IRF IRS2113-1PBF High and low side driver Datasheet

PRELIMINARY
Data Sheet No. PD60249 revB
IRS2110(-1,-2,S)PbF
IRS2113(-1,-2,S)PbF
HIGH AND LOW SIDE DRIVER
Features
• Floating channel designed for bootstrap operation Product Summary
• Fully operational to +500 V or +600 V
VOFFSET (IRS2110)
500 V max.
• Tolerant to negative transient voltage, dV/dt immune
(IRS2113)
600 V max.
• Gate drive supply range from 10 V to 20 V
IO+/2 A/2 A
• Undervoltage lockout for both channels
• 3.3 V logic compatible
VOUT
10 V - 20 V
• Separate logic supply range from 3.3 V to 20 V
ton/off (typ.)
130 ns & 120 ns
• Logic and power ground ±5V offset
• CMOS Schmitt-triggered inputs with pull-down
Delay Matching (IRS2110) 10 ns max.
• Cycle by cycle edge-triggered shutdown logic
(IRS2113) 20 ns max.
• Matched propagation delay for both channels
Packages
• Outputs in phase with inputs
Description
The IRS2110/IRS2113 are high voltage, high speed
power MOSFET and IGBT drivers with independent
high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies
enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL
output, down to 3.3 V logic. The output drivers feature
a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are
matched to simplify use in high frequency applications.
The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 500 V or 600 V.
14-Lead PDIP
IRS2110 and IRS2113
16-Lead PDIP
(w/o leads 4 & 5)
IRS2110-2 and IRS2113-2
14-Lead PDIP
(w/o lead 4)
IRS2110-1 and IRS2113-1
Typical Connection
16-Lead SOIC
IRS2110S and
IRS2113S
(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figs. 28 through 35.
Symbol
Definition
VB
High side floating supply voltage
VS
Min.
Max.
(IRS2110)
-0.3
520 (Note 1)
(IRS2113)
-0.3
620 (Note 1)
High side floating supply offset voltage
VB - 20
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side fixed supply voltage
-0.3
20 (Note 1)
VLO
Low side output voltage
-0.3
VCC + 0.3
VDD
Logic supply voltage
-0.3
VSS+20 (Note 1)
VSS
Logic supply offset voltage
VCC - 20
VCC + 0.3
VIN
Logic input voltage (HIN, LIN, & SD)
VSS - 0.3
VDD + 0.3
—
50
dVs/dt
PD
RTHJA
Allowable offset supply voltage transient (Fig. 2)
Package power dissipation @ TA ≤ +25 °C
Thermal resistance, junction to ambient
(14 lead DIP)
—
1.6
(16 lead SOIC)
—
1.25
(14 lead DIP)
—
75
(16 lead SOIC)
—
100
150
TJ
Junction temperature
—
TS
Storage temperature
-55
150
TL
Lead temperature (soldering, 10 seconds)
—
300
Units
V
V/ns
W
°C/W
°C
Note 1: All supplies are fully tested at 25 V, and an internal 20 V clamp exists for each supply.
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation, the device should be used within the
recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at a 15 V differential.
Typical ratings at other bias conditions are shown in Figs. 36 and 37.
Symbol
VB
VS
Definition
High side floating supply absolute voltage
High side floating supply offset voltage
Min.
Max.
VS + 10
VS + 20
(IRS2110)
Note 2
500
(IRS2113)
Note 2
600
VB
VHO
High side floating output voltage
VS
VCC
Low side fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VDD
Logic supply voltage
VSS
Logic supply offset voltage
VIN
TA
VSS + 3
VSS + 20
-5 (Note 3)
5
Logic input voltage (HIN, LIN & SD)
VSS
VDD
Ambient temperature
-40
125
Units
V
°C
Note 2: Logic operational for VS of -4 V to +500 V. Logic state held for VS of -4 V to -VBS. (Refer to the Design Tip DT97-3)
Note 3: When VDD < 5 V, the minimum VSS offset is limited to -VDD.
www.irf.com
2
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Dynamic Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15 V, CL = 1000 pF, TA = 25 °C and VSS = COM unless otherwise specified. The dynamic
electrical characteristics are measured using the test circuit shown in Fig. 3.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
ton
Turn-on propagation delay
toff
Turn-off propagation delay
8
—
120
150
tsd
Shutdown propagation delay
9
—
130
160
tr
Turn-on rise time
10
—
25
35
tf
Turn-off fall time
11
—
17
25
—
—
—
—
—
—
10
20
MT
Delay matching, HS & LS
turn-on/off
7
(IRS2110)
(IRS2113)
—
130
160
VS = 0 V
VS = 500 V/600 V
ns
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15 V, TA = 25 °C and VSS = COM unless otherwise specified. The VIN, VTH, and IIN parameters
are referenced to VSS and are applicable to all three logic input leads: HIN, LIN, and SD. The VO and IO parameters are
referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage
12
9.5
—
—
VIL
Logic “0” input voltage
13
—
—
6.0
VOH
High level output voltage, VBIAS - VO
14
—
—
1.2
VOL
Low level output voltage, VO
15
—
—
0.15
IO = 20 mA
ILK
Offset supply leakage current
16
—
—
50
VB=VS = 500 V/600 V
IQBS
Quiescent VBS supply current
17
—
125
230
IQCC
Quiescent VCC supply current
18
—
180
340
IQDD
Quiescent VDD supply current
19
—
15
30
IIN+
Logic “1” input bias current
20
—
20
40
VIN = VDD
IIN-
Logic “0” input bias current
VBS supply undervoltage positive going
threshold
VBS supply undervoltage negative going
threshold
VCC supply undervoltage positive going
threshold
VCC supply undervoltage negative going
threshold
21
—
—
1.0
VIN = 0 V
22
7.5
8.6
9.7
23
7.0
8.2
9.4
24
7.4
8.5
9.6
25
7.0
8.2
9.4
IO+
Output high short circuit pulsed current
26
2.0
2.5
—
IO-
Output low short circuit pulsed current
27
2.0
2.5
—
VBSUV+
VBSUVVCCUV+
VCCUV-
V
µA
VIN = 0 V or VDD
V
A
www.irf.com
IO = 0 A
VO = 0 V, VIN = VDD
PW ≤ 10 µs
VO = 15 V, VIN = 0V
PW ≤ 10 µs
3
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Functional Block Diagram
Lead Definitions
Symbol Description
VDD
HIN
SD
LIN
VSS
VB
HO
VS
VCC
LO
COM
www.irf.com
Logic supply
Logic input for high side gate driver output (HO), in phase
Logic input for shutdown
Logic input for low side gate driver output (LO), in phase
Logic ground
High side floating supply
High side gate drive output
High side floating supply return
Low side supply
Low side gate drive output
Low side return
4
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Lead Assignments
14 Lead PDIP
16 Lead SOIC (Wide Body)
IRS2110/IRS2113
IRS2110S/IRS2113S
14 Lead PDIP w/o lead 4
16 Lead PDIP w/o leads 4 & 5
IRS2110-1/IRS2113-1
IRS2110-2/IRS2113-2
Part Number
www.irf.com
5
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
HV = 10 to 500V/600V
Vcc =15V
10KF6
10
µF
0.1
µF
9
3
10
5
7
11
12
1
13
+
200
µH
0.1
µF
6
10KF6
HO
OUTPUT
MONITOR
100µF
dVS
>50 V/ns
dt
10KF6
2
IRF820
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test
Circuit
Vcc =15V
10
µF
0.1
µF
9
3
5
7
10
HIN
SD
0.1
µF
6
11
CL
1
LO
12
LIN
HO
VB
+
10
15V
µF
VS
(0 to 500V/600V)
2
Figure 3. Switching Time Test Circuit
10
µF
CL
13
!
!
Figure 4. Switching Time Waveform Definition
"#
!
Figure 5. Shutdown Waveform Definitions
www.irf.com
Figure 6. Delay Matching Waveform Definitions
6
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
250
Turn-on
Delay
Time
(ns)
Turn-On
Delay
Time
(ns)
Turn-On
(ns)
Turn-onDelay
DelayTime
Time
(ns
250
200
150
Max.
100
Typ.
50
150
-25
0
25
50
75
100
Typ.
100
50
0
0
-50
Max.
200
10
125
12
14
16
18
20
V B IAS Supply V oltage (V )
o
Temperature( C)
Figure 7A. Turn-On Time vs. Temperature
Figure 7B. Turn-On Time vs. Supply Voltage
250
250
Turn-On Delay Time (ns)
M ax.
Turn-Off
Time
Turn-Off
Time
(ns)(ns)
200
Typ.
150
100
50
200
150
Max.
100
Typ.
50
0
-50
0
0
2
4
6
8
10 12 14 16 18 20
V DD Supply Voltage (V)
Figure 7C. Turn-On Time vs. V DD Supply Voltage
0
25
50
75
100
125
o
Temperature( C)
Figure 8A. Turn-Off Time vs. Temperature
250
Turn-Off
Delay
Time
Turn-Off Delay
Time
(ns) (ns)
250
Turn-Off Time (ns)
Turn-Off
(ns)
-25
200
Max.
150
Typ.
100
50
0
10
12
14
16
18
V BIAS Supply Voltage (V)
Figure 8B. Turn-Off Time vs. Supply Voltage
www.irf.com
20
M ax.
200
150
Typ.
100
50
0
0
2
4
6 8 10 12 14 16 18 20
VDD Supply Voltage (V)
V
S
l V lt
(V)
Figure 8C. Turn-Off Time vs. VDD Supply Voltage
7
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
250
SDSD
Propagation
Delay
(ns)
Propagation
delay
(ns
SDSD
Propagation
Delay
(ns)(ns
Propagation
Delay
250
200
150
Max.
100
Typ.
50
0
-50
-25
0
25
50
75
100
200
Max.
150
Typ.
100
50
0
10
125
12
14
16
18
20
V BIAS Supply Voltage (V)
Temperature (oC)
Figure 9A. Shutdown Time vs. Temperature
Figure 9B. Shutdown Time vs. Supply Voltage
250
100
200
Turn-On Rise Time (ns)
Shutdown Delay Time (ns)
M ax.
150
Typ.
100
50
80
60
40
M ax.
Typ.
20
0
0
2
4
0
6
8 10 12 14 16 18 20
V DD Supply Voltage (V)
-50
0
25
50
75
100
125
100
125
Temperature (o C )
Figure 10A. Turn-On Rise Time
vs. Temperature
Figure 9C. Shutdown Time
vs. V DD Supply Voltage
50
Turn-Off Fall Time (ns)
100
80
Turn-Off Fall Time (ns)
Turn-On
Rise Time (ns)
Turn-On Rise Time (ns)
-25
60
Max.
40
Typ.
20
0
40
30
Max.
20
Typ.
10
0
10
12
14
16
18
VBIAS Supply Voltage (V)
Figure 10B. Turn-On Rise Time vs. Voltage
www.irf.com
20
-50
-25
0
25
50
75
Temperature (°C)
Figure 11A. Turn-Off Fall Time vs. Temperature
8
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
50
Logic “1”Logic
Input
Threshold
"1" Input
Threshold (V) (V)
15.0
Turn-OffTurn-Off
FallFall
Time
(ns)
Time (ns)
40
30
20
Max.
Typ.
10
0
10
12
14
16
18
12.0
20
Max
Min.
9.0
6.0
3.0
0.0
-50
-25
0
25
VBIAS Supply Voltage (V)
15
12
Max.
9
6
3
0
2
4
6
8
10 12
14
16
18
9.0
6.0
Max.
Min.
3.0
0.0
20
-50
-25
0
9
Min.
6
3
0
8
10 12
14
16
18
20
VDD Logic Supply Voltage (V)
Figure 13B. Logic “0” Input Threshold vs. Voltage
www.irf.com
50
75
100
125
Figure 13A. Logic “0” Input Threshold
vs. Temperature
High Level
Output Voltage (V)
High Level Output Voltage (V)
Input Threshold
(V)
LogicLogic
“0”"0"Input
Threshold
(V)
12
6
25
Temperature (°C)
15
4
125
12.0
Figure 12B. Logic “1” Input Threshold vs. Voltage
2
100
15.0
VDD Logic Supply Voltage (V)
0
75
Figure 12A. Logic “1” Input Threshold
vs. Temperature
Input Threshold
(V)
LogicLogic
“0”"0"Input
Threshold
(V)
Logic Logic
“1” "Input
Threshold
1" Input Threshold
(V) (V)
Figure 11B. Turn-Off Fall Time vs. Voltage
0
50
Temperature (°C)
5.00
4.00
3.00
2.00
Max.
1.00
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 14A. High Level Output vs. Temperature
9
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
0.20
Low Level Outout Voltage (V)
High Level Ouput Voltage (V)
5.00
4.00
3.00
2.00
Max.
1.00
0.00
10
12
14
16
18
20
0.16
Max.
0.12
0.08
0.04
0.00
-50
-25
0
25
50
75
Temperature (oC)
VBIAS Supply Voltage (V)
0.20
0.16
Max.
0.12
0.08
0.04
0.00
10
12
14
16
18
20
500
400
300
200
100
Max.
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
VCC Supply Voltage (V)
Figure 15B. Low Level Output vs. Supply Voltage
Figure 16A. Offset Supply Current vs. Temperature
500
500
400
VBS Supply Current (µA)
Offset Supply Leakage Current (µA)
125
Figure 15A. Low Level Output vs. Temperature
Offset Supply Leakage Current (µA)
Low Level Outout Voltage (V)
Figure 14B. High Level Output vs. Voltage
100
300
200
100
Max.
0
400
300
Max.
200
Typ.
100
0
0
100
200
300
400
500
VB Boost Voltage (V)
Figure 16B. Offset Supply Current vs. Voltage
www.irf.com
600
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 17A. VBS Supply Current vs. Temperature
10
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
500
625
400
500
V
VCC
Supply Current
Current (µA)
(µA)
CC Supply
VBS
Supply Current
Current (µA)
(µA)
V
BS Supply
PRELIMINARY
300
200
Max.
100
Typ.
375
Max.
250
Typ.
125
0
0
10
12
14
16
18
-50
20
-25
0
625
75
100
125
100
VDD Supply Current (µA)
VVCC
Supply Current
Current (µA)
(µA)
CC Supply
50
Figure 18A. VCC Supply Current vs. Temperature
Figure 17B. VBS Supply Current vs. Voltage
500
375
250
Max.
125
Typ.
0
80
60
40
Max.
20
Typ.
0
10
12
14
16
18
20
-50
-25
Figure 18B. VCC Supply Current vs. Voltage
50
40
30
20
10
0
0
2
4
6
8 10 12 14 16 18 20
VDD Logic Supply Voltage (V)
Figure 19B. VDD Supply Current vs. V DD Voltage
www.irf.com
25
50
75
100
125
100
125
Figure 19A. VDD Supply Current
vs. Temperature
Logic “1” Input Bias Current (µA)
60
0
Temperature (oC)
VCC Fixed Supply Voltage (V)
VDDSupply
Supply Current
(µA) (µA)
VDD
Current
25
Temperature (oC)
VBS Floating Supply Voltage (V)
100
80
60
40
Max.
20
Typ.
0
-50
-25
0
25
50
75
Temperature (oC)
Figure 20A. Logic “1” Input Current
vs. Temperature
11
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
60
50
40
30
20
10
0
0
2
4
6
8
10 12
14
16
18
20
Logic “0” Input Bias Current (µA)
Logic “1”Logic
Input
Bias
(µA)
“1” Input
BiasCurrent
Current (µA)
PRELIMINARY
5.00
4.00
3.00
2.00
Max.
1.00
0.00
-50
-25
0
5
4
3
2
1
0
2
4
6
8
10 12
100
125
14 16
18 20
10.0
Max.
9.0
Typ.
8.0
Min.
7.0
6.0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 21B. Logic “0” Input Current
vs. V DD Voltage
Figure 22. VBS Undervoltage (+) vs. Temperature
11.0
11.0
VCC Undervoltage Lockout + (V)
VBS Undervoltage Lockout - (V)
75
11.0
VDD Logic Supply Voltage (V)
10.0
Max.
9.0
Typ.
8.0
7.0
50
Figure 21A. Logic “0” Input Current
vs. Temperature
VBS Undervoltage Lockout + (V)
Logic “0”
Input
Bias
Current
Logic
“0” Input
Bias Current
(µA) (µA)
Figure 20B. Logic “1” Input Current
vs. V DD Voltage
0
25
Temperature (oC)
VDD Logic Supply Voltage (V)
Min.
6.0
-50
-25
0
25
50
75
100
125
10.0
Max.
9.0
Typ.
8.0
Min.
7.0
6.0
-50
Temperature (oC)
Figure 23. VBS Undervoltage (-)
vs. Temperature
www.irf.com
PDF created with pdfFactory trial version www.pdffactory.com
-25
0
25
50
75
100
125
Temperature (oC)
Figure 24. VCC Undervoltage (+)
vs. Temperature
12
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
5.00
Output Output
Source
SourceCurrent
Current (A) (A)
VCC Undervoltage Lockout - (V)
11.0
10.0
Max.
9.0
Typ.
8.0
7.0
Min.
-25
0
25
50
75
100
3.00
Typ.
Min.
2.00
1.00
0.00
-50
6.0
-50
4.00
125
-25
0
4.00
3.00
2.00
Typ.
Min.
0.00
10
100
125
12
14
16
18
4.00
3.00
Typ.
Min.
2.00
1.00
0.00
-50
20
-25
0
VBIAS Supply Voltage (V)
25
50
75
320V
Junction Temperature (oC)
150
4.00
3.00
2.00
Typ.
Min.
0.00
12
14
16
125
Figure 27A. Output Sink Current
vs. Temperature
5.00
10
100
Temperature (oC)
Figure 26B. Output Source Current vs. Voltage
Output
Sink Current (A)
Output Sink Current (A)
75
5.00
Output
Sink
Current
(A)
Output
Sink Current
(A)
Output Output
Source
SourceCurrent
Current (A) (A)
5.00
1.00
50
Figure 26A. Output Source Current
vs. Temperature
Figure 25. VCC Undervoltage (-) vs. Temperature
1.00
25
Temperature (°C)
Temperature
(oC)
Temperature (°C)o
Temperature
( C)
18
VBIAS Supply Voltage (V)
Figure 27B. Output Sink Current vs. Voltage
20
125
140V
100
75
10V
50
25
0
1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (kHz)
Figure 28. IRS2110/IRS2113 TJ vs. Frequency
(IRFBC20) RGATE = 33 Ω, VCC = 15 V
www.irf.com
PDF created with pdfFactory trial version www.pdffactory.com
13
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
320V
125
140V
100
75
10V
50
25
0
1E+2
1E+3
1E+4
1E+5
10V
75
50
25
75
50
25
1E+5
Junction Temperature (oC)
10V
1E+4
100
10V
75
50
25
1E+3
1E+4
1E+5
1E+6
Frequency (kHz)
Figure 32. IRS2110S/IRS2113S TJ vs. Frequency
(IRFBC20) RGATE = 33 Ω, VCC = 15 V
140V
125
100
10V
75
50
25
1E+5
1E+6
Frequency (kHz)
Figure 33. IRS2110S/IRS2113S TJ vs. Frequency
(IRFBC30) RGATE = 22 Ω, VCC = 15 V
320V 140V
150
Junction Temperature (oC)
320V
150
1E+4
140V
125
0
1E+2
1E+6
Figure 31. IRS2110/IRS2113 TJ vs. Frequency
(IRFPE50) RGATE = 10 Ω, VCC = 15 V
1E+3
1E+6
320V
Frequency (kHz)
Junction Temperature (oC)
1E+5
150
100
www.irf.com
1E+4
140V
125
0
1E+2
1E+3
Figure 30. IRS2110/IRS2113 TJ vs. Frequency
(IRFBC40) RGATE = 15 Ω, VCC = 15 V
320V
150
Junction Temperature (oC)
100
Frequency (kHz)
Figure 29. IRS2110/IRS2113 TJ vs. Frequency
(IRFBC30) RGATE = 22 Ω, VCC = 15 V
1E+3
140V
125
0
1E+2
1E+6
Frequency (kHz)
0
1E+2
320V
150
Junction Temperature (oC)
o
Junction Temperature
p
( ) ( C)
150
125
10V
100
75
50
25
0
1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (kHz)
Figure 34. IRS2110S/IRS2113S TJ vs. Frequency
(IRFBC40) RGATE = 15 Ω, VCC = 15 V
14
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
320V 140V 10V
125
100
75
50
25
0
1E+2
-2.0
Typ.
-4.0
-6.0
-8.0
-10.0
1E+3
1E+4
1E+5
1E+6
Frequency (kHz)
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 35. IRS2110S/IRS2113S TJ vs. Frequency
(IRFPE50) RGATE = 10 Ω, VCC = 15 V
VSS Logic Supply Offset Voltage (V)
0.0
VS Offset Supply Voltage (V)
Junction Temperature
(oC)
p
( )
150
Figure 36. Maximum VS Negative Offset vs.
VBS Supply Voltage
20.0
16.0
12.0
8.0
Typ.
4.0
0.0
10
12
14
16
18
20
VCC Fixed Supply Voltage (V)
Figure 37. Maximum VSS Positive Offset vs.
VCC Supply Voltage
www.irf.com
15
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Case Outlines
14-Lead PDIP
14-Lead PDIP w/o Lead 4
www.irf.com
01-6010
01-3002 03 (MS-001AC)
01-6010
01-3008 02 (MS-001AC)
16
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
16 Lead PDIP w/o Leads 4 & 5
16-Lead SOIC (wide body)
www.irf.com
01-6015
01-3010 02
01 6015
01-3014 03 (MS-013AA)
17
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
Tape & Reel
16-Lead SOIC
LOAD ED TA PE FEED DIRECTION
A
B
H
D
F
C
N OT E : CO NTROLLING
D IM ENSION IN MM
E
G
C A R R I E R T A P E D IM E N S I O N F O R 1 6 S O IC W
M e tr ic
Im p e ri al
Co d e
M in
M ax
M in
M ax
A
1 1 .9 0
1 2. 10
0. 46 8
0 .4 7 6
B
3 .9 0
4 .1 0
0. 15 3
0 .1 6 1
C
1 5 .7 0
1 6. 30
0. 61 8
0 .6 4 1
D
7 .4 0
7 .6 0
0. 29 1
0 .2 9 9
E
1 0 .8 0
1 1. 00
0. 42 5
0 .4 3 3
F
1 0 .6 0
1 0. 80
0. 41 7
0 .4 2 5
G
1 .5 0
n/ a
0. 05 9
n/ a
H
1 .5 0
1 .6 0
0. 05 9
0 .0 6 2
F
D
C
B
A
E
G
H
R E E L D IM E N S I O N S F O R 1 6 S O IC W
M e tr ic
Im p e ri al
Co d e
M in
M ax
M in
M ax
A
32 9. 60
3 3 0 .2 5
1 2 .9 7 6
1 3 .0 0 1
B
2 0 .9 5
2 1. 45
0. 82 4
0 .8 4 4
C
1 2 .8 0
1 3. 20
0. 50 3
0 .5 1 9
D
1 .9 5
2 .4 5
0. 76 7
0 .0 9 6
E
9 8 .0 0
1 0 2 .0 0
3. 85 8
4 .0 1 5
F
n /a
2 2. 40
n /a
0 .8 8 1
G
1 8 .5 0
2 1. 10
0. 72 8
0 .8 3 0
H
1 6 .4 0
1 8. 40
0. 64 5
0 .7 2 4
www.irf.com
18
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
PRELIMINARY
LEADFREE PART MARKING INFORMATION
Part number
Date code
S
IRxxxxxx
YWW?
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
14-Lead PDIP IRS2110PbF
14-Lead PDIP IRS2110-1PbF
14-Lead PDIP IRS2113PbF
14-Lead PDIP IRS2113-1PbF
16-Lead PDIP IRS2110-2PbF
16-Lead PDIP IRS2113-2PbF
16-Lead SOIC IRS2110SPbF
16-Lead SOIC IRS2113SPbF
16-Lead SOIC Tape & Reel IRS2110STRPbF
16-Lead SOIC Tape & Reel IRS2113STRPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice 5/11/2006
www.irf.com
19
Similar pages