. . . using the Schottky Barrier principle with a platinum barrier metal. These state–of–the–art devices have the following features: • • • • • Guardring for Stress Protection Low Forward Voltage 150°C Operating Junction Temperature Guaranteed Reverse Avalanche Epoxy Meets UL94, VO at 1/8″ MBR2045CT is a Motorola Preferred Device SCHOTTKY BARRIER RECTIFIERS 20 AMPERES 35 and 45 VOLTS Mechanical Characteristics: • Case: Epoxy, Molded • Weight: 1.9 grams (approximately) • Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable • Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds • Shipped 50 units per plastic tube 1 • Marking: B2035, B2045 4 2, 4 1 2 3 3 CASE 221A–06 TO–220AB PLASTIC Rating Symbol MBR2035CT MBR2045CT Unit Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage VRRM VRWM VR 35 45 Volts Average Rectified Forward Current (Rated VR) TC = 135°C IF(AV) 20 20 Amps Peak Repetitive Forward Current Per Diode Leg (Rated VR, Square Wave, 20 kHz) TC = 135°C IFRM 20 20 Amps Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz) IFSM 150 150 Amps Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz) See Figure 11 IRRM 1.0 1.0 Amp TJ *65 to +150 *65 to +175 Storage Temperature Tstg *65 to +150 *65 to +175 Voltage Rate of Change (Rated VR) dv/dt 1000 1000 V/µs RθJC 2.0 2.0 °C/W 0.57 0.72 0.84 0.57 0.72 0.84 15 0.1 15 0.1 Operating Junction Temperature °C °C THERMAL CHARACTERISTICS Maximum Thermal Resistance, Junction to Case ELECTRICAL CHARACTERISTICS Maximum Instantaneous Forward Voltage (1) (iF = 10 Amps, TC = 125°C) (iF = 20 Amps, TC = 125°C) (iF = 20 Amps, TC = 25°C) vF Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, TC = 125°C) (Rated dc Voltage, TC = 25°C) iR Volts mA 100 100 TJ = 150°C TJ = 150°C 70 50 25°C 30 30 20 20 10 7.0 5.0 3.0 2.0 1.0 7.0 5.0 3.0 2.0 1.0 0.7 0.5 0.5 0.3 0.3 0.2 0.2 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.2 0.4 0.6 0.8 1.0 1.4 1.2 vF, INSTANTANEOUS VOLTAGE (VOLTS) vF, INSTANTANEOUS VOLTAGE (VOLTS) Figure 1. Maximum Forward Voltage Figure 2. Typical Forward Voltage 200 IFSM , PEAK HALF–WAVE CURRENT (AMPS) 100 TJ = 150°C IR , REVERSE CURRENT (mA) 10 0.7 0.1 125°C 10 100°C 1.0 75°C 0.1 25°C 0.01 0.001 0 2 100°C 50 25°C iF, INSTANTANEOUS FORWARD CURRENT (AMPS) iF, INSTANTANEOUS FORWARD CURRENT (AMPS) 70 100°C 5.0 10 15 20 25 30 35 40 45 50 100 70 50 30 20 1.0 2.0 3.0 5.0 7.0 10 20 30 50 VR, REVERSE VOLTAGE (VOLTS) NUMBER OF CYCLES AT 60 Hz Figure 3. Maximum Reverse Current Figure 4. Maximum Surge Capability 70 100 www.kersemi.com RATED VOLTAGE APPLIED 35 I 30 I PF(AV) , AVERAGE FORWARD POWER DISSIPATION (WATTS) PK AV + p (RESISTIVE LOAD) 25 I 20 (CAPACITIVE LOAD) PK I AV 15 +5 SQUARE WAVE 10 10 20 dc 5.0 0 110 r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED) IF(AV) , AVERAGE FORWARD CURRENT (AMPS) 40 130 120 140 150 32 RATED VOLTAGE APPLIED 28 I 24 I PK AV + p (RESISTIVE LOAD) 20 SQUARE WAVE 16 12 dc 8.0 I (CAPACITIVE LOAD) PK I 4.0 AV 0 160 0 20 60 40 + 20, 10, 5 100 80 120 140 TC, CASE TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 5. Current Derating, Infinite Heatsink Figure 6. Current Derating, RqJA = 16°C/W 20 18 SINE WAVE RESISTIVE LOAD 16 I 14 (CAPACITIVE LOAD) PK I 12 AV IF(AV) , AVERAGE FORWARD CURRENT (AMPS) IF(AV) , AVERAGE FORWARD CURRENT (AMPS) dc SQUARE WAVE +5 10 10 20 8.0 6.0 TJ = 150°C 4.0 2.0 0 0 4.0 8.0 12 16 20 24 28 160 10 RATED VOLTAGE APPLIED RqJA = 60°C/W 8.0 I I 6.0 PK AV + p (RESISTIVE LOAD) SQUARE WAVE 4.0 dc 2.0 I (CAPACITIVE LOAD) PK I AV 0 32 0 20 60 40 + 20, 10, 5 80 100 120 140 IF(AV), AVERAGE FORWARD CURRENT (AMPS) TA, AMBIENT TEMPERATURE (°C) Figure 7. Forward Power Dissipation Figure 8. Current Derating, Free Air 160 1.0 0.7 0.5 0.3 0.2 Ppk tp 0.1 0.07 0.05 Ppk DUTY CYCLE, D = tp/t1 PEAK POWER, Ppk, is peak of an equivalent square power pulse. TIME t1 ∆TJL = Ppk • RθJL [D + (1 – D) • r(t1 + tp) + r(tp) – r(t1)] where: ∆TJL = the increase in junction temperature above the lead temperature. r(t) = normalized value of transient thermal resistance at time, t, i.e.: r(t1 + tp) = normalized value of transient thermal resistance at time, t1 + tp, etc. 0.03 0.02 0.01 0.01 0.1 1.0 10 100 1000 t, TIME (ms) Figure 9. Thermal Response www.kersemi.com 3 1500 HIGH FREQUENCY OPERATION 1000 C, CAPACITANCE (pF) Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10.) Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage. 700 500 MAXIMUM 300 TYPICAL 200 150 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 VR, REVERSE VOLTAGE (VOLTS) Figure 10. Capacitance +150 V, 10 mAdc 2.0 kΩ VCC 12 V 12 Vdc D.U.T. 100 + 4.0 µF 2N2222 2.0 µs 1.0 kHz CURRENT AMPLITUDE ADJUST 0–10 AMPS 2N6277 100 CARBON 1.0 CARBON 1N5817 Figure 11. Test Circuit for dv/dt and Reverse Surge Current 4 www.kersemi.com –T– B SEATING PLANE C F T S 4 1 2 3 U H K Z L R V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. DIM A B C D F G H J K L N Q R S T U V Z A Q J G D N INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 ––– ––– 0.080 MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 ––– ––– 2.04 CASE 221A–06 (TO–220AB) ISSUE Y www.kersemi.com 5