Soft Switching Series IHW30N90R q Reverse Conducting IGBT with monolithic body diode Features: • 1.5V typical saturation voltage of IGBT • Trench and Fieldstop technology for 900 V applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior - easy parallel switching capability due to positive temperature coefficient in VCE(sat) • Low EMI 1 • Qualified according to JEDEC for target applications • Application specific optimisation of inverse diode • Pb-free lead plating; RoHS compliant C G E PG-TO-247-3-21 Applications: • Microwave Oven • Soft Switching Applications for ZCS Type IHW30N90R VCE IC VCE(sat),Tj=25°C Tj,max Marking Package 900V 30A 1.5V 175°C H30R90 PG-TO-247-3-21 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 900 Unit V A 60 30 TC = 25°C TC = 100°C Pulsed collector current, tp limited by Tjmax ICpul s 90 Turn off safe operating area VCE ≤ 1200V, Tj ≤ 150°C - 90 Diode forward current IF 60 30 TC = 25°C TC = 100°C Diode pulsed current, tp limited by Tjmax IFpul s 90 Gate-emitter voltage VGE ±20 Transient Gate-emitter voltage (tp < 5 ms) V ±25 Power dissipation, TC = 25°C Ptot Operating junction temperature 454 W Tj -40...+175 °C Storage temperature Tstg -55...+175 °C Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 1 260 J-STD-020 and JESD-022 Power Semiconductors 1 Rev. 2.0 July 06 IHW30N90R q Soft Switching Series Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 0.33 K/W RthJCD 0.33 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, RthJA 40 junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 900 - - T j =2 5 °C - 1.5 1.7 T j =1 5 0° C - 1.6 - T j =1 7 5° C - 1.7 - T j =2 5 °C - 1.4 1.6 T j =1 5 0° C - 1.4 - T j =1 7 5° C - 1.45 - 5.1 5.8 6.4 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 0 .5m A Collector-emitter saturation voltage VCE(sat) Diode forward voltage VF V G E = 15 V , I C = 30 A V G E = 0V , I F = 3 0 A Gate-emitter threshold voltage VGE(th) I C = 70 0 µA , V C E = V G E Zero gate voltage collector current ICES V C E = 90 0 V , V G E = 0V Gate-emitter leakage current Power Semiconductors IGES V µA T j =2 5 °C - - 5 T j =1 5 0° C - - 2500 V C E = 0V , V G E =2 0 V - - 600 2 Rev. 2.0 nA July 06 IHW30N90R q Soft Switching Series Dynamic Characteristic Input capacitance Ciss V C E = 25 V , - 2889 - Output capacitance Coss V G E = 0V , - 83 - Reverse transfer capacitance Crss f= 1 MH z - 79 - Gate charge QGate V C C = 72 0 V, I C =3 0 A - 200 - nC - 13 - nH pF V G E = 15 V Internal emitter inductance LE measured 5mm (0.197 in.) from case Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. Typ. Max. Unit IGBT Characteristic Turn-off delay time td(off) T j =2 5 °C - 511 - Fall time tf V C C = 60 0 V, - 24 - Turn-on energy Eon I C = 30 A , - - - Turn-off energy Eoff V G E = 0/ 15 V , - 1.46 - Total switching energy Ets R G = 1 5Ω - 1.46 - mJ Switching Characteristic, Inductive Load, at Tj=175 °C Parameter Symbol Conditions Value min. Typ. max. Unit IGBT Characteristic Turn-off delay time td(off) T j =1 7 5° C - 594 - Fall time tf V C C = 60 0 V, - 46 - Turn-on energy Eon I C = 30 A , - - - Eoff V G E = 0/ 15 V , - 2.1 - Ets R G = 1 5Ω - 2.1 - Turn-off energy Total switching energy Power Semiconductors 3 Rev. 2.0 mJ July 06 IHW30N90R q Soft Switching Series tp=1µs 10µs 80A 20µs IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT TC=80°C 60A TC=110°C 40A Ic 20A 50µs 10A 200µs 1ms 1A DC 0A 100Hz 1kHz 10kHz 100kHz 1V f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency for triangular current (Eon = 0, hard turn-off) (Tj ≤ 175°C, D = 0.5, VCE = 600V, VGE = 0/+15V, RG = 15Ω) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. IGBT Safe operating area (D = 0, TC = 25°C, Tj ≤175°C;VGE=15V) 400W 50A IC, COLLECTOR CURRENT Ptot, DISSIPATED POWER 350W 300W 250W 200W 150W 100W 40A 30A 20A 10A 50W 0W 25°C 50°C 75°C 100°C 125°C 0A 25°C 150°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 175°C) Power Semiconductors 75°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≥ 15V, Tj ≤ 175°C) 4 Rev. 2.0 July 06 IHW30N90R q Soft Switching Series 80A IC, COLLECTOR CURRENT 13V 60A 11V 50A 9V 40A 7V 30A 20A 0A 0.0V 0.5V 1.0V 1.5V 2.0V 13V 60A 11V 50A 9V 40A 7V 30A 20A 0A 0.0V 2.5V 60A 50A 40A 30A TJ =175°C 20A 25°C 10A 0V 2V 4V 6V 8V 1.0V 1.5V 2.0V 2.5V IC=60A 2.0V IC=30A 1.5V IC=15A 1.0V 0.5V 0.0V 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristic (VCE=20V) Power Semiconductors 0.5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristic (Tj = 175°C) VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic (Tj = 25°C) IC, COLLECTOR CURRENT 15V 10A 10A 0A VGE=20V 70A 15V 70A IC, COLLECTOR CURRENT 80A VGE=20V 5 Rev. 2.0 July 06 IHW30N90R q Soft Switching Series 1000ns 1000ns td(off) t, SWITCHING TIMES t, SWITCHING TIMES td(off) 100ns 100ns tf tf 0A 10A 20A 30A 40A 10ns 50A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, TJ=175°C, VCE=600V, VGE=0/15V, RG=15Ω, Dynamic test circuit in Figure E) 20Ω 30Ω 40Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, TJ=175°C, VCE=600V, VGE=0/15V, IC=30A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITT TRSHOLD VOLTAGE 1000ns t, SWITCHING TIMES td(off) 100ns tf 25°C 50°C 75°C 100°C 125°C 6V 5V max. typ. 4V 3V min. 2V -50°C 150°C TJ, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE=600V, VGE=0/15V, IC=30A, RG=15Ω, Dynamic test circuit in Figure E) Power Semiconductors 7V 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA) 6 Rev. 2.0 July 06 Soft Switching Series IHW30N90R q E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 4.0mJ Eoff 3.0mJ 2.0mJ 1.0mJ 3.0mJ Eoff 2.0mJ 1.0mJ 0.0mJ 0.0mJ 0A 10A 20A 30A 40A 20Ω 50A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, TJ=175°C, VCE=600V, VGE=0/15V, RG=15Ω, Dynamic test circuit in Figure E) 30Ω 40Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, TJ=175°C, VCE=600V, VGE=0/15V, IC=30A, Dynamic test circuit in Figure E) Eoff E, SWITCHING ENERGY LOSSES 2.0mJ 1.5mJ 1.0mJ 0.5mJ 0.0mJ 25°C 50°C 75°C 100°C 125°C 150°C TJ, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE=600V, VGE=0/15V, IC=30A, RG=15Ω, Dynamic test circuit in Figure E) Power Semiconductors 7 Rev. 2.0 July 06 IHW30N90R q Soft Switching Series 1nF 180V 10V c, CAPACITANCE VGE, GATE-EMITTER VOLTAGE Ciss 720V 5V Crss 0V 0nC 50nC 100nC 150nC 200nC 10pF 250nC D=0.5 -1 10 K/W 0.2 R,(K/W) 0.0395 0.1559 0.1075 0.0275 0.1 0.05 0.02 R1 τ, (s) 1.10*10-1 1.43*10-2 8.67*10-4 1.09*10-4 R2 0.01 -2 10 K/W 10µs single pulse 100µs 1ms C 1 = τ 1 /R 1 10ms C 2 = τ 2 /R 2 100ms 10V 20V D=0.5 -1 10 K/W 0.2 0.1 0.05 0.02 0.01 R,(K/W) 0.0842 0.1202 0.0877 0.0385 τ, (s) 6.67*10-2 9.59*10-3 7.33*10-4 8.56*10-5 R1 R2 -2 10 K/W 10µs tP, PULSE WIDTH Figure 18. IGBT transient thermal resistance (D = tp / T) Power Semiconductors 0V VCE, COLLECTOR-EMITTER VOLTAGE Figure 17. Typical capacitance as a function of collector-emitter voltage (VGE=0V, f = 1 MHz) ZthJC, TRANSIENT THERMAL RESISTANCE QGE, GATE CHARGE Figure 16. Typical gate charge (IC=30 A) ZthJC, TRANSIENT THERMAL RESISTANCE Coss 100pF single pulse 100µs 1ms C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 10ms 100ms tP, PULSE WIDTH Figure 19. Typical Diode transient thermal impedance as a function of pulse width (D=tP/T) 8 Rev. 2.0 July 06 Soft Switching Series IHW30N90R q IF=60A 50A VF, FORWARD VOLTAGE IF, FORWARD CURRENT 2.0V 40A 30A TJ=25°C 20A 175°C 1.5V 15A 1.0V 0.5V 10A 0A 30A 0.0V 0.5V 1.0V 1.5V 0.0V 2.0V VF, FORWARD VOLTAGE Figure 20. Typical diode forward current as a function of forward voltage Power Semiconductors 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 21. Typical diode forward voltage as a function of junction temperature 9 Rev. 2.0 July 06 Soft Switching Series IHW30N90R q PG-TO247-3-21 Power Semiconductors 10 Rev. 2.0 July 06 IHW30N90R q Soft Switching Series i,v tr r =tS +tF diF /dt Qr r =QS +QF IF tS QS Ir r m tr r tF 10% Ir r m QF dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Power Semiconductors Figure E. Dynamic test circuit 11 Rev. 2.0 July 06 Soft Switching Series IHW30N90R q Edition 2006-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 7/24/06. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 12 Rev. 2.0 July 06