Infineon IHW30N90R Reverse conducting igbt with monolithic body diode Datasheet

Soft Switching Series
IHW30N90R
q
Reverse Conducting IGBT with monolithic body diode
Features:
• 1.5V typical saturation voltage of IGBT
• Trench and Fieldstop technology for 900 V applications offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
- easy parallel switching capability due to positive
temperature coefficient in VCE(sat)
• Low EMI
1
• Qualified according to JEDEC for target applications
• Application specific optimisation of inverse diode
• Pb-free lead plating; RoHS compliant
C
G
E
PG-TO-247-3-21
Applications:
• Microwave Oven
• Soft Switching Applications for ZCS
Type
IHW30N90R
VCE
IC
VCE(sat),Tj=25°C
Tj,max
Marking
Package
900V
30A
1.5V
175°C
H30R90
PG-TO-247-3-21
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCE
DC collector current
IC
Value
900
Unit
V
A
60
30
TC = 25°C
TC = 100°C
Pulsed collector current, tp limited by Tjmax
ICpul s
90
Turn off safe operating area VCE ≤ 1200V, Tj ≤ 150°C
-
90
Diode forward current
IF
60
30
TC = 25°C
TC = 100°C
Diode pulsed current, tp limited by Tjmax
IFpul s
90
Gate-emitter voltage
VGE
±20
Transient Gate-emitter voltage (tp < 5 ms)
V
±25
Power dissipation, TC = 25°C
Ptot
Operating junction temperature
454
W
Tj
-40...+175
°C
Storage temperature
Tstg
-55...+175
°C
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
-
1
260
J-STD-020 and JESD-022
Power Semiconductors
1
Rev. 2.0
July 06
IHW30N90R
q
Soft Switching Series
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
0.33
K/W
RthJCD
0.33
Characteristic
IGBT thermal resistance,
junction – case
Diode thermal resistance,
junction – case
Thermal resistance,
RthJA
40
junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
900
-
-
T j =2 5 °C
-
1.5
1.7
T j =1 5 0° C
-
1.6
-
T j =1 7 5° C
-
1.7
-
T j =2 5 °C
-
1.4
1.6
T j =1 5 0° C
-
1.4
-
T j =1 7 5° C
-
1.45
-
5.1
5.8
6.4
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V , I C = 0 .5m A
Collector-emitter saturation voltage
VCE(sat)
Diode forward voltage
VF
V G E = 15 V , I C = 30 A
V G E = 0V , I F = 3 0 A
Gate-emitter threshold voltage
VGE(th)
I C = 70 0 µA , V C E = V G E
Zero gate voltage collector current
ICES
V C E = 90 0 V ,
V G E = 0V
Gate-emitter leakage current
Power Semiconductors
IGES
V
µA
T j =2 5 °C
-
-
5
T j =1 5 0° C
-
-
2500
V C E = 0V , V G E =2 0 V
-
-
600
2
Rev. 2.0
nA
July 06
IHW30N90R
q
Soft Switching Series
Dynamic Characteristic
Input capacitance
Ciss
V C E = 25 V ,
-
2889
-
Output capacitance
Coss
V G E = 0V ,
-
83
-
Reverse transfer capacitance
Crss
f= 1 MH z
-
79
-
Gate charge
QGate
V C C = 72 0 V, I C =3 0 A
-
200
-
nC
-
13
-
nH
pF
V G E = 15 V
Internal emitter inductance
LE
measured 5mm (0.197 in.) from case
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
Typ.
Max.
Unit
IGBT Characteristic
Turn-off delay time
td(off)
T j =2 5 °C
-
511
-
Fall time
tf
V C C = 60 0 V,
-
24
-
Turn-on energy
Eon
I C = 30 A ,
-
-
-
Turn-off energy
Eoff
V G E = 0/ 15 V ,
-
1.46
-
Total switching energy
Ets
R G = 1 5Ω
-
1.46
-
mJ
Switching Characteristic, Inductive Load, at Tj=175 °C
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
Unit
IGBT Characteristic
Turn-off delay time
td(off)
T j =1 7 5° C
-
594
-
Fall time
tf
V C C = 60 0 V,
-
46
-
Turn-on energy
Eon
I C = 30 A ,
-
-
-
Eoff
V G E = 0/ 15 V ,
-
2.1
-
Ets
R G = 1 5Ω
-
2.1
-
Turn-off energy
Total switching energy
Power Semiconductors
3
Rev. 2.0
mJ
July 06
IHW30N90R
q
Soft Switching Series
tp=1µs
10µs
80A
20µs
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
TC=80°C
60A
TC=110°C
40A
Ic
20A
50µs
10A
200µs
1ms
1A
DC
0A
100Hz
1kHz
10kHz
100kHz
1V
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency for triangular
current (Eon = 0, hard turn-off)
(Tj ≤ 175°C, D = 0.5, VCE = 600V,
VGE = 0/+15V, RG = 15Ω)
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. IGBT Safe operating area
(D = 0, TC = 25°C,
Tj ≤175°C;VGE=15V)
400W
50A
IC, COLLECTOR CURRENT
Ptot, DISSIPATED POWER
350W
300W
250W
200W
150W
100W
40A
30A
20A
10A
50W
0W
25°C
50°C
75°C
100°C
125°C
0A
25°C
150°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj ≤ 175°C)
Power Semiconductors
75°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≥ 15V, Tj ≤ 175°C)
4
Rev. 2.0
July 06
IHW30N90R
q
Soft Switching Series
80A
IC, COLLECTOR CURRENT
13V
60A
11V
50A
9V
40A
7V
30A
20A
0A
0.0V
0.5V
1.0V
1.5V
2.0V
13V
60A
11V
50A
9V
40A
7V
30A
20A
0A
0.0V
2.5V
60A
50A
40A
30A
TJ =175°C
20A
25°C
10A
0V
2V
4V
6V
8V
1.0V
1.5V
2.0V
2.5V
IC=60A
2.0V
IC=30A
1.5V
IC=15A
1.0V
0.5V
0.0V
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristic
(VCE=20V)
Power Semiconductors
0.5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristic
(Tj = 175°C)
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
IC, COLLECTOR CURRENT
15V
10A
10A
0A
VGE=20V
70A
15V
70A
IC, COLLECTOR CURRENT
80A
VGE=20V
5
Rev. 2.0
July 06
IHW30N90R
q
Soft Switching Series
1000ns
1000ns
td(off)
t, SWITCHING TIMES
t, SWITCHING TIMES
td(off)
100ns
100ns
tf
tf
0A
10A
20A
30A
40A
10ns
50A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=175°C,
VCE=600V, VGE=0/15V, RG=15Ω,
Dynamic test circuit in Figure E)
20Ω
30Ω
40Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ=175°C,
VCE=600V, VGE=0/15V, IC=30A,
Dynamic test circuit in Figure E)
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
1000ns
t, SWITCHING TIMES
td(off)
100ns
tf
25°C
50°C
75°C
100°C
125°C
6V
5V
max.
typ.
4V
3V
min.
2V
-50°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=30A, RG=15Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
7V
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 0.7mA)
6
Rev. 2.0
July 06
Soft Switching Series
IHW30N90R
q
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
4.0mJ
Eoff
3.0mJ
2.0mJ
1.0mJ
3.0mJ
Eoff
2.0mJ
1.0mJ
0.0mJ
0.0mJ
0A
10A
20A
30A
40A
20Ω
50A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ=175°C,
VCE=600V, VGE=0/15V, RG=15Ω,
Dynamic test circuit in Figure E)
30Ω
40Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ=175°C,
VCE=600V, VGE=0/15V, IC=30A,
Dynamic test circuit in Figure E)
Eoff
E, SWITCHING ENERGY LOSSES
2.0mJ
1.5mJ
1.0mJ
0.5mJ
0.0mJ
25°C
50°C
75°C
100°C 125°C 150°C
TJ, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=30A, RG=15Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
7
Rev. 2.0
July 06
IHW30N90R
q
Soft Switching Series
1nF
180V
10V
c, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
Ciss
720V
5V
Crss
0V
0nC
50nC
100nC
150nC
200nC
10pF
250nC
D=0.5
-1
10 K/W
0.2
R,(K/W)
0.0395
0.1559
0.1075
0.0275
0.1
0.05
0.02
R1
τ, (s)
1.10*10-1
1.43*10-2
8.67*10-4
1.09*10-4
R2
0.01
-2
10 K/W
10µs
single pulse
100µs
1ms
C 1 = τ 1 /R 1
10ms
C 2 = τ 2 /R 2
100ms
10V
20V
D=0.5
-1
10 K/W
0.2
0.1
0.05
0.02
0.01
R,(K/W)
0.0842
0.1202
0.0877
0.0385
τ, (s)
6.67*10-2
9.59*10-3
7.33*10-4
8.56*10-5
R1
R2
-2
10 K/W
10µs
tP, PULSE WIDTH
Figure 18. IGBT transient thermal
resistance
(D = tp / T)
Power Semiconductors
0V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
ZthJC, TRANSIENT THERMAL RESISTANCE
QGE, GATE CHARGE
Figure 16. Typical gate charge
(IC=30 A)
ZthJC, TRANSIENT THERMAL RESISTANCE
Coss
100pF
single pulse
100µs
1ms
C 1 = τ 1 /R 1
C 2 = τ 2 /R 2
10ms
100ms
tP, PULSE WIDTH
Figure 19. Typical Diode transient thermal
impedance as a function of pulse width
(D=tP/T)
8
Rev. 2.0
July 06
Soft Switching Series
IHW30N90R
q
IF=60A
50A
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
2.0V
40A
30A
TJ=25°C
20A
175°C
1.5V
15A
1.0V
0.5V
10A
0A
30A
0.0V
0.5V
1.0V
1.5V
0.0V
2.0V
VF, FORWARD VOLTAGE
Figure 20. Typical diode forward current as
a function of forward voltage
Power Semiconductors
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 21. Typical diode forward voltage
as a function of junction temperature
9
Rev. 2.0
July 06
Soft Switching Series
IHW30N90R
q
PG-TO247-3-21
Power Semiconductors
10
Rev. 2.0
July 06
IHW30N90R
q
Soft Switching Series
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
IF
tS
QS
Ir r m
tr r
tF
10% Ir r m
QF
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure B. Definition of switching losses
Power Semiconductors
Figure E. Dynamic test circuit
11
Rev. 2.0
July 06
Soft Switching Series
IHW30N90R
q
Edition 2006-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 7/24/06.
All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical
values stated herein and/or any information regarding the application of the device, Infineon Technologies
hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Power Semiconductors
12
Rev. 2.0
July 06
Similar pages