IRF IR21844PBF Half-bridge driver Datasheet

Data Sheet No. PD60174 revG
IR2184(4)(S) & (PbF)
HALF-BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
Packages
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout for both channels
3.3V and 5V input logic compatible
Matched propagation delay for both channels
Logic and power ground +/- 5V offset.
Lower di/dt gate driver for better noise immunity
Output source/sink current capability 1.4A/1.8A
Also available LEAD-FREE (PbF)
•
•
•
•
•
•
•
•
Description
14-Lead PDIP
IR21844
8-Lead PDIP
IR2184
8-Lead SOIC
IR2184S
14-Lead SOIC
IR21844S
IR2181/IR2183/IR2184 Feature Comparison
The IR2184(4)(S) are high voltage,
high speed power MOSFET and IGBT
! "!$"
% !
&''
"#"
drivers with dependent high and low
side referenced output channels. Pro*797
& "
79&**
prietary HVIC and latch immune
*797:
&
*79;
"<
CMOS technologies enable rugge & ="
79&**
*79;:
$>:?< &
dized monolithic construction. The
*79:
"<
& ="
9&*@
logic input is compatible with standard
*79::
$>:?< &
CMOS or LSTTL output, down to 3.3V
logic. The output drivers feature a
high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be
used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600
volts.
Typical Connection
IR2184
(Refer to Lead Assignments for correct
configuration). This/These diagram(s) show
electrical connections only. Please refer to
our Application Notes and DesignTips for
proper circuit board layout.
www.irf.com
IR21844
1
IR2184(4)(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters
are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board
mounted and still air conditions.
Symbol
Definition
VB
High side floating absolute voltage
VS
Min.
Max.
-0.3
625
Units
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
DT
Programmable dead-time pin voltage (IR21844 only)
VSS - 0.3
VCC + 0.3
VIN
Logic input voltage (IN & SD)
VSS - 0.3
VSS + 10
VSS
Logic ground (IR21844 only)
VCC - 25
VCC + 0.3
—
50
dVS/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25°C
Thermal resistance, junction to ambient
(8-lead PDIP)
—
1.0
(8-lead SOIC)
—
0.625
(14-lead PDIP)
—
1.6
(14-lead SOIC)
—
1.0
(8-lead PDIP)
—
125
(8-lead SOIC)
—
200
(14-lead PDIP)
—
75
(14-lead SOIC)
—
120
TJ
Junction temperature
—
150
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential.
Symbol
Min.
Max.
VB
High side floating supply absolute voltage
Definition
VS + 10
VS + 20
VS
High side floating supply offset voltage
Note 1
600
VHO
High side floating output voltage
VS
VB
VCC
Low side and logic fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VIN
Logic input voltage (IN & SD)
VSS
VSS + 5
DT
Programmable dead-time pin voltage (IR21844 only)
VSS
VCC
VSS
Logic ground (IR21844 only)
-5
5
Ambient temperature
-40
125
TA
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Note 2: IN and SD are internally clamped with a 5.2V zener diode.
2
www.irf.com
IR2184(4)(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C, DT = VSS unless otherwise specified.
Symbol
Definition
Min.
Typ.
Max. Units Test Conditions
ton
Turn-on propagation delay
—
680
900
VS = 0V
toff
Turn-off propagation delay
—
270
400
VS = 0V or 600V
tsd
Shut-down propagation delay
—
180
270
MTon
Delay matching, HS & LS turn-on
—
0
90
MToff
Delay matching, HS & LS turn-off
—
0
40
nsec
tr
Turn-on rise time
—
40
60
VS = 0V
tf
Turn-off fall time
—
20
35
VS = 0V
Deadtime: LO turn-off to HO turn-on(DTLO-HO) &
HO turn-off to LO turn-on (DTHO-LO)
280
4
400
5
520
6
Deadtime matching = DTLO - HO - DTHO-LO
—
0
50
—
0
600
DT
MDT
µsec
nsec
RDT= 0
RDT = 200k
RDT=0
RDT = 200k
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V, VSS = COM, DT= VSS and TA = 25°C unless otherwise specified. The VIL, VIH and IIN
parameters are referenced to VSS /COM and are applicable to the respective input leads: IN and SD. The VO, IO and Ron
parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage for HO & logic “0” for LO
2.7
—
—
VIL
Logic “0” input voltage for HO & logic “1” for LO
—
—
0.8
VCC = 10V to 20V
VCC = 10V to 20V
—
VCC = 10V to 20V
VSD,TH+
SD input positive going threshold
2.7
—
VSD,TH-
—
—
0.8
VOH
SD input negative going threshold
High level output voltage, VBIAS - VO
—
—
1.2
IO = 0A
VOL
Low level output voltage, VO
—
—
0.1
IO = 0A
ILK
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
20
60
150
IQCC
Quiescent VCC supply current
0.4
1.0
1.6
IIN+
Logic “1” input bias current
—
25
60
IIN-
Logic “0” input bias current
VCC and VBS supply undervoltage positive going
threshold
VCC and VBS supply undervoltage negative going
threshold
Hysteresis
—
8.0
—
8.9
1.0
9.8
7.4
8.2
9.0
0.3
0.7
—
IO+
Output high short circuit pulsed current
1.4
1.9
—
IO-
Output low short circuit pulsed current
1.8
2.3
—
VCCUV+
VBSUV+
VCCUVVBSUVVCCUVH
V
µA
mA
µA
VCC = 10V to 20V
VB = VS = 600V
VIN = 0V or 5V
VIN = 0V or 5V
IN = 5V, SD = 0V
IN = 0V, SD = 5V
V
VBSUVH
www.irf.com
A
VO = 0V,
PW ≤ 10 µs
VO = 15V,
PW ≤ 10 µs
3
IR2184(4)(S) & (PbF)
Functional Block Diagrams
VB
2184
UV
DETECT
HO
R
VSS/COM
LEVEL
SHIFT
IN
HV
LEVEL
SHIFTER
R
PULSE
FILTER
Q
S
VS
PULSE
GENERATOR
VCC
DEADTIME
UV
DETECT
+5V
VSS/COM
LEVEL
SHIFT
SD
LO
DELAY
COM
VB
21844
UV
DETECT
HO
R
VSS/COM
LEVEL
SHIFT
IN
HV
LEVEL
SHIFTER
Q
S
VS
PULSE
GENERATOR
VCC
DEADTIME
DT
UV
DETECT
+5V
SD
R
PULSE
FILTER
VSS/COM
LEVEL
SHIFT
LO
DELAY
COM
VSS
4
www.irf.com
IR2184(4)(S) & (PbF)
Lead Definitions
Symbol Description
IN
Logic input for high and low side gate driver outputs (HO and LO), in phase with HO (referenced to COM
SD
DT
Logic input for shutdown (referenced to COM for IR2184 and VSS for IR21844)
Programmable dead-time lead, referenced to VSS. (IR21844 only)
VSS
Logic Ground (21844 only)
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side and logic fixed supply
LO
Low side gate drive output
COM
Low side return
for IR2184 and VSS for IR21844)
Lead Assignments
IN
VB
2
SD
HO
7
3
COM
VS
6
4
LO
VCC
5
1
www.irf.com
8
IN
VB
8
2
SD
HO
7
3
COM
VS
6
4
LO
VCC
5
1
8-Lead PDIP
8-Lead SOIC
IR2184
IR2184S
14
1
IN
2
SD
VB
13
2
3
VSS
HO
12
4
DT
VS
1
14
IN
SD
VB
13
3
VSS
HO
12
11
4
DT
VS
11
5
COM
10
5
COM
10
6
LO
9
6
LO
9
7
VCC
8
7
VCC
8
14-Lead PDIP
14-Lead SOIC
IR21844
IR21844S
5
IR2184(4)(S) & (PbF)
^_
<`
<`
^_
''
q`
Figure 1. Input/Output Timing Diagram
'
q`
7`
7`
Figure 2. Switching Time Waveform Definitions
<`
<`
<`
!
q`
q`
Figure 3. Shutdown Waveform Definitions
7`
q`
7`
{
^_
<`
<`
Figure 4. Deadtime Waveform Definitions
^_
7`
q`
Figure 5. Delay Matching Waveform Definitions
6
www.irf.com
1400
1400
Turn-on Propagation Delay (ns)
Turn-on Propagation Delay (ns)
IR2184(4)(S) & (PbF)
1200
1000
M ax.
800
Typ.
600
400
-50
-25
0
25
50
75
100
1200
M ax.
1000
Typ.
800
600
400
125
10
12
Temperature (oC)
16
18
20
Supply Voltage (V)
Figure 4A. Turn-on Propagation Delay
vs. Temperature
Figure4B. Turn-on Propagation Delay
vs. Supply Voltage
700
700
Turn-off Propagation Delay (ns)
Turn-off Propagation Delay (ns)
14
600
500
400
M ax.
300
Typ.
200
100
-50
-25
0
25
50
75
100
Temperature (oC)
Figure 5A. Turn-off Propagation Delay
vs. Temperature
www.irf.com
125
600
500
M ax.
400
300
Typ.
200
100
10
12
14
16
18
20
Supply Voltage (V)
Figure 5B. Turn-off Propagation Delay
vs. Supply Voltage
7
IR2184(4)(S) & (PbF)
500
300
M ax.
200
Typ.
100
0
-50
Turn-on Rise Time (ns)
SD Propagation Delay (ns)
400
Typ.
200
100
0
25
50
75
100
10
125
12
14
16
18
Temperature (oC)
Supply Voltage (V)
Figure 6A. SD Propagation Delay
vs. Temperature
Figure 6B. SD Propagation Delay
vs. Supply Voltage
120
100
100
80
60
40
M ax.
300
120
M ax.
Typ.
20
0
-50
80
60
20
M ax.
Typ.
40
20
0
-25
0
25
50
75
100
125
Temperature (oC)
Figure 7A. Turn-on Rise Time vs. Temperature
8
400
0
-25
Turn-on Rise Time (ns)
SD Propagation Delay (ns)
500
10
12
14
16
18
20
Supply Voltage (V)
Figure 7B. Turn-on Rise Time vs. Supply Voltage
www.irf.com
IR2184(4)(S) & (PbF)
80
Turn-off Fall Time (ns)
Turn-off Fall Time (ns)
80
60
40
M ax.
Typ
20
0
-50
60
M ax.
40
Typ.
20
0
-25
0
25
50
75
100
125
10
12
Temperature (oC)
18
20
Figure 8B. Turn-off Fall Time vs. Supply Voltage
1100
1100
900
900
Deaduime (ns)
Deadtime (ns)
16
Supply Voltage (V)
Figure 8A. Turn-off Fall Time vs. Temperature
700
M ax.
500
14
Typ.
M in.
300
700
M ax.
500
Typ.
M in.
300
100
-50
100
-25
0
25
50
75
100
Temperature (oC)
Figure 9A. Deadtime vs. Temperature
www.irf.com
125
10
12
14
16
18
20
Supply Voltage (v)
Figure 9B. Deadtime vs. Supply Voltage
9
IR2184(4)(S) & (PbF)
6
6
M ax.
5
Typ.
4
M in.
3
2
1
0
0
50
100
150
Logic "1" Input Voltage (V)
Deadtime ( Ηs)
7
5
4
3
2
1
0
-50
200
RDT (KΗ)
5
5
Logic "0" Input Voltage (V)
Logic "1" Input Voltage (V)
6
4
M in.
2
1
0
12
14
16
18
Supply Voltage (V)
Figure 10B. Logic "1" Input Voltage
vs. Supply Voltage
10
0
25
50
75
100
125
100
125
Figure 10A. Logic "1" Input Voltage
vs. Temperature
6
10
-25
Temperature (oC)
Figure 9C. Deadtime vs. RDT
3
M in.
20
4
3
2
M ax.
1
0
-50
-25
0
25
50
75
Temperature (oC)
Figure 11A. Logic "0" Input Voltage
vs. Temperature
www.irf.com
IR2184(4)(S) & (PbF)
5
4
3
2
M ax.
1
0
10
12
14
16
18
20
SD Input Positive Going Threshold (V)
Logic "0" Input Voltage (V)
6
6
5
4
3
M in.
2
1
0
-50
-25
0
Supply Voltage (V)
4
M in.
2
1
0
14
16
18
Supply Voltage (V)
Figure 12B. SD Input Positive Going Threshold
vs. Supply Voltage
www.irf.com
20
SD Input Negative Going Threshold (V)
SD Input Positive Going Threshold (V)
5
12
75
100
125
Figure 12A. SD Input Positive Going Threshold
vs. Temperature
6
10
50
Temperature (oC)
Figure 11B. Logic "0" Input Voltage
vs. Supply Voltage
3
25
5
4
3
2
1
M ax.
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 13A. SD Input Negative Going Threshold
vs. Temperature
11
5
5
4
4
High Level Output (V)
SD Input Negative Going Threshold (V)
IR2184(4)(S) & (PbF)
3
2
1
3
2
M ax.
1
M ax.
0
-50
0
10
12
14
16
18
20
-25
0
25
Supply Voltage (V)
4
Low Level Output (V)
High Level Output (V)
100
125
0.5
5
3
M ax.
1
0
10
12
14
16
18
Supply Voltage (V)
Figure 14B. High Level Output vs. Supply Voltage
12
75
Figure 14A. High Level Output vs. Temperature
Figure 13B. SD Input Negative Going Threshold
vs. Supply Voltage
2
50
Temperature (oC)
20
0.4
0.3
0.2
M ax.
0.1
0.0
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 15A. Low Level Output vs. Temperature
www.irf.com
Low Level Output (V)
0.5
0.4
0.3
0.2
M ax.
0.1
0.0
10
12
14
16
18
20
Offset Supply Leakage Current ( ΗA)
IR2184(4)(S) & (PbF)
500
400
300
200
100
M ax.
0
-50
-25
0
75
100
125
Figure 16A. Offset Supply Leakage Current vs.
Temperature
Figure 15B. Low Level Output vs. Supply Voltage
500
250
V BS Supply Current ( ΗA)
Offset Supply Leakage Current ( ΗA)
50
Temperature (oC)
Supply Voltage (V)
400
300
200
100
25
M ax.
0
100
200
300
400
500
600
VB Boost Voltage (V)
Figure 16B. Offset Supply Leakage Current vs.
VB Boost Voltage
www.irf.com
200
M ax.
150
100
Typ.
50
M in.
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 17A. VBS Supply Current
vs. Temperature
13
IR2184(4)(S) & (PbF)
5
V CC Supply Current (mA)
V BS Supply Current ( ΗA)
250
200
150
M ax.
100
Typ.
50
M in.
12
14
16
18
3
2
M ax.
Typ.
1
M in.
0
-50
0
10
4
20
-25
0
Figure 17B. VBS Supply Current
vs. VBS Floating Supply Voltage
Logic "1" Input Bias Current ( ΗA)
V CC Supply Current (mA)
4
3
M ax.
2
Typ.
M in.
0
12
14
16
18
VCC Supply Voltage (V)
Figure 18B. VCC Supply Current
vs. VCC Supply Voltage
14
75
100
125
100
125
Figure 18A. VCC Supply Current
vs. Temperature
5
10
50
Temperature (oC)
VBS Floating Supply Voltage (V)
1
25
20
120
100
80
60
40
M ax.
Typ.
20
0
-50
-25
0
25
50
75
Temperature (oC)
Figure 19A. Logic "1" Input Bias Current
vs. Temperature
www.irf.com
Logic "0" Input Bias Current ( ΗA)
Logic "1" Input Bias Current ( ΗA)
IR2184(4)(S) & (PbF)
120
100
80
60
M ax.
40
Typ.
20
0
10
12
14
16
18
20
5
4
3
2
M ax.
1
0
-50
-25
0
V CC and V BS UV Threshold (+) (V)
Logic "0" Input Bias Current ( ΗA)
5
4
3
2
M ax.
1
0
14
16
18
Supply Voltage (V)
Figure 20B. Logic "0" Input Bias Current
vs. Supply Voltage
www.irf.com
75
100
125
Figure 20A. Logic "0" Input Bias Current
vs. Temperature
Figure 19B. Logic "1" Input Bias Current
vs. Supply Voltage
12
50
Temperature (oC)
Supply Voltage (V)
10
25
20
12
11
10
M ax.
Typ.
9
M in.
8
7
6
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 21. VCC and VBS Undervoltage Threshold (+)
vs. Temperature
15
IR2184(4)(S) & (PbF)
5
11
Output Source Current (A)
V CC and V BS UVThreshold (-) (V)
12
10
M ax.
9
Typ.
8
M in.
7
6
-50
-25
0
25
50
75
100
4
3
Typ.
2
1
M in.
0
-50
125
-25
0
25
Temperature (oC)
100
125
Figure 23A. Output Source Current
vs. Temperature
5.0
Output Sink Current (A)
5
Output Source Current (A)
75
Temperature (oC)
Figure 22. VCC and VBS Undervoltage Threshold (-)
vs. Temperature
4
3
2
Typ.
1
4.0
3.0
Typ.
2.0
M in.
M in.
0
10
16
50
12
14
16
18
20
1.0
-50
-25
0
25
50
75
100
Supply Voltage (V)
Temperature (oC)
Figure 23B. Output Source Current
vs. Supply Voltage
Figure 24A. Output Sink Current
vs. Temperature
125
www.irf.com
5
140
4
120
Temprature (oC)
Output Sink Current (A)
IR2184(4)(S) & (PbF)
3
2
Typ.
1
100
80
140v
70v
60
0v
40
M in.
0
20
10
12
14
16
18
20
1
Supply Voltage (V)
140
120
120
100
140v
70v
0v
Temperature (oC)
Temperature (oC)
1000
Frequency (KHz)
140
60
100
Fig u re 21. IR 2181 vs . Fre q u e n cy (IR FB C 20),
R gate =33 Ω, V C C =15V
Figure 24B. Output Sink Current
vs. Supply Voltage
80
10
100
140v
80
70v
0v
60
40
40
20
20
1
10
100
1000
Frequency (KHz)
Fig u re 22. IR 2181 vs . Fre q u e n cy (IR FB C 30),
R gate =22 Ω, V C C =15V
www.irf.com
1
10
100
1000
Frequency (KHz)
Fig u re 23. IR 2181 vs . Fre q u e n cy (IR FB C 40),
R gate =15 Ω, V C C =15V
17
IR2184(4)(S) & (PbF)
140v
140
140
70v
0v
120
Temperature (oC)
Temperature (oC)
120
100
80
60
40
100
80
60
140v
70v
40
20
0v
20
1
10
100
1000
1
Frequency (KHz)
140
120
120
100
80
140v
70v
0v
Temperature o(C)
Temperature (oC)
1000
Fig u re 25. IR 21814 vs . Fre q u e n cy (IR FB C 20),
R gate =33 Ω , V C C =15V
140
40
100
140v
80
70v
60
0v
40
20
20
1
10
100
1000
Frequency (KHz)
Fig u re 26. IR 21814 vs . Fre q u e n cy (IR FB C 30),
R gate =22 Ω , V C C =15V
18
100
Frequency (KHz)
Fig u re 24. IR 2181 vs . Fre q u e n cy (IR FP E50),
R gate =10 Ω, V C C =15V
60
10
1
10
100
1000
Frequency (KHz)
Fig u re 27. IR 21814 vs . Fre q u e n cy (IR FB C 40),
R gate =15 Ω, V C C =15V
www.irf.com
IR2184(4)(S) & (PbF)
140v
140
120
70v
100
0v
120
Temperature (oC)
Temperature (oC)
140
80
60
100
80
60
40
40
20
20
1
10
100
140v
70v
0v
1
1000
100
1000
Frequency (KHz)
Frequency (KHz)
Fig u re 28. IR 21814 vs . Fre q u e n cy (IR FP E50),
R gate =10 Ω, V C C =15V
Fig u re 29. IR 2181s vs . Fre q u e n cy (IR FB C 20),
R gate =33 Ω, V C C =15V
140
140v 70v
140
120
140v
100
70v
80
0v
60
Temperature o(C)
120
Temperature (oC)
10
0v
100
80
60
40
40
20
20
1
10
100
1000
Frequency (KHz)
Fig u re 30. IR 2181s vs . Fre q u e n cy (IR FB C 30),
R gate =22 Ω , V C C =15V
www.irf.com
1
10
100
1000
Frequency (KHz)
Fig u re 31. IR 2181s vs . Fre q u e n cy (IR FB C 40),
R gate =15 Ω, V C C =15V
19
IR2184(4)(S) & (PbF)
140V 70V 0V
140
140
120
Temperature (oC)
Tempreture (oC)
120
100
80
60
40
100
80
60
140v
70v
0v
40
20
20
1
10
100
1000
1
Frequency (KHz)
120
120
100
140v
70v
0v
Temperature o(C)
Temperature (oC)
140
100
140v
80
70v
0v
60
40
40
20
20
1
10
100
1000
Frequency (KHz)
Figure 34. IR21814s vs. Frequency (IRFBC30),
Rgate=22Ω , V CC=15V
20
1000
Figure 33. IR21814s vs. Frequency (IRFBC20),
Rgate=33Ω , V CC=15V
140
60
100
Frequency (KHz)
Figure 32. IR2181s vs. Frequency (IRFPE50),
Rgate=10Ω , V CC=15V
80
10
1
10
100
1000
Frequency (KHz)
Figure 35. IR21814s vs. Frequency (IRFBC40),
Rgate=15Ω , V CC=15V
www.irf.com
IR2184(4)(S) & (PbF)
140v 70v
140
0v
Temperature o(C)
120
100
80
60
40
20
1
10
100
1000
Frequency (KHz)
Figure 36. IR21814s vs. Frequency (IRFPE50),
Rgate=10Ω , V CC=15V
www.irf.com
21
IR2184(4)(S) & (PbF)
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
e
A
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8-Lead SOIC
22
MIN
.0532
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
www.irf.com
IR2184(4)(S) & (PbF)
14-Lead PDIP
14-Lead SOIC (narrow body)
www.irf.com
01-6010
01-3002 03 (MS-001AC)
01-6019
01-3063 00 (MS-012AB)
23
IR2184(4)(S) & (PbF)
LEADFREE PART MARKING INFORMATION
IRxxxxxx
Part number
YWW?
Date code
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
8-Lead PDIP IR2184 order IR2184
8-Lead SOIC IR2184S order IR2184S
14-Lead PDIP IR21844 order IR21844
14-Lead SOIC IR21844 order IR21844S
Leadfree Part
8-Lead PDIP IR2184 order IR2184PbF
8-Lead SOIC IR2184S order IR2184SPbF
14-Lead PDIP IR21844 order IR21844PbF
14-Lead SOIC IR21844 order IR21844SPbF
Thisproduct has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web Site http://www.irf.com
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
4/4/2006
24
www.irf.com
Similar pages