZ2.5
LM4040CIZ-4.1/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040C
IZ4.1
LM4040CIZ-5.0/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040C
IZ5.0
LM4040DEM3-2.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
RJD
LM4040DEM3-2.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJD
LM4040DEM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2D
LM4040DEM3-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKD
LM4040DEM3-5.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R5D
LM4040DEM3-5.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5D
LM4040DEM3X-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2D
LM4040DEM3X-5.0
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R5D
LM4040DEM3X-5.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5D
LM4040DIM3-10.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R0D
LM4040DIM3-10.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R0D
LM4040DIM3-2.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJD
LM4040DIM3-2.5
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R2D
LM4040DIM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2D
LM4040DIM3-3.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
RKD
Addendum-Page 6
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
29-Mar-2013
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
LM4040DIM3-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKD
LM4040DIM3-4.1
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R4D
LM4040DIM3-4.1/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R4D
LM4040DIM3-5.0
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R5D
LM4040DIM3-5.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5D
LM4040DIM3-8.2/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R8D
LM4040DIM3X-10
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R0D
LM4040DIM3X-10/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R0D
LM4040DIM3X-2.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJD
LM4040DIM3X-2.5
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R2D
LM4040DIM3X-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2D
LM4040DIM3X-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKD
LM4040DIM3X-4.1
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R4D
LM4040DIM3X-4.1/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R4D
LM4040DIM3X-5.0
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R5D
LM4040DIM3X-5.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R5D
LM4040DIM7-2.0/NOPB
ACTIVE
SC70
DCK
5
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJD
LM4040DIM7-2.5/NOPB
ACTIVE
SC70
DCK
5
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2D
LM4040DIM7-5.0
ACTIVE
SC70
DCK
5
1000
TBD
Call TI
Call TI
R5D
Addendum-Page 7
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
29-Mar-2013
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
LM4040DIM7-5.0/NOPB
ACTIVE
SC70
DCK
5
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
LM4040DIZ-10.0/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040D
IZ10
LM4040DIZ-2.5/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040D
IZ2.5
LM4040DIZ-4.1/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040D
IZ4.1
LM4040DIZ-5.0/LFT1
ACTIVE
TO-92
LP
3
2000
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040D
IZ5.0
LM4040DIZ-5.0/NOPB
ACTIVE
TO-92
LP
3
1800
Green (RoHS
& no Sb/Br)
SNCU
Level-1-NA-UNLIM
4040D
IZ5.0
LM4040EEM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2E
LM4040EEM3-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKE
LM4040EIM3-2.5
ACTIVE
SOT-23
DBZ
3
1000
TBD
Call TI
Call TI
R2E
LM4040EIM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2E
LM4040EIM3-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKE
LM4040EIM3X-2.5
ACTIVE
SOT-23
DBZ
3
3000
TBD
Call TI
Call TI
R2E
LM4040EIM3X-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2E
LM4040EIM3X-3.0/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RKE
LM4040EIM7-2.0/NOPB
ACTIVE
SC70
DCK
5
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
RJE
LM4040QAIM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R6A
LM4040QAIM3X2.5/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R6A
LM4040QBIM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R6B
Addendum-Page 8
R5D
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
29-Mar-2013
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Top-Side Markings
(3)
(4)
LM4040QBIM3X2.5/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R6B
LM4040QCEM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2C
LM4040QCIM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R6C
LM4040QCIM3X2.5/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R6C
LM4040QDEM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2D
LM4040QDIM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R6D
LM4040QDIM3X2.5/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R6D
LM4040QEEM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R2E
LM4040QEIM3-2.5/NOPB
ACTIVE
SOT-23
DBZ
3
1000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R6E
LM4040QEIM3X2.5/NOPB
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
R6E
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
Addendum-Page 9
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
(3)
29-Mar-2013
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF LM4040-N, LM4040-N-Q1 :
• Catalog: LM4040-N
• Automotive: LM4040-N-Q1
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Addendum-Page 10
PACKAGE MATERIALS INFORMATION
www.ti.com
8-Apr-2013
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
SOT-23
DBZ
3
1000
178.0
8.4
LM4040AIM3-10.0/NOPB SOT-23
LM4040AIM3-10.0
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
3.3
2.9
1.22
4.0
8.0
Q3
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3-2.0
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3-2.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3-2.5
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3-2.5/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3-3.0
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3-3.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3-4.1
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3-4.1/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3-5.0
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3-5.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3X-10
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3X-10/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3X-2.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3X-2.5/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3X-3.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3X-2.5
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
8-Apr-2013
Device
Package Package Pins
Type Drawing
LM4040AIM3X-4.1/NOPB SOT-23
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040AIM3X-5.0/NOPB SOT-23
LM4040AIM3X-5.0
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3-10.0/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3-2.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3-2.5
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3-2.5/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3-10.0
LM4040BIM3-3.0
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3-3.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3-4.1
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3-4.1/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3-5.0
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3-5.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3-8.2
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3-8.2/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3X-10
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3X-10/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3X-2.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3X-2.5/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3X-3.0/NOPB SOT-23
LM4040BIM3X-2.5
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3X-4.1/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3X-5.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040BIM3X-4.1
LM4040BIM3X-5.0
LM4040BIM7-2.0/NOPB
SC70
DCK
5
1000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040BIM7-2.5
SC70
DCK
5
1000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040BIM7-2.5/NOPB
SC70
DCK
5
1000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040BIM7-5.0/NOPB
SC70
DCK
5
1000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040BIM7X-2.5/NOPB
SC70
DCK
5
3000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040CEM3-2.5
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CEM3-2.5/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CEM3-3.0/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CEM3-5.0/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CEM3X-3.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CEM3X-5.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3-10.0/NOPB SOT-23
LM4040CEM3-5.0
LM4040CEM3X-5.0
LM4040CIM3-10.0
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3-2.0
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3-2.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
Pack Materials-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
8-Apr-2013
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
LM4040CIM3-2.5
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3-2.5/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3-3.0
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3-3.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3-4.1
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3-4.1/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3-5.0
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3-5.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3-8.2
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3-8.2/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3X-10
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3X-10/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3X-2.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3X-2.5/NOPB SOT-23
LM4040CIM3X-2.5
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3X-3.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3X-4.1/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3X-5.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040CIM3X-3.0
LM4040CIM3X-4.1
LM4040CIM3X-5.0
LM4040CIM7-2.0/NOPB
SC70
DCK
5
1000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040CIM7-2.5/NOPB
SC70
DCK
5
1000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040CIM7X-2.5/NOPB
SC70
DCK
5
3000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040DEM3-2.0
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DEM3-2.0/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DEM3-2.5/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DEM3-3.0/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DEM3-5.0/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DEM3X-2.5/NOPB SOT-23
LM4040DEM3-5.0
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DEM3X-5.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DEM3X-5.0
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3-10.0/NOPB SOT-23
LM4040DIM3-10.0
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3-2.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3-2.5
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3-2.5/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3-3.0
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3-3.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3-4.1
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3-4.1/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3-5.0
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
Pack Materials-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
8-Apr-2013
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
LM4040DIM3-5.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
LM4040DIM3-8.2/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
LM4040DIM3X-10
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
3.3
2.9
1.22
4.0
8.0
Q3
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3X-10/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3X-2.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3X-2.5/NOPB SOT-23
LM4040DIM3X-2.5
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3X-3.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3X-4.1/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM3X-4.1
LM4040DIM3X-5.0
SOT-23
LM4040DIM3X-5.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040DIM7-2.0/NOPB
SC70
DCK
5
1000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040DIM7-2.5/NOPB
SC70
DCK
5
1000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040DIM7-5.0
SC70
DCK
5
1000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040DIM7-5.0/NOPB
SC70
DCK
5
1000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040EEM3-2.5/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040EEM3-3.0/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040EIM3-2.5
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040EIM3-2.5/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040EIM3-3.0/NOPB
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040EIM3X-2.5
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040EIM3X-2.5/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040EIM3X-3.0/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
DCK
5
1000
178.0
8.4
2.25
2.45
1.2
4.0
8.0
Q3
LM4040QAIM3-2.5/NOPB SOT-23
LM4040EIM7-2.0/NOPB
SC70
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040QAIM3X2.5/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040QBIM3-2.5/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040QBIM3X2.5/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040QCEM3-2.5/NOP
B
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040QCIM3-2.5/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040QCIM3X2.5/NOP
B
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040QDEM3-2.5/NOP
B
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040QDIM3-2.5/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040QDIM3X2.5/NOP
B
SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040QEEM3-2.5/NOP
B
SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040QEIM3-2.5/NOPB SOT-23
DBZ
3
1000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
LM4040QEIM3X2.5/NOPB SOT-23
DBZ
3
3000
178.0
8.4
3.3
2.9
1.22
4.0
8.0
Q3
Pack Materials-Page 4
PACKAGE MATERIALS INFORMATION
www.ti.com
8-Apr-2013
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
LM4040AIM3-10.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040AIM3-10.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040AIM3-2.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040AIM3-2.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040AIM3-2.5
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040AIM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040AIM3-3.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040AIM3-3.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040AIM3-4.1
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040AIM3-4.1/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040AIM3-5.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040AIM3-5.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040AIM3X-10
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040AIM3X-10/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040AIM3X-2.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040AIM3X-2.5
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040AIM3X-2.5/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040AIM3X-3.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040AIM3X-4.1/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040AIM3X-5.0
SOT-23
DBZ
3
3000
210.0
185.0
35.0
Pack Materials-Page 5
PACKAGE MATERIALS INFORMATION
www.ti.com
8-Apr-2013
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
LM4040AIM3X-5.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040BIM3-10.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3-10.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3-2.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3-2.5
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3-3.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3-3.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3-4.1
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3-4.1/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3-5.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3-5.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3-8.2
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3-8.2/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040BIM3X-10
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040BIM3X-10/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040BIM3X-2.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040BIM3X-2.5
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040BIM3X-2.5/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040BIM3X-3.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040BIM3X-4.1
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040BIM3X-4.1/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040BIM3X-5.0
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040BIM3X-5.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040BIM7-2.0/NOPB
SC70
DCK
5
1000
210.0
185.0
35.0
LM4040BIM7-2.5
SC70
DCK
5
1000
210.0
185.0
35.0
LM4040BIM7-2.5/NOPB
SC70
DCK
5
1000
210.0
185.0
35.0
LM4040BIM7-5.0/NOPB
SC70
DCK
5
1000
210.0
185.0
35.0
LM4040BIM7X-2.5/NOPB
SC70
DCK
5
3000
210.0
185.0
35.0
LM4040CEM3-2.5
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CEM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CEM3-3.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CEM3-5.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CEM3-5.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CEM3X-3.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CEM3X-5.0
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CEM3X-5.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CIM3-10.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3-10.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3-2.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3-2.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3-2.5
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3-3.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
Pack Materials-Page 6
PACKAGE MATERIALS INFORMATION
www.ti.com
8-Apr-2013
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
LM4040CIM3-3.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3-4.1
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3-4.1/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3-5.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3-5.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3-8.2
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3-8.2/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040CIM3X-10
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CIM3X-10/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CIM3X-2.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CIM3X-2.5
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CIM3X-2.5/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CIM3X-3.0
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CIM3X-3.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CIM3X-4.1
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CIM3X-4.1/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CIM3X-5.0
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CIM3X-5.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040CIM7-2.0/NOPB
SC70
DCK
5
1000
210.0
185.0
35.0
LM4040CIM7-2.5/NOPB
SC70
DCK
5
1000
210.0
185.0
35.0
LM4040CIM7X-2.5/NOPB
SC70
DCK
5
3000
210.0
185.0
35.0
LM4040DEM3-2.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DEM3-2.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DEM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DEM3-3.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DEM3-5.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DEM3-5.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DEM3X-2.5/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040DEM3X-5.0
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040DEM3X-5.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040DIM3-10.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DIM3-10.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DIM3-2.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DIM3-2.5
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DIM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DIM3-3.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DIM3-3.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DIM3-4.1
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DIM3-4.1/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DIM3-5.0
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DIM3-5.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DIM3-8.2/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040DIM3X-10
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040DIM3X-10/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
Pack Materials-Page 7
PACKAGE MATERIALS INFORMATION
www.ti.com
8-Apr-2013
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
LM4040DIM3X-2.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040DIM3X-2.5
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040DIM3X-2.5/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040DIM3X-3.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040DIM3X-4.1
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040DIM3X-4.1/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040DIM3X-5.0
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040DIM3X-5.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040DIM7-2.0/NOPB
SC70
DCK
5
1000
210.0
185.0
35.0
LM4040DIM7-2.5/NOPB
SC70
DCK
5
1000
210.0
185.0
35.0
LM4040DIM7-5.0
SC70
DCK
5
1000
210.0
185.0
35.0
LM4040DIM7-5.0/NOPB
SC70
DCK
5
1000
210.0
185.0
35.0
LM4040EEM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040EEM3-3.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040EIM3-2.5
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040EIM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040EIM3-3.0/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040EIM3X-2.5
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040EIM3X-2.5/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040EIM3X-3.0/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040EIM7-2.0/NOPB
SC70
DCK
5
1000
210.0
185.0
35.0
LM4040QAIM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040QAIM3X2.5/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040QBIM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040QBIM3X2.5/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040QCEM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040QCIM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040QCIM3X2.5/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040QDEM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040QDIM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040QDIM3X2.5/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
LM4040QEEM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040QEIM3-2.5/NOPB
SOT-23
DBZ
3
1000
210.0
185.0
35.0
LM4040QEIM3X2.5/NOPB
SOT-23
DBZ
3
3000
210.0
185.0
35.0
Pack Materials-Page 8
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated
Similar pages