PD -97447 IRFH5304PbF HEXFET® Power MOSFET VDS RDS(on) max (@VGS = 10V) Qg (typical) ID (@Tc(Bottom) = 25°C) 30 V 4.5 mΩ 16 nC 79 A PQFN 5X6 mm Applications • Control MOSFET for buck converters Features and Benefits Benefits Features Low charge (typical 16nC) Low Thermal Resistance to PCB (<2.7°C/W) 100% Rg tested Low Profile (<0.9 mm) Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant Containing no Lead, no Bromide and no Halogen MSL1, Industrial Qualification Orderable part number IRFH5304TRPBF IRFH5304TR2PBF Package Type PQFN 5mm x 6mm PQFN 5mm x 6mm Lower Switching Losses Increased Power Density Increased Reliability results in Increased Power Density ⇒ Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Standard Pack Form Quantity Tape and Reel 4000 Tape and Reel 400 Note Absolute Maximum Ratings VDS VGS Parameter Drain-to-Source Voltage Gate-to-Source Voltage ID @ T A = 25°C ID @ T A = 70°C Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V 22 17 ID @ T C(Bottom) = 25°C ID @ T C(Bottom) = 100°C IDM PD @T A = 25°C Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation 79 50 320 3.6 c PD @ TC(Bottom) = 25°C g Power Dissipation g TJ TSTG Linear Derating Factor Operating Junction and Storage Temperature Range g Max. 30 ± 20 46 0.029 -55 to + 150 Units V A W W/°C °C Notes through are on page 8 www.irf.com 1 2/8/10 IRFH5304PbF Static @ TJ = 25°C (unless otherwise specified) BVDSS ΔΒVDSS/ΔTJ RDS(on) VGS(th) ΔVGS(th) IDSS IGSS gfs Qg Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Output Charge Min. 30 ––– ––– ––– 1.35 ––– ––– ––– ––– ––– 88 ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.02 3.8 5.8 1.8 -6.6 ––– ––– ––– ––– ––– 41 16 3.6 2.7 5.8 3.9 8.5 9.8 Conditions Max. Units ––– V VGS = 0V, ID = 250μA ––– V/°C Reference to 25°C, ID = 1mA 4.5 VGS = 10V, ID = 47A mΩ VGS = 4.5V, ID = 47A 6.8 2.35 V VDS = VGS, ID = 50μA ––– mV/°C VDS = 24V, VGS = 0V 5.0 μA VDS = 24V, VGS = 0V, TJ = 125°C 150 VGS = 20V 100 nA -100 VGS = -20V ––– S VDS = 15V, ID = 47A ––– nC VGS = 10V, VDS = 15V, ID = 49A 24 ––– VDS = 15V ––– VGS = 4.5V nC ––– ID = 47A ––– See Fig.17 & 18 ––– ––– nC VDS = 16V, VGS = 0V Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– ––– ––– ––– ––– ––– 1.2 13 25 12 6.6 2360 510 220 ––– ––– ––– ––– ––– ––– ––– ––– Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) e e Ω ns pF VDD = 15V, VGS = 4.5V ID = 47A RG=1.8Ω See Fig.15 VGS = 0V VDS = 10V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c Typ. ––– ––– d Units mJ A Max. 46 47 Diode Characteristics IS Parameter Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD VSD trr Qrr ton c (Body Diode) Diode Forward Voltage Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. ––– ––– Max. Units 79 ––– ––– 320 ––– ––– ––– 0.71 ––– 19 ––– 1.0 29 Conditions MOSFET symbol D A showing the integral reverse V V ns p-n junction diode. TJ = 25°C, IS = 5A, VGS = 0V TJ = 25°C, IS = 47A, VGS = 0V TJ = 25°C, IF = 47A, VDD = 15V di/dt = 300A/μs G S e e ––– 44 66 nC Time is dominated by parasitic Inductance e Thermal Resistance RθJC (Bottom) RθJC (Top) RθJA RθJA (<10s) 2 f f Junction-to-Case Junction-to-Case Junction-to-Ambient Junction-to-Ambient Parameter g g Typ. ––– ––– ––– ––– Max. 2.7 15 35 22 Units °C/W www.irf.com IRFH5304PbF 1000 1000 100 BOTTOM TOP 10 2.8V ≤ 60μs PULSE WIDTH Tj = 25°C ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 8.0V 4.5V 3.8V 3.5V 3.3V 3.0V 2.8V 100 BOTTOM 2.8V 10 ≤ 60μs PULSE WIDTH Tj = 150°C 1 1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 TJ = 150°C 10 TJ = 25°C 1 V DS = 15V ≤ 60μs PULSE WIDTH 0.1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 ID = 47A V GS = 10V 1.5 1.0 0.5 -60 -40 -20 V GS, Gate-to-Source Voltage (V) 10000 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig 4. Normalized On-Resistance Vs. Temperature Fig 3. Typical Transfer Characteristics 14 V GS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = Cds + C gd C, Capacitance (pF) VGS 10V 8.0V 4.5V 3.8V 3.5V 3.3V 3.0V 2.8V Ciss 1000 Coss Crss ID= 47A 12 V DS= 24V V DS= 15V V DS= 6.0V 10 8 6 4 2 0 100 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage www.irf.com 0 10 20 30 40 50 60 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage 3 IRFH5304PbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000.0 100.0 TJ = 150°C 10.0 TJ = 25°C 1.0 V GS = 0V 0.4 0.6 0.8 1.0 1.2 1.4 1000 100 100μsec 10 1msec Tc = 25°C Tj = 150°C Single Pulse 1 0.1 1.6 1 10 100 V DS, Drain-to-Source Voltage (V) V SD, Source-to-Drain Voltage (V) Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 3.0 V GS(th) Gate threshold Voltage (V) 80 60 ID , Drain Current (A) 10msec 0.1 0.1 0.2 OPERATION IN THIS AREA LIMITED BY R DS(on) 40 20 2.5 2.0 1.5 ID = 1.0A ID = 1.0mA 1.0 ID = 250μA ID = 50μA 0.5 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 TJ , Temperature ( °C ) TC , CaseTemperature (°C) Fig 9. Maximum Drain Current Vs. Case (Bottom) Temperature Fig 10. Threshold Voltage Vs. Temperature Thermal Response ( ZthJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom) 4 www.irf.com 200 16 EAS, Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance ( mΩ) IRFH5304PbF ID = 47A 12 8 TJ = 125°C 4 TJ = 25°C 0 2 4 6 8 10 12 14 16 18 ID 6.5A 14A BOTTOM 47A TOP 160 120 80 40 0 20 25 V GS, Gate-to-Source Voltage (V) 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V A Fig 14a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 14b. Unclamped Inductive Waveforms VDS 90% D.U.T. + -VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 Fig 15a. Switching Time Test Circuit www.irf.com I AS 0.01Ω tp 10% VGS td(on) tr td(off) tf Fig 15b. Switching Time Waveforms 5 IRFH5304PbF D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs L DUT 0 1K S VCC Vgs(th) Qgs1 Qgs2 Fig 17. Gate Charge Test Circuit 6 Qgd Qgodr Fig 18. Gate Charge Waveform www.irf.com IRFH5304PbF PQFN 5x6 Outline "B" Package Details For footprint and stencil design recommendations, please refer to application note AN-1154 at http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Outline "B" Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER (“4 or 5 digits”) MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 7 IRFH5304PbF PQFN Tape and Reel Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Qualification information† Qualification level Moisture Sensitivity Level Indus trial (per JE DE C JE S D47F PQFN 5mm x 6mm RoHS compliant †† ††† guidelines ) MS L1 ††† (per JE DE C J-S T D-020D ) Yes Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.041mH, RG = 50Ω, IAS = 47A. Pulse width ≤ 400μs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.2/2010 8 www.irf.com