CEP75N06G/CEB75N06G N-Channel Enhancement Mode Field Effect Transistor FEATURES 60V, 75A, RDS(ON) = 13mΩ @VGS = 10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead-free plating ; RoHS compliant. TO-220 & TO-263 package. D G S CEB SERIES TO-263(DD-PAK) G G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 S Tc = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS Gate-Source Voltage VGS Drain Current-Continuous @ TC = 25 C @ TC = 100 C ID Drain Current-Pulsed a IDM Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C 60 Units V ±20 V 75 A 53 A 300 A 150 W 1 W/ C Single Pulsed Avalanche Energy d EAS 360 mJ Single Pulsed Avalanche Current IAS TJ,Tstg 30 A -65 to 175 C d Operating and Store Temperature Range Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 1 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W Rev 2. 2012.May http://www.cetsemi.com Details are subject to change without notice . 1 CEP75N06G/CEB75N06G Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 60 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 60V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA 4 V 13 mΩ Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance VGS(th) VGS = VDS, ID = 250µA RDS(on) VGS = 10V, ID = 35A 2 11 Dynamic Characteristics c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz 2015 pF 495 pF 55 pF Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 30V, ID = 15A, VGS = 10V, RGEN = 4.7Ω 22 44 ns 17 34 ns 47 94 ns Turn-Off Fall Time tf 18 36 ns Total Gate Charge Qg 52 68 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 48V, ID = 75A, VGS = 10V 11 nC 18 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 35A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. d.L = 0.8mH, IAS = 30A, VDD = 30V, RG = 25Ω, Starting TJ = 25 C 2 75 A 1.3 V CEP75N06G/CEB75N06G 140 VGS=10,9,8,6V 30 24 ID, Drain Current (A) ID, Drain Current (A) 36 VGS=5V 18 12 6 0 0 1 2 3 4 5 0 6 2 4 6 8 10 Figure 1. Output Characteristics Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) Ciss 1500 1000 Coss 500 Crss 0 5 10 15 20 25 2.6 2.2 ID=35A VGS=10V 1.8 1.4 1.0 0.6 0.2 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 0 -55 C VGS, Gate-to-Source Voltage (V) IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 25 C TJ=125 C 2000 1.2 35 VDS, Drain-to-Source Voltage (V) 2500 1.3 70 VGS=4V 3000 0 105 -25 0 25 50 75 100 125 150 VGS=0V 10 1 10 0 10 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 VDS=48V ID=75A 10 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP75N06G/CEB75N06G 6 4 2 0 0 13 26 39 10 RDS(ON)Limit 2 100ms 1ms 10ms 10 10 52 3 DC 1 TC=25 C TJ=175 C Single Pulse 0 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 10 PDM 0.1 -1 0.05 0.02 0.01 Single Pulse t1 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 -2 10 -2 t2 10 -1 10 0 10 1 10 2 Square Wave Pulse Duration (msec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 3 10 4 2