REJ09B0200-0200 The revision list can be viewed directly by clicking the title page. The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text. 16 H8S/2649 Group Hardware Manual Renesas 16-Bit Single-Chip Microcomputer H8S Family/H8S/2600 Series H8S/2649 Rev.2.00 Revision Date: Dec. 05, 2005 HD64F2649 HD6432649 Rev. 2.00 Dec. 05, 2005 Page ii of xxxviii Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. Rev. 2.00 Dec. 05, 2005 Page iii of xxxviii General Precautions on Handling of Product 1. Treatment of NC Pins Note: Do not connect anything to the NC pins. The NC (not connected) pins are either not connected to any of the internal circuitry or are used as test pins or to reduce noise. If something is connected to the NC pins, the operation of the LSI is not guaranteed. 2. Treatment of Unused Input Pins Note: Fix all unused input pins to high or low level. Generally, the input pins of CMOS products are high-impedance input pins. If unused pins are in their open states, intermediate levels are induced by noise in the vicinity, a passthrough current flows internally, and a malfunction may occur. 3. Processing before Initialization Note: When power is first supplied, the product's state is undefined. The states of internal circuits are undefined until full power is supplied throughout the chip and a low level is input on the reset pin. During the period where the states are undefined, the register settings and the output state of each pin are also undefined. Design your system so that it does not malfunction because of processing while it is in this undefined state. For those products which have a reset function, reset the LSI immediately after the power supply has been turned on. 4. Prohibition of Access to Undefined or Reserved Addresses Note: Access to undefined or reserved addresses is prohibited. The undefined or reserved addresses may be used to expand functions, or test registers may have been be allocated to these addresses. Do not access these registers; the system's operation is not guaranteed if they are accessed. Rev. 2.00 Dec. 05, 2005 Page iv of xxxviii Configuration of This Manual This manual comprises the following items: 1. 2. 3. 4. 5. 6. General Precautions on Handling of Product Configuration of This Manual Preface Contents Overview Description of Functional Modules • CPU and System-Control Modules • On-Chip Peripheral Modules The configuration of the functional description of each module differs according to the module. However, the generic style includes the following items: i) Feature ii) Input/Output Pin iii) Register Description iv) Operation v) Usage Note When designing an application system that includes this LSI, take notes into account. Each section includes notes in relation to the descriptions given, and usage notes are given, as required, as the final part of each section. 7. List of Registers 8. Electrical Characteristics 9. Appendix 10. Main Revisions and Additions in this Edition (only for revised versions) The list of revisions is a summary of points that have been revised or added to earlier versions. This does not include all of the revised contents. For details, see the actual locations in this manual. 11. Index Rev. 2.00 Dec. 05, 2005 Page v of xxxviii Preface The H8S/2649 Group single-chip microcomputer is made up of the high-speed H8S/2600 CPU as its core, and the peripheral functions required configuring a system. The H8S/2600 CPU has an instruction set that is compatible with the H8/300 and H8/300H CPUs. Target Users: This manual was written for users who will be using the H8S/2649 Group in the design of application systems. Target users are expected to understand the fundamentals of electrical circuits, logical circuits, and microcomputers. Objective: This manual was written to explain the hardware functions and electrical characteristics of the H8S/2649 Group to the target users. Refer to the H8S/2600 Series, H8S/2000 Series Programming Manual for a detailed description of the instruction set. Notes on reading this manual: • In order to understand the overall functions of the chip Read the manual according to the contents. This manual can be roughly categorized into parts on the CPU, system control functions, peripheral functions, and electrical characteristics. • In order to understand the details of the CPU's functions Read the H8S/2600 Series, H8S/2000 Series Programming Manual. • In order to understand the details of a register when its name is known Read the index that is the final part of the manual to find the page number of the entry on the register. The addresses, bits, and initial values of the registers are summarized in section 22, List of Registers. Examples: Register name: The following notation is used for cases when the same or a similar function, e.g. 16-bit timer pulse unit or serial communication, is implemented on more than one channel: XXX_N (XXX is the register name and N is the channel number) Bit order: The MSB is on the left and the LSB is on the right. Related Manuals: The latest versions of all related manuals are available from our web site. Please ensure you have the latest versions of all documents you require. http://www.renesas.com/ Rev. 2.00 Dec. 05, 2005 Page vi of xxxviii H8S/2649 Group manuals: Document Title Document No. H8S/2649 Group Hardware Manual This manual H8S/2600 Series, H8S/2000 Series Programming Manual REJ09B0139 User's manuals for development tools: Document Title Document No. H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User's Manual REJ10B0058 Microcomputer Development Environment System H8S, H8/300 Series Simulator/Debugger User's Manual ADE-702-282 H8S, H8/300 Series High-performance Embedded Workshop 3 Tutorial REJ10B0024 H8S, H8/300 Series High-performance Embedded Workshop 3 User's Manual REJ10B0026 Rev. 2.00 Dec. 05, 2005 Page vii of xxxviii Rev. 2.00 Dec. 05, 2005 Page viii of xxxviii Contents Section 1 Overview................................................................................................1 1.1 1.2 1.3 Features.................................................................................................................................. 1 Internal Block Diagram.......................................................................................................... 2 Pin Assignments..................................................................................................................... 3 1.3.1 Pin Assignments ....................................................................................................... 3 1.3.2 Pin Functions in Each Operating Mode .................................................................... 4 1.3.3 Pin Functions .......................................................................................................... 10 Section 2 CPU......................................................................................................15 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Features................................................................................................................................ 15 2.1.1 Differences between H8S/2600 CPU and H8S/2000 CPU ..................................... 16 2.1.2 Differences from H8/300 CPU ............................................................................... 17 2.1.3 Differences from H8/300H CPU............................................................................. 17 CPU Operating Modes......................................................................................................... 18 2.2.1 Normal Mode.......................................................................................................... 18 2.2.2 Advanced Mode...................................................................................................... 20 Address Space...................................................................................................................... 22 Registers............................................................................................................................... 23 2.4.1 General Registers.................................................................................................... 24 2.4.2 Program Counter (PC) ............................................................................................ 25 2.4.3 Extended Control Register (EXR) .......................................................................... 25 2.4.4 Condition-Code Register (CCR)............................................................................. 26 2.4.5 Multiply-Accumulate Register (MAC)................................................................... 27 2.4.6 Initial Values of CPU Registers .............................................................................. 27 Data Formats........................................................................................................................ 28 2.5.1 General Register Data Formats ............................................................................... 28 2.5.2 Memory Data Formats ............................................................................................ 30 Instruction Set ...................................................................................................................... 31 2.6.1 Table of Instructions Classified by Function .......................................................... 32 2.6.2 Basic Instruction Formats ....................................................................................... 42 Addressing Modes and Effective Address Calculation........................................................ 43 2.7.1 Register DirectRn ............................................................................................... 43 2.7.2 Register Indirect@ERn ....................................................................................... 43 2.7.3 Register Indirect with Displacement@(d:16, ERn) or @(d:32, ERn)................. 44 2.7.4 Register Indirect with Post-Increment or Pre-Decrement@ERn+ or @-ERn..... 44 2.7.5 Absolute Address@aa:8, @aa:16, @aa:24, or @aa:32....................................... 44 Rev. 2.00 Dec. 05, 2005 Page ix of xxxviii 2.8 2.9 2.7.6 Immediate#xx:8, #xx:16, or #xx:32.................................................................... 45 2.7.7 Program-Counter Relative@(d:8, PC) or @(d:16, PC) ...................................... 45 2.7.8 Memory Indirect@@aa:8 ................................................................................... 45 2.7.9 Effective Address Calculation ................................................................................ 46 Processing States.................................................................................................................. 49 Usage Note........................................................................................................................... 51 2.9.1 Notes on Using the Bit Operation Instruction......................................................... 51 Section 3 MCU Operating Modes ....................................................................... 53 3.1 3.2 3.3 3.4 3.5 Operating Mode Selection ................................................................................................... 53 Register Descriptions........................................................................................................... 54 3.2.1 Mode Control Register (MDCR) ............................................................................ 54 3.2.2 System Control Register (SYSCR)......................................................................... 55 Operating Mode Descriptions .............................................................................................. 56 3.3.1 Mode 4.................................................................................................................... 56 3.3.2 Mode 5.................................................................................................................... 56 3.3.3 Mode 6.................................................................................................................... 56 3.3.4 Mode 7.................................................................................................................... 56 Pin Functions in Each Operating Mode ............................................................................... 57 Address Map ........................................................................................................................ 58 Section 4 Exception Handling ............................................................................. 59 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Exception Handling Types and Priority............................................................................... 59 Exception Sources and Exception Vector Table .................................................................. 60 Reset .................................................................................................................................... 61 4.3.1 Reset Exception Handling ...................................................................................... 61 4.3.2 Interrupts after Reset............................................................................................... 64 4.3.3 State of On-Chip Peripheral Modules after Reset Release ..................................... 64 Traces................................................................................................................................... 64 Interrupts.............................................................................................................................. 65 Trap Instruction.................................................................................................................... 66 Stack Status after Exception Handling................................................................................. 67 Usage Note........................................................................................................................... 68 Section 5 Interrupt Controller.............................................................................. 69 5.1 5.2 5.3 Features................................................................................................................................ 69 Input/Output Pins................................................................................................................. 71 Register Descriptions........................................................................................................... 72 5.3.1 Interrupt Priority Registers A to H, J, K, M, and O (IPRA to IPRH, IPRJ, IPRK, IPRM, and IPRO) .................................................... 73 Rev. 2.00 Dec. 05, 2005 Page x of xxxviii 5.4 5.5 5.6 5.7 5.3.2 IRQ Enable Register (IER) ..................................................................................... 74 5.3.3 IRQ Sense Control Registers H and L (ISCRH, ISCRL)........................................ 75 5.3.4 IRQ Status Register (ISR)....................................................................................... 77 Interrupt Sources.................................................................................................................. 78 5.4.1 External Interrupts .................................................................................................. 78 5.4.2 Internal Interrupts ................................................................................................... 79 Interrupt Exception Handling Vector Table......................................................................... 79 Interrupt Control Modes and Interrupt Operation ................................................................ 83 5.6.1 Interrupt Control Mode 0 ........................................................................................ 83 5.6.2 Interrupt Control Mode 2 ........................................................................................ 85 5.6.3 Interrupt Exception Handling Sequence ................................................................. 87 5.6.4 Interrupt Response Times ....................................................................................... 89 5.6.5 DTC Activation by Interrupt................................................................................... 90 Usage Notes ......................................................................................................................... 91 5.7.1 Conflict between Interrupt Generation and Disabling ............................................ 91 5.7.2 Instructions that Disable Interrupts ......................................................................... 92 5.7.3 When Interrupts Are Disabled ................................................................................ 92 5.7.4 Interrupts during Execution of EEPMOV Instruction............................................. 92 Section 6 PC Break Controller (PBC) .................................................................93 6.1 6.2 6.3 6.4 Features................................................................................................................................ 93 Register Descriptions ........................................................................................................... 94 6.2.1 Break Address Register A (BARA) ........................................................................ 94 6.2.2 Break Address Register B (BARB) ........................................................................ 95 6.2.3 Break Control Register A (BCRA) ......................................................................... 95 6.2.4 Break Control Register B (BCRB).......................................................................... 96 Operation ............................................................................................................................. 96 6.3.1 PC Break Interrupt Due to Instruction Fetch .......................................................... 96 6.3.2 PC Break Interrupt Due to Data Access.................................................................. 97 6.3.3 PC Break Operation at Consecutive Data Transfer................................................. 97 6.3.4 Operation in Transitions to Power-Down Modes ................................................... 97 6.3.5 When Instruction Execution Is Delayed by One State............................................ 99 Usage Notes ....................................................................................................................... 100 6.4.1 Module Stop Mode Setting ................................................................................... 100 6.4.2 PC Break Interrupts .............................................................................................. 100 6.4.3 CMFA and CMFB ................................................................................................ 100 6.4.4 PC Break Interrupt when DTC Is Bus Master ...................................................... 100 6.4.5 PC Break Set for Instruction Fetch at Address Following BSR, JSR, JMP, TRAPA, RTE, or RTS Instruction ........................................................................ 100 6.4.6 I Bit Set by LDC, ANDC, ORC, or XORC Instruction ........................................ 100 Rev. 2.00 Dec. 05, 2005 Page xi of xxxviii 6.4.7 6.4.8 PC Break Set for Instruction Fetch at Address Following Bcc Instruction........... 101 PC Break Set for Instruction Fetch at Branch Destination Address of Bcc Instruction ................................................................................................. 101 Section 7 Bus Controller (BSC) ........................................................................ 103 7.1 7.2 7.3 Features.............................................................................................................................. 103 Input/Output Pins............................................................................................................... 105 Register Descriptions......................................................................................................... 105 7.3.1 Bus Width Control Register (ABWCR) ............................................................... 106 7.3.2 Access State Control Register (ASTCR) .............................................................. 106 7.3.3 Wait Control Registers H and L (WCRH and WCRL)......................................... 107 7.3.4 Bus Control Register H (BCRH) .......................................................................... 109 7.3.5 Bus Control Register L (BCRL) ........................................................................... 110 7.3.6 Pin Function Control Register (PFCR) ................................................................. 111 7.4 Bus Control........................................................................................................................ 112 7.4.1 Area Division........................................................................................................ 112 7.4.2 Bus Specifications ................................................................................................ 113 7.4.3 Memory Interfaces................................................................................................ 114 7.5 Basic Bus Interface ............................................................................................................ 115 7.5.1 Data Size and Data Alignment.............................................................................. 115 7.5.2 Valid Strobes ........................................................................................................ 117 7.5.3 Basic Timing......................................................................................................... 118 7.5.4 Wait Control ......................................................................................................... 125 7.6 Burst ROM Interface ......................................................................................................... 127 7.6.1 Basic Timing......................................................................................................... 127 7.6.2 Wait Control ......................................................................................................... 129 7.6.3 Write Access......................................................................................................... 129 7.7 Idle Cycle........................................................................................................................... 130 7.7.1 Operation .............................................................................................................. 130 7.7.2 Pin States in Idle Cycle......................................................................................... 132 7.8 Write Data Buffer Function ............................................................................................... 133 7.9 Bus Arbitration .................................................................................................................. 134 7.9.1 Operation .............................................................................................................. 134 7.9.2 Bus Transfer Timing............................................................................................. 134 7.10 Bus Controller Operation in Reset ..................................................................................... 135 Section 8 Data Transfer Controller (DTC)........................................................ 137 8.1 8.2 Features.............................................................................................................................. 137 Register Descriptions......................................................................................................... 139 8.2.1 DTC Mode Register A (MRA) ............................................................................. 140 Rev. 2.00 Dec. 05, 2005 Page xii of xxxviii 8.3 8.4 8.5 8.6 8.7 8.8 8.2.2 DTC Mode Register B (MRB).............................................................................. 141 8.2.3 DTC Source Address Register (SAR)................................................................... 142 8.2.4 DTC Destination Address Register (DAR)........................................................... 142 8.2.5 DTC Transfer Count Register A (CRA) ............................................................... 142 8.2.6 DTC Transfer Count Register B (CRB)................................................................ 142 8.2.7 DTC Enable Registers A to G, and I (DTCERA to DTCERG, and DTCERI) ..... 143 8.2.8 DTC Vector Registers A to G (DTVECRA to DTVECRG)................................. 144 Activation Sources ............................................................................................................. 145 Location of Register Information and DTC Vector Table ................................................. 146 Operation ........................................................................................................................... 149 8.5.1 Normal Mode........................................................................................................ 150 8.5.2 Repeat Mode ......................................................................................................... 151 8.5.3 Block Transfer Mode ............................................................................................ 152 8.5.4 Chain Transfer ...................................................................................................... 154 8.5.5 Interrupts............................................................................................................... 155 8.5.6 Operation Timing.................................................................................................. 155 8.5.7 Number of DTC Execution States ........................................................................ 156 Procedures for Using DTC................................................................................................. 158 8.6.1 Activation by Interrupt.......................................................................................... 158 8.6.2 Activation by Software ......................................................................................... 158 Examples of Use of the DTC ............................................................................................. 159 8.7.1 Normal Mode........................................................................................................ 159 8.7.2 Chain Transfer ...................................................................................................... 160 8.7.3 Software Activation .............................................................................................. 161 Usage Notes ....................................................................................................................... 162 8.8.1 Module Stop Mode Setting ................................................................................... 162 8.8.2 On-Chip RAM ...................................................................................................... 162 8.8.3 DTCE Bit Setting.................................................................................................. 162 Section 9 I/O Ports .............................................................................................163 9.1 9.2 Port 1.................................................................................................................................. 168 9.1.1 Port 1 Data Direction Register (P1DDR).............................................................. 168 9.1.2 Port 1 Data Register (P1DR)................................................................................. 169 9.1.3 Port 1 Register (PORT1)....................................................................................... 169 9.1.4 Pin Functions ........................................................................................................ 170 Port 2.................................................................................................................................. 178 9.2.1 Port 2 Data Direction Register (P2DDR).............................................................. 178 9.2.2 Port 2 Data Register (P2DR)................................................................................. 179 9.2.3 Port 2 Register (PORT2)....................................................................................... 179 9.2.4 Pin Functions ........................................................................................................ 180 Rev. 2.00 Dec. 05, 2005 Page xiii of xxxviii 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Port 3.................................................................................................................................. 188 9.3.1 Port 3 Data Direction Register (P3DDR).............................................................. 188 9.3.2 Port 3 Data Register (P3DR) ................................................................................ 189 9.3.3 Port 3 Register (PORT3)....................................................................................... 189 9.3.4 Port 3 Open-Drain Control Register (P3ODR) ..................................................... 190 9.3.5 Pin Functions ........................................................................................................ 190 Port 4.................................................................................................................................. 193 9.4.1 Port 4 Register (PORT4)....................................................................................... 193 9.4.2 Pin Functions ........................................................................................................ 193 Port 5.................................................................................................................................. 194 9.5.1 Port 5 Data Direction Register (P5DDR).............................................................. 194 9.5.2 Port 5 Data Register (P5DR) ................................................................................ 194 9.5.3 Port 5 Register (PORT5)....................................................................................... 195 9.5.4 Pin Functions ........................................................................................................ 195 Port 9.................................................................................................................................. 196 9.6.1 Port 9 Register (PORT9)....................................................................................... 196 9.6.2 Pin Functions ........................................................................................................ 196 Port A................................................................................................................................. 197 9.7.1 Port A Data Direction Register (PADDR)............................................................ 197 9.7.2 Port A Data Register (PADR)............................................................................... 198 9.7.3 Port A Register (PORTA)..................................................................................... 198 9.7.4 Port A Pull-Up MOS Control Register (PAPCR) ................................................. 199 9.7.5 Port A Open-Drain Control Register (PAODR) ................................................... 199 9.7.6 Pin Functions ........................................................................................................ 200 9.7.7 MOS Input Pull-Up Function ............................................................................... 201 Port B ................................................................................................................................. 202 9.8.1 Port B Data Direction Register (PBDDR) ............................................................ 202 9.8.2 Port B Data Register (PBDR) ............................................................................... 203 9.8.3 Port B Register (PORTB) ..................................................................................... 203 9.8.4 Port B Pull-Up MOS Control Register (PBPCR) ................................................. 204 9.8.5 Port B Open-Drain Control Register (PBODR).................................................... 204 9.8.6 Pin Functions ........................................................................................................ 205 9.8.7 MOS Input Pull-Up Function ............................................................................... 205 Port C ................................................................................................................................. 206 9.9.1 Port C Data Direction Register (PCDDR) ............................................................ 206 9.9.2 Port C Data Register (PCDR) ............................................................................... 207 9.9.3 Port C Register (PORTC) ..................................................................................... 207 9.9.4 Port C Pull-Up MOS Control Register (PCPCR) ................................................. 208 9.9.5 Port C Open-Drain Control Register (PCODR).................................................... 208 9.9.6 Pin Functions ........................................................................................................ 209 Rev. 2.00 Dec. 05, 2005 Page xiv of xxxviii 9.10 9.11 9.12 9.13 9.14 9.15 9.9.7 MOS Input Pull-Up Function................................................................................ 209 Port D................................................................................................................................. 210 9.10.1 Port D Data Direction Register (PDDDR) ............................................................ 210 9.10.2 Port D Data Register (PDDR)............................................................................... 211 9.10.3 Port D Register (PORTD)..................................................................................... 211 9.10.4 Port D Pull-Up MOS Control Register (PDPCR) ................................................. 212 9.10.5 Pin Functions ........................................................................................................ 212 9.10.6 MOS Input Pull-Up Function................................................................................ 213 Port E ................................................................................................................................. 214 9.11.1 Port E Data Direction Register (PEDDR)............................................................. 214 9.11.2 Port E Data Register (PEDR)................................................................................ 215 9.11.3 Port E Register (PORTE)...................................................................................... 215 9.11.4 Port E Pull-Up MOS Control Register (PEPCR) .................................................. 216 9.11.5 Pin Functions ........................................................................................................ 216 9.11.6 MOS Input Pull-Up Function................................................................................ 217 Port F ................................................................................................................................. 218 9.12.1 Port F Data Direction Register (PFDDR) ............................................................. 218 9.12.2 Port F Data Register (PFDR) ................................................................................ 219 9.12.3 Port F Register (PORTF) ...................................................................................... 219 9.12.4 Pin Functions ........................................................................................................ 220 Port H................................................................................................................................. 223 9.13.1 Port H Data Direction Register (PHDDR) ............................................................ 223 9.13.2 Port H Data Register (PHDR)............................................................................... 224 9.13.3 Port H Register (PORTH)..................................................................................... 224 9.13.4 Pin Functions ........................................................................................................ 225 Port J .................................................................................................................................. 225 9.14.1 Port J Data Direction Register (PJDDR)............................................................... 225 9.14.2 Port J Data Register (PJDR) ................................................................................. 226 9.14.3 Port J Register (PORTJ)........................................................................................ 226 9.14.4 Pin Functions ........................................................................................................ 227 Port K................................................................................................................................. 227 9.15.1 Port K Data Direction Register (PKDDR) ............................................................ 227 9.15.2 Port K Data Register (PKDR)............................................................................... 228 9.15.3 Port K Register (PORTK)..................................................................................... 228 9.15.4 Pin Functions ........................................................................................................ 228 Section 10 16-Bit Timer Pulse Unit (TPU) .......................................................229 10.1 Features.............................................................................................................................. 229 10.2 Input/Output Pins ............................................................................................................... 234 10.3 Register Descriptions ......................................................................................................... 235 Rev. 2.00 Dec. 05, 2005 Page xv of xxxviii 10.4 10.5 10.6 10.7 10.8 10.9 10.3.1 Timer Control Register (TCR).............................................................................. 237 10.3.2 Timer Mode Register (TMDR)............................................................................. 242 10.3.3 Timer I/O Control Register (TIOR)...................................................................... 244 10.3.4 Timer Interrupt Enable Register (TIER)............................................................... 261 10.3.5 Timer Status Register (TSR)................................................................................. 263 10.3.6 Timer Counter (TCNT)......................................................................................... 266 10.3.7 Timer General Register (TGR) ............................................................................. 266 10.3.8 Timer Start Register (TSTR) ................................................................................ 266 10.3.9 Timer Synchro Register (TSYR) .......................................................................... 267 Operation ........................................................................................................................... 268 10.4.1 Basic Functions..................................................................................................... 268 10.4.2 Synchronous Operation......................................................................................... 274 10.4.3 Buffer Operation................................................................................................... 276 10.4.4 Cascaded Operation .............................................................................................. 280 10.4.5 PWM Modes......................................................................................................... 282 10.4.6 Phase Counting Mode........................................................................................... 287 Interrupt Sources................................................................................................................ 293 DTC Activation.................................................................................................................. 295 A/D Converter Activation.................................................................................................. 295 Operation Timing............................................................................................................... 296 10.8.1 Input/Output Timing............................................................................................. 296 10.8.2 Interrupt Signal Timing ........................................................................................ 300 Usage Notes ....................................................................................................................... 304 10.9.1 Module Stop Mode Setting ................................................................................... 304 10.9.2 Input Clock Restrictions ....................................................................................... 304 10.9.3 Caution on Period Setting ..................................................................................... 305 10.9.4 Conflict between TCNT Write and Clear Operations .......................................... 305 10.9.5 Conflict between TCNT Write and Increment Operations ................................... 306 10.9.6 Conflict between TGR Write and Compare Match............................................... 307 10.9.7 Conflict between Buffer Register Write and Compare Match.............................. 308 10.9.8 Conflict between TGR Read and Input Capture ................................................... 309 10.9.9 Conflict between TGR Write and Input Capture .................................................. 310 10.9.10 Conflict between Buffer Register Write and Input Capture.................................. 311 10.9.11 Conflict between Overflow/Underflow and Counter Clearing ............................. 312 10.9.12 Conflict between TCNT Write and Overflow/Underflow .................................... 313 10.9.13 Multiplexing of I/O Pins ....................................................................................... 313 10.9.14 Interrupts in Module Stop Mode........................................................................... 313 Rev. 2.00 Dec. 05, 2005 Page xvi of xxxviii Section 11 Programmable Pulse Generator (PPG) ............................................315 11.1 Features.............................................................................................................................. 315 11.2 Input/Output Pins ............................................................................................................... 317 11.3 Register Descriptions ......................................................................................................... 317 11.3.1 Next Data Enable Registers H, L (NDERH, NDERL) ......................................... 318 11.3.2 Output Data Registers H, L (PODRH, PODRL)................................................... 319 11.3.3 Next Data Registers H, L (NDRH, NDRL) .......................................................... 320 11.3.4 PPG Output Control Register (PCR) .................................................................... 323 11.3.5 PPG Output Mode Register (PMR) ...................................................................... 324 11.4 Operation ........................................................................................................................... 325 11.4.1 Overview............................................................................................................... 325 11.4.2 Output Timing....................................................................................................... 326 11.4.3 Sample Setup Procedure for Normal Pulse Output............................................... 327 11.4.4 Example of Normal Pulse Output (Example of Five-Phase Pulse Output)........... 328 11.4.5 Non-Overlapping Pulse Output............................................................................. 329 11.4.6 Sample Setup Procedure for Non-Overlapping Pulse Output ............................... 331 11.4.7 Example of Non-Overlapping Pulse Output (Example of Four-Phase Complementary Non-Overlapping Output)................... 332 11.4.8 Inverted Pulse Output ........................................................................................... 334 11.4.9 Pulse Output Triggered by Input Capture ............................................................. 335 11.5 Usage Notes ....................................................................................................................... 336 11.5.1 Module Stop Mode Setting ................................................................................... 336 11.5.2 Operation of Pulse Output Pins............................................................................. 336 Section 12 Watchdog Timer (WDT)..................................................................337 12.1 Features.............................................................................................................................. 337 12.2 Register Descriptions ......................................................................................................... 339 12.2.1 Timer Counter (TCNT)......................................................................................... 339 12.2.2 Timer Control/Status Register (TCSR)................................................................. 339 12.2.3 Reset Control/Status Register (RSTCSR)............................................................. 343 12.3 Operation ........................................................................................................................... 344 12.3.1 Watchdog Timer Mode ......................................................................................... 344 12.3.2 Interval Timer Mode............................................................................................. 346 12.4 Interrupt Sources................................................................................................................ 346 12.5 Usage Notes ....................................................................................................................... 347 12.5.1 Notes on Register Access...................................................................................... 347 12.5.2 Contention between Timer Counter (TCNT) Write and Increment ...................... 348 12.5.3 Changing Value of CKS2 to CKS0....................................................................... 348 12.5.4 Switching between Watchdog Timer Mode and Interval Timer Mode................. 348 Rev. 2.00 Dec. 05, 2005 Page xvii of xxxviii 12.5.5 Internal Reset in Watchdog Timer Mode.............................................................. 349 12.5.6 OVF Flag Clearing in Interval Timer Mode ......................................................... 349 Section 13 Serial Communication Interface (SCI)............................................ 351 13.1 Features.............................................................................................................................. 351 13.2 Input/Output Pins............................................................................................................... 353 13.3 Register Descriptions......................................................................................................... 354 13.3.1 Receive Shift Register (RSR) ............................................................................... 354 13.3.2 Receive Data Register (RDR)............................................................................... 354 13.3.3 Transmit Data Register (TDR).............................................................................. 355 13.3.4 Transmit Shift Register (TSR) .............................................................................. 355 13.3.5 Serial Mode Register (SMR) ................................................................................ 355 13.3.6 Serial Control Register (SCR) .............................................................................. 358 13.3.7 Serial Status Register (SSR) ................................................................................. 361 13.3.8 Smart Card Mode Register (SCMR)..................................................................... 365 13.3.9 Bit Rate Register (BRR) ....................................................................................... 366 13.4 Operation in Asynchronous Mode ..................................................................................... 373 13.4.1 Data Transfer Format............................................................................................ 373 13.4.2 Receive Data Sampling Timing and Reception Margin in Asynchronous Mode......................................................................................... 375 13.4.3 Clock..................................................................................................................... 376 13.4.4 SCI Initialization (Asynchronous Mode).............................................................. 377 13.4.5 Data Transmission (Asynchronous Mode) ........................................................... 378 13.4.6 Serial Data Reception (Asynchronous Mode) ...................................................... 380 13.5 Multiprocessor Communication Function.......................................................................... 384 13.5.1 Multiprocessor Serial Data Transmission ............................................................. 386 13.5.2 Multiprocessor Serial Data Reception .................................................................. 388 13.6 Operation in Clocked Synchronous Mode ......................................................................... 391 13.6.1 Clock..................................................................................................................... 391 13.6.2 SCI Initialization (Clocked Synchronous Mode).................................................. 392 13.6.3 Serial Data Transmission (Clocked Synchronous Mode) ..................................... 393 13.6.4 Serial Data Reception (Clocked Synchronous Mode) .......................................... 396 13.6.5 Simultaneous Serial Data Transmission and Reception (Clocked Synchronous Mode) .............................................................................. 398 13.7 Operation in Smart Card Interface ..................................................................................... 400 13.7.1 Pin Connection Example ...................................................................................... 400 13.7.2 Data Format (Except for Block Transfer Mode)................................................... 401 13.7.3 Block Transfer Mode ............................................................................................ 402 13.7.4 Receive Data Sampling Timing and Reception Margin in Smart Card Interface Mode .............................................................................. 403 Rev. 2.00 Dec. 05, 2005 Page xviii of xxxviii 13.7.5 Initialization .......................................................................................................... 404 13.7.6 Data Transmission (Except for Block Transfer Mode)......................................... 405 13.7.7 Serial Data Reception (Except for Block Transfer Mode) .................................... 408 13.7.8 Clock Output Control............................................................................................ 410 13.8 Interrupt Sources................................................................................................................ 412 13.8.1 Interrupts in Normal Serial Communication Interface Mode ............................... 412 13.8.2 Interrupts in Smart Card Interface Mode .............................................................. 413 13.9 Usage Notes ....................................................................................................................... 414 13.9.1 Module Stop Mode Setting ................................................................................... 414 13.9.2 Break Detection and Processing ........................................................................... 414 13.9.3 Mark State and Break Detection ........................................................................... 414 13.9.4 Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only) ..................................................................... 414 13.9.5 Restrictions on Using DTC................................................................................... 415 13.9.6 SCI Operations during Mode Transitions ............................................................. 415 13.9.7 Notes when Switching from SCK Pin to Port Pin................................................. 419 Section 14 Controller Area Network (HCAN) ..................................................421 14.1 Features.............................................................................................................................. 421 14.2 Input/Output Pins ............................................................................................................... 423 14.3 Register Descriptions ......................................................................................................... 424 14.3.1 Master Control Register (MCR) ........................................................................... 425 14.3.2 General Status Register (GSR) ............................................................................. 426 14.3.3 Bit Configuration Register (BCR) ........................................................................ 427 14.3.4 Mailbox Configuration Register (MBCR) ............................................................ 430 14.3.5 Transmit Wait Register (TXPR) ........................................................................... 431 14.3.6 Transmit Wait Cancel Register (TXCR)............................................................... 432 14.3.7 Transmit Acknowledge Register (TXACK) ......................................................... 433 14.3.8 Abort Acknowledge Register (ABACK) .............................................................. 434 14.3.9 Receive Complete Register (RXPR)..................................................................... 435 14.3.10 Remote Request Register (RFPR)......................................................................... 436 14.3.11 Interrupt Register (IRR)........................................................................................ 437 14.3.12 Mailbox Interrupt Mask Register (MBIMR)......................................................... 441 14.3.13 Interrupt Mask Register (IMR) ............................................................................. 442 14.3.14 Receive Error Counter (REC)............................................................................... 443 14.3.15 Transmit Error Counter (TEC).............................................................................. 443 14.3.16 Unread Message Status Register (UMSR)............................................................ 444 14.3.17 Local Acceptance Filter Masks (LAFML, LAFMH)............................................ 444 14.3.18 Message Control (MC0 to MC15) ........................................................................ 447 14.3.19 Message Data (MD0 to MD15) ............................................................................ 449 Rev. 2.00 Dec. 05, 2005 Page xix of xxxviii 14.4 14.5 14.6 14.7 14.8 14.3.20 HCAN Monitor Register (HCANMON)............................................................... 450 Operation ........................................................................................................................... 451 14.4.1 Hardware and Software Resets ............................................................................. 451 14.4.2 Initialization after Hardware Reset ....................................................................... 451 14.4.3 Message Transmission.......................................................................................... 457 14.4.4 Message Reception ............................................................................................... 461 14.4.5 HCAN Sleep Mode............................................................................................... 464 14.4.6 HCAN Halt Mode................................................................................................. 467 Interrupt Sources................................................................................................................ 468 DTC Interface .................................................................................................................... 469 CAN Bus Interface............................................................................................................. 470 Usage Notes ....................................................................................................................... 471 14.8.1 Module Stop Mode Setting ................................................................................... 471 14.8.2 Reset ..................................................................................................................... 471 14.8.3 HCAN Sleep Mode............................................................................................... 471 14.8.4 Interrupts............................................................................................................... 471 14.8.5 Error Counters ...................................................................................................... 472 14.8.6 Register Access..................................................................................................... 472 14.8.7 HCAN Medium-Speed Mode ............................................................................... 472 14.8.8 Register Hold in Standby Modes .......................................................................... 472 14.8.9 Use on Bit Manipulation Instructions ................................................................... 472 14.8.10 HCAN TXCR Operation ...................................................................................... 473 14.8.11 HCAN Transmit Procedure .................................................................................. 474 14.8.12 Note on Releasing the HCAN Reset or HCAN Sleep........................................... 474 14.8.13 Note on Accessing Mailbox during the HCAN Sleep .......................................... 474 Section 15 A/D Converter ................................................................................. 475 15.1 Features.............................................................................................................................. 475 15.2 Input/Output Pins............................................................................................................... 477 15.3 Register Description .......................................................................................................... 478 15.3.1 A/D Data Registers A to D (ADDRA to ADDRD) .............................................. 478 15.3.2 A/D Control/Status Register (ADCSR) ................................................................ 479 15.3.3 A/D Control Register (ADCR) ............................................................................. 481 15.4 Operation ........................................................................................................................... 482 15.4.1 Single Mode.......................................................................................................... 482 15.4.2 Scan Mode ............................................................................................................ 482 15.4.3 Input Sampling and A/D Conversion Time .......................................................... 483 15.4.4 External Trigger Input Timing.............................................................................. 485 15.5 Interrupt Source ................................................................................................................. 485 15.6 A/D Conversion Accuracy Definitions .............................................................................. 486 Rev. 2.00 Dec. 05, 2005 Page xx of xxxviii 15.7 Usage Notes ....................................................................................................................... 488 15.7.1 Module Stop Mode Setting ................................................................................... 488 15.7.2 Permissible Signal Source Impedance .................................................................. 488 15.7.3 Influences on Absolute Accuracy ......................................................................... 488 15.7.4 Range of Analog Power Supply and Other Pin Settings....................................... 489 15.7.5 Notes on Board Design ......................................................................................... 489 15.7.6 Notes on Noise Countermeasures ......................................................................... 490 Section 16 Motor Control PWM Timer (PWM)................................................493 16.1 Features.............................................................................................................................. 493 16.2 Input/Output Pins ............................................................................................................... 495 16.3 Register Descriptions ......................................................................................................... 496 16.3.1 PWM Control Register (PWCR) .......................................................................... 497 16.3.2 PWM Output Control Register (PWOCR)............................................................ 498 16.3.3 PWM Polarity Register (PWPR)........................................................................... 499 16.3.4 PWM Counter (PWCNT) ..................................................................................... 499 16.3.5 PWM Cycle Register (PWCYR)........................................................................... 499 16.3.6 PWM Duty Registers A, C, E, G (PWDTRA, PWDTRC, PWDTRE, PWDTRG) ................................................... 500 16.3.7 PWM Buffer Registers A, C, E, G (PWBFRA, PWBFRC, PWBFRE, PWBFRG) ..................................................... 503 16.3.8 PWM Buffer Transfer Control Register (PWBTCR)............................................ 504 16.4 Bus Master Interface .......................................................................................................... 505 16.4.1 16-Bit Data Registers............................................................................................ 505 16.4.2 8-Bit Data Registers.............................................................................................. 505 16.5 Operation ........................................................................................................................... 506 16.5.1 PWM Operation.................................................................................................... 506 16.5.2 Buffer Transfer Control ........................................................................................ 507 16.6 Usage Note......................................................................................................................... 508 Section 17 LCD Controller/Driver ....................................................................509 17.1 Features.............................................................................................................................. 509 17.2 Input/Output Pins ............................................................................................................... 511 17.3 Register Descriptions ......................................................................................................... 512 17.3.1 LCD Port Control Register (LPCR)...................................................................... 512 17.3.2 LCD Control Register (LCR)................................................................................ 515 17.3.3 LCD Control Register 2 (LCR2)........................................................................... 517 17.4 Operation ........................................................................................................................... 518 17.4.1 Settings up to LCD Display .................................................................................. 518 17.4.2 Relationship between LCD RAM and Display..................................................... 520 Rev. 2.00 Dec. 05, 2005 Page xxi of xxxviii 17.4.3 Operation in Power-Down Modes ........................................................................ 525 17.4.4 Boosting the LCD Drive Power Supply................................................................ 526 Section 18 RAM ................................................................................................ 527 Section 19 ROM ................................................................................................ 529 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 19.11 19.12 19.13 Features.............................................................................................................................. 529 Mode Transitions ............................................................................................................... 530 Block Configuration .......................................................................................................... 534 Input/Output Pins............................................................................................................... 536 Register Descriptions......................................................................................................... 536 19.5.1 Flash Memory Control Register 1 (FLMCR1) ..................................................... 537 19.5.2 Flash Memory Control Register 2 (FLMCR2) ..................................................... 538 19.5.3 Erase Block Register 1 (EBR1) ............................................................................ 539 19.5.4 Erase Block Register 2 (EBR2) ............................................................................ 540 19.5.5 RAM Emulation Register (RAMER).................................................................... 540 19.5.6 Flash Memory Power Control Register (FLPWCR)............................................. 541 On-Board Programming Modes......................................................................................... 542 19.6.1 Boot Mode ............................................................................................................ 542 19.6.2 Programming/Erasing in User Program Mode...................................................... 545 Flash Memory Emulation in RAM .................................................................................... 546 Flash Memory Programming/Erasing................................................................................ 549 19.8.1 Program/Program-Verify ...................................................................................... 549 19.8.2 Erase/Erase-Verify................................................................................................ 551 19.8.3 Interrupt Handling when Programming/Erasing Flash Memory........................... 551 Program/Erase Protection .................................................................................................. 553 19.9.1 Hardware Protection ............................................................................................. 553 19.9.2 Software Protection .............................................................................................. 553 19.9.3 Error Protection .................................................................................................... 553 Interrupt Handling when Programming/Erasing Flash Memory........................................ 554 Programmer Mode ............................................................................................................. 554 Power-Down States for Flash Memory.............................................................................. 555 Usage Notes ....................................................................................................................... 556 Section 20 Clock Pulse Generator..................................................................... 559 20.1 Register Descriptions......................................................................................................... 560 20.1.1 System Clock Control Register (SCKCR) ............................................................ 560 20.2 Oscillator............................................................................................................................ 562 20.2.1 Connecting a Crystal Resonator............................................................................ 562 20.2.2 External Clock Input............................................................................................. 563 Rev. 2.00 Dec. 05, 2005 Page xxii of xxxviii 20.3 20.4 20.5 20.6 PLL Circuit ........................................................................................................................ 565 Medium-Speed Clock Divider ........................................................................................... 565 Bus Master Clock Selection Circuit................................................................................... 565 Subclock Oscillator............................................................................................................ 566 20.6.1 Connecting 32.768-kHz Crystal Resonator........................................................... 566 20.6.2 Handling Pins when Subclock is not Used ........................................................... 567 20.7 Subclock Waveform Generation Circuit............................................................................ 567 20.8 Usage Notes ....................................................................................................................... 567 20.8.1 Note on Crystal Resonator .................................................................................... 567 20.8.2 Note on Board Design........................................................................................... 568 Section 21 Power-Down Modes ........................................................................569 21.1 Register Descriptions ......................................................................................................... 573 21.1.1 Standby Control Register (SBYCR) ..................................................................... 573 21.1.2 Low-Power Control Register (LPWRCR) ............................................................ 576 21.1.3 Module Stop Control Registers A to D (MSTPCRA to MSTPCRD) ................... 578 21.2 Medium-Speed Mode......................................................................................................... 580 21.3 Sleep Mode ........................................................................................................................ 581 21.4 Software Standby Mode..................................................................................................... 582 21.5 Hardware Standby Mode ................................................................................................... 584 21.6 Watch Mode....................................................................................................................... 585 21.7 Subsleep Mode................................................................................................................... 586 21.8 Subactive Mode ................................................................................................................. 586 21.9 Module Stop Mode ............................................................................................................ 587 21.10 Direct Transitions............................................................................................................... 588 21.10.1 Overview of Direct Transitions ............................................................................ 588 21.11 φ Clock Output Disabling Function ................................................................................... 588 21.12 Usage Notes ....................................................................................................................... 589 21.12.1 I/O Port Status....................................................................................................... 589 21.12.2 Current Consumption during Oscillation Stabilization Wait Period..................... 589 21.12.3 DTC Module Stop Setting .................................................................................... 589 21.12.4 On-Chip Peripheral Module Interrupts ................................................................. 589 21.12.5 Writing to MSTPCR ............................................................................................. 589 Section 22 List of Registers ...............................................................................591 22.1 Register Addresses (Address Order).................................................................................. 592 22.2 Register Bits....................................................................................................................... 620 22.3 Register States in Each Operating Mode ........................................................................... 648 Rev. 2.00 Dec. 05, 2005 Page xxiii of xxxviii Section 23 Electrical Characteristics [Preliminary] .......................................... 675 23.1 Absolute Maximum Ratings .............................................................................................. 675 23.2 DC Characteristics ............................................................................................................. 676 23.3 AC Characteristics ............................................................................................................. 681 23.3.1 Clock Timing ........................................................................................................ 682 23.3.2 Control Signal Timing .......................................................................................... 683 23.3.3 Bus Timing ........................................................................................................... 685 23.3.4 Timing of On-Chip Peripheral Modules ............................................................... 691 23.4 A/D Conversion Characteristics ........................................................................................ 696 23.5 LCD Characteristics........................................................................................................... 697 23.6 Flash Memory Characteristics ........................................................................................... 698 Appendix A. B. C. ......................................................................................................... 701 I/O Port States in Each Operating State ............................................................................. 701 Product Code Lineup ......................................................................................................... 706 Package Dimensions .......................................................................................................... 707 Main Revisions and Additions in this Edition..................................................... 709 Index ......................................................................................................... 719 Rev. 2.00 Dec. 05, 2005 Page xxiv of xxxviii Figures Section 1 Overview Figure 1.1 Internal Block Diagram ................................................................................................. 2 Figure 1.2 Pin Assignments (FP-144G).......................................................................................... 3 Section 2 CPU Figure 2.1 Exception Vector Table (Normal Mode)..................................................................... 19 Figure 2.2 Stack Structure in Normal Mode ................................................................................. 19 Figure 2.3 Exception Vector Table (Advanced Mode)................................................................. 20 Figure 2.4 Stack Structure in Advanced Mode ............................................................................. 21 Figure 2.5 Memory Map............................................................................................................... 22 Figure 2.6 CPU Registers ............................................................................................................. 23 Figure 2.7 Usage of General Registers ......................................................................................... 24 Figure 2.8 Stack............................................................................................................................ 25 Figure 2.9 General Register Data Formats (1).............................................................................. 28 Figure 2.9 General Register Data Formats (2).............................................................................. 29 Figure 2.10 Memory Data Formats............................................................................................... 30 Figure 2.11 Instruction Formats (Examples) ................................................................................ 42 Figure 2.12 Branch Address Specification in Memory Indirect Mode ......................................... 46 Figure 2.13 State Transitions ........................................................................................................ 50 Section 3 MCU Operating Modes Figure 3.1 Address Map ............................................................................................................... 58 Section 4 Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Exception Handling Reset Sequence (Advanced Mode with On-chip ROM Enabled)................................ 62 Reset Sequence (Advanced Mode with On-chip ROM Disabled)............................... 63 Stack Status after Exception Handling ........................................................................ 67 Operation when SP Value Is Odd................................................................................ 68 Section 5 Figure 5.1 Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5 Figure 5.6 Interrupt Controller Block Diagram of Interrupt Controller........................................................................ 70 Block Diagram of Interrupts IRQ0 to IRQ5 ................................................................ 78 Flowchart of Procedure up to Interrupt Acceptance in Interrupt Control Mode 0...... 84 Flowchart of Procedure Up to Interrupt Acceptance in Control Mode 2..................... 86 Interrupt Exception Handling ...................................................................................... 88 Conflict between Interrupt Generation and Disabling................................................. 91 Section 6 PC Break Controller (PBC) Figure 6.1 Block Diagram of PC Break Controller ...................................................................... 94 Figure 6.2 Operation in Power-Down Mode Transitions.............................................................. 98 Rev. 2.00 Dec. 05, 2005 Page xxv of xxxviii Section 7 Bus Controller (BSC) Figure 7.1 Block Diagram of Bus Controller.............................................................................. 104 Figure 7.2 Area Divisions........................................................................................................... 112 Figure 7.3 Access Sizes and Data Alignment Control (8-Bit Access Space) ............................. 115 Figure 7.4 Access Sizes and Data Alignment Control (16-bit Access Space) ............................ 116 Figure 7.5 Bus Timing for 8-Bit, 2-State Access Space ............................................................. 118 Figure 7.6 Bus Timing for 8-Bit, 3-State Access Space ............................................................. 119 Figure 7.7 Bus Timing for 16-Bit, 2-State Access Space (Even Address Byte Access)............. 120 Figure 7.8 Bus Timing for 16-Bit, 2-State Access Space (Odd Address Byte Access).............. 121 Figure 7.9 Bus Timing for 16-Bit, 2-State Access Space (Word Access) .................................. 122 Figure 7.10 Bus Timing for 16-Bit, 3-State Access Space (Even Address Byte Access)........... 123 Figure 7.11 Bus Timing for 16-Bit, 3-State Access Space (Odd Address Byte Access)............ 124 Figure 7.12 Bus Timing for 16-Bit, 3-State Access Space (Word Access) ................................ 125 Figure 7.13 Example of Wait State Insertion Timing................................................................. 126 Figure 7.14 Example of Burst ROM Access Timing (AST0 = 1 and BRSTS0 = 1) .................. 128 Figure 7.15 Example of Burst ROM Access Timing (AST0 = 0 and BRSTS1 = 0) .................. 129 Figure 7.16 Example of Idle Cycle Operation (Consecutive Reads in Different Areas) ............ 130 Figure 7.17 Example of Idle Cycle Operation (Write after Read) .............................................. 131 Figure 7.18 Relationship between Chip Select (CS) and Read (RD) ......................................... 132 Figure 7.19 Example of Timing when Write Data Buffer Function is Used .............................. 133 Section 8 Data Transfer Controller (DTC) Figure 8.1 Block Diagram of DTC ............................................................................................. 138 Figure 8.2 Block Diagram of DTC Activation Source Control .................................................. 145 Figure 8.3 Location of DTC Register Information in Address Space......................................... 146 Figure 8.4 Flowchart of DTC Operation .................................................................................... 149 Figure 8.5 Memory Mapping in Normal Mode .......................................................................... 150 Figure 8.6 Memory Mapping in Repeat Mode ........................................................................... 151 Figure 8.7 Memory Mapping in Block Transfer Mode .............................................................. 153 Figure 8.8 Chain Transfer Operation.......................................................................................... 154 Figure 8.9 DTC Operation Timing (Example in Normal Mode or Repeat Mode) ..................... 155 Figure 8.10 DTC Operation Timing (Example of Block Transfer Mode, with Block Size of 2) ...................................... 156 Figure 8.11 DTC Operation Timing (Example of Chain Transfer) ............................................ 156 Section 10 Figure 10.1 Figure 10.2 Figure 10.3 Figure 10.4 Figure 10.5 16-Bit Timer Pulse Unit (TPU) Block Diagram of TPU............................................................................................ 233 Example of Counter Operation Setting Procedure .................................................. 268 Free-Running Counter Operation ............................................................................ 269 Periodic Counter Operation..................................................................................... 270 Example of Setting Procedure for Waveform Output by Compare Match.............. 270 Rev. 2.00 Dec. 05, 2005 Page xxvi of xxxviii Figure 10.6 Example of 0 Output/1 Output Operation ............................................................... 271 Figure 10.7 Example of Toggle Output Operation ..................................................................... 271 Figure 10.8 Example of Input Capture Operation Setting Procedure ......................................... 272 Figure 10.9 Example of Input Capture Operation....................................................................... 273 Figure 10.10 Example of Synchronous Operation Setting Procedure ........................................ 274 Figure 10.11 Example of Synchronous Operation...................................................................... 275 Figure 10.12 Compare Match Buffer Operation......................................................................... 276 Figure 10.13 Input Capture Buffer Operation............................................................................. 277 Figure 10.14 Example of Buffer Operation Setting Procedure................................................... 277 Figure 10.15 Example of Buffer Operation (1)........................................................................... 278 Figure 10.16 Example of Buffer Operation (2)........................................................................... 279 Figure 10.17 Cascaded Operation Setting Procedure ................................................................. 280 Figure 10.18 Example of Cascaded Operation (1)...................................................................... 281 Figure 10.19 Example of Cascaded Operation (2)...................................................................... 281 Figure 10.20 Example of PWM Mode Setting Procedure .......................................................... 284 Figure 10.21 Example of PWM Mode Operation (1) ................................................................. 285 Figure 10.22 Example of PWM Mode Operation (2) ................................................................. 285 Figure 10.23 Example of PWM Mode Operation (3) ................................................................. 286 Figure 10.24 Example of Phase Counting Mode Setting Procedure........................................... 287 Figure 10.25 Example of Phase Counting Mode 1 Operation .................................................... 288 Figure 10.26 Example of Phase Counting Mode 2 Operation .................................................... 289 Figure 10.27 Example of Phase Counting Mode 3 Operation .................................................... 290 Figure 10.28 Example of Phase Counting Mode 4 Operation .................................................... 291 Figure 10.29 Phase Counting Mode Application Example......................................................... 293 Figure 10.30 Count Timing in Internal Clock Operation............................................................ 296 Figure 10.31 Count Timing in External Clock Operation........................................................... 296 Figure 10.32 Output Compare Output Timing ........................................................................... 297 Figure 10.33 Input Capture Input Signal Timing........................................................................ 297 Figure 10.34 Counter Clear Timing (Compare Match) .............................................................. 298 Figure 10.35 Counter Clear Timing (Input Capture) .................................................................. 298 Figure 10.36 Buffer Operation Timing (Compare Match).......................................................... 299 Figure 10.37 Buffer Operation Timing (Input Capture) ............................................................. 299 Figure 10.38 TGI Interrupt Timing (Compare Match) ............................................................... 300 Figure 10.39 TGI Interrupt Timing (Input Capture) ................................................................... 301 Figure 10.40 TCIV Interrupt Setting Timing.............................................................................. 301 Figure 10.41 TCIU Interrupt Setting Timing.............................................................................. 302 Figure 10.42 Timing for Status Flag Clearing by CPU .............................................................. 303 Figure 10.43 Timing for Status Flag Clearing by DTC Activation ............................................ 303 Figure 10.44 Phase Difference, Overlap, and Pulse Width in Phase Counting Mode ................ 304 Figure 10.45 Conflict between TCNT Write and Clear Operations ........................................... 305 Rev. 2.00 Dec. 05, 2005 Page xxvii of xxxviii Figure 10.46 Figure 10.47 Figure 10.48 Figure 10.49 Figure 10.50 Figure 10.51 Figure 10.52 Figure 10.53 Conflict between TCNT Write and Increment Operations.................................... 306 Conflict between TGR Write and Compare Match ............................................... 307 Conflict between Buffer Register Write and Compare Match .............................. 308 Conflict between TGR Read and Input Capture.................................................... 309 Conflict between TGR Write and Input Capture................................................... 310 Conflict between Buffer Register Write and Input Capture .................................. 311 Conflict between Overflow and Counter Clearing ................................................ 312 Conflict between TCNT Write and Overflow ....................................................... 313 Section 11 Programmable Pulse Generator (PPG) Figure 11.1 Block Diagram of PPG............................................................................................ 316 Figure 11.2 PPG Output Operation ............................................................................................ 325 Figure 11.3 Timing of Transfer and Output of NDR Contents (Example) ................................. 326 Figure 11.4 Setup Procedure for Normal Pulse Output (Example) ............................................ 327 Figure 11.5 Normal Pulse Output Example (Five-Phase Pulse Output) ..................................... 328 Figure 11.6 Non-Overlapping Pulse Output ............................................................................... 329 Figure 11.7 Non-Overlapping Operation and NDR Write Timing ............................................. 330 Figure 11.8 Setup Procedure for Non-Overlapping Pulse Output (Example)............................. 331 Figure 11.9 Non-Overlapping Pulse Output Example (Four-Phase Complementary)................ 332 Figure 11.10 Inverted Pulse Output (Example) .......................................................................... 334 Figure 11.11 Pulse Output Triggered by Input Capture (Example)............................................ 335 Section 12 Figure 12.1 Figure 12.2 Figure 12.3 Figure 12.3 Figure 12.4 Figure 12.5 Watchdog Timer (WDT) Block Diagram of WDT_0 ...................................................................................... 338 Block Diagram of WDT_1 ...................................................................................... 338 (a) WDT_0 Operation in Watchdog Timer Mode ................................................... 345 (b) WDT_1 Operation in Watchdog Timer Mode................................................... 345 Writing to TCNT, TCSR, and RSTCSR (example for WDT0)............................... 347 Contention between TCNT Write and Increment.................................................... 348 Section 13 Serial Communication Interface (SCI) Figure 13.1 Block Diagram of SCI............................................................................................. 352 Figure 13.2 Data Format in Asynchronous Communication (Example with 8-Bit Data, Parity, Two Stop Bits).................................................. 373 Figure 13.3 Receive Data Sampling Timing in Asynchronous Mode ........................................ 375 Figure 13.4 Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)............................................................................................. 376 Figure 13.5 Sample SCI Initialization Flowchart ....................................................................... 377 Figure 13.6 Example of Operation in Transmission in Asynchronous Mode (Example with 8-Bit Data, Parity, One Stop Bit) .................................................... 378 Figure 13.7 Sample Serial Transmission Flowchart ................................................................... 379 Rev. 2.00 Dec. 05, 2005 Page xxviii of xxxviii Figure 13.8 Example of SCI Operation in Reception (Example with 8-Bit Data, Parity, One Stop Bit) .................................................... 380 Figure 13.9 Sample Serial Reception Data Flowchart (1) .......................................................... 382 Figure 13.9 Sample Serial Reception Data Flowchart (2) .......................................................... 383 Figure 13.10 Example of Communication Using Multiprocessor Format (Transmission of Data H'AA to Receiving Station A) .......................................... 385 Figure 13.11 Sample Multiprocessor Serial Transmission Flowchart ........................................ 387 Figure 13.12 Example of SCI Operation in Reception (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit).............................. 388 Figure 13.13 Sample Multiprocessor Serial Reception Flowchart (1)........................................ 389 Figure 13.13 Sample Multiprocessor Serial Reception Flowchart (2)........................................ 390 Figure 13.14 Data Format in Synchronous Communication (For LSB-First) ............................ 391 Figure 13.15 Sample SCI Initialization Flowchart ..................................................................... 392 Figure 13.16 Sample SCI Transmission Operation in Clocked Synchronous Mode .................. 394 Figure 13.17 Sample Serial Transmission Flowchart ................................................................. 395 Figure 13.18 Example of SCI Operation in Reception ............................................................... 396 Figure 13.19 Sample Serial Reception Flowchart ...................................................................... 397 Figure 13.20 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations ...... 399 Figure 13.21 Schematic Diagram of Smart Card Interface Pin Connections.............................. 400 Figure 13.22 Normal Smart Card Interface Data Format ........................................................... 401 Figure 13.23 Direct Convention (SDIR = SINV = O/E = 0) ...................................................... 401 Figure 13.24 Inverse Convention (SDIR = SINV = O/E = 1)..................................................... 402 Figure 13.25 Receive Data Sampling Timing in Smart Card Mode (Using Clock of 372 Times the Transfer Rate) ..................................................... 404 Figure 13.26 Retransfer Operation in SCI Transmit Mode......................................................... 406 Figure 13.27 TEND Flag Generation Timing in Transmission Operation.................................. 406 Figure 13.28 Example of Transmission Processing Flow........................................................... 407 Figure 13.29 Retransfer Operation in SCI Receive Mode .......................................................... 408 Figure 13.30 Example of Reception Processing Flow................................................................ 409 Figure 13.31 Timing for Fixing Clock Output Level.................................................................. 410 Figure 13.32 Clock Halt and Restart Procedure ......................................................................... 411 Figure 13.33 Sample Transmission using DTC in Clocked Synchronous Mode........................ 415 Figure 13.34 Sample Flowchart for Mode Transition during Transmission............................... 416 Figure 13.35 Pin States during Transmission in Asynchronous Mode (Internal Clock)............. 417 Figure 13.36 Pin States during Transmission in Clocked Synchronous Mode (Internal Clock) ..................................................................................................... 417 Figure 13.37 Sample Flowchart for Mode Transition during Reception .................................... 418 Figure 13.38 Operation when Switching from SCK Pin to Port Pin........................................... 419 Figure 13.39 Operation when Switching from SCK Pin to Port Pin (Example of Preventing Low-Level Output)......................................................... 420 Rev. 2.00 Dec. 05, 2005 Page xxix of xxxviii Section 14 Controller Area Network (HCAN) Figure 14.1 HCAN Block Diagram ............................................................................................ 422 Figure 14.2 Message Control Register Configuration ................................................................ 447 Figure 14.3 Standard Format ...................................................................................................... 447 Figure 14.4 Extended Format ..................................................................................................... 447 Figure 14.5 Message Data Configuration ................................................................................... 449 Figure 14.6 Hardware Reset Flowchart ...................................................................................... 452 Figure 14.7 Software Reset Flowchart ....................................................................................... 453 Figure 14.8 Detailed Description of One-Bit Time .................................................................... 454 Figure 14.9 Transmission Flowchart .......................................................................................... 457 Figure 14.10 Transmit Message Cancellation Flowchart ........................................................... 460 Figure 14.11 Reception Flowchart ............................................................................................. 461 Figure 14.12 Unread Message Overwrite Flowchart.................................................................. 464 Figure 14.13 HCAN Sleep Mode Flowchart .............................................................................. 465 Figure 14.14 HCAN Halt Mode Flowchart ................................................................................ 467 Figure 14.15 DTC Transfer Flowchart ....................................................................................... 469 Figure 14.16 High-Speed Interface Using PCA82C250............................................................. 470 Section 15 Figure 15.1 Figure 15.2 Figure 15.3 Figure 15.4 Figure 15.5 Figure 15.6 Figure 15.7 Figure 15.8 A/D Converter Block Diagram of A/D Converter ........................................................................... 476 A/D Conversion Timing.......................................................................................... 483 External Trigger Input Timing ................................................................................ 485 A/D Conversion Accuracy Definitions ................................................................... 487 A/D Conversion Accuracy Definitions ................................................................... 487 Example of Analog Input Circuit ............................................................................ 489 Example of Analog Input Protection Circuit........................................................... 490 Analog Input Pin Equivalent Circuit ....................................................................... 491 Section 16 Figure 16.1 Figure 16.2 Figure 16.3 Figure 16.4 Motor Control PWM Timer (PWM) Block Diagram of PWM.......................................................................................... 494 Cycle Register Compare Match............................................................................... 500 Duty Register Compare Match (OPS = 0 in PWPR)............................................... 501 Differences in PWM Output According to Duty Register Set Value (OPS = 0 in PWPR)................................................................................................. 502 16-Bit Register Access Operation (Bus Master ↔ PWCYR (16 Bits)) .................. 505 8-Bit Register Access Operation (Bus Master ↔ PWCR (Upper Eight Bits))........ 505 PWM Operation ...................................................................................................... 506 Disabling Buffer Transfer ....................................................................................... 507 Conflict between Buffer Register Write and Compare Match ................................ 508 Figure 16.5 Figure 16.6 Figure 16.7 Figure 16.8 Figure 16.9 Rev. 2.00 Dec. 05, 2005 Page xxx of xxxviii Section 17 Figure 17.1 Figure 17.2 Figure 17.3 Figure 17.4 Figure 17.5 Figure 17.6 Figure 17.7 Figure 17.8 Figure 17.9 LCD Controller/Driver Block Diagram of LCD Controller/Driver .............................................................. 510 Handling of LCD Drive Power Supply when Using 1/2 Duty ................................ 518 LCD RAM Map (1/4 Duty)..................................................................................... 520 LCD RAM Map (1/3 Duty)..................................................................................... 521 LCD RAM Map (1/2 Duty)..................................................................................... 521 LCD RAM Map (Static Mode)................................................................................ 522 Output Waveforms for Each Duty Cycle (A Waveform) ........................................ 523 Output Waveforms for Each Duty Cycle (B Waveform) ........................................ 524 Connection of External Split-Resistance ................................................................. 526 Section 19 ROM Figure 19.1 Block Diagram of Flash Memory............................................................................ 530 Figure 19.2 Flash Memory State Transitions.............................................................................. 531 Figure 19.3 Boot Mode............................................................................................................... 532 Figure 19.4 User Program Mode (Example)............................................................................... 533 Figure 19.5 Flash Memory Block Configuration........................................................................ 535 Figure 19.6 Programming/Erasing Flowchart Example in User Program Mode ........................ 545 Figure 19.7 Flowchart for Flash Memory Emulation in RAM ................................................... 546 Figure 19.8 Example of RAM Overlap Operation...................................................................... 548 Figure 19.9 Program/Program-Verify Flowchart........................................................................ 550 Figure 19.10 Erase/Erase-Verify Flowchart ............................................................................... 552 Section 20 Clock Pulse Generator Figure 20.1 Block Diagram of Clock Pulse Generator ............................................................... 559 Figure 20.2 Connection of Crystal Resonator (Example)........................................................... 562 Figure 20.3 Crystal Resonator Equivalent Circuit ...................................................................... 562 Figure 20.4 External Clock Input (Examples) ............................................................................ 563 Figure 20.5 External Clock Input Timing................................................................................... 564 Figure 20.6 Connection Example of 32.768-kHz Crystal Resonator.......................................... 566 Figure 20.7 Equivalent Circuit for 32.768-kHz Crystal Resonator............................................. 566 Figure 20.8 Pin Handling when Subclock is not Used ............................................................... 567 Figure 20.9 Note on Board Design of Oscillator Circuit ............................................................ 568 Figure 20.10 External Circuitry Recommended for PLL Circuit................................................ 568 Section 21 Figure 21.1 Figure 21.2 Figure 21.3 Figure 21.4 Power-Down Modes Mode Transition Diagram ....................................................................................... 571 Medium-Speed Mode Transition and Clearance Timing ........................................ 581 Software Standby Mode Application Example ....................................................... 583 Hardware Standby Mode Timing ............................................................................ 584 Rev. 2.00 Dec. 05, 2005 Page xxxi of xxxviii Section 23 Electrical Characteristics [Preliminary] Figure 23.1 Output Load Circuit ................................................................................................ 681 Figure 23.2 System Clock Timing.............................................................................................. 682 Figure 23.3 Oscillator Settling Timing ....................................................................................... 683 Figure 23.4 Reset Input Timing.................................................................................................. 684 Figure 23.5 Interrupt Input Timing............................................................................................. 684 Figure 23.6 Basic Bus Timing (Two-State Access).................................................................... 686 Figure 23.7 Basic Bus Timing (Three-State Access).................................................................. 687 Figure 23.8 Basic Bus Timing (Three-State Access with One Wait State) ................................ 688 Figure 23.9 Burst ROM Access Timing (Two-State Access)..................................................... 689 Figure 23.10 Burst ROM Access Timing (Two-State Access)................................................... 690 Figure 23.11 I/O Port Input/Output Timing................................................................................ 692 Figure 23.12 PPG Output Timing............................................................................................... 692 Figure 23.13 TPU Input/Output Timing ..................................................................................... 693 Figure 23.14 TPU Clock Input Timing....................................................................................... 693 Figure 23.15 Motor Control PWM Output Timing .................................................................... 693 Figure 23.16 SCK Clock Input Timing ...................................................................................... 694 Figure 23.17 SCI Input/Output Timing (Clock Synchronous Mode) ......................................... 694 Figure 23.18 A/D Converter External Trigger Input Timing...................................................... 694 Figure 23.19 HCAN Input/Output Timing ................................................................................. 695 Appendix Figure C.1 FP-144G Package Dimensions ................................................................................. 707 Rev. 2.00 Dec. 05, 2005 Page xxxii of xxxviii Tables Section 1 Overview Table 1.1 Pin Functions in Each Operating Mode .................................................................... 4 Table 1.2 Pin Functions .......................................................................................................... 10 Section 2 CPU Table 2.1 Instruction Classification ........................................................................................ 31 Table 2.2 Operation Notation ................................................................................................. 32 Table 2.3 Data Transfer Instructions....................................................................................... 33 Table 2.4 Arithmetic Operations Instructions (1) ................................................................... 34 Table 2.4 Arithmetic Operations Instructions (2) ................................................................... 35 Table 2.5 Logic Operations Instructions................................................................................. 36 Table 2.6 Shift Instructions..................................................................................................... 36 Table 2.7 Bit Manipulation Instructions (1)............................................................................ 37 Table 2.7 Bit Manipulation Instructions (2)............................................................................ 38 Table 2.8 Branch Instructions ................................................................................................. 39 Table 2.9 System Control Instructions.................................................................................... 40 Table 2.10 Block Data Transfer Instructions ............................................................................ 41 Table 2.11 Addressing Modes .................................................................................................. 43 Table 2.12 Absolute Address Access Ranges ........................................................................... 45 Table 2.13 Effective Address Calculation (1)........................................................................... 47 Table 2.13 Effective Address Calculation (2)........................................................................... 48 Section 3 MCU Operating Modes Table 3.1 MCU Operating Mode Selection ............................................................................ 53 Table 3.2 Pin Functions in Each Mode ................................................................................... 57 Section 4 Exception Handling Table 4.1 Exception Types and Priority.................................................................................. 59 Table 4.2 Exception Handling Vector Table........................................................................... 60 Table 4.3 Statuses of CCR and EXR after Trace Exception Handling ................................... 65 Table 4.4 Statuses of CCR and EXR after Trap Instruction Exception Handling................... 66 Section 5 Interrupt Controller Table 5.1 Pin Configuration.................................................................................................... 71 Table 5.2 Interrupt Sources, Vector Addresses, and Interrupt Priorities................................. 80 Table 5.3 Interrupt Control Modes ......................................................................................... 83 Table 5.4 Interrupt Response Times ....................................................................................... 89 Table 5.5 Number of States in Interrupt Handling Routine Execution Status ........................ 90 Rev. 2.00 Dec. 05, 2005 Page xxxiii of xxxviii Section 7 Bus Controller (BSC) Table 7.1 Pin Configuration.................................................................................................. 105 Table 7.2 Bus Specifications for Each Area (Basic Bus Interface) ...................................... 114 Table 7.3 Data Buses Used and Valid Strobes...................................................................... 117 Table 7.4 Pin States in Idle Cycle......................................................................................... 132 Section 8 Data Transfer Controller (DTC) Table 8.1 Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs .............. 147 Table 8.2 Register Information in Normal Mode.................................................................. 150 Table 8.3 Register Information in Repeat Mode................................................................... 151 Table 8.4 Register Information in Block Transfer Mode...................................................... 152 Table 8.5 DTC Execution Status .......................................................................................... 157 Table 8.6 Number of States Required for Each Execution Status ........................................ 157 Section 9 I/O Ports Table 9.1 Port Functions....................................................................................................... 164 Table 9.2 MOS Input Pull-Up States (Port A) ...................................................................... 201 Table 9.3 MOS Input Pull-Up States (Port B) ...................................................................... 205 Table 9.4 MOS Input Pull-Up States (Port C) ...................................................................... 209 Table 9.5 MOS Input Pull-Up States (Port D) ...................................................................... 213 Table 9.6 MOS Input Pull-Up States (Port E) ...................................................................... 217 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.1 TPU Functions ...................................................................................................... 230 Table 10.2 TPU Pins............................................................................................................... 234 Table 10.3 CCLR0 to CCLR2 (Channels 0 and 3) ................................................................. 238 Table 10.4 CCLR0 to CCLR2 (Channels 1, 2, 4, and 5) ........................................................ 238 Table 10.5 TPSC0 to TPSC2 (Channel 0) .............................................................................. 239 Table 10.6 TPSC0 to TPSC2 (Channel 1) .............................................................................. 239 Table 10.7 TPSC0 to TPSC2 (Channel 2) .............................................................................. 240 Table 10.8 TPSC0 to TPSC2 (Channel 3) .............................................................................. 240 Table 10.9 TPSC0 to TPSC2 (Channel 4) .............................................................................. 241 Table 10.10 TPSC0 to TPSC2 (Channel 5) .......................................................................... 241 Table 10.11 MD0 to MD3 .................................................................................................... 243 Table 10.12 TIORH_0 (Channel 0) ...................................................................................... 245 Table 10.13 TIORL_0 (Channel 0)....................................................................................... 246 Table 10.14 TIOR_1 (Channel 1) ......................................................................................... 247 Table 10.15 TIOR_2 (Channel 2) ......................................................................................... 248 Table 10.16 TIORH_3 (Channel 3) ...................................................................................... 249 Table 10.17 TIORL_3 (Channel 3)....................................................................................... 250 Table 10.18 TIOR_4 (Channel 4) ......................................................................................... 251 Rev. 2.00 Dec. 05, 2005 Page xxxiv of xxxviii Table 10.19 Table 10.20 Table 10.21 Table 10.22 Table 10.23 Table 10.24 Table 10.25 Table 10.26 Table 10.27 Table 10.28 Table 10.29 Table 10.30 Table 10.31 Table 10.32 Table 10.33 Table 10.34 Table 10.35 Table 10.36 TIOR_5 (Channel 5) ......................................................................................... 252 TIORH_0 (Channel 0) ...................................................................................... 253 TIORL_0 (Channel 0)....................................................................................... 254 TIOR_1 (Channel 1) ......................................................................................... 255 TIOR_2 (Channel 2) ......................................................................................... 256 TIORH_3 (Channel 3) ...................................................................................... 257 TIORL_3 (Channel 3)....................................................................................... 258 TIOR_4 (Channel 4) ......................................................................................... 259 TIOR_5 (Channel 5) ......................................................................................... 260 Register Combinations in Buffer Operation ..................................................... 276 Cascaded Combinations.................................................................................... 280 PWM Output Registers and Output Pins .......................................................... 283 Phase Counting Mode Clock Input Pins ........................................................... 287 Up/Down-Count Conditions in Phase Counting Mode 1.................................. 288 Up/Down-Count Conditions in Phase Counting Mode 2.................................. 289 Up/Down-Count Conditions in Phase Counting Mode 3.................................. 290 Up/Down-Count Conditions in Phase Counting Mode 4.................................. 291 TPU Interrupts .................................................................................................. 294 Section 11 Programmable Pulse Generator (PPG) Table 11.1 Pin Configuration.................................................................................................. 317 Section 12 Watchdog Timer (WDT) Table 12.1 WDT Interrupt Sources......................................................................................... 346 Section 13 Serial Communication Interface (SCI) Table 13.1 Pin Configuration.................................................................................................. 353 Table 13.2 The Relationships between The N Setting in BRR and Bit Rate B ...................... 366 Table 13.3 BRR Settings for Various Bit Rates (Asynchronous Mode) (1) ........................... 367 Table 13.3 BRR Settings for Various Bit Rates (Asynchronous Mode) (2) ........................... 368 Table 13.3 BRR Settings for Various Bit Rates (Asynchronous Mode) (3) ........................... 369 Table 13.4 Maximum Bit Rate for Each Frequency (Asynchronous Mode) .......................... 369 Table 13.5 Maximum Bit Rate with External Clock Input (Asynchronous Mode) ................ 370 Table 13.6 BRR Settings for Various Bit Rates (Clocked Synchronous Mode)..................... 371 Table 13.7 Maximum Bit Rate with External Clock Input (Clocked Synchronous Mode) .... 371 Table 13.8 Examples of Bit Rate for Various BRR Settings (Smart Card Interface Mode) (When n = 0 and S = 372)..................................................................................... 372 Table 13.9 Maximum Bit Rate at Various Frequencies (Smart Card Interface Mode) (when S = 372)...................................................................................................... 372 Table 13.10 Serial Transfer Formats (Asynchronous Mode)................................................ 374 Table 13.11 SSR Status Flags and Receive Data Handling .................................................. 381 Table 13.12 SCI Interrupt Sources........................................................................................ 412 Rev. 2.00 Dec. 05, 2005 Page xxxv of xxxviii Table 13.13 SCI Interrupt Sources........................................................................................ 413 Section 14 Controller Area Network (HCAN) Table 14.1 HCAN Pins ........................................................................................................... 423 Table 14.2 Limits for the Settable Value ................................................................................ 454 Table 14.3 Setting Range for TSEG1 and TSEG2 in BCR..................................................... 455 Table 14.4 HCAN Interrupt Sources (HCAN_0, HCAN_1) .................................................. 468 Table 14.5 Interval Limitation between TXPR and TXPR or between TXPR and TXCR..... 474 Section 15 A/D Converter Table 15.1 Pin Configuration.................................................................................................. 477 Table 15.2 Analog Input Channels and Corresponding ADDR Registers .............................. 478 Table 15.3 A/D Conversion Time (Single Mode)................................................................... 484 Table 15.4 A/D Conversion Time (Scan Mode) ..................................................................... 484 Table 15.5 A/D Converter Interrupt Source............................................................................ 485 Table 15.6 Analog Pin Specifications..................................................................................... 491 Section 16 Motor Control PWM Timer (PWM) Table 16.1 Pin Configuration.................................................................................................. 495 Table 16.2 Output Selection by OTS Bit ................................................................................ 501 Section 17 LCD Controller/Driver Table 17.1 Pin Configuration.................................................................................................. 511 Table 17.2 Duty Cycle and Common Function Selection....................................................... 513 Table 17.3 Segment Driver Selection ..................................................................................... 514 Table 17.4 Frame Frequency Selection .................................................................................. 516 Table 17.5 Output Levels (A Waveform) ............................................................................... 525 Table 17.6 Power-Down Modes and Display Operation ........................................................ 526 Section 19 ROM Table 19.1 Differences between Boot Mode and User Program Mode .................................. 531 Table 19.2 Pin Configuration.................................................................................................. 536 Table 19.3 Setting On-Board Programming Modes ............................................................... 542 Table 19.4 Boot Mode Operation ........................................................................................... 544 Table 19.5 System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate is Possible ............................................................................................................. 544 Table 19.6 Flash Memory Operating States............................................................................ 555 Table 19.7 Registers Present in F-ZTAT Version but Absent in Mask ROM Version........... 558 Section 20 Clock Pulse Generator Table 20.1 Damping Resistance Value................................................................................... 562 Table 20.2 Crystal Resonator Characteristics ......................................................................... 563 Table 20.3 External Clock Input Conditions .......................................................................... 564 Rev. 2.00 Dec. 05, 2005 Page xxxvi of xxxviii Section 21 Power-Down Modes Table 21.1 LSI Internal States in Each Mode ......................................................................... 570 Table 21.2 Power-Down Mode Transition Conditions ........................................................... 572 Table 21.3 Standby Time Settings .......................................................................................... 575 Table 21.4 φ Pin State in Each Processing State..................................................................... 588 Section 23 Electrical Characteristics [Preliminary] Table 23.1 Absolute Maximum Ratings ................................................................................. 675 Table 23.2 DC Characteristics ................................................................................................ 676 Table 23.3 Permissible Output Currents ................................................................................. 680 Table 23.4 Clock Timing ........................................................................................................ 682 Table 23.5 Control Signal Timing .......................................................................................... 683 Table 23.6 Bus Timing ........................................................................................................... 685 Table 23.7 Timing of On-Chip Peripheral Modules ............................................................... 691 Table 23.8 A/D Conversion Characteristics............................................................................ 696 Table 23.9 LCD Characteristics.............................................................................................. 697 Table 23.10 Flash Memory Characteristics .......................................................................... 698 Rev. 2.00 Dec. 05, 2005 Page xxxvii of xxxviii Rev. 2.00 Dec. 05, 2005 Page xxxviii of xxxviii Section 1 Overview Section 1 Overview 1.1 Features • High-speed H8S/2600 central processing unit with 16-bit architecture Upward-compatible with H8/300 and H8/300H CPUs on an object level Sixteen 16-bit general registers Sixty-nine basic instructions • Various peripheral functions PC break controller (PBC) Data transfer controller (DTC) 16-bit timer pulse unit (TPU) Programmable pulse generator (PPG) Controller area network (HCAN) Watchdog timer (WDT) Asynchronous or clocked synchronous serial communication interface (SCI) Motor control PWM timer LCD controller/driver 10-bit A/D converter Clock pulse generator • On-chip memory ROM Product Code ROM RAM Flash memory version HD64F2649 256 kbytes 6 kbytes Masked ROM version HD6432649 256 kbytes 6 kbytes Remarks Under planning • General I/O ports I/O pins: 97 Input pins: 16 • Supports various power-down modes • Compact package Package (Code) Body Size Pin Pitch QFP-144 FP-144G 20.0 × 20.0 mm 0.5 mm Rev. 2.00 Dec. 05, 2005 Page 1 of 724 REJ09B0200-0200 Section 1 Overview 1.2 Internal Block Diagram Port 5 Port 3 A/D converter PPG Port H PH0/PWM1A PH1/PWM1B PH2/PWM1C PH3/PWM1D PH4/PWM1E PH5/ PWM1F PH6/ PWM1G PH7/PWM1H Port J Figure 1.1 Internal Block Diagram Rev. 2.00 Dec. 05, 2005 Page 2 of 724 Port 4 PJ0/PWM2A PJ1/PWM2B PJ2/PWM2C PJ3/PWM2D PJ4/PWM2E PJ5/ PWM2F PJ6/ PWM2G PJ7/PWM2H Vref AVcc AVss P47 / AN7 P46 / AN6 P45 / AN5 P44 / AN4 P43 / AN3 P42 / AN2 P41 / AN1 P40 / AN0 Port 1 P10 /PO8/TIOCA0 P11 /PO9/TIOCB0 P12 / PO10/ TIOCC0 / TCLKA P13 / PO11/ TIOCD0 / TCLKB P14 / PO12/ TIOCA1/IRQ0 P15 / PO13/ TIOCB1 / TCLKC P16 / PO14/ TIOCA2/IRQ1 P17 / PO15/ TIOCB2 /TCLKD Port 9 Port 2 Port K Motor control PWM timer × 2 channel Note: * The FWE pin is available only for the flash memory version and is an NC pin for the Masked ROM version. REJ09B0200-0200 PC7/A7/ SEG24 PC6/A6/ SEG23 PC5/A5/SEG22 PC4/A4/SEG21 PC3/A3/SEG20 PC2/A2/SEG19 PC1/A1/SEG18 PC0/A0/SEG17 HCAN × 2 channels LCD controller/driver PK7/HRxD1 PK6/HTxD1 PB7/A15/SEG32 PB6/A14/SEG31 PB5/A13/SEG30 PB4/A12/SEG29 PB3 / A11/SEG28 PB2/A10/SEG27 PB1/A9/SEG26 PB0/A8/SEG25 SCI × 4 channels TPU P20/TIOCA3 P21/TIOCB3 P22/TIOCC3 P23/TIOCD3 P24/TIOCA4 P25/TIOCB4 P26/TIOCA5 P27/TIOCB5 Port A WDT × 2 channels Port B Peripheral data bus ROM (flash memory) * Masked ROM Peripheral address bus PC break controller RAM P52/SCK2 P51/RxD2 P50/TxD2 DTC PA7/A23/SEG40 PA6/ A22/SEG39 PA5/A21/SEG38 PA4/A20/SEG37 PA3/A19/COM4 PA2/A18/COM3 PA1/A17/COM2 PA0/A16/COM1 Port C Internal data bus H8S/2600 CPU Bus controller PE7 / D7/SEG8 PE6 / D6/SEG7 PE5 / D5/SEG6 PE4 / D4/SEG5 PE3 / D3/SEG4 PE2 / D2/SEG3 PE1 / D1/SEG2 PE0 / D0/SEG1 Port E Internal address bus PD7 / D15/SEG16 PD6 / D14/SEG15 PD5 / D13/SEG14 PD4 / D12/SEG13 PD3 / D11/SEG12 PD2 / D10/SEG11 PD1 / D9/SEG10 PD0 / D8/SEG9 V1 V2 V3 Port D Interrupt controller Port F PF7/φ PF6/AS/SEG36 PF5/RD/SEG35 PF4/HWR/SEG34 PF3/LWR/ADTRG/IRQ3 PF2/WAIT/SEG33 PF0/IRQ2 PLL MD2 MD1 MD0 OSC2 OSC1 EXTAL XTAL PLLCAP PLLVss STBY RES NMI FWE/NC* HTxD0 HRxD0 Clock pulse generator Vcc PWMVcc LPVcc Vss PWMVss VCL Figure 1.1 shows an internal block diagram. P37/TxD4 P36/RxD4 P35/SCK1/SCK4/IRQ5 P34/RxD1 P33/TxD1 P32/SCK0/IRQ4 P31/RxD0 P30/TxD0 P97/AN15 P96/AN14 P95/AN13 P94/AN12 P93/AN11 P92/AN10 P91/AN9 P90/AN8 Section 1 Overview 1.3 Pin Assignments 1.3.1 Pin Assignments 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 FP-144G (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 MD2 PWMVss PJ7/PWM2H PJ6/PWM2G PJ5/PWM2F PJ4/PWM2E PWMVcc PJ3/PWM2D PJ2/PWM2C PJ1/PWM2B PJ0/PWM2A PWMVss PH7/PWM1H PH6/PWM1G PH5/PWM1F PH4/PWM1E PWMVcc PH3/PWM1D PH2/PWM1C PH1/PWM1B PH0/PWM1A PWMVss PA3/A19/COM4 PA2/A18/COM3 PA1/A17/COM2 PA0/A16/COM1 PA7/A23/SEG40 PA6/A22/SEG39 PA5/A21/SEG38 PA4/A20/SEG37 PF6/AS/SEG36 PF5/RD/SEG35 Vss PF4/HWR/SEG34 PF2/WAIT/SEG33 PB7/A15/SEG32 V1 V2 V3 PE0/D0/SEG1 PE1/D1/SEG2 PE2/D2/SEG3 PE3/D3/SEG4 PE4/D4/SEG5 PE5/D5/SEG6 PE6/D6/SEG7 PE7/D7/SEG8 Vss PD0/D8/SEG9 PD1/D9/SEG10 PD2/D10/SEG11 PD3/D11/SEG12 PD4/D12/SEG13 PD5/D13/SEG14 PD6/D14/SEG15 PD7/D15/SEG16 LPVcc PC0/A0/SEG17 PC1/A1/SEG18 PC2/A2/SEG19 PC3/A3/SEG20 PC4/A4/SEG21 PC5/A5/SEG22 PC6/A6/SEG23 PC7/A7/SEG24 PB0/A8/SEG25 PB1/A9/SEG26 PB2/A10/SEG27 PB3/A11/SEG28 PB4/A12/SEG29 PB5/A13/SEG30 PB6/A14/SEG31 HTxD0 HRxD0 P50/TxD2 P51/RxD2 P52/SCK2 P20/TIOCA3 P21/TIOCB3 P22/TIOCC3 P23/TIOCD3 P25/TIOCB4 Vcc P24/TIOCA4 PK6/HTxD1 P27/TIOCB5 Vss P26/TIOCA5 PK7/HRxD1 AVcc Vref P40/AN0 P41/AN1 P42/AN2 P43/AN3 P44/AN4 P45/AN5 P46/AN6 P47/AN7 P90/AN8 P91/AN9 P92/AN10 P93/AN11 P94/AN12 P95/AN13 P96/AN14 P97/AN15 AVss 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 P17/PO15/TIOCB2/TCLKD P16/PO14/TIOCA2/IRQ1 P15/PO13/TIOCB1/TCLKC P14/PO12/TIOCA1/IRQ0 P13/PO11/TIOCD0/TCLKB P12/PO10/TIOCC0/TCLKA P11/PO9/TIOCB0 P10/PO8/TIOCA0 PF7/φ PF3/LWR/ADTRG/IRQ3 PF0/IRQ2 FWE/NC* EXTAL Vss XTAL VCL Vcc Vcc OSC2 OSC1 Vss PLLCAP PLLVss STBY NMI RES P37/TxD4 P36/RxD4 P35/SCK1/SCK4/IRQ5 P34/RxD1 P33/TxD1 P32/SCK0/IRQ4 P31/RxD0 P30/TxD0 MD0 MD1 Figure 1.2 shows pin assignments. Note: * The FWE pin is available only for the flash memory version and is an NC pin for the Masked ROM version. Figure 1.2 Pin Assignments (FP-144G) Rev. 2.00 Dec. 05, 2005 Page 3 of 724 REJ09B0200-0200 Section 1 Overview 1.3.2 Pin Functions in Each Operating Mode Table 1.1 shows the pin functions in each of the operating modes. Table 1.1 Pin Functions in Each Operating Mode Pin Name Pin No. Mode 4 Mode 5 Mode 6 Mode 7 1 V1 V1 V1 V1 2 V2 V2 V2 V2 3 V3 V3 V3 V3 4 PE0/D0/SEG1 PE0/D0/SEG1 PE0/D0/SEG1 PE0/SEG1 5 PE1/D1/SEG2 PE1/D1/SEG2 PE1/D1/SEG2 PE1/SEG2 6 PE2/D2/SEG3 PE2/D2/SEG3 PE2/D2/SEG3 PE2/SEG3 7 PE3/D3/SEG4 PE3/D3/SEG4 PE3/D3/SEG4 PE3/SEG4 8 PE4/D4/SEG5 PE4/D4/SEG5 PE4/D4/SEG5 PE4/SEG5 9 PE5/D5/SEG6 PE5/D5/SEG6 PE5/D5/SEG6 PE5/SEG6 10 PE6/D6/SEG7 PE6/D6/SEG7 PE6/D6/SEG7 PE6/SEG7 11 PE7/D7/SEG8 PE7/D7/SEG8 PE7/D7/SEG8 PE7/SEG8 12 Vss Vss Vss Vss 13 D8 D8 D8/SEG9 PD0/SEG9 14 D9 D9 D9/SEG10 PD1/SEG10 15 D10 D10 D10/SEG11 PD2/SEG11 16 D11 D11 D11/SEG12 PD3/SEG12 17 D12 D12 D12/SEG13 PD4/SEG13 18 D13 D13 D13/SEG14 PD5/SEG14 19 D14 D14 D14/SEG15 PD6/SEG15 20 D15 D15 D15/SEG16 PD7/SEG16 21 LPVcc LPVcc LPVcc LPVcc 22 A0 A0 PC0/A0/SEG17 PC0/SEG17 23 A1 A1 PC1/A1/SEG18 PC1/SEG18 24 A2 A2 PC2/A2/SEG19 PC2/SEG19 25 A3 A3 PC3/A3/SEG20 PC3/SEG20 26 A4 A4 PC4/A4/SEG21 PC4/SEG21 Rev. 2.00 Dec. 05, 2005 Page 4 of 724 REJ09B0200-0200 Section 1 Overview Pin Name Pin No. Mode 4 Mode 5 Mode 6 Mode 7 27 A5 A5 PC5/A5/SEG22 PC5/SEG22 28 A6 A6 PC6/A6/SEG23 PC6/SEG23 29 A7 A7 PC7/A7/SEG24 PC7/SEG24 30 PB0/A8/SEG25 PB0/A8/SEG25 PB0/A8/SEG25 PB0/SEG25 31 PB1/A9/SEG26 PB1/A9/SEG26 PB1/A9/SEG26 PB1/SEG26 32 PB2/A10/SEG27 PB2/A10/SEG27 PB2/A10/SEG27 PB2/SEG27 33 PB3/A11/SEG28 PB3/A11/SEG28 PB3/A11/SEG28 PB3/SEG28 34 PB4/A12/SEG29 PB4/A12/SEG29 PB4/A12/SEG29 PB4/SEG29 35 PB5/A13/SEG30 PB5/A13/SEG30 PB5/A13/SEG30 PB5/SEG30 36 PB6/A14/SEG31 PB6/A14/SEG31 PB6/A14/SEG31 PB6/SEG31 37 PB7/A15/SEG32 PB7/A15/SEG32 PB7/A15/SEG32 PB7/SEG32 38 WAIT/SEG33 WAIT/SEG33 WAIT/SEG33 PF2/SEG33 39 HWR/SEG34 HWR/SEG34 HWR/SEG34 PF4/SEG34 40 Vss Vss Vss Vss 41 RD/SEG35 RD/SEG35 RD/SEG35 PF5/SEG35 42 AS/SEG36 AS/SEG36 AS/SEG36 PF6/SEG36 43 PA4/A20/SEG37 PA4/A20/SEG37 PA4/A20/SEG37 PA4/SEG37 44 PA5/A21/SEG38 PA5/A21/SEG38 PA5/A21/SEG38 PA5/SEG38 45 PA6/A22/SEG39 PA6/A22/SEG39 PA6/A22/SEG39 PA6/SEG39 46 PA7/A23/SEG40 PA7/A23/SEG40 PA7/A23/SEG40 PA7/SEG40 47 PA0/A16/COM1 PA0/A16/COM1 PA0/A16/COM1 PA0/COM1 48 PA1/A17/COM2 PA1/A17/COM2 PA1/A17/COM2 PA1/COM2 49 PA2/A18/COM3 PA2/A18/COM3 PA2/A18/COM3 PA2/COM3 50 PA3/A19/COM4 PA3/A19/COM4 PA3/A19/COM4 PA3/COM4 51 PWMVss PWMVss PWMVss PWMVss 52 PH0/PWM1A PH0/PWM1A PH0/PWM1A PH0/PWM1A 53 PH1/PWM1B PH1/PWM1B PH1/PWM1B PH1/PWM1B 54 PH2/PWM1C PH2/PWM1C PH2/PWM1C PH2/PWM1C 55 PH3/PWM1D PH3/PWM1D PH3/PWM1D PH3/PWM1D 56 PWMVcc PWMVcc PWMVcc PWMVcc 57 PH4/PWM1E PH4/PWM1E PH4/PWM1E PH4/PWM1E Rev. 2.00 Dec. 05, 2005 Page 5 of 724 REJ09B0200-0200 Section 1 Overview Pin Name Pin No. Mode 4 Mode 5 Mode 6 Mode 7 58 PH5/PWM1F PH5/PWM1F PH5/PWM1F PH5/PWM1F 59 PH6/PWM1G PH6/PWM1G PH6/PWM1G PH6/PWM1G 60 PH7/PWM1H PH7/PWM1H PH7/PWM1H PH7/PWM1H 61 PWMVss PWMVss PWMVss PWMVss 62 PJ0/PWM2A PJ0/PWM2A PJ0/PWM2A PJ0/PWM2A 63 PJ1/PWM2B PJ1/PWM2B PJ1/PWM2B PJ1/PWM2B 64 PJ2/PWM2C PJ2/PWM2C PJ2/PWM2C PJ2/PWM2C 65 PJ3/PWM2D PJ3/PWM2D PJ3/PWM2D PJ3/PWM2D 66 PWMVcc PWMVcc PWMVcc PWMVcc 67 PJ4/PWM2E PJ4/PWM2E PJ4/PWM2E PJ4/PWM2E 68 PJ5/PWM2F PJ5/PWM2F PJ5/PWM2F PJ5/PWM2F 69 PJ6/PWM2G PJ6/PWM2G PJ6/PWM2G PJ6/PWM2G 70 PJ7/PWM2H PJ7/PWM2H PJ7/PWM2H PJ7/PWM2H 71 PWMVss PWMVss PWMVss PWMVss 72 MD2 MD2 MD2 MD2 73 MD1 MD1 MD1 MD1 74 MD0 MD0 MD0 MD0 75 P30/TxD0 P30/TxD0 P30/TxD0 P30/TxD0 76 P31/RxD0 P31/RxD0 P31/RxD0 P31/RxD0 77 P32/SCK0/IRQ4 P32/SCK0/IRQ4 P32/SCK0/IRQ4 P32/SCK0/IRQ4 78 P33/TxD1 P33/TxD1 P33/TxD1 P33/TxD1 79 P34/RxD1 P34/RxD1 P34/RxD1 P34/RxD1 80 P35/SCK1/SCK4/ IRQ5 P35/SCK1/SCK4/ IRQ5 P35/SCK1/SCK4/ IRQ5 P35/SCK1/SCK4/ IRQ5 81 P36/RxD4 P36/RxD4 P36/RxD4 P36/RxD4 82 P37/TxD4 P37/TxD4 P37/TxD4 P37/TxD4 83 RES RES RES RES 84 NMI NMI NMI NMI 85 STBY STBY STBY STBY 86 PLLVss PLLVss PLLVss PLLVss 87 PLLCAP PLLCAP PLLCAP PLLCAP Rev. 2.00 Dec. 05, 2005 Page 6 of 724 REJ09B0200-0200 Section 1 Overview Pin Name Pin No. Mode 4 Mode 5 Mode 6 Mode 7 88 Vss Vss Vss Vss 89 OSC1 OSC1 OSC1 OSC1 90 OSC2 OSC2 OSC2 OSC2 91 Vcc Vcc Vcc Vcc 92 Vcc Vcc Vcc Vcc 93 VCL VCL VCL VCL 94 XTAL XTAL XTAL XTAL 95 Vss Vss Vss Vss 96 EXTAL EXTAL EXTAL EXTAL 97 FWE FWE FWE FWE 98 PF0/IRQ2 PF0/IRQ2 PF0/IRQ2 PF0/IRQ2 99 PF3/LWR/ADTRG/ IRQ3 PF3/LWR/ADTRG/ IRQ3 PF3/LWR/ADTRG/ IRQ3 PF3/ADTRG/IRQ3 100 PF7/φ PF7/φ PF7/φ PF7/φ 101 P10/PO8/TIOCA0 P10/PO8/TIOCA0 P10/PO8/TIOCA0 P10/PO8/TIOCA0 102 P11/PO9/TIOCB0 P11/PO9/TIOCB0 P11/PO9/TIOCB0 P11/PO9/TIOCB0 103 P12/PO10/TIOCC0/ TCLKA P12/PO10/TIOCC0/ TCLKA P12/PO10/TIOCC0/ TCLKA P12/PO10/TIOCC0/ TCLKA 104 P13/PO11/TIOCD0/ TCLKB P13/PO11/TIOCD0/ TCLKB P13/PO11/TIOCD0/ TCLKB P13/PO11/TIOCD0/ TCLKB 105 P14/PO12/TIOCA1/ IRQ0 P14/PO12/TIOCA1/ IRQ0 P14/PO12/TIOCA1/ IRQ0 P14/PO12/TIOCA1/ IRQ0 106 P15/PO13/TIOCB1/ TCLKC P15/PO13/TIOCB1/ TCLKC P15/PO13/TIOCB1/ TCLKC P15/PO13/TIOCB1/ TCLKC 107 P16/PO14/TIOCA2/ IRQ1 P16/PO14/TIOCA2/ IRQ1 P16/PO14/TIOCA2/ IRQ1 P16/PO14/TIOCA2/ IRQ1 108 P17/PO15/TIOCB2/ TCLKD P17/PO15/TIOCB2/ TCLKD P17/PO15/TIOCB2/ TCLKD P17/PO15/TIOCB2/ TCLKD 109 HTxD0 HTxD0 HTxD0 HTxD0 110 HRxD0 HRxD0 HRxD0 HRxD0 111 P50/TxD2 P50/TxD2 P50/TxD2 P50/TxD2 112 P51/RxD2 P51/RxD2 P51/RxD2 P51/RxD2 Rev. 2.00 Dec. 05, 2005 Page 7 of 724 REJ09B0200-0200 Section 1 Overview Pin Name Pin No. Mode 4 Mode 5 Mode 6 Mode 7 113 P52/SCK2 P52/SCK2 P52/SCK2 P52/SCK2 114 P20/TIOCA3 P20/TIOCA3 P20/TIOCA3 P20/TIOCA3 115 P21/TIOCB3 P21/TIOCB3 P21/TIOCB3 P21/TIOCB3 116 P22/TIOCC3 P22/TIOCC3 P22/TIOCC3 P22/TIOCC3 117 P23/TIOCD3 P23/TIOCD3 P23/TIOCD3 P23/TIOCD3 118 P25/TIOCB4 P25/TIOCB4 P25/TIOCB4 P25/TIOCB4 119 Vcc Vcc Vcc Vcc 120 P24/TIOCA4 P24/TIOCA4 P24/TIOCA4 P24/TIOCA4 121 PK6/HTxD1 PK6/HTxD1 PK6/HTxD1 PK6/HTxD1 122 P27/TIOCB5 P27/TIOCB5 P27/TIOCB5 P27/TIOCB5 123 Vss Vss Vss Vss 124 P26/TIOCA5 P26/TIOCA5 P26/TIOCA5 P26/TIOCA5 125 PK7/HRxD1 PK7/HRxD1 PK7/HRxD1 PK7/HRxD1 126 AVcc AVcc AVcc AVcc 127 Vref Vref Vref Vref 128 P40/AN0 P40/AN0 P40/AN0 P40/AN0 129 P41/AN1 P41/AN1 P41/AN1 P41/AN1 130 P42/AN2 P42/AN2 P42/AN2 P42/AN2 131 P43/AN3 P43/AN3 P43/AN3 P43/AN3 132 P44/AN4 P44/AN4 P44/AN4 P44/AN4 133 P45/AN5 P45/AN5 P45/AN5 P45/AN5 134 P46/AN6 P46/AN6 P46/AN6 P46/AN6 135 P47/AN7 P47/AN7 P47/AN7 P47/AN7 136 P90/AN8 P90/AN8 P90/AN8 P90/AN8 137 P91/AN9 P91/AN9 P91/AN9 P91/AN9 138 P92/AN10 P92/AN10 P92/AN10 P92/AN10 139 P93/AN11 P93/AN11 P93/AN11 P93/AN11 140 P94/AN12 P94/AN12 P94/AN12 P94/AN12 141 P95/AN13 P95/AN13 P95/AN13 P95/AN13 142 P96/AN14 P96/AN14 P96/AN14 P96/AN14 Rev. 2.00 Dec. 05, 2005 Page 8 of 724 REJ09B0200-0200 Section 1 Overview Pin Name Pin No. Mode 4 Mode 5 Mode 6 Mode 7 143 P97/AN15 P97/AN15 P97/AN15 P97/AN15 144 AVss AVss AVss AVss Note: In mode 4 and mode 5, the following pins (D8 to D15, A0 to A7, RD, AS, and HWR) are used to interface with external ROM. Therefore, these pins must not be set to the SEG signal. Rev. 2.00 Dec. 05, 2005 Page 9 of 724 REJ09B0200-0200 Section 1 Overview 1.3.3 Pin Functions Table 1.2 shows pin functions. Table 1.2 Pin Functions Type Symbol Pin No. I/O Power supply Vcc 91, 92, 119 Input Name and Function Power supply pins These pins should be connected to the system power supply. PWMVcc 56, 66 Input Power supply pin for port H, port J, and the motor control PWM timer output LPVcc 21 Input Power supply pin for ports A, B, C, D, E, and part of port F (PF2 and PF4 to PF6) Input Power supply pin for LCD controller/ driver V1, V2, V3 1, 2, 3 There is an on-chip power supply division resistor, so this pin is normally left open. Power supply conditions: LPVcc ≥ V1 ≥ V2 ≥ V3 ≥ Vss Vss 12, 40, 88, Input 95, 123 Ground pins PWMVss 51, 61, 71 Input Power supply pin for port H, port J, and the motor control PWM timer output These pins should be connected to the system power supply (0 V). VCL 93 Input Pin for connecting the on-chip stepdown power supply to a capacitor for voltage stabilization. Connect to Vss via a 0.1 µF capacitor (which should be located near the pin). Do not connect this pin to an external power supply. Rev. 2.00 Dec. 05, 2005 Page 10 of 724 REJ09B0200-0200 These pins should be connected to the system power supply (0 V). Section 1 Overview Type Symbol Pin No. I/O Name and Function Clock PLLVss 86 Input Ground pin for on-chip PLL oscillator PLLCAP 87 Input External capacitance pin for on-chip PLL oscillator XTAL 94 Input Connects to a crystal oscillator. EXTAL 96 Input See section 20, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator. The EXTAL pin can also input an external clock. Connects to a 32.768-MHz crystal oscillator. See section 20, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator. OSC1 89 Input OSC2 90 Input φ 100 Output Supplies the system clock to an external device. Operating mode control MD2 to MD0 72 to 74 Input These pins set the operating mode. These pins should not be changed while this LSI is operating. System control RES 83 Input Reset pin When this pin is driven low, the chip is reset. STBY 85 Input When this pin is driven low, a transition is made to hardware standby mode. FWE 97 Input Pin for flash memory NMI 84 Input Requests a nonmaskable interrupt. When this pin is not used, it should be fixed high. IRQ5 to IRQ0 80, 77, 99, Input 98, 107, 105 These pins request a maskable interrupt. Address bus A23 to A0 46 to 43, 50 to 47, 37 to 22 Output These pins output an address. Data bus D15 to D0 20 to 13, 11 to 4 I/O These pins constitute a bidirectional data bus. Interrupts Rev. 2.00 Dec. 05, 2005 Page 11 of 724 REJ09B0200-0200 Section 1 Overview Type Symbol Pin No. I/O Name and Function Bus control AS 42 Output When this pin is low, it indicates that address output on the address bus is enabled. RD 41 Output When this pin is low, it indicates that the external address space can be read. HWR 39 Output A strobe signal that writes to external space and indicates that the upper half (D15 to D8) of the data bus is enabled. LWR 99 Output A strobe signal that writes to external space and indicates that the lower half (D7 to D0) of the data bus is enabled. WAIT 38 Input It is necessary to insert a wait state into the bus cycle when accessing the external three-state address space. TCLKD to TCLKA 103, 102, 106, 108 Input These pins input an external clock. TIOCA0, TIOCB0, TIOCC0, TIOCD0 101, 102, 123, 104 I/O TGR0A to TGR0D input capture input, output compare output, or output PWM. TIOCA1, TIOCB1 105, 106 I/O TGR1A and TGR1B input capture input, output compare output, or output PWM. TIOCA2, TIOCB2 107, 108 I/O TGR2A and TGR2B input capture input, output compare output, or output PWM. TIOCA3, TIOCB3, TIOCC3, TIOCD3 114, 115, 116, 117 I/O TGR3A to TGR3D input capture input, output compare output, or output PWM. TIOCA4, TIOCB4 120, 118 I/O TGR4A and TGR4B input capture input, output compare output, or output PWM. TIOCA5, TIOCB5 124, 122 I/O TGR5A and TGR5B input capture input, output compare output, or output PWM. 16-bit timer pulse unit (TPU) Programmable pulse PO15 to generator (PPG) PO8 108 to 101 Output Rev. 2.00 Dec. 05, 2005 Page 12 of 724 REJ09B0200-0200 Pulse output pins Section 1 Overview Type Pin No. I/O Name and Function Serial communication TxD4, interface (SCI)/ TxD2, Smart Card interface TxD1, TxD0 82 111 78 75 Output Transmit data output pins RxD4, RxD2, RxD1, RxD0 81 112 79 76 Input Receive data input pins SCK4, SCK2, SCK1, SCK0 80 113 80 77 I/O Clock I/O pins HTxD0 HTxD1 109, 121 Output Pin for CAN bus transmission HRxD0 HRxD1 110, 125 Input Pin for CAN bus reception AN15 to AN0 143 to 128 Input Analog input pins ADTRG 99 Input Pin for input of an external trigger to start A/D conversion AVcc 126 Input A/D converter power supply pin Controller area network (HCAN) A/D converter Symbol The SCK output type is NMOS pushpull. If the A/D converter is not used, connect this pin to the system power supply (+5 V). AVss 144 Input A/D converter ground pin Connect this pin to the system power supply (0 V). Vref 127 Input A/D converter reference voltage input pin If the A/D converter is not used, connect this pin to the system power supply (+5 V). Motor control PWM timer PWM1A to 52 to 55, PWM1H 57 to 60 Output PWM timer channel 1 output pins PWM2A to 62 to 65, PWM2H 67 to 70 Output PWM timer channel 2 output pins Rev. 2.00 Dec. 05, 2005 Page 13 of 724 REJ09B0200-0200 Section 1 Overview Type Symbol LCD controller/driver SEG40 to SEG1 COM4 to COM1 I/O ports Pin No. I/O Name and Function 46 to 41, 39 to 22, 20 to 13, 11 to 4 Output LCD segment output pins 50 to 47 Output LCD common output pins P17 to P10 108 to 101 I/O 8-bit I/O pins P27 to P20 122, 124, I/O 118, 120, 117 to 114 8-bit I/O pins P37 to P30 82 to 75 8-bit I/O pins P47 to P40 135 to 128 Input 8-bit input pins P52 to P50 113 to 111 I/O 3-bit I/O pins P97 to P90 143 to 136 Input 8-bit input pins PA7 to PA0 46 to 43, 50 to 47 I/O 8-bit I/O pins PB7 to PB0 37 to 30 I/O 8-bit I/O pins PC7 to PC0 29 to 22 I/O 8-bit I/O pins PD7 to PD0 20 to 13 I/O 8-bit I/O pins PE7 to PE0 11 to 4 I/O 8-bit I/O pins PF7 to PF2, PF0 100, 42, I/O 41, 39, 99, 38, 98 7-bit I/O pins PH7 to PH0 60 to 57, 55 to 52 I/O 8-bit I/O pins PK7, PK6 121, 125 I/O 2-bit I/O pins Rev. 2.00 Dec. 05, 2005 Page 14 of 724 REJ09B0200-0200 I/O Section 2 CPU Section 2 CPU The H8S/2600 CPU is a high-speed central processing unit with an internal 32-bit architecture that is upward-compatible with the H8/300 and H8/300H CPUs. The H8S/2600 CPU has sixteen 16-bit general registers, can address a 16-Mbyte linear address space, and is ideal for realtime control. This section describes the H8S/2600 CPU. The usable modes and address spaces differ depending on the product. For details on each product, refer to section 3, MCU Operating Modes. 2.1 Features • Upward-compatible with H8/300 and H8/300H CPUs Can execute H8/300 and H8/300H CPUs object programs • General-register architecture Sixteen 16-bit general registers also usable as sixteen 8-bit registers or eight 32-bit registers • Sixty-nine basic instructions 8/16/32-bit arithmetic and logic instructions Multiply and divide instructions Powerful bit-manipulation instructions Multiply-and-accumulate instruction • Eight addressing modes Register direct [Rn] Register indirect [@ERn] Register indirect with displacement [@(d:16,ERn) or @(d:32,ERn)] Register indirect with post-increment or pre-decrement [@ERn+ or @–ERn] Absolute address [@aa:8, @aa:16, @aa:24, or @aa:32] Immediate [#xx:8, #xx:16, or #xx:32] Program-counter relative [@(d:8,PC) or @(d:16,PC)] Memory indirect [@@aa:8] • 16-Mbyte address space Program: 16 Mbytes Data: 16 Mbytes • High-speed operation All frequently-used instructions execute in one or two states 8/16/32-bit register-register add/subtract: 1 state 8 × 8-bit register-register multiply: 3 states CPUS260A_000020020300 Rev. 2.00 Dec. 05, 2005 Page 15 of 724 REJ09B0200-0200 Section 2 CPU 16 ÷ 8-bit register-register divide: 12 states 16 × 16-bit register-register multiply: 4 states 32 ÷ 16-bit register-register divide: 20 states • Two CPU operating modes Normal mode* Advanced mode • Power-down state Transition to power-down state by the SLEEP instruction CPU clock speed selection Note: * Normal mode is not available in this LSI. 2.1.1 Differences between H8S/2600 CPU and H8S/2000 CPU The differences between the H8S/2600 CPU and the H8S/2000 CPU are shown below. • Register configuration The MAC register is supported by the H8S/2600 CPU only. • Basic instructions The four instructions MAC, CLRMAC, LDMAC, and STMAC are supported by the H8S/2600 CPU only. • The number of execution states of the MULXU and MULXS instructions; Execution States Instruction Mnemonic H8S/2600 H8S/2000 MULXU MULXU.B Rs, Rd 3 12 MULXU.W Rs, ERd 4 20 MULXS.B Rs, Rd 4 13 MULXS.W Rs, ERd 5 21 MULXS In addition, there are differences in address space, CCR and EXR register functions, and powerdown modes, etc., depending on the model. Rev. 2.00 Dec. 05, 2005 Page 16 of 724 REJ09B0200-0200 Section 2 CPU 2.1.2 Differences from H8/300 CPU In comparison to the H8/300 CPU, the H8S/2600 CPU has the following enhancements: • More general registers and control registers Eight 16-bit extended registers, and one 8-bit and two 32-bit control registers, have been added. • Expanded address space Normal mode supports the same 64-kbyte address space as the H8/300 CPU. Advanced mode supports a maximum 16-Mbyte address space. • Enhanced addressing The addressing modes have been enhanced to make effective use of the 16-Mbyte address space. • Enhanced instructions Addressing modes of bit-manipulation instructions have been enhanced. Signed multiply and divide instructions have been added. A multiply-and-accumulate instruction has been added. Two-bit shift instructions have been added. Instructions for saving and restoring multiple registers have been added. A test and set instruction has been added. • Higher speed Basic instructions execute twice as fast. 2.1.3 Differences from H8/300H CPU In comparison to the H8/300H CPU, the H8S/2600 CPU has the following enhancements: • More control registers One 8-bit and two 32-bit control registers have been added. • Enhanced instructions Addressing modes of bit-manipulation instructions have been enhanced. A multiply-and-accumulate instruction has been added. Two-bit shift instructions have been added. Instructions for saving and restoring multiple registers have been added. A test and set instruction has been added. Rev. 2.00 Dec. 05, 2005 Page 17 of 724 REJ09B0200-0200 Section 2 CPU • Higher speed Basic instructions execute twice as fast. 2.2 CPU Operating Modes The H8S/2600 CPU has two operating modes: normal and advanced. Normal mode supports a maximum 64-kbyte address space. Advanced mode supports a maximum 16-Mbyte total address space. The mode is selected by the mode pins. 2.2.1 Normal Mode The exception vector table and stack have the same structure as in the H8/300 CPU. • Address Space Linear access to a 64-kbyte maximum address space is provided. • Extended Registers (En) The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-bit segments of 32-bit registers. When En is used as a 16-bit register it can contain any value, even when the corresponding general register (Rn) is used as an address register. If the general register is referenced in the register indirect addressing mode with pre-decrement (@–Rn) or post-increment (@Rn+) and a carry or borrow occurs, however, the value in the corresponding extended register (En) will be affected. • Instruction Set All instructions and addressing modes can be used. Only the lower 16 bits of effective addresses (EA) are valid. • Exception Vector Table and Memory Indirect Branch Addresses In normal mode the top area starting at H'0000 is allocated to the exception vector table. One branch address is stored per 16 bits. The exception vector table structure in normal mode is shown in figure 2.1. For details of the exception vector table, see section 4, Exception Handling. The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address included in the instruction code to specify a memory operand that contains a branch address. In normal mode the operand is a 16-bit word operand, providing a 16-bit branch address. Branch addresses can be stored in the area from H'0000 to H'00FF. Note that the first part of this range is also used for the exception vector table. Rev. 2.00 Dec. 05, 2005 Page 18 of 724 REJ09B0200-0200 Section 2 CPU • Stack Structure When the program counter (PC) is pushed onto the stack in a subroutine call, and the PC, condition-code register (CCR), and extended control register (EXR) are pushed onto the stack in exception handling, they are stored as shown in figure 2.2. EXR is not pushed onto the stack in interrupt control mode 0. For details, see section 4, Exception Handling. Note: Normal mode is not available in this LSI. H'0000 H'0001 H'0002 H'0003 H'0004 H'0005 H'0006 H'0007 H'0008 H'0009 H'000A H'000B Exception vector 1 Exception vector 2 Exception vector 3 Exception vector table Exception vector 4 Exception vector 5 Exception vector 6 Figure 2.1 Exception Vector Table (Normal Mode) SP PC (16 bits) EXR*1 SP (SP * 2 Reserved*1,*3 ) CCR CCR*3 PC (16 bits) (a) Subroutine Branch (b) Exception Handling Notes: 1. When EXR is not used it is not stored on the stack. 2. SP when EXR is not used. 3. lgnored when returning. Figure 2.2 Stack Structure in Normal Mode Rev. 2.00 Dec. 05, 2005 Page 19 of 724 REJ09B0200-0200 Section 2 CPU 2.2.2 Advanced Mode • Address Space Linear access to a 16-Mbyte maximum address space is provided. • Extended Registers (En) The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-bit segments of 32-bit registers or address registers. • Instruction Set All instructions and addressing modes can be used. • Exception Vector Table and Memory Indirect Branch Addresses In advanced mode, the top area starting at H'00000000 is allocated to the exception vector table in units of 32 bits. In each 32 bits, the upper 8 bits are ignored and a branch address is stored in the lower 24 bits (figure 2.3). For details of the exception vector table, see section 4, Exception Handling. H'00000000 Reserved Exception vector 1 H'00000003 H'00000004 Reserved Exception vector 2 H'00000007 H'00000008 Reserved Exception vector table Exception vector 3 H'0000000B H'0000000C Reserved Exception vector 4 H'00000010 Reserved Exception vector 5 Figure 2.3 Exception Vector Table (Advanced Mode) Rev. 2.00 Dec. 05, 2005 Page 20 of 724 REJ09B0200-0200 Section 2 CPU The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address included in the instruction code to specify a memory operand that contains a branch address. In advanced mode the operand is a 32-bit longword operand, providing a 32-bit branch address. The upper 8 bits of these 32 bits is a reserved area that is regarded as H'00. Branch addresses can be stored in the area from H'00000000 to H'000000FF. Note that the first part of this range is also used for the exception vector table. • Stack Structure In advanced mode, when the program counter (PC) is pushed onto the stack in a subroutine call, and the PC, condition-code register (CCR), and extended control register (EXR) are pushed onto the stack in exception handling, they are stored as shown in figure 2.4. When EXR is not pushed onto the stack in interrupt control mode 0. For details, see section 4, Exception Handling. EXR*1 SP SP Reserved PC (24 bits) (SP *2 Reserved*1, *3 ) (a) Subroutine Branch CCR PC (24 bits) (b) Exception Handling Notes: 1. When EXR is not used it is not stored on the stack. 2. SP when EXR is not used. 3. Ignored when returning. Figure 2.4 Stack Structure in Advanced Mode Rev. 2.00 Dec. 05, 2005 Page 21 of 724 REJ09B0200-0200 Section 2 CPU 2.3 Address Space Figure 2.5 shows a memory map for the H8S/2600 CPU. The H8S/2600 CPU provides linear access to a maximum 64-kbyte address space in normal mode, and a maximum 16-Mbyte (architecturally 4-Gbyte) address space in advanced mode. The usable modes and address spaces differ depending on the product. For details on each product, refer to section 3, MCU Operating Modes. H'0000 H'00000000 64-kbyte 16-Mbyte H'FFFF Program area H'00FFFFFF Data area Cannot be used in this LSI H'FFFFFFFF (a) Normal Mode (b) Advanced Mode Figure 2.5 Memory Map Rev. 2.00 Dec. 05, 2005 Page 22 of 724 REJ09B0200-0200 Section 2 CPU 2.4 Registers The H8S/2600 CPU has the internal registers shown in figure 2.6. There are two types of registers; general registers and control registers. The control registers are a 24-bit program counter (PC), an 8-bit extended control register (EXR), an 8-bit condition code register (CCR), and a 64-bit multiply-accumulate register (MAC). General Registers (Rn) and Extended Registers (En) 15 0 7 0 7 0 ER0 E0 R0H R0L ER1 E1 R1H R1L ER2 E2 R2H R2L ER3 E3 R3H R3L ER4 E4 R4H R4L ER5 E5 R5H R5L ER6 E6 R6H R6L ER7 (SP) E7 R7H R7L Control Registers (CR) 0 23 PC 7 6 5 4 3 2 1 0 - - - - I2 I1 I0 EXR T 7 6 5 4 3 2 1 0 CCR I UI H U N Z V C 63 41 MAC 32 MACH Sign extension MACL 31 0 [Legend] SP: PC: EXR: T: I2 to I0: CCR: I: UI: Stack pointer Program counter Extended control register Trace bit Interrupt mask bits Condition-code register Interrupt mask bit User bit or interrupt mask bit H: U: N: Z: V: C: MAC: Half-carry flag User bit Negative flag Zero flag Overflow flag Carry flag Multiply-accumulate register Figure 2.6 CPU Registers Rev. 2.00 Dec. 05, 2005 Page 23 of 724 REJ09B0200-0200 Section 2 CPU 2.4.1 General Registers The H8S/2600 CPU has eight 32-bit general registers. These general registers are all functionally identical and can be used as both address registers and data registers. When a general register is used as a data register, it can be accessed as a 32-bit, 16-bit, or 8-bit register. Figure 2.7 illustrates the usage of the general registers. When the general registers are used as 32-bit registers or address registers, they are designated by the letters ER (ER0 to ER7). The ER registers divide into 16-bit general registers designated by the letters E (E0 to E7) and R (R0 to R7). These registers are functionally equivalent, providing a maximum of sixteen 16-bit registers. The E registers (E0 to E7) are also referred to as extended registers. The R registers divide into 8-bit general registers designated by the letters RH (R0H to R7H) and RL (R0L to R7L). These registers are functionally equivalent, providing a maximum of sixteen 8bit registers. The usage of each register can be selected independently. General register ER7 has the function of stack pointer (SP) in addition to its general-register function, and is used implicitly in exception handling and subroutine calls. Figure 2.8 shows the stack. • Address registers • 32-bit registers • 16-bit registers • 8-bit registers E registers (extended registers) (E0 to E7) ER registers (ER0 to ER7) RH registers (R0H to R7H) R registers (R0 to R7) RL registers (R0L to R7L) Figure 2.7 Usage of General Registers Rev. 2.00 Dec. 05, 2005 Page 24 of 724 REJ09B0200-0200 Section 2 CPU Free area SP (ER7) Stack area Figure 2.8 Stack 2.4.2 Program Counter (PC) This 24-bit counter indicates the address of the next instruction the CPU will execute. The length of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (When an instruction is fetched, the least significant PC bit is regarded as 0). 2.4.3 Extended Control Register (EXR) EXR is an 8-bit register that manipulates the LDC, STC, ANDC, ORC, and XORC instructions. When these instructions, except for the STC instruction, are executed, all interrupts including NMI will be masked for three states after execution is completed. Bit Bit Name Initial Value R/W Description 7 T 0 R/W Trace Bit When this bit is set to 1, a trace exception is generated each time an instruction is executed. When this bit is cleared to 0, instructions are executed in sequence. 6 to 3 All 1 Reserved These bits are always read as 1. 2 I2 1 R/W 1 I1 1 R/W 0 I0 1 R/W These bits designate the interrupt mask level (0 to 7). For details, refer to section 5, Interrupt Controller. Rev. 2.00 Dec. 05, 2005 Page 25 of 724 REJ09B0200-0200 Section 2 CPU 2.4.4 Condition-Code Register (CCR) This 8-bit register contains internal CPU status information, including an interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags. Operations can be performed on the CCR bits by the LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as branching conditions for conditional branch (Bcc) instructions. Bit Bit Name Initial Value R/W Description 7 I 1 R/W Interrupt Mask Bit Masks interrupts other than NMI when set to 1. NMI is accepted regardless of the I bit setting. The I bit is set to 1 at the start of an exception-handling sequence. For details, refer to section 5, Interrupt Controller. 6 UI Undefined R/W User Bit or Interrupt Mask Bit Can be read or written by software using the LDC, STC, ANDC, ORC, and XORC instructions. This bit cannot be used as an interrupt mask bit in this LSI. 5 H Undefined R/W Half-Carry Flag When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and cleared to 0 otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 11, and cleared to 0 otherwise. When the ADD.L, SUB.L, CMP.L, or NEG.L instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 27, and cleared to 0 otherwise. 4 U Undefined R/W User Bit Can be read or written by software using the LDC, STC, ANDC, ORC, and XORC instructions. 3 N Undefined R/W Negative Flag Stores the value of the most significant bit of data as a sign bit. 2 Z Undefined R/W Zero Flag Set to 1 to indicate zero data, and cleared to 0 to indicate non-zero data. Rev. 2.00 Dec. 05, 2005 Page 26 of 724 REJ09B0200-0200 Section 2 CPU Bit Bit Name Initial Value 1 V Undefined R/W R/W Description Overflow Flag Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other times. 0 C Undefined R/W Carry Flag Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by: • Add instructions, to indicate a carry • Subtract instructions, to indicate a borrow • Shift and rotate instructions, to indicate a carry The carry flag is also used as a bit accumulator by bit manipulation instructions. 2.4.5 Multiply-Accumulate Register (MAC) This 64-bit register stores the results of multiply-and-accumulate operations. It consists of two 32bit registers denoted MACH and MACL. The lower 10 bits of MACH are valid; the upper bits are a sign extension. 2.4.6 Initial Values of CPU Registers Reset exception handling loads the CPU’s program counter (PC) from the vector table, clears the trace bit in EXR to 0, and sets the interrupt mask bits in CCR and EXR to 1. The other CCR bits and the general registers are not initialized. In particular, the stack pointer (ER7) is not initialized. The stack pointer should therefore be initialized by an MOV.L instruction executed immediately after a reset. Rev. 2.00 Dec. 05, 2005 Page 27 of 724 REJ09B0200-0200 Section 2 CPU 2.5 Data Formats The H8S/2600 CPU can process 1-bit, 4-bit (BCD), 8-bit (byte), 16-bit (word), and 32-bit (longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2, …, 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit BCD data. 2.5.1 General Register Data Formats Figure 2.9 shows the data formats in general registers. Data Type Register Number Data Format 7 RnH 1-bit data 0 Don't care 7 6 5 4 3 2 1 0 0 7 1-bit data RnL 4-bit BCD data RnH 4-bit BCD data RnL Byte data RnH Don't care 7 7 6 5 4 3 2 1 0 4 3 Upper 0 Lower Don't care 7 Don't care 7 4 3 Upper 0 Don't care MSB LSB 7 Byte data RnL Figure 2.9 General Register Data Formats (1) REJ09B0200-0200 0 Don't care MSB Rev. 2.00 Dec. 05, 2005 Page 28 of 724 0 Lower LSB Section 2 CPU Data Type Register Number Word data Rn Data Format 15 0 MSB Word data 15 0 MSB Longword data LSB En LSB ERn 31 16 15 MSB En 0 Rn LSB [Legend] ERn: General register ER En: General register E Rn: General register R RnH: General register RH RnL: General register RL MSB: Most significant bit LSB: Least significant bit Figure 2.9 General Register Data Formats (2) Rev. 2.00 Dec. 05, 2005 Page 29 of 724 REJ09B0200-0200 Section 2 CPU 2.5.2 Memory Data Formats Figure 2.10 shows the data formats in memory. The H8S/2600 CPU can access word data and longword data in memory, however word or longword data must begin at an even address. If an attempt is made to access word or longword data at an odd address, an address error does not occur, however the least significant bit of the address is regarded as 0, so access begins the preceding address. This also applies to instruction fetches. When ER7 is used as an address register to access the stack, the operand size should be word or longword. Data Type Address Data Format 7 1-bit data Address L 7 Byte data Address L MSB Word data Address 2M MSB 0 6 5 4 3 2 Address 2N 0 LSB LSB Address 2M+1 Longword data 1 MSB Address 2N+1 Address 2N+2 Address 2N+3 Figure 2.10 Memory Data Formats Rev. 2.00 Dec. 05, 2005 Page 30 of 724 REJ09B0200-0200 LSB Section 2 CPU 2.6 Instruction Set The H8S/2600 CPU has 69 instructions. The instructions are classified by function in table 2.1. Table 2.1 Instruction Classification Function Instructions Data transfer Size MOV B/W/L 5 POP*1, PUSH*1 W/L LDM, STM 3 MOVFPE* , MOVTPE* Arithmetic operation Types L 3 B ADD, SUB, CMP, NEG B/W/L 23 ADDX, SUBX, DAA, DAS B INC, DEC B/W/L ADDS, SUBS L MULXU, DIVXU, MULXS, DIVXS B/W EXTU, EXTS W/L TAS*4 B MAC, LDMAC, STMAC, CLRMAC Logic operations AND, OR, XOR, NOT B/W/L 4 Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR B/W/L 8 Bit manipulation BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR B 14 Branch Bcc*2, JMP, BSR, JSR, RTS 5 System control TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 9 1 Block data transfer EEPMOV Total: 69 Notes: B-byte; W-word; L-longword. 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+,Rn and MOV.W Rn,@-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+,ERn and MOV.L ERn,@-SP. 2. Bcc is the general name for conditional branch instructions. 3. Cannot be used in this LSI. 4. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction. Rev. 2.00 Dec. 05, 2005 Page 31 of 724 REJ09B0200-0200 Section 2 CPU 2.6.1 Table of Instructions Classified by Function Tables 2.3 to 2.10 summarize the instructions in each functional category. The notation used in tables 2.3 to 2.10 is defined below. Table 2.2 Operation Notation Symbol Description Rd General register (destination)* Rs General register (source)* Rn General register* ERn General register (32-bit register) MAC Multiply-accumulate register (32-bit register) (EAd) Destination operand (EAs) Source operand EXR Extended control register CCR Condition-code register N N (negative) flag in CCR Z Z (zero) flag in CCR V V (overflow) flag in CCR C C (carry) flag in CCR PC Program counter SP Stack pointer #IMM Immediate data disp Displacement + Addition – Subtraction × Multiplication ÷ Division ∧ Logical AND ∨ Logical OR ⊕ Logical XOR → Move ∼ NOT (logical complement) :8/:16/:24/:32 8-, 16-, 24-, or 32-bit length Rev. 2.00 Dec. 05, 2005 Page 32 of 724 REJ09B0200-0200 Section 2 CPU Note: * General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to R7, E0 to E7), and 32-bit registers (ER0 to ER7). Table 2.3 Data Transfer Instructions Instruction Size* Function MOV B/W/L (EAs) → Rd, Rs → (EAd) Moves data between two general registers or between a general register and memory, or moves immediate data to a general register. MOVFPE B Cannot be used in this LSI. MOVTPE B Cannot be used in this LSI. POP W/L @SP+ → Rn Pops a general register from the stack. POP.W Rn is identical to MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L @SP+, ERn. PUSH W/L Rn → @–SP Pushes a general register onto the stack. PUSH.W Rn is identical to MOV.W Rn, @–SP. PUSH.L ERn is identical to MOV.L ERn, @–SP. LDM L @SP+ → Rn (register list) Pops two or more general registers from the stack. STM L Rn (register list) → @–SP Pushes two or more general registers onto the stack. Note: * Refers to the operand size. B: Byte W: Word L: Longword Rev. 2.00 Dec. 05, 2005 Page 33 of 724 REJ09B0200-0200 Section 2 CPU Table 2.4 Arithmetic Operations Instructions (1) Instruction Size* Function ADD SUB B/W/L Rd ± Rs → Rd, Rd ± #IMM → Rd Performs addition or subtraction on data in two general registers, or on immediate data and data in a general register (immediate byte data cannot be subtracted from byte data in a general register. Use the SUBX or ADD instruction.) ADDX SUBX B Rd ± Rs ± C → Rd, Rd ± #IMM ± C → Rd Performs addition or subtraction with carry on byte data in two general registers, or on immediate data and data in a general register. INC DEC B/W/L Rd ± 1 → Rd, Rd ± 2 → Rd Increments or decrements a general register by 1 or 2. (Byte operands can be incremented or decremented by 1 only.) ADDS SUBS L Rd ± 1 → Rd, Rd ± 2 → Rd, Rd ± 4 → Rd Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit register. DAA DAS B Rd decimal adjust → Rd Decimal-adjusts an addition or subtraction result in a general register by referring to the CCR to produce 4-bit BCD data. MULXU B/W Rd × Rs → Rd Performs unsigned multiplication on data in two general registers: either 8 bits × 8 bits → 16 bits or 16 bits × 16 bits → 32 bits. MULXS B/W Rd × Rs → Rd Performs signed multiplication on data in two general registers: either 8 bits × 8 bits → 16 bits or 16 bits × 16 bits → 32 bits. DIVXU B/W Rd ÷ Rs → Rd Performs unsigned division on data in two general registers: either 16 bits ÷ 8 bits → 8-bit quotient and 8-bit remainder or 32 bits ÷ 16 bits → 16-bit quotient and 16-bit remainder. Note: * Refers to the operand size. B: Byte W: Word L: Longword Rev. 2.00 Dec. 05, 2005 Page 34 of 724 REJ09B0200-0200 Section 2 CPU Table 2.4 Arithmetic Operations Instructions (2) Instruction Size*1 Function DIVXS B/W Rd ÷ Rs → Rd Performs signed division on data in two general registers: either 16 bits ÷ 8 bits → 8-bit quotient and 8-bit remainder or 32 bits ÷ 16 bits → 16-bit quotient and 16-bit remainder. CMP B/W/L Rd – Rs, Rd – #IMM Compares data in a general register with data in another general register or with immediate data, and sets CCR bits according to the result. NEG B/W/L 0 – Rd → Rd Takes the two’s complement (arithmetic complement) of data in a general register. EXTU W/L Rd (zero extension) → Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by padding with zeros on the left. EXTS W/L Rd (sign extension) → Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by extending the sign bit. TAS*2 B @ERd – 0, 1 → (<bit 7> of @ERd) Tests memory contents, and sets the most significant bit (bit 7) to 1. MAC (EAs) × (EAd) + MAC → MAC Performs signed multiplication on memory contents and adds the result to the multiply-accumulate register. The following operations can be performed: 16 bits × 16 bits + 32 bits → 32 bits, saturating 16 bits × 16 bits + 42 bits → 42 bits, non-saturating CLRMAC 0 → MAC Clears the multiply-accumulate register to zero. LDMAC STMAC L Rs → MAC, MAC → Rd Transfers data between a general register and a multiply-accumulate register. Note: 1. Refers to the operand size. B: Byte W: Word L: Longword 2. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction. Rev. 2.00 Dec. 05, 2005 Page 35 of 724 REJ09B0200-0200 Section 2 CPU Table 2.5 Logic Operations Instructions Instruction Size* Function AND B/W/L Rd ∧ Rs → Rd, Rd ∧ #IMM → Rd Performs a logical AND operation on a general register and another general register or immediate data. OR B/W/L Rd ∨ Rs → Rd, Rd ∨ #IMM → Rd Performs a logical OR operation on a general register and another general register or immediate data. XOR B/W/L Rd ⊕ Rs → Rd, Rd ⊕ #IMM → Rd Performs a logical exclusive OR operation on a general register and another general register or immediate data. NOT B/W/L ∼(Rd) → (Rd) Takes the one’s complement (logical complement) of general register contents. Note: * Refers to the operand size. B: Byte W: Word L: Longword Table 2.6 Shift Instructions Instruction Size* Function SHAL SHAR B/W/L Rd (shift) → Rd Performs an arithmetic shift on general register contents. 1-bit or 2-bit shifts are possible. SHLL SHLR B/W/L Rd (shift) → Rd Performs a logical shift on general register contents. 1-bit or 2-bit shifts are possible. ROTL ROTR B/W/L Rd (rotate) → Rd Rotates general register contents. 1-bit or 2-bit rotations are possible. ROTXL ROTXR B/W/L Rd (rotate) → Rd Rotates general register contents through the carry flag. 1-bit or 2-bit rotations are possible. Note: * Refers to the operand size. B: Byte W: Word L: Longword Rev. 2.00 Dec. 05, 2005 Page 36 of 724 REJ09B0200-0200 Section 2 CPU Table 2.7 Bit Manipulation Instructions (1) Instruction Size* Function BSET B 1 → (<bit-No.> of <EAd>) Sets a specified bit in a general register or memory operand to 1. The bit number is specified by 3-bit immediate data or the lower three bits of a general register. BCLR B 0 → (<bit-No.> of <EAd>) Clears a specified bit in a general register or memory operand to 0. The bit number is specified by 3-bit immediate data or the lower three bits of a general register. BNOT B ∼(<bit-No.> of <EAd>) → (<bit-No.> of <EAd>) Inverts a specified bit in a general register or memory operand. The bit number is specified by 3-bit immediate data or the lower three bits of a general register. BTST B ∼(<bit-No.> of <EAd>) → Z Tests a specified bit in a general register or memory operand and sets or clears the Z flag accordingly. The bit number is specified by 3-bit immediate data or the lower three bits of a general register. BAND B BIAND B BOR B BIOR B Note: * C ∧ (<bit-No.> of <EAd>) → C ANDs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag. C ∧ [∼(<bit-No.> of <EAd>)] → C ANDs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data. C ∨ (<bit-No.> of <EAd>) → C ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag. C ∨ [∼(<bit-No.> of <EAd>)] → C ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data. Refers to the operand size. B: Byte Rev. 2.00 Dec. 05, 2005 Page 37 of 724 REJ09B0200-0200 Section 2 CPU Table 2.7 Bit Manipulation Instructions (2) Instruction Size*1 Function BXOR B C ⊕ (<bit-No.> of <EAd>) → C XORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag. BIXOR B BLD B BILD B C ⊕ [∼(<bit-No.> of <EAd>)] → C XORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data. (<bit-No.> of <EAd>) → C Transfers a specified bit in a general register or memory operand to the carry flag. ∼(<bit-No.> of <EAd>) → C Transfers the inverse of a specified bit in a general register or memory operand to the carry flag. The bit number is specified by 3-bit immediate data. BST B BIST B C → (<bit-No.> of <EAd>) Transfers the carry flag value to a specified bit in a general register or memory operand. ∼C → (<bit-No.> of <EAd>) Transfers the inverse of the carry flag value to a specified bit in a general register or memory operand. The bit number is specified by 3-bit immediate data. Note: * Refers to the operand size. B: Byte Rev. 2.00 Dec. 05, 2005 Page 38 of 724 REJ09B0200-0200 Section 2 CPU Table 2.8 Branch Instructions Instruction Size Function Bcc Branches to a specified address if a specified condition is true. The branching conditions are listed below. Mnemonic Description Condition BRA(BT) Always (true) Always BRN(BF) Never (false) Never BHI High C∨Z=0 BLS Low or same C∨Z=1 BCC(BHS) Carry clear (high or same) C=0 BCS(BLO) Carry set (low) C=1 BNE Not equal Z=0 BEQ Equal Z=1 BVC Overflow clear V=0 BVS Overflow set V=1 BPL Plus N=0 BMI Minus N=1 BGE Greater or equal N⊕V=0 BLT Less than N⊕V=1 BGT Greater than Z∨(N ⊕ V) = 0 BLE Less or equal Z∨(N ⊕ V) = 1 JMP Branches unconditionally to a specified address. BSR Branches to a subroutine at a specified address. JSR Branches to a subroutine at a specified address. RTS Returns from a subroutine Rev. 2.00 Dec. 05, 2005 Page 39 of 724 REJ09B0200-0200 Section 2 CPU Table 2.9 System Control Instructions Instruction Size* Function TRAPA Starts trap-instruction exception handling. RTE Returns from an exception-handling routine. SLEEP Causes a transition to a power-down state. LDC B/W (EAs) → CCR, (EAs) → EXR Moves general register or memory contents or immediate data to CCR or EXR. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid. STC B/W CCR → (EAd), EXR → (EAd) Transfers CCR or EXR contents to a general register or memory. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid. ANDC B CCR ∧ #IMM → CCR, EXR ∧ #IMM → EXR Logically ANDs the CCR or EXR contents with immediate data. ORC B CCR ∨ #IMM → CCR, EXR ∨ #IMM → EXR Logically ORs the CCR or EXR contents with immediate data. XORC B CCR ⊕ #IMM → CCR, EXR ⊕ #IMM → EXR Logically XORs the CCR or EXR contents with immediate data. NOP PC + 2 → PC Only increments the program counter. Note: * Refers to the operand size. B: Byte W: Word Rev. 2.00 Dec. 05, 2005 Page 40 of 724 REJ09B0200-0200 Section 2 CPU Table 2.10 Block Data Transfer Instructions Instruction Size Function EEPMOV.B if R4L ≠ 0 then Repeat @ER5+ → @ER6+ R4L–1 → R4L Until R4L = 0 else next; EEPMOV.W if R4 ≠ 0 then Repeat @ER5+ → @ER6+ R4–1 → R4 Until R4 = 0 else next; Transfers a data block. Starting from the address set in ER5, transfers data for the number of bytes set in R4L or R4 to the address location set in ER6. Execution of the next instruction begins as soon as the transfer is completed. Rev. 2.00 Dec. 05, 2005 Page 41 of 724 REJ09B0200-0200 Section 2 CPU 2.6.2 Basic Instruction Formats The H8S/2600 CPU instructions consist of 2-byte (1-word) units. An instruction consists of an operation field (op field), a register field (r field), an effective address extension (EA field), and a condition field (cc). Figure 2.11 shows examples of instruction formats. • Operation Field Indicates the function of the instruction, the addressing mode, and the operation to be carried out on the operand. The operation field always includes the first four bits of the instruction. Some instructions have two operation fields. • Register Field Specifies a general register. Address registers are specified by 3 bits, and data registers by 3 bits or 4 bits. Some instructions have two register fields. Some have no register field. • Effective Address Extension 8, 16, or 32 bits specifying immediate data, an absolute address, or a displacement. • Condition Field Specifies the branching condition of Bcc instructions. (1) Operation field only op NOP, RTS, etc. (2) Operation field and register fields op rm rn ADD.B Rn, Rm, etc. (3) Operation field, register fields, and effective address extension op rn rm MOV.B @(d:16, Rn), Rm, etc. EA(disp) (4) Operation field, effective address extension, and condition field op cc EA(disp) BRA d:16, etc. Figure 2.11 Instruction Formats (Examples) Rev. 2.00 Dec. 05, 2005 Page 42 of 724 REJ09B0200-0200 Section 2 CPU 2.7 Addressing Modes and Effective Address Calculation The H8S/2600 CPU supports the eight addressing modes listed in table 2.11. Each instruction uses a subset of these addressing modes. Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer instructions can use all addressing modes except programcounter relative and memory indirect. Bit manipulation instructions use register direct, register indirect, or the absolute addressing mode to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a bit number in the operand. Table 2.11 Addressing Modes No. Addressing Mode Symbol 1 Register direct Rn 2 Register indirect @ERn 3 Register indirect with displacement @(d:16,ERn)/@(d:32,ERn) 4 Register indirect with post-increment Register indirect with pre-decrement @ERn+ @–ERn 5 Absolute address @aa:8/@aa:16/@aa:24/@aa:32 6 Immediate #xx:8/#xx:16/#xx:32 7 Program-counter relative @(d:8,PC)/@(d:16,PC) 8 Memory indirect @@aa:8 2.7.1 Register DirectRn The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers. 2.7.2 Register Indirect@ERn The register field of the instruction code specifies an address register (ERn) which contains the address of the operand on memory. If the address is a program instruction address, the lower 24 bits are valid and the upper 8 bits are all assumed to be 0 (H'00). Rev. 2.00 Dec. 05, 2005 Page 43 of 724 REJ09B0200-0200 Section 2 CPU 2.7.3 Register Indirect with Displacement@(d:16, ERn) or @(d:32, ERn) A 16-bit or 32-bit displacement contained in the instruction is added to an address register (ERn) specified by the register field of the instruction, and the sum gives the address of a memory operand. A 16-bit displacement is sign-extended when added. 2.7.4 Register Indirect with Post-Increment or Pre-Decrement@ERn+ or @-ERn Register indirect with post-increment@ERn+: The register field of the instruction code specifies an address register (ERn) which contains the address of a memory operand. After the operand is accessed, 1, 2, or 4 is added to the address register contents and the sum is stored in the address register. The value added is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For the word or longword transfer instructions, the register value should be even. Register indirect with pre-decrement@-ERn: The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field in the instruction code, and the result is the address of a memory operand. The result is also stored in the address register. The value subtracted is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For the word or longword transfer instructions, the register value should be even. 2.7.5 Absolute Address@aa:8, @aa:16, @aa:24, or @aa:32 The instruction code contains the absolute address of a memory operand. The absolute address may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24), or 32 bits long (@aa:32). Table 2.12 indicates the accessible absolute address ranges. To access data, the absolute address should be 8 bits (@aa:8), 16 bits (@aa:16), or 32 bits (@aa:32) long. For an 8-bit absolute address, the upper 24 bits are all assumed to be 1 (H'FFFF). For a 16-bit absolute address the upper 16 bits are a sign extension. A 32-bit absolute address can access the entire address space. A 24-bit absolute address (@aa:24) indicates the address of a program instruction. The upper 8 bits are all assumed to be 0 (H'00). Rev. 2.00 Dec. 05, 2005 Page 44 of 724 REJ09B0200-0200 Section 2 CPU Table 2.12 Absolute Address Access Ranges Absolute Address Data address Normal Mode* 8 bits (@aa:8) H'FF00 to H'FFFF H'FFFF00 to H'FFFFFF 16 bits (@aa:16) H'0000 to H'FFFF H'000000 to H'007FFF, H'FF8000 to H'FFFFFF 32 bits (@aa:32) Program instruction address Advanced Mode H'000000 to H'FFFFFF 24 bits (@aa:24) Note: Normal mode is not available in this LSI. 2.7.6 Immediate#xx:8, #xx:16, or #xx:32 The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data as an operand. The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit manipulation instructions contain 3-bit immediate data in the instruction code, specifying a bit number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifying a vector address. 2.7.7 Program-Counter Relative@(d:8, PC) or @(d:16, PC) This mode is used in the Bcc and BSR instructions. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24-bit PC contents to generate a branch address. Only the lower 24 bits of this branch address are valid; the upper 8 bits are all assumed to be 0 (H′00). The PC value to which the displacement is added is the address of the first byte of the next instruction, so the possible branching range is –126 to +128 bytes (–63 to +64 words) or –32766 to +32768 bytes (–16383 to +16384 words) from the branch instruction. The resulting value should be an even number. 2.7.8 Memory Indirect@@aa:8 This mode can be used by the JMP and JSR instructions. The instruction code contains an 8-bit absolute address specifying a memory operand. This memory operand contains a branch address. The upper bits of the absolute address are all assumed to be 0, so the address range is 0 to 255 (H'0000 to H'00FF in normal mode, H'000000 to H'0000FF in advanced mode). In normal mode, the memory operand is a word operand and the branch address is 16 bits long. In advanced mode, the memory operand is a longword operand, the first byte of which is assumed to be 0 (H'00). Rev. 2.00 Dec. 05, 2005 Page 45 of 724 REJ09B0200-0200 Section 2 CPU Note that the first part of the address range is also the exception vector area. For further details, refer to section 4, Exception Handling. If an odd address is specified in word or longword memory access, or as a branch address, the least significant bit is regarded as 0, causing data to be accessed or instruction code to be fetched at the address preceding the specified address. (For further information, see section 2.5.2, Memory Data Formats.) Note: Normal mode is not available in this LSI. Specified by @aa:8 Branch address Specified by @aa:8 Reserved Branch address (a) Normal Mode* (a) Advanced Mode Note: * Normal mode is not available in this LSI. Figure 2.12 Branch Address Specification in Memory Indirect Mode 2.7.9 Effective Address Calculation Table 2.13 indicates how effective addresses are calculated in each addressing mode. In normal mode the upper 8 bits of the effective address are ignored in order to generate a 16-bit address. Note: Normal mode is not available in this LSI. Rev. 2.00 Dec. 05, 2005 Page 46 of 724 REJ09B0200-0200 Section 2 CPU Table 2.13 Effective Address Calculation (1) No 1 Addressing Mode and Instruction Format op 2 Effective Address Calculation Effective Address (EA) Register direct(Rn) rm Operand is general register contents. rn Register indirect(@ERn) 0 31 op 3 31 24 23 0 Don't care General register contents r Register indirect with displacement @(d:16,ERn) or @(d:32,ERn) 0 31 General register contents op r 31 disp Sign extension Register indirect with post-increment or pre-decrement •Register indirect with post-increment @ERn+ op disp 31 0 31 24 23 0 Don't care General register contents r •Register indirect with pre-decrement @-ERn 0 0 31 4 24 23 Don't care 1, 2, or 4 31 0 General register contents 31 24 23 0 Don't care op r 1, 2, or 4 Operand Size Byte Word Longword Offset 1 2 4 Rev. 2.00 Dec. 05, 2005 Page 47 of 724 REJ09B0200-0200 Section 2 CPU Table 2.13 Effective Address Calculation (2) No 5 Addressing Mode and Instruction Format Effective Address Calculation Effective Address (EA) Absolute address @aa:8 31 op @aa:16 31 op 0 H'FFFF 24 23 16 15 0 Don't care Sign extension abs @aa:24 31 op 8 7 24 23 Don't care abs 24 23 0 Don't care abs @aa:32 op 31 6 Immediate #xx:8/#xx:16/#xx:32 op 7 0 24 23 Don't care abs Operand is immediate data. IMM 0 23 Program-counter relative PC contents @(d:8,PC)/@(d:16,PC) op disp 23 0 Sign extension disp 31 24 23 0 Don't care 8 Memory indirect @@aa:8 • Normal mode* 8 7 31 op abs 0 abs H'000000 15 0 31 24 23 Don't care Memory contents 16 15 0 H'00 • Advanced mode 8 7 31 op abs H'000000 31 0 Memory contents Note: * Normal mode is not available in this LSI. Rev. 2.00 Dec. 05, 2005 Page 48 of 724 REJ09B0200-0200 0 abs 31 24 23 Don't care 0 Section 2 CPU 2.8 Processing States The H8S/2600 CPU has five main processing states: the reset state, exception handling state, program execution state, bus-released state, and power-down state. Figure 2.13 indicates the state transitions. • Reset State In this state, the CPU and all on-chip peripheral modules are initialized and not operating. When the RES input goes low, all current processing stops and the CPU enters the reset state. All interrupts are masked in the reset state. Reset exception handling starts when the RES signal changes from low to high. For details, refer to section 4, Exception Handling. The reset state can also be entered by a watchdog timer overflow. • Exception-Handling State The exception-handling state is a transient state that occurs when the CPU alters the normal processing flow due to an exception source, such as a reset, trace, interrupt, or trap instruction. The CPU fetches a start address (vector) from the exception vector table and branches to that address. For further details, refer to section 4, Exception Handling. • Program Execution State In this state, the CPU executes program instructions in sequence. • Bus-Released State The bus has been released in response to a bus request from a bus master other than the CPU. While the bus is released, the CPU halts operations. • Program stop state This is a power-down state in which the CPU stops operating. The program stop state occurs when a SLEEP instruction is executed or the CPU enters hardware standby mode. For further details, refer to section 21, Power-Down Modes. Rev. 2.00 Dec. 05, 2005 Page 49 of 724 REJ09B0200-0200 Section 2 CPU End of bus request Bus request Program execution state End of bus request SLEEP instruction with SSBY = 1 Bus request SLEEP instruction with SSBY = 0 Bus-released state Request for exception handling End of exception handling Sleep mode Interrupt request Exception-handling state External interrupt request Software standby mode RES = high Reset state*1 STBY = high, RES = low Hardware standby mode*2 Power-down state*3 Notes: 1. From any state except hardware standby mode, a transition to the reset state occurs whenever RES goes low. A transition can also be made to the reset state when the watchdog timer overflows. 2. From any state, a transition to hardware standby mode occurs when STBY goes low. 3. For details, refer to section 21, Power-Down Modes. Figure 2.13 State Transitions Rev. 2.00 Dec. 05, 2005 Page 50 of 724 REJ09B0200-0200 Section 2 CPU 2.9 Usage Note 2.9.1 Notes on Using the Bit Operation Instruction Instructions BSET, BCLR, BNOT, BST, and BIST read data in byte units, and write data in byte units after bit operation. Therefore, attention must be paid when these instructions are used for ports or registers including write-only bits. Instruction BCLR can be used to clear the flag in the internal I/O register to 0. If it is obvious that the flag has been set to 1 by the interrupt processing routine, it is unnecessary to read the flag beforehand. Rev. 2.00 Dec. 05, 2005 Page 51 of 724 REJ09B0200-0200 Section 2 CPU Rev. 2.00 Dec. 05, 2005 Page 52 of 724 REJ09B0200-0200 Section 3 MCU Operating Modes Section 3 MCU Operating Modes 3.1 Operating Mode Selection This LSI supports four operating modes (modes 4 to 7). These modes are determined by the mode pin (MD2 to MD0) setting. Do not change the mode pin settings during operation. Table 3.1 MCU Operating Mode Selection MCU Operating Mode MD2 MD1 MD0 CPU Operating Mode 4 1 0 0 Advanced mode Expanded mode with on-chip ROM disabled Disabled 5 1 0 1 Advanced mode Expanded mode with on-chip ROM disabled Disabled 6 1 1 0 Advanced mode Expanded mode with on-chip ROM enabled Enabled 7 1 1 1 Advanced mode Single-chip mode Enabled On-Chip ROM Description Rev. 2.00 Dec. 05, 2005 Page 53 of 724 REJ09B0200-0200 Section 3 MCU Operating Modes 3.2 Register Descriptions The following registers are related to the operating mode. • Mode control register (MDCR) • System control register (SYSCR) 3.2.1 Mode Control Register (MDCR) Bit Bit Name Initial Value R/W Descriptions 7 1 Reserved 6 to 3 All 0 This bit is always read as 1 and cannot be modified. Reserved These bits are always read as 0 and cannot be modified. 2 MDS2 * R Mode select 2 to 0 1 MDS1 * R 0 MDS0 * R These bits indicate the input levels at pins MD2 to MD0 (the current operating mode). Bits MDS2 to MDS0 correspond to MD2 to MD0. MDS2 to MDS0 are readonly bits and they cannot be written to. The mode pin (MD2 to MD0) input levels are latched into these bits when MDCR is read. These latches are canceled by a reset. These latches are canceled by a power-on reset. Note: * Determined by pins MD2 to MD0. Rev. 2.00 Dec. 05, 2005 Page 54 of 724 REJ09B0200-0200 Section 3 MCU Operating Modes 3.2.2 System Control Register (SYSCR) SYSCR selects saturating or non-saturating calculation for the MAC instruction, selects the interrupt control mode and the detected edge for NMI, and enables or disables on-chip RAM. Bit Bit Name Initial Value R/W Descriptions 7 MACS 0 R/W MAC Saturation Selects either saturating or non-saturating calculation for the MAC instruction. 0: Non-saturating calculation for the MAC instruction 1: Saturating calculation for the MAC instruction 6 0 Reserved This bit is always read as 0 and cannot be modified. 5 INTM1 0 R/W 4 INTM0 0 R/W These bits select the control mode of the interrupt controller. For details of the interrupt control modes, see section 5.6, Interrupt Control Modes and Interrupt Operation. 00: Interrupt control mode 0 01: Setting prohibited 10: Interrupt control mode 2 11: Setting prohibited 3 NMIEG 0 R/W NMI Edge Select Selects the valid edge of the NMI interrupt input. 0: An interrupt is requested at the falling edge of NMI input 1: An interrupt is requested at the rising edge of NMI input 2, 1 All 0 Reserved These bits are always read as 0 and cannot be modified. 0 RAME 1 R/W RAM Enable Enables or disables on-chip RAM. The RAME bit is initialized when the reset status is released. 0: On-chip RAM is disabled 1: On-chip RAM is enabled Rev. 2.00 Dec. 05, 2005 Page 55 of 724 REJ09B0200-0200 Section 3 MCU Operating Modes 3.3 Operating Mode Descriptions 3.3.1 Mode 4 The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is disabled. Ports A, B, and C function as an address bus, ports D and E function as a data bus, and part of port F carries bus control signals. The bus mode immediately after a reset is 16 bits, with 16-bit access to all areas. However, note that if 8-bit access is designated by the bus controller for all areas, the bus mode switches to 8 bits. 3.3.2 Mode 5 The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is disabled. Ports A, B, and C function as an address bus, port D functions as a data bus, and part of port F carries bus control signals. The bus mode immediately after a reset is 8 bits, with 8-bit access to all areas. However, note that if 16-bit access is designated by the bus controller for any area, the bus mode switches to 16 bits and port E becomes a data bus. 3.3.3 Mode 6 The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is enabled. Ports A, B, and C function as input port pins immediately after a reset. Address output can be performed by setting the corresponding DDR (data direction register) bits to 1. Port D functions as a data bus, and part of port F carries bus control signals. The bus mode immediately after a reset is 8 bits, with 8-bit access to all areas. However, note that if 16-bit access is designated by the bus controller for any area, the bus mode switches to 16 bits and port E becomes a data bus. 3.3.4 Mode 7 The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is enabled, but external addresses cannot be accessed. All I/O ports are available for use as input/output ports. Rev. 2.00 Dec. 05, 2005 Page 56 of 724 REJ09B0200-0200 Section 3 MCU Operating Modes 3.4 Pin Functions in Each Operating Mode The pin functions of ports A to F vary depending on the operating mode. Table 3.2 shows their functions in each operating mode. Table 3.2 Pin Functions in Each Mode Port Mode 4 Mode 5 Mode 6 Mode 7 Port A A A P*/A P Port B A A P*/A P Port C A A P*/A P Port D D D D P Port E P/D* P*/D P*/D P PF7 P/C* P/C* P/C* P*/C PF6 to PF4 C C C P PF3 P/C* P*/C P*/C PF2, PF0 P*/C P*/C P*/C P P P Port F Port K P [Legend] P: I/O port A: Address bus output D: Data bus I/O C: Control signals, clock I/O *: After reset Rev. 2.00 Dec. 05, 2005 Page 57 of 724 REJ09B0200-0200 Section 3 MCU Operating Modes 3.5 Address Map Figure 3.1 shows the address map in each operating mode. Modes 4 and 5 (advanced expanded modes with on-chip ROM disabled) H'000000 Mode 6 (advanced expanded mode with on-chip ROM enabled) H'000000 H'03FFFF Reserved area H'000000 On-chip ROM External address space H'FFAFFF H'FFB000 H'FFDFFF H'FFE000 Mode 7 (advanced single-chip mode) H'FFAFFF H'FFB000 H'FFDFFF H'FFE000 On-chip ROM H'03FFFF External address space Reserved area H'FFE000 On-chip RAM * On-chip RAM * On-chip RAM H'FFEFBF H'FFEFC0 External address space H'FFF800 H'FFEFC0 H'FFFF40 External area Internal I/O registers H'FFFFC0 H'FFFFFF Note: On-chip RAM * H'FFF800 Internal I/O registers Internal I/O registers H'FFFF60 External address space H'FFF800 H'FFFF40 H'FFFF60 H'FFFFC0 H'FFFFFF Internal I/O registers H'FFFF3F External area Internal I/O registers On-chip RAM * H'FFFF60 H'FFFFC0 H'FFFFFF * External address can be accessed by clearing th RAME bit in SYSCR to 0. Figure 3.1 Address Map Rev. 2.00 Dec. 05, 2005 Page 58 of 724 REJ09B0200-0200 Internal I/O registers On-chip RAM Section 4 Exception Handling Section 4 Exception Handling 4.1 Exception Handling Types and Priority As shown in table 4.1, exception handling may be caused by a reset, trace, interrupt, or trap instruction. Exception handling is prioritized as shown in table 4.1. If two or more exceptions occur simultaneously, they are accepted and processed in order of priority. Exception sources, the stack structure, and operation of the CPU vary depending on the interrupt control mode. For details on the interrupt control mode, refer to section 5, Interrupt Controller. Table 4.1 Exception Types and Priority Priority Exception Type Start of Exception Handling High Reset Starts immediately after a low-to-high transition at the RES pin, or when the watchdog timer overflows. The CPU enters the reset state when the RES pin is low. Trace*1 Starts when execution of the current instruction or exception handling ends, if the trace (T) bit in EXR is set to 1. Direct transition Starts when a direction transition occurs as the result of SLEEP instruction execution. Interrupt Starts when execution of the current instruction or exception handling ends, if an interrupt request has been issued.*2 Trap instruction *3 Started by execution of a trap instruction (TRAPA). Low Notes: 1. Traces are enabled only in interrupt control mode 2. Trace exception handling is not executed after execution of an RTE instruction. 2. Interrupt detection is not performed on completion of ANDC, ORC, XORC, or LDC instruction execution, or on completion of reset exception handling. 3. Trap instruction exception handling requests are accepted at all times in program execution state. Rev. 2.00 Dec. 05, 2005 Page 59 of 724 REJ09B0200-0200 Section 4 Exception Handling 4.2 Exception Sources and Exception Vector Table Different vector addresses are assigned to different exception sources. Table 4.2 lists the exception sources and their vector addresses. Since the usable modes differ depending on the product, for details on each product, refer to section 3, MCU Operating Modes. Table 4.2 Exception Handling Vector Table Vector Address*1 Exception Source Vector Number Normal Mode*2 Advanced Mode Power-on reset 0 H'0000 to H'0001 H'0000 to H'0003 Reserved for system use 1 H'0002 to H'0003 H'0004 to H'0007 2 H'0004 to H'0005 H'0008 to H'000B 3 H'0006 to H'0007 H'000C to H'000F 4 H'0008 to H'0019 H'0010 to H'0013 5 H'000A to H'000B H'0014 to H'0017 Interrupt (direct transitions)* 6 H'000C to H'000D H'0018 to H'001B Interrupt (NMI) 7 H'000E to H'000F H'001C to H'001F Trap instruction (#0) 8 H'0010 to H'0011 H'0020 to H'0023 (#1) 9 H'0012 to H'0013 H'0024 to H'0027 (#2) 10 H'0014 to H'0015 H'0028 to H'002B (#3) 11 H'0016 to H'0017 H'002C to H'002F 12 H'0018 to H'0019 H'0030 to H'0033 13 H'001A to H'001B H'0034 to H'0037 14 H'001C to H'001D H'0038 to H'003B 15 H'001E to H'001F H'003C to H'003F IRQ0 16 H'0020 to H'0021 H'0040 to H'0043 IRQ1 17 H'0022 to H'0023 H'0044 to H'0047 IRQ2 18 H'0024 to H'0025 H'0048 to H'004B IRQ3 19 H'0026 to H'0027 H'004C to H'004F IRQ4 20 H'0028 to H'0029 H'0050 to H'0053 IRQ5 21 H'002A to H'002B H'0054 to H'0057 Reserved for system use 22 H'002C to H'002D H'0058 to H'005B 23 H'002E to H'002F H'005C to H'005F Trace 4 Reserved for system use External interrupt Rev. 2.00 Dec. 05, 2005 Page 60 of 724 REJ09B0200-0200 Section 4 Exception Handling Vector Address*1 Exception Source 3 Internal interrupt* Vector Number Normal Mode*2 Advanced Mode 24 H'0030 to H'0031 H'0060 to H'0063 127 H'00FE to H'00FF H'01FC to H'01FF Notes: 1. Lower 16 bits of the address. 2. Not available in this LSI. 3. For details of internal interrupt vectors, see section 5.5, Interrupt Exception Handling Vector Table. 4. For direct transitions, see section 21.10, Direct Transitions 4.3 Reset A reset has the highest exception priority. When the RES pin goes low, all processing halts and this LSI enters the reset state. To ensure that this LSI is reset, hold the RES pin low for at least 20 ms at power-up. To reset the chip during operation, hold the RES pin low for at least 20 states. A reset initializes the internal state of the CPU and the registers of on-chip peripheral modules. The chip can also be reset by overflow of the watchdog timer. For details, see section 12, Watchdog Timer (WDT). The interrupt control mode is 0 immediately after reset. 4.3.1 Reset Exception Handling When the RES pin goes high after being held low for the necessary period, this LSI starts reset exception handling as follows: 1. The internal state of the CPU and the registers of the on-chip peripheral modules are initialized, the T bit in EXR is cleared to 0, and the I bit in EXR and CCR is set to 1. 2. The reset exception handling vector address is read and transferred to the PC, and program execution starts from the address indicated by the PC. Figures 4.1 and 4.2 show examples of the reset sequence. Rev. 2.00 Dec. 05, 2005 Page 61 of 724 REJ09B0200-0200 Section 4 Exception Handling Vector fetch Fetch of first Internal processing program instruction (1) (3) φ RES Internal address bus (5) Internal read signal Internal write signal Internal data bus High (2) (4) (6) (1)(3) Reset exception handling vector address (when reset, (1)=H'000000, (3)=H'000002) (2)(4) Start address (contents of reset exception handling vector address) (5) Start address ((5)=(2)(4)) (6) First program instruction Figure 4.1 Reset Sequence (Advanced Mode with On-chip ROM Enabled) Rev. 2.00 Dec. 05, 2005 Page 62 of 724 REJ09B0200-0200 Section 4 Exception Handling Internal processing Vector fetch * * Fetch of first program instruction * φ RES Address bus (1) (3) (5) RD HWR, LWR D15 to D0 High (2) (4) (6) (1)(3) Reset exception handling vector address (when reset, (1)=H'000000, (3)=H'000002) (2)(4) Start address (contents of reset exception handling vector address) (5) Start address ((5)=(2)(4)) (6) First program instruction Note:* Three program wait states are inserted. Figure 4.2 Reset Sequence (Advanced Mode with On-chip ROM Disabled) Rev. 2.00 Dec. 05, 2005 Page 63 of 724 REJ09B0200-0200 Section 4 Exception Handling 4.3.2 Interrupts after Reset If an interrupt is accepted immediately after a reset and before the stack pointer (SP) is initialized, the PC and CCR will not be saved correctly, leading to a program crash. To prevent this, all interrupt requests, including NMI, are disabled immediately after a reset exception handling is executed. Since the first instruction of a program is always executed immediately after the reset, make sure that this instruction initializes the stack pointer (example: MOV.L #xx: 32, SP). 4.3.3 State of On-Chip Peripheral Modules after Reset Release After reset release, MSTPCRA to MSTPCRA are initialized to H'3F, H'FF, and H'FF, and B'11xxxxxx respectively, and all modules except the DTC enter module stop mode. Consequently, on-chip peripheral module registers cannot be read or written to. Register reading and writing is enabled when the module stop mode is cancelled. Note: The initial values of bits 5 to 0 in MSTPCRD are undefined. 4.4 Traces Traces are enabled in interrupt control mode 2. Trace mode is not activated in interrupt control mode 0, irrespective of the state of the T bit. For details of interrupt control modes, see section 5, Interrupt Controller. If the T bit in EXR is set to 1, trace mode is activated. In trace mode, a trace exception occurs on completion of each instruction. Trace mode is not affected by interrupt mask bit in CCR. Table 4.3 shows the states of CCR and EXR after execution of trace exception handling. Trace mode is cancelled by clearing the T bit in EXR to 0 with the trace exception handling. The T bit saved on the stack retains its value of 1, and when control is returned from the trace exception handling routine by the RTE instruction, trace mode resumes. Trace exception handling is not carried out after execution of the RTE instruction. Interrupts are accepted even within the trace exception handling routine. Rev. 2.00 Dec. 05, 2005 Page 64 of 724 REJ09B0200-0200 Section 4 Exception Handling Table 4.3 Statuses of CCR and EXR after Trace Exception Handling CCR Interrupt Control Mode I 0 UI EXR I2 to I0 T Trace exception handling cannot be used. 2 1 — — 0 [Legend] 1: Set to 1 0: Cleared to 0 —: Retains value prior to execution 4.5 Interrupts Interrupts are controlled by the interrupt controller. The interrupt controller has two interrupt control modes and can assign interrupts other than NMI to eight priority/mask levels to enable multiplexed interrupt control. The source to start interrupt exception handling and the vector address differ depending on the product. For details, refer to section 5, Interrupt Controller. Interrupt exception handling is conducted as follows: 1. The values in the program counter (PC), condition code register (CCR), and extended control register (EXR) are saved to the stack. 2. The interrupt mask bit is updated and the T bit is cleared to 0. 3. A vector address corresponding to the interrupt source is generated, the start address is loaded from the vector table to the PC, and program execution begins from that address. Rev. 2.00 Dec. 05, 2005 Page 65 of 724 REJ09B0200-0200 Section 4 Exception Handling 4.6 Trap Instruction Trap instruction exception handling starts when a TRAPA instruction is executed. Trap instruction exception handling can be executed at all times in the program execution state. Trap instruction exception handling is conducted as follows: 1. The values in the program counter (PC), condition code register (CCR), and extended control register (EXR) are saved to the stack. 2. The interrupt mask bit is updated and the T bit is cleared to 0. 3. A vector address corresponding to the interrupt source is generated, the start address is loaded from the vector table to the PC, and program execution starts from that address. The TRAPA instruction fetches a start address from a vector table entry corresponding to a vector number from 0 to 3, as specified in the instruction code. Table 4.4 shows the statuses of CCR and EXR after execution of trap instruction exception handling. Table 4.4 Statuses of CCR and EXR after Trap Instruction Exception Handling CCR EXR Interrupt Control Mode I UI I2 to I0 T 0 1 2 1 0 [Legend] 1: Set to 1 0: Cleared to 0 : Retains value prior to execution Rev. 2.00 Dec. 05, 2005 Page 66 of 724 REJ09B0200-0200 Section 4 Exception Handling 4.7 Stack Status after Exception Handling Figures 4.3 shows the stack after completion of trap instruction exception handling and interrupt exception handling. (a) Normal Modes*2 SP EXR Reserved*1 SP CCR CCR CCR*1 CCR*1 PC (16 bits) PC (16 bits) Interrupt control mode 0 Interrupt control mode 2 (b) Advanced Modes SP EXR Reserved*1 SP CCR PC (24 bits) Interrupt control mode 0 CCR PC (24 bits) Interrupt control mode 2 Notes: 1. Ignored on return. 2. Normal modes are not available in this LSI. Figure 4.3 Stack Status after Exception Handling Rev. 2.00 Dec. 05, 2005 Page 67 of 724 REJ09B0200-0200 Section 4 Exception Handling 4.8 Usage Note When accessing word data or longword data, this LSI assumes that the lowest address bit is 0. The stack should always be accessed by word transfer instruction or longword transfer instruction, and the value of the stack pointer (SP: ER7) should always be kept even. Use the following instructions to save registers: PUSH.W Rn (or MOV.W Rn, @-SP) PUSH.L ERn (or MOV.L ERn, @-SP) Use the following instructions to restore registers: POP.W Rn (or MOV.W @SP+, Rn) POP.L ERn (or MOV.L @SP+, ERn) Setting SP to an odd value may lead to a malfunction. Figure 4.4 shows an example of what happens when the SP value is odd. Address CCR SP R1L SP H'FFFEFA H'FFFEFB PC PC H'FFFEFC H'FFFEFD H'FFFEFE SP H'FFFEFF SP set to H'FFFEFF TRAP instruction executed MOV.B R1L, @-ER7 instruction executed Data saved above SP Contents of CCR lost [Legend] CCR : PC : R1L : SP : Condition code register Program counter General register R1L Stack pointer Note: This diagram illustrates an example in which the interrupt control mode is 0, in advanced mode. Figure 4.4 Operation when SP Value Is Odd Rev. 2.00 Dec. 05, 2005 Page 68 of 724 REJ09B0200-0200 Section 5 Interrupt Controller Section 5 Interrupt Controller 5.1 Features • Two interrupt control modes Any of two interrupt control modes can be set by means of the INTM1 and INTM0 bits in the system control register (SYSCR). • Priorities settable with IPR An interrupt priority register (IPR) is provided for setting interrupt priorities. Eight priority levels can be set for each module for all interrupts except NMI. NMI is assigned the highest priority level of 8, and can be accepted at all times. • Independent vector addresses All interrupt sources are assigned independent vector addresses, making it unnecessary for the source to be identified in the interrupt handling routine. • Seven external interrupts NMI is the highest-priority interrupt, and is accepted at all times. Rising edge or falling edge can be selected for NMI. Falling edge, rising edge, or both edge detection, or level sensing, can be selected for IRQ5 to IRQ0. • DTC control The DTC can be activated by an interrupt request. Rev. 2.00 Dec. 05, 2005 Page 69 of 724 REJ09B0200-0200 Section 5 Interrupt Controller A block diagram of the interrupt controller is shown in figure 5.1. CPU INTM1, INTM0 SYSCR NMIEG NMI input NMI input unit IRQ input IRQ input unit ISR ISCR IER Interrupt request Vector number Priority determination I Internal interrupt request SWDTEND to SLE0 CCR I2 to I0 IPR Interrupt controller [Legend] ISCR: IER: ISR: IPR: SYSCR: IRQ sense control register IRQ enable register IRQ status register Interrupt priority register System control register Figure 5.1 Block Diagram of Interrupt Controller Rev. 2.00 Dec. 05, 2005 Page 70 of 724 REJ09B0200-0200 EXR Section 5 Interrupt Controller 5.2 Input/Output Pins Table 5.1 summarizes the pins of the interrupt controller. Table 5.1 Pin Configuration Name I/O Function NMI Input Nonmaskable external interrupt Rising or falling edge can be selected IRQ5 Input Maskable external interrupts IRQ4 Input IRQ3 Input Rising, falling, or both edges, or level sensing, can be selected IRQ2 Input IRQ1 Input IRQ0 Input Rev. 2.00 Dec. 05, 2005 Page 71 of 724 REJ09B0200-0200 Section 5 Interrupt Controller 5.3 Register Descriptions The interrupt controller has the following registers. For the system control register (SYSCR), refer to section 3.2.2, System Control Register (SYSCR). • • • • • • • • • • • • • • • • • System control register (SYSCR) IRQ sense control register H (ISCRH) IRQ sense control register L (ISCRL) IRQ enable register (IER) IRQ status register (ISR) Interrupt priority register A (IPRA) Interrupt priority register B (IPRB) Interrupt priority register C (IPRC) Interrupt priority register D (IPRD) Interrupt priority register E (IPRE) Interrupt priority register F (IPRF) Interrupt priority register G (IPRG) Interrupt priority register H (IPRH) Interrupt priority register J (IPRJ) Interrupt priority register K (IPRK) Interrupt priority register M (IPRM) Interrupt priority register O (IPRO) Rev. 2.00 Dec. 05, 2005 Page 72 of 724 REJ09B0200-0200 Section 5 Interrupt Controller 5.3.1 Interrupt Priority Registers A to H, J, K, M, and O (IPRA to IPRH, IPRJ, IPRK, IPRM, and IPRO) The IPR registers set priorities (levels 7 to 0) for interrupts other than NMI. The correspondence between interrupt sources and IPR settings is shown in table 5.2. Setting a value in the range from H'0 to H'7 in the 3-bit groups of bits 0 to 2 and 4 to 6 sets the priority of the corresponding interrupt. Bit Bit Name Initial Value R/W Description 7 0 Reserved These bits are always read as 0. 6 IPR6 1 R/W Sets the priority of the corresponding interrupt source. 5 IPR5 1 R/W 000: Priority level 0 (Lowest) 4 IPR4 1 R/W 001: Priority level 1 010: Priority level 2 011: Priority level 3 100: Priority level 4 101: Priority level 5 110: Priority level 6 111: Priority level 7 (Highest) 3 0 Reserved These bits are always read as 0. 2 IPR2 1 R/W Sets the priority of the corresponding interrupt source. 1 IPR1 1 R/W 000: Priority level 0 (Lowest) 0 IPR0 1 R/W 001: Priority level 1 010: Priority level 2 011: Priority level 3 100: Priority level 4 101: Priority level 5 110: Priority level 6 111: Priority level 7 (Highest) Rev. 2.00 Dec. 05, 2005 Page 73 of 724 REJ09B0200-0200 Section 5 Interrupt Controller 5.3.2 IRQ Enable Register (IER) IER is an 8-bit readable/writable register that controls the enabling and disabling of interrupt requests IRQ0 to IRQ5. Bit Bit Name Initial Value R/W Description 7, 6 All 0 R/W Reserved 5 IRQ5E 0 R/W IRQ5 Enable The write value should always be 0. The IRQ5 interrupt request is enabled when this bit is 1. 4 IRQ4E 0 R/W IRQ4 Enable The IRQ4 interrupt request is enabled when this bit is 1. 3 IRQ3E 0 R/W IRQ3 Enable The IRQ3 interrupt request is enabled when this bit is 1. 2 IRQ2E 0 R/W IRQ2 Enable The IRQ2 interrupt request is enabled when this bit is 1. 1 IRQ1E 0 R/W IRQ1 Enable The IRQ1 interrupt request is enabled when this bit is 1. 0 IRQ0E 0 R/W IRQ0 Enable The IRQ0 interrupt request is enabled when this bit is 1. Rev. 2.00 Dec. 05, 2005 Page 74 of 724 REJ09B0200-0200 Section 5 Interrupt Controller 5.3.3 IRQ Sense Control Registers H and L (ISCRH, ISCRL) The ISCR registers select the source that generates an interrupt request at pins IRQ0 to IRQ5. • ISCRH Bit Initial Bit Name Value R/W Description 15 to 12 R/W Reserved All 0 The write value should always be 0. 11 IRQ5SCB 0 R/W 10 IRQ5SCA 0 R/W IRQ5 Sense Control B IRQ5 Sense Control A 00: Interrupt request generated at IRQ5 input level low 01: Interrupt request generated at falling edge of IRQ5 input 10: Interrupt request generated at rising edge of IRQ5 input 11: Interrupt request generated at both falling and rising edges of IRQ5 input 9 IRQ4SCB 0 R/W 8 IRQ4SCA 0 R/W IRQ4 Sense Control B IRQ4 Sense Control A 00: Interrupt request generated at IRQ4 input level low 01: Interrupt request generated at falling edge of IRQ4 input 10: Interrupt request generated at rising edge of IRQ4 input 11: Interrupt request generated at both falling and rising edges of IRQ4 input Rev. 2.00 Dec. 05, 2005 Page 75 of 724 REJ09B0200-0200 Section 5 Interrupt Controller • ISCRL Bit Initial Bit Name Value R/W Description 7 IRQ3SCB 0 R/W 6 IRQ3SCA 0 R/W IRQ3 Sense Control B IRQ3 Sense Control A 00: Interrupt request generated at IRQ3 input level low 01: Interrupt request generated at falling edge of IRQ3 input 10: Interrupt request generated at rising edge of IRQ3 input 11: Interrupt request generated at both falling and rising edges of IRQ3 input 5 IRQ2SCB 0 R/W 4 IRQ2SCA 0 R/W IRQ2 Sense Control B IRQ2 Sense Control A 00: Interrupt request generated at IRQ2 input level low 01: Interrupt request generated at falling edge of IRQ2 input 10: Interrupt request generated at rising edge of IRQ2 input 11: Interrupt request generated at both falling and rising edges of IRQ2 input 3 IRQ1SCB 0 R/W 2 IRQ1SCA 0 R/W IRQ1 Sense Control B IRQ1 Sense Control A 00: Interrupt request generated at IRQ1 input level low 01: Interrupt request generated at falling edge of IRQ1 input 10: Interrupt request generated at rising edge of IRQ1 input 11: Interrupt request generated at both falling and rising edges of IRQ1 input 1 IRQ0SCB 0 R/W 0 IRQ0SCA 0 R/W IRQ0 Sense Control B IRQ0 Sense Control A 00: Interrupt request generated at IRQ0 input level low 01: Interrupt request generated at falling edge of IRQ0 input 10: Interrupt request generated at rising edge of IRQ0 input 11: Interrupt request generated at both falling and rising edges of IRQ0 input Rev. 2.00 Dec. 05, 2005 Page 76 of 724 REJ09B0200-0200 Section 5 Interrupt Controller 5.3.4 IRQ Status Register (ISR) ISR indicates the status of IRQ0 to IRQ5 interrupt requests. Bit Bit Name Initial Value R/W Description 7, 6 All 0 R/W* Reserved These bits are always read as 0. 5 IRQ5F 0 R/W* [Setting conditions] 4 IRQ4F 0 R/W* 3 IRQ3F 0 R/W* When the interrupt source selected by the ISCR registers occurs 2 IRQ2F 0 R/W* [Clearing conditions] 1 IRQ1F 0 R/W* • 0 IRQ0F 0 R/W* Cleared by reading IRQnF flag when IRQnF = 1, then writing 0 to IRQnF flag • When interrupt exception handling is executed when low-level detection is set and IRQn input is high • When IRQn interrupt exception handling is executed when falling, rising, or both-edge detection is set • When the DTC is activated by an IRQn interrupt, and the DISEL bit in MRB of the DTC is cleared to 0 Note: * Only 0 can be written to clear the flag. Rev. 2.00 Dec. 05, 2005 Page 77 of 724 REJ09B0200-0200 Section 5 Interrupt Controller 5.4 Interrupt Sources 5.4.1 External Interrupts There are seven external interrupts: NMI and IRQ0 to IRQ5. These interrupts can be used to restore this LSI from software standby mode. NMI Interrupt: NMI is the highest-priority interrupt, and is always accepted by the CPU regardless of the interrupt control mode or the status of the CPU interrupt mask bits. The NMIEG bit in SYSCR can be used to select whether an interrupt is requested at a rising edge or a falling edge on the NMI pin. IRQ0 to IRQ5 Interrupts: Interrupts IRQ0 to IRQ5 are requested by an input signal at pins IRQ0 to IRQ5. Interrupts IRQ0 to IRQ5 have the following features: • Using ISCR, it is possible to select whether an interrupt is generated by a low level, falling edge, rising edge, or both edges, at pins IRQ0 to IRQ5. • Enabling or disabling of interrupt requests IRQ0 to IRQ5 can be selected with IER. • The interrupt priority level can be set with IPR. • The status of interrupt requests IRQ0 to IRQ5 is indicated in ISR. ISR flags can be cleared to 0 by software. The detection of IRQ0 to IRQ5 interrupts does not depend on whether the relevant pin has been set for input or output. However, when a pin is used as an external interrupt input pin, do not clear the corresponding DDR to 0; and use the pin as an I/O pin for another function. A block diagram of interrupts IRQ0 to IRQ5 is shown in figure 5.2. IRQnE IRQnSCA, IRQnSCB IRQnF Edge/level detection circuit S Q IRQn interrupt request R IRQn input Clear signal Note: n = 5 to 0 Figure 5.2 Block Diagram of Interrupts IRQ0 to IRQ5 Rev. 2.00 Dec. 05, 2005 Page 78 of 724 REJ09B0200-0200 Section 5 Interrupt Controller 5.4.2 Internal Interrupts The sources for internal interrupts from on-chip peripheral modules have the following features: • For each on-chip peripheral module there are flags that indicate the interrupt request status, and enable bits that select enabling or disabling of these interrupts. If both of these are set to 1 for a particular interrupt source, an interrupt request is issued to the interrupt controller. • The interrupt priority level can be set by means of IPR. • The DTC can be activated by a TPU, SCI, or other interrupt request. • When the DTC is activated by an interrupt request, it is not affected by the interrupt control mode or CPU interrupt mask bit. 5.5 Interrupt Exception Handling Vector Table Table 5.2 shows interrupt exception handling sources, vector addresses, and interrupt priorities. For default priorities, the lower the vector number, the higher the priority. Priorities among modules can be set by means of IPR. Modules set at the same priority will conform to their default priorities. Priorities within a module are fixed. Rev. 2.00 Dec. 05, 2005 Page 79 of 724 REJ09B0200-0200 Section 5 Interrupt Controller Table 5.2 Interrupt Sources, Vector Addresses, and Interrupt Priorities Vector Address* Interrupt Source Origin of Interrupt Source Vector Number Advanced Mode IPR Priority High 7 H'001C IRQ0 16 H'0040 IPRA6 to IPRA4 IRQ1 17 H'0044 IPRA2 to IPRA0 IPRB6 to IPRB4 External pin NMI IRQ2 18 H'0048 IRQ3 19 H'004C IRQ4 20 H'0050 IRQ5 21 H'0054 Reserved for system use 22 H'0058 Reserved for system use 23 H'005C DTC SWDTEND 24 H'0060 IPRC2 to IPRC0 WDT_0 WOVI0 25 H'0064 IPRD6 to IPRD4 PC break control PC break 27 H'006C IPRE6 to IPRE4 A/D ADI 28 H'0070 IPRE2 to IPRE0 WDT_1 WOVI1 29 H'0074 TPU_0 TGIA_0 32 H'0080 TGIB_0 33 H'0084 TGIC_0 34 H'0088 TGID_0 35 H'008C TPU_1 TPU_2 TCIV_0 36 H'0090 TGIA_1 40 H'00A0 TGIB_1 41 H'00A4 TCIV_1 42 H'00A8 TCIU_1 43 H'00AC TGIA_2 44 H'00B0 TGIB_2 45 H'00B4 TCIV_2 46 H'00B8 TCIU_2 47 H'00BC Rev. 2.00 Dec. 05, 2005 Page 80 of 724 REJ09B0200-0200 IPRB2 to IPRB0 IPRF6 to IPRF4 IPRF2 to IPRF0 IPRG6 to IPRG4 Low Section 5 Interrupt Controller Vector Address* Interrupt Source Origin of Interrupt Source TPU_3 TGIA_3 TGIB_3 TGIC_3 50 H'00C8 TGID_3 51 H'00CC TCIV_3 52 H'00D0 TPU_4 TPU_5 SCI_0 SCI_1 SCI_2 Vector Number Advanced Mode IPR Priority 48 H'00C0 IPRG2 to IPRG0 High 49 H'00C4 TGIA_4 56 H'00E0 TGIB_4 57 H'00E4 TCIV_4 58 H'00E8 TCIU_4 59 H'00EC TGIA_5 60 H'00F0 TGIB_5 61 H'00F4 TCIV_5 62 H'00F8 TCIU_5 63 H'00FC ERI_0 80 H'0140 RXI_0 81 H'0144 TXI_0 82 H'0148 TEI_0 83 H'014C ERI_1 84 H'0150 RXI_1 85 H'0154 TXI_1 86 H'0158 TEI_1 87 H'015C ERI_2 88 H'0160 RXI_2 89 H'0164 TXI_2 90 H'0168 TEI_2 91 H'016C Motor CMI_1 control PWM timer 104 H'01A0 CMI_2 105 H'01A4 IPRH6 to IPRH4 IPRH2 to IPRH0 IPRJ2 to IPRJ0 IPRK6 to IPRK4 IPRK2 to IPRK0 IPRM6 to IPRM4 Low Rev. 2.00 Dec. 05, 2005 Page 81 of 724 REJ09B0200-0200 Section 5 Interrupt Controller Vector Address* Interrupt Source Origin of Interrupt Source Vector Number Advanced Mode IPR Priority HCAN_1 ERS0, OVR0, RM1, SLE0 106 H'01A8 IPRM6 to IPRM4 High RM0 107 H'01AC ERS0, OVR0, RM1, SLE0 108 H'01B0 RM0 109 H'01B4 ERI_4 124 H'01F0 HCAN_0 SCI_4 Note: * RXI_4 125 H'01F4 TXI_4 126 H'01F8 TEI_4 127 H'01FC Lower 16 bits of the start address. Rev. 2.00 Dec. 05, 2005 Page 82 of 724 REJ09B0200-0200 IPRM2 to IPRM0 IPRO2 to IPRO0 Low Section 5 Interrupt Controller 5.6 Interrupt Control Modes and Interrupt Operation The interrupt controller has two modes: interrupt control mode 0 and interrupt control mode 2. Interrupt operations differ depending on the interrupt control mode. The interrupt control mode is selected by SYSCR. Table 5.3 shows the differences between interrupt control mode 0 and interrupt control mode 2. Table 5.3 Interrupt Control Modes Interrupt Priority Setting Control Mode Registers Interrupt Mask Bits Description 0 Default I The priorities of interrupt sources are fixed at the default settings. Interrupt sources, except for NMI, are masked by the I bit. 2 IPR I2 to I0 8 priority levels other than NMI can be set with IPR. 8-level interrupt mask control is performed by bits I2 to I0. 5.6.1 Interrupt Control Mode 0 In interrupt control mode 0, interrupt requests other than for NMI are masked by the I bit in CCR in the CPU. Figure 5.3 shows a flowchart of the interrupt acceptance operation in this case. 1. If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller. 2. If the I bit in CCR is set to 1, only an NMI interrupt is accepted, and other interrupt requests are held pending. If the I bit is cleared, an interrupt request is accepted. 3. When interrupt requests are sent to the interrupt controller, the interrupt with the highest priority according to the interrupt priority levels is selected and other interrupt requests are held pending. 4. When the CPU accepts an interrupt request, it starts interrupt exception handling after execution of the current instruction has been completed. 5. The PC and CCR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine. 6. Next, the I bit in CCR is set to 1. This masks all interrupts except NMI. Rev. 2.00 Dec. 05, 2005 Page 83 of 724 REJ09B0200-0200 Section 5 Interrupt Controller 7. The CPU generates a vector address for the accepted interrupt and starts execution of the interrupt handling routine at the address indicated by the contents of the vector address in the vector table. Program execution status No Interrupt generated? Yes Yes NMI No I=0 No Hold pending Yes No IRQ0 No Yes IRQ1 Yes SLE0 Yes Save PC and CCR I←1 Read vector address Branch to interrupt handling routine Figure 5.3 Flowchart of Procedure up to Interrupt Acceptance in Interrupt Control Mode 0 Rev. 2.00 Dec. 05, 2005 Page 84 of 724 REJ09B0200-0200 Section 5 Interrupt Controller 5.6.2 Interrupt Control Mode 2 In interrupt control mode 2, mask control is applied to eight levels for interrupt requests other than NMI by comparing the EXR interrupt mask level (I2 to I0 bits) in the CPU and the IPR setting. Figure 5.4 shows a flowchart of the interrupt acceptance operation in this case. 1. If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller. 2. When interrupt requests are sent to the interrupt controller, the interrupt with the highest priority according to the interrupt priority levels set in IPR is selected, and lower-priority interrupt requests are held pending. If a number of interrupt requests with the same priority are generated at the same time, the interrupt request with the highest priority according to the priority system shown in table 5.2 is selected. 3. Next, the priority of the selected interrupt request is compared with the interrupt mask level set in EXR. An interrupt request with a priority no higher than the mask level set at that time is held pending, and only an interrupt request with a priority higher than the interrupt mask level is accepted. 4. When the CPU accepts an interrupt request, it starts interrupt exception handling after execution of the current instruction has been completed. 5. The PC, CCR, and EXR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine. 6. The T bit in EXR is cleared to 0. The interrupt mask level is rewritten with the priority level of the accepted interrupt. If the accepted interrupt is NMI, the interrupt mask level is set to H′7. 7. The CPU generates a vector address for the accepted interrupt and starts execution of the interrupt handling routine at the address indicated by the contents of the vector address in the vector table. Rev. 2.00 Dec. 05, 2005 Page 85 of 724 REJ09B0200-0200 Section 5 Interrupt Controller Program execution status Interrupt generated? No Yes Yes NMI No Level 7 interrupt? No Yes Mask level 6 or below? Level 6 interrupt? No Yes No Yes Level 1 interrupt? Mask level 5 or below? No No Yes Yes Mask level 0? No Yes Save PC, CCR, and EXR Hold pending Clear T bit to 0 Update mask level Read vector address Branch to interrupt handling routine Figure 5.4 Flowchart of Procedure Up to Interrupt Acceptance in Control Mode 2 Rev. 2.00 Dec. 05, 2005 Page 86 of 724 REJ09B0200-0200 Section 5 Interrupt Controller 5.6.3 Interrupt Exception Handling Sequence Figure 5.5 shows the interrupt exception handling sequence. The example shown is for the case where interrupt control mode 0 is set in advanced mode, and the program area and stack area are in on-chip memory. Rev. 2.00 Dec. 05, 2005 Page 87 of 724 REJ09B0200-0200 REJ09B0200-0200 Rev. 2.00 Dec. 05, 2005 Page 88 of 724 Figure 5.5 Interrupt Exception Handling (1) (2) (4) (3) Internal operation Instruction prefetch address (Not executed. This is the contents of the saved PC, the return address.) (2) (4) Instruction code (Not executed.) (3) Instruction prefetch address (Not executed.) (5) SP-2 (7) SP-4 (1) Internal data bus Internal write signal Internal read signal Internal address bus Interrupt request signal φ Interrupt level determination Instruction Wait for end of instruction prefetch Interrupt acceptance (7) (8) (10) (9) (12) (11) Internal operation (14) (13) Interrupt service routine instruction prefetch Saved PC and saved CCR Vector address Interrupt handling routine start address (Vector address contents) Interrupt handling routine start address ((13) = (10)(12)) First instruction of interrupt handling routine (6) (6) (8) (9) (11) (10) (12) (13) (14) (5) stack Vector fetch Section 5 Interrupt Controller Section 5 Interrupt Controller 5.6.4 Interrupt Response Times Table 5.4 shows interrupt response times - the interval between generation of an interrupt request and execution of the first instruction in the interrupt handling routine. The execution status symbols used in table 5.4 are explained in table 5.5. This LSI is capable of fast word transfer to on-chip memory, has the program area in on-chip ROM and the stack area in on-chip RAM, enabling high-speed processing. Table 5.4 Interrupt Response Times Normal Mode*5 No. Execution Status Interrupt control mode 0 1 Interrupt priority determination*1 3 2 Number of wait states until executing 1 to 19 +2·SI 1 to 19+2·SI instruction ends*2 1 to 19+2·SI 1 to 19+2·SI 3 PC, CCR, EXR stack save 2·SK 3·SK 2·SK 3·SK 4 Vector fetch SI SI 2·SI 2·SI 2·SI 2·SI 2·SI 2·SI 2 2 2 2 11 to 31 12 to 32 12 to 32 13 to 33 5 6 3 Instruction fetch* Internal processing* 4 Total (using on-chip memory) Notes: 1. 2. 3. 4. 5. Interrupt control mode 2 3 Advanced Mode Interrupt control mode 0 Interrupt control mode 2 3 3 Two states in case of internal interrupt. Refers to MULXS and DIVXS instructions. Prefetch after interrupt acceptance and interrupt handling routine prefetch. Internal processing after interrupt acceptance and internal processing after vector fetch. Not available in this LSI. Rev. 2.00 Dec. 05, 2005 Page 89 of 724 REJ09B0200-0200 Section 5 Interrupt Controller Table 5.5 Number of States in Interrupt Handling Routine Execution Status Object of Access External Device * 8-Bit Bus Symbol Instruction fetch SI Branch address read SJ Stack manipulation SK 16-Bit Bus Internal Memory 2-State Access 3-State Access 2-State Access 3-State Access 1 4 6+2m 2 3+m [Legend] m: Number of wait states in an external device access. Note: * Not available in this LSI. 5.6.5 DTC Activation by Interrupt The DTC can be activated by an interrupt. For details, see section 8, Data Transfer Controller (DTC). Rev. 2.00 Dec. 05, 2005 Page 90 of 724 REJ09B0200-0200 Section 5 Interrupt Controller 5.7 Usage Notes 5.7.1 Conflict between Interrupt Generation and Disabling When an interrupt enable bit is cleared to 0 to disable interrupts, the disabling becomes effective after execution of the instruction. When an interrupt enable bit is cleared to 0 by an instruction such as BCLR or MOV, and if an interrupt is generated during execution of the instruction, the interrupt concerned will still be enabled on completion of the instruction, and so interrupt exception handling for that interrupt will be executed on completion of the instruction. However, if there is an interrupt request of higher priority than that interrupt, interrupt exception handling will be executed for the higher-priority interrupt, and the lower-priority interrupt will be ignored. The same also applies when an interrupt source flag is cleared to 0. Figure 5.6 shows an example in which the TCIEV bit in TIER_0 of the TPU is cleared to 0. The above conflict will not occur if an enable bit or interrupt source flag is cleared to 0 while the interrupt is masked. TIER_0 write cycle by CPU TCIVexception handling φ Internal address bus TIER_0 address Internal write signal TCIEV TCFV TCIV interrupt signal Figure 5.6 Conflict between Interrupt Generation and Disabling Rev. 2.00 Dec. 05, 2005 Page 91 of 724 REJ09B0200-0200 Section 5 Interrupt Controller 5.7.2 Instructions that Disable Interrupts The instructions that disable interrupts are LDC, ANDC, ORC, and XORC. After any of these instructions are executed, all interrupts including NMI are disabled and the next instruction is always executed. When the I bit is set by one of these instructions, the new value becomes valid two states after execution of the instruction ends. 5.7.3 When Interrupts Are Disabled There are times when interrupt acceptance is disabled by the interrupt controller. The interrupt controller disables interrupt acceptance for a 3-state period after the CPU has updated the mask level with an LDC, ANDC, ORC, or XORC instruction. 5.7.4 Interrupts during Execution of EEPMOV Instruction Interrupt operation differs between the EEPMOV.B instruction and the EEPMOV.W instruction. With the EEPMOV.B instruction, an interrupt request (including NMI) issued during the transfer is not accepted until the transfer is completed. With the EEPMOV.W instruction, if an interrupt request is issued during the transfer, interrupt exception handling starts at a break in the transfer cycle. The PC value saved on the stack in this case is the address of the next instruction. Therefore, if an interrupt is generated during execution of an EEPMOV.W instruction, the following coding should be used. L1: EEPMOV.W MOV.W R4,R4 BNE L1 Rev. 2.00 Dec. 05, 2005 Page 92 of 724 REJ09B0200-0200 Section 6 PC Break Controller (PBC) Section 6 PC Break Controller (PBC) The PC break controller (PBC) provides functions that simplify program debugging. Using these functions, it is easy to create a self-monitoring debugger, enabling programs to be debugged with the chip alone, without using an in-circuit emulator. A block diagram of the PC break controller is shown in figure 6.1. 6.1 Features • Two break channels (A and B) • 24-bit break address Bit masking possible • Four types of break compare conditions Instruction fetch data read data write data read/write • Bus master Either CPU or CPU/DTC can be selected • The timing of PC break exception handling after the occurrence of a break condition is as follows: Immediately before execution of the instruction fetched at the set address (instruction fetch) Immediately after execution of the instruction that accesses data at the set address (data access) • Module stop mode can be set PBC0000A_000020020300 Rev. 2.00 Dec. 05, 2005 Page 93 of 724 REJ09B0200-0200 Section 6 PC Break Controller (PBC) BCRA Mask control Output control BARA Control logic Comparator Internal address PC break interrupt Access status Comparator Match signal Mask control BARB Output control Control logic BCRB Figure 6.1 Block Diagram of PC Break Controller 6.2 Register Descriptions The PC break controller has the following registers. • • • • Break address register A (BARA) Break address register B (BARB) Break control register A (BCRA) Break control register B (BCRB) 6.2.1 Break Address Register A (BARA) BARA is a 32-bit readable/writable register that specifies the channel A break address. Bit Bit Name Initial Value 31 to 24 Undefined R/W Description Reserved These bits are read as an undefined value and cannot be modified. 23 to 0 BAA23 to BAA0 H'000000 Rev. 2.00 Dec. 05, 2005 Page 94 of 724 REJ09B0200-0200 R/W These bits set the channel A PC break address. Section 6 PC Break Controller (PBC) 6.2.2 Break Address Register B (BARB) BARB is the channel B break address register. The bit configuration is the same as for BARA. 6.2.3 Break Control Register A (BCRA) BCRA controls channel A PC breaks. BCRA also contains a condition match flag. Bit Bit Name Initial Value R/W Description 7 CMFA 0 R/W Condition Match Flag A [Setting condition] When a condition set for channel A is satisfied [Clearing condition] When 0 is written to CMFA after reading CMFA = 1 6 CDA 0 R/W CPU Cycle/DTC Cycle Select A Selects the channel A break condition bus master. 0: CPU 1: CPU or DTC 5 BAMRA2 0 R/W Break Address Mask Register A2 to A0 4 BAMRA1 0 R/W 3 BAMRA0 0 R/W These bits specify which bits of the break address set in BARA are to be masked. 000: BAA23 to BAA0 (All bits are unmasked) 001: BAA23 to BAA1 (Lowest bit is masked) 010: BAA23 to BAA2 (Lower 2 bits are masked) 011: BAA23 to BAA3 (Lower 3 bits are masked) 100: BAA23 to BAA4 (Lower 4 bits are masked) 101: BAA23 to BAA8 (Lower 8 bits are masked) 110: BAA23 to BAA12 (Lower 12 bits are masked) 111: BAA23 to BAA16 (Lower 16 bits are masked) Rev. 2.00 Dec. 05, 2005 Page 95 of 724 REJ09B0200-0200 Section 6 PC Break Controller (PBC) Bit Bit Name Initial Value R/W Description 2 CSELA1 0 R/W Break Condition Select A 1 CSELA0 0 R/W Selects break condition of channel A. 00: Instruction fetch is used as break condition 01: Data read cycle is used as break condition 10: Data write cycle is used as break condition 11: Data read/write cycle is used as break condition 0 BIEA 0 R/W Break Interrupt Enable A When this bit is 1, the PC break interrupt request of channel A is enabled. 6.2.4 Break Control Register B (BCRB) BCRB is the channel B break control register. The bit configuration is the same as for BCRA. 6.3 Operation The operation flow from break condition setting to PC break interrupt exception handling is shown in section 6.3.1, PC Break Interrupt Due to Instruction Fetch, and 6.3.2, PC Break Interrupt Due to Data Access, taking the example of channel A. 6.3.1 PC Break Interrupt Due to Instruction Fetch 1. Set the break address in BARA. For a PC break caused by an instruction fetch, set the address of the first instruction byte as the break address. 2. Set the break conditions in BCR. Set bit 6 (CDA) to 0 to select the CPU because the bus master must be the CPU for a PC break caused by an instruction fetch. Set the address bits to be masked to bits 3 to 5 (BAMA0 to BAMA2). Set bits 1 and 2 (CSELA0 and CSELA1) to 00 to specify an instruction fetch as the break condition. Set bit 0 (BIEA) to 1 to enable break interrupts. 3. When the instruction at the set address is fetched, a PC break request is generated immediately before execution of the fetched instruction, and the condition match flag (CMFA) is set. 4. After priority determination by the interrupt controller, PC break interrupt exception handling is started. Rev. 2.00 Dec. 05, 2005 Page 96 of 724 REJ09B0200-0200 Section 6 PC Break Controller (PBC) 6.3.2 PC Break Interrupt Due to Data Access 1. Set the break address in BARA. For a PC break caused by a data access, set the target ROM, RAM, I/O, or external address space address as the break address. Stack operations and branch address reads are included in data accesses. 2. Set the break conditions in BCRA. Select the bus master with bit 6 (CDA). Set the address bits to be masked to bits 3 to 5 (BAMA BAMA0 to BAMA2). Set bits 1 and 2 (CSELA0 and CSELA1) to 01, 10, or 11 to specify data access as the break condition. Set bit 0 (BIEA) to 1 to enable break interrupts. 3. After execution of the instruction that performs a data access on the set address, a PC break request is generated and the condition match flag (CMFA) is set. 4. After priority determination by the interrupt controller, PC break interrupt exception handling is started. 6.3.3 PC Break Operation at Consecutive Data Transfer • When a PC break interrupt is generated at the transfer address of an EEPMOV.B instruction PC break exception handling is executed after all data transfers have been completed and the EEPMOV.B instruction has ended. • When a PC break interrupt is generated at a DTC transfer address PC break exception handling is executed after the DTC has completed the specified number of data transfers, or after data for which the DISEL bit is set to 1 has been transferred. 6.3.4 Operation in Transitions to Power-Down Modes The operation when a PC break interrupt is set for an instruction fetch at the address after a SLEEP i.struction is shown below. 1. When the SLEEP instruction causes a transition from high-speed (medium-speed) mode to sleep mode, or from subactive mode to subsleep mode: After execution of the SLEEP instruction, a transition is not made to sleep mode or subsleep mode, and PC break interrupt handling is executed. After execution of PC break interrupt handling, the instruction at the address after the SLEEP instruction is executed (figure 6-2 (A)). 2. When the SLEEP instruction causes a transition from high-speed (medium-speed) mode to subactive mode: Rev. 2.00 Dec. 05, 2005 Page 97 of 724 REJ09B0200-0200 Section 6 PC Break Controller (PBC) After execution of the SLEEP instruction, a transition is made to subactive mode via direct transition exception handling. After the transition, PC break interrupt handling is executed, then the instruction at the address after the SLEEP instruction is executed (figure 6-2 (B)). 3. When the SLEEP instruction causes a transition from subactive mode to high-speed (mediumspeed) mode: After execution of the SLEEP instruction, and following the clock oscillation settling time, a transition is made to high-speed (medium-speed) mode via direct transition exception handling. After the transition, PC break interrupt handling is executed, then the instruction at the address after the SLEEP instruction is executed (figure 6.2 (C)). 4. When the SLEEP instruction causes a transition to software standby mode or watch mode: After execution of the SLEEP instruction, a transition is made to the respective mode, and PC break interrupt handling is not executed. However, the CMFA or CMFB flag is set (figure 6.2 (D)). SLEEP instruction execution SLEEP instruction execution SLEEP instruction execution SLEEP instruction execution PC break exception handling System clock → subclock Subclock → system clock, oscillation settling time Transition to respective mode (D) Execution of instruction after sleep instruction Direct transition exception handling (A) PC break exception handling Direct transition exception handling Subactive mode PC break exception handling Execution of instruction after sleep instruction Execution of instruction after sleep instruction (B) (C) High-speed (medium-speed) mode Figure 6.2 Operation in Power-Down Mode Transitions Rev. 2.00 Dec. 05, 2005 Page 98 of 724 REJ09B0200-0200 Section 6 PC Break Controller (PBC) 6.3.5 When Instruction Execution Is Delayed by One State While the break interrupt enable bit is set to 1, instruction execution is one state later than usual. • For 1-word branch instructions (Bcc d:8, BSR, JSR, JMP, TRAPA, RTE, and RTS) in on-chip ROM or RAM. • When break interrupt by instruction fetch is set, the set address indicates on-chip ROM or RAM space, and that address is used for data access, the instruction will be one state later than in normal operation. • When break interrupt by instruction fetch is set and a break interrupt is generated, if the executing instruction immediately preceding the set instruction has one of the addressing modes shown below, and that address indicates on-chip ROM or RAM, the instruction will be one state later than in normal operation. Addressing modes: @ERn, @(d:16,ERn), @(d:32,ERn), @-ERn/ERn+, @aa:8, @aa:24, @aa:32, @(d:8,PC), @(d:16,PC), @@aa:8 • When break interrupt by instruction fetch is set and a break interrupt is generated, if the executing instruction immediately preceding the set instruction is NOP or SLEEP, or has #xx,Rn as its addressing mode, and that instruction is located in on-chip ROM or RAM, the instruction will be one state later than in normal operation. Rev. 2.00 Dec. 05, 2005 Page 99 of 724 REJ09B0200-0200 Section 6 PC Break Controller (PBC) 6.4 Usage Notes 6.4.1 Module Stop Mode Setting PBC operation can be disabled or enabled using the module stop control register. The initial setting is for PBC operation to be halted. Register access is enabled by clearing module stop mode. For details, refer to section 21, Power-Down Modes. 6.4.2 PC Break Interrupts The PC break interrupt is shared by channels A and B. The channel from which the request was issued must be determined by the interrupt handler. 6.4.3 CMFA and CMFB The CMFA and CMFB flags are not automatically cleared to 0, so 0 must be written to CMFA or CMFB after first reading the flag while it is set to 1. If the flag is left set to 1, another interrupt will be requested after interrupt handling ends. 6.4.4 PC Break Interrupt when DTC Is Bus Master A PC break interrupt generated when the DTC is the bus master is accepted after the bus mastership has been transferred to the CPU by the bus controller. 6.4.5 PC Break Set for Instruction Fetch at Address Following BSR, JSR, JMP, TRAPA, RTE, or RTS Instruction Even if the instruction at the address following a BSR, JSR, JMP, TRAPA, RTE, or RTS instruction is fetched, it is not executed, and so a PC break interrupt is not generated by the instruction fetch at the next address. 6.4.6 I Bit Set by LDC, ANDC, ORC, or XORC Instruction When the I bit is set by an LDC, ANDC, ORC, or XORC instruction, a PC break interrupt becomes valid two states after the end of the instruction execution. If a PC break interrupt is set for the instruction following one of these instructions, since interrupts, including NMI, are disabled for a 3-state period in the case of LDC, ANDC, ORC, and XOR, the next instruction is always executed. For details, see section 5, Interrupt Controller. Rev. 2.00 Dec. 05, 2005 Page 100 of 724 REJ09B0200-0200 Section 6 PC Break Controller (PBC) 6.4.7 PC Break Set for Instruction Fetch at Address Following Bcc Instruction A PC break interrupt is generated if the instruction at the next address is executed in accordance with the branch condition, and is not generated if the instruction at the next address is not executed. 6.4.8 PC Break Set for Instruction Fetch at Branch Destination Address of Bcc Instruction A PC break interrupt is generated if the instruction at the branch destination is executed in accordance with the branch condition, and is not generated if the instruction at the branch destination is not executed. Rev. 2.00 Dec. 05, 2005 Page 101 of 724 REJ09B0200-0200 Section 6 PC Break Controller (PBC) Rev. 2.00 Dec. 05, 2005 Page 102 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) Section 7 Bus Controller (BSC) This LSI has an on-chip bus controller (BSC) that manages the external address space divided into eight areas. The bus controller also has a bus arbitration function, and controls the operation of the bus masterships—the CPU and data transfer controller (DTC). 7.1 Features • Manages external address space in area units Manages the external address space divided into eight areas of 2 Mbytes Bus specifications can be set independently for each area Burst ROM interface can be set • Basic bus interface 8-bit access or 16-bit access can be selected for each area 2-state access or 3-state access can be selected for each area Program wait states can be inserted for each area • Burst ROM interface Burst ROM interface can be set for area 0 Choice of 1- or 2-state burst access • Idle cycle insertion An idle cycle can be inserted between external read cycles for different areas An idle cycle can be inserted before an external write cycle immediately after an external read cycle • Bus arbitration function Includes a bus arbiter that arbitrates bus mastership between the CPU and DTC BSCS203A_010020020400 Rev. 2.00 Dec. 05, 2005 Page 103 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) A block diagram of the bus controller is shown in figure 7.1. Internal address bus Area decoder ABWCR External bus control signals ASTCR BCRH Bus controller Wait controller WAIT Internal data bus BCRL Internal control signals Bus mode signal WCRH WCRL CPU bus request signal DTC bus request signal Bus arbiter CPU bus acknowledge signal DTC bus acknowledge signal [Legend] ABWCR: ASTCR: BCRH: BCRL: WCRH: WCRL: Bus width control register Access state control register Bus control register H Bus control register L Wait control register H Wait control register L Figure 7.1 Block Diagram of Bus Controller Rev. 2.00 Dec. 05, 2005 Page 104 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.2 Input/Output Pins Table 7.1 summarizes the pin configuration of the bus controller. Table 7.1 Pin Configuration Name Symbol I/O Function Address strobe AS Output Strobe signal indicating that an external address space is accessed and address output on address bus is enabled. Read RD Output Strobe signal indicating that an external address space is being read. High write HWR Output Strobe signal indicating that an external address space is written to, and upper half (D15 to D8) of data bus is enabled. Low write LWR Output Strobe signal indicating that an external address space is written to, and lower half (D7 to D0) of data bus is enabled. Wait WAIT Input Wait request signal when accessing external address space. 7.3 Register Descriptions The bus controller has the following registers. • • • • • • • Bus width control register (ABWCR) Access state control register (ASTCR) Wait control register H (WTCRH) Wait control register L (WTCRL) Bus control register H (BCRH) Bus control register L (BCRL) Pin function control register (PFCR) Rev. 2.00 Dec. 05, 2005 Page 105 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.3.1 Bus Width Control Register (ABWCR) ABWCR designates each area in the external address space as either 8-bit access space or 16-bit access space. Bit Bit Name Initial Value R/W Description 7 ABW7 1/0 R/W Area 7 to 0 Bus Width Control 6 ABW6 1/0 R/W 5 ABW5 1/0 R/W 4 ABW4 1/0 R/W These bits select whether the corresponding area is to be designated as 8-bit access space or 16-bit access space. 3 ABW3 1/0 R/W 2 ABW2 1/0 R/W 1 ABW1 1/0 R/W 0 ABW0 1/0 R/W 7.3.2 0: Area n is designated as 16-bit access space 1: Area n is designated as 8-bit access space (n = 7 to 0) Access State Control Register (ASTCR) ASTCR designates each area in the external address space as either 2-state access space or 3-state access space. Bit Bit Name Initial Value R/W Description 7 AST7 1 R/W Area 7 to 0 Access State Control 6 AST6 1 R/W 5 AST5 1 R/W 4 AST4 1 R/W These bits select whether the corresponding area is to be designated as 2-state access space or 3-state access space. Wait state insertion is enabled or disabled at the same time. 3 AST3 1 R/W 2 AST2 1 R/W 1 AST1 1 R/W 0 AST0 1 R/W 0: Area n is designated as 2-state access space Wait state insertion in area n access is disabled 1: Area n is designated as 3-state access space Wait state insertion in area n access is enabled (n = 7 to 0) Rev. 2.00 Dec. 05, 2005 Page 106 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.3.3 Wait Control Registers H and L (WCRH and WCRL) WCRH and WCRL select the number of program wait states for each area in the external address space. • WCRH Bit Bit Name Initial Value R/W Description 7 W71 1 R/W Area 7 Wait Control 1 and 0 6 W70 1 R/W These bits select the number of program wait states when accessing area 7 while AST7 bit in ASTCR = 1. 00: Program wait not inserted 01: 1 program wait state inserted 10: 2 program wait states inserted 11: 3 program wait states inserted 5 W61 1 R/W Area 6 Wait Control 1 and 0 4 W60 1 R/W These bits select the number of program wait states when accessing area 6 while AST6 bit in ASTCR = 1. 00: Program wait not inserted 01: 1 program wait state inserted 10: 2 program wait states inserted 11: 3 program wait states inserted 3 W51 2 W50 1 1 R/W Area 5 Wait Control 1 and 0 R/W These bits select the number of program wait states when accessing area 5 while AST5 bit in ASTCR = 1. 00: Program wait not inserted 01: 1 program wait state inserted 10: 2 program wait states inserted 11: 3 program wait states inserted 1 W41 1 R/W Area 4 Wait Control 1 and 0 0 W40 1 R/W These bits select the number of program wait states when accessing area 4 while AST4 bit in ASTCR = 1. 00: Program wait not inserted 01: 1 program wait state inserted 10: 2 program wait states inserted 11: 3 program wait states inserted Rev. 2.00 Dec. 05, 2005 Page 107 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) • WCRL Bit Bit Name Initial Value R/W Description 7 W31 1 R/W Area 3 Wait Control 1 and 0 6 W30 1 R/W These bits select the number of program wait states when accessing area 3 while AST3 bit in ASTCR = 1. 00: Program wait not inserted 01: 1 program wait state inserted 10: 2 program wait states inserted 11: 3 program wait states inserted 5 W21 1 R/W Area 2 Wait Control 1 and 0 4 W20 1 R/W These bits select the number of program wait states when accessing area 2 while AST2 bit in ASTCR = 1. 00: Program wait not inserted 01: 1 program wait state inserted 10: 2 program wait states inserted 11: 3 program wait states inserted 3 W11 1 R/W Area 1 Wait Control 1 and 0 2 W10 1 R/W These bits select the number of program wait states when accessing area 1 while AST1 bit in ASTCR = 1. 00: Program wait not inserted 01: 1 program wait state inserted 10: 2 program wait states inserted 11: 3 program wait states inserted 1 W01 1 R/W Area 0 Wait Control 1 and 0 0 W00 1 R/W These bits select the number of program wait states when accessing area 0 while AST0 bit in ASTCR = 1. 00: Program wait not inserted 01: 1 program wait state inserted 10: 2 program wait states inserted 11: 3 program wait states inserted Rev. 2.00 Dec. 05, 2005 Page 108 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.3.4 Bus Control Register H (BCRH) BCRH enables or disables idle cycle insertion and specifies the burst ROM interface. Bit Bit Name Initial Value R/W Description 7 ICIS1 1 R/W Idle Cycle Insert 1 When consecutive external read cycles are performed in different areas, an idle cycle can be inserted between the bus cycles. 0: Idle cycle not inserted 1: Idle cycle inserted 6 ICIS0 1 R/W Idle Cycle Insert 0 When an external read cycle and an external write cycle are performed consecutively, an idle cycle can be inserted between the bus cycles. 0: Idle cycle not inserted 1: Idle cycle inserted 5 4 3 BRSTRM BRSTS1 BRSTS0 0 1 0 R/W Burst ROM Enable Selects whether the burst ROM interface is used for area 0. R/W 0: Basic bus interface for area 0 1: Burst ROM interface for area 0 Burst Cycle Select 1 Selects the number of burst cycles for the burst ROM interface. R/W 0: 1 state for a burst cycle 1: 2 states for a burst cycle Burst Cycle Select 0 Selects the number of words that can be accessed in a burst access with the burst ROM interface. 0: Maximum four words in burst access 1: Maximum eight words in burst access 2 to 0 — All 0 R/W Reserved The write value should always be 0. Rev. 2.00 Dec. 05, 2005 Page 109 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.3.5 Bus Control Register L (BCRL) BCRL selects the write data buffer function and enables or disables input to the WAIT pin. Bit Bit Name Initial Value R/W Description 7 0 R/W Reserved 6 0 R/W The write value should always be 0. 5 0 Reserved This bit is always read as 0 and cannot be modified. 4 0 R/W Reserved The write value should always be 0. 3 1 R/W Reserved The write value should always be 1. 2 0 R/W Reserved The write value should always be 0. 1 WDBE 0 R/W Write Data Buffer Enable Selects the write data buffer function for an external write cycle. 0: Write data buffer function not used 1: Write data buffer function used 0 WAITE 0 R/W WAIT Pin Enable Enables or disables wait signal input through the WAIT pin. 0: Wait input through WAIT pin disabled WAIT pin can be used as I/O port 1: Wait input through WAIT pin enabled Rev. 2.00 Dec. 05, 2005 Page 110 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.3.6 Pin Function Control Register (PFCR) PFCR controls the address output in expanded mode with on-chip ROM enabled. Bit Initial Bit Name Value 7 to 4 All 0 R/W Description Reserved The write value should always be 0. 3 AE3 0/1* R/W Address Output Enable 3 to 0 2 AE2 0/1* R/W 1 AE1 0 R/W 0 AE0 0/1* R/W These bits enable or disable address outputs A8 to A23 in expanded mode with on-chip ROM. When a pin is enabled for address output, the address is output regardless of the corresponding DDR setting. For a pin disabled for address output, each becomes an output port when the corresponding DDR bit is set to 1. For pins A7 to A0, each becomes an address output when the corresponding DDR bit is set to 1. 0000: A8 to A23 output disabled 0001: A8 output enabled; A9 to A23 output disabled 0010: A8 and A9 output enabled; A10 to A23 output disabled 0011: A8 to A10 output enabled; A11 to A23 output disabled 0100: A8 to A11 output enabled; A12 to A23 output disabled 0101: A8 to A12 output enabled; A13 to A23 output disabled 0110: A8 to A13 output enabled; A14 to A23 output disabled 0111: A8 to A14 output enabled; A15 to A23 output disabled 1000: A8 to A15 output enabled; A16 to A23 output disabled 1001: A8 to A16 output enabled; A17 to A23 output disabled 1010: A8 to A17 output enabled; A18 to A23 output disabled 1011: A8 to A18 output enabled; A19 to A23 output disabled 1100: A8 to A19 output enabled; A20 to A23 output disabled 1101: A8 to A20 output enabled; A21 to A23 output disabled 1110: A8 to A21 output enabled; A22 and A23 output disabled 1111: A8 to A23 output enabled Note: * In expanded mode with on-chip ROM enabled, bits 3 to 0 are initialized to B'0000. In expanded mode with on-chip ROM disabled, bits 3 to 0 are initialized to B'1101. Rev. 2.00 Dec. 05, 2005 Page 111 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.4 Bus Control 7.4.1 Area Division The bus controller divides the 16-Mbyte address space into eight areas, 0 to 7, in 2-Mbyte units, and performs bus control for external address space in area units. Figure 7.2 shows an outline of the memory map. H'000000 Area 0 (2 Mbytes) H'1FFFFF H'200000 Area 1 (2 Mbytes) H'3FFFFF H'400000 Area 2 (2 Mbytes) H'5FFFFF H'600000 Area 3 (2 Mbytes) H'7FFFFF H'800000 Area 4 (2 Mbytes) H'9FFFFF H'A00000 Area 5 (2 Mbytes) H'BFFFFF H'C00000 Area 6 (2 Mbytes) H'DFFFFF H'E00000 Area 7 (2 Mbytes) H'FFFFFF Advanced mode Figure 7.2 Area Divisions Rev. 2.00 Dec. 05, 2005 Page 112 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.4.2 Bus Specifications The external address space bus specifications consist of three elements: bus width, number of access states, and number of program wait states. The bus width and number of access states for on-chip memory and internal I/O registers are fixed, and are not affected by the bus controller. Bus Width: A bus width of 8 or 16 bits can be selected with ABWCR. An area for which an 8-bit bus is selected functions as an 8-bit access space, and an area for which a 16-bit bus is selected functions as a 16-bit access space. If all areas are designated as 8-bit access space, 8-bit bus mode is set; if any area is designated as 16-bit access space, 16-bit bus mode is set. Number of Access States: Two or three access states can be selected with ASTCR. An area for which 2-state access is selected functions as a 2-state access space, and an area for which 3-state access is selected functions as a 3-state access space. When 2-state access space is designated, wait insertion is disabled. When 3-state access space is designated, it is possible to insert program waits by means of the WCRH and WCRL, and external waits by means of the WAIT pin. Number of Program Wait States: When 3-state access space is designated by ASTCR, the number of program wait states to be inserted automatically is selected with WCRH and WCRL. From 0 to 3 program wait states can be selected. Table 7.2 shows the bus specifications (bus width, number of access states, and program wait states) for each basic bus interface area. Rev. 2.00 Dec. 05, 2005 Page 113 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) Table 7.2 Bus Specifications for Each Area (Basic Bus Interface) ABWCR ASTCR ABWn ASTn Wn1 Wn0 Bus Width Access States Program Wait States 0 0 — — 16 2 0 1 0 0 3 0 WCRH, WCRL 1 1 1 1 0 2 1 3 0 — — 1 0 0 1 Bus Specifications (Basic Bus Interface) 8 2 0 3 0 1 1 0 2 1 3 (n = 0 to 7) 7.4.3 Memory Interfaces The memory interfaces in this LSI allow direct connection of ROM, SRAM, and so on. The initial state of each area is 3-state access space with the basic bus interface. The initial bus width is selected according to the operating mode. Area 0: Area 0 includes on-chip ROM in expanded mode with on-chip ROM enabled and the space excluding on-chip ROM is external address space. In expanded mode with on-chip ROM disabled, all of area 0 is external address space. Either basic bus interface or burst ROM interface can be selected for area 0. Areas 1 to 6: In externally expanded mode, areas 1 to 6 are all external address space. Only the basic bus interface can be used for areas 1 to 6. Rev. 2.00 Dec. 05, 2005 Page 114 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) Area 7: Area 7 includes the on-chip RAM and internal I/O registers. In externally expanded mode, the space excluding the on-chip RAM and internal I/O registers is external address space. The on-chip RAM is enabled when the RAME bit is set to 1 in the system control register (SYSCR); when the RAME bit is cleared to 0, the on-chip RAM is disabled and the corresponding addresses are in external address space. Only the basic bus interface can be used for area 7. 7.5 Basic Bus Interface The basic bus interface enables direct connection of ROM, SRAM, and so on. 7.5.1 Data Size and Data Alignment Data sizes for the CPU and other internal bus masters are byte, word, and longword. The bus controller has a data alignment function, and when accessing external address space, controls whether the upper data bus (D15 to D8) or lower data bus (D7 to D0) is used according to the bus specifications for the area being accessed (8-bit access space or 16-bit access space) and the data size. 8-Bit Access Space: Figure 7.3 illustrates data alignment control for the 8-bit access space. With the 8-bit access space, the upper data bus (D15 to D8) is always used for accesses. The amount of data that can be accessed at one time is one byte: a word access is performed as two byte accesses, and a longword access, as four byte accesses. Upper data bus D15 Lower data bus D8 D7 D0 Byte size Word size 1st bus cycle 2nd bus cycle 1st bus cycle Longword size 2nd bus cycle 3rd bus cycle 4th bus cycle Figure 7.3 Access Sizes and Data Alignment Control (8-Bit Access Space) Rev. 2.00 Dec. 05, 2005 Page 115 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 16-Bit Access Space: Figure 7.4 illustrates data alignment control for the 16-bit access space. With the 16-bit access space, the upper data bus (D15 to D8) and lower data bus (D7 to D0) are used for accesses. The amount of data that can be accessed at one time is one byte or one word, and a longword access is executed as two word accesses. In byte access, whether the upper or lower data bus is used is determined by whether the address is even or odd. The upper data bus is used for an even address, and the lower data bus for an odd address. Upper data bus D15 Byte size • Even address Byte size • Odd address Lower data bus D8 D7 D0 Word size Longword size 1st bus cycle 2nd bus cycle Figure 7.4 Access Sizes and Data Alignment Control (16-bit Access Space) Rev. 2.00 Dec. 05, 2005 Page 116 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.5.2 Valid Strobes Table 7.3 shows the data buses used and valid strobes for the access spaces. In a read, the RD signal is valid for both the upper and the lower half of the data bus. In a write, the HWR signal is valid for the upper half of the data bus, and the LWR signal for the lower half. Table 7.3 Data Buses Used and Valid Strobes Access Size Read/ Write Address Valid Strobe Upper Data Bus Lower Data (D15 to D8) Bus (D7 to D0) 8-bit access space Byte Read — RD Valid Write — HWR 16-bit access space Byte Read Even RD Area Odd Hi-Z Valid Invalid Invalid Valid Even HWR Valid Hi-Z Odd LWR Hi-Z Valid Read — RD Valid Valid Write — HWR, LWR Valid Valid Write Word Invalid Note: Hi-Z: High-impedance state Invalid: Input state; input value is ignored. Rev. 2.00 Dec. 05, 2005 Page 117 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.5.3 Basic Timing 8-Bit, 2-State Access Space: Figure 7.5 shows the bus timing for an 8-bit, 2-state access space. When an 8-bit access space is accessed, the upper half (D15 to D8) of the data bus is used. The LWR pin is always fixed high. Wait states cannot be inserted. Bus cycle T2 T1 φ Address bus AS RD Read D15 to D8 Valid D7 to D0 Invalid HWR LWR High Write D15 to D8 D7 to D0 Valid High impedance Figure 7.5 Bus Timing for 8-Bit, 2-State Access Space Rev. 2.00 Dec. 05, 2005 Page 118 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 8-Bit, 3-State Access Space: Figure 7.6 shows the bus timing for an 8-bit, 3-state access space. When an 8-bit access space is accessed, the upper half (D15 to D8) of the data bus is used. The LWR pin is always fixed high. Wait states can be inserted. Bus cycle T1 T3 T2 φ Address bus AS RD Read D15 to D8 Valid D7 to D0 Invalid HWR LWR High Write D15 to D8 D7 to D0 Valid High impedance Figure 7.6 Bus Timing for 8-Bit, 3-State Access Space Rev. 2.00 Dec. 05, 2005 Page 119 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 16-Bit, 2-State Access Space: Figures 7.7 to 7.9 show bus timings for a 16-bit, 2-state access space. When a 16-bit access space is accessed, the upper half (D15 to D8) of the data bus is used for odd addresses, and the lower half (D7 to D0) for even addresses. Wait states cannot be inserted. Bus cycle T1 T2 φ Address bus AS RD Read D15 to D8 Valid D7 to D0 Invalid HWR LWR High Write D15 to D8 D7 to D0 Valid High impedance Figure 7.7 Bus Timing for 16-Bit, 2-State Access Space (Even Address Byte Access) Rev. 2.00 Dec. 05, 2005 Page 120 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) Bus cycle T2 T1 φ Address bus AS RD Read D15 to D8 Invalid D7 to D0 Valid HWR High LWR Write High impedance D15 to D8 D7 to D0 Valid Figure 7.8 Bus Timing for 16-Bit, 2-State Access Space (Odd Address Byte Access) Rev. 2.00 Dec. 05, 2005 Page 121 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) Bus cycle T1 T2 φ Address bus AS RD Read D15 to D8 Valid D7 to D0 Valid HWR LWR Write D15 to D8 Valid D7 to D0 Valid Figure 7.9 Bus Timing for 16-Bit, 2-State Access Space (Word Access) Rev. 2.00 Dec. 05, 2005 Page 122 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 16-Bit, 3-State Access Space: Figures 7.10 to 7.12 show bus timings for a 16-bit, 3-state access space. When a 16-bit access space is accessed, the upper half (D15 to D8) of the data bus is used for the even address, and the lower half (D7 to D0) for the odd address. Wait states can be inserted. Bus cycle T1 T2 T3 φ Address bus AS RD Read D15 to D8 Valid D7 to D0 Invalid HWR LWR High Write D15 to D8 D7 to D0 Valid High impedance Figure 7.10 Bus Timing for 16-Bit, 3-State Access Space (Even Address Byte Access) Rev. 2.00 Dec. 05, 2005 Page 123 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) Bus cycle T1 T2 T3 φ Address bus AS RD Read D15 to D8 Invalid D7 to D0 Valid HWR High LWR Write D15 to D8 D7 to D0 High impedance Valid Figure 7.11 Bus Timing for 16-Bit, 3-State Access Space (Odd Address Byte Access) Rev. 2.00 Dec. 05, 2005 Page 124 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) Bus cycle T1 T2 T3 φ Address bus AS RD Read D15 to D8 Valid D7 to D0 Valid HWR LWR Write D15 to D8 Valid D7 to D0 Valid Figure 7.12 Bus Timing for 16-Bit, 3-State Access Space (Word Access) 7.5.4 Wait Control When accessing external space, this LSI can extend the bus cycle by inserting one or more wait states (Tw). There are two ways of inserting wait states: program wait insertion and pin wait insertion using the WAIT pin. Program Wait Insertion: From 0 to 3 wait states can be inserted automatically between the T2 state and T3 state on an individual area basis in 3-state access space, according to the settings in WCRH and WCRL. Rev. 2.00 Dec. 05, 2005 Page 125 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) Pin Wait Insertion: Setting the WAITE bit to 1 in BCRH enables wait input by means of the WAIT pin. When an external address space is accessed in this state, a program wait is first inserted in accordance with the settings in WCRH and WCRL. If the WAIT pin is low at the falling edge of φ in the last T2 or Tw state, another Tw state is inserted. If the WAIT pin is held low, Tw states are inserted until it goes high. This is useful when inserting four or more Tw states, or when changing the number of Tw states to be inserted for different external devices. The WAITE bit setting applies to all areas. Figure 7.13 shows an example of wait state insertion timing. The settings after a power-on reset are: 3-state access, insertion of three program wait states, and WAIT input disabled. By program wait T1 T2 Tw By WAIT pin Tw Tw T3 φ WAIT Address bus AS RD Read Data bus Read data HWR, LWR Write Data bus Note: Write data Downward arrows indicate the timing of WAIT pin sampling. Figure 7.13 Example of Wait State Insertion Timing Rev. 2.00 Dec. 05, 2005 Page 126 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.6 Burst ROM Interface In this LSI, external space area 0 can be designated as burst ROM space, and burst ROM interfacing performed. The burst ROM space interface enables ROM with burst access capability to be accessed at high speed. Area 0 can be designated as burst ROM space by means of bit BSTRM in BCRH. Continuous burst accesses of four or eight words can be performed, according to the setting of the BRSTS0 bit in BCRH. One or two states can be selected for burst access. In burst ROM interface space, burst access covers only CPU read accesses. 7.6.1 Basic Timing The number of access states in the initial cycle (full access) with the burst ROM interface is determined by the AST0 setting in ASTCR. Wait states can be inserted when the AST0 bit is set to 1. One or two states can be selected for the burst cycle according to the BRSTS1 bit setting in BCRH. Wait states cannot be inserted. When area 0 is designated as burst ROM space, area 0 is a 16-bit access space regardless of the ABW0 bit setting in ABWCR. When the BRSTS0 bit in BCRH is cleared to 0, burst access of up to four words is performed. When the BRSTS0 bit is set to 1, burst access of up to eight words is performed. The basic access timing for burst ROM space is shown in figures 7.14 and 7.15. Rev. 2.00 Dec. 05, 2005 Page 127 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) Burst access Full access T1 T2 T3 T1 T2 T1 T2 φ Only the lower address changes Address bus AS RD Data bus Read data Read data Read data Note: n = 1 and 0 Figure 7.14 Example of Burst ROM Access Timing (AST0 = 1 and BRSTS0 = 1) Rev. 2.00 Dec. 05, 2005 Page 128 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) Full access T1 T2 Burst access T1 T1 φ Only the lower address changes Address bus AS RD Data bus Read data Read data Read data Note: n = 1 and 0 Figure 7.15 Example of Burst ROM Access Timing (AST0 = 0 and BRSTS1 = 0) 7.6.2 Wait Control As with the basic bus interface, either program wait insertion or pin wait insertion using the WAIT pin can be used in the initial cycle (full access) on the burst ROM interface. See section 7.5.4, Wait Control. Wait states cannot be inserted in a burst cycle. 7.6.3 Write Access When a write access to burst ROM interface space is executed, burst access is interrupted at that point and the write access is executed in line with the basic bus interface settings. Write accesses are not performed in burst mode even though burst ROM space is designated. Rev. 2.00 Dec. 05, 2005 Page 129 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.7 Idle Cycle 7.7.1 Operation When this LSI accesses external address space, it can insert a 1-state idle cycle (Ti) between bus cycles in the following two cases: (1) when read accesses in different areas occur consecutively and (2) when a write cycle occurs immediately after a read cycle. By inserting an idle cycle, it is possible, for example, to avoid data collisions between memory with a long output floating time (such as ROM) and high-speed memory, I/O interfaces, and so on. Consecutive Reads in Different Areas: If consecutive reads in different areas occur while the ICIS1 bit is set to 1 in BCRH, an idle cycle is inserted at the start of the second read cycle. Figure 7.16 shows an example of the operation in this case. In this example, bus cycle A is a read cycle for ROM with a long output floating time, and bus cycle B is a read cycle for SRAM, each being located in a different area. In (a), an idle cycle is not inserted, and a collision occurs in bus cycle B between the read data from ROM and that from SRAM. In (b), an idle cycle is inserted, and a data collision is prevented. Bus cycle A T1 T2 T3 Bus cycle B T1 Bus cycle A T2 T1 φ φ Address bus Address bus CS* (area A) CS* (area A) CS* (area B) CS* (area B) RD RD Data bus Data bus Long output floating time T2 T3 Data collision (a) No idle cycle insertion (ICIS1 = 0) T1 (b) Idle cycle insertion (ICIS1 = 1, initial value) Figure 7.16 Example of Idle Cycle Operation (Consecutive Reads in Different Areas) REJ09B0200-0200 Ti Idle cycle Note: * The CS signal is generated outside the LSI. Rev. 2.00 Dec. 05, 2005 Page 130 of 724 Bus cycle B T2 Section 7 Bus Controller (BSC) Write after Read: If an external write occurs after an external read while the ICIS0 bit is set to 1 in BCRH, an idle cycle is inserted at the start of the write cycle. Figure 7.17 shows an example of the operation in this case. In this example, bus cycle A is a read cycle for ROM with a long output floating time, and bus cycle B is a CPU write cycle. In (a), an idle cycle is not inserted, and a collision occurs in bus cycle B between the data read from ROM and the CPU write data. In (b), an idle cycle is inserted, and a data collision is prevented. Bus cycle A T1 T2 T3 Bus cycle B T1 Bus cycle A T1 T2 φ φ Address bus Address bus CS* (area A) CS* (area A) CS* (area B) CS* (area B) RD RD HWR HWR Data bus Data bus Long output floating time Data collision (a) No idle cycle insertion (ICIS0 = 0) T2 T3 Bus cycle B Ti T1 T2 Idle cycle (b) Idle cycle insertion (ICIS0 = 1, initial value) Note: * The CS signal is generated outside the LSI. Figure 7.17 Example of Idle Cycle Operation (Write after Read) Rev. 2.00 Dec. 05, 2005 Page 131 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) Relationship between Chip Select (CS) Signal and Read (RD) Signal: Depending on the system's load conditions, the RD signal may lag behind the CS signal (generated outside the LSI). An example is shown in figure 7.18. In this case, with the setting for no idle cycle insertion (a), there may be a period of overlap between the bus cycle A RD signal and the bus cycle B CS signal. Setting idle cycle insertion, as in (b), however, will prevent any overlap between the RD and CS signals. In the initial state after reset release, idle cycle insertion (b) is set. Bus cycle A T1 T2 T3 Bus cycle B T1 Bus cycle A T2 T1 φ φ Address bus Address bus CS* (area A) CS* (area A) CS* (area B) CS* (area B) RD RD Overlap period between CS (area B) and RD may occur (a) No idle cycle insertion (ICIS1 = 0) T2 T3 Bus cycle B Ti T1 Idle cycle (b) Idle cycle insertion (ICIS1 = 1, initial value) Note: * The CS signal is generated outside the LSI. Figure 7.18 Relationship between Chip Select (CS) and Read (RD) 7.7.2 Pin States in Idle Cycle Table 7.4 shows the pin states in an idle cycle. Table 7.4 Pin States in Idle Cycle Pins Pin State A23 to A0 Contents of following bus cycle D15 to D0 High impedance AS High RD High HWR, LWR High Rev. 2.00 Dec. 05, 2005 Page 132 of 724 REJ09B0200-0200 T2 Section 7 Bus Controller (BSC) 7.8 Write Data Buffer Function This LSI has a write data buffer function for the external data bus. Using the write data buffer function enables external writes to be executed in parallel with internal accesses. The write data buffer function is made available by setting the WDBE bit to 1 in BCRL. Figure 7.19 shows an example of the timing when the write data buffer function is used. When this function is used, if an external address space write continues for two states or longer, and there is an internal access next, an external write only is executed in the first state, but from the next state onward an internal access (on-chip memory or internal I/O register read/write) is executed in parallel with the external address space write rather than waiting until it ends. On-chip memory read Internal I/O register read External write cycle T1 T2 TW TW T3 Internal address bus Internal memory Internal I/O register address Internal read signal A23 to A0 External space write External address HWR, LWR D15 to D0 Figure 7.19 Example of Timing when Write Data Buffer Function is Used Rev. 2.00 Dec. 05, 2005 Page 133 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) 7.9 Bus Arbitration This LSI has a bus arbiter that arbitrates bus mastership operations (bus arbitration). There are two bus masters—the CPU and DTC—that perform read/write operations when they have the bus mastership. Each bus master requests the bus by means of a bus request signal. The bus arbiter determines priorities at the prescribed timing, and permits use of the bus by means of a bus request acknowledge signal. The selected bus master then takes the bus mastership and begins its operation. 7.9.1 Operation The bus arbiter detects the bus masters’ bus request signals, and if the bus is requested, sends a bus request acknowledge signal to the bus master. If there are bus requests from more than one bus master, the bus request acknowledge signal is sent to the one with the highest priority. When a bus master receives the bus request acknowledge signal, it takes the bus mastership until that signal is canceled. The order of priority of the bus masterships is as follows: (High) DTC > CPU (Low) 7.9.2 Bus Transfer Timing Even if a bus request is received from a bus master with a higher priority than that of the bus master that has acquired the bus and is currently operating, the bus is not necessarily transferred immediately. There are specific timings at which each bus master can relinquish the bus. CPU: The CPU is the lowest-priority bus master, and if a bus request is received from the DTC, the bus arbiter transfers the bus to the bus master that issued the request. The timing for transfer of the bus is as follows: • The bus is transferred at a break between bus cycles. However, if a bus cycle is executed in discrete operations, as in the case of a longword-size access, the bus is not transferred between the component operations. • With bit manipulation instructions such as BSET and BCRL, the sequence of operations is: data read (read), relevant bit manipulation operation (modify), write-back (write). The bus is not transferred during this read-modify-write cycle, which is executed as a series of bus cycles. • If the CPU is in sleep mode, the bus is transferred immediately. Rev. 2.00 Dec. 05, 2005 Page 134 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) DTC: The DTC sends the bus arbiter a request for the bus when an activation request is generated. The DTC can release the bus after a vector read, a register information read (3 states), a single data transfer, or a register information write (3 states). It does not release the bus during a register information read (3 states), a single data transfer, or a register information write (3 states). 7.10 Bus Controller Operation in Reset In a power-on reset, this LSI, including the bus controller, enters the reset state immediately, and any executing bus cycle is aborted. Rev. 2.00 Dec. 05, 2005 Page 135 of 724 REJ09B0200-0200 Section 7 Bus Controller (BSC) Rev. 2.00 Dec. 05, 2005 Page 136 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) Section 8 Data Transfer Controller (DTC) This LSI includes a data transfer controller (DTC). The DTC can be activated by an interrupt or software, to transfer data. Figure 8.1 shows a block diagram of the DTC. The DTC’s register information is stored in the on-chip RAM. When the DTC is used, the RAME bit in SYSCR must be set to 1. A 32-bit bus connects the DTC to the on-chip RAM (1 kbyte), enabling 32-bit/1-state reading and writing of the DTC register information. 8.1 Features • Transfer is possible over any number of channels • Three transfer modes Normal, repeat, and block transfer modes are available • One activation source can trigger a number of data transfers (chain transfer) • The direct specification of 16-Mbyte address space is possible • Activation by software is possible • Transfer can be set in byte or word units • A CPU interrupt can be requested for the interrupt that activated the DTC • Module stop mode can be set DTCH80BA_020020040800 Rev. 2.00 Dec. 05, 2005 Page 137 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) Internal address bus CPU interrupt request [Legend] MRA, MRB: CRA, CRB: SAR: DAR: DTCERA to DTCERG, DTCERI: DTVECR: Internal data bus DTC mode registers A and B DTC transfer count registers A and B DTC source address register DTC destination address register DTC enable registers A to G, I DTC vector register Figure 8.1 Block Diagram of DTC Rev. 2.00 Dec. 05, 2005 Page 138 of 724 REJ09B0200-0200 Register information MRA MRB CRA CRB DAR SAR DTC service request DTVECR DTCERA to DTCERG DTCERI Interrupt request On-chip RAM DTC Control logic Interrupt controller Section 8 Data Transfer Controller (DTC) 8.2 Register Descriptions The DTC has the following registers. • • • • • • DTC mode register A (MRA) DTC mode register B (MRB) DTC source address register (SAR) DTC destination address register (DAR) DTC transfer count register A (CRA) DTC transfer count register B (CRB) These six registers cannot be directly accessed from the CPU. When activated, the DTC reads a set of register information that is stored in on-chip RAM to the corresponding DTC registers and transfers data. After the data transfer, it writes a set of updated register information back to the RAM. • DTC enable registers A to G, and I (DTCERA to DTCERG, DTCERI) • DTC vector register (DTVECR) Rev. 2.00 Dec. 05, 2005 Page 139 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.2.1 DTC Mode Register A (MRA) MRA is an 8-bit register that selects the DTC operating mode. Bit Bit Name Initial Value R/W Description 7 SM1 Undefined Source Address Mode 1 and 0 6 SM0 Undefined These bits specify an SAR operation after a data transfer. 0X: SAR is fixed 10: SAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1) 11: SAR is decremented after a transfer (by –1 when Sz = 0; by –2 when Sz = 1) 5 DM1 Undefined Destination Address Mode 1 and 0 4 DM0 Undefined These bits specify a DAR operation after a data transfer. 0X: DAR is fixed 10: DAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1) 11: DAR is decremented after a transfer (by –1 when Sz = 0; by –2 when Sz = 1) 3 MD1 Undefined DTC Mode 2 MD0 Undefined These bits specify the DTC transfer mode. 00: Normal mode 01: Repeat mode 10: Block transfer mode 11: Setting prohibited 1 DTS Undefined DTC Transfer Mode Select Specifies whether the source side or the destination side is set to be a repeat area or block area, in repeat mode or block transfer mode. 0: Destination side is repeat area or block area 1: Source side is repeat area or block area Rev. 2.00 Dec. 05, 2005 Page 140 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) Bit Bit Name Initial Value R/W Description 0 Sz Undefined DTC Data Transfer Size Specifies the size of data to be transferred. 0: Byte-size transfer 1: Word-size transfer [Legend] X: Don't care 8.2.2 DTC Mode Register B (MRB) MRB is an 8-bit register that selects the DTC operating mode. Bit Bit Name Initial Value R/W Description 7 CHNE Undefined DTC Chain Transfer Enable When this bit is set to 1, a chain transfer will be performed. For details, refer to 8.5.4, Chain Transfer. In data transfer with CHNE set to 1, determination of the end of the specified number of transfers, clearing of the interrupt source flag, and clearing of DTCER, are not performed. 6 DISEL Undefined DTC Interrupt Select When this bit is set to 1, a CPU interrupt request is generated every time after the end of a data transfer. When this bit is set to 0, a CPU interrupt request is generated at the time when the specified number of data transfer ends. 5 to 0 Undefined Reserved These bits have no effect on DTC operation. Only 0 should be written to these bits. Rev. 2.00 Dec. 05, 2005 Page 141 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.2.3 DTC Source Address Register (SAR) SAR is a 24-bit register that designates the source address of data to be transferred by the DTC. For word-size transfer, specify an even source address. 8.2.4 DTC Destination Address Register (DAR) DAR is a 24-bit register that designates the destination address of data to be transferred by the DTC. For word-size transfer, specify an even destination address. 8.2.5 DTC Transfer Count Register A (CRA) CRA is a 16-bit register that designates the number of times data is to be transferred by the DTC. In normal mode, the entire CRA functions as a 16-bit transfer counter (1 to 65536). It is decremented by 1 every time data is transferred, and transfer ends when the count reaches H'0000. In repeat mode or block transfer mode, the CRA is divided into two parts; the upper 8 bits (CRAH) and the lower 8 bits (CRAL). CRAH holds the number of transfers while CRAL functions as an 8-bit transfer counter (1 to 256). CRAL is decremented by 1 every time data is transferred, and the contents of CRAH are sent when the count reaches H'00. 8.2.6 DTC Transfer Count Register B (CRB) CRB is a 16-bit register that designates the number of times data is to be transferred by the DTC in block transfer mode. It functions as a 16-bit transfer counter (1 to 65536) that is decremented by 1 every time data is transferred, and transfer ends when the count reaches H'0000. Rev. 2.00 Dec. 05, 2005 Page 142 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.2.7 DTC Enable Registers A to G, and I (DTCERA to DTCERG, and DTCERI) DTCER is comprised of seven registers; DTCERA to DTCERG, and DTCERI, and is a register that specifies DTC activation interrupt sources. The correspondence between interrupt sources and DTCE bits is shown in table 8.1. For DTCE bit setting, use bit manipulation instructions such as BSET and BCLR for reading and writing. If all interrupts are masked, multiple activation sources can be set at one time (only at the initial setting) by writing data after executing a dummy read on the relevant register. Bit Bit Name Initial Value R/W Description 7 DTCE7 0 R/W DTC Activation Enable 6 DTCE6 0 R/W 5 DTCE5 0 R/W Setting this bit to 1 specifies a relevant interrupt source as a DTC activation source. 4 DTCE4 0 R/W [Clearing conditions] 3 DTCE3 0 R/W • 2 DTCE2 0 R/W When the DISEL bit in MRB is 1 and the data transfer has ended 1 DTCE1 0 R/W • When the specified number of transfers have ended 0 DTCE0 0 R/W These bits are not cleared when the DISEL bit is 0 and the specified number of transfers have not been completed. Rev. 2.00 Dec. 05, 2005 Page 143 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.2.8 DTC Vector Registers A to G (DTVECRA to DTVECRG) DTVECR is an 8-bit readable/writable register that enables or disables DTC activation by software, and sets a vector number for the software activation interrupt. Bit Bit Name Initial Value R/W Description 7 SWDTE 0 R/W DTC Software Activation Enable Setting this bit to 1 activates DTC. Only 1 can be written to this bit. [Clearing conditions] • When the DISEL bit is 0 and the specified number of transfers have not ended • When 0 is written to the DISEL bit after a softwareactivated data transfer end interrupt (SWDTEND) request has been sent to the CPU. When the DISEL bit is 1 and data transfer has ended or when the specified number of transfers have ended, this bit will not be cleared. 6 DTVEC6 0 R/W DTC Software Activation Vectors 0 to 6 5 DTVEC5 0 R/W 4 DTVEC4 0 R/W These bits specify a vector number for DTC software activation. 3 DTVEC3 0 R/W 2 DTVEC2 0 R/W 1 DTVEC1 0 R/W 0 DTVEC0 0 R/W Rev. 2.00 Dec. 05, 2005 Page 144 of 724 REJ09B0200-0200 The vector address is expressed as H'0400 + (vector number × 2). For example, when DTVEC6 to DTVEC0 = H'10, the vector address is H'0420. When the bit SWDTE is 0, these bits can be written. Section 8 Data Transfer Controller (DTC) 8.3 Activation Sources The DTC operates when activated by an interrupt or by a write to DTVECR by software. An interrupt request can be directed to the CPU or DTC, as designated by the corresponding DTCER bit. At the end of a data transfer (or the last consecutive transfer in the case of chain transfer), the activation source or corresponding DTCER bit is cleared. The activation source flag, in the case of RXI_0, for example, is the RDRF flag of SCI_0. When an interrupt has been designated a DTC activation source, the existing CPU mask level and interrupt controller priorities have no effect. If there is more than one activation source at the same time, the DTC operates in accordance with the default priorities. Figure 8.2 shows a block diagram of DTC activation source control. For details, see section 5, Interrupt Controller. Source flag cleared Clear controller Clear DTCER On-chip supporting module IRQ interrupt DTVECR Interrupt request Selection circuit Select Clear request DTC CPU Interrupt controller Interrupt mask Figure 8.2 Block Diagram of DTC Activation Source Control Rev. 2.00 Dec. 05, 2005 Page 145 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.4 Location of Register Information and DTC Vector Table Locate the register information in the on-chip RAM (addresses: H'FFEBC0 to H'FFEFBF). Register information should be located at an address that is a multiple of four within the range. Locating the register information in address space is shown in figure 8.3. Locate the MRA, SAR, MRB, DAR, CRA, and CRB registers, in that order, from the start address of the register information. In the case of chain transfer, register information should be located in consecutive areas and the register information start address should be located at the vector address corresponding to the interrupt source as shown in figure 8.3. The DTC reads the start address of the register information from the vector address set for each activation source, and then reads the register information from that start address. When the DTC is activated by software, the vector address is obtained from: H'0400 + (DTVECR[6:0] × 2). For example, if DTVECR is H'10, the vector address is H'0420. The configuration of the vector address is the same in both normal and advanced modes, a 2-byte unit being used in both cases. These two bytes specify the lower bits of the register information start address. Lower address 0 Register information start address Chain transfer 1 2 MRA SAR MRB DAR 3 Register information CRB CRA MRA SAR MRB DAR Register information for 2nd transfer in chain transfer CRB CRA 4 bytes Figure 8.3 Location of DTC Register Information in Address Space Rev. 2.00 Dec. 05, 2005 Page 146 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) Table 8.1 Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs Interrupt Source Origin of Interrupt Source DTC Vector Number Vector Address DTCE* Priority Software Write to DTVECR DTVECR H'0400 + (vector number × 2) High External pin IRQ0 16 H'0420 DTCEA7 IRQ1 17 H'0422 DTCEA6 IRQ2 18 H'0424 DTCEA5 IRQ3 19 H'0426 DTCEA4 IRQ4 20 H'0428 DTCEA3 IRQ5 21 H'042A DTCEA2 Reserved for system use 22 H'042C DTCEA1 23 H'042E DTCEA0 A/D counter ADI (A/D conversion end) 28 H'0438 DTCEB6 TPU_0 TGIA_0 32 H'0440 DTCEB5 TGIB_0 33 H'0442 DTCEB4 TGIC_0 34 H'0444 DTCEB3 TGID_0 35 H'0446 DTCEB2 TGIA_1 40 H'0450 DTCEB1 TGIB_1 41 H'0452 DTCEB0 TGIA_2 44 H'0458 DTCEC7 TGIB_2 45 H'045A DTCEC6 TGIA_3 48 H'0460 DTCEC5 TGIB_3 49 H'0462 DTCEC4 TGIC_3 50 H'0464 DTCEC3 TGID_3 51 H'0466 DTCEC2 TGIA_4 56 H'0470 DTCEC1 TGIB_4 57 H'0472 DTCEC0 TGIA_5 60 H'0478 DTCED5 TGIB_5 61 H'047A DTCED4 TPU_1 TPU_2 TPU_3 TPU_4 TPU_5 Low Rev. 2.00 Dec. 05, 2005 Page 147 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) Interrupt Source Origin of Interrupt Source DTC Vector Number Vector Address DTCE* Priority Reserved for system use 64 H'0480 DTCED3 High 65 H'0482 DTCED2 68 H'0488 DTCED1 69 H'048A DTCED0 72 H'0490 DTCEE7 73 H'0492 DTCEE6 74 H'0494 DTCEE5 75 H'0496 DTCEE4 RXI_0 81 H'04A2 DTCEE3 TXI_0 82 H'04A4 DTCEE2 RXI_1 85 H'04A8 DTCEE1 TXI_1 86 H'04AA DTCEE0 Reserved for system use SCI_0 SCI_1 SCI_2 RXI_2 89 H'04B2 DTCEF7 TXI_2 90 H'04B4 DTCEF6 Reserved for system use 92 H'04B8 DTCEF5 93 H'04BA DTCEF4 96 H'04C0 DTCEF3 97 H'04C2 DTCEF2 Motor control CMI1 PWM CMI2 104 H'04D0 DTCEG7 105 H'04D2 DTCEG6 Hcan_1 Reserved for system use 106 H'04D4 DTCEG5 RM0 107 H'04D6 DTCEG4 Reserved for system use 108 H'04D8 DTCEG3 RM0 109 H'04DA DTCEG2 RXI_4 125 H'04FA DTCEI5 TXI_4 126 H'04FC DTCEI4 Reserved for system use HCAN_0 SCI_4 Note: * Low DTCE bits with no corresponding interrupt are reserved, and the write value should always be 0. Rev. 2.00 Dec. 05, 2005 Page 148 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.5 Operation Register information is stored in on-chip RAM. When activated, the DTC reads register information in on-chip RAM and transfers data. After the data transfer, the DTC writes updated register information back to the on-chip RAM. The pre-storage of register information in the on-chip RAM makes it possible to transfer data over any required number of channels. The transfer mode can be specified as normal, repeat, and block transfer mode. Setting the CHNE bit in MRB to 1 makes it possible to perform a number of transfers with a single activation source (chain transfer). The 24-bit SAR designates the DTC transfer source address, and the 24-bit DAR designates the transfer destination address. After each transfer, SAR and DAR are independently incremented, decremented, or left fixed depending on its register information. Start Read DTC vector Next transfer Read register information Data transfer Write register information CHNE=1 Yes No Transfer Counter=0 or DISEL=1 Yes No Clear an activation flag Clear DTCER End Interrupt exception handling Figure 8.4 Flowchart of DTC Operation Rev. 2.00 Dec. 05, 2005 Page 149 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.5.1 Normal Mode In normal mode, one operation transfers one byte or one word of data. Table 8.2 lists the register information in normal mode. From 1 to 65,536 transfers can be specified. Once the specified number of transfers have been completed, a CPU interrupt can be requested. Table 8.2 Register Information in Normal Mode Name Abbreviation Function DTC source address register SAR Designates source address DTC destination address register DAR Designates destination address DTC transfer count register A CRA Designates transfer count DTC transfer count register B CRB Not used SAR DAR Transfer Figure 8.5 Memory Mapping in Normal Mode Rev. 2.00 Dec. 05, 2005 Page 150 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.5.2 Repeat Mode In repeat mode, one operation transfers one byte or one word of data. Table 8.3 lists the register information in repeat mode. From 1 to 256 transfers can be specified. Once the specified number of transfers have ended, the initial state of the transfer counter and the address register specified as the repeat area is restored, and transfer is repeated. In repeat mode the transfer counter value does not reach H′00, and therefore CPU interrupts cannot be requested when DISEL = 0. Table 8.3 Register Information in Repeat Mode Name Abbreviation Function DTC source address register SAR Designates source address DTC destination address register DAR Designates destination address DTC transfer count register AH CRAH Holds number of transfers DTC transfer count register AL CRAL Designates transfer count DTC transfer count register B CRB Not used SAR or DAR DAR or SAR Repeat area Transfer Figure 8.6 Memory Mapping in Repeat Mode Rev. 2.00 Dec. 05, 2005 Page 151 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.5.3 Block Transfer Mode In block transfer mode, one operation transfers one block of data. Either the transfer source or the transfer destination is designated as a block area. Table 8.4 lists the register information in block transfer mode. The block size can be between 1 and 256. When the transfer of one block ends, the initial state of the block size counter and the address register specified as the block area is restored. The other address register is then incremented, decremented, or left fixed. From 1 to 65,536 transfers can be specified. Once the specified number of transfers have been completed, a CPU interrupt is requested. Table 8.4 Register Information in Block Transfer Mode Name Abbreviation Function DTC source address register SAR Designates source address DTC destination address register DAR Designates destination address DTC transfer count register AH CRAH Holds block size DTC transfer count register AL CRAL Designates block size count DTC transfer count register B CRB Transfer count Rev. 2.00 Dec. 05, 2005 Page 152 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) First block SAR or DAR Block area Transfer DAR or SAR Nth block Figure 8.7 Memory Mapping in Block Transfer Mode Rev. 2.00 Dec. 05, 2005 Page 153 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.5.4 Chain Transfer Setting the CHNE bit in MRB to 1 enables a number of data transfers to be performed consecutively in response to a single transfer request. SAR, DAR, CRA, CRB, MRA, and MRB, which define data transfers, can be set independently. Figure 8.8 shows the outline of the chain transfer operation. When activated, the DTC reads the register information start address stored at the vector address corresponding to the activation source, and then reads the first register information at that start address. After data transfer ends, the CHNE bit will be tested. When it has been set to 1, DTC reads the next register information located in a consecutive area and performs the data transfer. These sequences are repeated until the CHNE bit is cleared to 0. In the case of transfer with CHNE set to 1, an interrupt request to the CPU is not generated at the end of the specified number of transfers or by setting of the DISEL bit to 1, and the interrupt source flag for the activation source is not affected. Source Destination Register information CHNE=1 DTC vector address Register information start address Register information CHNE=0 Source Destination Figure 8.8 Chain Transfer Operation Rev. 2.00 Dec. 05, 2005 Page 154 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.5.5 Interrupts An interrupt request is issued to the CPU when the DTC has completed the specified number of data transfers, or a data transfer for which the DISEL bit was set to 1. In the case of interrupt activation, the interrupt set as the activation source is generated. These interrupts to the CPU are subject to CPU mask level and interrupt controller priority level control. In the case of software activation, a software-activated data transfer end interrupt (SWDTEND) is generated. When the DISEL bit is 1 and one data transfer has been completed, or the specified number of transfers have been completed, after data transfer ends the SWDTE bit is held at 1 and an SWDTEND interrupt is generated. The interrupt handling routine will then clear the SWDTE bit to 0. When the DTC is activated by software, an SWDTEND interrupt is not generated during a data transfer wait or during data transfer even if the SWDTE bit is set to 1. 8.5.6 Operation Timing φ DTC activation request DTC request Vector read Data transfer Address Read Write Transfer information read Transfer information write Figure 8.9 DTC Operation Timing (Example in Normal Mode or Repeat Mode) Rev. 2.00 Dec. 05, 2005 Page 155 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) φ DTC activation request DTC request Data transfer Vector read Read Write Read Write Address Transfer information read Transfer information write Figure 8.10 DTC Operation Timing (Example of Block Transfer Mode, with Block Size of 2) φ DTC activation request DTC request Data transfer Data transfer Read Write Read Write Vector read Address Transfer information read Transfer information write Transfer information read Transfer information write Figure 8.11 DTC Operation Timing (Example of Chain Transfer) 8.5.7 Number of DTC Execution States Table 8.5 lists execution status for a single DTC data transfer, and table 8.6 shows the number of states required for each execution status. Rev. 2.00 Dec. 05, 2005 Page 156 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) Table 8.5 DTC Execution Status Mode Vector Read I Register Information Read/Write Data Read J K Data Write L Internal Operations M Normal 1 6 1 1 3 Repeat 1 6 1 1 3 Block transfer 1 6 N N 3 [Legend] N: Block size (initial setting of CRAH and CRAL) Table 8.6 Number of States Required for Each Execution Status Object to be Accessed OnChip RAM OnChip On-Chip I/O ROM Registers External Devices* Bus width 32 16 8 16 8 Access states 1 1 2 2 2 Execution status Vector read SI 1 4 6+2m 2 3+m Register information read/write SJ 1 Byte data read SK 1 1 2 2 2 3+m 2 3+m Word data read SK 1 1 4 2 4 6+2m 2 3+m Byte data write SL 1 1 2 2 2 3+m 2 3+m Word data write SL 1 1 4 2 4 6+2m 2 3+m Internal operation SM 1 Note: * 16 3 2 3 Not available in this LSI. The number of execution states is calculated from using the formula below. Note that Σ is the sum of all transfers activated by one activation source (the number in which the CHNE bit is set to 1, plus 1). Number of execution states = I · (1 + SI) + Σ (J · SJ + K · SK + L · SL) + M · SM For example, when the DTC vector address table is located in the on-chip ROM, normal mode is set, and data is transferred from on-chip ROM to an internal I/O register, then the time required for the DTC operation is 13 states. The time from activation to the end of the data write is 10 states. Rev. 2.00 Dec. 05, 2005 Page 157 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.6 Procedures for Using DTC 8.6.1 Activation by Interrupt The procedure for using the DTC with interrupt activation is as follows: 1. 2. 3. 4. Set the MRA, MRB, SAR, DAR, CRA, and CRB register information in on-chip RAM. Set the start address of the register information in the DTC vector address. Set the corresponding bit in DTCER to 1. Set the enable bits for the interrupt sources to be used as the activation sources to 1. The DTC is activated when an interrupt used as an activation source is generated. 5. After one data transfer has been completed, or after the specified number of data transfers have been completed, the DTCE bit is cleared to 0 and a CPU interrupt is requested. If the DTC is to continue transferring data, set the DTCE bit to 1. 8.6.2 Activation by Software The procedure for using the DTC with software activation is as follows: 1. 2. 3. 4. 5. 6. Set the MRA, MRB, SAR, DAR, CRA, and CRB register information in on-chip RAM. Set the start address of the register information in the DTC vector address. Check that the SWDTE bit is 0. Write 1 to SWDTE bit and the vector number to DTVECR. Check the vector number written to DTVECR. After one data transfer has been completed, if the DISEL bit is 0 and a CPU interrupt is not requested, the SWDTE bit is cleared to 0. If the DTC is to continue transferring data, set the SWDTE bit to 1. When the DISEL bit is 1, or after the specified number of data transfers have been completed, the SWDTE bit is held at 1 and a CPU interrupt is requested. Rev. 2.00 Dec. 05, 2005 Page 158 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.7 Examples of Use of the DTC 8.7.1 Normal Mode An example is shown in which the DTC is used to receive 128 bytes of data via the SCI. 1. Set MRA to a fixed source address (SM1 = SM0 = 0), incrementing destination address (DM1 = 1, DM0 = 0), normal mode (MD1 = MD0 = 0), and byte size (Sz = 0). The DTS bit can have any value. Set MRB for one data transfer by one interrupt (CHNE = 0, DISEL = 0). Set the SCI RDR address in SAR, the start address of the RAM area where data will be received in DAR, and 128 (H′0080) in CRA. CRB can be set to any value. 2. Set the start address of the register information at the DTC vector address. 3. Set the corresponding bit in DTCER to 1. 4. Set the SCI to the appropriate receive mode. Set the RIE bit in SCR to 1 to enable the reception complete (RXI) interrupt. Since the generation of a receive error during the SCI reception operation will disable subsequent reception, the CPU should be enabled to accept receive error interrupts. 5. Each time the reception of one byte of data has been completed on the SCI, the RDRF flag in SSR is set to 1, an RXI interrupt is generated, and the DTC is activated. The receive data is transferred from RDR to RAM by the DTC. DAR is incremented and CRA is decremented. The RDRF flag is automatically cleared to 0. 6. When CRA becomes 0 after the 128 data transfers have been completed, the RDRF flag is held at 1, the DTCE bit is cleared to 0, and an RXI interrupt request is sent to the CPU. The interrupt handling routine will perform wrap-up processing. Rev. 2.00 Dec. 05, 2005 Page 159 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.7.2 Chain Transfer An example of DTC chain transfer is shown in which pulse output is performed using the PPG. Chain transfer can be used to perform pulse output data transfer and PPG output trigger cycle updating. Repeat mode transfer to the PPG's NDR is performed in the first half of the chain transfer, and normal mode transfer to the TPU's TGR in the second half. This is because clearing of the activation source and interrupt generation at the end of the specified number of transfers are restricted to the second half of the chain transfer (transfer when CHNE = 0). 1. Perform settings for transfer to the PPG's NDR. Set MRA to incrementing source address (SM1 = 1, SM0 = 0), a fixed destination address (DM1 = DM0 = 0), repeat mode (MD1 = 0, MD0 = 1), and word size (Sz = 1). Set the source side as a repeat area (DTS = 1). Set MRB to chain mode (CHNE = 1, DISEL = 0). Set the data table start address in SAR, the NDRH address in DAR, and the data table size in CRAH and CRAL. CRB can be set to any value. 2. Perform settings for transfer to the TPU's TGR. Set MRA to incrementing source address (SM1 = 1, SM0 = 0), a fixed destination address (DM1 = DM0 = 0), normal mode (MD1 = MD0 = 0), and word size (Sz = 1). Set the data table start address in SAR, the TGRA address in DAR, and the data table size in CRA. CRB can be set to any value. 3. Locate the TPU transfer register information consecutively after the NDR transfer register information. 4. Set the start address of the NDR transfer register information to the DTC vector address. 5. Set the bit corresponding to TGIA in DTCER to 1. 6. Set TGRA as an output compare register (output disabled) with TIOR, and enable the TGIA interrupt with TIER. 7. Set the initial output value in PODR, and the next output value in NDR. Set bits in DDR and NDER for which output is to be performed to 1. Using PCR, select the TPU compare match to be used as the output trigger. 8. Set the CST bit in TSTR to 1, and start the TCNT count operation. 9. Each time a TGRA compare match occurs, the next output value is transferred to NDR and the set value of the next output trigger period is transferred to TGRA. The activation source TGFA flag is cleared. 10. When the specified number of transfers are completed (the TPU transfer CRA value is 0), the TGFA flag is held at 1, the DTCE bit is cleared to 0, and a TGIA interrupt request is sent to the CPU. Termination processing should be performed in the interrupt handling routine. Rev. 2.00 Dec. 05, 2005 Page 160 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.7.3 Software Activation An example is shown in which the DTC is used to transfer a block of 128 bytes of data by means of software activation. The transfer source address is H'1000 and the destination address is H'2000. The vector number is H'60, so the vector address is H′04C0. 1. Set MRA to incrementing source address (SM1 = 1, SM0 = 0), incrementing destination address (DM1 = 1, DM0 = 0), block transfer mode (MD1 = 1, MD0 = 0), and byte size (Sz = 0). The DTS bit can have any value. Set MRB for one block transfer by one interrupt (CHNE = 0). Set the transfer source address (H'1000) in SAR, the destination address (H'2000) in DAR, and 128 (H'8080) in CRA. Set 1 (H'0001) in CRB. 2. Set the start address of the register information at the DTC vector address (H'04C0). 3. Check that the SWDTE bit in DTVECR is 0. Check that there is currently no transfer activated by software. 4. Write 1 to the SWDTE bit and the vector number (H'60) to DTVECR. The write data is H'E0. 5. Read DTVECR again and check that it is set to the vector number (H'60). If it is not, this indicates that the write failed. This is presumably because an interrupt occurred between steps 3 and 4 and led to a different software activation. To activate this transfer, go back to step 3. 6. If the write was successful, the DTC is activated and a block of 128 bytes of data is transferred. 7. After the transfer, an SWDTEND interrupt occurs. The interrupt handling routine should clear the SWDTE bit to 0 and perform other wrap-up processing. Rev. 2.00 Dec. 05, 2005 Page 161 of 724 REJ09B0200-0200 Section 8 Data Transfer Controller (DTC) 8.8 Usage Notes 8.8.1 Module Stop Mode Setting DTC operation can be disabled or enabled using the module stop control register. The initial setting is for DTC operation to be enabled. Register access is disabled by setting module stop mode. Note that module stop mode cannot be set during DTC being activated. For details, refer to section 21, Power-Down Modes. 8.8.2 On-Chip RAM The MRA, MRB, SAR, DAR, CRA, and CRB registers are all located in on-chip RAM. When the DTC is used, the RAME bit in SYSCR must not be cleared to 0. 8.8.3 DTCE Bit Setting For DTCE bit setting, use bit manipulation instructions such as BSET and BCLR. If all interrupts are masked, multiple activation sources can be set at one time (only at the initial setting) by writing data after executing a dummy read on the relevant register. Rev. 2.00 Dec. 05, 2005 Page 162 of 724 REJ09B0200-0200 Section 9 I/O Ports Section 9 I/O Ports This LSI has 13 I/O ports (ports 1 to 3, 5, A to F, H, J, and K), and two input-only port (ports 4 and 9). Table 9.1 shows the port functions. The pins of each port also have other functions. Each I/O port includes a data direction register (DDR) that controls input/output, a data register (DR) that stores output data, and a port register (PORT) used to read the pin states. The input-only ports do not have a DR or DDR register. Ports A to E have a built-in pull-up MOS function, and in addition to DR and DDR, have a MOS input pull-up control register (PCR) to control the on/off state of MOS input pull-up. Ports 3, and A to C include an open-drain control register (ODR) that controls the on/off state of the output buffer PMOS. When ports A to F are used as the output pins for expanded bus control signals, they can drive one TTL load plus a 50pF capacitance load. Ports other than A to F can drive one TTL load and a 30pF capacitance load. All I/O ports can drive Darlington transistors when set to output. Ports 1 and A to C can drive a LED (10 mA sink current), and some of the pins in ports B, C, and E and A, D, and F can be used as LCD driver pins. Port 1 pins P16 and P14 are Schmitt-trigger inputs. Rev. 2.00 Dec. 05, 2005 Page 163 of 724 REJ09B0200-0200 Section 9 I/O Ports Table 9.1 Port Functions Port Description Mode 4 Mode 5 Port 1 General I/O port also functioning as TPU I/O pins, PPG output pins, and interrupt input pins P17/PO15/TIOCB2/TCLKD Mode 6 Mode 7 Input/Output Type P16 /PO14/TIOCA2/IRQ1 P15 /PO13/TIOCB1/TCLKC P14 /PO12/TIOCA1/IRQ0 P13 /PO11/TIOCD0/TCLKB P12 /PO10/TIOCC0/TCLKA P11/PO9/TIOCB0 P10/PO8/TIOCA0 Port 2 General I/O port also functioning as TPU I/O pins P27/TIOCB5 P26/TIOCA5 P25/TIOCB4 P24/TIOCA4 P23/TIOCD3 P22/TIOCC3 P21/TIOCB3 P20/TIOCA3 Port 3 General I/O port also functioning as SCI I/O pins and interrupt input pins P37/TxD4 P36/RxD4 P35/SCK1/SCK4/IRQ5 P34/RxD1 P33/TxD1 P32/SCK0/IRQ4 P31/RxD0 P30/TxD0 Rev. 2.00 Dec. 05, 2005 Page 164 of 724 REJ09B0200-0200 Open-drain output Section 9 I/O Ports Port Description Mode 4 Port 4 General input port also functioning as analog input pins P47/AN7 Mode 5 Mode 6 Input/Output Type Mode 7 P46/AN6 P45/AN5 P44/AN4 P43/AN3 P42/AN2 P41/AN1 P40/AN0 Port 5 General I/O port also functioning as SCI I/O pins P52/SCK2 P51/RxD2 P50/TxD2 Port 9 General input port also functioning as analog input pins P97/AN15 P96/AN14 P95/AN13 P94/AN12 P93/AN11 P92/AN10 P91/AN9 P90/AN8 Port A General I/O port also functioning as LCD segment output pins, common output pins, and address output pins PA7/A23/SEG40 PA7/SEG40 PA6/A22/SEG39 PA6/SEG39 PA5/A21/SEG38 PA5/SEG38 PA4/A20/SEG37 PA4/SEG37 PA3/A19/COM4 PA3/COM4 PA2/A18/COM3 PA2/COM3 PA1/A17COM2 PA1/COM2 PA0/A16/COM1 PA0/COM1 Built-in pull-up MOS Open-drain output Rev. 2.00 Dec. 05, 2005 Page 165 of 724 REJ09B0200-0200 Section 9 I/O Ports Port Description Mode 4 Port B General I/O port also functioning as LCD segment output pins, address output pins PB7/A15/SEG32 PB7/SEG32 PB6/A14/SEG31 PB6/SEG31 PB5/A13/SEG30 PB5/SEG30 PB4/A12/SEG29 PB4/SEG29 PB3/A11/SEG28 PB3/SEG28 PB2/A10/SEG27 PB2/SEG27 PB1/A9/SEG26 PB1/SEG26 PB0/A8/SEG25 PB0/SEG25 Port C Port D Port E General I/O port also functioning as LCD segment output pins and address output pins General I/O port also functioning as LCD segment output pins and data I/O pins General I/O port also functioning as LCD segment output pins and data I/O pins Mode 6 Mode 7 PC7/A7 PC7/A7/SEG24 PC7/SEG24 PC7/A6 PC6/A6/SEG23 PC6/SEG23 PC7/A5 PC5/A5/SEG22 PC5/SEG22 PC7/A4 PC4/A4/SEG21 PC4/SEG21 PC7/A3 PC3/A3/SEG20 PC3/SEG20 PC7/A2 PC2/A2/SEG19 PC2/SEG19 PC7/A1 PC1/A1/SEG18 PC1/SEG18 PC7/A0 PC0/A0/SEG17 PC0/SEG17 D15 D15/SEG16 PD7/SEG16 D14 D14/SEG15 PD6/SEG15 D13 D13/SEG14 PD5/SEG14 D12 D12/SEG13 PD4/SEG13 D11 D11/SEG12 PD3/SEG12 D10 D10/SEG11 PD2/SEG11 D9 D9/SEG10 PD1/SEG10 D8 D8/SEG9 PD0/SEG9 PE7/D7/SEG8 PE7/SEG8 PE6/D6/SEG7 PE6/SEG7 PE5/D5/SEG6 PE5/SEG6 PE4/D4/SEG5 PE4/SEG5 PE3/D3/SEG4 PE3/SEG4 PE2/D2/SEG3 PE2/SEG3 PE1/D1/SEG2 PE1/SEG2 PE0 /D0/SEG1 PE0/SEG1 Rev. 2.00 Dec. 05, 2005 Page 166 of 724 REJ09B0200-0200 Mode 5 Input/Output Type Built-in pull-up MOS Built-in pull-up MOS Section 9 I/O Ports Description Mode 4 Port F General I/O port also functioning as φ output pin, bus control I/O pins, LCD segment output pins, and interrupt input pins PF7/φ PF7/φ PF6/AS/SEG36 PF6/SEG36 PF5/RD/SEG35 PF5/SEG35 PF4/HWR/SEG34 PF4/SEG34 PF3/LWR/ADTRG/IRQ3 PF3/ADTRG/ IRQ3 PF2/WAIT/SEG33 PF2/SEG33 PF0/IRQ2 PF0/IRQ2 Port H General I/O port also functioning as PWM output pins Mode 5 Mode 6 Input/Output Type Port Mode 7 PH7/PWM1H PH6/PWM1G PH5/PWM1F PH4/PWM1E PH3/PWM1D PH2/PWM1C PH1/PWM1B PH0/PWM1A Port J General I/O port also functioning as PWM output pins PJ7/PWM2H PJ6/PWM2G PJ5/PWM2F PJ4/PWM2E PJ3/PWM2D PJ2/PWM2C PJ1/PWM2B PJ0/PWM2A Port K General I/O port also functioning as HCAN I/O pins PK7/HRxD1 PK6/HTxD1 Rev. 2.00 Dec. 05, 2005 Page 167 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.1 Port 1 Port 1 is an 8-bit I/O port. Port 1 pins also function as PPG output pins, TPU I/O pins, and external interrupt pins. • Port 1 data direction register (P1DDR) • Port 1 data register (P1DR) • Port 1 register (PORT1) 9.1.1 Port 1 Data Direction Register (P1DDR) P1DDR is a write-only register, the individual bits of which specify input or output for the pins of port 1. P1DDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value R/W Description 7 P17DDR 0 W 6 P16DDR 0 W 5 P15DDR 0 W Setting a P1DDR bit to 1 makes the corresponding port 1 pin an output pin, while clearing the bit to 0 makes the pin an input pin. 4 P14DDR 0 W 3 P13DDR 0 W 2 P12DDR 0 W 1 P11DDR 0 W 0 P10DDR 0 W Rev. 2.00 Dec. 05, 2005 Page 168 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.1.2 Port 1 Data Register (P1DR) P1DR stores output data for the port 1 pins. Bit Bit Name Initial Value R/W Description 7 P17DR 0 R/W 6 P16DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 5 P15DR 0 R/W 4 P14DR 0 R/W 3 P13DR 0 R/W 2 P12DR 0 R/W 1 P11DR 0 R/W 0 P10DR 0 R/W 9.1.3 Port 1 Register (PORT1) PORT1 shows the pin states. It cannot be modified. Bit Bit Name Initial Value R/W Description 7 P17 * R 6 P16 * R 5 P15 * R If this register read is performed while P1DDR bits are set to 1, the P1DR values are read. If this register read is performed while P1DDR bits are cleared to 0, the pin states are read. 4 P14 * R 3 P13 * R 2 P12 * R 1 P11 * R 0 P10 * R Note: * Determined by state of pins P17 to P10. Rev. 2.00 Dec. 05, 2005 Page 169 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.1.4 Pin Functions The correspondence between the register specification and the pin functions is shown below. • P17/PO15/TIOCB2/TCLKD The pin function is switched as shown below according to the combination of the TPU channel 2 setting (by bits MD3 to MD0 in TMDR_2, bits IOB3 to IOB0 in TIOR_2, and bits CCLR1 and CCLR0 in TCR_2), bits TPSC2 to TPSC0 in TCR_0 and TCR_5, bit NDER15 in NDERH, and bit P17DDR. TPU channel 2 setting Table below (1) Table below (2) P17DDR 0 1 1 NDER15 0 1 TIOCB2 output P17 input P17 output PO15 output Pin function TIOCB2 input *1 TCLKD input *2 TPU channel 2 setting (2) MD3 to MD0 IOB3 to IOB0 (1) B'0000, B'0010 B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 (2) (2) B'0010 (1) (2) B'0010 B'xx10 Other than B'xx10 B'1xxx CCLR1, CCLR0 Other than B'10 B'10 Output function Output compare output PWM mode 2 output [Legend] x: Don't care Notes: 1. TIOCB2 input when MD3 to MD0 = B'0000 or B'01xx, and IOB3 = 1. 2. TCLKD input when the setting for either TCR_0 or TCR_5 is: TPSC2 to TPSC0 = B'111. TCLKD input when channels 2 and 4 are set to phase counting mode. Rev. 2.00 Dec. 05, 2005 Page 170 of 724 REJ09B0200-0200 Section 9 I/O Ports • P16/PO14/TIOCA2/IRQ1 The pin function is switched as shown below according to the combination of the TPU channel 2 setting (by bits MD3 to MD0 in TMDR_2, bits IOA3 to IOA0 in TIOR_2, and bits CCLR1 and CCLR0 in TCR_2), bit NDER14 in NDERH, and bit P16DDR. TPU channel 2 setting Table below (1) Table below (2) P16DDR 0 1 1 NDER14 0 1 TIOCA2 output P16 input P16 output Pin function PO14 output 1 TIOCB2 input * IRQ1 input TPU channel 2 setting (2) MD3 to MD0 IOA3 to IOA0 (1) B'0000, B'01xx B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 (2) (1) (1) (2) B'001x B'0010 B'0011 B'xx00 Other than B'xx00 Other than B'xx00 B'1xxx CCLR1, CCLR0 Other than B'01 B'01 Output function Output compare output PWM mode 1 output *2 PWM mode 2 output [Legend] x: Don't care Notes: 1. TIOCA2 input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 = 1. 2. TIOCB2 output is disabled. Rev. 2.00 Dec. 05, 2005 Page 171 of 724 REJ09B0200-0200 Section 9 I/O Ports • P15/PO13/TIOCB1/TCLKC The pin function is switched as shown below according to the combination of the TPU channel 1 setting (by bits MD3 to MD0 in TMDR_1, bits IOB3 to IOB0 in TIOR_1, and bits CCLR1 and CCLR0 in TCR_1), bits TPSC2 to TPSC0 in TCR_0, TCR_2, TCR_4, and TCR_5, bit NDER13 in NDERH, and bit P15DDR. TPU channel 1 setting Table below (1) Table below (2) P15DDR 0 1 1 NDER13 0 1 TIOCB1 output P15 input P15 output Pin function TIOCB1 input * PO13 output 1 TCLKC input *2 TPU channel 1 setting (2) MD3 to MD0 IOB3 to IOB0 (1) B'0000, B'01xx B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 (2) (2) B'0010 (1) (2) B'0011 B'xx00 Other than B'xx00 B'1xxx CCLR1, CCLR0 Other than B'10 B'10 Output function Output compare output PWM mode 2 output [Legend] x: Don't care Notes: 1. TIOCB1 input when MD3 to MD0 = B'0000 or B'01xx, and IOB3 to IOB0 = B'10xx. 2. TCLKC input when the setting for either TCR_0 or TCR_2 is: TPSC2 to TPSC0 = B'110; or when the setting for either TCR_4 or TCR_5 is TPSC2 to TPSC0 = B'101. TCLKC input when channels 2 and 4 are set to phase counting mode. Rev. 2.00 Dec. 05, 2005 Page 172 of 724 REJ09B0200-0200 Section 9 I/O Ports • P14/PO12/TIOCA1/IRQ0 The pin function is switched as shown below according to the combination of the TPU channel 1 setting (by bits MD3 to MD0 in TMDR_1, bits IOA3 to IOA0 in TIOR_1, and bits CCLR1 and CCLR0 in TCR_1), bit NDER12 in NDERH, and bit P14DDR. TPU channel 1 setting Table below (1) Table below (2) P14DDR 0 1 1 NDER12 0 1 TIOCA1 output P14 input P14 output Pin function TIOCA1 input * PO12 output 1 IRQ0 input TPU channel 1 setting (2) MD3 to MD0 IOA3 to IOA0 (1) B'0000, B'01xx B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 (2) (1) (1) (2) B'001x B'0010 B'0011 B'xx00 Other than B'xx00 Other than B'xx00 B'1xxx CCLR1, CCLR0 Other than B'01 B'01 Output function Output compare output PWM mode 1 output*2 PWM mode 2 output [Legend] x: Don't care Notes: 1. TIOCA1 input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 to IOA0 = B'10xx. 2. TIOCB1 output is disabled. Rev. 2.00 Dec. 05, 2005 Page 173 of 724 REJ09B0200-0200 Section 9 I/O Ports • P13/PO11/TIOCD0/TCLKB The pin function is switched as shown below according to the combination of the TPU channel 0 setting (by bits MD3 to MD0 in TMDR_0, bits IOD3 to IOD0 in TIORL_0, and bits CCLR2 to CCLR0 in TCR0), bits TPSC2 to TPSC0 in TCR_0 to TCR_2, bit NDER11 in NDERH, and bit P13DDR. TPU channel 0 setting Table below (1) Table below (2) P13DDR 0 1 1 NDER11 0 1 TIOCD0 output P13 input P13 output Pin function PO11 output 1 TIOCD0 input * TCLKB input *2 TPU channel 0 setting (2) MD3 to MD0 IOD3 to IOD0 (1) B'0000, B'01xx B'0000 B'0001 to B'0011 B'0100 B'0101 toB'0111 (2) (2) B'0010 (1) (2) B'0011 B'xx00 Other than B'xx00 B'1xxx CCLR2 to CCLR0 Other than B'110 B'110 Output function Output compare output PWM mode 2 output [Legend] x: Don't care Notes: 1. TIOCD0 input when MD3 to MD0 = B'0000, and IOD3 to IOD0 = B'10xx. 2. TCLKB input when the setting for TCR_0 to TCR_2 is: TPSC2 to TPSC0 = B'101. TCLKB input when channels 1 and 5 are set to phase counting mode. Rev. 2.00 Dec. 05, 2005 Page 174 of 724 REJ09B0200-0200 Section 9 I/O Ports • P12/PO10/TIOCC0/TCLKA The pin function is switched as shown below according to the combination of the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOC3 to IOC0 in TIORL_0, and bits CCLR2 to CCLR0 in TCR_0), bits TPSC2 to TPSC0 in TCR_0 to TCR_5, bit NDER10 in NDERH, and bit P12DDR. TPU channel 0 setting Table below (1) Table below (2) P12DDR 0 1 1 NDER10 0 1 TIOCC0 output P12 input P12 output Pin function PO10 output 1 TIOCC0 input * TCLKA input *2 TPU channel0 setting (2) MD3 to MD0 IOC3 to IOC0 (1) B'0000, B'01xx B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 (2) (1) (1) (2) B'001x B'0010 B'0011 B'xx00 Other than B'xx00 Other than B'xx00 B'1xxx CCLR2 to CCLR0 Other than B'01 B'01 Output function Output compare output PWM mode 1 output*3 PWM mode 2 output [Legend] x: Don't care Notes: 1. TIOCC0 input when MD3 to MD0 = B'0000, and IOC3 to IOC0 = B'10xx. 2. TCLKA input when the setting for TCR_0 to TCR_5 is: TPSC2 to TPSC0 = B'100. TCLKA input when channels 1 and 5 are set to phase counting mode. 3. TIOCD0 output is disabled. When BFA = 1 or BFB = 1 in TMDR_0, output is disabled and setting (2) applies. Rev. 2.00 Dec. 05, 2005 Page 175 of 724 REJ09B0200-0200 Section 9 I/O Ports • P11/PO9/TIOCB0 The pin function is switched as shown below according to the combination of the operating mode, and the TPU channel 0 setting (by bits MD3 to MD0 in TMDR_0, and bits IOB3 to IOB0 in TIORH_0), bit NDER9 in NDERH, and bit P11DDR. TPU channel 0 setting Table Below (1) Table Below (2) P11DDR 0 1 1 NDER9 0 1 TIOCB0 output P11 input P11 output PO9 output Pin function TIOCB0 input * TPU channel 0 setting (2) MD3 to MD0 IOB3 to IOB0 (1) B'0000 (2) (2) B'0010 B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 (1) (2) B'0011 B'xx00 Other than B'xx00 B'1xxx CCLR2 to CCLR0 Other than B'010 B'010 Output function Output compare output PWM mode 2 output [Legend] x: Don't care Note: * TIOCB0 input when MD3 to MD0 = B'0000, and IOB3 to IOB0 = B'10xx. Rev. 2.00 Dec. 05, 2005 Page 176 of 724 REJ09B0200-0200 Section 9 I/O Ports • P10/PO8/TIOCA0 The pin function is switched as shown below according to the combination of the operating mode, and the TPU channel 0 setting (by bits MD3 to MD0 in TMDR_0, bits IOA3 to IOA0 in TIORH_0, and bits CCLR2 to CCLR0 in TCR_0), bit NDER8 in NDERH, and bit P10DDR. TPU channel 0 setting Table Below (1) Table Below (2) P10DDR 0 1 1 NDER8 0 1 TIOCA0 output P10 input P10 output Pin function PO8 output 1 TIOCA0 input * TPU channel 0 setting (2) (2) (1) B'0000 B'001x B'0010 B'0000 B'0001 to B'0011 B'xx00 B'0100 B'0101 to B'0111 Other than B'xx00 MD3 to MD0 IOA3 to IOA0 (1) (1) (2) B'0011 B'1xxx CCLR2 to CCLR0 — Other than B'001 B'001 Output function Output compare output PWM mode 2 1 output* PWM mode 2 output — [Legend] x: Don't care Notes: 1. TIOCA0 input when MD3 to MD0 = B'0000, and IOA3 to IOA0 = B'10xx. 2. TIOCB0 output is disabled. Rev. 2.00 Dec. 05, 2005 Page 177 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.2 Port 2 Port 2 is an 8-bit I/O port. Port 2 pins also function as TPU I/O pins. The pin functions of port 2 change with the operating mode. • Port 2 data direction register (P2DDR) • Port 2 data register (P2DR) • Port 2 register (PORT2) 9.2.1 Port 2 Data Direction Register (P2DDR) P2DDR is a write-only register, the individual bits of which specify input or output for the pins of port 2. P2DDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value R/W Description 7 P27DDR 0 W 6 P26DDR 0 W 5 P25DDR 0 W Setting a P2DDR bit to 1 makes the corresponding port 2 pin an output pin, while clearing the bit to 0 makes the pin an input pin. 4 P24DDR 0 W 3 P23DDR 0 W 2 P22DDR 0 W 1 P21DDR 0 W 0 P20DDR 0 W Rev. 2.00 Dec. 05, 2005 Page 178 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.2.2 Port 2 Data Register (P2DR) P2DR stores output data for the port 2 pins. Bit Bit Name Initial Value R/W Description 7 P27DR 0 R/W 6 P26DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 5 P25DR 0 R/W 4 P24DR 0 R/W 3 P23DR 0 R/W 2 P22DR 0 R/W 1 P21DR 0 R/W 0 P20DR 0 R/W 9.2.3 Port 2 Register (PORT2) PORT2 shows the pin states. It cannot be modified. Bit Bit Name Initial Value R/W Description 7 P27 * R 6 P26 * R 5 P25 * R If this register read is performed while P2DDR bits are set to 1, the P2DR values are read. If this port read is performed while P2DDR bits are cleared to 0, the pin states are read. 4 P24 * R 3 P23 * R 2 P22 * R 1 P21 * R 0 P20 * R Note: * Determined by state of pins P27 to P20. Rev. 2.00 Dec. 05, 2005 Page 179 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.2.4 Pin Functions The correspondence between the register specification and the pin functions is shown below. • P27/TIOCB5 The pin function is switched as shown below according to the combination of the TPU channel 5 setting (by bits MD3 to MD0 in TMDR_5, bits IOB3 to IOB0 in TIOR_5, and bits CCLR1 and CCLR0 in TCR_5), bits TPSC2 to TPSC0 in TCR_0 and TCR_5, and bit P17DDR. TPU channel 5 setting Table below (1) 0 1 TIOCB5 output P27 input P27 output P27DDR Pin function Table below (2) TIOCB5 input* TPU channel 5 setting (2) MD3 to MD0 IOB3 to IOB0 (1) B'0000, B'01xx B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 (2) (2) B'0010 (1) (2) B'0011 B'xx00 Other than B'xx00 B'1xxx CCLR1, CCLR0 Other than B'10 B'10 Output function Output compare output PWM mode 2 output [Legend] x: Don't care Note: * TIOCB5 input if MD3 to MD0 = B'0000 or B'01xx, and IOB = 1. Rev. 2.00 Dec. 05, 2005 Page 180 of 724 REJ09B0200-0200 Section 9 I/O Ports • P26/TIOCA5 The pin function is switched as shown below according to the combination of the TPU channel 5 setting (by bits MD3 to MD0 in TMDR_5, bits IOA3 to IOA0 in TIOR_5, and bits CCLR1 and CCLR0 in TCR_5), and bit P26DDR. TPU channel 5 setting Table below (1) 0 1 TIOCA5 output P26 input P26 output P26DDR Pin function Table below (2) TIOCA5 input TPU channel 5 setting (2) MD3 to MD0 IOA3 to IOA0 (1) B'0000, B'01xx B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 (2) (1) (1) (2) B'001x B'0010 B'0011 B'xx00 Other than B'xx00 Other than B'xx00 B'1xxx CCLR1, CCLR0 Other than B'01 B'01 Output function Output compare output PWM mode 1 output * PWM mode 2 output [Legend] x: Don't care Note: * TIOCB5 output prohibited. Rev. 2.00 Dec. 05, 2005 Page 181 of 724 REJ09B0200-0200 Section 9 I/O Ports • P25/TIOCB4 The pin function is switched as shown below according to the combination of the TPU channel 4 setting (by bits MD3 to MD0 in TMDR_4, bits IOB3 to IOB0 in TIOR_4, and bits CCLR1 and CCLR0 in TCR_4) and bit P25DDR. TPU channel 4 setting Table below (1) 0 1 TIOCB4 output P25 input P25 output P25DDR Pin function Table below (2) TIOCB4 input TPU channel 4 setting (2) MD3 to MD0 IOB3 to IOB0 (1) B'0000, B'01xx B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 (2) (2) B'0010 (1) (2) B'0011 B'xx00 Other than B'xx00 B'1xxx CCLR1, CCLR0 Other than B'10 B'10 Output function Output compare output PWM mode 2 output [Legend] x: Don't care Rev. 2.00 Dec. 05, 2005 Page 182 of 724 REJ09B0200-0200 Section 9 I/O Ports • P24/TIOCA4 The pin function is switched as shown below according to the combination of the TPU channel 4 setting (by bits MD3 to MD0 in TMDR_4, bits IOA3 to IOA0 in TIOR_4, and bits CCLR1 and CCLR0 in TCR_4), and bit P24DDR. TPU channel 4 setting Table below (1) 0 1 TIOCA4 output P24 input P24 output P24DDR Pin function Table below (2) TIOCA4 input TPU channel 4 setting (2) MD3 to MD0 IOA3 to IOA0 (1) B'0000, B'01xx B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 (2) (1) (1) (2) B'001x B'0010 B'0011 B'xx00 Other than B'xx00 Other than B'xx00 B'1xxx CCLR1, CCLR0 Other than B'01 B'01 Output function Output compare output PWM mode 1 output* PWM mode 2 output [Legend] x: Don't care Note: * TIOCB4 output prohibited. Rev. 2.00 Dec. 05, 2005 Page 183 of 724 REJ09B0200-0200 Section 9 I/O Ports • P23/TIOCD3 The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR_3, bits IOD3 to IOD0 in TIORL_3, and bits CCLR2 to CCLR0 in TCR_3) and bit P23DDR. TPU channel 3 setting Table below (1) 0 1 TIOCD3 output P23 input P23 output P23DDR Pin function Table below (2) TIOCD3 input TPU channel 3 setting (2) (2) (2) B'0000 B'001x B'0010 B'0011 B'0000 B'0001 to B'0011 B'xx00 Other than B'xx00 B'0100 B'0101 to B'0111 Other than B'xx00 MD3 to MD0 IOD3 to IOD0 (1) (1) (2) B'1xxx CCLR2 to CCLR0 Other than B'101 B'101 Output function Output compare output PWM mode 2 output [Legend] x: Don't care Rev. 2.00 Dec. 05, 2005 Page 184 of 724 REJ09B0200-0200 Section 9 I/O Ports • P22/TIOCC3 The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR_3, bits IOC3 to IOC0 in TIORL_3, and bits CCLR2 to CCLR0 in TCR_3) and bit P22DDR. TPU channel 3 setting Table below (1) 0 1 TIOCC3 output P22 input P22 output P22DDR Pin function Table below (2) TIOCC3 input TPU channel 3 setting (2) MD3 to MD0 IOC3 to IOC0 (1) B'0000, B'01xx B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 (2) (1) (1) (2) B'001x B'0010 B'0011 B'xx00 Other than B'xx00 Other than B'xx00 B'1xxx CCLR2 to CCLR0 Other than B'101 B'101 Output function Output compare output PWM mode 1 output* PWM mode 2 output [Legend] x: Don't care Note: * TIOCD3 output prohibited. Rev. 2.00 Dec. 05, 2005 Page 185 of 724 REJ09B0200-0200 Section 9 I/O Ports • P21/TIOCB3 The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR_3, bits IOB3 to IOB0 in TIORL_3, and bits CCLR2 to CCLR0 in TCR_3) and bit P21DDR. TPU channel 3 setting Table Below (1) 0 1 TIOCB3 output P21 input P21 output P21DDR Pin function Table Below (2) TIOCB3 input TPU channel 3 setting (2) MD3 to MD0 IOB3 to IOB0 (1) B'0000 (2) (2) B'0010 B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 (1) (2) B'0011 B'xx00 Other than B'xx00 B'1xxx CCLR2 to CCLR0 Other than B'010 B'010 Output function Output compare output PWM mode 2 output [Legend] x: Don't care Rev. 2.00 Dec. 05, 2005 Page 186 of 724 REJ09B0200-0200 Section 9 I/O Ports • P20/TIOCA3 The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR_3, bits IOA3 to IOA0 in TIORL_3, and bits CCLR2 to CCLR0 in TCR_3) and bit P20DDR. TPU channel 3 setting Table below (1) 0 1 TIOCA3 output P20 input P20 output P20DDR Pin function Table below (2) TIOCA3 input TPU channel 3 setting (2) (2) (1) B'0000 B'001x B'0010 B'0011 B'0000 B'0001 to B'0011 B'xx00 Other than B'xx00 B'0100 B'0101 to B'0111 Other than B'xx00 MD3 to MD0 IOA3 to IOA0 (1) (1) (2) B'1xxx CCLR2 to CCLR0 Other than B'001 B'001 Output function Output compare output PWM mode 1 output* PWM mode 2 output [Legend] x: Don't care Note: * TIOCB3 output prohibited. Rev. 2.00 Dec. 05, 2005 Page 187 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.3 Port 3 Port 3 is an 8-bit I/O port. Port 3 pins also function as SCI I/O pins and external interrupt input pins. All of the port 3 pin functions have the same operating mode. • • • • Port 3 data direction register (P3DDR) Port 3 data register (P3DR) Port 3 register (PORT3) Port 3 open-drain control register (PORT3) 9.3.1 Port 3 Data Direction Register (P3DDR) P3DDR is a write-only register, the individual bits of which specify input or output for the pins of port 3. P3DDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value R/W Description 7 P37DDR 0 W 6 P36DDR 0 W 5 P35DDR 0 W Setting a P3DDR bit to 1 makes the corresponding port 3 pin an output pin, while clearing the bit to 0 makes the pin an input pin. 4 P34DDR 0 W 3 P33DDR 0 W 2 P32DDR 0 W 1 P31DDR 0 W 0 P30DDR 0 W Rev. 2.00 Dec. 05, 2005 Page 188 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.3.2 Port 3 Data Register (P3DR) P3DR stores output data for the port 3 pins. Bit Bit Name Initial Value R/W Description 7 P37DR 0 R/W 6 P36DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 5 P35DR 0 R/W 4 P34DR 0 R/W 3 P33DR 0 R/W 2 P32DR 0 R/W 1 P31DR 0 R/W 0 P30DR 0 R/W 9.3.3 Port 3 Register (PORT3) PORT3 shows the pin states. It cannot be modified. Bit Bit Name Initial Value R/W Description 7 P37 * R 6 P36 * R 5 P35 * R If this register read is performed while P3DDR bits are set to 1, the P3DR values are read. If this register read is performed while P3DDR bits are cleared to 0, the pin states are read. 4 P34 * R 3 P33 * R 2 P32 * R 1 P31 * R 0 P30 * R Note: * Determined by state of pins P37 to P30. Rev. 2.00 Dec. 05, 2005 Page 189 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.3.4 Port 3 Open-Drain Control Register (P3ODR) P3ODR controls output of port 3. Bit Bit Name Initial Value R/W Description 7 P37ODR 0 R 6 P36ODR 0 R 5 P35ODR 0 R By setting P3ODR to 1, the port 3 pins become an NMOS open drain output, and when cleared to 0 they become CMOS output. 4 P34ODR 0 R 3 P33ODR 0 R 2 P32ODR 0 R 1 P31ODR 0 R 0 P30ODR 0 R 9.3.5 Pin Functions The correspondence between the register specification and the pin functions is shown below. • P37/TxD4 The pin function is switched as shown below according to the combination of the TE bit in SCR of SCI_4 and P37DDR bit. TE 0 P37DDR Pin function Note: * 1 0 1 P37 input pin P37 output pin* TxD4 output pin When P37ODR = 1, it becomes NMOS open drain output. • P36/RxD4 The pin function is switched as shown below according to the combination of the RE bit in SCR of SCI4 and P36DDR bit. RE 0 P36DDR Pin function Note: * 1 0 1 P36 input pin P36 output pin* RxD4 input pin When P36ODR = 1, it becomes NMOS open drain output. Rev. 2.00 Dec. 05, 2005 Page 190 of 724 REJ09B0200-0200 Section 9 I/O Ports • P35/SCK1/SCK4/IRQ5 The pin function is switched as shown below according to the combination of the C/A bit in SMR of SCI_1 or SCI_4, the CKE0 and CKE1 bits in SCR, and the P35DDR bit. Do not set simultaneously SCK1 and SCK4 to output. CKE1 0 C/A 1 1 1 0 CKE0 0 P35DDR Pin function 0 1 P35 input pin P35 output pin SCK1/SCK4 output pin* SCK1/SCK4 output pin* SCK1/SCK4 input pin IRQ5 input Note: * When P35ODR = 1, it becomes NMOS open drain output. • P34/RxD1 The pin function is switched as shown below according to the combination of the RE bit in SCR of SCI_1 and P34DDR bit. RE 0 P34DDR Pin function Note: * 1 0 1 P34 input pin P34 output pin* RxD1 input pin When P34ODR = 1, it becomes NMOS open drain output. • P33/TxD1 The pin function is switched as shown below according to the combination of the TE bit in SCR of SCI_1 and P33DDR bit. TE 0 P33DDR Pin function Note: * 1 0 1 P33 input pin P33 output pin* TxD1 output pin When P33ODR = 1, it becomes NMOS open drain output. Rev. 2.00 Dec. 05, 2005 Page 191 of 724 REJ09B0200-0200 Section 9 I/O Ports • P32/SCK0/IRQ4 The pin function is switched as shown below according to the combination of the C/A bit in SMR of SCI_0, the CKE0 and CKE1 bits in SCR, and the P32DDR bit. CKE1 0 C/A 1 1 1 0 CKE0 0 P32DDR Pin function 0 1 P32 input pin P32 output pin SCK0 output pin* SCK0 output pin* SCK0 input pin IRQ4 input Note: * When P32ODR = 1, it becomes NMOS open drain output. • P31/RxD0 The pin function is switched as shown below according to the combination of the RE bit in SCR of SCI_0 and P31DDR bit. RE 0 P31DDR Pin function Note: * 1 0 1 P31 input pin P31 output pin* RxD0 input pin When P31ODR = 1, it becomes NMOS open drain output. • P30/TxD0 The pin function is switched as shown below according to the combination of the TE bit in SCR of SCI_0 and P30DDR bit. TE 0 P30DDR Pin function Note: * 1 0 1 P30 input pin P30 output pin* TxD0 output pin When P30ODR = 1, it becomes NMOS open drain output. Rev. 2.00 Dec. 05, 2005 Page 192 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.4 Port 4 Port 4 is an 8-bit input-only port. Port 4 pins also function as A/D converter analog input pins. Port 4 pin functions are the same in all operating modes. • Port 4 Register (PORT4) 9.4.1 Port 4 Register (PORT4) PORT4 is a read-only register that shows the pin states. Bit Bit Name Initial Value R/W Description 7 P47 * R 6 P46 * R The pin states are always read when PORT4 read is performed. 5 P45 * R 4 P44 * R 3 P43 * R 2 P42 * R 1 P41 * R 0 P40 * R Note: 9.4.2 * Determined by state of pins P47 to P40. Pin Functions Port 4 pins also function as A/D converter analog input pins. Rev. 2.00 Dec. 05, 2005 Page 193 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.5 Port 5 Port 5 is a 3-bit I/O port. Port 5 pins also function as SCI I/O pins. The pin functions of port 5 are the same in all operating modes. • Port 5 data direction register (P5DDR) • Port 5 data register (P5DR) • Port 5 register (PORT5) 9.5.1 Port 5 Data Direction Register (P5DDR) P5DDR is a register, the individual bits of which specify input or output for the pins in port 5. P5DDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value 7 to 3 Undefined Reserved 2 P52DDR 0 W 1 P51DDR 0 W 0 P50DDR 0 W Setting a P5DDR bit to 1 makes the corresponding port 5 pin an output pin, while clearing the bit to 0 makes the pin an input pin. 9.5.2 Port 5 Data Register (P5DR) R/W Description P5DR stores output data for the port 5 pins. Bit Bit Name Initial Value 7 to 3 Undefined Reserved 2 P52DR 0 R/W 1 P51DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 0 P50DR 0 R/W R/W Rev. 2.00 Dec. 05, 2005 Page 194 of 724 REJ09B0200-0200 Description Section 9 I/O Ports 9.5.3 Port 5 Register (PORT5) PORT5 shows the pin states. It cannot be modified. Initial Value Bit Bit Name 7 to 3 Undefined Reserved 2 P52 * R 1 P51 * R 0 P50 * R If this register read is performed while P5DDR bits are set to 1, the P5DR values are read. If this register read is performed while P5DDR bits are cleared to 0, the pin states are read. Note: * 9.5.4 R/W Description Determined by state of pins P52 to P50. Pin Functions The correspondence between the register specification and the pin functions is shown below. • P52/SCK2 The pin function is switched as shown below according to a combination of the C/A bit in SMR and bits CKE0 and CKE1 in SCR of SCI_2, and the P52DDR bit. CKE1 0 C/A Pin function 1 1 0 CK0 P52DDR 1 0 0 1 P52 input pin P52 output pin SCK2 output pin SCK2 output pin SCK2 input pin • P51/RxD2 The pin function is switched as shown below according to a combination of the RE bit in SCR of SCI_2 and the P51DDR bit. RE P51DDR Pin function 0 1 0 1 P51 input pin P51 output pin RxD2 input pin Rev. 2.00 Dec. 05, 2005 Page 195 of 724 REJ09B0200-0200 Section 9 I/O Ports • P50/TxD2 The pin function is switched as shown below according to a combination of the TE bit in SCR of SCI_2 and the P50DDR bit. TE 0 0 1 P50 input pin P50 output pin TxD2 output pin P50DDR Pin function 9.6 1 Port 9 Port 9 is an 8-bit input-only port. Port 9 pins also function as A/D converter analog input pins. Port 9 pin functions are the same in all operating modes. • Port 9 Register (PORT9) 9.6.1 Port 9 Register (PORT9) PORT9 is a read-only register that shows the pin states. Bit Bit Name Initial Value R/W Description 7 P97 * R 6 P96 * R The pin states are always read when PORT9 read is performed. 5 P95 * R 4 P94 * R 3 P93 * R 2 P92 * R 1 P91 * R P90 * R 0 Note: 9.6.2 * Determined by state of pins P97 to P90. Pin Functions Port 9 pins also function as A/D converter analog input pins. Rev. 2.00 Dec. 05, 2005 Page 196 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.7 Port A Port A is an 8-bit I/O port. Port A pins also function as address bus outputs and LCD driver output pins. The pin functions change according to the operating mode. Port A has a built-in MOS input pull-up function that can be controlled by software. • • • • • Port A data direction register (PADDR) Port A data register (PADR) Port A register (PORTA) Port A pull-up MOS control register (PAPCR) Port A open-drain control register (PAODR) 9.7.1 Port A Data Direction Register (PADDR) PADDR is a register, the individual bits of which specify input or output for the pins of port A. PADDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value R/W Description 7 PA7DDR 0 W Mode 7: 6 PA6DDR 0 W 5 PA5DDR 0 W 4 PA4DDR 0 W 3 PA3DDR 0 W 2 PA2DDR 0 W These function as segment pins if the values of bits SGS in LPCR are other than B'0000. If the values of bits SGS are B'0000, setting a PADDR bit to 1 makes the corresponding port A pin an output port, and clearing a bit to 0 makes the corresponding pin an input port. 1 PA1DDR 0 W 0 PA0DDR 0 W Modes 4 to 6: These function as segment pins if the values of bits SGS in LPCR, the LCD driver, are other than B'0000. If the values of bits SGS are B'0000, the port A pins function as address outputs as specified by the setting of bits AE3 to AE0 of PFCR, regardless of the values of bits PA7DDR to PA0DDR. Also, when the pins are not used as address outputs, setting a PADDR bit to 1 makes the corresponding port A pin an output port, and clearing a bit to 0 makes the corresponding pin an input port. Rev. 2.00 Dec. 05, 2005 Page 197 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.7.2 Port A Data Register (PADR) PADR stores output data for the port A pins. Bit Bit Name Initial Value R/W Description 7 PA7DR 0 R/W 6 PA6DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 5 PA5DR 0 R/W 4 PA4DR 0 R/W 3 PA3DR 0 R/W 2 PA2DR 0 R/W 1 PA1DR 0 R/W 0 PA0DR 0 R/W 9.7.3 Port A Register (PORTA) PORTA shows the pin states. It cannot be modified. Bit Bit Name Initial Value R/W Description 7 PA7 * R 6 PA6 * R 5 PA5 * R If this register read is performed while PADDR bits are set to 1, the PADR values are read. If this register read is performed while PADDR bits are cleared to 0, the pin states are read. 4 PA4 * R 3 PA3 * R 2 PA2 * R 1 PA1 * R PA0 * R 0 Note: * Determined by state of pins PA7 to PA0. Rev. 2.00 Dec. 05, 2005 Page 198 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.7.4 Port A Pull-Up MOS Control Register (PAPCR) PAPCR controls the MOS input pull-up function incorporated into port A on an individual bit basis. Bit Bit Name Initial Value R/W Description 7 PA7PCR 0 R/W 6 PA6PCR 0 R/W 5 PA5PCR 0 R/W In modes 4 to 6, if a pin is in the input state in accordance with the settings in PFCR, in LPCR, and in DDR, setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for that pin. 4 PA4PCR 0 R/W 3 PA3PCR 0 R/W 2 PA2PCR 0 R/W 1 PA1PCR 0 R/W 0 PA0PCR 0 R/W 9.7.5 Port A Open-Drain Control Register (PAODR) In mode 7, if a pin is in the input state in accordance with the settings in LPCR and DDR, setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for that pin. PAODR controls output of port A. Bit Bit Name Initial Value R/W Description 7 PA7ODR 0 R/W 6 PA6ODR 0 R/W 5 PA5ODR 0 R/W 4 PA4ODR 0 R/W When pins are not address and LCD outputs in accordance with the setting of bits AE3 to AE0 in PFCR, setting a PAODR bit makes the corresponding port A pin an NMOS open-drain output, while clearing the bit to 0 makes the pin a CMOS output. 3 PA3ODR 0 R/W 2 PA2ODR 0 R/W 1 PA1ODR 0 R/W 0 PA0ODR 0 R/W Rev. 2.00 Dec. 05, 2005 Page 199 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.7.6 Pin Functions The correspondence between the register specification and the pin functions is shown below. • PA7/A23/SEG40 to PA4/A20/SEG37 The pin function is switched as shown below according to the combinations of bits SGS3 to SGS0 of LCD driver LPCR, bits AE3 to AE0 in PFGR, and bits PA7DDR to PA4DDR in PADDR. Setting of SGS3 to SGS0 Port Operating mode Modes 4 to 6 Setting of AE3 to AE0 Address output enabled Mode 7 — — — Address output disabled 0 1 0 1 — A23 to A20 output PA7 to PA4 input PA7 to PA4 output PA7 to PA4 input PA7 to PA4 output SEG40 to SEG37 output PAnDDR Pin function SEG output (n = 7 to 4) • PA3/A19/COM4 to PA0/A16/COM1 The pin function is switched as shown below according to the combinations of bits SGS3 to SGS0 in LPCR of LCD driver, bits AE3 to AE0 in PFCR, and bits PA3DDR to PA0DDR of PADDR. Setting of SGS3 to SGS0 B'0000 Operating mode Modes 4 to 6 Setting of AE3 to AE0 Address output enabled Mode 7 Address output disabled 0 1 0 1 A19 to A16 output PA3 to PA0 input PA3 to PA0 output PA3 to PA0 input PA3 to PA0 output COM1 to COM4 output PAnDDR Pin function Other than B'0000 (n = 3 to 0) Rev. 2.00 Dec. 05, 2005 Page 200 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.7.7 MOS Input Pull-Up Function Port A has a built-in MOS input pull-up function that can be controlled by software. MOS input pull-up can be specified as on or off on an individual bit basis. Table 9.2 shows the MOS input pull-up states. Table 9.2 MOS Input Pull-Up States (Port A) Pin States Reset Hardware Standby Mode Software Standby Mode In Other Operations Address output or SCI output OFF OFF OFF OFF ON/OFF ON/OFF Other than above [Legend] OFF: ON/OFF: MOS input pull-up is always off. On when PADDR = 0 and PAODR = 1; otherwise off. Rev. 2.00 Dec. 05, 2005 Page 201 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.8 Port B Port B is an 8-bit I/O port. Port B also functions as LCD driver output pins and as address bus outputs. The pin functions are determined by the operating mode. Port B has a built-in MOS input pull-up function that can be controlled by software. • • • • • Port B data direction register (PBDDR) Port B data register (PBDR) Port B register (PORTB) Port B pull-up MOS control register (PBPCR) Port B open-drain control register (PBODR) 9.8.1 Port B Data Direction Register (PBDDR) PBDDR is a write-only register, the individual bits of which specify input or output for the pins of port B. PBDDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value R/W Description 7 PB7DDR 0 W 6 PB6DDR 0 W 5 PB5DDR 0 W Setting a PBDDR bit to 1 makes the corresponding port B pin an output pin, while clearing the bit to 0 makes the pin an input pin. 4 PB4DDR 0 W 3 PB3DDR 0 W 2 PB2DDR 0 W 1 PB1DDR 0 W 0 PB0DDR 0 W Rev. 2.00 Dec. 05, 2005 Page 202 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.8.2 Port B Data Register (PBDR) PBDR stores output data for the port B pins. Bit Bit Name Initial Value R/W Description 7 PB7DR 0 R/W 6 PB6DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 5 PB5DR 0 R/W 4 PB4DR 0 R/W 3 PB3DR 0 R/W 2 PB2DR 0 R/W 1 PB1DR 0 R/W 0 PB0DR 0 R/W 9.8.3 Port B Register (PORTB) PORTB shows the pin states. It cannot be modified. Bit Bit Name Initial Value R/W Description 7 PB7 * R 6 PB6 * R 5 PB5 * R If this register read is performed while PBDDR bits are set to 1, the PBDR values are read. If this register read is performed while PBDDR bits are cleared to 0, the pin states are read. 4 PB4 * R 3 PB3 * R 2 PB2 * R 1 PB1 * R 0 PB0 * R Note: * Reading a pin being used as an LCD driver returns an undefined value. Determined by state of pins PB7 to PB0. Rev. 2.00 Dec. 05, 2005 Page 203 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.8.4 Port B Pull-Up MOS Control Register (PBPCR) PBPCR controls the MOS input pull-up function incorporated into port B on an individual bit basis. Bit Bit Name Initial Value R/W Description 7 PB7PCR 0 R/W 6 PB6PCR 0 R/W 5 PB5PCR 0 R/W In modes 4 to 6, if a pin is in the input state in accordance with the settings in the LCD driver’s LPCR and in DDR, setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for that pin. 4 PB4PCR 0 R/W 3 PB3PCR 0 R/W 2 PB2PCR 0 R/W 1 PB1PCR 0 R/W 0 PB0PCR 0 R/W 9.8.5 Port B Open-Drain Control Register (PBODR) In mode 7, if a pin is in the input state in accordance with the settings in the LCD driver’s LPCR and in DDR, setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for that pin. PBODR controls output of port B. Bit Bit Name Initial Value R/W Description 7 PB7ODR 0 R/W 6 PB6ODR 0 R/W 5 PB5ODR 0 R/W 4 PB4ODR 0 R/W 3 PB3ODR 0 R/W When pins are not address and LCD outputs in accordance with the setting of bits AE3 to AE0 in PFCR, setting a PBODR bit makes the corresponding port A pin an NMOS open-drain output, while clearing the bit to 0 makes the pin a CMOS output. Do not set this register to 1 when the pins are used as the LCD driver pins. 2 PB2ODR 0 R/W 1 PB1ODR 0 R/W 0 PB0ODR 0 R/W Rev. 2.00 Dec. 05, 2005 Page 204 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.8.6 Pin Functions The correspondence between the register specification and the pin functions is shown below. Setting of SGS3 to SGS0 Port Operating mode Modes 4 to 6 Setting of AE3 to AE0 Address output enabled Pin function Mode 7 Address output disabled 0 1 0 1 A15 to A8 output PB7 to PB0 input PB7 to PB0 output PB7 to PB0 input PB7 to PB0 output SEG32 to SEG25 output PBDDR 9.8.7 SEG output MOS Input Pull-Up Function Port B has a built-in MOS input pull-up function that can be controlled by software. Table 9.3 shows the MOS input pull-up states. Table 9.3 MOS Input Pull-Up States (Port B) Pin States Reset Hardware Standby Mode Software Standby Mode In Other Operations Address output or LCD output OFF OFF OFF OFF ON/OFF ON/OFF Other than above [Legend] OFF: ON/OFF: MOS input pull-up is always off. On when PBDDR = 0 and PBPCR = 1; otherwise off. Rev. 2.00 Dec. 05, 2005 Page 205 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.9 Port C Port C is an 8-bit I/O port. Port C also functions as LCD driver output pins and as address bus outputs. The pin functions are determined by the operating mode. Port C has a built-in MOS input pull-up function that can be controlled by software. • • • • • Port C data direction register (PCDDR) Port C data register (PCDR) Port C register (PORTC) Port C pull-up MOS control register (PCPCR) Port C open-drain control register (PCODR) 9.9.1 Port C Data Direction Register (PCDDR) PCDDR is a write-only register, the individual bits of which specify input or output for the pins of port C. PCDDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value R/W Description 7 PC7DDR 0 W 6 PC6DDR 0 W 5 PC5DDR 0 W Setting a PCDDR bit to 1 makes the corresponding port C pin an output pin, while clearing the bit to 0 makes the pin an input pin. 4 PC4DDR 0 W 3 PC3DDR 0 W 2 PC2DDR 0 W 1 PC1DDR 0 W 0 PC0DDR 0 W Rev. 2.00 Dec. 05, 2005 Page 206 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.9.2 Port C Data Register (PCDR) PCDR stores output data for the port C pins. Bit Bit Name Initial Value R/W Description 7 PC7DR 0 R/W 6 PC6DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 5 PC5DR 0 R/W 4 PC4DR 0 R/W 3 PC3DR 0 R/W 2 PC2DR 0 R/W 1 PC1DR 0 R/W 0 PC0DR 0 R/W 9.9.3 Port C Register (PORTC) PORTC shows the pin states. It cannot be modified. Bit Bit Name Initial Value R/W Description 7 PC7 * R 6 PC6 * R 5 PC5 * R If this register read is performed while PCDDR bits are set to 1, the PCDR values are read. If this register read is performed while PCDDR bits are cleared to 0, the pin states are read. 4 PC4 * R 3 PC3 * R 2 PC2 * R 1 PC1 * R 0 PC0 * R Note: * Reading a pin being used as an LCD driver returns an undefined value. Determined by state of pins PC7 to PC0. Rev. 2.00 Dec. 05, 2005 Page 207 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.9.4 Port C Pull-Up MOS Control Register (PCPCR) PCPCR controls the MOS input pull-up function incorporated into port C on an individual bit basis. Bit Bit Name Initial Value R/W Description 7 PC7PCR 0 R/W 6 PC6PCR 0 R/W 5 PC5PCR 0 R/W In modes 6 and 7, if PCPCR is set to 1 when the port is in the input state in accordance with the settings of the LCD driver LPCR and PCDDR, the MOS input pull-up is set to ON. 4 PC4PCR 0 R/W 3 PC3PCR 0 R/W 2 PC2PCR 0 R/W 1 PC1PCR 0 R/W 0 PC0PCR 0 R/W 9.9.5 Port C Open-Drain Control Register (PCODR) PCODR controls output of port C. Bit Bit Name Initial Value R/W Description 7 PC7ODR 0 R/W 6 PC6ODR 0 R/W 5 PC5ODR 0 R/W 4 PC4ODR 0 R/W If PCODR is set to 1 by setting AE3 to AE0 in PFCR in mode other than address output mode, port C pins function as NMOS open drain outputs and when the setting is cleared to 0, the pins function as CMOS outputs. 3 PC3ODR 0 R/W 2 PC2ODR 0 R/W 1 PC1ODR 0 R/W 0 PC0ODR 0 R/W Rev. 2.00 Dec. 05, 2005 Page 208 of 724 REJ09B0200-0200 Do not set PCODR to 1 if the pins are being used for LCD driver output. Section 9 I/O Ports 9.9.6 Pin Functions The correspondence between the register specification and the pin functions is shown below. Setting of SGS3 to SGS0 Port Operating mode Modes 4 and 5 Mode 6 Mode 7 0 1 A7 to A0 output A7 to A0 output PC7 to PC0 input A7 to A0 output PCDDR Pin function SEG output 0 1 PC7 to PC7 to SEG24 to PC0 input PC0 output SEG17 output Note: Modes 4 and 5 are extended modes in which the internal ROM is disabled. Address output is disabled when port C is set to segment output, so it is not possible to interface with external ROM. Therefore port C must not be set to segment output in mode 4 or mode 5. 9.9.7 MOS Input Pull-Up Function Port C has a built-in MOS input pull-up function that can be controlled by software. Table 9.4 shows the MOS input pull-up states. Table 9.4 MOS Input Pull-Up States (Port C) Pin States Reset Hardware Standby Mode Software Standby Mode In Other Operations Address output OFF OFF OFF OFF ON/OFF ON/OFF Other than above [Legend] OFF: ON/OFF: MOS input pull-up is always off. On when PCDDR = 0 and PCPCR = 1; otherwise off. Rev. 2.00 Dec. 05, 2005 Page 209 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.10 Port D Port D is an 8-bit I/O port. Port D has a data bus I/O function, and the pin functions change according to the operating mode. Port D has a built-in MOS input pull-up function that can be controlled by software. • • • • Port D data direction register (PDDDR) Port D data register (PDDR) Port D register (PORTD) Port D pull-up MOS control register (PDPCR) 9.10.1 Port D Data Direction Register (PDDDR) PDDDR is a write-only register, the individual bits of which specify input or output for the pins of port D. PDDDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value R/W Description 7 PD7DDR 0 W 6 PD6DDR 0 W 5 PD5DDR 0 W Setting a PDDDR bit to 1 makes the corresponding port D pin an output pin, while clearing the bit to 0 makes the pin an input pin. 4 PD4DDR 0 W 3 PD3DDR 0 W 2 PD2DDR 0 W 1 PD1DDR 0 W 0 PD0DDR 0 W Rev. 2.00 Dec. 05, 2005 Page 210 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.10.2 Port D Data Register (PDDR) PDDR stores output data for the port D pins. Bit Bit Name Initial Value R/W Description 7 PD7DR 0 R/W 6 PD6DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 5 PD5DR 0 R/W 4 PD4DR 0 R/W 3 PD3DR 0 R/W 2 PD2DR 0 R/W 1 PD1DR 0 R/W 0 PD0DR 0 R/W 9.10.3 Port D Register (PORTD) PORTD shows the pin states. It cannot be modified. Bit Bit Name Initial Value R/W Description 7 PD7 * R 6 PD6 * R 5 PD5 * R If this register read is performed while PDDDR bits are set to 1, the PDDR values are read. If this register read is performed while PDDDR bits are cleared to 0, the pin states are read. 4 PD4 * R 3 PD3 * R 2 PD2 * R 1 PD1 * R 0 PD0 * R Note: * Reading a pin being used as an LCD driver returns an undefined value. Determined by state of pins PD7 to PD0. Rev. 2.00 Dec. 05, 2005 Page 211 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.10.4 Port D Pull-Up MOS Control Register (PDPCR) PDPCR controls the MOS input pull-up function incorporated into port D on an individual bit basis. Bit Bit Name Initial Value R/W Description 7 PD7PCR 0 R/W 6 PD6PCR 0 R/W 5 PD5PCR 0 R/W In mode 7, if a pin is in the input state in accordance with the settings in PDDDR and LPCR, setting the corresponding PDPCR bit to 1 turns on the MOS input pull-up for that pin. 4 PD4PCR 0 R/W 3 PD3PCR 0 R/W 2 PD2PCR 0 R/W 1 PD1PCR 0 R/W 0 PD0PCR 0 R/W 9.10.5 Pin Functions The correspondence between the register specification and the pin functions is shown below. Setting of SGS3 to SGS0 Operating mode PEDDR Pin function Port Mode 4 to 6 SEG output Mode 7 0 D15 to D12 I/O PD7 to PD4 input 1 PD7 to PD4 output SEG16 to SEG9 output Note: Modes 4 and 5 are expanded modes with on-chip ROM disabled. If segment output is selected, data input/output and interfacing to external ROM are no longer possible. Therefore segment output settings should not be made in these modes. Rev. 2.00 Dec. 05, 2005 Page 212 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.10.6 MOS Input Pull-Up Function Port D has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in mode 7, and can be specified as on or off on an individual bit basis. Table 9.5 shows the MOS input pull-up states. Table 9.5 MOS Input Pull-Up States (Port D) Pin States Reset Hardware Standby Mode Software Standby Mode In Other Operations 4 to 6 OFF OFF OFF OFF ON/OFF ON/OFF 7 [Legend] OFF: ON/OFF: MOS input pull-up is always off. On when PDDDR = 0, PDPCR = 1, and the pin is not used as a segment driver; otherwise off. Rev. 2.00 Dec. 05, 2005 Page 213 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.11 Port E Port E is an 8-bit I/O port. Port E has a data bus I/O function, and the pin functions change according to the operating mode and whether 8-bit or 16-bit bus mode is selected. Port E has a built-in MOS input pull-up function that can be controlled by software. • • • • Port E data direction register (PEDDR) Port E data register (PEDR) Port E register (PORTE) Port E pull-up MOS control register (PEPCR) 9.11.1 Port E Data Direction Register (PEDDR) PEDDR is a write-only register, the individual bits of which specify input or output for the pins of port E. PEDDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value R/W Description 7 PE7DDR 0 W 6 PE6DDR 0 W 5 PE5DDR 0 W Setting a PEDDR bit to 1 makes the corresponding port E pin an output pin, while clearing the bit to 0 makes the pin an input pin. 4 PE4DDR 0 W 3 PE3DDR 0 W 2 PE2DDR 0 W 1 PE1DDR 0 W 0 PE0DDR 0 W Rev. 2.00 Dec. 05, 2005 Page 214 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.11.2 Port E Data Register (PEDR) PEDR stores output data for the port E pins. Bit Bit Name Initial Value R/W Description 7 PE7DR 0 R/W 6 PE6DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 5 PE5DR 0 R/W 4 PE4DR 0 R/W 3 PE3DR 0 R/W 2 PE2DR 0 R/W 1 PE1DR 0 R/W 0 PE0DR 0 R/W 9.11.3 Port E Register (PORTE) PORTE shows the pin states. It cannot be modified. Bit Bit Name Initial Value R/W Description 7 PE7 * R 6 PE6 * R 5 PE5 * R If this register read is performed while PEDDR bits are set to 1, the PEDR values are read. If this register read is performed while PEDDR bits are cleared to 0, the pin states are read. 4 PE4 * R 3 PE3 * R 2 PE2 * R 1 PE1 * R 0 PE0 * R Note: * Determined by state of pins PE7 to PE0. Rev. 2.00 Dec. 05, 2005 Page 215 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.11.4 Port E Pull-Up MOS Control Register (PEPCR) PEPCR controls the MOS input pull-up function incorporated into port E on an individual bit basis. Bit Bit Name Initial Value R/W Description 7 PE7PCR 0 R/W 6 PE6PCR 0 R/W 5 PE5PCR 0 R/W 4 PE4PCR 0 R/W In modes 4 to 6 with 8-bit-bus mode selected, or in mode 7, if a pin is in the input state in accordance with the settings in PEDDR and PEDDR, setting the corresponding PEPCR bit to 1 turns on the MOS input pull-up for that pin. 3 PE3PCR 0 R/W 2 PE2PCR 0 R/W 1 PE1PCR 0 R/W 0 PE0PCR 0 R/W 9.11.5 Pin Functions The correspondence between the register specification and the pin functions is shown below. Setting of SEG3 to SEG0 Port Operating mode Bus width setting Modes 4 to 6 16-bit mode PEDDR Pin function SEG output Mode 7 — — — 8-bit mode — 0 1 0 1 — D7 to D0 I/O PE7 to PE0 input PE7 to PE0 output PE7 to PE0 input PE7 to PE0 output SEG8 to SEG1 output Rev. 2.00 Dec. 05, 2005 Page 216 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.11.6 MOS Input Pull-Up Function Port D has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in mode 7, and can be specified as on or off on an individual bit basis. Table 9.6 shows the MOS input pull-up states. Table 9.6 MOS Input Pull-Up States (Port E) Pin States Reset Hardware Standby Mode Software Standby Mode In Other Operations 7 OFF OFF ON/OFF ON/OFF OFF OFF 4 to 6 8-bit bus 16-bit bus [Legend] OFF: ON/OFF: MOS input pull-up is always off. On when PEDDR = 0, PEPCR = 1, and the pin is not used as a segment driver; otherwise off. Rev. 2.00 Dec. 05, 2005 Page 217 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.12 Port F Port F is a 7-bit I/O port. Port F also functions as LCD driver output pins, external interrupt input pins, the A/D trigger input pin, bus control signal I/O pins, and as the system clock output pin. • Port F data direction register (PFDDR) • Port F data register (PFDR) • Port F register (PORTF) 9.12.1 Port F Data Direction Register (PFDDR) PFDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port F. PFDDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value R/W Description 7 PF7DDR 1* W Setting a PFDDR bit to 1 makes the PF7 pin a φ output pin, while clearing the bit to 0 makes the pin an input pin. 6 PF6DDR 0 W 5 PF5DDR 0 W 4 PF4DDR 0 W Setting a PFDDR bit to 1 makes the corresponding port F pin an output port, while clearing the bit to 0 makes the pin an input port. 3 PF3DDR 0 W 2 PF2DDR 0 W 1 Undefined Reserved 0 PF0DDR 0 Setting a PFDDR bit to 1 makes the corresponding port F pin an output port, while clearing the bit to 0 makes the pin an input port. Note: * W The initial value is 0 in mode 7. Rev. 2.00 Dec. 05, 2005 Page 218 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.12.2 Port F Data Register (PFDR) PFDR stores output data for the port F pins. Bit Bit Name Initial Value R/W Description 7 PF7DR 0 R/W 6 PF6DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 5 PF5DR 0 R/W 4 PF4DR 0 R/W 3 PF3DR 0 R/W 2 PF2DR 0 R/W 1 Undefined Reserved 0 PF0DR 0 An output data for a pin is stored when the pin function is specified to a general purpose output port. 9.12.3 Port F Register (PORTF) R/W PORTF shows the pin states. It cannot be modified. Bit Bit Name Initial Value R/W Description 7 PF7 * R 6 PF6 * R 5 PF5 * R If this register read is performed while PFDDR bits are set to 1, the PFDR values are read. If this register read is performed while PFDDR bits are cleared to 0, the pin states are read. 4 PF4 * R 3 PF3 * R 2 PF2 * R 1 Undefined 0 PF0 * Note: * Reading a pin being used as an LCD driver returns an undefined value. Reserved R Determined by state of pins PF7 to PF2, and PF0. Rev. 2.00 Dec. 05, 2005 Page 219 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.12.4 Pin Functions The correspondence between the register specification and the pin functions is shown below. • PF7/φ The pin function is switched as shown below according to bit PF7DDR. PF7DDR Pin function 0 1 PF7 input pin φ output pin • PF6/AS/SEG36 The pin function is switched as shown below according to the operating mode and the setting of SGS3 to SGS0 bits in LPCR and PF6DDR bit. Operating Mode Setting of SGS3 to SGS0 PF6DDR Pin function Modes 4 to 6 Mode 7 SEG output Port SEG output Port 0 1 SEG36 output AS output SEG36 output PF6 input PF6 output • PF5/RD/SEG35 The pin function is switched as shown below according to the operating mode and the setting of SGS3 to SGS0 bits in LPCR and PF5DDR bit. Operating Mode Setting of SGS3 to SGS0 PF5DDR Pin function Modes 4 to 6 SEG output Port SEG output 0 1 SEG35 output RD output SEG35 output PF5 input PF5 output Rev. 2.00 Dec. 05, 2005 Page 220 of 724 REJ09B0200-0200 Mode 7 Port Section 9 I/O Ports • PF4/HWR/SEG34 The pin function is switched as shown below according to the operating mode and the setting of SGS3 to SGS0 bits in LPCR and PF4DDR bit. Operating Mode Setting of SGS3 to SGS0 PF4DDR Pin function Modes 4 to 6 Mode 7 SEG output Port SEG output Port 0 1 SEG34 output HWR output SEG34 output PF4 input PF4 output • PF3/LWR/ADTRG/IRQ3 The pin function is switched as shown below according to the operating mode and the setting of bits TRGS1 and TRGS0 bits in ADCR and PF3DDR bit. Operating Mode Modes 4 to 6 Mode 7 Bus Mode 16 PF3DDR 0 1 0 1 LWR output pin PF3 input pin PF3 output pin PF3 input pin PF3 output pin Pin function 8 ADTRG input pin*1 IRQ3 input pin*2 Note: 1. ADTRG input when TRGS0=TRGS1=1. 2. Do not use this pin for other functions when this pin is used as an external interrupt pin. Rev. 2.00 Dec. 05, 2005 Page 221 of 724 REJ09B0200-0200 Section 9 I/O Ports • PF2/WAIT/SEG33 The pin function is switched as shown below according to the operating mode, and the setting of SGS3 to SGS0 bits and WAITE bit in LPCR, and PF2DDR bit. Operating Mode Setting of SGS3 to SGS0 Modes 4 to 6 SEG output Port WAITE PF2DDR 0 SEG33 output PF2 input Pin function Mode 7 0 1 SEG output Port 1 0 PF2 output WAIT input SEG33 output 1 PF2 input PF2 output • PF0/IRQ2 The pin function is switched as shown below according to the PF0DDR bit. PF0DDR Pin function 0 1 PF0 input PF0 output IRQ2 input Rev. 2.00 Dec. 05, 2005 Page 222 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.13 Port H Port H is an 8-bit I/O port. Port H pins also function as motor control PWM timer output pins. • Port H data direction register (PHDDR) • Port H data register (PHDR) • Port H register (PORTH) 9.13.1 Port H Data Direction Register (PHDDR) PHDDR is a write-only register, the individual bits of which specify input or output for the pins of port H. PHDDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value R/W Description 7 PH7DDR 0 W 6 PH6DDR 0 W 5 PH5DDR 0 W Setting a PHDDR bit to 1 makes the corresponding port H pin an output pin, while clearing the bit to 0 makes the pin an input pin. 4 PH4DDR 0 W 3 PH3DDR 0 W 2 PH2DDR 0 W 1 PH1DDR 0 W 0 PH0DDR 0 W Rev. 2.00 Dec. 05, 2005 Page 223 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.13.2 Port H Data Register (PHDR) PHDR stores output data for the port H pins. Bit Bit Name Initial Value R/W Description 7 PH7DR 0 R/W 6 PH6DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 5 PH5DR 0 R/W 4 PH4DR 0 R/W 3 PH3DR 0 R/W 2 PH2DR 0 R/W 1 PH1DR 0 R/W 0 PH0DR 0 R/W 9.13.3 Port H Register (PORTH) PORTH shows the pin states. It cannot be modified. If a port H read is performed while PHDDR bits are set to 1, the PHDR values are read. If a port H read is performed while PHDDR bits are cleared to 0, the pin states are read. Bit Bit Name Initial Value R/W Description 7 PH7 * R 6 PH6 * R 5 PH5 * R If this register read is performed while PHDDR bits are set to 1, the PHDR values are read. If this register read is performed while PHDDR bits are cleared to 0, the pin states are read. 4 PH4 * R 3 PH3 * R 2 PH2 * R 1 PH1 * R 0 PH0 * R Note: * Determined by state of pins PH7 to PH0. Rev. 2.00 Dec. 05, 2005 Page 224 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.13.4 Pin Functions The correspondence between the register specification and the pin functions is shown below. OE1A to OE1H 1 PHDDR 0 1 Motor control PWM timer output PH7 to PH0 input PH7 to PH0 output Pin function 9.14 0 Port J Port J is an 8-bit I/O port. Port J pins also function as motor control PWM timer output pins. • Port J data direction register (PJDDR) • Port J data register (PJDR) • Port J register (PORTJ) 9.14.1 Port J Data Direction Register (PJDDR) PJDDR is a write-only register, the individual bits of which specify input or output for the pins of port J. PJDDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value R/W Description 7 PJ7DDR 0 W 6 PJ6DDR 0 W 5 PJ5DDR 0 W Setting a PJDDR bit to 1 makes the corresponding port J pin an output pin, while clearing the bit to 0 makes the pin an input pin. 4 PJ4DDR 0 W 3 PJ3DDR 0 W 2 PJ2DDR 0 W 1 PJ1DDR 0 W 0 PJ0DDR 0 W Rev. 2.00 Dec. 05, 2005 Page 225 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.14.2 Port J Data Register (PJDR) PJDR stores output data for the port J pins. Bit Bit Name Initial Value R/W Description 7 PJ7DR 0 R/W 6 PJ6DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 5 PJ5DR 0 R/W 4 PJ4DR 0 R/W 3 PJ3DR 0 R/W 2 PJ2DR 0 R/W 1 PJ1DR 0 R/W 0 PJ0DR 0 R/W 9.14.3 Port J Register (PORTJ) PORTJ shows the pin states. It cannot be modified. Writing of output data for the port J pins must always be performed on PJDR. Bit Bit Name Initial Value R/W Description 7 PJ7 * R 6 PJ6 * R 5 PJ5 * R If this register read is performed while PJDDR bits are set to 1, the PJDR values are read. If this register read is performed while PJDDR bits are cleared to 0, the pin states are read. 4 PJ4 * R 3 PJ3 * R 2 PJ2 * R 1 PJ1 * R 0 PJ0 * R Note: * Determined by state of pins PJ7 to PJ0. Rev. 2.00 Dec. 05, 2005 Page 226 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.14.4 Pin Functions The correspondence between the register specification and the pin functions is shown below. OE2A to OE2H 1 PJDDR 0 1 Motor control PWM timer output PJ7 to PJ0 input PJ7 to PH0 output Pin function 9.15 0 Port K Port K is a 2-bit I/O port. Port K pins also function as HCAN pins. • Port K data direction register (PKDDR) • Port K data register (PKDR) • Port K register (PORTK) 9.15.1 Port K Data Direction Register (PKDDR) PKDDR is a write-only register, the individual bits of which specify input or output for the pins of port K. PKDDR cannot be read; if it is, an undefined value will be read. Bit Bit Name Initial Value R/W Description 7 PK7DDR 0 W 6 PK6DDR 0 W Setting a PKDDR bit to 1 makes the corresponding port K pin an output pin, while clearing the bit to 0 makes the pin an input pin. 5 to 0 Undefined Reserved Rev. 2.00 Dec. 05, 2005 Page 227 of 724 REJ09B0200-0200 Section 9 I/O Ports 9.15.2 Port K Data Register (PKDR) PKDR stores output data for the port K pins. Bit Bit Name Initial Value R/W Description 7 PK7DR 0 R/W 6 PK6DR 0 R/W An output data for a pin is stored when the pin function is specified to a general purpose output port. 5 to 0 Undefined 9.15.3 Port K Register (PORTK) Reserved PORTK shows the pin states. It cannot be modified. Bit Bit Name Initial Value R/W Description 7 PK7 * R 6 PK6 * R If this register read is performed while PKDDR bits are set to 1, the PKDR values are read. If this register read is performed while PKDDR bits are cleared to 0, the pin states are read. 5 to 0 Undefined Note: * 9.15.4 Reserved Determined by state of pins PK7 and PK6. Pin Functions The correspondence between the register specification and the pin functions is shown below. PKFE* 1 0 PKDDR 0 1 HRxD1, HTxD1 PK7 and PK6 input PK7 and PK6 output Pin Function Note: * The PKFE bit supports only HCAN_1. Rev. 2.00 Dec. 05, 2005 Page 228 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Section 10 16-Bit Timer Pulse Unit (TPU) This LSI has an on-chip 16-bit timer pulse unit (TPU) comprised of six 16-bit timer channels. The function list of the 16-bit timer unit and its block diagram are shown in table 10.1 and figure 10.1, respectively. 10.1 Features • Maximum 16-pulse input/output • Selection of 8 counter input clocks for each channel • The following operations can be set for each channel: Waveform output at compare match Input capture function Counter clear operation Synchronous operation: Multiple timer counters (TCNT) can be written to simultaneously Simultaneous clearing by compare match and input capture is possible Register simultaneous input/output is possible by synchronous counter operation A maximum 15-phase PWM output is possible in combination with synchronous operation • Buffer operation settable for channels 0 and 3 • Phase counting mode settable independently for each of channels 1, 2, 4, and 5 • Cascaded operation • Fast access via internal 16-bit bus • 26 interrupt sources • Automatic transfer of register data • Programmable pulse generator (PPG) output trigger can be generated • A/D converter conversion start trigger can be generated • Module stop mode can be set TIMTPU0A_000020020300 Rev. 2.00 Dec. 05, 2005 Page 229 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.1 TPU Functions Item Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Count clock φ/1 φ/4 φ/16 φ/64 TCLKA TCLKB TCLKC TCLKD φ/1 φ/4 φ/16 φ/64 φ/256 TCLKA TCLKB φ/1 φ/4 φ/16 φ/64 φ/1024 TCLKA TCLKB TCLKC φ/1 φ/4 φ/16 φ/64 φ/256 φ/1024 φ/4096 TCLKA φ/1 φ/4 φ/16 φ/64 φ/1024 TCLKA TCLKC φ/1 φ/4 φ/16 φ/64 φ/256 TCLKA TCLKC TCLKD General registers (TGR) TGRA_0 TGRB_0 TGRA_1 TGRB_1 TGRA_2 TGRB_2 TGRA_3 TGRB_3 TGRA_4 TGRB_4 TGRA_5 TGRB_5 General registers/ buffer registers TGRC_0 TGRD_0 TGRC_3 TGRD_3 I/O pins TIOCA0 TIOCB0 TIOCC0 TIOCD0 TIOCA1 TIOCB1 TIOCA2 TIOCB2 TIOCA3 TIOCB3 TIOCC3 TIOCD3 TIOCA4 TIOCB4 TIOCA5 TIOCB5 Counter clear function TGR compare match or input capture TGR compare match or input capture TGR compare match or input capture TGR compare match or input capture TGR compare match or input capture TGR compare match or input capture Compare 0 output match 1 output output Toggle output Input capture function Synchronous operation PWM mode Phase counting mode Buffer operation Rev. 2.00 Dec. 05, 2005 Page 230 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Item Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 DTC TGR activation compare match or input capture TGR compare match or input capture TGR compare match or input capture TGR compare match or input capture TGR compare match or input capture TGR compare match or input capture A/D TGRA_0 converter compare trigger match or input capture TGRA_1 compare match or input capture TGRA_2 compare match or input capture TGRA_3 compare match or input capture TGRA_4 compare match or input capture TGRA_5 compare match or input capture PPG trigger TGRA_1/ TGRB_1 compare match or input capture TGRA_2/ TGRB_2 compare match or input capture TGRA_3/ TGRB_3 compare match or input capture TGRA_0/ TGRB_0 compare match or input capture Rev. 2.00 Dec. 05, 2005 Page 231 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Item Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Interrupt sources 5 sources 4 sources 4 sources 5 sources 4 sources 4 sources • Compare • match or input capture 0A Compare • match or input capture 1A Compare • match or input capture 2A Compare • match or input capture 3A Compare • match or input capture 4A Compare match or input capture 5A • Compare • match or input capture 0B Compare • match or input capture 1B Compare • match or input capture 2B Compare • match or input capture 3B Compare • match or input capture 4B Compare match or input capture 5B • Compare • match or • input capture 0C Overflow • Compare • match or • input capture 3C Overflow • Overflow • Underflow • Overflow Underflow • Compare match or input capture 0D • Compare match or input capture 3D • Overflow • Overflow [Legend] Possible : : Not possible Rev. 2.00 Dec. 05, 2005 Page 232 of 724 REJ09B0200-0200 Underflow • Underflow TGRD TGRC TGRB TGRB TGRB TCNT TGRA TCNT TGRA TCNT TGRA Module data bus Bus interface A/D converter conversion start signal TGRB TGRD TGRB TGRB TGRC TCNT TGRA TCNT TCNT PPG output trigger signal TGRA TSTR TSR TSR TIER TSR TIER Interrupt request signals Channel 3: TGIA_3 TGIB_3 TGIC_3 TGID_3 TCIV_3 Channel 4: TGIA_4 TGIB_4 TCIV_4 TCIU_4 Channel 5: TGIA_5 TGIB_5 TCIV_5 TCIU_5 Internal data bus TGRA TSR TIER TSR TSYR TIER TSR TIER TIOR TIOR TIOR TIER TMDR TIORH TIORL TCR TMDR Channel 4 TCR TMDR TCR Channel 5 Common Control logic TMDR Channel 2 TCR TIOR Channel 2: TIORH TIORL Channel 1: TIOCA0 TIOCB0 TIOCC0 TIOCD0 TIOCA1 TIOCB1 TIOCA2 TIOCB2 Control logic for channel 0 to 2 Input/output pins Channel 0: TMDR External clock: φ/1 φ/4 φ/16 φ/64 φ/256 φ/1024 φ/4096 TCLKA TCLKB TCLKC TCLKD Channel 1 Clock input Internal clock: TCR Channel 5: TMDR Channel 4: TIOCA3 TIOCB3 TIOCC3 TIOCD3 TIOCA4 TIOCB4 TIOCA5 TIOCB5 Channel 0 Channel 3: Control logic for channels 3 to 5 Input/output pins TCR Channel 3 Section 10 16-Bit Timer Pulse Unit (TPU) Interrupt request signals Channel 3: TGIA_0 TGIB_0 TGIC_0 TGID_0 TCIV_0 Channel 4: TGIA_1 TGIB_1 TCIV_1 TCIU_1 Channel 5: TGIA_2 TGIB_2 TCIV_2 TCIU_2 [Legend] TSTR: TSYR: TCR: TMDR: Timer start register Timer synchro register Timer control register Timer mode register TIOR (H, L): TIER: TSR: TGR (A, B, C, D): Timer I/O control registers (H, L) Timer interrupt enable register Timer status register TImer general registers (A, B, C, D) Figure 10.1 Block Diagram of TPU Rev. 2.00 Dec. 05, 2005 Page 233 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.2 Input/Output Pins Table 10.2 TPU Pins Channel Symbol I/O Function All TCLKA Input External clock A input pin (Channel 1 and 5 phase counting mode A phase input) TCLKB Input External clock B input pin (Channel 1 and 5 phase counting mode B phase input) TCLKC Input External clock C input pin (Channel 2 and 4 phase counting mode A phase input) TCLKD Input External clock D input pin (Channel 2 and 4 phase counting mode B phase input) TIOCA0 I/O TGRA_0 input capture input/output compare output/PWM output pin TIOCB0 I/O TGRB_0 input capture input/output compare output/PWM output pin TIOCC0 I/O TGRC_0 input capture input/output compare output/PWM output pin TIOCD0 I/O TGRD_0 input capture input/output compare output/PWM output pin TIOCA1 I/O TGRA_1 input capture input/output compare output/PWM output pin TIOCB1 I/O TGRB_1 input capture input/output compare output/PWM output pin 0 1 2 3 4 5 TIOCA2 I/O TGRA_2 input capture input/output compare output/PWM output pin TIOCB2 I/O TGRB_2 input capture input/output compare output/PWM output pin TIOCA3 I/O TGRA_3 input capture input/output compare output/PWM output pin TIOCB3 I/O TGRB_3 input capture input/output compare output/PWM output pin TIOCC3 I/O TGRC_3 input capture input/output compare output/PWM output pin TIOCD3 I/O TGRD_3 input capture input/output compare output/PWM output pin TIOCA4 I/O TGRA_4 input capture input/output compare output/PWM output pin TIOCB4 I/O TGRB_4 input capture input/output compare output/PWM output pin TIOCA5 I/O TGRA_5 input capture input/output compare output/PWM output pin TIOCB5 I/O TGRB_5 input capture input/output compare output/PWM output pin Rev. 2.00 Dec. 05, 2005 Page 234 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.3 Register Descriptions The TPU has the following registers. To distinguish registers in each channel, an underscore and the channel number are added as a suffix to the register name; TCR for channel 0 is expressed as TCR_0. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Timer control register_0 (TCR_0) Timer mode register_0 (TMDR_0) Timer I/O control register H_0 (TIORH_0) Timer I/O control register L_0 (TIORL_0) Timer interrupt enable register_0 (TIER_0) Timer status register_0 (TSR_0) Timer counter_0 (TCNT_0) Timer general register A_0 (TGRA_0) Timer general register B_0 (TGRB_0) Timer general register C_0 (TGRC_0) Timer general register D_0 (TGRD_0) Timer control register_1 (TCR_1) Timer mode register_1 (TMDR_1) Timer I/O control register _1 (TIOR_1) Timer interrupt enable register_1 (TIER_1) Timer status register_1 (TSR_1) Timer counter_1 (TCNT_1) Timer general register A_1 (TGRA_1) Timer general register B_1 (TGRB_1) Timer control register_2 (TCR_2) Timer mode register_2 (TMDR_2) Timer I/O control register_2 (TIOR_2) Timer interrupt enable register_2 (TIER_2) Timer status register_2 (TSR_2) Timer counter_2 (TCNT_2) Timer general register A_2 (TGRA_2) Timer general register B_2 (TGRB_2) Timer control register_3 (TCR_3) Timer mode register_3 (TMDR_3) Rev. 2.00 Dec. 05, 2005 Page 235 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) • • • • • • • • • • • • • • • • • • • • • • • • • Timer I/O control register H_3 (TIORH_3) Timer I/O control register L_3 (TIORL_3) Timer interrupt enable register_3 (TIER_3) Timer status register_3 (TSR_3) Timer counter_3 (TCNT_3) Timer general register A_3 (TGRA_3) Timer general register B_3 (TGRB_3) Timer general register C_3 (TGRC_3) Timer general register D_3 (TGRD_3) Timer control register_4 (TCR_4) Timer mode register_4 (TMDR_4) Timer I/O control register _4 (TIOR_4) Timer interrupt enable register_4 (TIER_4) Timer status register_4 (TSR_4) Timer counter_4 (TCNT_4) Timer general register A_4 (TGRA_4) Timer general register B_4 (TGRB_4) Timer control register_5 (TCR_5) Timer mode register_5 (TMDR_5) Timer I/O control register_5 (TIOR_5) Timer interrupt enable register_5 (TIER_5) Timer status register_5 (TSR_5) Timer counter_5 (TCNT_5) Timer general register A_5 (TGRA_5) Timer general register B_5 (TGRB_5) Common Registers • Timer start register (TSTR) • Timer synchro register (TSYR) Rev. 2.00 Dec. 05, 2005 Page 236 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.3.1 Timer Control Register (TCR) The TCR registers are 8-bit readable/writable registers that control the TCNT operation for each channel. The TPU has a total of six TCR registers, one for each channel (channel 0 to 5). TCR register settings should be conducted only when TCNT operation is stopped. Bit Bit Name Initial value R/W Description 7 6 5 CCLR2 CCLR1 CCLR0 0 0 0 R/W R/W R/W Counter Clear 0 to 2 4 3 CKEG1 CKEG0 0 0 R/W R/W Clock Edge 0 and 1 These bits select the TCNT counter clearing source. See tables 10.3 and 10.4 for details. These bits select the input clock edge. When the input clock is counted using both edges, the input clock period is halved (e.g. φ/4 both edges = φ/2 rising edge). If phase counting mode is used on channels 1, 2, 4, and 5, this setting is ignored and the phase counting mode setting has priority. Internal clock edge selection is valid when the input clock is φ/4 or slower. This setting is ignored if the input clock is φ/1, or when overflow/underflow of another channel is selected. 00: Count at rising edge 01: Count at falling edge 1X: Count at both edges [Legend] X: Don't care 2 1 0 TPSC2 TPSC1 TPSC0 0 0 0 R/W R/W R/W Time Prescaler 0 to 2 These bits select the TCNT counter clock. The clock source can be selected independently for each channel. See tables10.5 to 10.10 for details. Rev. 2.00 Dec. 05, 2005 Page 237 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.3 CCLR0 to CCLR2 (Channels 0 and 3) Bit 7 Channel CCLR2 Bit 6 CCLR1 Bit 5 CCLR0 Description 0, 3 0 0 TCNT clearing disabled 1 TCNT cleared by TGRA compare match/input capture 0 TCNT cleared by TGRB compare match/input capture 1 TCNT cleared by counter clearing for another channel performing synchronous clearing/ 1 synchronous operation* 0 TCNT clearing disabled 1 TCNT cleared by TGRC compare match/input 2 capture* 0 TCNT cleared by TGRD compare match/input capture*2 1 TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation*1 0 1 1 0 1 Notes: 1. Synchronous operation is set by setting the SYNC bit in TSYR to 1. 2. When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur. Table 10.4 CCLR0 to CCLR2 (Channels 1, 2, 4, and 5) Bit 7 Bit 6 Channel Reserved*2 CCLR1 Bit 5 CCLR0 Description 1, 2, 4, 5 0 0 TCNT clearing disabled 1 TCNT cleared by TGRA compare match/input capture 0 TCNT cleared by TGRB compare match/input capture 1 TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation*1 0 1 Notes: 1. Synchronous operation is selected by setting the SYNC bit in TSYR to 1. 2. Bit 7 is reserved in channels 1, 2, 4, and 5. It is always read as 0 and cannot be modified. Rev. 2.00 Dec. 05, 2005 Page 238 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.5 TPSC0 to TPSC2 (Channel 0) Bit 2 Channel TPSC2 Bit 1 TPSC1 Bit 0 TPSC0 Description 0 0 0 Internal clock: counts on φ/1 1 Internal clock: counts on φ/4 0 Internal clock: counts on φ/16 1 Internal clock: counts on φ/64 0 External clock: counts on TCLKA pin input 1 External clock: counts on TCLKB pin input 0 1 1 0 1 0 External clock: counts on TCLKC pin input 1 External clock: counts on TCLKD pin input Table 10.6 TPSC0 to TPSC2 (Channel 1) Bit 2 Channel TPSC2 Bit 1 TPSC1 Bit 0 TPSC0 Description 1 0 0 Internal clock: counts on φ/1 1 Internal clock: counts on φ/4 0 Internal clock: counts on φ/16 1 Internal clock: counts on φ/64 0 External clock: counts on TCLKA pin input 1 External clock: counts on TCLKB pin input 0 Internal clock: counts on φ/256 1 Counts on TCNT2 overflow/underflow 0 1 1 0 1 Note: This setting is ignored when channel 1 is in phase counting mode. Rev. 2.00 Dec. 05, 2005 Page 239 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.7 TPSC0 to TPSC2 (Channel 2) Bit 2 Channel TPSC2 Bit 1 TPSC1 Bit 0 TPSC0 Description 2 0 0 Internal clock: counts on φ/1 1 Internal clock: counts on φ/4 0 Internal clock: counts on φ/16 1 Internal clock: counts on φ/64 0 External clock: counts on TCLKA pin input 1 External clock: counts on TCLKB pin input 0 1 1 0 1 0 External clock: counts on TCLKC pin input 1 Internal clock: counts on φ/1024 Note: This setting is ignored when channel 2 is in phase counting mode. Table 10.8 TPSC0 to TPSC2 (Channel 3) Bit 2 Channel TPSC2 Bit 1 TPSC1 Bit 0 TPSC0 Description 3 0 0 Internal clock: counts on φ/1 1 Internal clock: counts on φ/4 0 Internal clock: counts on φ/16 1 Internal clock: counts on φ/64 0 External clock: counts on TCLKA pin input 1 Internal clock: counts on φ/1024 0 Internal clock: counts on φ/256 1 Internal clock: counts on φ/4096 0 1 1 0 1 Rev. 2.00 Dec. 05, 2005 Page 240 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.9 TPSC0 to TPSC2 (Channel 4) Bit 2 Channel TPSC2 Bit 1 TPSC1 Bit 0 TPSC0 Description 4 0 0 Internal clock: counts on φ/1 1 Internal clock: counts on φ/4 0 Internal clock: counts on φ/16 1 Internal clock: counts on φ/64 0 External clock: counts on TCLKA pin input 1 External clock: counts on TCLKC pin input 0 1 1 0 1 0 Internal clock: counts on φ/1024 1 Counts on TCNT5 overflow/underflow Note: This setting is ignored when channel 4 is in phase counting mode. Table 10.10 TPSC0 to TPSC2 (Channel 5) Bit 2 Channel TPSC2 Bit 1 TPSC1 Bit 0 TPSC0 Description 5 0 0 Internal clock: counts on φ/1 1 Internal clock: counts on φ/4 0 Internal clock: counts on φ/16 1 Internal clock: counts on φ/64 0 External clock: counts on TCLKA pin input 1 External clock: counts on TCLKC pin input 0 Internal clock: counts on φ/256 1 External clock: counts on TCLKD pin input 0 1 1 0 1 Note: This setting is ignored when channel 5 is in phase counting mode. Rev. 2.00 Dec. 05, 2005 Page 241 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.3.2 Timer Mode Register (TMDR) The TMDR registers are 8-bit readable/writable registers that are used to set the operating mode of each channel. The TPU has six TMDR registers, one for each channel. TMDR register settings should be changed only when TCNT operation is stopped. Bit Bit Name Initial value R/W Description 7, 6 All 1 Reserved These bits are always read as 1 and cannot be modified. 5 BFB 0 R/W Buffer Operation B Specifies whether TGRB is to operate in the normal way, or TGRB and TGRD are to be used together for buffer operation. When TGRD is used as a buffer register, TGRD input capture/output compare is not generated. In channels 1, 2, 4, and 5, which have no TGRD, bit 5 is reserved. It is always read as 0 and cannot be modified. 0: TGRB operates normally 1: TGRB and TGRD used together for buffer operation 4 BFA 0 R/W Buffer Operation A Specifies whether TGRA is to operate in the normal way, or TGRA and TGRC are to be used together for buffer operation. When TGRC is used as a buffer register, TGRC input capture/output compare is not generated. In channels 1, 2, 4, and 5, which have no TGRC, bit 4 is reserved. It is always read as 0 and cannot be modified. 0: TGRA operates normally 1: TGRA and TGRC used together for buffer operation 3 2 1 0 MD3 MD2 MD1 MD0 0 0 0 0 R/W R/W R/W R/W Rev. 2.00 Dec. 05, 2005 Page 242 of 724 REJ09B0200-0200 Modes 0 to 3 These bits are used to set the timer operating mode. MD3 is a reserved bit. In a write, it should always be written with 0. See table 10.11 for details. Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.11 MD0 to MD3 Bit 3 1 MD3* Bit 2 MD2*2 Bit 1 MD1 Bit 0 MD0 Description 0 0 0 0 Normal operation 1 Reserved 0 PWM mode 1 1 PWM mode 2 0 Phase counting mode 1 1 Phase counting mode 2 1 1 0 1 1 X X 0 Phase counting mode 3 1 Phase counting mode 4 X [Legend] X: Don't care Notes: 1. MD3 is a reserved bit. In a write, it should always be written with 0. 2. Phase counting mode cannot be set for channels 0 and 3. In this case, 0 should always be written to MD2. Rev. 2.00 Dec. 05, 2005 Page 243 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.3.3 Timer I/O Control Register (TIOR) The TIOR registers are 8-bit readable/writable registers that control the TGR registers. The TPU has eight TIOR registers, two each for channels 0 and 3, and one each for channels 1, 2, 4, and 5. Care is required as TIOR is affected by the TMDR setting. The initial output specified by TIOR is valid when the counter is stopped (the CST bit in TSTR is cleared to 0). Note also that, in PWM mode 2, the output at the point at which the counter is cleared to 0 is specified. When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register. • TIORH_0, TIOR_1, TIOR_2, TIORH_3, TIOR_4, TIOR_5 Bit Bit Name Initial value R/W Description 7 6 5 4 IOB3 IOB2 IOB1 IOB0 0 0 0 0 R/W R/W R/W R/W I/O Control B0 to B3 3 2 1 0 IOA3 IOA2 IOA1 IOA0 0 0 0 0 R/W R/W R/W R/W I/O Control A0 to A3 Specify the function of TGRB. Specify the function of TGRA. • TIORL_0, TIORL_3 Bit Bit Name Initial value R/W Description 7 6 5 4 IOD3 IOD2 IOD1 IOD0 0 0 0 0 R/W R/W R/W R/W I/O Control D0 to D3 3 2 1 0 IOC3 IOC2 IOC1 IOC0 0 0 0 0 R/W R/W R/W R/W I/O Control C0 to C3 Rev. 2.00 Dec. 05, 2005 Page 244 of 724 REJ09B0200-0200 Specify the function of TGRD. Specify the function of TGRC. Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.12 TIORH_0 (Channel 0) Description Bit 7 IOB3 Bit 6 IOB2 Bit 5 IOB1 Bit 4 IOB0 TGRB_0 Function 0 0 0 0 Output compare register 1 TIOCB0 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match 1 Initial output is 1 Toggle output at compare match 1 0 0 0 Input capture Capture input source is the TIOCB0 pin register Input capture at rising edge 1 Capture input source is the TIOCB0 pin Input capture at falling edge 1 X Capture input source is the TIOCB0 pin Input capture at both edges. 1 X X Capture input source is channel 1/count clock Input capture at TCNT_1 count-up/count-down* [Legend] X: Don't care Note: * When bits TPSC0 to TPSC2 in TCR_1 are set to B'000 and φ/1 is used as the TCNT_1 count clock, this setting is invalid and input capture is not generated. Rev. 2.00 Dec. 05, 2005 Page 245 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.13 TIORL_0 (Channel 0) Description Bit 7 IOD3 Bit 6 IOD2 Bit 5 IOD1 Bit 4 IOD0 TGRD_0 Function 0 0 0 0 Output compare register*2 1 TIOCD0 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match 1 Initial output is 1 Toggle output at compare match 1 0 0 0 Input capture Capture input source is the TIOCD0 pin register*2 Input capture at rising edge 1 Capture input source is the TIOCD0 pin Input capture at falling edge 1 X Capture input source is the TIOCD0 pin Input capture at both edges 1 X X Capture input source is channel 1/count clock Input capture at TCNT_1 count-up/count-down* 1 [Legend] X: Don't care Notes: 1. When bits TPSC0 to TPSC2 in TCR_1 are set to B'000 and φ/1 is used as the TCNT_1 count clock, this setting is invalid and input capture is not generated. 2. When the BFB bit in TMDR_0 is set to 1 and TGRD_0 is used as a buffer register, this setting is invalid and input capture/output compare is not generated. Rev. 2.00 Dec. 05, 2005 Page 246 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.14 TIOR_1 (Channel 1) Description Bit 7 IOB3 Bit 6 IOB2 Bit 5 IOB1 Bit 4 IOB0 TGRB_1 Function 0 0 0 0 Output compare register 1 TIOCB1 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match 1 Initial output is 1 Toggle output at compare match 1 0 0 0 Input capture Capture input source is the TIOCB1 pin register Input capture at rising edge 1 Capture input source is the TIOCB1 pin Input capture at falling edge 1 X Capture input source is the TIOCB1 pin Input capture at both edges 1 X X TGRC_0 compare match/ input capture Input capture at generation of TGRC_0 compare match/input capture [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 247 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.15 TIOR_2 (Channel 2) Description Bit 7 IOB3 Bit 6 IOB2 Bit 5 IOB1 Bit 4 IOB0 TGRB_2 Function 0 0 0 0 Output compare register 1 TIOCB2 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match Initial output is 1 1 Toggle output at compare match 1 X 0 0 Input capture Capture input source is the TIOCB2 pin register Input capture at rising edge 1 Capture input source is the TIOCB2 pin Input capture at falling edge 1 X Capture input source is the TIOCB2 pin Input capture at both edges [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 248 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.16 TIORH_3 (Channel 3) Description Bit 7 IOB3 Bit 6 IOB2 Bit 5 IOB1 Bit 4 IOB0 TGRB_3 Function 0 0 0 0 Output compare register 1 TIOCB3 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match 1 Initial output is 1 Toggle output at compare match 1 0 0 0 Input capture Capture input source is the TIOCB3 pin register Input capture at rising edge 1 Capture input source is the TIOCB3 pin Input capture at falling edge 1 X Capture input source is the TIOCB3 pin Input capture at both edges 1 X X Capture input source is channel 4/count clock Input capture at TCNT_4 count-up/count-down* [Legend] X: Don't care Note: * When bits TPSC0 to TPSC2 in TCR_4 are set to B′000 and φ/1 is used as the TCNT_4 count clock, this setting is invalid and input capture is not generated. Rev. 2.00 Dec. 05, 2005 Page 249 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.17 TIORL_3 (Channel 3) Description Bit 7 IOD3 Bit 6 IOD2 Bit 5 IOD1 Bit 4 IOD0 TGRD_3 Function 0 0 0 0 Output compare register*2 1 TIOCD3 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match 1 Initial output is 1 Toggle output at compare match 1 0 0 0 Input capture Capture input source is the TIOCD3 pin register*2 Input capture at rising edge 1 Capture input source is the TIOCD3 pin Input capture at falling edge 1 X Capture input source is the TIOCD3 pin Input capture at both edges 1 X X Capture input source is channel 4/count clock Input capture at TCNT_4 count-up/count-down* 1 [Legend] X: Don't care Notes: 1. When bits TPSC0 to TPSC2 in TCR_4 are set to B'000 and φ/1 is used as the TCNT_4 count clock, this setting is invalid and input capture is not generated. 2. When the BFB bit in TMDR_3 is set to 1 and TGRD_3 is used as a buffer register, this setting is invalid and input capture/output compare is not generated. Rev. 2.00 Dec. 05, 2005 Page 250 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.18 TIOR_4 (Channel 4) Description Bit 7 IOB3 Bit 6 IOB2 Bit 5 IOB1 Bit 4 IOB0 TGRB_4 Function 0 0 0 0 Output compare register 1 TIOCB4 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match 1 Initial output is 1 Toggle output at compare match 1 0 0 0 Input capture Capture input source is the TIOCB4 pin register Input capture at rising edge 1 Capture input source is the TIOCB4 pin Input capture at falling edge 1 X Capture input source is the TIOCB4 pin Input capture at both edges 1 X X Capture input source is TGRC_3 compare match/input capture Input capture at generation of TGRC_3 compare match/input capture [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 251 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.19 TIOR_5 (Channel 5) Description Bit 7 IOB3 Bit 6 IOB2 Bit 5 IOB1 Bit 4 IOB0 TGRB_5 Function 0 0 0 0 Output compare register 1 TIOCB5 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match Initial output is 1 1 Toggle output at compare match 1 X 0 0 Input capture Capture input source is the TIOCB5 pin register Input capture at rising edge 1 Capture input source is the TIOCB5 pin Input capture at falling edge 1 X Capture input source is the TIOCB5 pin Input capture at both edges [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 252 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.20 TIORH_0 (Channel 0) Description Bit 3 IOA3 Bit 2 IOA2 Bit 1 IOA1 Bit 0 IOA0 TGRA_0 Function 0 0 0 0 Output compare register 1 TIOCA0 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match 1 Initial output is 1 Toggle output at compare match 1 0 0 0 Input capture Capture input source is the TIOCA0 pin register Input capture at rising edge 1 Capture input source is the TIOCA0 pin Input capture at falling edge 1 X Capture input source is the TIOCA0 pin Input capture at both edges 1 X X Capture input source is channel 1/count clock Input capture at TCNT_1 count-up/count-down [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 253 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.21 TIORL_0 (Channel 0) Description Bit 3 IOC3 Bit 2 IOC2 Bit 1 IOC1 Bit 0 IOC0 TGRC_0 Function 0 0 0 0 Output compare register* 1 TIOCC0 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match Initial output is 1 1 Toggle output at compare match 1 0 0 0 Input capture Capture input source is the TIOCC0 pin register* Input capture at rising edge 1 Capture input source is the TIOCC0 pin Input capture at falling edge 1 X Capture input source is the TIOCC0 pin Input capture at both edges 1 X X Capture input source is channel 1/count clock Input capture at TCNT_1 count-up/count-down [Legend] X: Don't care Note: * When the BFA bit in TMDR_0 is set to 1 and TGRC_0 is used as a buffer register, this setting is invalid and input capture/output compare is not generated. Rev. 2.00 Dec. 05, 2005 Page 254 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.22 TIOR_1 (Channel 1) Description Bit 3 IOA3 Bit 2 IOA2 Bit 1 IOA1 Bit 0 IOA0 TGRA_1 Function 0 0 0 0 Output compare register 1 TIOCA1 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match 1 Initial output is 1 Toggle output at compare match 1 0 0 0 Input capture Capture input source is the TIOCA1 pin register Input capture at rising edge 1 Capture input source is the TIOCA1 pin Input capture at falling edge 1 X Capture input source is the TIOCA1 pin Input capture at both edges 1 X X Capture input source is TGRA_0 compare match/input capture Input capture at generation of channel 0/TGRA_0 compare match/input capture [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 255 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.23 TIOR_2 (Channel 2) Description Bit 3 IOA3 Bit 2 IOA2 Bit 1 IOA1 Bit 0 IOA0 TGRA_2 Function 0 0 0 0 Output compare register 1 TIOCA2 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match Initial output is 1 1 Toggle output at compare match 1 X 0 0 Input capture Capture input source is the TIOCA2 pin register Input capture at rising edge 1 Capture input source is the TIOCA2 pin Input capture at falling edge 1 X Capture input source is the TIOCA2 pin Input capture at both edges [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 256 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.24 TIORH_3 (Channel 3) Description Bit 3 IOA3 Bit 2 IOA2 Bit 1 IOA1 Bit 0 IOA0 TGRA_3 Function 0 0 0 0 Output compare register 1 TIOCA3 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match 1 Initial output is 1 Toggle output at compare match 1 0 0 0 Input capture Capture input source is the TIOCA3 pin register Input capture at rising edge 1 Capture input source is the TIOCA3 pin Input capture at falling edge 1 X Capture input source is the TIOCA3 pin Input capture at both edges 1 X X Capture input source is channel 4/count clock Input capture at TCNT_4 count-up/count-down [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 257 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.25 TIORL_3 (Channel 3) Description Bit 3 IOC3 Bit 2 IOC2 Bit 1 IOC1 Bit 0 IOC0 TGRC_3 Function 0 0 0 0 Output compare register* 1 TIOCC3 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match Initial output is 1 1 Toggle output at compare match 1 0 0 0 Input capture Capture input source is the TIOCC3 pin register* Input capture at rising edge 1 Capture input source is the TIOCC3 pin Input capture at falling edge 1 X Capture input source is the TIOCC3 pin Input capture at both edges 1 X X Capture input source is channel 4/count clock Input capture at TCNT_4 count-up/count-down [Legend] X: Don't care Note: * When the BFA bit in TMDR_3 is set to 1 and TGRC_3 is used as a buffer register, this setting is invalid and input capture/output compare is not generated. Rev. 2.00 Dec. 05, 2005 Page 258 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.26 TIOR_4 (Channel 4) Description Bit 3 IOA3 Bit 2 IOA2 Bit 1 IOA1 Bit 0 IOA0 TGRA_4 Function 0 0 0 0 Output compare register 1 TIOCA4 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match 1 Initial output is 1 Toggle output at compare match 1 0 0 0 Input capture Capture input source is the TIOCA4 pin register Input capture at rising edge 1 Capture input source is the TIOCA4 pin Input capture at falling edge 1 X Capture input source is the TIOCA4 pin Input capture at both edges 1 X X Capture input source is TGRA_3 compare match/input capture Input capture at generation of TGRA_3 compare match/input capture [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 259 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.27 TIOR_5 (Channel 5) Description Bit 3 IOA3 Bit 2 IOA2 Bit 1 IOA1 Bit 0 IOA0 TGRA_5 Function 0 0 0 0 Output compare register 1 TIOCA5 Pin Function Output disabled Initial output is 0 0 output at compare match 1 0 Initial output is 0 1 output at compare match 1 Initial output is 0 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 1 0 output at compare match 1 0 Initial output is 1 1 output at compare match Initial output is 1 1 Toggle output at compare match 1 X 0 0 Input capture Capture input source is the TIOCA5 pin register Input capture at rising edge 1 Capture input source is the TIOCA5 pin Input capture at falling edge 1 X Capture input source is the TIOCA5 pin Input capture at both edges [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 260 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.3.4 Timer Interrupt Enable Register (TIER) The TIER registers are 8-bit readable/writable registers that control enabling or disabling of interrupt requests for each channel. The TPU has six TIER registers, one for each channel. Bit Bit Name Initial value R/W Description 7 TTGE 0 R/W A/D Conversion Start Request Enable Enables or disables generation of A/D conversion start requests by TGRA input capture/compare match. 0: A/D conversion start request generation disabled 1: A/D conversion start request generation enabled 6 1 Reserved This bit is always read as 1 and cannot be modified. 5 TCIEU 0 R/W Underflow Interrupt Enable Enables or disables interrupt requests (TCIU) by the TCFU flag when the TCFU flag in TSR is set to 1 in channels 1, 2, 4, and 5. In channels 0 and 3, bit 5 is reserved. It is always read as 0 and cannot be modified. 0: Interrupt requests (TCIU) by TCFU disabled 1: Interrupt requests (TCIU) by TCFU enabled 4 TCIEV 0 R/W Overflow Interrupt Enable Enables or disables interrupt requests (TCIV) by the TCFV flag when the TCFV flag in TSR is set to 1. 0: Interrupt requests (TCIV) by TCFV disabled 1: Interrupt requests (TCIV) by TCFV enabled 3 TGIED 0 R/W TGR Interrupt Enable D Enables or disables interrupt requests (TGID) by the TGFD bit when the TGFD bit in TSR is set to 1 in channels 0 and 3. In channels 1, 2, 4, and 5, bit 3 is reserved. It is always read as 0 and cannot be modified. 0: Interrupt requests (TGID) by TGFD bit disabled 1: Interrupt requests (TGID) by TGFD bit enabled Rev. 2.00 Dec. 05, 2005 Page 261 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Bit Bit Name Initial value R/W Description 2 TGIEC 0 R/W TGR Interrupt Enable C Enables or disables interrupt requests (TGIC) by the TGFC bit when the TGFC bit in TSR is set to 1 in channels 0 and 3. In channels 1, 2, 4, and 5, bit 2 is reserved. It is always read as 0 and cannot be modified. 0: Interrupt requests (TGIC) by TGFC bit disabled 1: Interrupt requests (TGIC) by TGFC bit enabled 1 TGIEB 0 R/W TGR Interrupt Enable B Enables or disables interrupt requests (TGIB) by the TGFB bit when the TGFB bit in TSR is set to 1. 0: Interrupt requests (TGIB) by TGFB bit disabled 1: Interrupt requests (TGIB) by TGFB bit enabled 0 TGIEA 0 R/W TGR Interrupt Enable A Enables or disables interrupt requests (TGIA) by the TGFA bit when the TGFA bit in TSR is set to 1. 0: Interrupt requests (TGIA) by TGFA bit disabled 1: Interrupt requests (TGIA) by TGFA bit enabled Rev. 2.00 Dec. 05, 2005 Page 262 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.3.5 Timer Status Register (TSR) The TSR registers are 8-bit readable/writable registers that indicate the status of each channel. The TPU has six TSR registers, one for each channel. Bit Bit Name Initial value R/W Description 7 TCFD 1 R Count Direction Flag Status flag that shows the direction in which TCNT counts in channels 1, 2, 4, and 5. In channels 0 and 3, bit 7 is reserved. It is always read as 1 and cannot be modified. 0: TCNT counts down 1: TCNT counts up 6 1 Reserved This bit is always read as 1 and cannot be modified. 5 TCFU 0 R/(W) Underflow Flag Status flag that indicates that TCNT underflow has occurred when channels 1, 2, 4, and 5 are set to phase counting mode. Only 0 can be written, for flag clearing. In channels 0 and 3, bit 5 is reserved. It is always read as 0 and cannot be modified. [Setting condition] When the TCNT value underflows (changes from H'0000 to H'FFFF) [Clearing condition] When 0 is written to TCFU after reading TCFU = 1 4 TCFV 0 R/(W) Overflow Flag Status flag that indicates that TCNT overflow has occurred. Only 0 can be written, for flag clearing. [Setting condition] When the TCNT value overflows (changes from H'FFFF to H'0000) [Clearing condition] When 0 is written to TCFV after reading TCFV = 1 Rev. 2.00 Dec. 05, 2005 Page 263 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Bit Bit Name Initial value R/W Description 3 TGFD 0 R/(W) Input Capture/Output Compare Flag D Status flag that indicates the occurrence of TGRD input capture or compare match in channels 0 and 3. Only 0 can be written, for flag clearing. In channels 1, 2, 4, and 5, bit 3 is reserved. It is always read as 0 and cannot be modified. [Setting conditions] • When TCNT = TGRD and TGRD is functioning as output compare register • When TCNT value is transferred to TGRD by input capture signal and TGRD is functioning as input capture register [Clearing conditions] 2 TGFC 0 R/(W) • When DTC is activated by TGID interrupt and the DISEL bit of MRB in DTC is 0 • When 0 is written to TGFD after reading TGFD = 1 Input Capture/Output Compare Flag C Status flag that indicates the occurrence of TGRC input capture or compare match in channels 0 and 3. Only 0 can be written, for flag clearing. In channels 1, 2, 4, and 5, bit 2 is reserved. It is always read as 0 and cannot be modified. [Setting conditions] • When TCNT = TGRC and TGRC is functioning as output compare register • When TCNT value is transferred to TGRC by input capture signal and TGRC is functioning as input capture register [Clearing conditions] Rev. 2.00 Dec. 05, 2005 Page 264 of 724 REJ09B0200-0200 • When DTC is activated by TGIC interrupt and the DISEL bit of MRB in DTC is 0 • When 0 is written to TGFC after reading TGFC = 1 Section 10 16-Bit Timer Pulse Unit (TPU) Bit Bit Name Initial value R/W Description 1 TGFB 0 R/(W) Input Capture/Output Compare Flag B Status flag that indicates the occurrence of TGRB input capture or compare match. Only 0 can be written, for flag clearing. [Setting conditions] • When TCNT = TGRB and TGRB is functioning as output compare register • When TCNT value is transferred to TGRB by input capture signal and TGRB is functioning as input capture register [Clearing conditions] 0 TGFA 0 R/(W) • When DTC is activated by TGIB interrupt and the DISEL bit of MRB in DTC is 0 • When 0 is written to TGFB after reading TGFB = 1 Input Capture/Output Compare Flag A Status flag that indicates the occurrence of TGRA input capture or compare match. Only 0 can be written, for flag clearing. [Setting conditions] • When TCNT = TGRA and TGRA is functioning as output compare register • When TCNT value is transferred to TGRA by input capture signal and TGRA is functioning as input capture register [Clearing conditions] • When DTC is activated by TGIA interrupt and the DISEL bit of MRB in DTC is 0 • When 0 is written to TGFA after reading TGFA = 1 Rev. 2.00 Dec. 05, 2005 Page 265 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.3.6 Timer Counter (TCNT) The TCNT registers are 16-bit readable/writable counters. The TPU has six TCNT counters, one for each channel. The TCNT counters are initialized to H'0000 by a reset, and in hardware standby mode. The TCNT counters cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit. 10.3.7 Timer General Register (TGR) The TGR registers are dual function 16-bit readable/writable registers, functioning as either output compare or input capture registers. The TPU has 16 TGR registers, four each for channels 0 and 3 and two each for channels 1, 2, 4, and 5. TGRC and TGRD for channels 0 and 3 can also be designated for operation as buffer registers. The TGR registers cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit. TGR buffer register combinations are TGRATGRC and TGRBTGRD. 10.3.8 Timer Start Register (TSTR) TSTR is an 8-bit readable/writable register that selects operation/stoppage for channels 0 to 5. When setting the operating mode in TMDR or setting the count clock in TCR, first stop the TCNT counter. Bit Bit Name Initial value R/W Description 7, 6 All 0 Reserved The write value should always be 0. 5 4 3 2 1 0 CST5 CST4 CST3 CST2 CST1 CST0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W Counter Start 0 to 5 (CST0 to CST5) These bits select operation or stoppage for TCNT. If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained. If TIOR is written to when the CST bit is cleared to 0, the pin output level will be changed to the set initial output value. 0: TCNT_0 to TCNT_5 count operation is stopped 1: TCNT_0 to TCNT_5 performs count operation Rev. 2.00 Dec. 05, 2005 Page 266 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.3.9 Timer Synchro Register (TSYR) TSYR is an 8-bit readable/writable register that selects independent operation or synchronous operation for the channel 0 to 5 TCNT counters. A channel performs synchronous operation when the corresponding bit in TSYR is set to 1. Bit Bit Name Initial value R/W Description 7, 6 All 0 R/W Reserved The write value should always be 0. 5 4 3 2 1 0 SYNC5 SYNC4 SYNC3 SYNC2 SYNC1 SYNC0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W Timer Synchro 0 to 5 These bits are used to select whether operation is independent of or synchronized with other channels. When synchronous operation is selected, the TCNT synchronous presetting of multiple channels, and synchronous clearing by counter clearing on another channel, are possible. To set synchronous operation, the SYNC bits for at least two channels must be set to 1. To set synchronous clearing, in addition to the SYNC bit , the TCNT clearing source must also be set by means of bits CCLR0 to CCLR2 in TCR. 0: TCNT_0 to TCNT_5 operates independently (TCNT presetting /clearing is unrelated to other channels) 1: TCNT_0 to TCNT_5 performs synchronous operation TCNT synchronous presetting/synchronous clearing is possible Rev. 2.00 Dec. 05, 2005 Page 267 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.4 Operation 10.4.1 Basic Functions Each channel has a TCNT and TGR register. TCNT performs up-counting, and is also capable of free-running operation, periodic counting, and external event counting. Each TGR can be used as an input capture register or output compare register. Counter Operation: When one of bits CST0 to CST5 is set to 1 in TSTR, the TCNT counter for the corresponding channel begins counting. TCNT can operate as a free-running counter, periodic counter, for example. 1. Example of count operation setting procedure Figure 10.2 shows an example of the count operation setting procedure. Operation selection Select counter clock [1] Periodic counter Select counter clearing source Free-running counter [2] [3] Select output compare register Set period [4] Start count operation [5] <Periodic counter> Start count operation <Free-running counter> [1] Select the counter clock with bits TPSC2 to TPSC0 in TCR. At the same time, select the input clock edge with bits CKEG1 and CKEG0 in TCR. [2] For periodic counter operation, select the TGR to be used as the TCNT clearing source with bits CCLR2 to CCLR0 in TCR. [3] Designate the TGR selected in [2] as an output compare register by means of TIOR. [4] Set the periodic counter cycle in the TGR selected in [2]. [5] Set the CST bit in TSTR to 1 to start the counter operation. Figure 10.2 Example of Counter Operation Setting Procedure Rev. 2.00 Dec. 05, 2005 Page 268 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 2. Free-running count operation and periodic count operation Immediately after a reset, the TPU's TCNT counters are all designated as free-running counters. When the relevant bit in TSTR is set to 1 the corresponding TCNT counter starts upcount operation as a free-running counter. When TCNT overflows (from H'FFFF to H'0000), the TCFV bit in TSR is set to 1. If the value of the corresponding TCIEV bit in TIER is 1 at this point, the TPU requests an interrupt. After overflow, TCNT starts counting up again from H'0000. Figure 10.3 illustrates free-running counter operation. TCNT value H'FFFF H'0000 Time CST bit TCFV Figure 10.3 Free-Running Counter Operation When compare match is selected as the TCNT clearing source, the TCNT counter for the relevant channel performs periodic count operation. The TGR register for setting the period is designated as an output compare register, and counter clearing by compare match is selected by means of bits CCLR0 to CCLR2 in TCR. After the settings have been made, TCNT starts up-count operation as a periodic counter when the corresponding bit in TSTR is set to 1. When the count value matches the value in TGR, the TGF bit in TSR is set to 1 and TCNT is cleared to H'0000. If the value of the corresponding TGIE bit in TIER is 1 at this point, the TPU requests an interrupt. After a compare match, TCNT starts counting up again from H'0000. Figure 10.4 illustrates periodic counter operation. Rev. 2.00 Dec. 05, 2005 Page 269 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Counter cleared by TGR compare match TCNT value TGR H'0000 Time CST bit Flag cleared by software or DTC activation TGF Figure 10.4 Periodic Counter Operation Waveform Output by Compare Match: The TPU can perform 0, 1, or toggle output from the corresponding output pin using compare match. 1. Example of setting procedure for waveform output by compare match Figure 10.5 shows an example of the setting procedure for waveform output by compare match Output selection Select waveform output mode [1] Set output timing [2] Start count operation [3] [1] Select initial value 0 output or 1 output, and compare match output value 0 output, 1 output, or toggle output, by means of TIOR. The set initial value is output at the TIOC pin unit the first compare match occurs. [2] Set the timing for compare match generation in TGR. [3] Set the CST bit in TSTR to 1 to start the count operation. <Waveform output> Figure 10.5 Example of Setting Procedure for Waveform Output by Compare Match Rev. 2.00 Dec. 05, 2005 Page 270 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 2. Examples of waveform output operation Figure 10.6 shows an example of 0 output/1 output. In this example TCNT has been designated as a free-running counter, and settings have been made such that 1 is output by compare match A, and 0 is output by compare match B. When the set level and the pin level coincide, the pin level does not change. TCNT value H'FFFF TGRA TGRB Time H'0000 No change No change 1 output TIOCA TIOCB No change No change 0 output Figure 10.6 Example of 0 Output/1 Output Operation Figure 10.7 shows an example of toggle output. In this example, TCNT has been designated as a periodic counter (with counter clearing on compare match B), and settings have been made such that the output is toggled by both compare match A and compare match B. TCNT value Counter cleared by TGRB compare match H'FFFF TGRB TGRA Time H'0000 Toggle output TIOCB Toggle output TIOCA Figure 10.7 Example of Toggle Output Operation Rev. 2.00 Dec. 05, 2005 Page 271 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Input Capture Function: The TCNT value can be transferred to TGR on detection of the TIOC pin input edge. Rising edge, falling edge, or both edges can be selected as the detected edge. For channels 0, 1, 3, and 4, it is also possible to specify another channel's counter input clock or compare match signal as the input capture source. Note: When another channel's counter input clock is used as the input capture input for channels 0 and 3, φ/1 should not be selected as the counter input clock used for input capture input. Input capture will not be generated if φ/1 is selected. 1. Example of input capture operation setting procedure Figure 10.8 shows an example of the input capture operation setting procedure. Input selection Select input capture input Start count [1] Designate TGR as an input capture register by means of TIOR, and select rising edge, falling edge, or both edges as the input capture source and input signal edge. [2] Set the CST bit in TSTR to 1 to start the count operation. [1] [2] <Input capture operation> Figure 10.8 Example of Input Capture Operation Setting Procedure Rev. 2.00 Dec. 05, 2005 Page 272 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 2. Example of input capture operation Figure 10.9 shows an example of input capture operation. In this example both rising and falling edges have been selected as the TIOCA pin input capture input edge, the falling edge has been selected as the TIOCB pin input capture input edge, and counter clearing by TGRB input capture has been designated for TCNT. Counter cleared by TIOCB input (falling edge) TCNT value H'0180 H'0160 H'0010 H'0005 Time H'0000 TIOCA TGRA H'0005 H'0160 H'0010 TIOCB TGRB H'0180 Figure 10.9 Example of Input Capture Operation Rev. 2.00 Dec. 05, 2005 Page 273 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.4.2 Synchronous Operation In synchronous operation, the values in a number of TCNT counters can be rewritten simultaneously (synchronous presetting). Also, a number of TCNT counters can be cleared simultaneously by making the appropriate setting in TCR (synchronous clearing). Synchronous operation enables TGR to be incremented with respect to a single time base. Channels 0 to 5 can all be designated for synchronous operation. Example of Synchronous Operation Setting Procedure: Figure 10.10 shows an example of the synchronous operation setting procedure. Synchronous operation selection Set synchronous operation [1] Synchronous presetting Set TCNT Synchronous clearing [2] Clearing source generation channel? No Yes <Synchronous presetting> Select counter clearing source [3] Set synchronous counter clearing [4] Start count [4] Start count [5] <Counter clearing> <Synchronous clearing> [1] Set to 1 the SYNC bits in TSYR corresponding to the channels to be designated for synchronous operation. [2] When the TCNT counter of any of the channels designated for synchronous operation is written to, the same value is simultaneously written to the other TCNT counters. [3] Use bits CCLR2 to CCLR0 in TCR to specify TCNT clearing by input capture/output compare, etc. [4] Use bits CCLR2 to CCLR0 in TCR to designate synchronous clearing for the counter clearing source. [5] Set to 1 the CST bits in TSTR for the relevant channels, to start the count operation. Figure 10.10 Example of Synchronous Operation Setting Procedure Rev. 2.00 Dec. 05, 2005 Page 274 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Example of Synchronous Operation: Figure 10.11 shows an example of synchronous operation. In this example, synchronous operation and PWM mode 1 have been designated for channels 0 to 2, TGRB_0 compare match has been set as the channel 0 counter clearing source, and synchronous clearing has been set for the channel 1 and 2 counter clearing source. Three-phase PWM waveforms are output from pins TIOCA0, TIOCA1, and TIOCA2. At this time, synchronous presetting, and synchronous clearing by TGRB_0 compare match, are performed for channel 0 to 2 TCNT counters, and the data set in TGRB_0 is used as the PWM cycle. For details of PWM modes, see section 10.4.5, PWM Modes. Synchronous clearing by TGRB_0 compare match TCNT0 to TCNT2 values TGRB_0 TGRB_1 TGRA_0 TGRB_2 TGRA_1 TGRA_2 Time H'0000 TIOCA_0 TIOCA_1 TIOCA_2 Figure 10.11 Example of Synchronous Operation Rev. 2.00 Dec. 05, 2005 Page 275 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.4.3 Buffer Operation Buffer operation, provided for channels 0 and 3, enables TGRC and TGRD to be used as buffer registers. Buffer operation differs depending on whether TGR has been designated as an input capture register or as a compare match register. Table 10.28 shows the register combinations used in buffer operation. Table 10.28 Register Combinations in Buffer Operation Channel Timer General Register Buffer Register 0 TGRA_0 TGRC_0 TGRB_0 TGRD_0 TGRA_3 TGRC_3 TGRB_3 TGRD_3 3 • When TGR is an output compare register When a compare match occurs, the value in the buffer register for the corresponding channel is transferred to the timer general register. This operation is illustrated in figure 10.12. Compare match signal Timer general register Buffer register Comparator TCNT Figure 10.12 Compare Match Buffer Operation • When TGR is an input capture register When input capture occurs, the value in TCNT is transferred to TGR and the value previously held in the timer general register is transferred to the buffer register. This operation is illustrated in figure 10.13. Rev. 2.00 Dec. 05, 2005 Page 276 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Input capture signal Timer general register Buffer register TCNT Figure 10.13 Input Capture Buffer Operation Example of Buffer Operation Setting Procedure: Figure 10.14 shows an example of the buffer operation setting procedure. Buffer operation Select TGR function [1] Set buffer operation [2] Start count [3] [1] Designate TGR as an input capture register or output compare register by means of TIOR. [2] Designate TGR for buffer operation with bits BFA and BFB in TMDR. [3] Set the CST bit in TSTR to 1 start the count operation. <Buffer operation> Figure 10.14 Example of Buffer Operation Setting Procedure Examples of Buffer Operation: 1. When TGR is an output compare register Figure 10.15 shows an operation example in which PWM mode 1 has been designated for channel 0, and buffer operation has been designated for TGRA and TGRC. The settings used in this example are TCNT clearing by compare match B, 1 output at compare match A, and 0 output at compare match B. As buffer operation has been set, when compare match A occurs the output changes and the value in buffer register TGRC is simultaneously transferred to timer general register TGRA. This operation is repeated each time that compare match A occurs. For details of PWM modes, see section 10.4.5, PWM Modes. Rev. 2.00 Dec. 05, 2005 Page 277 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) TCNT value TGRB_0 H'0520 H'0450 H'0200 TGRA_0 Time H'0000 TGRC_0 H'0200 H'0450 H'0520 Transfer TGRA_0 H'0200 H'0450 TIOCA Figure 10.15 Example of Buffer Operation (1) 2. When TGR is an input capture register Figure 10.16 shows an operation example in which TGRA has been designated as an input capture register, and buffer operation has been designated for TGRA and TGRC. Counter clearing by TGRA input capture has been set for TCNT, and both rising and falling edges have been selected as the TIOCA pin input capture input edge. As buffer operation has been set, when the TCNT value is stored in TGRA upon the occurrence of input capture A, the value previously stored in TGRA is simultaneously transferred to TGRC. Rev. 2.00 Dec. 05, 2005 Page 278 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) TCNT value H'0F07 H'09FB H'0532 H'0000 Time TIOCA TGRA TGRC H'0532 H'0F07 H'09FB H'0532 H'0F07 Figure 10.16 Example of Buffer Operation (2) Rev. 2.00 Dec. 05, 2005 Page 279 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.4.4 Cascaded Operation In cascaded operation, two 16-bit counters for different channels are used together as a 32-bit counter. This function works by counting the channel 1 (channel 4) counter clock upon overflow/underflow of TCNT_2 (TCNT_5) as set in bits TPSC0 to TPSC2 in TCR. Underflow occurs only when the lower 16-bit TCNT is in phase-counting mode. Table 10.29 shows the register combinations used in cascaded operation. Note: When phase counting mode is set for channel 1 or 4, the counter clock setting is invalid and the counters operates independently in phase counting mode. Table 10.29 Cascaded Combinations Combination Upper 16 Bits Lower 16 Bits Channels 1 and 2 TCNT_1 TCNT_2 Channels 4 and 5 TCNT_4 TCNT_5 Example of Cascaded Operation Setting Procedure: Figure 10.17 shows an example of the setting procedure for cascaded operation. Cascaded operation Set cascading [1] Start count [2] [1] Set bits TPSC2 to TPSC0 in the channel 1 (channel 4) TCR to B'1111 to select TCNT_2 (TCNT_5) overflow/underflow counting. [2] Set the CST bit in TSTR for the upper and lower channel to 1 to start the count operation. <Cascaded operation> Figure 10.17 Cascaded Operation Setting Procedure Examples of Cascaded Operation: Figure 10.18 illustrates the operation when TCNT_2 overflow/underflow counting has been set for TCNT_1, when TGRA_1 and TGRA_2 have been designated as input capture registers, and when TIOC pin rising edge has been selected. Rev. 2.00 Dec. 05, 2005 Page 280 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) When a rising edge is input to the TIOCA1 and TIOCA2 pins simultaneously, the upper 16 bits of the 32-bit data are transferred to TGRA_1, and the lower 16 bits to TGRA_2. TCNT_1 clock TCNT_1 H'03A1 H'03A2 TCNT_2 clock TCNT_2 H'FFFF H'0001 H'0000 TIOCA1, TIOCA2 TGRA_1 H'03A2 TGRA_2 H'0000 Figure 10.18 Example of Cascaded Operation (1) Figure 10.19 illustrates the operation when TCNT_2 overflow/underflow counting has been set for TCNT_1 and phase counting mode has been designated for channel 2. TCNT_1 is incremented by TCNT_2 overflow and decremented by TCNT_2 underflow. TCLKA TCLKB TCNT_2 TCNT_1 FFFD FFFE 0000 FFFF 0000 0001 0002 0001 0000 0001 FFFF 0000 Figure 10.19 Example of Cascaded Operation (2) Rev. 2.00 Dec. 05, 2005 Page 281 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.4.5 PWM Modes In PWM mode, PWM waveforms are output from the output pins. The output level can be selected as 0, 1, or toggle output in response to a compare match of each TGR. TGR registers settings can be used to output a PWM waveform in the range of 0% to 100% duty cycle. Designating TGR compare match as the counter clearing source enables the period to be set in that register. All channels can be designated for PWM mode independently. Synchronous operation is also possible. There are two PWM modes, as described below. • PWM mode 1 PWM output is generated from the TIOCA and TIOCC pins by pairing TGRA with TGRB and TGRC with TGRD. The output specified by bits IOA0 to IOA3 and IOC0 to IOC3 in TIOR is output from the TIOCA and TIOCC pins at compare matches A and C, and the output specified by bits IOB0 to IOB3 and IOD0 to IOD3 in TIOR is output at compare matches B and D. The initial output value is the value set in TGRA or TGRC. If the set values of paired TGRs are identical, the output value does not change when a compare match occurs. In PWM mode 1, a maximum 8-phase PWM output is possible. • PWM mode 2 PWM output is generated using one TGR as the cycle register and the others as duty cycle registers. The output specified in TIOR is performed by means of compare matches. Upon counter clearing by a synchronization register compare match, the output value of each pin is the initial value set in TIOR. If the set values of the cycle and duty cycle registers are identical, the output value does not change when a compare match occurs. In PWM mode 2, a maximum 15-phase PWM output is possible in combination use with synchronous operation. The correspondence between PWM output pins and registers is shown in table 10.30. Rev. 2.00 Dec. 05, 2005 Page 282 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.30 PWM Output Registers and Output Pins Output Pins Channel 0 Registers PWM Mode 1 PWM Mode 2 TGRA_0 TIOCA0 TIOCA0 TGRB_0 TGRC_0 TIOCB0 TIOCC0 TGRD_0 1 TGRA_1 TIOCD0 TIOCA1 TGRB_1 2 TGRA_2 TGRA_3 TIOCA2 TIOCA3 TGR4A_4 TIOCC3 TGRA_5 TGRB_5 Note: * TIOCC3 TIOCD3 TIOCA4 TGR4B_4 5 TIOCA3 TIOCB3 TGRD_3 4 TIOCA2 TIOCB2 TGRB_3 TGRC_3 TIOCA1 TIOCB1 TGRB_2 3 TIOCC0 TIOCA4 TIOCB4 TIOCA5 TIOCA5 TIOCB5 In PWM mode 2, PWM output is not possible for the TGR register in which the period is set. Rev. 2.00 Dec. 05, 2005 Page 283 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Example of PWM Mode Setting Procedure: Figure 10.20 shows an example of the PWM mode setting procedure. PWM mode Select counter clock [1] Select counter clearing source [2] Select waveform output level [3] Set TGR [4] Set PWM mode [5] Start count [6] [1] Select the counter clock with bits TPSC2 to TPSC0 in TCR. At the same time, select the input clock edge with bits CKEG1 and CKEG0 in TCR. [2] Use bits CCLR2 to CCLR0 in TCR to select the TGR to be used as the TCNT clearing source. [3] Use TIOR to designate the TGR as an output compare register, and select the initial value and output value. [4] Set the cycle in the TGR selected in [2], and set the duty in the other the TGR. [5] Select the PWM mode with bits MD3 to MD0 in TMDR. [6] Set the CST bit in TSTR to 1 start the count operation. <PWM mode> Figure 10.20 Example of PWM Mode Setting Procedure Examples of PWM Mode Operation: Figure 10.21 shows an example of PWM mode 1 operation. In this example, TGRA compare match is set as the TCNT clearing source, 0 is set for the TGRA initial output value and output value, and 1 is set as the TGRB output value. In this case, the value set in TGRA is used as the period, and the values set in the TGRB registers are used as the duty cycle levels. Rev. 2.00 Dec. 05, 2005 Page 284 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) TCNT value Counter cleared by TGRA compare match TGRA TGRB H'0000 Time TIOCA Figure 10.21 Example of PWM Mode Operation (1) Figure 10.22 shows an example of PWM mode 2 operation. In this example, synchronous operation is designated for channels 0 and 1, TGRB_1 compare match is set as the TCNT clearing source, and 0 is set for the initial output value and 1 for the output value of the other TGR registers (TGRA_0 to TGRD_0, TGRA_1), outputting a 5-phase PWM waveform. In this case, the value set in TGRB_1 is used as the cycle, and the values set in the other TGRs are used as the duty cycle levels. TCNT value Counter cleared by TGRB_1 compare match TGRB_1 TGRA_1 TGRD_0 TGRC_0 TGRB_0 TGRA_0 H'0000 Time TIOCA0 TIOCB0 TIOCC0 TIOCD0 TIOCA1 Figure 10.22 Example of PWM Mode Operation (2) Rev. 2.00 Dec. 05, 2005 Page 285 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Figure 10.23 shows examples of PWM waveform output with 0% duty cycle and 100% duty cycle in PWM mode. TCNT value TGRB rewritten TGRA TGRB TGRB rewritten TGRB rewritten H'0000 Time 0% duty TIOCA Output does not change when cycle register and duty register compare matches occur simultaneously TCNT value TGRB rewritten TGRA TGRB rewritten TGRB rewritten TGRB H'0000 Time 100% duty TIOCA Output does not change when cycle register and duty register compare matches occur simultaneously TCNT value TGRB rewritten TGRA TGRB rewritten TGRB TGRB rewritten Time H'0000 100% duty TIOCA 0% duty Figure 10.23 Example of PWM Mode Operation (3) Rev. 2.00 Dec. 05, 2005 Page 286 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.4.6 Phase Counting Mode In phase counting mode, the phase difference between two external clock inputs is detected and TCNT is incremented/decremented accordingly. This mode can be set for channels 1, 2, 4, and 5. When phase counting mode is set, an external clock is selected as the counter input clock and TCNT operates as an up/down-counter regardless of the setting of bits TPSC0 to TPSC2 and bits CKEG0 and CKEG1 in TCR. However, the functions of bits CCLR0 and CCLR1 in TCR, and of TIOR, TIER, and TGR, are valid, and input capture/compare match and interrupt functions can be used. This can be used for two-phase encoder pulse input. If overflow occurs when TCNT is counting up, the TCFV flag in TSR is set; if underflow occurs when TCNT is counting down, the TCFU flag is set. The TCFD bit in TSR is the count direction flag. Reading the TCFD flag reveals whether TCNT is counting up or down. Table 10.31 shows the correspondence between external clock pins and channels. Table 10.31 Phase Counting Mode Clock Input Pins External Clock Pins Channels A-Phase B-Phase When channel 1 or 5 is set to phase counting mode TCLKA TCLKB When channel 2 or 4 is set to phase counting mode TCLKC TCLKD Example of Phase Counting Mode Setting Procedure: Figure 10.24 shows an example of the phase counting mode setting procedure. [1] Select phase counting mode with bits MD3 to MD0 in TMDR. [2] Set the CST bit in TSTR to 1 to start the count operation. Phase counting mode Select phase counting mode [1] Start count [2] <Phase counting mode> Figure 10.24 Example of Phase Counting Mode Setting Procedure Rev. 2.00 Dec. 05, 2005 Page 287 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Examples of Phase Counting Mode Operation: In phase counting mode, TCNT counts up or down according to the phase difference between two external clocks. There are four modes, according to the count conditions. 1. Phase counting mode 1 Figure 10.25 shows an example of phase counting mode 1 operation, and table 10.32 summarizes the TCNT up/down-count conditions. TCLKA (channels 1 and 5) TCLKC (channels 2 and 4) TCLKB (channels 1 and 5) TCLKD (channels 2 and 4) TCNT value Up-count Down-count Time Figure 10.25 Example of Phase Counting Mode 1 Operation Table 10.32 Up/Down-Count Conditions in Phase Counting Mode 1 TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4) TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4) Operation Up-count High level Low level Low level High level High level Down-count Low level High level Low level [Legend] : Rising edge : Falling edge Rev. 2.00 Dec. 05, 2005 Page 288 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 2. Phase counting mode 2 Figure 10.26 shows an example of phase counting mode 2 operation, and table 10.33 summarizes the TCNT up/down-count conditions. TCLKA (channels 1 and 5) TCLKC (channels 2 and 4) TCLKB (channels 1 and 5) TCLKD (channels 2 and 4) TCNT value Up-count Down-count Time Figure 10.26 Example of Phase Counting Mode 2 Operation Table 10.33 Up/Down-Count Conditions in Phase Counting Mode 2 TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4) TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4) High level Operation Don't care Low level Don't care Low level Don't care High level Up-count High level Don't care Low level Don't care High level Don't care Low level Down-count [Legend] : Rising edge : Falling edge Rev. 2.00 Dec. 05, 2005 Page 289 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 3. Phase counting mode 3 Figure 10.27 shows an example of phase counting mode 3 operation, and table 10.34 summarizes the TCNT up/down-count conditions. TCLKA (channels 1 and 5) TCLKC (channels 2 and 4) TCLKB (channels 1 and 5) TCLKD (channels 2 and 4) TCNT value Down-count Up-count Time Figure 10.27 Example of Phase Counting Mode 3 Operation Table 10.34 Up/Down-Count Conditions in Phase Counting Mode 3 TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4) TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4) Operation High level Don't care Low level Don't care Low level Don't care High level Up-count High level Down-count Low level Don't care [Legend] : Rising edge : Falling edge Rev. 2.00 Dec. 05, 2005 Page 290 of 724 REJ09B0200-0200 High level Don't care Low level Don't care Section 10 16-Bit Timer Pulse Unit (TPU) 4. Phase counting mode 4 Figure 10.28 shows an example of phase counting mode 4 operation, and table 10.35 summarizes the TCNT up/down-count conditions. TCLKA (channels 1 and 5) TCLKC (channels 2 and 4) TCLKB (channels 1 and 5) TCLKD (channels 2 and 4) TCNT value Down-count Up-count Time Figure 10.28 Example of Phase Counting Mode 4 Operation Table 10.35 Up/Down-Count Conditions in Phase Counting Mode 4 TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4) TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4) High level Operation Up-count Low level Low level Don't care High level High level Down-count Low level High level Don't care Low level [Legend] : Rising edge : Falling edge Rev. 2.00 Dec. 05, 2005 Page 291 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Phase Counting Mode Application Example: Figure 10.29 shows an example in which channel 1 is in phase counting mode, and channel 1 is coupled with channel 0 to input servo motor 2-phase encoder pulses in order to detect position or speed. Channel 1 is set to phase counting mode 1, and the encoder pulse A-phase and B-phase are input to TCLKA and TCLKB. Channel 0 operates with TCNT counter clearing by TGRC_0 compare match; TGRA_0 and TGRC_0 are used for the compare match function and are set with the speed control period and position control period. TGRB_0 is used for input capture, with TGRB_0 and TGRD_0 operating in buffer mode. The channel 1 counter input clock is designated as the TGRB_0 input capture source, and the pulse widths of 2-phase encoder 4-multiplication pulses are detected. TGRA_1 and TGRB_1 for channel 1 are designated for input capture, and channel 0 TGRA_0 and TGRC_0 compare matches are selected as the input capture source and store the up/down-counter values for the control periods. This procedure enables the accurate detection of position and speed. Rev. 2.00 Dec. 05, 2005 Page 292 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Channel 1 TCLKA TCLKB Edge detection circuit TCNT_1 TGRA_1 (speed period capture) TGRB_1 (speed period capture) TCNT_0 TGRA_0 (speed control period) + - TGRC_0 (position control period) + - TGRB_0 (pulse width capture) TGRD_0 (buffer operation) Channel 0 Figure 10.29 Phase Counting Mode Application Example 10.5 Interrupt Sources There are three kinds of TPU interrupt source; TGR input capture/compare match, TCNT overflow, and TCNT underflow. Each interrupt source has its own status flag and enable/disabled bit, allowing the generation of interrupt request signals to be enabled or disabled individually. When an interrupt request is generated, the corresponding status flag in TSR is set to 1. If the corresponding enable/disable bit in TIER is set to 1 at this time, an interrupt is requested. The interrupt request is cleared by clearing the status flag to 0. Relative channel priorities can be changed by the interrupt controller, however the priority order within a channel is fixed. For details, see section 5, Interrupt Controller. Table 10.36 lists the TPU interrupt sources. Rev. 2.00 Dec. 05, 2005 Page 293 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Table 10.36 TPU Interrupts Channel Name Interrupt Source DTC Interrupt Flag Activation 0 TGIA_0 TGRA_0 input capture/compare match TGFA_0 Possible TGIB_0 TGRB_0 input capture/compare match TGFB_0 Possible TGIC_0 TGRC_0 input capture/compare match TGFC_0 Possible TGID_0 TGRD_0 input capture/compare match TGFD_0 Possible TCIV_0 TCNT_0 overflow TCFV_0 Not possible TGIA_1 TGRA_1 input capture/compare match TGFA_1 Possible TGIB_1 TGRB_1 input capture/compare match TGFB_1 Possible TCIV_1 TCNT_1 overflow TCFV_1 Not possible TCIU_1 TCNT_1 underflow TCFU_1 Not possible TGIA_2 TGRA_2 input capture/compare match TGFA_2 Possible TGIB_2 TGRB_2 input capture/compare match TGFB_2 Possible TCIV_2 TCNT_2 overflow TCFV_2 Not possible TCIU_2 TCNT_2 underflow TCFU_2 Not possible TGIA_3 TGRA_3 input capture/compare match TGFA_3 Possible TGIB_3 TGRB_3 input capture/compare match TGFB_3 Possible TGIC_3 TGRC_3 input capture/compare match TGFC_3 Possible TGID_3 TGRD_3 input capture/compare match TGFD_3 Possible TCIV_3 TCNT_3 overflow TCFV_3 Not possible TGIA_4 TGRA_4 input capture/compare match TGFA_4 Possible TGIB_4 TGRB_4 input capture/compare match TGFB_4 Possible TCIV_4 TCNT_4 overflow TCFV_4 Not possible TCIU_4 TCNT_4 underflow TCFU_4 Not possible 1 2 3 4 5 Note: * TGIA_5 TGRA_5 input capture/compare match TGFA_5 Possible TGIB_5 TGRB_5 input capture/compare match TGFB_5 Possible TCIV_5 TCNT_5 overflow TCFV_5 Not possible TCIU_5 TCNT_5 underflow TCFU_5 Not possible This table shows the initial state immediately after a reset. The relative channel priorities can be changed by the interrupt controller. Rev. 2.00 Dec. 05, 2005 Page 294 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Input Capture/Compare Match Interrupt: An interrupt is requested if the TGIE bit in TIER is set to 1 when the TGF flag in TSR is set to 1 by the occurrence of a TGR input capture/compare match on a particular channel. The interrupt request is cleared by clearing the TGF flag to 0. The TPU has 16 input capture/compare match interrupts, four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5. Overflow Interrupt: An interrupt is requested if the TCIEV bit in TIER is set to 1 when the TCFV flag in TSR is set to 1 by the occurrence of TCNT overflow on a channel. The interrupt request is cleared by clearing the TCFV flag to 0. The TPU has six overflow interrupts, one for each channel. Underflow Interrupt: An interrupt is requested if the TCIEU bit in TIER is set to 1 when the TCFU flag in TSR is set to 1 by the occurrence of TCNT underflow on a channel. The interrupt request is cleared by clearing the TCFU flag to 0. The TPU has four underflow interrupts, one each for channels 1, 2, 4, and 5. 10.6 DTC Activation The DTC can be activated by the TGR input capture/compare match interrupt for a channel. For details, see section 8, Data Transfer Controller (DTC). A total of 16 TPU input capture/compare match interrupts can be used as DTC activation sources, four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5. 10.7 A/D Converter Activation The A/D converter can be activated by the TGRA input capture/compare match for a channel. If the TTGE bit in TIER is set to 1 when the TGFA flag in TSR is set to 1 by the occurrence of a TGRA input capture/compare match on a particular channel, a request to begin A/D conversion is sent to the A/D converter. If the TPU conversion start trigger has been selected on the A/D converter side at this time, A/D conversion is begun. In the TPU, a total of six TGRA input capture/compare match interrupts can be used as A/D converter conversion start sources, one for each channel. Rev. 2.00 Dec. 05, 2005 Page 295 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.8 Operation Timing 10.8.1 Input/Output Timing TCNT Count Timing: Figure 10.30 shows TCNT count timing in internal clock operation, and figure 10.31 shows TCNT count timing in external clock operation. φ Internal clock Falling edge Rising edge TCNT input clock TCNT N-1 N N+1 N+2 Figure 10.30 Count Timing in Internal Clock Operation φ External clock Falling edge Rising edge Falling edge TCNT input clock TCNT N-1 N N+1 Figure 10.31 Count Timing in External Clock Operation Rev. 2.00 Dec. 05, 2005 Page 296 of 724 REJ09B0200-0200 N+2 Section 10 16-Bit Timer Pulse Unit (TPU) Output Compare Output Timing: A compare match signal is generated in the final state in which TCNT and TGR match (the point at which the count value matched by TCNT is updated). When a compare match signal is generated, the output value set in TIOR is output at the output compare output pin. After a match between TCNT and TGR, the compare match signal is not generated until the TCNT input clock is generated. Figure 10.32 shows output compare output timing. φ TCNT input clock N+1 N TCNT N TGR Compare match signal TIOC pin Figure 10.32 Output Compare Output Timing Input Capture Signal Timing: Figure 10.33 shows input capture signal timing. φ Input capture input Input capture signal TCNT TGR N N+1 N+2 N N+2 Figure 10.33 Input Capture Input Signal Timing Rev. 2.00 Dec. 05, 2005 Page 297 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Timing for Counter Clearing by Compare Match/Input Capture: Figure 10.34 shows the timing when counter clearing on compare match is specified, and figure 10.35 shows the timing when counter clearing on input capture is specified. φ Compare match signal Counter clear signal TCNT N TGR N H'0000 Figure 10.34 Counter Clear Timing (Compare Match) φ Input capture signal Counter clear signal TCNT N H'0000 N TGR Figure 10.35 Counter Clear Timing (Input Capture) Rev. 2.00 Dec. 05, 2005 Page 298 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Buffer Operation Timing: Figures 10.36 and 10.37 show the timing in buffer operation. φ TCNT n n+1 Compare match signal TGRA, TGRB n TGRC, TGRD N N Figure 10.36 Buffer Operation Timing (Compare Match) φ Input capture signal TCNT N TGRA, TGRB n TGRC, TGRD N+1 N N+1 n N Figure 10.37 Buffer Operation Timing (Input Capture) Rev. 2.00 Dec. 05, 2005 Page 299 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.8.2 Interrupt Signal Timing TGF Flag Setting Timing in Case of Compare Match: Figure 10.38 shows the timing for setting of the TGF flag in TSR on compare match, and TGI interrupt request signal timing. φ TCNT input clock TCNT N TGR N N+1 Compare match signal TGF flag TGI interrupt Figure 10.38 TGI Interrupt Timing (Compare Match) TGF Flag Setting Timing in Case of Input Capture: Figure 10.39 shows the timing for setting of the TGF flag in TSR on input capture, and TGI interrupt request signal timing. Rev. 2.00 Dec. 05, 2005 Page 300 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) φ Input capture signal TCNT N TGR N TGF flag TGI interrupt Figure 10.39 TGI Interrupt Timing (Input Capture) TCFV Flag/TCFU Flag Setting Timing: Figure 10.40 shows the timing for setting of the TCFV flag in TSR on overflow, and TCIV interrupt request signal timing. Figure 10.41 shows the timing for setting of the TCFU flag in TSR on underflow, and TCIU interrupt request signal timing. φ TCNT input clock TCNT (overflow) H'FFFF H'0000 Overflow signal TCFV flag TCIV interrupt Figure 10.40 TCIV Interrupt Setting Timing Rev. 2.00 Dec. 05, 2005 Page 301 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) φ TCNT input clock TCNT (underflow) H'0000 H'FFFF Underflow signal TCFU flag TCIU interrupt Figure 10.41 TCIU Interrupt Setting Timing Rev. 2.00 Dec. 05, 2005 Page 302 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Status Flag Clearing Timing: After a status flag is read as 1 by the CPU, it is cleared by writing 0 to it. When the DTC is activated, the flag is cleared automatically. Figure 10.42 shows the timing for status flag clearing by the CPU, and figure 10.43 shows the timing for status flag clearing by the DTC. TSR write cycle T1 T2 φ Address TSR address Write signal Status flag Interrupt request signal Figure 10.42 Timing for Status Flag Clearing by CPU DTC read cycle T1 T2 DTC write cycle T1 T2 φ Address Source address Destination address Status flag Interrupt request signal Figure 10.43 Timing for Status Flag Clearing by DTC Activation Rev. 2.00 Dec. 05, 2005 Page 303 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.9 Usage Notes 10.9.1 Module Stop Mode Setting TPU operation can be disabled or enabled using the module stop control register. The initial setting is for TPU operation to be halted. Register access is enabled by clearing module stop mode. For details, refer to section 21, Power-Down Modes. 10.9.2 Input Clock Restrictions The input clock pulse width must be at least 1.5 states in the case of single-edge detection, and at least 2.5 states in the case of both-edge detection. The TPU will not operate properly at narrower pulse widths. In phase counting mode, the phase difference and overlap between the two input clocks must be at least 1.5 states, and the pulse width must be at least 2.5 states. Figure 10.44 shows the input clock conditions in phase counting mode. Overlap Phase Phase differdifference Overlap ence Pulse width Pulse width TCLKA (TCLKC) TCLKB (TCLKD) Pulse width Pulse width Notes: Phase difference and overlap : 1.5 states or more Pulse width : 2.5 states or more Figure 10.44 Phase Difference, Overlap, and Pulse Width in Phase Counting Mode Rev. 2.00 Dec. 05, 2005 Page 304 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.9.3 Caution on Period Setting When counter clearing on compare match is set, TCNT is cleared in the final state in which it matches the TGR value (the point at which the count value matched by TCNT is updated). Consequently, the actual counter frequency is given by the following formula: φ f= (N + 1) Where 10.9.4 f: Counter frequency φ: Operating frequency N: TGR set value Conflict between TCNT Write and Clear Operations If the counter clear signal is generated in the T2 state of a TCNT write cycle, TCNT clearing takes precedence and the TCNT write is not performed. Figure 10.45 shows the timing in this case. TCNT write cycle T2 T1 φ TCNT address Address Write signal Counter clear signal TCNT N H'0000 Figure 10.45 Conflict between TCNT Write and Clear Operations Rev. 2.00 Dec. 05, 2005 Page 305 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.9.5 Conflict between TCNT Write and Increment Operations If incrementing occurs in the T2 state of a TCNT write cycle, the TCNT write takes precedence and TCNT is not incremented. Figure 10.46 shows the timing in this case. TCNT write cycle T1 T2 φ TCNT address Address Write signal TCNT input clock TCNT N M TCNT write data Figure 10.46 Conflict between TCNT Write and Increment Operations Rev. 2.00 Dec. 05, 2005 Page 306 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.9.6 Conflict between TGR Write and Compare Match If a compare match occurs in the T2 state of a TGR write cycle, the TGR write takes precedence and the compare match signal is inhibited. A compare match does not occur even if the previous value is written. Figure 10.47 shows the timing in this case. TGR write cycle T1 T2 φ TGR address Address Write signal Compare match signal Inhibited TCNT N N+1 TGR N M TGR write data Figure 10.47 Conflict between TGR Write and Compare Match Rev. 2.00 Dec. 05, 2005 Page 307 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.9.7 Conflict between Buffer Register Write and Compare Match If a compare match occurs in the T2 state of a TGR write cycle, the data that is transferred to TGR by the buffer operation will be that in the buffer prior to the write. Figure 10.48 shows the timing in this case. TGR write cycle T2 T1 φ Buffer register address Address Write signal Compare match signal Buffer register write data Buffer register TGR N M N Figure 10.48 Conflict between Buffer Register Write and Compare Match Rev. 2.00 Dec. 05, 2005 Page 308 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.9.8 Conflict between TGR Read and Input Capture If an input capture signal is generated in the T1 state of a TGR read cycle, the data that is read will be that in the buffer after input capture transfer. Figure 10.49 shows the timing in this case. TGR read cycle T2 T1 φ TGR address Address Read signal Input capture signal TGR X Internal data bus M M Figure 10.49 Conflict between TGR Read and Input Capture Rev. 2.00 Dec. 05, 2005 Page 309 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.9.9 Conflict between TGR Write and Input Capture If an input capture signal is generated in the T2 state of a TGR write cycle, the input capture operation takes precedence and the write to TGR is not performed. Figure 10.50 shows the timing in this case. TGR write cycle T2 T1 φ TGR address Address Write signal Input capture signal TCNT M M TGR Figure 10.50 Conflict between TGR Write and Input Capture Rev. 2.00 Dec. 05, 2005 Page 310 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.9.10 Conflict between Buffer Register Write and Input Capture If an input capture signal is generated in the T2 state of a buffer register write cycle, the buffer operation takes precedence and the write to the buffer register is not performed. Figure 10.51 shows the timing in this case. Buffer register write cycle T2 T1 φ Buffer register address Address Write signal Input capture signal TCNT TGR Buffer register N M N M Figure 10.51 Conflict between Buffer Register Write and Input Capture Rev. 2.00 Dec. 05, 2005 Page 311 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.9.11 Conflict between Overflow/Underflow and Counter Clearing If overflow/underflow and counter clearing occur simultaneously, the TCFV/TCFU flag in TSR is not set and TCNT clearing takes precedence. Figure 10.52 shows the operation timing when a TGR compare match is specified as the clearing source, and when H'FFFF is set in TGR. φ TCNT input clock TCNT H'FFFF H'0000 Counter clear signal TGF Disabled TCFV Figure 10.52 Conflict between Overflow and Counter Clearing Rev. 2.00 Dec. 05, 2005 Page 312 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) 10.9.12 Conflict between TCNT Write and Overflow/Underflow If there is an up-count or down-count in the T2 state of a TCNT write cycle, and overflow/underflow occurs, the TCNT write takes precedence and the TCFV/TCFU flag in TSR is not set. Figure 10.53 shows the operation timing when there is conflict between TCNT write and overflow. TCNT write cycle T2 T1 φ TCNT address Address Write signal TCNT TCNT write data H'FFFF M TCFV flag Figure 10.53 Conflict between TCNT Write and Overflow 10.9.13 Multiplexing of I/O Pins In this LSI, the TCLKA input pin is multiplexed with the TIOCC0 I/O pin, the TCLKB input pin with the TIOCD0 I/O pin, the TCLKC input pin with the TIOCB1 I/O pin, and the TCLKD input pin with the TIOCB2 I/O pin. When an external clock is input, compare match output should not be performed from a multiplexed pin. 10.9.14 Interrupts in Module Stop Mode If module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or the DTC activation source. Interrupts should therefore be disabled before entering module stop mode. Rev. 2.00 Dec. 05, 2005 Page 313 of 724 REJ09B0200-0200 Section 10 16-Bit Timer Pulse Unit (TPU) Rev. 2.00 Dec. 05, 2005 Page 314 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) Section 11 Programmable Pulse Generator (PPG) The programmable pulse generator provides pulse outputs using the 16-bit timer pulse unit (TPU) as a time base. The PPG pulse outputs are divided into 4-bit groups (group 2 and group 3) that can operate both simultaneously and independently. The block diagram of the PPG is shown in figure 11.1. 11.1 • • • • • • • Features 8-bit output data Two output groups Selectable output trigger signals Non-overlap mode Can operate in tandem with the data transfer controller (DTC) Settable inverted output Module stop mode can be set PPG0000A_000020020300 Rev. 2.00 Dec. 05, 2005 Page 315 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) Compare match signals Control logic PO15 PO14 PO13 PO12 PO11 PO10 PO9 PO8 NDERH NDERL PMR PCR Pulse output pins, group 3 PODRH NDRH PODRL NDRL Pulse output pins, group 2 Pulse output pins, group 1 Pulse output pins, group 0 [Legend] PMR: PCR: NDERH: NDERL: NDRH: NDRL: PODRH: PODRL: PPG output mode register PPG output control register Next data enable register H Next data enable register L Next data register H Next data register L Output data register H Output data register L Figure 11.1 Block Diagram of PPG Rev. 2.00 Dec. 05, 2005 Page 316 of 724 REJ09B0200-0200 Internal data bus Section 11 Programmable Pulse Generator (PPG) 11.2 Input/Output Pins Table 11.1 summarizes the pin configuration of the PPG. Table 11.1 Pin Configuration Pin Name I/O Function PO15 Output Group 3 pulse output PO14 Output PO13 Output PO12 Output PO11 Output PO10 Output PO9 Output PO8 Output 11.3 Group 2 pulse output Register Descriptions The PPG has the following registers. • • • • • • • • PPG output control register (PCR) PPG output mode register (PMR) Next data enable register H (NDERH) Next data enable register L (NDERL) Output data register H (PODRH) Output data register L (PODRL) Next data register H (NDRH) Next data register L (NDRL) Rev. 2.00 Dec. 05, 2005 Page 317 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.3.1 Next Data Enable Registers H, L (NDERH, NDERL) NDERH and NDERL are 8-bit readable/writable registers that enable or disable pulse output on a bit-by-bit basis. The corresponding DDR also needs to be set to 1 in order to enable pulse output by the PPG. • NDERH Bit Bit Name Initial Value R/W Description 7 NDER15 0 R/W Next Data Enable 8 to 15 6 NDER14 0 R/W 5 NDER13 0 R/W 4 NDER12 0 R/W 3 NDER11 0 R/W When a bit is set to 1 for pulse output by NDRH, the value in the corresponding NDRH bit is transferred to the PODRH bit by the selected output trigger. Values are not transferred from NDRH to PODRH for cleared bits. 2 NDER10 0 R/W 1 NDER9 0 R/W 0 NDER8 0 R/W • NDERL Bit Bit Name Initial Value R/W Description 7 NDER7 0 R/W Next Data Enable 0 to 7 6 NDER6 0 R/W 5 NDER5 0 R/W 4 NDER4 0 R/W 3 NDER3 0 R/W When a bit is set to 1 for pulse output by NDRL, the value in the corresponding NDRL bit is transferred to the PODRL bit by the selected output trigger. Values are not transferred from NDRL to PODRL for cleared bits. 2 NDER2 0 R/W 1 NDER1 0 R/W 0 NDER0 0 R/W Rev. 2.00 Dec. 05, 2005 Page 318 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.3.2 Output Data Registers H, L (PODRH, PODRL) PODRH and PODRL are 8-bit readable/writable registers that store output data for use in pulse output. A bit that has been set for pulse output by NDER is read-only and cannot be modified. • PODRH Bit Bit Name Initial Value R/W Description 7 POD15 0 R/W Output Data Register 8 to 15 6 POD14 0 R/W 5 POD13 0 R/W 4 POD12 0 R/W 3 POD11 0 R/W For bits that have been set to pulse output by NDERH, the output trigger transfers NDRH values to this register during PPG operation. While NDERH is set to 1, the CPU cannot write to this register. While NDERH is cleared, the initial output value of the pulse can be set. 2 POD10 0 R/W 1 POD9 0 R/W 0 POD8 0 R/W • PODRL Bit Bit Name Initial Value R/W Description 7 POD7 0 R/W Output Data Register 0 to 7 6 POD6 0 R/W 5 POD5 0 R/W 4 POD4 0 R/W 3 POD3 0 R/W For bits which have been set to pulse output by NDERL, the output trigger transfers NDRL values to this register during PPG operation. While NDERL is set to 1, the CPU cannot write to this register. While NDERL is cleared, the initial output value of the pulse can be set. 2 POD2 0 R/W 1 POD1 0 R/W 0 POD0 0 R/W Rev. 2.00 Dec. 05, 2005 Page 319 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.3.3 Next Data Registers H, L (NDRH, NDRL) NDRH and NDRL are 8-bit readable/writable registers that store the data for the next pulse output. The NDR addresses differ depending on whether pulse output groups have the same output trigger or different output triggers. • NDRH If pulse output groups 2 and 3 have the same output trigger, all eight bits are mapped to the same address and can be accessed at one time, as shown below. Bit Bit Name Initial Value R/W Description 7 NDR15 0 R/W Next Data Register 8 to 15 6 NDR14 0 R/W 5 NDR13 0 R/W 4 NDR12 0 R/W The register contents are transferred to the corresponding PODRH bits by the output trigger specified with PCR. 3 NDR11 0 R/W 2 NDR10 0 R/W 1 NDR9 0 R/W 0 NDR8 0 R/W If pulse output groups 2 and output pulse groups 3 have different output triggers, the upper 4 bits and the lower 4 bits are mapped to different addresses, as shown below. Bit Bit Name Initial Value R/W Description 7 NDR15 0 R/W Next Data Register 12 to 15 6 NDR14 0 R/W 5 NDR13 0 R/W 4 NDR12 0 R/W The register contents are transferred to the corresponding PODRH bits by the output trigger specified with PCR. All 1 3 to 0 Reserved These bits are always read as 1 and cannot be modified. Rev. 2.00 Dec. 05, 2005 Page 320 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) Bit Bit Name 7 to 4 Initial Value R/W Description All 1 Reserved These bits are always read as 1 and cannot be modified. 3 NDR11 0 R/W Next Data Register 8 to11 2 NDR10 0 R/W 1 NDR9 0 R/W 0 NDR8 0 R/W The register contents are transferred to the corresponding PODRH bits by the output trigger specified with PCR. • NDRL If pulse output groups 0 and 1 have the same output trigger, all eight bits are mapped to the same address and can be accessed at one time, as shown below. Bit Bit Name Initial Value R/W Description 7 NDR7 0 R/W Next Data Register 0 to 7 6 NDR6 0 R/W 5 NDR5 0 R/W 4 NDR4 0 R/W The register contents are transferred to the corresponding PODRL bits by the output trigger specified with PCR. 3 NDR3 0 R/W 2 NDR2 0 R/W 1 NDR1 0 R/W 0 NDR0 0 R/W If pulse output groups 0 and output pulse groups 1 have different output triggers, upper 4 bits and lower 4 bits are mapped to the different addresses as shown below. Rev. 2.00 Dec. 05, 2005 Page 321 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) Bit Bit Name Initial Value R/W Description 7 NDR7 0 R/W Next Data Register 4 to 7 6 NDR6 0 R/W 5 NDR5 0 R/W 4 NDR4 0 R/W The register contents are transferred to the corresponding PODRL bits by the output trigger specified with PCR. All 1 3 to 0 Reserved These bits are always read as 1 and cannot be modified. Bit Bit Name 7 to 4 Initial Value R/W Description All 1 Reserved These bits are always read as 1 and cannot be modified. 3 NDR3 0 R/W Next Data Register 3 to 0 2 NDR2 0 R/W 1 NDR1 0 R/W 0 NDR0 0 R/W The register contents are transferred to the corresponding PODRL bits by the output trigger specified with PCR. Rev. 2.00 Dec. 05, 2005 Page 322 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.3.4 PPG Output Control Register (PCR) PCR is an 8-bit readable/writable register that selects output trigger signals on a group-by-group basis. For details on output trigger selection, see section 11.3.5, PPG Output Mode Register (PMR). Bit Bit Name Initial Value R/W Description 7 G3CMS1 1 R/W Group 3 Compare Match Select 0 and 1 6 G3CMS0 1 R/W Select output trigger of pulse output group 3. 00: Compare match in TPU channel 0 01: Compare match in TPU channel 1 10: Compare match in TPU channel 2 11: Compare match in TPU channel 3 5 G2CMS1 1 R/W Group 2 Compare Match Select 0 and 1 4 G2CMS0 1 R/W Select output trigger of pulse output group 2. 00: Compare match in TPC channel 0 01: Compare match in TPC channel 1 10: Compare match in TPC channel 2 11: Compare match in TPC channel 3 3 G1CMS1 1 R/W 2 G1CMS0 1 R/W 1 G0CMS1 1 R/W 0 G0CMS0 1 R/W Reserved Reserved Rev. 2.00 Dec. 05, 2005 Page 323 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.3.5 PPG Output Mode Register (PMR) The PMR is an 8-bit readable/writable register that selects the pulse output mode of the PPG for each group. If inverted output is selected, a low-level pulse is output when PODRH is 1 and a high-level pulse is output when PODRH is 0. If non-overlapping operation is selected, PPG updates its output values on compare match A or B of the TPU that becomes the output trigger. For details, see section 11.4.5, Non-Overlapping Pulse Output. Bit Bit Name Initial Value R/W Description 7 G3INV 1 R/W Group 3 Inversion Selects direct output or inverted output for pulse output group 3. 0: Inverted output 1: Direct output 6 G2INV 1 R/W Group 2 Inversion Selects direct output or inverted output for pulse output group 2. 0: Inverted output 1: Direct output 5, 4 All 1 R/W Reserved 3 G3NOV 0 R/W Group 3 Non-Overlap Selects normal or non-overlapping operation for pulse output group 3. 0: Normal operation (output values updated at compare match A in the selected TPU channel) 1: Non-overlapping operation (output values at compare match A or B in the selected TPU channel) 2 G2NOV 0 R/W Group 2 Non-Overlap Selects normal or non-overlapping operation for pulse output group 2. 0: Normal operation (output values updated at compare match A in the selected TPU channel) 1: Non-overlapping operation (output values at compare match A or B in the selected TPU channel) 1, 0 All 0 R/W Rev. 2.00 Dec. 05, 2005 Page 324 of 724 REJ09B0200-0200 Reserved Section 11 Programmable Pulse Generator (PPG) 11.4 Operation 11.4.1 Overview Figure 11.2 shows a block diagram of the PPG. PPG pulse output is enabled when the corresponding bits in P1DDR and NDER are set to 1. An initial output value is determined by its corresponding PODR initial setting. When the compare match event specified by PCR occurs, the corresponding NDR bit contents are transferred to PODR to update the output values. The sequential output of up to 8 bits of data is possible by writing new output data to NDR before the next compare match. DDR NDER Q Output trigger signal C Q PODR D Q NDR D Internal data bus Pulse output pin Normal output/inverted output Figure 11.2 PPG Output Operation Rev. 2.00 Dec. 05, 2005 Page 325 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.4.2 Output Timing If pulse output is enabled, the contents of NDR contents are transferred to PODR and output when the specified compare match event occurs. Figure 11.3 shows the timing of these operations for the case of normal output in groups 2 and 3, triggered by compare match A. φ N TCNT TGRA N+1 N Compare match A signal n NDRH PODRH PO8 to PO15 m n m n Figure 11.3 Timing of Transfer and Output of NDR Contents (Example) Rev. 2.00 Dec. 05, 2005 Page 326 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.4.3 Sample Setup Procedure for Normal Pulse Output Figure 11.4 shows a sample procedure for setting up normal pulse output. Normal PPG output [1] Set TIOR to make TGRA an output compare register (with output disabled) Select TGR functions [1] Set TGRA value [2] Set counting operation [3] Select interrupt request [4] Set initial output data [5] [4] Enable the TGIA interrupt in TIER. The DTC can also be set up to transfer data to NDR. Enable pulse output [6] [5] Set the initial output values in PODR. Select output trigger [7] [6] Set the DDR and NDER bits for the pins to be used for pulse output to 1. Set next pulse output data [8] [7] Select the TPU compare match event to be used as the output trigger in PCR. Start counter [9] [8] Set the next pulse output values in NDR. [2] Set the PPG output trigger period TPU setup Port and PPG setup TPU setup Compare match? No Yes Set next pulse output data [10] [3] Select the counter clock source with bits TPSC2 to TPSC0 in TCR. Select the counter clear source with bits CCLR1 and CCLR0. [9] Set the CST bit in TSTR to 1 to start the TCNT counter. [10] At each TGIA interrupt, set the next output values in NDR. Figure 11.4 Setup Procedure for Normal Pulse Output (Example) Rev. 2.00 Dec. 05, 2005 Page 327 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.4.4 Example of Normal Pulse Output (Example of Five-Phase Pulse Output) Figure 11.5 shows an example in which pulse output is used for cyclic five-phase pulse output. TCNT value Compare match TCNT TGRA H'0000 Time 80 NDRH PODRH 00 C0 80 40 C0 60 40 20 60 30 20 10 30 18 10 08 18 88 08 80 88 C0 80 40 C0 PO15 PO14 PO13 PO12 PO11 Figure 11.5 Normal Pulse Output Example (Five-Phase Pulse Output) 1. Set up TGRA of the TPU that is used as the output trigger to be an output compare register. Set a frequency in TGRA so the counter will be cleared on compare match A. Set the TGIEA bit of TIER to 1 to enable the compare match/input capture A (TGIA) interrupt. 2. Write H'F8 in P1DDR and NDERH, and set the G3CMS0, G3CMS1, G2CMS0, and G2CMS1 bits in PCR to select compare match in the TPU channel set up in the previous step to be the output trigger. Write output data H'80 in NDRH. 3. When compare match A occurs, the NDRH contents are transferred to PODRH and output. The TGIA interrupt handling routine writes the next output data (H'C0) in NDRH. 4. Five-phase overlapping pulse output (one or two phases active at a time) can be obtained subsequently by writing H'40, H'60, H'20, H'30. H'10, H'18, H'08, H'88... at successive TGIA interrupts. If the DTC is set for activation by this interrupt, pulse output can be obtained without imposing a load on the CPU. Rev. 2.00 Dec. 05, 2005 Page 328 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.4.5 Non-Overlapping Pulse Output During non-overlapping operation, transfer from NDR to PODR is performed as follows: • NDR bits are always transferred on PODR bits on compare match A. • On compare match B, NDR bits are transferred only if their value is 0. Bits are not transferred if their value is 1. Figure 11.6 illustrates the non-overlapping pulse output operation. DDR NDER Q Compare match A Compare match B Pulse output pin C Q PODR D Q NDR D Internal data bus Normal output/inverted output Figure 11.6 Non-Overlapping Pulse Output Therefore, 0 data can be transferred ahead of 1 data by making compare match B occur before compare match A. The NDR contents should not be altered during the interval between compare match B and compare match A (the non-overlap margin). This can be accomplished by having the TGIA interrupt handling routine write the next data in NDR, or by having the TGIA interrupt activate the DTC. Note, however, that the next data must be written before the next compare match B occurs. Figure 11.7 shows the timing of this operation. Rev. 2.00 Dec. 05, 2005 Page 329 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) Compare match A Compare match B Write to NDR Write to NDR NDR PODR 0 output 0/1 output Write to NDR Do not write here to NDR here 0 output 0/1 output Do not write to NDR here Write to NDR here Figure 11.7 Non-Overlapping Operation and NDR Write Timing Rev. 2.00 Dec. 05, 2005 Page 330 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.4.6 Sample Setup Procedure for Non-Overlapping Pulse Output Figure 11.8 shows a sample procedure for setting up non-overlapping pulse output. Non-overlapping PPG output [1] Set TIOR to make TGRA and TGRB an output compare registers (with output disabled) Select TGR functions [1] Set TGR values [2] Set counting operation [3] Select interrupt request [4] Set initial output data [5] Enable pulse output [6] Select output trigger [7] Set non-overlapping groups [8] Set next pulse output data [9] [7] Select the TPU compare match event to be used as the pulse output trigger in PCR. Start counter [10] [8] In PMR, select the groups that will operate in non-overlap mode. TPU setup PPG setup TPU setup Compare match A? No Yes Set next pulse output data [2] Set the pulse output trigger period in TGRB and the non-overlap margin in TGRA. [3] Select the counter clock source with bits TPSC2 to TPSC0 in TCR. Select the counter clear source with bits CCLR1 and CCLR0. [4] Enable the TGIA interrupt in TIER. The DTC can also be set up to transfer data to NDR. [5] Set the initial output values in PODR. [6] Set the DDR and NDER bits for the pins to be used for pulse output to 1. [9] Set the next pulse output values in NDR. [10] Set the CST bit in TSTR to 1 to start the TCNT counter. [11] [11] At each TGIA interrupt, set the next output values in NDR. Figure 11.8 Setup Procedure for Non-Overlapping Pulse Output (Example) Rev. 2.00 Dec. 05, 2005 Page 331 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.4.7 Example of Non-Overlapping Pulse Output (Example of Four-Phase Complementary Non-Overlapping Output) Figure 11.9 shows an example in which pulse output is used for four-phase complementary nonoverlapping pulse output. TCNT value TGRB TCNT TGRA H'0000 NDRH PODRH Time 65 95 00 95 59 05 65 56 41 59 95 50 56 65 14 95 05 65 Non-overlap margin PO15 PO14 PO13 PO12 PO11 PO10 PO9 PO8 Figure 11.9 Non-Overlapping Pulse Output Example (Four-Phase Complementary) Rev. 2.00 Dec. 05, 2005 Page 332 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 1. Set up the TPU channel to be used as the output trigger channel such that TGRA and TGRB are output compare registers. Set the trigger period in TGRB and the non-overlap margin in TGRA, and set the counter to be cleared on compare match B. Set the TGIEA bit in TIER to 1 to enable the TGIA interrupt. 2. Write H'FF in P1DDR and NDERH, and set the G3CMS1, G3CMS0, G2CMS1, and G2CMS0 bits in PCR to select compare match in the TPU channel set up in the previous step to be the output trigger. Set the G3NOV and G2NOV bits in PMR to 1 to select non-overlapping output. Write output data H'95 in NDRH. 3. The timer counter in the TPU channel starts. When a compare match with TGRB occurs, outputs change from 1 to 0. When a compare match with TGRA occurs, outputs change from 0 to 1 (the change from 0 to 1 is delayed by the value set in TGRA). The TGIA interrupt handling routine writes the next output data (H'65) in NDRH. 4. Four-phase complementary non-overlapping pulse output can be obtained subsequently by writing H'59, H'56, H'95... at successive TGIA interrupts. If the DTC is set for activation by this interrupt, pulse output can be obtained without imposing a load on the CPU. Rev. 2.00 Dec. 05, 2005 Page 333 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.4.8 Inverted Pulse Output If the G3INV, G2INV, G1INV, and G0INV bits in PMR are cleared to 0, values that are the inverse of the PODR contents can be output. Figure 11.10 shows the outputs when G3INV and G2INV are cleared to 0, in addition to the settings of figure 11.9. TCNT value TGRB TCNT TGRA H'0000 NDRH PODRL Time 65 95 00 95 59 05 65 56 41 59 95 50 56 65 14 95 05 PO15 PO14 PO13 PO12 PO11 PO10 PO9 PO8 Figure 11.10 Inverted Pulse Output (Example) Rev. 2.00 Dec. 05, 2005 Page 334 of 724 REJ09B0200-0200 65 Section 11 Programmable Pulse Generator (PPG) 11.4.9 Pulse Output Triggered by Input Capture Pulse output can be triggered by TPU input capture as well as by compare match. If TGRA functions as an input capture register in the TPU channel selected by PCR, pulse output will be triggered by the input capture signal. Figure 11.11 shows the timing of this output. φ TIOC pin Input capture signal NDR N PODR M PO M N N Figure 11.11 Pulse Output Triggered by Input Capture (Example) Rev. 2.00 Dec. 05, 2005 Page 335 of 724 REJ09B0200-0200 Section 11 Programmable Pulse Generator (PPG) 11.5 Usage Notes 11.5.1 Module Stop Mode Setting PPG operation can be disabled or enabled using the module stop control register. The initial setting is for PPG operation to be halted. Register access is enabled by clearing module stop mode. For details, see section 21, Power-Down Modes. 11.5.2 Operation of Pulse Output Pins Pins PO8 to PO15 are also used for other peripheral functions such as the TPU. When output by another peripheral function is enabled, the corresponding pins cannot be used for pulse output. Note, however, that data transfer from NDR bits to PODR bits takes place, regardless of the usage of the pins. Pin functions should be changed only under conditions in which the output trigger event will not occur. Rev. 2.00 Dec. 05, 2005 Page 336 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) Section 12 Watchdog Timer (WDT) This LSI has a two-channel watchdog timer (WDT_0, WDT_1). WDT is an 8-bit timer that can generate an internal reset signal for this LSI if a system crash prevents the CPU from writing to the timer counter, thus allowing it to overflow. When this watchdog function is not needed, the WDT can be used as an interval timer. In interval timer operation, an interval timer interrupt is generated each time the counter overflows. The block diagrams of the WDT_0 and WDT_1 are shown in figures 12.1 and 12.2, respectively. 12.1 Features • Selectable from eight counter input clocks (WDT_0) or sixteen counter input clocks (WDT_1) • Switchable between watchdog timer mode and interval timer mode In watchdog timer mode: • If the counter overflows, it is possible to select whether this LSI is internally reset or not or whether an internal NMI interrupt is generated or not. In interval timer mode: • If the counter overflows, the WDT generates an interval timer interrupt (WOVI). WDT0100A_010020040800 Rev. 2.00 Dec. 05, 2005 Page 337 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) Overflow Internal reset signal* φ/2 φ/64 φ/128 φ/512 φ/2048 φ/8192 φ/32768 φ/131072 Internal clock sources Interrupt control Clock select Clock Reset control RSTCSR TCNT_0 Internal bus WOVI (interrupt request signal) TCSR_0 Bus interface Module bus WDT_0 [Legend] TCSR_0: Timer control/status register_0 TCNT_0: Timer counter_0 RSTCSR: Reset control/status register Note: * An internal reset signal can be generated by setting the register. Figure 12.1 Block Diagram of WDT_0 Interrupt control Overflow Internal NMI interrupt request signal Clock φ/2 φ/64 φ/128 φ/512 φ/2048 φ/8192 φ/32768 φ/131072 Clock select Reset control Internal reset signal* Internal clock TCNT_1 TCSR_1 Module bus Bus interface WDT_1 [Legend] TCSR_1: Timer control/status register_1 TCNT_1: Timer counter_1 Note: * An internal reset signal can be generated by setting the register. Figure 12.2 Block Diagram of WDT_1 Rev. 2.00 Dec. 05, 2005 Page 338 of 724 REJ09B0200-0200 φSUB/2 φSUB/4 φSUB/8 φSUB/16 φSUB/32 φSUB/64 φSUB/128 φSUB/256 Internal bus WOVI (interrupt request signal) Section 12 Watchdog Timer (WDT) 12.2 Register Descriptions The WDT has the following registers. To prevent accidental overwriting, TCSR, TCNT, and RSTCSR have to be written to by a different method to normal registers. For details, see section 12.5.1, Notes on Register Access. • • • • • Timer counter_0 (TCNT_0) Timer control/status register_0 (TCSR_0) Timer counter_1 (TCNT_1) Timer control/status register_1 (TCSR_1) Reset control/status register (RSTCSR) 12.2.1 Timer Counter (TCNT) TCNT is an 8-bit readable/writable up-counter. TCNT is initialized to H'00 by a reset, when the TME bit in TCSR is cleared to 0. 12.2.2 Timer Control/Status Register (TCSR) TCSR selects the clock source to be input to TCNT and the timer mode. • TCSR_0 Bit Bit Name Initial Value R/W 7 OVF 0 R/(W)* Overflow Flag Description Indicates that TCNT has overflowed. Only a write of 0 is permitted, to clear the flag. [Setting conditions] • When TCNT overflows (changes from H'FF to H'00) • When internal reset request generation is selected in watchdog timer mode, OVF is cleared automatically by the internal reset. [Clearing condition] • Cleared by reading TCSR when OVF = 1, then writing 0 to OVF Rev. 2.00 Dec. 05, 2005 Page 339 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) Bit Bit Name Initial Value R/W Description 6 WT/IT 0 R/W Timer Mode Select Selects whether the WDT is used as a watchdog timer or interval timer. 0: Interval timer mode 1: Watchdog timer mode 5 TME 0 R/W Timer Enable When this bit is set to 1, TCNT starts counting. When this bit is cleared, TCNT stops counting and is initialized to H'00. 4, 3 — All 1 — Reserved These bits are always read as 1 and cannot be modified. 2 CKS2 0 R/W Clock Select 2 to 0 1 CKS1 0 R/W 0 CKS0 0 R/W These bits select the clock source to be input to TCNT. The overflow frequency for φ = 20 MHz is enclosed in parentheses. 000: Clock φ/2 (frequency: 25.6 µs) 001: Clock φ/64 (frequency: 819.2 µs) 010: Clock φ/128 (frequency: 1.6 ms) 011: Clock φ/512 (frequency: 6.6 ms) 100: Clock φ/2048 (frequency: 26.2 ms) 101: Clock φ/8192 (frequency: 104.9 ms) 110: Clock φ/32768 (frequency: 419.4 ms) 111: Clock φ/131072 (frequency: 1.68 s) Note: * Only 0 can be written, for flag clearing. Rev. 2.00 Dec. 05, 2005 Page 340 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) • TCSR_1 Bit Bit Name Initial Value R/W 7 OVF 0 R/(W)* Overflow Flag Description Indicates that TCNT has overflowed from H'FF to H'00. Only a write of 0 is permitted, to clear the flag. [Setting conditions] • When TCNT overflows (changes from H'FF to H'00) • When internal reset request generation is selected in watchdog timer mode, OVF is cleared automatically by the internal reset. [Clearing condition] • 6 WT/IT 0 R/W Cleared by reading TCSR when OVF = 1, then writing 0 to OVF Timer Mode Select Selects whether the WDT is used as a watchdog timer or interval timer. 0: Interval timer mode 1: Watchdog timer mode 5 TME 0 R/W Timer Enable When this bit is set to 1, TCNT starts counting. When this bit is cleared, TCNT stops counting and is initialized to H'00. 4 PSS 0 R/W Prescaler Select Selects the clock source to be input to TCNT. 0: Counts the divided clock of φ–based prescaler (PSM) 1: Counts the divided clock of φSUB–based prescaler (PSS) 3 RST/NMI 0 R/W Reset or NMI Selects whether an internal reset request or an NMI interrupt request when the TCNT overflows during the watchdog timer mode. 0: NMI interrupt request 1: Internal reset request Rev. 2.00 Dec. 05, 2005 Page 341 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) Bit Bit Name Initial Value R/W Description 2 CKS2 0 R/W Clock Select 2 to 0 1 CKS1 0 R/W 0 CKS0 0 R/W Selects the clock source to be input to TCNT. The overflow cycle is the period from which TCNT starts incrementing at H'00 and until it overflows. When PSS = 0 (values in parentheses are for φ = 20 MHz): 000: φ/2 (cycle: 25.6 µs) 001: φ/64 (cycle: 819.2 ms) 010: φ/128 (cycle: 1.6 ms) 011: φ/512 (cycle: 6.6 ms) 100: φ/2048 (cycle: 26.2 ms) 101: φ/8192 (cycle: 104.9 ms) 110: φ/32768 (cycle: 419.4 ms) 111: φ/131072 (cycle: 1.68 s) When PSS = 1 (values in parentheses are for φSUB = 32.768 kHz): 000: φSUB/2 (cycle: 15.6 ms) 001: φSUB/4 (cycle: 31.3 ms) 010: φSUB/8 (cycle: 62.5 ms) 011: φSUB/16 (cycle: 125 ms) 100: φSUB/32 (cycle: 250 ms) 101: φSUB/64 (cycle: 500 ms) 110: φSUB/128 (cycle: 1 s) 111: φSUB/256 (cycle: 2 s) Note: * Only 0 can be written, for flag clearing. Rev. 2.00 Dec. 05, 2005 Page 342 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) 12.2.3 Reset Control/Status Register (RSTCSR) RSTCSR controls the generation of the internal reset signal when TCNT overflows, and selects the type of internal reset signal. RSTCSR is initialized to H'1F by a reset signal from the RES pin, and not by the WDT internal reset signal caused by overflows. Bit Bit Name Initial Value R/W 7 WOVF 0 R/(W)* Watchdog Overflow Flag Description This bit is set when TCNT overflows in watchdog timer mode. This bit cannot be set in interval timer mode, and only 0 can be written. [Setting condition] • Set when TCNT overflows (changed from H'FF to H'00) in watchdog timer mode [Clearing condition] • 6 RSTE 0 R/W Cleared by reading RSTCSR when WOVF = 1, and then writing 0 to WOVF Reset Enable Specifies whether or not a reset signal is generated in the chip if TCNT overflows during watchdog timer operation. 0: Reset signal is not generated even if TCNT overflows (Though this LSI is not reset, TCNT and TCSR in WDT are reset) 1: Reset signal is generated if TCNT overflows 5 RSTS 0 R/W Reset Select Selects the type of internal reset generated if TCNT overflows during watchdog timer operation. 0: Power-on reset 1: Setting prohibited 4 to 0 — All 1 — Reserved These bits are always read as 1 and cannot be modified. Note: * Only 0 can be written, for flag clearing. Rev. 2.00 Dec. 05, 2005 Page 343 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) 12.3 Operation 12.3.1 Watchdog Timer Mode To use the WDT as a watchdog timer, set the WT/IT bit in TCSR and the TME bit to 1. TCNT does not overflow while the system is operating normally. Software must prevent TCNT overflows by rewriting the TCNT value (normally be writing H'00) before overflows occurs. When the WDT is used as a watchdog timer, and if TCNT overflows without being rewritten because of a system malfunction or other error, a WDTOVF signal is output when using the WDT_0. In watchdog timer mode, the WDT can internally reset this LSI with a WDTOVF signal. When the RSTE bit of the RSTCSR is set to 1, and if the TCNT overflows, an internal reset signal for this LSI is issued at the same time as a WDTOVF signal. In this case, select power-on reset by setting the RSTS bit in RSTCSR to 0. If a reset caused by a signal input to the RES pin occurs at the same time as a reset caused by a WDT overflow, the RES pin reset has priority and the WOVF bit in RSTCSR is cleared to 0. The WDTOVF signal is output for 132 states when the RSTE bit = 1 in RSTCSR, and for 130 states when the RSTE bit = 0. The internal reset signal is output for 518 states. This is illustrated in figure 12.3 (a). When the TCNT overflows in watchdog timer mode, the WOVF bit in RSTCSR is set to 1. If the RSTE bit in RSTCSR has been set to 1, an internal reset signal for the entire LSI is generated at TCNT overflow. In the case of the WDT_1, the chip is reset, or an NMI interrupt request is generated, for 516 system clock periods (516 φ) (515 or 516 states when the clock source is φSUB (PSS = 1)). This is illustrated in figure 12.3 (b). An NMI interrupt request from the watchdog timer and an interrupt request from the NMI pin are both treated as having the same vector. So, avoid handling an NMI interrupt request from the watchdog timer and an interrupt request from the NMI pin at the same time. Rev. 2.00 Dec. 05, 2005 Page 344 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) TCNT value Overflow H'FF Time H'00 WT/IT = 1 TME = 1 Write H'00 to TCNT *1 WOVF = 1 WT/IT = 1 Write H'00 TME = 1 to TCNT Internal reset is generated Internal reset signal* 2 518 states [Legend] Timer mode select bit WT/IT: Timer enable bit TME: Notes: 1. After the WOVF bit becomes 1, it is cleared to 0 by an internal reset. 2. The internal reset signal is generated only if the RSTE bit is set to 1. Figure 12.3 (a) WDT_0 Operation in Watchdog Timer Mode TCNT value Overflow H'FF Time H'00 WT/IT = 1 TME = 1 Write H'00 to TCNT WOVF = 1*1 WT/IT = 1 TME = 1 Write H'00 to TCNT Internal reset is generated 2 Internal reset signal* 515/516 states [Legend] WT/IT: Timer mode select bit TME: Timer enable bit Notes: 1. After the WOVF bit becomes 1, it is cleared to 0 by an internal reset. 2. The internal reset signal is generated only if the RSTE bit is set to 1. Figure 12.3 (b) WDT_1 Operation in Watchdog Timer Mode Rev. 2.00 Dec. 05, 2005 Page 345 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) 12.3.2 Interval Timer Mode When the WDT is used as an interval timer, an interval timer interrupt (WOVI) is generated each time the TCNT overflows. Therefore, an interrupt can be generated at intervals. When the TCNT overflows in interval timer mode, an interval timer interrupt (WOVI) is requested at the time the OVF bit of the TCSR is set to 1. 12.4 Interrupt Sources During interval timer mode operation, an overflow generates an interval timer interrupt (WOVI). The interval timer interrupt is requested whenever the OVF flag is set to 1 in TCSR. OVF must be cleared to 0 in the interrupt handling routine. If an NMI interrupt request has been selected in watchdog timer mode, an NMI interrupt request is generated when the TCNT overflows. Table 12.1 WDT Interrupt Sources Name Interrupt Source Interrupt Flag WOVI TCNT overflow (interval timer mode) OVF NMI TCNT overflow (watchdog timer mode) OVF Rev. 2.00 Dec. 05, 2005 Page 346 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) 12.5 Usage Notes 12.5.1 Notes on Register Access The watchdog timer’s TCNT, TCSR, and RSTCSR registers differ from other registers in being more difficult to write to. The procedures for writing to and reading these registers are given below. Writing to TCNT, TCSR, and RSTCSR These registers must be written to by a word transfer instruction. They cannot be written to by a byte transfer instruction. TCNT and TCSR both have the same write address. Therefore, the relative condition shown in figure 12.4 needs to be satisfied in order to write to TCNT or TCSR. The transfer instruction writes the lower byte data to TCNT or TCSR according to the satisfied condition. To write to RSTCSR, execute a word transfer instruction for address H'FF76. A byte transfer instruction cannot write to RSTCSR. The method of writing 0 to the WOVF bit differs from that of writing to the RSTE and RSTS bits. To write 0 to the WOVF bit, satisfy the condition shown in figure 12.4. If satisfied, the transfer instruction clears the WOVF bit to 0, but has no effect on the RSTE and RSTS bits. To write to the RSTE and RSTS bits, satisfy the condition shown in figure 12.4. If satisfied, the transfer instruction writes the values in bits 5 and 6 of the lower byte into the RSTE and RSTS bits, respectively, but has no effect on the WOVF bit. TCNT write Writing to RSTE and RSTS bits Address: H'FF74 H'FF76 15 8 H'5A 7 0 Write data TCSR write Writing 0 to WOVF bit Address: H'FF74 H'FF76 15 8 H'A5 7 0 Write data or H'00 Figure 12.4 Writing to TCNT, TCSR, and RSTCSR (example for WDT0) Rev. 2.00 Dec. 05, 2005 Page 347 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) Reading TCNT, TCSR, and RSTCSR (WDT0) These registers are read in the same way as other registers. The read addresses are H'FF74 for TCSR, H'FF75 for TCNT, and H'FF77 for RSTCSR. 12.5.2 Contention between Timer Counter (TCNT) Write and Increment If a timer counter clock pulse is generated during the T2 state of a TCNT write cycle, the write takes priority and the timer counter is not incremented. Figure 12.5 shows this operation. TCNT write cycle T1 T2 φ Address Internal write signal TCNT input clock TCNT N M Counter write data Figure 12.5 Contention between TCNT Write and Increment 12.5.3 Changing Value of CKS2 to CKS0 If bits CKS0 to CKS2 in TCSR are written to while the WDT is operating, errors could occur in the incrementation. Software must be used to stop the watchdog timer (by clearing the TME bit to 0) before changing the value of bits CKS0 to CKS2. 12.5.4 Switching between Watchdog Timer Mode and Interval Timer Mode If the mode is switched from watchdog timer to interval timer while the WDT is operating, errors could occur in the incrementation. Software must be used to stop the watchdog timer (by clearing the TME bit to 0) before switching the mode. Rev. 2.00 Dec. 05, 2005 Page 348 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) 12.5.5 Internal Reset in Watchdog Timer Mode This LSI is not reset internally if TCNT overflows while the RSTE bit is cleared to 0 during watchdog timer operation, however TCNT and TCSR of the WDT are reset. TCNT, TCSR, or RSTCR cannot be written to for 132 states following an overflow. During this period, any attempt to read the WOVF flag is not acknowledged. Accordingly, wait 132 states after overflow to write 0 to the WOVF flag for clearing. 12.5.6 OVF Flag Clearing in Interval Timer Mode When the OVF flag setting conflicts with the OVF flag reading in interval timer mode, writing 0 to the OVF bit may not clear the flag even though the OVF bit has been read while it is 1. If there is a possibility that the OVF flag setting and reading will conflict, such as when the OVF flag is polled with the interval timer interrupt disabled, read the OVF bit while it is 1 at least twice before writing 0 to the OVF bit to clear the flag. Rev. 2.00 Dec. 05, 2005 Page 349 of 724 REJ09B0200-0200 Section 12 Watchdog Timer (WDT) Rev. 2.00 Dec. 05, 2005 Page 350 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Section 13 Serial Communication Interface (SCI) This LSI has four independent serial communication interface (SCI) channels. The SCI can handle both asynchronous and clocked synchronous serial communication. Serial data communication can be carried out using standard asynchronous communication chips such as a Universal Asynchronous Receiver/Transmitter (UART) or an Asynchronous Communication Interface Adapter (ACIA). A function is also provided for serial communication between processors (multiprocessor communication function). The SCI also supports an IC card (smart card) interface conforming to ISO/IEC 7816-3 (Identification Card) as a serial communication interface extension function. Figure 13.1 shows a block diagram of the SCI. 13.1 Features • Choice of asynchronous or clocked synchronous serial communication mode • Full-duplex communication capability The transmitter and receiver are mutually independent, enabling transmission and reception to be executed simultaneously. Double-buffering is used in both the transmitter and the receiver, enabling continuous transmission and continuous reception of serial data. • On-chip baud rate generator allows any bit rate to be selected External clock can be selected as a transfer clock source (except for in Smart card interface mode). • Choice of LSB-first or MSB-first transfer (except in the case of asynchronous mode 7-bit data) • Four interrupt sources Transmit-end, transmit-data-empty, receive-data-full, and receive error that can issue requests. The transmit-data-empty interrupt and receive data full interrupts can be used to activate the data transfer controller (DTC). • Module stop mode can be set Asynchronous mode • • • • Data length: 7 or 8 bits Stop bit length: 1 or 2 bits Parity: Even, odd, or none Receive error detection: Parity, overrun, and framing errors SCI0027B_0000020040900 Rev. 2.00 Dec. 05, 2005 Page 351 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) • Break detection: Break can be detected by reading the RxD pin level directly in the case of a framing error Clocked Synchronous mode • Data length: 8 bits • Receive error detection: Overrun errors detected Smart Card Interface Bus interface • Automatic transmission of error signal (parity error) in receive mode • Error signal detection and automatic data retransmission in transmit mode • Direct convention and inverse convention both supported Module data bus RDR TDR BRR SCMR SSR RxD TxD SCR RSR TSR SMR Baud rate generator Transmission/ reception control Parity generation φ φ/4 φ/16 φ/64 Clock Parity check External clock SCK [Legend] RSR: Receive shift register RDR: Receive data register TSR: Transmit shift register TDR: Transmit data register SMR: Serial mode register SCR: Serial control register SSR: Serial status register SCMR: Smart card mode register BRR: Bit rate register Figure 13.1 Block Diagram of SCI Rev. 2.00 Dec. 05, 2005 Page 352 of 724 REJ09B0200-0200 TEI TXI RXI ERI Internal data bus Section 13 Serial Communication Interface (SCI) 13.2 Input/Output Pins Table 13.1 shows the serial pins for each SCI channel. Table 13.1 Pin Configuration Channel Pin Name* I/O Function 0 SCK0 I/O SCI0 clock input/output RxD0 Input SCI0 receive data input TxD0 Output SCI0 transmit data output SCK1 I/O SCI1 clock input/output 1 2 4 Note: * RxD1 Input SCI1 receive data input TxD1 Output SCI1 transmit data output SCK2 I/O SCI2 clock input/output RxD2 Input SCI2 receive data input TxD2 Output SCI2 transmit data output SCK4 I/O SCI4 clock input/output RxD4 Input SCI4 receive data input TxD4 Output SCI4 transmit data output Pin names SCK, RxD, and TxD are used in the text for all channels, omitting the channel designation. Rev. 2.00 Dec. 05, 2005 Page 353 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.3 Register Descriptions The SCI has the following registers for each channel. The serial mode register (SMR), serial status register (SSR), and serial control register (SCR) are described separately for normal serial communication interface mode and smart card interface mode because their bit functions differ in part. • • • • • • • • • Receive shift register (RSR) Receive data register (RDR) Transmit data register (TDR) Transmit shift register (TSR) Serial mode register (SMR) Serial control register (SCR) Serial status register (SSR) Smart card mode register (SCMR) Bit rate register (BRR) 13.3.1 Receive Shift Register (RSR) RSR is a shift register that is used to receive serial data input to the RxD pin and convert it into parallel data. When one byte of data has been received, it is transferred to RDR automatically. RSR cannot be directly accessed by the CPU. 13.3.2 Receive Data Register (RDR) RDR is an 8-bit register that stores received data. When the SCI has received one byte of serial data, it transfers the received serial data from RSR to RDR, where it is stored. After this, RSR is receive-enabled. As RSR and RDR function as a double buffer in this way, continuous receive operations are possible. After confirming that the RDRF bit in SSR is set to 1, read RDR only once. RDR cannot be written to by the CPU. Rev. 2.00 Dec. 05, 2005 Page 354 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.3.3 Transmit Data Register (TDR) TDR is an 8-bit register that stores data for transmission. When the SCI detects that TSR is empty, it transfers the transmit data written in TDR to TSR and starts transmission. The double-buffered structure of TDR and TSR enables continuous serial transmission. If the next transmit data has already been written to TDR during serial transmission, the SCI transfers the written data to TSR to continue transmission. Although TDR can be read or written to by the CPU at all times, to achieve reliable serial transmission, write transmit data to TDR only once after confirming that the TDRE bit in SSR is set to 1. 13.3.4 Transmit Shift Register (TSR) TSR is a shift register that transmits serial data. To perform serial data transmission, the SCI first transfers transmit data from TDR to TSR, then sends the data to the TxD pin. TSR cannot be directly accessed by the CPU. 13.3.5 Serial Mode Register (SMR) SMR is used to set the SCI's serial transfer format and select the baud rate generator clock source. Some bit functions of SMR differ between normal serial communication interface mode and smart card interface mode. • Normal Serial Communication Interface Mode (When SMIF in SCMR is 0) Bit Bit Name Initial Value R/W Description 7 C/A 0 R/W Communication Mode 0: Asynchronous mode 1: Clocked synchronous mode 6 CHR 0 R/W Character Length (enabled only in asynchronous mode) 0: Selects 8 bits as the data length. 1: Selects 7 bits as the data length. LSB-first is fixed and the MSB of TDR is not transmitted in transmission. In clocked synchronous mode, a fixed data length of 8 bits is used. Rev. 2.00 Dec. 05, 2005 Page 355 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Bit Bit Name Initial Value R/W Description 5 PE 0 R/W Parity Enable (enabled only in asynchronous mode) When this bit is set to 1, the parity bit is added to transmit data before transmission, and the parity bit is checked in reception. For a multiprocessor format, parity bit addition and checking are not performed regardless of the PE bit setting. 4 O/E 0 R/W Parity Mode (enabled only when the PE bit is 1 in asynchronous mode) 0: Selects even parity. 1: Selects odd parity. 3 STOP 0 R/W Stop Bit Length (enabled only in asynchronous mode) Selects the stop bit length in transmission. 0: 1 stop bit 1: 2 stop bits In reception, only the first stop bit is checked. If the second stop bit is 0, it is treated as the start bit of the next transmit character. 2 MP 0 R/W Multiprocessor Mode (enabled only in asynchronous mode) When this bit is set to 1, the multiprocessor communication function is enabled. The PE bit and O/E bit settings are invalid in multiprocessor mode. 1 CKS1 0 R/W Clock Select 0 and 1: 0 CKS0 0 R/W These bits select the clock source for the baud rate generator. 00: φ clock (n = 0) 01: φ/4 clock (n = 1) 10: φ/16 clock (n = 2) 11: φ/64 clock (n = 3) For the relationship between the bit rate register setting and the baud rate, see section 13.3.9, Bit Rate Register (BRR). n is the decimal representation of the value of n in BRR (see section 13.3.9, Bit Rate Register (BRR)). Rev. 2.00 Dec. 05, 2005 Page 356 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) • Smart Card Interface Mode (When SMIF in SCMR is 1) Bit Bit Name Initial Value R/W Description 7 GM 0 R/W GSM Mode When this bit is set to 1, the SCI operates in GSM mode. In GSM mode, the timing of the TEND setting is advanced by 11.0 etu (Elementary Time Unit: the time for transfer of one bit), and clock output control mode addition is performed. For details, see section 13.7.8, Clock Output Control. 6 BLK 0 R/W When this bit is set to 1, the SCI operates in block transfer mode. For details on block transfer mode, see section 13.7.3, Block Transfer Mode. 5 PE 0 R/W Parity Enable (enabled only in asynchronous mode) When this bit is set to 1, the parity bit is added to transmit data in transmission, and the parity bit is checked in reception. In smart card interface mode, this bit must be set to 1. 4 O/E 0 R/W Parity Mode (enabled only when the PE bit is 1 in asynchronous mode) 0: Selects even parity. 1: Selects odd parity. For details on setting this bit in smart card interface mode, see section 13.7.2, Data Format (Except for Block Transfer Mode). 3 BCP1 0 R/W Basic Clock Pulse 1 and 2 2 BCP0 0 R/W These bits specify the number of basic clock periods in a 1-bit transfer interval on the smart card interface. 00: 32 clock (S = 32) 01: 64 clock (S = 64) 10: 372 clock (S = 372) 11: 256 clock (S = 256) For details, see section 13.7.4, Receive Data Sampling Timing and Reception Margin in smart card Interface Mode. S stands for the value of S in BRR (see section 13.3.9, Bit Rate Register (BRR)). Rev. 2.00 Dec. 05, 2005 Page 357 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Bit Bit Name Initial Value R/W Description 1 CKS1 0 R/W Clock Select 0 and 1 0 CKS0 0 R/W These bits select the clock source for the baud rate generator. 00: φ clock (n = 0) 01: φ/4 clock (n = 1) 10: φ/16 clock (n = 2) 11: φ/64 clock (n = 3) For the relationship between the bit rate register setting and the baud rate, see section 13.3.9, Bit Rate Register (BRR). n is the decimal representation of the value of n in BRR (see section 13.3.9, Bit Rate Register (BRR)). 13.3.6 Serial Control Register (SCR) SCR is a register that enables or disables SCI transfer operations and interrupt requests, and is also used to selection of the transfer clock source. For details on interrupt requests, see section 13.8, Interrupt Sources. Some bit functions of SCR differ between normal serial communication interface mode and smart card interface mode. • Normal Serial Communication Interface Mode (When SMIF in SCMR is 0) Bit Bit Name Initial Value R/W Description 7 TIE 0 R/W Transmit Interrupt Enable When this bit is set to 1, the TXI interrupt request is enabled. 6 RIE 0 R/W Receive Interrupt Enable When this bit is set to 1, RXI and ERI interrupt requests are enabled. 5 TE 0 R/W Transmit Enable 4 RE 0 R/W Receive Enable When this bit s set to 1, transmission is enabled. When this bit is set to 1, reception is enabled. Rev. 2.00 Dec. 05, 2005 Page 358 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Bit Bit Name Initial Value R/W Description 3 MPIE 0 R/W Multiprocessor Interrupt Enable (enabled only when the MP bit in SMR is 1 in asynchronous mode) When this bit is set to 1, receive data in which the multiprocessor bit is 0 is skipped, and setting of the RDRF, FER, and ORER status flags in SSR is prohibited. On receiving data in which the multiprocessor bit is 1, this bit is automatically cleared and normal reception is resumed. For details, see section 13.5, Multiprocessor Communication Function. 2 TEIE 0 R/W Transmit End Interrupt Enable This bit is set to 1, TEI interrupt request is enabled. 1 CKE1 0 R/W Clock Enable 0 and 1 0 CKE0 0 R/W Selects the clock source and SCK pin function. Asynchronous mode 00: Internal baud rate generator SCK pin functions as I/O port 01: Internal baud rate generator Outputs a clock of the same frequency as the bit rate from the SCK pin. 1X: External clock Inputs a clock with a frequency 16 times the bit rate from the SCK pin. Clocked synchronous mode 0X: Internal clock (SCK pin functions as clock output) 1X: External clock (SCK pin functions as clock input) [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 359 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) • Smart Card Interface Mode (When SMIF in SCMR is 1) Bit Bit Name Initial Value R/W Description 7 TIE 0 R/W Transmit Interrupt Enable When this bit is set to 1, TXI interrupt request is enabled. 6 RIE 0 R/W Receive Interrupt Enable When this bit is set to 1, RXI and ERI interrupt requests are enabled. 5 TE 0 R/W Transmit Enable When this bit is set to 1, transmission is enabled. 4 RE 0 R/W Receive Enable When this bit is set to 1, reception is enabled. 3 MPIE 0 R/W Multiprocessor Interrupt Enable (enabled only when the MP bit in SMR is 1 in asynchronous mode) Write 0 to this bit in smart card interface mode. 2 TEIE 0 R/W Transmit End Interrupt Enable Write 0 to this bit in smart card interface mode. 1 CKE1 0 R/W Clock Enable 0 and 1 0 CKE0 0 R/W Enables or disables clock output from the SCK pin. The clock output can be dynamically switched in GSM mode. For details, see section 13.7.8, Clock Output Control. When the GM bit in SMR is 0: 00: Output disabled (SCK pin can be used as an I/O port pin) 01: Clock output 1X: Reserved When the GM bit in SMR is 1: 00: Output fixed low 01: Clock output 10: Output fixed high 11: Clock output [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 360 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.3.7 Serial Status Register (SSR) SSR is a register containing status flags of the SCI and multiprocessor bits for transfer. 1 cannot be written to flags TDRE, RDRF, ORER, PER, and FER; they can only be cleared. Some bit functions of SSR differ between normal serial communication interface mode and smart card interface mode. • Normal Serial Communication Interface Mode (When SMIF in SCMR is 0) Bit Bit Name Initial Value R/W Description 7 TDRE 1 R/W Transmit Data Register Empty Displays whether TDR contains transmit data. [Setting conditions] • When the TE bit in SCR is 0 • When data is transferred from TDR to TSR and data can be written to TDR [Clearing conditions] 6 RDRF 0 R/W • When 0 is written to TDRE after reading TDRE = 1 • When the DTC is activated by a TXI interrupt request and writes data to TDR Receive Data Register Full Indicates that the received data is stored in RDR. [Setting condition] • When serial reception ends normally and receive data is transferred from RSR to RDR [Clearing conditions] • When 0 is written to RDRF after reading RDRF = 1 • When the DTC is activated by an RXI interrupt and transferred data from RDR The RDRF flag is not affected and retains their previous values when the RE bit in SCR is cleared to 0. Rev. 2.00 Dec. 05, 2005 Page 361 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Bit Bit Name Initial Value R/W Description 5 ORER 0 R/W Overrun Error [Setting condition] • When the next serial reception is completed while RDRF = 1 [Clearing condition] • 4 FER 0 R/W When 0 is written to ORER after reading ORER = 1 Framing Error [Setting condition] • When the stop bit is 0 [Clearing condition] • When 0 is written to FER after reading FER = 1 In 2-stop-bit mode, only the first stop bit is checked. 3 PER 0 R/W Parity Error [Setting condition] • When a parity error is detected during reception [Clearing condition] • 2 TEND 1 R When 0 is written to PER after reading PER = 1 Transmit End [Setting conditions] • When the TE bit in SCR is 0 • When TDRE = 1 at transmission of the last bit of a 1-byte serial transmit character [Clearing conditions] 1 MPB 0 R • When 0 is written to TDRE after reading TDRE = 1 • When the DTC is activated by a TXI interrupt and writes data to TDR Multiprocessor Bit MPB stores the multiprocessor bit in the receive data. When the RE bit in SCR is cleared to 0 its previous state is retained. 0 MPBT 0 R/W Multiprocessor Bit Transfer MPBT stores the multiprocessor bit to be added to the transmit data. Rev. 2.00 Dec. 05, 2005 Page 362 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) • Smart Card Interface Mode (When SMIF in SCMR is 1) Bit Bit Name Initial Value R/W Description 7 TDRE 1 R/W Transmit Data Register Empty Displays whether TDR contains transmit data. [Setting conditions] • When the TE bit in SCR is 0 • When data is transferred from TDR to TSR and data can be written to TDR [Clearing conditions] 6 RDRF 0 R/W • When 0 is written to TDRE after reading TDRE = 1 • When the DTC is activated by a TXI interrupt request and writes data to TDR Receive Data Register Full Indicates that the received data is stored in RDR. [Setting condition] • When serial reception ends normally and receive data is transferred from RSR to RDR [Clearing conditions] • When 0 is written to RDRF after reading RDRF = 1 • When the DTC is activated by an RXI interrupt and transferred data from RDR The RDRF flag is not affected and retains their previous values when the RE bit in SCR is cleared to 0. 5 ORER 0 R/W Overrun Error [Setting condition] • When the next serial reception is completed while RDRF = 1 [Clearing condition] • 4 ERS 0 R/W When 0 is written to ORER after reading ORER = 1 Error Signal Status [Setting condition] • When the low level of the error signal is sampled [Clearing conditions] • When 0 is written to ERS after reading ERS = 1 Rev. 2.00 Dec. 05, 2005 Page 363 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Bit Bit Name Initial Value R/W Description 3 PER 0 R/W Parity Error [Setting condition] • When a parity error is detected during reception [Clearing condition] • 2 TEND 1 R When 0 is written to PER after reading PER = 1 Transmit End This bit is set to 1 when no error signal has been sent back from the receiving end and the next transmit data is ready to be transferred to TDR. [Setting conditions] • When the TE bit in SCR is 0 and the ERS bit is also 0 • When the ERS bit is 0 and the TDRE bit is 1 after the specified interval following transmission of 1byte data. The timing of bit setting differs according to the register setting as follows: When GM = 0 and BLK = 0, 2.5 etu after transmission starts When GM = 0 and BLK = 1, 1.5 etu after transmission starts When GM = 1 and BLK = 0, 1.0 etu after transmission starts When GM = 1 and BLK = 1, 1.0 etu after transmission starts [Clearing conditions] • When 0 is written to TDRE after reading TDRE = 1 • When the DTC is activated by a TXI interrupt and writes data to TDR 1 MPB 0 R Multiprocessor Bit 0 MPBT 0 R/W Multiprocessor Bit Transfer This bit is not used in smart card interface mode. Write 0 to this bit in smart card interface mode. Rev. 2.00 Dec. 05, 2005 Page 364 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.3.8 Smart Card Mode Register (SCMR) SCMR is a register that selects smart card interface mode and its format. Bit Bit Name 7 to 4 Initial Value R/W Description All 1 Reserved These bits are always read as 1. 3 SDIR 0 R/W Smart Card Data Transfer Direction Selects the serial/parallel conversion format. 0: LSB-first in transfer 1: MSB-first in transfer The bit setting is valid only when the transfer data format is 8 bits. For 7-bit data, LSB-first is fixed. 2 SINV 0 R/W Smart Card Data Invert Specifies inversion of the data logic level. The SINV bit does not affect the logic level of the parity bit. To invert the parity bit, invert the O/E bit in SMR. 0: TDR contents are transmitted as they are. Receive data is stored as it is in RDR 1: TDR contents are inverted before being transmitted. Receive data is stored in inverted form in RDR 1 1 Reserved This bit is always read as 1. 0 SMIF 0 R/W Smart Card Interface Mode Select This bit is set to 1 to make the SCI operate in smart card interface mode. 0: Normal asynchronous mode or clocked synchronous mode 1: Smart card interface mode Rev. 2.00 Dec. 05, 2005 Page 365 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.3.9 Bit Rate Register (BRR) BRR is an 8-bit register that adjusts the bit rate. As the SCI performs baud rate generator control independently for each channel, different bit rates can be set for each channel. Table 13.2 shows the relationships between the N setting in BRR and bit rate B for normal asynchronous mode, clocked synchronous mode, and smart card interface mode. The initial value of BRR is H'FF, and it can be read or written to by the CPU at all times. Table 13.2 The Relationships between The N Setting in BRR and Bit Rate B Mode BRR Setting N Asynchronous Mode N= Clocked Synchronous Mode N= Smart Card Interface Mode N= [Legend] B: N: φ: n and S: φ × 106 64 × 2 2n−1 × B φ × 106 8 × 2 2n−1 × B φ × 106 S × 2 2n+1 × B Error −1 Error (%) = { φ × 106 B × 64 × 2 2n−1 × (N + 1) − 1 } × 100 −1 − 1 Error (%) = { φ × 106 B × S × 2 2n+1 × (N + 1) − 1 } × 100 Bit rate (bit/s) BRR setting for baud rate generator (0 ≤ N ≤ 255) Operating frequency (MHz) Determined by the SMR settings shown in the following tables. SMR Setting SMR Setting CKS1 CKS0 n BCP1 BCP0 S 0 0 0 0 0 32 0 1 1 0 1 64 1 0 2 1 0 372 1 1 3 1 1 256 Table 13.3 shows sample N settings in BRR in normal asynchronous mode. Table 13.4 shows the maximum bit rate for each frequency in normal asynchronous mode. Table 13.6 shows sample N settings in BRR in clocked synchronous mode. Table 13.8 shows sample N settings in BRR in smart card interface mode. In smart card interface mode, S (the number of basic clock periods in a 1-bit transfer interval) can be selected. For details, see section 13.7.4, Receive Data Sampling Timing and Reception Margin in smart card Interface Mode. Tables 13.5 and 13.7 show the maximum bit rates with external clock input. Rev. 2.00 Dec. 05, 2005 Page 366 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Table 13.3 BRR Settings for Various Bit Rates (Asynchronous Mode) (1) Operating Frequency φ (MHz) 4 4.9152 5 Bit Rate (bit/s) n N Error (%) n N Error (%) n N Error (%) 110 2 70 0.03 2 86 0.31 2 88 –0.25 150 1 207 0.16 1 255 0.00 2 64 0.16 300 1 103 0.16 1 127 0.00 1 129 0.16 600 0 207 0.16 0 255 0.00 1 64 0.16 1200 0 103 0.16 0 127 0.00 0 129 0.16 2400 0 51 0.16 0 63 0.00 0 64 0.16 4800 0 25 0.16 0 31 0.00 0 32 –1.36 9600 0 12 0.16 0 15 0.00 0 15 1.73 19200 0 7 0.00 0 7 1.73 31250 0 3 0.00 0 4 –1.70 0 4 0.00 38400 0 3 0.00 0 3 1.73 Operating Frequency φ (MHz) 6 6.144 7.3728 8 Bit Rate (bit/s) n N Error (%) n N Error (%) n N Error (%) n N Error (%) 110 2 106 –0.44 2 108 0.08 2 130 –0.07 2 141 0.03 150 2 77 0.16 2 79 0.00 2 95 0.00 2 103 0.16 300 1 155 0.16 1 159 0.00 1 191 0.00 1 207 0.16 600 1 77 0.16 1 79 0.00 1 95 0.00 1 103 0.16 1200 0 155 0.16 0 159 0.00 0 191 0.00 0 207 0.16 2400 0 77 0.16 0 79 0.00 0 95 0.00 0 103 0.16 4800 0 38 0.16 0 39 0.00 0 47 0.00 0 51 0.16 9600 0 19 –2.34 0 19 0.00 0 23 0.00 0 25 0.16 19200 0 9 –2.34 0 9 0.00 0 11 0.00 0 12 0.16 31250 0 5 0.00 0 5 2.40 0 7 0.00 38400 0 4 –2.34 0 4 0.00 0 5 0.00 Rev. 2.00 Dec. 05, 2005 Page 367 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Table 13.3 BRR Settings for Various Bit Rates (Asynchronous Mode) (2) Operating Frequency φ (MHz) 9.8304 10 12 12.288 Bit Rate (bit/s) n N Error (%) n N Error (%) n N Error (%) n N Error (%) 110 2 174 –0.26 2 177 –0.25 2 212 0.03 2 217 0.08 150 2 127 0.00 2 129 0.16 2 155 0.16 2 159 0.00 300 1 255 0.00 2 64 0.16 2 77 0.16 2 79 0.00 600 1 127 0.00 1 129 0.16 1 155 0.16 1 159 0.00 1200 0 255 0.00 1 64 0.16 1 77 0.16 1 79 0.00 2400 0 127 0.00 0 129 0.16 0 155 0.16 0 159 0.00 4800 0 63 0.00 0 64 0.16 0 77 0.16 0 79 0.00 9600 0 31 0.00 0 32 –1.36 0 38 0.16 0 39 0.00 19200 0 15 0.00 0 15 1.73 0 19 –2.34 0 19 0.00 31250 0 9 –1.70 0 9 0.00 0 11 0.00 0 11 2.40 38400 0 7 0.00 0 7 1.73 0 9 –2.34 0 9 0.00 Operating Frequency φ (MHz) 14 14.7456 Bit Rate (bit/s) n N Error (%) 110 2 248 –0.17 3 64 0.70 150 2 181 0.13 2 191 0.00 300 2 90 0.13 2 95 0.00 600 1 181 0.13 1 191 1200 1 90 0.13 1 2400 0 181 0.13 4800 0 90 9600 0 19200 31250 38400 17.2032 N Error (%) n N Error (%) 3 70 0.03 3 75 0.48 2 207 0.13 2 223 0.00 2 103 0.13 2 111 0.00 0.00 1 207 0.13 1 223 0.00 95 0.00 1 103 0.13 1 111 0.00 0 191 0.00 0 207 0.13 0 223 0.00 0.13 0 95 0.00 0 103 0.13 0 111 0.00 45 –0.93 0 47 0.00 0 51 0.13 0 55 0.00 0 22 –0.93 0 23 0.00 0 25 0.13 0 27 0.00 0 13 0.00 0 14 –1.70 0 15 0.00 0 13 1.20 0 11 0.00 0 12 0.13 0 13 0.00 n Rev. 2.00 Dec. 05, 2005 Page 368 of 724 REJ09B0200-0200 N Error (%) 16 n Section 13 Serial Communication Interface (SCI) Table 13.3 BRR Settings for Various Bit Rates (Asynchronous Mode) (3) Operating Frequency φ (MHz) 18 19.6608 20 24 Bit Rate (bit/s) n N Error (%) n N Error (%) n N Error (%) n N Error (%) 110 3 79 –0.12 3 86 0.31 3 88 –0.25 3 106 –0.44 150 2 233 0.16 2 255 0.00 3 64 0.16 3 77 0.16 300 2 116 0.16 2 127 0.00 2 129 0.16 2 155 0.16 600 1 233 0.16 1 255 0.00 2 64 0.16 2 77 0.16 1200 1 116 0.16 1 127 0.00 1 129 0.16 1 155 0.16 2400 0 233 0.16 0 255 0.00 1 64 0.16 1 77 0.16 4800 0 116 0.16 0 127 0.00 0 129 0.16 0 155 0.16 9600 0 58 –0.69 0 63 0.00 0 64 0.16 0 77 0.16 19200 0 28 1.02 0 31 0.00 0 32 –1.36 0 38 0.16 31250 0 17 0.00 0 19 –1.70 0 19 0.00 0 23 0 38400 0 14 –2.34 0 15 0.00 0 15 1.73 0 19 –2.34 Table 13.4 Maximum Bit Rate for Each Frequency (Asynchronous Mode) φ (MHz) Maximum Bit Rate (bit/s) n N φ (MHz) Maximum Bit Rate (bit/s) n N 4 125000 0 0 12 375000 0 0 4.9152 153600 0 0 12.288 384000 0 0 5 156250 0 0 14 437500 0 0 6 187500 0 0 14.7456 460800 0 0 6.144 192000 0 0 16 500000 0 0 7.3728 230400 0 0 17.2032 537600 0 0 8 250000 0 0 18 562500 0 0 9.8304 307200 0 0 19.6608 614400 0 0 10 312500 0 0 20 625000 0 0 24 750000 0 0 Rev. 2.00 Dec. 05, 2005 Page 369 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Table 13.5 Maximum Bit Rate with External Clock Input (Asynchronous Mode) φ (MHz) External Input Clock (MHz) Maximum Bit Rate (bit/s) φ (MHz) External Input Clock (MHz) Maximum Bit Rate (bit/s) 4 1.0000 62500 12 3.0000 187500 4.9152 1.2288 76800 12.288 3.0720 192000 5 1.2500 78125 14 3.5000 218750 6 1.5000 93750 14.7456 3.6864 230400 6.144 1.5360 96000 16 4.0000 250000 7.3728 1.8432 115200 17.2032 4.3008 268800 8 2.0000 125000 18 4.5000 281250 9.8304 2.4576 153600 19.6608 4.9152 307200 10 2.5000 156250 20 5.0000 312500 24 6.0000 375000 Rev. 2.00 Dec. 05, 2005 Page 370 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Table 13.6 BRR Settings for Various Bit Rates (Clocked Synchronous Mode) Operating Frequency φ (MHz) Bit Rate (bit/s) 4 n N 8 10 16 n N n N n N 20 24 n N n N 110 250 2 249 3 124 3 249 500 2 124 2 249 3 124 1k 1 249 2 124 2 249 2.5k 1 99 1 199 1 249 2 99 2 124 2 149 5k 0 199 1 99 1 124 1 199 1 249 2 74 10k 0 99 0 199 0 249 1 99 1 124 1 149 25k 0 39 0 79 0 99 0 159 0 199 1 59 50k 0 19 0 39 0 49 0 79 0 99 1 29 100k 0 9 0 19 0 24 0 39 0 49 0 59 250k 0 3 0 7 0 9 0 15 0 19 0 23 500k 0 1 0 3 0 4 0 7 0 9 0 11 1M 0 0* 0 1 0 3 0 4 0 5 0 1 0 0* 2.5M 0 0* 5M [Legend] Blank: Setting prohibited. : Can be set, but there will be a degree of error. *: Continuous transfer is not possible. Table 13.7 Maximum Bit Rate with External Clock Input (Clocked Synchronous Mode) φ (MHz) External Input Clock (MHz) Maximum Bit Rate (bit/s) φ (MHz) External Input Clock (MHz) Maximum Bit Rate (bit/s) 4 0.6667 666666.7 14 2.3333 2333333.3 6 1.0000 1.000000.0 16 2.6667 2666666.7 8 1.3333 1333333.3 18 3.0000 3000000.0 10 1.6667 1666666.7 20 3.3333 3333333.3 12 2.0000 2000000.0 24 4 4000000.0 Rev. 2.00 Dec. 05, 2005 Page 371 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Table 13.8 Examples of Bit Rate for Various BRR Settings (Smart Card Interface Mode) (When n = 0 and S = 372) Operating Frequency φ (MHz) 7.1424 10.00 10.7136 13.00 Bit Rate (bit/s) n N Error (%) n N Error (%) n N Error (%) n N Error (%) 9600 0 0 0.00 0 1 30 0 1 25 0 1 8.99 Operating Frequency φ (MHz) 14.2848 16.00 18.00 20.00 24.00 Bit Rate (bit/s) n N Error (%) n N Error (%) n N Error (%) N N Error (%) n n Error (%) 9600 0 1 0.00 0 1 12.01 0 2 15.99 0 2 6.60 0 2 12.01 Table 13.9 Maximum Bit Rate at Various Frequencies (Smart Card Interface Mode) (when S = 372) φ (MHz) Maximum Bit Rate (bit/s) n N φ (MHz) Maximum Bit Rate (bit/s) n N 7.1424 9600 0 0 14.2848 19200 0 0 10.00 13441 0 0 16.00 21505 0 0 10.7136 14400 0 0 18.00 24194 0 0 13.00 17473 0 0 20.00 26882 0 0 24.00 32258 0 0 Rev. 2.00 Dec. 05, 2005 Page 372 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.4 Operation in Asynchronous Mode Figure 13.2 shows the general format for asynchronous serial communication. One frame consists of a start bit (low level), followed by data (in LSB-first order), a parity bit (high or low level), and finally stop bits (high level). In asynchronous serial communication, the transmission line is usually held in the mark state (high level). The SCI monitors the transmission line. When the transmission line goes to the space state (low level), the SCI recognizes a start bit and starts serial communication. In asynchronous serial communication, the communication line is usually held in the mark state (high level). The SCI monitors the communication line, and when it goes to the space state (low level), recognizes a start bit and starts serial communication. Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex. Both the transmitter and the receiver also have a double-buffered structure, so data can be read or written during transmission or reception, enabling continuous data transfer. 1 Serial data LSB D0 0 Idle state (mark state) 1 MSB D1 D2 D3 D4 D5 Start bit Transmit/receive data 1 bit 7 or 8 bits D6 D7 0/1 Parity bit 1 bit, or none 1 1 Stop bit 1 or 2 bits One unit of transfer data (character or frame) Figure 13.2 Data Format in Asynchronous Communication (Example with 8-Bit Data, Parity, Two Stop Bits) 13.4.1 Data Transfer Format Table 13.10 shows the data transfer formats that can be used in asynchronous mode. Any of 12 transfer formats can be selected according to the SMR setting. For details on the multiprocessor bit, see section 13.5, Multiprocessor Communication Function. Rev. 2.00 Dec. 05, 2005 Page 373 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Table 13.10 Serial Transfer Formats (Asynchronous Mode) SMR Settings Serial Transfer Format and Frame Length CHR PE MP STOP 1 0 0 0 0 S 8-bit data STOP 0 0 0 1 S 8-bit data STOP STOP 0 1 0 0 S 8-bit data P STOP 0 1 0 1 S 8-bit data P STOP STOP 1 0 0 0 S 7-bit data STOP 1 0 0 1 S 7-bit data STOP STOP 1 1 0 0 S 7-bit data P STOP 1 1 0 1 S 7-bit data P STOP STOP 0 — 1 0 S 8-bit data MPB STOP 0 — 1 1 S 8-bit data MPB STOP STOP 1 — 1 0 S 7-bit data MPB STOP 1 — 1 1 S 7-bit data MPB STOP STOP [Legend] S: Start bit STOP: Stop bit P: Parity bit MPB: Multiprocessor bit Rev. 2.00 Dec. 05, 2005 Page 374 of 724 REJ09B0200-0200 2 3 4 5 6 7 8 9 10 11 12 Section 13 Serial Communication Interface (SCI) 13.4.2 Receive Data Sampling Timing and Reception Margin in Asynchronous Mode In asynchronous mode, the SCI operates on a basic clock with a frequency of 16 times the transfer rate. In reception, the SCI samples the falling edge of the start bit using the basic clock, and performs internal synchronization. Receive data is latched internally at the rising edge of the 8th pulse of the basic clock as shown in figure 13.3. Thus, the reception margin in asynchronous mode is given by formula (1) below. M = { (0.5 – 1 D – 0.5 )– 2N N – (L – 0.5) F} × 100 [%] ... Formula (1) Where N: Ratio of bit rate to clock (N = 16) D: Clock duty cycle (D = 0.5 to 1.0) L: Frame length (L = 9 to 12) F: Absolute value of clock rate deviation Assuming values of F (absolute value of clock rate deviation) = 0 and D (clock duty cycle) = 0.5 in formula (1), the reception margin can be given by the formula. M = {0.5 – 1/(2 × 16)} × 100 [%] = 46.875% However, this is only the computed value, and a margin of 20% to 30% should be allowed for in system design. 16 clocks 8 clocks 0 7 15 0 7 15 0 Internal basic clock Receive data (RxD) Start bit D0 D1 Synchronization sampling timing Data sampling timing Figure 13.3 Receive Data Sampling Timing in Asynchronous Mode Rev. 2.00 Dec. 05, 2005 Page 375 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.4.3 Clock Either an internal clock generated by the on-chip baud rate generator or an external clock input at the SCK pin can be selected as the SCI's serial clock, according to the setting of the C/A bit in SMR and the CKE0 and CKE1 bits in SCR. When an external clock is input at the SCK pin, the clock frequency should be 16 times the bit rate used. When the SCI is operated on an internal clock, the clock can be output from the SCK pin. The frequency of the clock output in this case is equal to the bit rate, and the phase is such that the rising edge of the clock is in the middle of the transmit data, as shown in figure 13.4. SCK 0 TxD D0 D1 D2 D3 D4 D5 D6 D7 0/1 1 1 1 frame Figure 13.4 Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode) Rev. 2.00 Dec. 05, 2005 Page 376 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.4.4 SCI Initialization (Asynchronous Mode) Before transmitting and receiving data, first clear the TE and RE bits in SCR to 0, then initialize the SCI as described below. When the operating mode, or transfer format, is changed for example, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1. Note that clearing the RE bit to 0 does not initialize the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR. When the external clock is used in asynchronous mode, the clock must be supplied even during initialization. [1] Set the clock selection in SCR. Be sure to clear bits RIE, TIE, TEIE, and MPIE, and bits TE and RE, to 0. Start initialization Clear TE and RE bits in SCR to 0 Set CKE1 and CKE0 bits in SCR (TE and RE bits are cleared to 0.) [1] Set data transfer format in SMR and SCMR [2] Set value in BRR [3] When the clock is selected in asynchronous mode, it is output immediately after SCR settings are made. [2] Set the data transfer format in SMR and SCMR. [3] Write a value corresponding to the bit rate to BRR. Not necessary if an external clock is used. Wait No 1-bit interval elapsed? Yes Set TE and RE bits in SCR to 1, and set RIE, TIE, TEIE, and MPIE bits [4] Wait at least one bit interval, then set the TE bit or RE bit in SCR to 1. Also set the RIE, TIE, TEIE, and MPIE bits. Setting the TE and RE bits enables the TxD and RxD pins to be used. [4] <Initialization completion> Figure 13.5 Sample SCI Initialization Flowchart Rev. 2.00 Dec. 05, 2005 Page 377 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.4.5 Data Transmission (Asynchronous Mode) Figure 13.6 shows an example of operation for transmission in asynchronous mode. In transmission, the SCI operates as described below. 1. The SCI monitors the TDRE flag in SSR. If the flag is cleared to 0, the SCI recognizes that data has been written to TDR, and transfers the data from TDR to TSR. 2. After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission. If the TIE bit is set to 1 at this time, a transmit data empty interrupt request (TXI) is generated. Continuous transmission is possible because the TXI interrupt routine writes next transmit data to TDR before transmission of the current transmit data has been completed. 3. Data is sent from the TxD pin in the following order: start bit, transmit data, parity bit or multiprocessor bit (may be omitted depending on the format), and stop bit. 4. The SCI checks the TDRE flag at the timing for sending the stop bit. 5. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent, and then serial transmission of the next frame is started. 6. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then the "mark state" is entered, in which 1 is output. If the TEIE bit in SCR is set to 1 at this time, a TEI interrupt request is generated. Figure 13.7 shows a sample flowchart for transmission in asynchronous mode. 1 Start bit 0 Data D0 D1 Parity Stop Start bit bit bit D7 0/1 1 0 Data D0 D1 Parity Stop bit bit D7 0/1 1 1 Idle state (mark state) TDRE TEND TXI interrupt Data written to TDR and TXI interrupt request generated TDRE flag cleared to 0 in request generated TXI interrupt service routine TEI interrupt request generated 1 frame Figure 13.6 Example of Operation in Transmission in Asynchronous Mode (Example with 8-Bit Data, Parity, One Stop Bit) Rev. 2.00 Dec. 05, 2005 Page 378 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) [1] Initialization Start transmission Read TDRE flag in SSR [2] [2] SCI status check and transmit data write: Read SSR and check that the TDRE flag is set to 1, then write transmit data to TDR and clear the TDRE flag to 0. No TDRE = 1 Yes Write transmit data to TDR and clear TDRE flag in SSR to 0 No All data transmitted? Yes [3] Read TEND flag in SSR No TEND = 1 Yes No Break output? Yes [1] SCI initialization: The TxD pin is automatically designated as the transmit data output pin. After the TE bit is set to 1, a frame of 1s is output, and transmission is enabled. [4] [3] Serial transmission continuation procedure: To continue serial transmission, read 1 from the TDRE flag to confirm that writing is possible, then write data to TDR, and then clear the TDRE flag to 0. Checking and clearing of the TDRE flag is automatic when the DTC is activated by a transmit data empty interrupt (TXI) request, and data is written to TDR. [4] Break output at the end of serial transmission: To output a break in serial transmission, set DDR for the port corresponding to the TxD pin to 1, clear DR to 0, then clear the TE bit in SCR to 0. Clear DR to 0 and set DDR to 1 Clear TE bit in SCR to 0 <End> Figure 13.7 Sample Serial Transmission Flowchart Rev. 2.00 Dec. 05, 2005 Page 379 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.4.6 Serial Data Reception (Asynchronous Mode) Figure 13.8 shows an example of operation for reception in asynchronous mode. In serial reception, the SCI operates as described below. 1. The SCI monitors the communication line. If a start bit is detected, the SCI performs internal synchronization, receives receive data in RSR, and checks the parity bit and stop bit. 2. If an overrun error occurs (when reception of the next data is completed while the RDRF flag is still set to 1), the ORER bit in SSR is set to 1. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is generated. Receive data is not transferred to RDR. The RDRF flag remains to be set to 1. 3. If a parity error is detected, the PER bit in SSR is set to 1 and receive data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is generated. 4. If a framing error is detected (when the stop bit is 0), the FER bit in SSR is set to 1 and receive data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is generated. 5. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt request is generated. Continuous reception is possible because the RXI interrupt routine reads the receive data transferred to RDR before reception of the next receive data has been completed. 1 Start bit 0 Data D0 D1 Parity Stop Start bit bit bit D7 0/1 1 0 Data D0 D1 Parity Stop bit bit D7 0/1 0 1 Idle state (mark state) RDRF FER RXI interrupt request generated RDR data read and RDRF flag cleared to 0 in RXI interrupt service routine 1 frame Figure 13.8 Example of SCI Operation in Reception (Example with 8-Bit Data, Parity, One Stop Bit) Rev. 2.00 Dec. 05, 2005 Page 380 of 724 REJ09B0200-0200 ERI interrupt request generated by framing error Section 13 Serial Communication Interface (SCI) Table 13.11 shows the states of the SSR status flags and receive data handling when a receive error is detected. If a receive error is detected, the RDRF flag retains its state before receiving data. Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the ORER, FER, PER, and RDRF bits to 0 before resuming reception. Figure 13.9 shows a sample flow chart for serial data reception. Table 13.11 SSR Status Flags and Receive Data Handling SSR Status Flag RDRF* ORER FER PER Receive Data Receive Error Type 1 1 0 0 Lost Overrun error 0 0 1 0 Transferred to RDR Framing error 0 0 0 1 Transferred to RDR Parity error 1 1 1 0 Lost Overrun error + framing error 1 1 0 1 Lost Overrun error + parity error 0 0 1 1 Transferred to RDR Framing error + parity error 1 1 1 1 Lost Overrun error + framing error + parity error Note: * The RDRF flag retains the state it had before data reception. Rev. 2.00 Dec. 05, 2005 Page 381 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Initialization [1] Start reception [1] SCI initialization: The RxD pin is automatically designated as the receive data input pin. [2] [3] Receive error processing and break detection: [2] If a receive error occurs, read the ORER, PER, and FER flags in SSR to identify the error. After performing the Yes appropriate error processing, ensure PER∨FER∨ORER = 1 that the ORER, PER, and FER flags are [3] all cleared to 0. Reception cannot be No Error processing resumed if any of these flags are set to 1. In the case of a framing error, a (Continued on next page) break can be detected by reading the value of the input port corresponding to [4] Read RDRF flag in SSR the RxD pin. Read ORER, PER, and FER flags in SSR [4] SCI status check and receive data read: Read SSR and check that RDRF = 1, then read the receive data in RDR and clear the RDRF flag to 0. Transition of the RDRF flag from 0 to 1 can also be identified by an RXI interrupt. No RDRF = 1 Yes Read receive data in RDR, and clear RDRF flag in SSR to 0 No All data received? Yes Clear RE bit in SCR to 0 [5] [5] Serial reception continuation procedure: To continue serial reception, before the stop bit for the current frame is received, read the RDRF flag, read RDR, and clear the RDRF flag to 0. The RDRF flag is cleared automatically when DTC is activated by an RXI interrupt and the RDR value is read. <End> Figure 13.9 Sample Serial Reception Data Flowchart (1) Rev. 2.00 Dec. 05, 2005 Page 382 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) [3] Error processing No ORER = 1 Yes Overrun error processing No FER = 1 Yes Yes Break? No Framing error processing Clear RE bit in SCR to 0 No PER = 1 Yes Parity error processing Clear ORER, PER, and FER flags in SSR to 0 <End> Figure 13.9 Sample Serial Reception Data Flowchart (2) Rev. 2.00 Dec. 05, 2005 Page 383 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.5 Multiprocessor Communication Function Use of the multiprocessor communication function enables data transfer between a number of processors sharing communication lines by asynchronous serial communication using the multiprocessor format, in which a multiprocessor bit is added to the transfer data. When multiprocessor communication is performed, each receiving station is addressed by a unique ID code. The serial communication cycle consists of two component cycles; an ID transmission cycle that specifies the receiving station, and a data transmission cycle. The multiprocessor bit is used to differentiate between the ID transmission cycle and the data transmission cycle. If the multiprocessor bit is 1, the cycle is an ID transmission cycle; if the multiprocessor bit is 0, the cycle is a data transmission cycle. Figure 13.10 shows an example of inter-processor communication using the multiprocessor format. The transmitting station first sends the ID code of the receiving station with which it wants to perform serial communication as data with a 1 multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit added. When data with a 1 multiprocessor bit is received, the receiving station compares that data with its own ID. The station whose ID matches then receives the data sent next. Stations whose IDs do not match continue to skip data until data with a 1 multiprocessor bit is again received. The SCI uses the MPIE bit in SCR to implement this function. When the MPIE bit is set to 1, transfer of receive data from RSR to RDR, error flag detection, and setting the SSR status flags, RDRF, FER, and ORER to 1, are inhibited until data with a 1 multiprocessor bit is received. On reception of a receive character with a 1 multiprocessor bit, the MPB bit in SSR is set to 1 and the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt is generated. When the multiprocessor format is selected, the parity bit setting is rendered invalid. All other bit settings are the same as those in normal asynchronous mode. The clock used for multiprocessor communication is the same as that in normal asynchronous mode. Rev. 2.00 Dec. 05, 2005 Page 384 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Transmitting station Serial transmission line Receiving station A Receiving station B Receiving station C Receiving station D (ID = 01) (ID = 02) (ID = 03) (ID = 04) Serial data H'01 H'AA (MPB = 1) (MPB = 0) ID transmission cycle = Data transmission cycle = receiving station Data transmission to specification receiving station specified by ID [Legend] MPB: Multiprocessor bit Figure 13.10 Example of Communication Using Multiprocessor Format (Transmission of Data H'AA to Receiving Station A) Rev. 2.00 Dec. 05, 2005 Page 385 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.5.1 Multiprocessor Serial Data Transmission Figure 13.11 shows a sample flowchart for multiprocessor serial data transmission. For an ID transmission cycle, set the MPBT bit in SSR to 1 before transmission. For a data transmission cycle, clear the MPBT bit in SSR to 0 before transmission. All other SCI operations are the same as those in asynchronous mode. Rev. 2.00 Dec. 05, 2005 Page 386 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) [1] Initialization Start transmission Read TDRE flag in SSR [2] No [2] SCI status check and transmit data write: Read SSR and check that the TDRE flag is set to 1, then write transmit data to TDR. Set the MPBT bit in SSR to 0 or 1. Finally, clear the TDRE flag to 0. TDRE = 1 Yes Write transmit data to TDR and set MPBT bit in SSR Clear TDRE flag to 0 No All data transmitted? [3] Yes Read TEND flag in SSR No TEND = 1 Yes No Break output? Yes [1] SCI initialization: The TxD pin is automatically designated as the transmit data output pin. After the TE bit is set to 1, a frame of 1s is output, and transmission is enabled. [4] [3] Serial transmission continuation procedure: To continue serial transmission, be sure to read 1 from the TDRE flag to confirm that writing is possible, then write data to TDR, and then clear the TDRE flag to 0. Checking and clearing of the TDRE flag is automatic when the DTC is activated by a transmit data empty interrupt (TXI) request, and data is written to TDR. [4] Break output at the end of serial transmission: To output a break in serial transmission, set the port DDR to 1, clear DR to 0, then clear the TE bit in SCR to 0. Clear DR to 0 and set DDR to 1 Clear TE bit in SCR to 0 <End> Figure 13.11 Sample Multiprocessor Serial Transmission Flowchart Rev. 2.00 Dec. 05, 2005 Page 387 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.5.2 Multiprocessor Serial Data Reception Figure 13.13 shows a sample flowchart for multiprocessor serial data reception. If the MPIE bit in SCR is set to 1, data is skipped until data with a 1 multiprocessor bit is sent. On receiving data with a 1 multiprocessor bit, the receive data is transferred to RDR. An RXI interrupt request is generated at this time. All other SCI operations are the same as in asynchronous mode. Figure 13.12 shows an example of SCI operation for multiprocessor format reception. 1 Start bit 0 Data (ID1) MPB D0 D1 D7 1 Stop bit Start bit 1 0 Data (Data1) D0 D1 Stop MPB bit D7 0 1 1 Idle state (mark state) MPIE RDRF RDR value ID1 MPIE = 0 RXI interrupt request (multiprocessor interrupt) generated If not this station’s ID, MPIE bit is set to 1 again RDR data read and RDRF flag cleared to 0 in RXI interrupt service routine RXI interrupt request is not generated, and RDR retains its state (a) Data does not match station’s ID 1 Start bit 0 Data (ID2) D0 D1 Stop MPB bit D7 1 1 Start bit 0 Data (Data2) D0 D1 D7 Stop MPB bit 0 1 1 Idle state (mark state) MPIE RDRF RDR value ID1 MPIE = 0 Data2 ID2 RXI interrupt request (multiprocessor interrupt) generated RDR data read and RDRF flag cleared to 0 in RXI interrupt service routine Matches this station’s ID, so reception continues, and data is received in RXI interrupt service routine MPIE bit set to 1 again (b) Data matches station’s ID Figure 13.12 Example of SCI Operation in Reception (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit) Rev. 2.00 Dec. 05, 2005 Page 388 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Initialization [1] SCI initialization: The RxD pin is automatically designated as the receive data input pin. [1] Start reception Read MPIE bit in SCR [2] ID reception cycle: Set the MPIE bit in SCR to 1. [2] [3] SCI status check, ID reception and comparison: Read SSR and check that the RDRF flag is set to 1, then read the receive data in RDR and compare it with this station’s ID. If the data is not this station’s ID, set the MPIE bit to 1 again, and clear the RDRF flag to 0. If the data is this station’s ID, clear the RDRF flag to 0. Read ORER and FER flags in SSR Yes FER∨ORER = 1 No Read RDRF flag in SSR [3] No RDRF = 1 [4] SCI status check and data reception: Read SSR and check that the RDRF flag is set to 1, then read the data in RDR. Yes Read receive data in RDR No This station’s ID? Yes Read ORER and FER flags in SSR Yes FER∨ORER = 1 No Read RDRF flag in SSR [5] Receive error processing and break detection: If a receive error occurs, read the ORER and FER flags in SSR to identify the error. After performing the appropriate error processing, ensure that the ORER and FER flags are all cleared to 0. Reception cannot be resumed if either of these flags is set to 1. In the case of a framing error, a break can be detected by reading the RxD pin [4] value. No RDRF = 1 Yes Read receive data in RDR No All data received? [5] Error processing Yes Clear RE bit in SCR to 0 (Continued on next page) <End> Figure 13.13 Sample Multiprocessor Serial Reception Flowchart (1) Rev. 2.00 Dec. 05, 2005 Page 389 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) [5] Error processing No ORER = 1 Yes Overrun error processing No FER = 1 Yes Yes Break? No Framing error processing Clear RE bit in SCR to 0 Clear ORER, PER, and FER flags in SSR to 0 <End> Figure 13.13 Sample Multiprocessor Serial Reception Flowchart (2) Rev. 2.00 Dec. 05, 2005 Page 390 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.6 Operation in Clocked Synchronous Mode Figure 13.14 shows the general format for clocked synchronous communication. In clocked synchronous mode, data is transmitted or received synchronous with clock pulses. In clocked synchronous serial communication, data on the transmission line is output from one falling edge of the serial clock to the next. In clocked synchronous mode, the SCI receives data in synchronous with the rising edge of the serial clock. After 8-bit data is output, the transmission line holds the MSB state. In clocked synchronous mode, no parity or multiprocessor bit is added. Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication through the use of a common clock. Both the transmitter and the receiver also have a double-buffered structure, so data can be read or written during transmission or reception, enabling continuous data transfer. One unit of transfer data (character or frame) * * Synchronization clock MSB LSB Bit 0 Serial data Bit 1 Don’t care Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Don’t care Note:* High except in continuous transfer Figure 13.14 Data Format in Synchronous Communication (For LSB-First) 13.6.1 Clock Either an internal clock generated by the on-chip baud rate generator or an external synchronization clock input at the SCK pin can be selected, according to the setting of CKE0 and CKE1 bits in SCR. When the SCI is operated on an internal clock, the serial clock is output from the SCK pin. Eight serial clock pulses are output in the transfer of one character, and when no transfer is performed the clock is fixed high. Rev. 2.00 Dec. 05, 2005 Page 391 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.6.2 SCI Initialization (Clocked Synchronous Mode) Before transmitting and receiving data, the TE and RE bits in SCR should be cleared to 0, then the SCI should be initialized as described in a sample flowchart in figure 13.15. When the operating mode, or transfer format, is changed for example, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1. Note that clearing the RE bit to 0 does not change the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR. [1] Set the clock selection in SCR. Be sure to clear bits RIE, TIE, TEIE, and MPIE, TE and RE, to 0. Start initialization Clear TE and RE bits in SCR to 0 [2] Set the data transfer format in SMR and SCMR. Set CKE1 and CKE0 bits in SCR (TE, RE bits 0) [1] Set data transfer format in SMR and SCMR [2] Set value in BRR [3] Wait [3] Write a value corresponding to the bit rate to BRR. Not necessary if an external clock is used. [4] Wait at least one bit interval, then set the TE bit or RE bit in SCR to 1. Also set the RIE, TIE TEIE, and MPIE bits. Setting the TE and RE bits enables the TxD and RxD pins to be used. No 1-bit interval elapsed? Yes Set TE and RE bits in SCR to 1, and set RIE, TIE, TEIE, and MPIE bits [4] <Transfer start> Note:* In simultaneous transmit and receive operations, the TE and RE bits should both be cleared to 0 or set to 1 simultaneously. Figure 13.15 Sample SCI Initialization Flowchart Rev. 2.00 Dec. 05, 2005 Page 392 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.6.3 Serial Data Transmission (Clocked Synchronous Mode) Figure 13.16 shows an example of SCI operation for transmission in clocked synchronous mode. In serial transmission, the SCI operates as described below. 1. The SCI monitors the TDRE flag in SSR, and if the flag is 0, the SCI recognizes that data has been written to TDR, and transfers the data from TDR to TSR. 2. After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission. If the TIE bit in SCR is set to 1 at this time, a transmit data empty interrupt (TXI) is generated. Continuous transmission is possible because the TXI interrupt routine writes the next transmit data to TDR before transmission of the current transmit data has been completed. 3. 8-bit data is sent from the TxD pin synchronized with the output clock when output clock mode has been specified, and synchronized with the input clock when use of an external clock has been specified. 4. The SCI checks the TDRE flag at the timing for sending the MSB (bit 7). 5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial transmission of the next frame is started. 6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TDRE flag maintains the output state of the last bit. If the TEIE bit in SCR is set to 1 at this time, a TEI interrupt request is generated. The SCK pin is fixed high. Figure 13.17 shows a sample flow chart for serial data transmission. Even if the TDRE flag is cleared to 0, transmission will not start while a receive error flag (ORER, FER, or PER) is set to 1. Make sure that the receive error flags are cleared to 0 before starting transmission. Note that clearing the RE bit to 0 does not clear the receive error flags. Rev. 2.00 Dec. 05, 2005 Page 393 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Transfer direction Synchronization clock Serial data Bit 0 Bit 1 Bit 7 Bit 0 Bit 1 Bit 6 Bit 7 TDRE TEND TXI interrupt request generated Data written to TDR and TDRE flag cleared to 0 in TXI interrupt service routine TXI interrupt request generated TEI interrupt request generated 1 frame Figure 13.16 Sample SCI Transmission Operation in Clocked Synchronous Mode Rev. 2.00 Dec. 05, 2005 Page 394 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Initialization [1] Start transmission Read TDRE flag in SSR [2] No TDRE = 1 Yes Write transmit data to TDR and clear TDRE flag in SSR to 0 No All data transmitted? [3] Yes [1] SCI initialization: The TxD pin is automatically designated as the transmit data output pin. [2] SCI status check and transmit data write: Read SSR and check that the TDRE flag is set to 1, then write transmit data to TDR and clear the TDRE flag to 0. [3] Serial transmission continuation procedure: To continue serial transmission, be sure to read 1 from the TDRE flag to confirm that writing is possible, then write data to TDR, and then clear the TDRE flag to 0. Checking and clearing of the TDRE flag is automatic when the DTC is activated by a transmit data empty interrupt (TXI) request and data is written to TDR. Read TEND flag in SSR No TEND = 1 Yes Clear TE bit in SCR to 0 <End> Figure 13.17 Sample Serial Transmission Flowchart Rev. 2.00 Dec. 05, 2005 Page 395 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.6.4 Serial Data Reception (Clocked Synchronous Mode) Figure 13.18 shows an example of SCI operation for reception in clocked synchronous mode. In serial reception, the SCI operates as described below. 1. The SCI performs internal initialization synchronous with a synchronous clock input or output, starts receiving data, and stores the received data in RSR. 2. If an overrun error occurs (when reception of the next data is completed while the RDRF flag in SSR is still set to 1), the ORER bit in SSR is set to 1. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is generated, receive data is not transferred to RDR, and the RDRF flag remains to be set to 1. 3. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt request is generated. Continuous reception is possible because the RXI interrupt routine reads the receive data transferred to RDR before reception of the next receive data has finished. Synchronization clock Serial data Bit 7 Bit 0 Bit 7 Bit 0 Bit 1 Bit 6 Bit 7 RDRF ORER RXI interrupt request generated RDR data read and RDRF flag cleared to 0 in RXI interrupt service routine RXI interrupt request generated ERI interrupt request generated by overrun error 1 frame Figure 13.18 Example of SCI Operation in Reception Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the ORER, FER, PER, and RDRF bits to 0 before resuming reception. Figure 13.19 shows a sample flow chart for serial data reception. Rev. 2.00 Dec. 05, 2005 Page 396 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Initialization [1] Start reception [2] Read ORER flag in SSR Yes ORER = 1 [3] No Error processing (Continued below) Read RDRF flag in SSR [4] No RDRF = 1 Yes Read receive data in RDR, and clear RDRF flag in SSR to 0 No All data received? Yes Clear RE bit in SCR to 0 [5] [1] SCI initialization: The RxD pin is automatically designated as the receive data input pin. [2] [3] Receive error processing: If a receive error occurs, read the ORER flag in SSR, and after performing the appropriate error processing, clear the ORER flag to 0. Transfer cannot be resumed if the ORER flag is set to 1. [4] SCI status check and receive data read: Read SSR and check that the RDRF flag is set to 1, then read the receive data in RDR and clear the RDRF flag to 0. Transition of the RDRF flag from 0 to 1 can also be identified by an RXI interrupt. [5] Serial reception continuation procedure: To continue serial reception, before the MSB (bit 7) of the current frame is received, reading the RDRF flag, reading RDR, and clearing the RDRF flag to 0 should be finished. The RDRF flag is cleared automatically when the DTC is activated by a receive data full interrupt (RXI) request and the RDR value is read. <End> [3] Error processing Overrun error processing Clear ORER flag in SSR to 0 <End> Figure 13.19 Sample Serial Reception Flowchart Rev. 2.00 Dec. 05, 2005 Page 397 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.6.5 Simultaneous Serial Data Transmission and Reception (Clocked Synchronous Mode) Figure 13.20 shows a sample flowchart for simultaneous serial transmit and receive operations. The following procedure should be used for simultaneous serial data transmit and receive operations after initializing the SCI. To switch from transmit mode to simultaneous transmit and receive mode, after checking that the SCI has finished transmission and the TDRE and TEND flags are set to 1, clear TE to 0. Then simultaneously set TE and RE to 1 with a single instruction. To switch from receive mode to simultaneous transmit and receive mode, after checking that the SCI has finished reception, clear RE to 0. Then after checking that the RDRF and receive error flags (ORER, FER, and PER) are cleared to 0, simultaneously set TE and RE to 1 with a single instruction. Rev. 2.00 Dec. 05, 2005 Page 398 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Initialization [1] [1] SCI initialization: The TxD pin is designated as the transmit data output pin, and the RxD pin is designated as the receive data input pin, enabling simultaneous transmit and receive operations. [2] SCI status check and transmit data write: Read SSR and check that the TDRE flag is set to 1, then write transmit data to TDR and clear the TDRE flag to 0. Transition of the TDRE flag from 0 to 1 can also be identified by a TXI interrupt. Receive error processing: If a receive error occurs, read the ORER flag in SSR, and after performing the appropriate error processing, clear the ORER flag to 0. Transmission/reception cannot be resumed if the ORER flag is set to 1. Start transmission/reception Read TDRE flag in SSR [2] No TDRE = 1 Yes Write transmit data to TDR and clear TDRE flag in SSR to 0 [3] Read ORER flag in SSR ORER = 1 No Read RDRF flag in SSR Yes [3] Error processing [4] SCI status check and receive data read: Read SSR and check that the RDRF flag is set to 1, then read the receive data in RDR and clear the RDRF flag to 0. Transition of the RDRF flag from 0 to 1 can also be identified by an RXI interrupt. [5] Serial transmission/reception continuation procedure: To continue serial transmission/ reception, before the MSB (bit 7) of the current frame is received, finish reading the RDRF flag, reading RDR, and clearing the RDRF flag to 0. Also, before the MSB (bit 7) of the current frame is transmitted, read 1 from the TDRE flag to confirm that writing is possible. Then write data to TDR and clear the TDRE flag to 0. Checking and clearing of the TDRE flag is automatic when the DTC is activated by a transmit data empty interrupt (TXI) request and data is written to TDR. Also, the RDRF flag is cleared automatically when the DTC is activated by a receive data full interrupt (RXI) request and the RDR value is read. [4] No RDRF = 1 Yes Read receive data in RDR, and clear RDRF flag in SSR to 0 No All data received? [5] Yes Clear TE and RE bits in SCR to 0 <End> Note:* When switching from transmit or receive operation to simultaneous transmit and receive operations, first clear the TE bit and RE bit to 0, then set both these bits to 1 simultaneously. Figure 13.20 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations Rev. 2.00 Dec. 05, 2005 Page 399 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.7 Operation in Smart Card Interface The SCI supports an IC card (smart card) interface that conforms to ISO/IEC 7816-3 (Identification Card) as a serial communication interface extension function. Switching between the normal serial communication interface and the smart card interface mode is carried out by means of a register setting. 13.7.1 Pin Connection Example Figure 13.21 shows an example of connection with the smart card. In communication with an IC card, as both transmission and reception are carried out on a single data transmission line, the TxD pin and RxD pin should be connected to the LSI pin. The data transmission line should be pulled up to the VCC power supply with a resistor. If an IC card is not connected, and the TE and RE bits are both set to 1, closed transmission/reception is possible, enabling self-diagnosis to be carried out. When the clock generated on the smart card interface is used by an IC card, the SCK pin output is input to the CLK pin of the IC card. This LSI port output is used as the reset signal. VCC TxD RxD SCK Rx (port) This LSI Data line Clock line Reset line I/O CLK RST IC card Connected equipment Figure 13.21 Schematic Diagram of Smart Card Interface Pin Connections Rev. 2.00 Dec. 05, 2005 Page 400 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.7.2 Data Format (Except for Block Transfer Mode) Figure 13.22 shows the transfer data format in smart card interface mode. • One frame consists of 8-bit data plus a parity bit in asynchronous mode. • In transmission, a guard time of at least 2 etu (Elementary Time Unit: the time for transfer of one bit) is left between the end of the parity bit and the start of the next frame. • If a parity error is detected during reception, a low error signal level is output for one etu period, 10.5 etu after the start bit. • If an error signal is sampled during transmission, the same data is retransmitted automatically after a delay of 2 etu or longer. When there is no parity error Ds D0 D1 D2 D3 D4 D5 D6 D7 Dp D6 D7 Dp Transmitting station output When a parity error occurs Ds D0 D1 D2 D3 D4 D5 DE Transmitting station output [Legend] DS: D0 to D7: Dp: DE: Receiving station output Start bit Data bits Parity bit Error signal Figure 13.22 Normal Smart Card Interface Data Format Data transfer with other types of IC cards (direct convention and inverse convention) are performed as described in the following. (Z) A Z Z A Z Z Z A A Z Ds D0 D1 D2 D3 D4 D5 D6 D7 Dp (Z) State Figure 13.23 Direct Convention (SDIR = SINV = O/E = 0) Rev. 2.00 Dec. 05, 2005 Page 401 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) With the direction convention type IC and the above sample start character, the logic 1 level corresponds to state Z and the logic 0 level to state A, and transfer is performed in LSB-first order. The start character data above is H'3B. For the direct convention type, clear the SDIR and SINV bits in SCMR to 0. According to smart card regulations, clear the O/E bit in SMR to 0 to select even parity mode. (Z) A Z Z A A A A A A Z Ds D7 D6 D5 D4 D3 D2 D1 D0 Dp (Z) State Figure 13.24 Inverse Convention (SDIR = SINV = O/E = 1) With the inverse convention type, the logic 1 level corresponds to state A and the logic 0 level to state Z, and transfer is performed in MSB-first order. The start character data for the above is H'3F. For the inverse convention type, set the SDIR and SINV bits in SCMR to 1. According to smart card regulations, even parity mode is the logic 0 level of the parity bit, and corresponds to state Z. In this LSI, the SINV bit inverts only data bits D0 to D7. Therefore, set the O/E bit in SMR to 1 to invert the parity bit for both transmission and reception. 13.7.3 Block Transfer Mode Operation in block transfer mode is the same as that in SCI asynchronous mode, except for the following points. • In reception, though the parity check is performed, no error signal is output even if an error is detected. However, the PER bit in SSR is set to 1 and must be cleared before receiving the parity bit of the next frame. • In transmission, a guard time of at least 1 etu is left between the end of the parity bit and the start of the next frame. • In transmission, because retransmission is not performed, the TEND flag is set to 1, 11.5 etu after transmission start. • As with the normal smart card interface, the ERS flag indicates the error signal status, but since error signal transfer is not performed, this flag is always cleared to 0. Rev. 2.00 Dec. 05, 2005 Page 402 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.7.4 Receive Data Sampling Timing and Reception Margin in Smart Card Interface Mode In smart card interface mode, the SCI operates on a basic clock with a frequency of 32, 64, 372, or 256 times the transfer rate (fixed at 16 times in normal asynchronous mode) as determined by bits BCP1 and BCP0. In reception, the SCI samples the falling edge of the start bit using the basic clock, and performs internal synchronization. As shown in figure 13.25, by sampling receive data at the rising-edge of the 16th, 32nd, 186th, or 128th pulse of the basic clock, data can be latched at the middle of the bit. The reception margin is given by the following formula. M = | (0.5 – 1 | D – 0.5 | ) – (L – 0.5) F – (1 + F) | × 100% 2N N Where M: Reception margin (%) N: Ratio of bit rate to clock (N = 32, 64, 372, and 256) D: Clock duty cycle (D = 0 to 1.0) L: Frame length (L = 10) F: Absolute value of clock frequency deviation Assuming values of F = 0, D = 0.5 and N = 372 in the above formula, the reception margin formula is as follows. M = (0.5 – 1/2 × 372) × 100% = 49.866% Rev. 2.00 Dec. 05, 2005 Page 403 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 372 clocks 186 clocks 0 185 185 371 0 371 0 Internal basic clock Receive data (RxD) Start bit D0 D1 Synchronization sampling timing Data sampling timing Figure 13.25 Receive Data Sampling Timing in Smart Card Mode (Using Clock of 372 Times the Transfer Rate) 13.7.5 Initialization Before transmitting and receiving data, initialize the SCI as described below. Initialization is also necessary when switching from transmit mode to receive mode, or vice versa. 1. 2. 3. 4. Clear the TE and RE bits in SCR to 0. Clear the error flags ERS, PER, and ORER in SSR to 0. Set the GM, BLK, O/E, BCP0, BCP1, CKS0, and CKS1 bits in SMR. Set the PE bit to 1. Set the SMIF, SDIR, and SINV bits in SCMR. When the SMIF bit is set to 1, the TxD and RxD pins are both switched from ports to SCI pins, and are placed in the high-impedance state. 5. Set the value corresponding to the bit rate in BRR. 6. Set the CKE0 and CKE1 bits in SCR. Clear the TIE, RIE, TE, RE, MPIE, and TEIE bits to 0. If the CKE0 bit is set to 1, the clock is output from the SCK pin. 7. Wait at least one bit interval, then set the TIE, RIE, TE, and RE bits in SCR. Do not set the TE bit and RE bit at the same time, except for self-diagnosis. To switch from receive mode to transmit mode, after checking that the SCI has finished reception, initialize the SCI, and set RE to 0 and TE to 1. Whether SCI has finished reception or not can be checked with the RDRF, PER, or ORER flags. To switch from transmit mode to receive mode, Rev. 2.00 Dec. 05, 2005 Page 404 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) after checking that the SCI has finished transmission, initialize the SCI, and set TE to 0 and RE to 1. Whether SCI has finished transmission or not can be checked with the TEND flag. 13.7.6 Data Transmission (Except for Block Transfer Mode) As data transmission in smart card interface mode involves error signal sampling and retransmission processing, the operations are different from those in normal serial communication interface mode (except for block transfer mode). Figure 13.26 illustrates the retransfer operation when the SCI is in transmit mode. 1. If an error signal is sent back from the receiving end after transmission of one frame is complete, the ERS bit in SSR is set to 1. If the RIE bit in SCR is enabled at this time, an ERI interrupt request is generated. The ERS bit in SSR should be kept cleared to 0 until the next parity bit is sampled. 2. The TEND bit in SSR is not set for a frame in which an error signal indicating an abnormality is received. Data is retransferred from TDR to TSR, and retransmitted automatically. 3. If an error signal is not sent back from the receiving end, the ERS bit in SSR is not set. Transmission of one frame, including a retransfer, is judged to have been completed, and the TEND bit in SSR is set to 1. If the TIE bit in SCR is enabled at this time, a TXI interrupt request is generated. Writing transmit data to TDR transfers the next transmit data. Figure 13.28 shows a flowchart for transmission. The sequence of transmit operations can be performed automatically by specifying the DTC to be activated with a TXI interrupt source. In a transmit operation, the TDRE flag is set to 1 at the same time as the TEND flag in SSR is set, and a TXI interrupt will be generated if the TIE bit in SCR has been set to 1. If the TXI request is designated beforehand as a DTC activation source, the DTC will be activated by the TXI request, and transfer of the transmit data will be carried out. The TDRE and TEND flags are automatically cleared to 0 when data is transferred by the DTC. In the event of an error, the SCI retransmits the same data automatically. During this period, the TEND flag remains cleared to 0 and the DTC is not activated. Therefore, the SCI and DTC will automatically transmit the specified number of bytes in the event of an error, including retransmission. However, the ERS flag is not cleared automatically when an error occurs, and so the RIE bit should be set to 1 beforehand so that an ERI request will be generated in the event of an error, and the ERS flag will be cleared. When performing transfer using the DTC, it is essential to set and enable the DTC before carrying out SCI setting. For details of the DTC setting procedures, see section 8, Data Transfer Controller (DTC). Rev. 2.00 Dec. 05, 2005 Page 405 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Transfer frame n+1 Retransferred frame nth transfer frame Ds D0 D1 D2 D3 D4 D5 D6 D7 Dp DE Ds D0 D1 D2 D3 D4 D5 D6 D7 Dp (DE) Ds D0 D1 D2 D3 D4 TDRE Transfer to TSR from TDR Transfer to TSR from TDR Transfer to TSR from TDR TEND [7] [9] FER/ERS [6] [8] Figure 13.26 Retransfer Operation in SCI Transmit Mode The timing for setting the TEND flag depends on the value of the GM bit in SMR. The TEND flag set timing is shown in figure 13.27. I/O data Ds D0 D1 TXI (TEND interrupt) D2 D3 D4 D5 D6 D7 Dp DE Guard time 12.5etu When GM = 0 11.0etu When GM = 1 [Legend] Ds: D0 to D7: Dp: DE: Start bit Data bits Parity bit Error signal Figure 13.27 TEND Flag Generation Timing in Transmission Operation Rev. 2.00 Dec. 05, 2005 Page 406 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Start Initialization Start transmission ERS = 0? No Yes Error processing No TEND = 1? Yes Write data to TDR, and clear TDRE flag in SSR to 0 No All data transmitted ? Yes No ERS = 0? Yes Error processing No TEND = 1? Yes Clear TE bit to 0 End Figure 13.28 Example of Transmission Processing Flow Rev. 2.00 Dec. 05, 2005 Page 407 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.7.7 Serial Data Reception (Except for Block Transfer Mode) Data reception in smart card interface mode uses the same operation procedure as for normal serial communication interface mode. Figure 13.29 illustrates the retransfer operation when the SCI is in receive mode. 1. If an error is found when the received parity bit is checked, the PER bit in SSR is automatically set to 1. If the RIE bit in SCR is set at this time, an ERI interrupt request is generated. The PER bit in SSR should be kept cleared to 0 until the next parity bit is sampled. 2. The RDRF bit in SSR is not set for a frame in which an error has occurred. 3. If no error is found when the received parity bit is checked, the PER bit in SSR is not set to 1, the receive operation is judged to have been completed normally, and the RDRF flag in SSR is automatically set to 1. If the RIE bit in SCR is enabled at this time, an RXI interrupt request is generated. Figure 13.30 shows a flowchart for reception. A sequence of receive operations can be performed automatically by specifying the DTC to be activated using an RXI interrupt source. In a receive operation, an RXI interrupt request is generated when the RDRF flag in SSR is set to 1. If the RXI request is designated beforehand as a DTC activation source, the DTC will be activated by the RXI request, and the receive data will be transferred. The RDRF flag is cleared to 0 automatically when data is transferred by the DTC. If an error occurs in receive mode and the ORER or PER flag is set to 1, a transfer error interrupt (ERI) request will be generated. Hence, so the error flag must be cleared to 0. In the event of an error, the DTC is not activated and receive data is skipped. Therefore, receive data is transferred for only the specified number of bytes in the event of an error. Even when a parity error occurs in receive mode and the PER flag is set to 1, the data that has been received is transferred to RDR and can be read from there. Note: For details on receive operations in block transfer mode, see section 13.4, Operation in Asynchronous Mode. Transfer frame n+1 Retransferred frame nth transfer frame Ds D0 D1 D2 D3 D4 D5 D6 D7 Dp DE Ds D0 D1 D2 D3 D4 D5 D6 D7 Dp (DE) Ds D0 D1 D2 D3 D4 RDRF [2] [4] [1] [3] PER Figure 13.29 Retransfer Operation in SCI Receive Mode Rev. 2.00 Dec. 05, 2005 Page 408 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Start Initialization Start reception ORER = 0 and PER = 0 No Yes Error processing No RDRF = 1? Yes Read RDR and clear RDRF flag in SSR to 0 No All data received? Yes Clear RE bit to 0 Figure 13.30 Example of Reception Processing Flow Rev. 2.00 Dec. 05, 2005 Page 409 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.7.8 Clock Output Control When the GM bit in SMR is set to 1, the clock output level can be fixed with bits CKE0 and CKE1 in SCR. At this time, the minimum clock pulse width can be made the specified width. Figure 13.31 shows the timing for fixing the clock output level. In this example, GM is set to 1, CKE1 is cleared to 0, and the CKE0 bit is controlled. CKE0 SCK Specified pulse width Specified pulse width Figure 13.31 Timing for Fixing Clock Output Level When turning on the power or switching between smart card interface mode and software standby mode, the following procedures should be followed in order to maintain the clock duty cycle. Powering On: To secure clock duty cycle from power-on, the following switching procedure should be followed. 1. The initial state is port input and high impedance. Use a pull-up resistor or pull-down resistor to fix the potential. 2. Fix the SCK pin to the specified output level with the CKE1 bit in SCR. 3. Set SMR and SCMR, and switch to smart card mode operation. 4. Set the CKE0 bit in SCR to 1 to start clock output. When changing from smart card interface mode to software standby mode: 1. Set the data register (DR) and data direction register (DDR) corresponding to the SCK pin to the value for the fixed output state in software standby mode. 2. Write 0 to the TE bit and RE bit in the serial control register (SCR) to halt transmit/receive operation. At the same time, set the CKE1 bit to the value for the fixed output state in software standby mode. 3. Write 0 to the CKE0 bit in SCR to halt the clock. 4. Wait for one serial clock period. Rev. 2.00 Dec. 05, 2005 Page 410 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) During this interval, clock output is fixed at the specified level, with the duty cycle preserved. 5. Make the transition to the software standby state. When returning to smart card interface mode from software standby mode: 1. Exit the software standby state. 2. Write 1 to the CKE0 bit in SCR and output the clock. Signal generation is started with the normal duty cycle. Software standby Normal operation [1] [2] [3] [4] [5] Normal operation [6] [7] Figure 13.32 Clock Halt and Restart Procedure Rev. 2.00 Dec. 05, 2005 Page 411 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.8 Interrupt Sources 13.8.1 Interrupts in Normal Serial Communication Interface Mode Table 13.12 shows the interrupt sources in normal serial communication interface mode. A different interrupt vector is assigned to each interrupt source, and individual interrupt sources can be enabled or disabled using the enable bits in SCR. When the TDRE flag in SSR is set to 1, a TXI interrupt request is generated. When the TEND flag in SSR is set to 1, a TEI interrupt request is generated. A TXI interrupt can activate the DTC to perform data transfer. The TDRE flag is cleared to 0 automatically when data is transferred by the DTC. When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated. When the ORER, PER, or FER flag in SSR is set to 1, an ERI interrupt request is generated. An RXI interrupt request can activate the DTC to transfer data. The RDRF flag is cleared to 0 automatically when data is transferred by the DTC. A TEI interrupt is requested when the TEND flag is set to 1 and the TEIE bit is set to 1. If a TEI interrupt and a TXI interrupt are requested simultaneously, the TXI interrupt has priority for acceptance. However, if the TDRE and TEND flags are cleared simultaneously by the TXI interrupt routine, the SCI cannot branch to the TEI interrupt routine later. Table 13.12 SCI Interrupt Sources Channel Name Interrupt Source Interrupt Flag DTC Activation 0 ERI_0 Receive Error ORER, FER, PER Not possible RXI_0 Receive Data Full RDRF Possible TXI_0 Transmit Data Empty TDRE Possible TEI_0 Transmission End TEND Not possible ERI_2 Receive Error ORER, FER, PER Not possible RXI_2 Receive Data Full RDRF Possible TXI_2 Transmit Data Empty TDRE Possible TEI_2 Transmission End TEND Not possible 2 Rev. 2.00 Dec. 05, 2005 Page 412 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.8.2 Interrupts in Smart Card Interface Mode Table 13.13 shows the interrupt sources in smart card interface mode. The transmit end interrupt (TEI) request cannot be used in this mode. Table 13.13 SCI Interrupt Sources Channel Name Interrupt Source Interrupt Flag DTC Activation 0 ERI_0 Receive Error, error signal detection ORER, PER, ERS Not possible RXI_0 Receive Data Full RDRF Possible TXI_0 Transmit Data Empty TEND Possible ERI_2 Receive Error, error signal detection ORER, PER, ERS Not possible RXI_2 Receive Data Full RDRF Possible TXI_2 Transmit Data Empty TEND Possible 2 In smart card interface mode, as in normal serial communication interface mode, transfer can be carried out using the DTC. In transmit operations, the TDRE flag is also set to 1 at the same time as the TEND flag in SSR is set, and a TXI interrupt is generated. If the TXI request is designated beforehand as a DTC activation source, the DTC will be activated by the TXI request, and transmit data will be transferred. The TDRE and TEND flags are automatically cleared to 0 when data is transferred by the DTC. In the event of an error, the SCI retransmits the same data automatically. During this period, the TEND flag remains cleared to 0 and the DTC is not activated. Therefore, the SCI and DTC will automatically transmit the specified number of bytes in the event of an error, including retransmission. However, the ERS flag is not cleared automatically when an error occurs. Hence, the RIE bit should be set to 1 beforehand so that an ERI request will be generated in the event of an error, and the ERS flag will be cleared. When transferring using the DTC, it is essential to set and enable the DTC before carrying out SCI setting. For details of the DTC setting procedures, see section 8, Data Transfer Controller (DTC). In receive operations, an RXI interrupt request is generated when the RDRF flag in SSR is set to 1. If the RXI request is designated beforehand as a DTC activation source, the DTC will be activated by the RXI request, and the receive data will be transferred. The RDRF flag is cleared to 0 automatically when data is transferred by the DTC. If an error occurs, an error flag is set but the RDRF flag is not. Consequently, the DTC is not activated, instead, an ERI interrupt request is sent to the CPU. Therefore, the error flag should be cleared. Rev. 2.00 Dec. 05, 2005 Page 413 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.9 Usage Notes 13.9.1 Module Stop Mode Setting SCI operation can be disabled or enabled using the module stop control register. The initial setting is for SCI operation to be halted. Register access is enabled by clearing module stop mode. For details, see section 21, Power-Down Modes. 13.9.2 Break Detection and Processing When framing error detection is performed, a break can be detected by reading the RxD pin value directly. In a break, the input from the RxD pin becomes all 0s, setting the FER flag, and possibly the PER flag. Note that as the SCI continues the receive operation after receiving a break, even if the FER flag is cleared to 0, it will be set to 1 again. 13.9.3 Mark State and Break Detection When TE is 0, the TxD pin is used as an I/O port whose direction (input or output) and level are determined by DR and DDR. This can be used to set the TxD pin to mark state (high level) or send a break during serial data transmission. To maintain the communication line at mark state until TE is set to 1, set both DDR and DR to 1. As TE is cleared to 0 at this point, the TxD pin becomes an I/O port, and 1 is output from the TxD pin. To send a break during serial transmission, first set DDR to 1 and DR to 0, and then clear TE to 0. When TE is cleared to 0, the transmitter is initialized regardless of the current transmission state, the TxD pin becomes an I/O port, and 0 is output from the TxD pin. 13.9.4 Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only) Transmission cannot be started when a receive error flag (ORER, PER, or FER) is set to 1, even if the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared to 0. Rev. 2.00 Dec. 05, 2005 Page 414 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.9.5 Restrictions on Using DTC When the external clock source is used as a synchronization clock, update TDR by the DTC and wait for at least five φ clock cycles before allowing the transmit clock to be input. If the transmit clock is input within four clock cycles after TDR modification, the SCI may malfunction (figure 13.33). When using the DTC to read RDR, be sure to set the receive end interrupt source (RXI) as a DTC activation source. SCK t TDRE LSB Serial data D0 D1 D2 D3 D4 D5 D6 D7 Note: When external clock is supplied, t must be more than four clock cycles. Figure 13.33 Sample Transmission using DTC in Clocked Synchronous Mode 13.9.6 SCI Operations during Mode Transitions Transmission: Before making the transition to module stop, software standby, watch, sub-active, or sub-sleep mode, stop all transmit operations (TE = TIE = TEIE = 0). TSR, TDR, and SSR are reset. The states of the output pins during each mode depend on the port settings, and the pins output a high-level signal after mode is cancelled and then the TE is set to 1 again. If the transition is made during data transmission, the data being transmitted will be undefined. To transmit data in the same transmission mode after mode cancellation, set TE to 1, read SSR, write to TDR, clear TDRE in this order, and then start transmission. To transmit data in a different transmission mode, initialize the SCI first. Figure 13.34 shows a sample flowchart for mode transition during transmission. Figures 13.35 and 13.36 show the pin states during transmission. Before making the transition from the transmission mode using DTC transfer to module stop, software standby, watch, sub-active, or sub-sleep mode, stop all transmit operations (TE = TIE = Rev. 2.00 Dec. 05, 2005 Page 415 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) TEIE = 0). Setting TE and TIE to 1 after mode cancellation generates a TXI interrupt request to start transmission using the DTC. Transmission No All data transmitted? [1] Yes Read TEND flag in SSR No TEND = 1 Yes TE = 0 [2] [2] Also clear TIE and TEIE to 0 when they are 1. [3] Make transition to software standby mode etc. Cancel software standby mode etc. Change operating mode? [1] Data being transmitted is lost halfway. Data can be normally transmitted from the CPU by setting TE to 1, reading SSR, writing to TDR, and clearing TDRE to 0 after mode cancellation; however, if the DTC has been initiated, the data remaining in DTC RAM will be transmitted when TE and TIE are set to 1. [3] Module stop, watch, sub-active, and sub-sleep modes are included. No Yes Initialization TE = 1 Start transmission Figure 13.34 Sample Flowchart for Mode Transition during Transmission Rev. 2.00 Dec. 05, 2005 Page 416 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Transmission start Transition to Software standby Transmission end software standby mode cancelled mode TE bit SCK output pin TxD output pin Port input/output Port input/output High output Start Stop Port input/output SCI TxD output Port High output SCI TxD output Port Figure 13.35 Pin States during Transmission in Asynchronous Mode (Internal Clock) Transmission start Transmission end Transition to Software standby software standby mode cancelled mode TE bit SCK output pin TxD output pin Port input/output Port input/output Marking output Port Last TxD bit retained Port input/output SCI TxD output Port High output* SCI TxD output Note: Initialized in software standby mode Figure 13.36 Pin States during Transmission in Clocked Synchronous Mode (Internal Clock) Reception: Before making the transition to module stop, software standby, watch, sub-active, or sub-sleep mode, stop reception (RE = 0). RSR, RDR, and SSR are reset. If transition is made during data reception, the data being received will be invalid. To receive data in the same reception mode after mode cancellation, set RE to 1, and then start reception. To receive data in a different reception mode, initialize the SCI first. Figure 13.37 shows a sample flowchart for mode transition during reception. Rev. 2.00 Dec. 05, 2005 Page 417 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) Reception Read RDRF flag in SSR RDRF = 1 No [1] [1] Data being received will be invalid. Yes Read receive data in RDR [2] Module stop, watch, sub-active, and subsleep modes are included. RE = 0 [2] Make transition to software standby mode etc. Cancel software standby mode etc. Change operating mode? No Yes Initialization RE = 1 Start reception Figure 13.37 Sample Flowchart for Mode Transition during Reception Rev. 2.00 Dec. 05, 2005 Page 418 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) 13.9.7 Notes when Switching from SCK Pin to Port Pin • Problem in Operation: When DDR and DR are set to 1, SCI clock output is used in clocked synchronous mode, and the SCK pin is changed to the port pin while transmission is ended, port output is enabled after low-level output occurs for one half-cycle. When switching the SCK pin to the port pin by making the following settings while DDR = 1, DR = 1, C/A = 1, CKE1 = 0, CKE0 = 0, and TE = 1, low-level output occurs for one halfcycle. 1. End of serial data transmission 2. TE bit = 0 3. C/A bit = 0 ... switchover to port output 4. Occurrence of low-level output (see figure 13.38) Half-cycle low-level output SCK/port 1. End of transmission Data TE C/A Bit 6 4. Low-level output Bit 7 2. TE = 0 3. C/A = 0 CKE1 CKE0 Figure 13.38 Operation when Switching from SCK Pin to Port Pin Rev. 2.00 Dec. 05, 2005 Page 419 of 724 REJ09B0200-0200 Section 13 Serial Communication Interface (SCI) • Usage Note: To prevent low-level output occurred when switching the SCK pin to port pin, follow the procedure described below. As this sample procedure temporarily places the SCK pin in the input state, the SCK/port pin should be pulled up beforehand with an external circuit. With DDR = 1, DR = 1, C/A = 1, CKE1 = 0, CKE0 = 0, and TE = 1, make the following settings in the order shown. 1. End of serial data transmission 2. TE bit = 0 3. CKE1 bit = 1 4. C/A bit = 0 ... switchover to port output 5. CKE1 bit = 0 High-level output SCK/port 1. End of transmission Bit 6 Data Bit 7 2. TE = 0 TE 4. C/A = 0 C/A 3. CKE1 = 1 5. CKE1 = 0 CKE1 CKE0 Figure 13.39 Operation when Switching from SCK Pin to Port Pin (Example of Preventing Low-Level Output) Rev. 2.00 Dec. 05, 2005 Page 420 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Section 14 Controller Area Network (HCAN) The HCAN is a module for controlling a controller area network (CAN) for realtime communication in vehicular and industrial equipment systems, etc. For details on CAN specification, see Bosch CAN Specification Version 2.0 1991, Robert Bosch GmbH. The block diagram of the HCAN is shown in figure 14.1. 14.1 Features • CAN version: Bosch 2.0B active compatible Communication systems: NRZ (Non-Return to Zero) system (with bit-stuffing function) Broadcast communication system Transmission path: Bidirectional 2-wire serial communication Communication speed: Max. 1 Mbps Data length: 0 to 8 bytes • Number of channels: 2 • Data buffers: 16 for each channel (one receive-only buffer and 15 buffers settable for transmission/reception) • Data transmission: Two methods Mailbox (buffer) number order (low-to-high) Message priority (identifier) reverse-order (high-to-low) • Data reception: Two methods Message identifier match (transmit/receive-setting buffers) Reception with message identifier masked (receive-only) • CPU interrupts: 12 for each channel Error interrupt Reset processing interrupt Message reception interrupt Message transmission interrupt • HCAN operating modes IFCAN10C_000020040800 Rev. 2.00 Dec. 05, 2005 Page 421 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) • Support for various modes Hardware reset Software reset Normal status (error-active, error-passive) Bus off status HCAN configuration mode HCAN sleep mode HCAN halt mode • Other features DTC can be activated by message reception mailbox (HCAN mailbox 0 only) • Module stop mode can be set HCAN_0 MBI Message buffer Message control MC0 to MC15 Message data MD0 to MD15 (CDLC) CAN LAFM Data Link Controller Bosch CAN 2.0B active HTxD0 Tx buffer Peripheral data bus Peripheral address bus MPI Microprocessor interface Rx buffer HRxD0 CPU interface Control register Status register HCAN_1 MBI Message buffer Message control MC0 to MC15 Message data MD0 to MD15 (CDLC) CAN LAFM Data Link Controller Bosch CAN 2.0B active HTxD1 Tx buffer MPI Microprocessor interface Rx buffer CPU interface Control register Status register Figure 14.1 HCAN Block Diagram Rev. 2.00 Dec. 05, 2005 Page 422 of 724 REJ09B0200-0200 HRxD1 Section 14 Controller Area Network (HCAN) • Message Buffer Interface (MBI) The MBI, consisting of mailboxes and a local acceptance filter mask (LAFM), stores CAN transmit/receive messages (identifiers, data, etc.) Transmit messages are written by the CPU. For receive messages, the data received by the CDLC is stored automatically. • Microprocessor Interface (MPI) The MPI, consisting of a bus interface, control register, status register, etc., controls HCAN internal data, status, and so forth. • CAN Data Link Controller (CDLC) The CDLC, conforming to the Bosch CAN Ver. 2.0B active standard, performs transmission and reception of messages (data frames, remote frames, error frames, overload frames, interframe spacing), as well as CRC checking, bus arbitration, and other functions. 14.2 Input/Output Pins Table 14.1 shows the HCAN pins. When using HCAN pins, settings must be made in the HCAN configuration mode (during initialization: MCR0 = 1 and GSR3 = 1). Table 14.1 HCAN Pins Channel Name Abbreviation Input/Output Function 0 HCAN transmit data pin 0 HTxD0 Output CAN bus transmission pin for channel 0 HCAN receive data pin 0 HRxD0 Input CAN bus reception pin for channel 0 HCAN transmit data pin 1 HTxD1 Output CAN bus transmission pin for channel 1 HCAN receive data pin 1 HRxD1 Input CAN bus reception pin for channel 1 1 A bus driver is necessary for the interface between the pins and the CAN bus. A Philips PCA82C250 compatible model is recommended. Rev. 2.00 Dec. 05, 2005 Page 423 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3 Register Descriptions The HCAN has the following registers. • • • • • • • • • • • • • • • • • • • • • Master control register (MCR) General status register (GSR) Bit configuration register (BCR) Mailbox configuration register (MBCR) Transmit wait register (TXPR) Transmit wait cancel register (TXCR) Transmit acknowledge register (TXACK) Abort acknowledge register (ABACK) Receive complete register (RXPR) Remote request register (RFPR) Interrupt register (IRR) Mailbox interrupt mask register (MBIMR) Interrupt mask register (IMR) Receive error counter (REC) Transmit error counter (TEC) Unread message status register (UMSR) Local acceptance filter mask H (LAFMH) Local acceptance filter mask L (LAFML) Message control (8-bit × 8 registers × 16 sets) (MC0 to MC15) Message data (8-bit × 8 registers × 16 sets) (MD0 to MD15) HCAN Monitor Register (HCANMON) Rev. 2.00 Dec. 05, 2005 Page 424 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.1 Master Control Register (MCR) MCR is an 8-bit register that controls the HCAN. Bit Bit Name Initial Value R/W Description 7 MCR7 0 R/W HCAN Sleep Mode Release When this bit is set to 1, the HCAN automatically exits HCAN sleep mode on detection of CAN bus operation. 6 0 R Reserved This bit is always read as 0. The write value should always be 0. 5 MCR5 0 R/W HCAN Sleep Mode When this bit is set to 1, the HCAN requests HCAN sleep mode transition. When this bit is cleared to 0, HCAN sleep mode is released. 4, 3 All 0 R Reserved These bits are always read as 0. The write value should always be 0. 2 MCR2 0 R/W Message Transmission Method 0: Transmission order determined by message identifier priority 1: Transmission order determined by mailbox (buffer) number priority (TXPR1 > TXPR15) 1 MCR1 0 R/W Halt Request When this bit is set to 1, the HCAN requests HCAN HALT mode transition. When this bit is cleared to 0, HCAN HALT mode is released. 0 MCR0 1 R/W Reset Request When this bit is set to 1, the HCAN requests reset mode transition. For details, see section 14.4.1, Hardware and Software Resets. [Setting conditions] • Writing 1 to this bit (software reset) [Clearing condition] • When 0 is written to this bit while the GSR3 bit in GSR is 1 Rev. 2.00 Dec. 05, 2005 Page 425 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.2 General Status Register (GSR) GSR is an 8-bit register that indicates the status of the CAN bus. Bit Bit Name 7 to 4 Initial Value R/W All 0 R Description Reserved These bits are always read as 0. The write value should always be 0. 3 GSR3 1 R Reset Status Bit Indicates whether the HCAN module is in the normal operation state or the reset state. This bit cannot be modified. [Setting condition] • When entering configuration mode after the HCAN internal reset has finished • Sleep mode [Clearing condition] • 2 GSR2 1 R When entering the normal operation state after the MCR0 bit in MCR is cleared to 0 (Note that there is a delay between clearing of the MCR0 bit and the GSR3 bit.) Message Transmission Status Flag Flag that indicates whether the module is currently in the message transmission period. This bit cannot be modified. [Setting condition] • Third bit of intermission after EOF (End of Frame) [Clearing condition] • Rev. 2.00 Dec. 05, 2005 Page 426 of 724 REJ09B0200-0200 Start of message transmission (SOF) Section 14 Controller Area Network (HCAN) Bit Bit Name Initial Value R/W Description 1 GSR1 0 R Transmit/Receive Warning Flag This bit cannot be modified. [Clearing condition] • When TEC < 96 and REC < 96 • TEC ≥ 256 (bus-off state) [Setting condition] • 0 GSR0 0 R When TEC ≥ 96 or REC ≥ 96 Bus Off Flag This bit cannot be modified. [Setting condition] • When TEC ≥ 256 (bus off state) [Clearing condition] • 14.3.3 Recovery from bus off state Bit Configuration Register (BCR) BCR is a 16-bit register that is used to set HCAN bit timing parameters and the baud rate prescaler. For details on parameters, see section 14.4.2, Initialization after Hardware Reset. Bit Bit Name Initial Value R/W Description 15 BCR7 0 R/W Re-Synchronization Jump Width (SJW) 14 BCR6 0 R/W Set the maximum bit synchronization width. 00: 1 time quantum 01: 2 time quanta 10: 3 time quanta 11: 4 time quanta Rev. 2.00 Dec. 05, 2005 Page 427 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Bit Bit Name Initial Value R/W Description 13 BCR5 0 R/W Baud Rate Prescaler (BRP) 12 BCR4 0 R/W Set the length of time quanta. 11 BCR3 0 R/W 000000: 2 × system clock 10 BCR2 0 R/W 000001: 4 × system clock 9 BCR1 0 R/W 000010: 6 × system clock 8 BCR0 0 R/W 7 BCR15 0 R/W : 111111: 128 × system clock Bit Sample Point (BSP) Sets the point at which data is sampled. 0: Bit sampling at one point (end of time segment 1 (TSEG1)) 1: Bit sampling at three points (end of TSEG1 and preceding and following time quanta) 6 BCR14 0 R/W Time Segment 2 (TSEG2) 5 BCR13 0 R/W 4 BCR12 0 R/W Set the TSEG2 width within a range of 2 to 8 time quanta. 000: Setting prohibited 001: 2 time quanta 010: 3 time quanta 011: 4 time quanta 100: 5 time quanta 101: 6 time quanta 110: 7 time quanta 111: 8 time quanta Rev. 2.00 Dec. 05, 2005 Page 428 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Bit Bit Name Initial Value R/W Description 3 BCR11 0 R/W Time Segment 1 (TSEG1) 2 BCR10 0 R/W 1 BCR9 0 R/W Set the TSEG1 (PRSEG + PHSEG1) width to between 4 and 16 time quanta. 0 BCR8 0 R/W 0000: Setting prohibited 0001: Setting prohibited 0010: Setting prohibited 0011: 4 time quanta 0100: 5 time quanta 0101: 6 time quanta 0110: 7 time quanta 0111: 8 time quanta 1000: 9 time quanta 1001: 10 time quanta 1010: 11 time quanta 1011: 12 time quanta 1100: 13 time quanta 1101: 14 time quanta 1110: 15 time quanta 1111: 16 time quanta Rev. 2.00 Dec. 05, 2005 Page 429 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.4 Mailbox Configuration Register (MBCR) MBCR is a 16-bit register that is used to set the transfer direction for each mailbox. Bit Bit Name Initial Value R/W Description 15 MBCR7 0 R/W 14 MBCR6 0 R/W 13 MBCR5 0 R/W These bits set the transfer direction for the corresponding mailboxes 1 to 15. MBCRn determines the transfer direction for mailbox n (n =1 to 15). 12 MBCR4 0 R/W 11 MBCR3 0 R/W 10 MBCR2 0 R/W 9 MBCR1 0 R/W 8 1 R 7 MBCR15 0 R/W 6 MBCR14 0 R/W 5 MBCR13 0 R/W 4 MBCR12 0 R/W 3 MBCR11 0 R/W 2 MBCR10 0 R/W 1 MBCR9 0 R/W 0 MBCR8 0 R/W Rev. 2.00 Dec. 05, 2005 Page 430 of 724 REJ09B0200-0200 0: Corresponding mailbox is set for transmission 1: Corresponding mailbox is set for reception Bit 8 is reserved. This bit is always read as 1. The write value should always be 1. Section 14 Controller Area Network (HCAN) 14.3.5 Transmit Wait Register (TXPR) TXPR is a 16-bit register that is used to set a transmit wait after a transmit message is stored in a mailbox (buffer) (CAN bus arbitration wait). Bit Bit Name Initial Value R/W Description 15 TXPR7 0 R/W 14 TXPR6 0 R/W 13 TXPR5 0 R/W These bits set a transmit wait (CAN bus arbitration wait) for the corresponding mailboxes 1 to 15. When TXPRn (n = 1 to 15) is set to 1, the message in mailbox n becomes the transmit wait state. 12 TXPR4 0 R/W [Clearing condition] 11 TXPR3 0 R/W • Completion of message transmission 10 TXPR2 0 R/W • Completion of transmission cancellation 9 TXPR1 0 R/W 8 0 R Bit 8 is reserved. This bit is always read as 1. The write value should always be 1. 7 TXPR15 0 R/W 6 TXPR14 0 R/W 5 TXPR13 0 R/W 4 TXPR12 0 R/W 3 TXPR11 0 R/W 2 TXPR10 0 R/W 1 TXPR9 0 R/W 0 TXPR8 0 R/W Rev. 2.00 Dec. 05, 2005 Page 431 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.6 Transmit Wait Cancel Register (TXCR) TXCR is a 16-bit register that controls the cancellation of transmit wait messages in mailboxes (buffers). Bit Bit Name Initial Value R/W Description 15 TXCR7 0 R/W 14 TXCR6 0 R/W 13 TXCR5 0 R/W These bits cancel the transmit wait message in the corresponding mailboxes 1 to 15. When TXCRn (n = 1 to 15) is set to 1, the transmit wait message in mailbox n is canceled. 12 TXCR4 0 R/W [Clearing condition] 11 TXCR3 0 R/W • 10 TXCR2 0 R/W 9 TXCR1 0 R/W 8 0 R 7 TXCR15 0 R/W 6 TXCR14 0 R/W 5 TXCR13 0 R/W 4 TXCR12 0 R/W 3 TXCR11 0 R/W 2 TXCR10 0 R/W 1 TXCR9 0 R/W 0 TXCR8 0 R/W Rev. 2.00 Dec. 05, 2005 Page 432 of 724 REJ09B0200-0200 Completion of TXPR clearing when transmit message is canceled normally Bit 8 is reserved. This bit is always read as 0. The write value should always be 0. Section 14 Controller Area Network (HCAN) 14.3.7 Transmit Acknowledge Register (TXACK) TXACK is a 16-bit register containing status flags that indicate the normal transmission of mailbox (buffer) transmit messages. Bit Bit Name Initial Value 15 TXACK7 0 14 TXACK6 0 13 TXACK5 0 12 TXACK4 0 R/(W)* These bits are status flags that indicate error-free R/(W)* transmission of the transmit message in the corresponding mailboxes 1 to 15. When the message in R/(W)* mailbox n (n = 1 to 15) has been transmitted error-free, R/(W)* TXACKn is set to 1. 11 TXACK3 0 R/(W)* [Setting condition] 10 TXACK2 0 R/(W)* • 9 TXACK1 0 R/(W)* 8 0 R 7 TXACK15 0 6 TXACK14 0 5 TXACK13 0 R/(W)* • Writing 1 R/(W)* Bit 8 is reserved. This bit is always read as 0. The write value should always be 0. R/(W)* 4 TXACK12 0 R/(W)* 3 TXACK11 0 R/(W)* 2 TXACK10 0 R/(W)* 1 TXACK9 0 R/(W)* 0 TXACK8 0 R/(W)* Note: * R/W Description Completion of message transmission for corresponding mailbox [Clearing condition] Only 1 can be written to clear the flag. Rev. 2.00 Dec. 05, 2005 Page 433 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.8 Abort Acknowledge Register (ABACK) ABACK is a 16-bit register containing status flags that indicate the normal cancellation (aborting) of mailbox (buffer) transmit messages. Bit Bit Name Initial Value 15 ABACK7 0 14 ABACK6 0 13 ABACK5 0 12 ABACK4 0 R/(W)* These bits are status flags that indicate error-free R/(W)* cancellation (abortion) of the transmit message in the corresponding mailboxes 1 to 15. When the message in R/(W)* mailbox n (n = 1 to 15) has been canceled error-free, R/(W)* ABACKn is set to 1. 11 ABACK3 0 R/(W)* [Setting condition] 10 ABACK2 0 R/(W)* • 9 ABACK1 0 R/(W)* 8 0 R 7 ABACK15 0 6 ABACK14 0 5 ABACK13 0 R/(W)* • Writing 1 R/(W)* Bit 8 is reserved. This bit is always read as 0. The write value should always be 0. R/(W)* 4 ABACK12 0 R/(W)* 3 ABACK11 0 R/(W)* 2 ABACK10 0 R/(W)* 1 ABACK9 0 R/(W)* 0 ABACK8 0 R/(W)* Note: * R/W Description Completion of transmit message cancellation for corresponding mailbox [Clearing condition] Only 1 can be written to clear the flag. Rev. 2.00 Dec. 05, 2005 Page 434 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.9 Receive Complete Register (RXPR) RXPR is a 16-bit register containing status flags that indicate the normal reception of messages in mailboxes (buffers). For reception of a remote frame, when a bit in this register is set to 1, the corresponding remote request register (RFPR) bit is also set to 1 simultaneously. Bit Bit Name Initial Value 15 RXPR7 0 14 RXPR6 0 13 RXPR5 0 12 RXPR4 0 11 RXPR3 0 10 RXPR2 0 9 RXPR1 0 R/(W)* [Setting condition] R/(W)* • Completion of message (data frame or remote frame) reception in corresponding mailbox R/(W)* [Clearing condition] R/(W)* • Writing 1 R/(W)* 8 RXPR0 0 R/(W)* 7 RXPR15 0 R/(W)* 6 RXPR14 0 R/(W)* 5 RXPR13 0 R/(W)* 4 RXPR12 0 R/(W)* 3 RXPR11 0 R/(W)* 2 RXPR10 0 R/(W)* 1 RXPR9 0 R/(W)* 0 RXPR8 0 R/(W)* Note: * R/W Description R/(W)* When the message in mailbox n (n = 1 to 15) has been R/(W)* received error-free, RXPRn is set to 1. Only 1 can be written to clear the flag. Rev. 2.00 Dec. 05, 2005 Page 435 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.10 Remote Request Register (RFPR) RFPR is a 16-bit register containing status flags that indicate normal reception of remote frames in mailboxes (buffers). When a bit in this register is set to 1, the corresponding receive complete register (RXPR) bit is also set to 1 simultaneously. Bit Bit Name Initial Value 15 RFPR7 0 14 RFPR6 0 13 RFPR5 0 12 RFPR4 0 11 RFPR3 0 10 RFPR2 0 9 RFPR1 0 R/(W)* [Setting condition] R/(W)* • Completion of remote frame reception in corresponding mailbox R/(W)* [Clearing condition] R/(W)* • Writing 1 R/(W)* 8 RFPR0 0 R/(W)* 7 RFPR15 0 R/(W)* 6 RFPR14 0 R/(W)* 5 RFPR13 0 R/(W)* 4 RFPR12 0 R/(W)* 3 RFPR11 0 R/(W)* 2 RFPR10 0 R/(W)* 1 RFPR9 0 R/(W)* 0 RFPR8 0 R/(W)* Note: * R/W Description R/(W)* When mailbox n (n = 0 to 15) has received the remote R/(W)* frame error-free, RFPRn (n = 1 to 15) is set to 1. Only 1 can be written to clear the flag. Rev. 2.00 Dec. 05, 2005 Page 436 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.11 Interrupt Register (IRR) IRR is a 16-bit interrupt status flag register. Bit Bit Name Initial Value R/W 15 IRR7 0 R/(W)* Overload Frame Description [Setting condition] • When an overload frame is transmitted in error active/passive state [Clearing condition] • 14 IRR6 0 Writing 1 R/(W)* Bus Off Interrupt Flag Status flag indicating the bus off state caused by the transmit error counter. [Setting condition] • When TEC ≥ 256 [Clearing condition] • 13 IRR5 0 Writing 1 R/(W)* Error Passive Interrupt Flag Status flag indicating the error passive state caused by the transmit/receive error counter. [Setting condition] When TEC ≥ 128 or REC ≥ 128 [Clearing condition] • 12 IRR4 0 Writing 1 R/(W)* Receive Overload Warning Interrupt Flag Status flag indicating the error warning state caused by the receive error counter. [Setting condition] When REC ≥ 96 [Clearing condition] • Writing 1 Rev. 2.00 Dec. 05, 2005 Page 437 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Bit Bit Name Initial Value R/W 11 IRR3 0 R/(W)* Transmit Overload Warning Interrupt Flag Description Status flag indicating the error warning state caused by the transmit error counter. [Setting condition] • When TEC ≥ 96 [Clearing condition] • 10 IRR2 0 R Writing 1 Remote Frame Request Interrupt Flag Status flag indicating that a remote frame has been received in a mailbox (buffer) when the corresponding bit in MBIMR is 0. [Setting condition] • When remote frame reception is completed, when corresponding MBIMR = 0 [Clearing condition] • 9 IRR1 0 R Clearing of all bits in RFPR (remote request register) Receive Message Interrupt Flag Status flag indicating that a mailbox (buffer) has received a message normally when the corresponding bit in MBIMR is 0. [Setting condition] • When data frame or remote frame reception is completed, when corresponding MBIMR = 0 [Clearing condition] • Rev. 2.00 Dec. 05, 2005 Page 438 of 724 REJ09B0200-0200 Clearing of all bits in RXPR (receive complete register) Section 14 Controller Area Network (HCAN) Bit Bit Name Initial Value R/W 8 IRR0 1 R/(W)* Reset Interrupt Flag Description Status flag indicating that the HCAN module has been reset. This bit cannot be masked by the interrupt mask register (IMR). If this bit is not cleared to 0 after entering power-on reset or returning from software standby mode, interrupt processing will start immediately when the interrupt controller enables interrupts. [Setting condition] • When the reset operation has finished after entering power-on reset or software standby mode [Clearing condition] • 7 to 5 All 0 Writing 1 Reserved These bits are always read as 0. The write value should always be 0. 4 IRR12 0 R/(W)* Bus Operation Interrupt Flag Status flag indicating detection of a dominant bit due to bus operation when the HCAN module is in HCAN sleep mode. [Setting condition] • Bus operation (dominant bit) detection in HCAN sleep mode [Clearing condition] • 3, 2 All 0 Writing 1 Reserved These bits are always read as 0. The write value should always be 0. Rev. 2.00 Dec. 05, 2005 Page 439 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Bit Bit Name Initial Value R/W Description 1 IRR9 0 R Unread Interrupt Flag Status flag indicating that a receive message has been overwritten before being read. [Setting condition] • When UMSR (unread message status register) is set [Clearing condition] • 0 IRR8 0 Clearing of all bits in UMSR (unread message status register) R/(W)* Mailbox Empty Interrupt Flag Status flag indicating that the next transmit message can be stored in the mailbox. [Setting condition] • When TXPR (transmit wait register) is cleared by completion of transmission or completion of transmission abort [Clearing condition] • Note: * Writing 1 Only 1 can be written to clear the flag. Rev. 2.00 Dec. 05, 2005 Page 440 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.12 Mailbox Interrupt Mask Register (MBIMR) MBIMR is a 16-bit register that controls the enabling or disabling of individual mailbox (buffer) interrupt requests. Bit Bit Name Initial Value R/W Description 15 MBIMR7 1 R/W Mailbox Interrupt Mask (MBIMRx) 14 MBIMR6 1 R/W 13 MBIMR5 1 R/W 12 MBIMR4 1 R/W When MBIMRn (n = 1 to 15) is cleared to 0, the interrupt request in mailbox n is enabled. When set to 1, the interrupt request is masked. 11 MBIMR3 1 R/W 10 MBIMR2 1 R/W 9 MBIMR1 1 R/W 8 MBIMR0 1 R/W 7 MBIMR15 1 R/W 6 MBIMR14 1 R/W 5 MBIMR13 1 R/W 4 MBIMR12 1 R/W 3 MBIMR11 1 R/W 2 MBIMR10 1 R/W 1 MBIMR9 1 R/W 0 MBIMR8 1 R/W The interrupt source in a transmit mailbox is TXPR clearing caused by transmission end or transmission cancellation. The interrupt source in a receive mailbox is RXPR setting on reception end. Rev. 2.00 Dec. 05, 2005 Page 441 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.13 Interrupt Mask Register (IMR) IMR is a 16-bit register containing flags that enable or disable requests by individual interrupt sources. The reset interrupt flag cannot be masked. Bit Bit Name Initial Value R/W Description 15 IMR7 1 R/W Overload Frame Interrupt Mask When this bit is cleared to 0, an interrupt request by IRR7 (OVR0) is enabled. When set to 1, it is masked. 14 IMR6 1 R/W Bus Off Interrupt Mask When this bit is cleared to 0, an interrupt request by IRR6 (ERS0) is enabled. When set to 1, it is masked. 13 IMR5 1 R/W Error Passive Interrupt Mask When this bit is cleared to 0, an interrupt request by IRR5 (ERS0) is enabled. When set to 1, it is masked. 12 IMR4 1 R/W Receive Overload Warning Interrupt Mask When this bit is cleared to 0, an interrupt request by IRR4 (OVR0) is enabled. When set to 1, it is masked. 11 IMR3 1 R/W Transmit Overload Warning Interrupt Mask When this bit is cleared to 0, an interrupt request by IRR3 (OVR0) is enabled. When set to 1, it is masked. 10 IMR2 1 R/W Remote Frame Request Interrupt Mask When this bit is cleared to 0, an interrupt request by IRR2 (OVR0) is enabled. When set to 1, it is masked. 9 IMR1 1 R/W Receive Message Interrupt Mask When this bit is cleared to 0, an interrupt request by IRR1 (RM1) is enabled. When set to 1, it is masked. 8 0 R Reserved This bit is always read as 0. The write value should always be 0. 7 to 5 All 1 R Reserved These bits are always read as 1. The write value should always be 1. Rev. 2.00 Dec. 05, 2005 Page 442 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Bit Bit Name Initial Value R/W Description 4 IMR12 1 R/W Bus Operation Interrupt Mask When this bit is cleared to 0, an interrupt request by IRR12 (OVR0) is enabled. When set to 1, it is masked. 3, 2 All 1 R Reserved These bits are always read as 1. The write value should always be 1. 1 IMR9 1 R/W Unread Interrupt Mask When this bit is cleared to 0, an interrupt request by IRR9 (OVR0) is enabled. When set to 1, it is masked. 0 IMR8 1 R/W Mailbox Empty Interrupt Mask When this bit is cleared to 0, an interrupt request by IRR8 (SLE0) is enabled. When set to 1, it is masked. 14.3.14 Receive Error Counter (REC) The receive error counter (REC) is an 8-bit read-only register that functions as a counter indicating the number of receive message errors on the CAN bus. The count value is stipulated in the CAN protocol. 14.3.15 Transmit Error Counter (TEC) The transmit error counter (TEC) is an 8-bit read-only register that functions as a counter indicating the number of transmit message errors on the CAN bus. The count value is stipulated in the CAN protocol. Rev. 2.00 Dec. 05, 2005 Page 443 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.16 Unread Message Status Register (UMSR) UMSR is a 16-bit register containing status flags that indicate, for individual mailboxes (buffers), that a received message has been overwritten by a new receive message before being read. When overwritten by a new message, data in the unread receive message is lost. Bit Bit Name Initial Value 15 UMSR7 0 14 UMSR6 0 13 UMSR5 0 12 UMSR4 0 11 UMSR3 0 10 UMSR2 0 9 UMSR1 0 R/(W)* [Setting condition] R/(W)* • When a new message is received before RXPR is cleared R/(W)* [Clearing condition] R/(W)* • Writing 1 R/(W)* 8 UMSR0 0 R/(W)* 7 UMSR15 0 R/(W)* 6 UMSR14 0 R/(W)* 5 UMSR13 0 R/(W)* 4 UMSR12 0 R/(W)* 3 UMSR11 0 R/(W)* 2 UMSR10 0 R/(W)* 1 UMSR9 0 R/(W)* 0 UMSR8 0 R/(W)* Note: * R/W Description R/(W)* Each bit indicates that the received message has been R/(W)* overwritten by a new message before being read. Only 1 can be written to clear the flag. 14.3.17 Local Acceptance Filter Masks (LAFML, LAFMH) LAFML and LAFMH are 16-bit registers that individually set the identifier bits of the message to be stored in mailbox 0 as Don't Care. For details, see section 14.4.4, Message Reception. The relationship between the identifier bits and mask bits are shown in the following. Rev. 2.00 Dec. 05, 2005 Page 444 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) • LAFML Bit Bit Name Initial Value R/W Description 15 LAFML7 0 R/W When this bit is set to 1, ID-7 of the receive message identifier is not compared. 14 LAFML6 0 R/W When this bit is set to 1, ID-6 of the receive message identifier is not compared. 13 LAFML5 0 R/W When this bit is set to 1, ID-5 of the receive message identifier is not compared. 12 LAFML4 0 R/W When this bit is set to 1, ID-4 of the receive message identifier is not compared. 11 LAFML3 0 R/W When this bit is set to 1, ID-3 of the receive message identifier is not compared. 10 LAFML2 0 R/W When this bit is set to 1, ID-2 of the receive message identifier is not compared. 9 LAFML1 0 R/W When this bit is set to 1, ID-1 of the receive message identifier is not compared. 8 LAFML0 0 R/W When this bit is set to 1, ID-0 of the receive message identifier is not compared. 7 LAFML15 0 R/W When this bit is set to 1, ID-15 of the receive message identifier is not compared. 6 LAFML14 0 R/W When this bit is set to 1, ID-14 of the receive message identifier is not compared. 5 LAFML13 0 R/W When this bit is set to 1, ID-13 of the receive message identifier is not compared. 4 LAFML12 0 R/W When this bit is set to 1, ID-12 of the receive message identifier is not compared. 3 LAFML11 0 R/W When this bit is set to 1, ID-11 of the receive message identifier is not compared. 2 LAFML10 0 R/W When this bit is set to 1, ID-10 of the receive message identifier is not compared. 1 LAFML9 0 R/W When this bit is set to 1, ID-9 of the receive message identifier is not compared. 0 LAFML8 0 R/W When this bit is set to 1, ID-8 of the receive message identifier is not compared. Rev. 2.00 Dec. 05, 2005 Page 445 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) • LAFMH Bit Bit Name Initial Value R/W Description 15 LAFMH7 0 R/W When this bit is set to 1, ID-20 of the receive message identifier is not compared. 14 LAFMH6 0 R/W When this bit is set to 1, ID-19 of the receive message identifier is not compared. 13 LAFMH5 0 R/W When this bit is set to 1, ID-18 of the receive message identifier is not compared. 12 to 10 All 0 R Reserved 9 LAFMH1 0 R/W When this bit is set to 1, ID-17 of the receive message identifier is not compared. 8 LAFMH0 0 R/W When this bit is set to 1, ID-16 of the receive message identifier is not compared. 7 LAFMH15 0 R/W When this bit is set to 1, ID-28 of the receive message identifier is not compared. 6 LAFMH14 0 R/W When this bit is set to 1, ID-27 of the receive message identifier is not compared. 5 LAFMH13 0 R/W When this bit is set to 1, ID-26 of the receive message identifier is not compared. 4 LAFMH12 0 R/W When this bit is set to 1, ID-25 of the receive message identifier is not compared. 3 LAFMH11 0 R/W When this bit is set to 1, ID-24 of the receive message identifier is not compared. 2 LAFMH10 0 R/W When this bit is set to 1, ID-23 of the receive message identifier is not compared. 1 LAFMH9 0 R/W When this bit is set to 1, ID-22 of the receive message identifier is not compared. 0 LAFMH8 0 R/W When this bit is set to 1, ID-21 of the receive message identifier is not compared. These bits are always read as 0. The write value should always be 0. Rev. 2.00 Dec. 05, 2005 Page 446 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.18 Message Control (MC0 to MC15) The message control register sets consist of eight 8-bit registers for one mailbox. The HCAN has 16 sets of these registers. Because message control registers are in RAM, their initial values after power-on are undefined. Be sure to initialize them by writing 0 or 1. Figure 14.2 shows the register names for each mailbox. Mail box 0 MC0[1] MC0[2] MC0[3] MC0[4] MC0[5] MC0[6] MC0[7] MC0[8] Mail box 1 MC1[1] MC1[2] MC1[3] MC1[4] MC1[5] MC1[6] MC1[7] MC1[8] Mail box 2 MC2[1] MC2[2] MC2[3] MC2[4] MC2[5] MC2[6] MC2[7] MC2[8] Mail box 3 MC3[1] MC3[2] MC3[3] MC3[4] MC3[5] MC3[6] MC3[7] MC3[8] Mail box 15 MC15[1] MC15[2] MC15[3] MC15[4] MC15[5] MC15[6] MC15[7] MC15[8] Figure 14.2 Message Control Register Configuration The setting of message control registers are shown in the following. Figures 14.3 and 14.4 show the correspondence between the identifiers and register bit names. SOF ID-28 ID-27 ID-18 RTR IDE R0 identifier Figure 14.3 Standard Format SOF ID-28 ID-27 ID-18 Standard identifier SRR IDE ID-17 ID-16 ID-0 RTR R1 Extended identifier Figure 14.4 Extended Format Rev. 2.00 Dec. 05, 2005 Page 447 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Register Name Bit Bit Name R/W Description MCx[1] 7 to 4 R/W The initial value of these bits is undefined. They must be initialized by writing 0 or 1. 3 to 0 DLC3 to DLC0 R/W Data Length Code Set the data length of a data frame or the data length requested in a remote frame within the range of 0 to 8 bits. 0000: 0 byte 0001: 1 byte 0010: 2 bytes 0011: 3 bytes 0100: 4 bytes 0101: 5 bytes 0110: 6 bytes 0111: 7 bytes 1xxx: 8 bytes MCx[2] 7 to 0 R/W MCx[3] 7 to 0 R/W MCx[4] 7 to 0 R/W MCx[5] 7 to 5 ID-20 to ID-18 R/W Sets ID-20 to ID-18 in the identifier. 4 RTR R/W Remote Transmission Request The initial value of these bits is undefined; they must be initialized by writing 0 or 1. Used to distinguish between data frames and remote frames. 0: Data frame 1: Remote frame 3 IDE R/W Identifier Extension Used to distinguish between the standard format and extended format of data frames and remote frames. 0: Standard format 1: Extended format 2 R/W The initial value of this bit is undefined. It must be initialized by writing 0 or 1. 1 to 0 ID-17 to ID-16 R/W Sets ID-17 and ID-16 in the identifier. MCx[6] 7 to 0 ID-28 to ID-21 R/W Sets ID-28 to ID-21 in the identifier. MCx[7] 7 to 0 ID-7 to ID-0 R/W Sets ID-7 to ID-0 in the identifier. MCx[8] 7 to 0 ID-15 to ID-8 R/W Sets ID-15 to ID-8 in the identifier. Note: x: Mailbox number Rev. 2.00 Dec. 05, 2005 Page 448 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.19 Message Data (MD0 to MD15) The message data register sets consist of eight 8-bit registers for one mailbox. The HCAN has 16 sets of these registers. Because message data registers are in RAM, their initial values after poweron are undefined. Be sure to initialize them by writing 0 or 1. Figure 14.5 shows the register names for each mailbox. Mail box 0 MD0[1] MD0[2] MD0[3] MD0[4] MD0[5] MD0[6] MD0[7] MD0[8] Mail box 1 MD1[1] MD1[2] MD1[3] MD1[4] MD1[5] MD1[6] MD1[7] MD1[8] Mail box 2 MD2[1] MD2[2] MD2[3] MD2[4] MD2[5] MD2[6] MD2[7] MD2[8] Mail box 3 MD3[1] MD3[2] MD3[3] MD3[4] MD3[5] MD3[6] MD3[7] MD3[8] Mail box 15 MD15[1] MD15[2] MD15[3] MD15[4] MD15[5] MD15[6] MD15[7] MD15[8] Figure 14.5 Message Data Configuration Rev. 2.00 Dec. 05, 2005 Page 449 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.3.20 HCAN Monitor Register (HCANMON) HCANMON is an 8-bit register that enables/disables an HCAN receive interrupt, controls transmission stop of the HTxD pin, and reflects the states of the HCAN pins. Bit Bit Name Initial Value R/W Description 7 RxDIE 0 R/W HRxD Interrupt Enable Selects whether an IRQ2 interrupt is caused by PF0 or HRxD pin. 0: An IRQ2 interrupt is caused by pin PF0 1: An IRQ2 interrupt is caused by the HRxD pin 6 TxSTP 0 R/W HTxD Transmission Stop Controls transmission stop of the HTxD pin. 0: Enables transmission from the HTxD pin 1: Fixes an output level of the HTxD pin at 1 and transmission is stopped 5 PKFE* 0 R/W HCAN Enable Selects PK7/HRxD1 and PK6/HTxD1 pin function 0: puts PK7 and PK6 pins in port function 1: puts PK7 pin in HRxD1 function and puts PK6 pin in HTxD1 function 4 to 2 Undefined Reserved These bits are always read as undefined values and cannot be modified. 1 TxD Undefined R Transmission pin The state of the HTxD pin is read. This bit cannot be modified. 0 RxD Undefined R Reception pin The state of the HRxD pin is read. This bit cannot be modified. Note: * The PKFE bit supports only HCAN_1 Rev. 2.00 Dec. 05, 2005 Page 450 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.4 Operation 14.4.1 Hardware and Software Resets The HCAN can be reset by a hardware reset or software reset. • Hardware Reset At power-on reset, or in hardware or software standby mode, the HCAN is initialized by automatically setting the MCR reset request bit (MCR0) in MCR and the reset state bit (GSR3) in GSR. At the same time, all internal registers, except for message control and message data registers, are initialized by a hardware reset. • Software Reset The HCAN can be reset by setting the MCR reset request bit (MCR0) in MCR via software. In a software reset, the error counters (TEC and REC) are initialized, however other registers are not. If the MCR0 bit is set while the CAN controller is performing a communication operation (transmission or reception), the initialization state is not entered until message transfer has been completed. The reset status bit (GSR3) in GSR is set on completion of initialization. 14.4.2 Initialization after Hardware Reset After a hardware reset, the following initialization processing should be carried out: 1. 2. 3. 4. 5. Clearing of IRR0 bit in the interrupt register (IRR) Bit rate setting Mailbox transmit/receive settings Mailbox (RAM) initialization Message transmission method setting These initial settings must be made while the HCAN is in bit configuration mode. Configuration mode is a state in which the GSR3 bit in GSR is set to 1 by a reset. Configuration mode is exited by clearing the MCR0 bit in MCR to 0; when the MCR0 bit is cleared to 0, the HCAN automatically clears the GSR3 bit in GSR. There is a delay between clearing the MCR0 bit and clearing the GSR3 bit because the HCAN needs time to be internally reset. After the HCAN exits configuration mode, the power-up sequence begins, and communication with the CAN bus is possible as soon as 11 consecutive recessive bits have been detected. Rev. 2.00 Dec. 05, 2005 Page 451 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) IRR0 Clearing: The reset interrupt flag (IRR0) is always set after a power-on reset or recovery from software standby mode. Since an HCAN interrupt is initiated immediately when interrupts are enabled, IRR0 should be cleared. Hardware reset : Settings by user : Processing by hardware MCR0 = 1 (automatic) IRR0 = 1 (automatic) GSR3 = 1 (automatic) Initialization of HCAN module Bit configuration mode Period in which BCR, MBCR, etc., are initialized Clear IRR0 BCR setting MBCR setting Mailbox initialization Message transmission method initialization MCR0 = 0 GSR3 = 0? No Yes IMR setting (interrupt mask setting) MBIMR setting (interrupt mask setting) MC[x] setting (receive identifier setting) LAFM setting (receive identifier mask setting) GSR3 = 0 & 11 recessive bits received? No Yes Can bus communication enabled Figure 14.6 Hardware Reset Flowchart Rev. 2.00 Dec. 05, 2005 Page 452 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) MCR0 = 1 : Settings by user Bus idle? No : Processing by hardware Yes GSR3 = 1 (automatic) Initialization of REC and TEC only Correction BCR setting MBCR setting Mailbox (RAM) initialization Message transmission method initialization OK? GSR3 = 1? No No Yes MCR0 = 0 GSR3 = 0? No Yes Correction IMR setting MBIMR setting MC[x] setting LAFM setting OK? No Yes GSR3 = 0 & 11 recessive bits received? No Yes CAN bus communication enabled Figure 14.7 Software Reset Flowchart Rev. 2.00 Dec. 05, 2005 Page 453 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Bit Rate and Bit Timing Settings: The bit rate and bit timing settings are made in the bit configuration register (BCR). Settings should be made such that all CAN controllers connected to the CAN bus have the same baud rate and bit width. The 1-bit time consists of the total of the settable time quanta (tq). 1-bit time (8–25 time quanta) SYNC_SEG PRSEG 1 time quantum PHSEG1 PHSEG2 Time segment 1 (TSEG1) Time segment 2 (TSEG2) 4–16 time quanta 2–8 time quanta Figure 14.8 Detailed Description of One-Bit Time SYNC_SEG is a segment for establishing the synchronization of nodes on the CAN bus. Normal bit edge transitions occur in this segment. PRSEG is a segment for compensating for the physical delay between networks. PHSEG1 is a buffer segment for correcting phase drift (positive). This segment is extended when synchronization (resynchronization) is established. PHSEG2 is a buffer segment for correcting phase drift (negative). This segment is shortened when synchronization (resynchronization) is established. Limits on the settable value (TSEG1, TSEG2, BRP, BSP, and SJW) are shown in table 14.2. Table 14.2 Limits for the Settable Value Name Time segment 1 Abbreviation TSEG1 Min. Value B'0011* 2 3 Max. Value B'1111 Time segment 2 TSEG2 B'001* B'111 Baud rate prescaler BRP B'000000 B'111111 Bit sample point BSP B'0 B'1 B'00 B'11 Re-synchronization jump width SJW* 1 Notes: 1. SJW is stipulated in the CAN specifications: 3 ≥ SJW ≥ 0 2. The minimum value of TSEG2 is stipulated in the CAN specifications: TSEG2 ≥ SJW 3. The minimum value of TSEG1 is stipulated in the CAN specifications: TSEG1 > TSEG2 Rev. 2.00 Dec. 05, 2005 Page 454 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Time quanta (tq) is an integer multiple of the number of system clocks, and is determined by the baud rate prescaler (BRP) as follows. fCLK is the system clock frequency. tq = 2 × (BPR setting + 1)/fCLK The following formula is used to calculate the 1-bit time and bit rate. 1-bit time = tq × (3 + TSEG1 + TSEG2) Bit rate = 1/Bit time = fCLK/{2 × (BPR setting + 1) × (3 + TSEG1 + TSEG2)} Note: fCLK = φ (system clock) A BCR value is used for BRP, TSEG1, and TSEG2. Example: With a system clock of 24 MHz, a BRP setting of B'000000, a TSEG1 setting of B'0101, and a TSEG2 setting of B'100: Bit rate = 24/{2 × (0 + 1) × (3 + 5 + 4)} = 1 Mbps Table 14.3 Setting Range for TSEG1 and TSEG2 in BCR TSEG2 (BCR14−BCR12) 001 010 011 100 101 110 111 TSEG1 0011 No Yes No No No No No (BCR11−BCR8) 0100 Yes* Yes Yes No No No No 0101 Yes* Yes Yes Yes No No No 0110 Yes* Yes Yes Yes Yes No No 0111 Yes* Yes Yes Yes Yes Yes No 1000 Yes* Yes Yes Yes Yes Yes Yes 1001 Yes* Yes Yes Yes Yes Yes Yes 1010 Yes* Yes Yes Yes Yes Yes Yes 1011 Yes* Yes Yes Yes Yes Yes Yes 1100 Yes* Yes Yes Yes Yes Yes Yes 1101 Yes* Yes Yes Yes Yes Yes Yes 1110 Yes* Yes Yes Yes Yes Yes Yes 1111 Yes* Yes Yes Yes Yes Yes Yes Note: The time quantum values for TSEG1 and TSEG2 are determined by TSEG value + 1. * Settable unless BRP = B'000000. Rev. 2.00 Dec. 05, 2005 Page 455 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Mailbox Transmit/Receive Settings: The HCAN has 16 mailboxes. Mailbox 0 is receive-only, while mailboxes 1 to 15 can be set for transmission or reception. The initial status of mailboxes 1 to 15 is for transmission. Mailbox transmit/receive settings are not initialized by a software reset. Clearing a bit to 0 in the mailbox configuration register (MBCR) designates the corresponding mailbox for transmission use, whereas a setting of 1 in MBCR designates the corresponding mailbox for reception use. When setting mailboxes for reception, in order to improve message reception efficiency, high-priority messages should be set in low-to-high mailbox order. Mailbox (Message Control/Data) Initial Settings: Message control/data are held in RAM, and so their initial values are undefined after power is supplied. Initial values must therefore be set in all the mailboxes (by writing 0s or 1s). Setting the Message Transmission Method: The following two kinds of message transmission methods are available. • Transmission order determined by message identifier priority • Transmission order determined by mailbox number priority Either of the message transmission methods can be selected with the message transmission method bit (MCR2) in the master control register (MCR): When messages are set to be transmitted according to the message identifier priority, if several messages are designated as waiting for transmission (TXPR = 1), the message with the highest priority in the message identifier is stored in the transmit buffer. CAN bus arbitration is then carried out for the message stored in the transmit buffer, and the message is transmitted when the transmission right is acquired. When the TXPR bit is set, the highest-priority message is found and stored in the transmit buffer. When messages are set to be transmitted according to the mailbox number priority, if several messages are designated as waiting for transmission (TXPR = 1), messages are stored in the transmit buffer in low-to-high mailbox order. CAN bus arbitration is then carried out for the message stored in the transmit buffer, and the message is transmitted when the transmission right is acquired. Rev. 2.00 Dec. 05, 2005 Page 456 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.4.3 Message Transmission Messages are transmitted using mailboxes 1 to 15. The transmission procedure after initial settings is described below, and a transmission flowchart is shown in figure 14.9. Initialization (after hardware reset only) Clear IRR0 BCR setting MBCR setting Mailbox initialization Message transmission method setting : Settings by user : Processing by hardware Interrupt settings Transmit data setting Arbitration field setting Control field setting Data field setting Message transmission wait TXPR setting Bus idle? No Yes Message transmission GSR2 = 0 (during transmission only) Transmission completed? No Yes TXACK = 1 IRR8 = 1 IMR8 = 1? Yes No Interrupt to CPU Clear TXACK Clear IRR8 End of transmission Figure 14.9 Transmission Flowchart Rev. 2.00 Dec. 05, 2005 Page 457 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) CPU interrupt source settings: The CPU interrupt source is set by the interrupt mask register (IMR) and mailbox interrupt mask register (MBIMR). Transmission acknowledge and transmission abort acknowledge interrupts can be generated for individual mailboxes in the mailbox interrupt mask register (MBIMR). Arbitration field setting: The arbitration field is set by the message control registers MCx[5] to MCx[8] in a transmit mailbox. For a standard format, an 11-bit identifier (ID-28 to ID-18) and the RTR bit are set, and the IDE bit is cleared to 0. For an extended format, a 29-bit identifier (ID-28 to ID-0) and the RTR bit are set, and the IDE bit is set to 1. Control field setting: In the control field, the byte length of the data to be transmitted is set within the range of zero to eight bytes. The register to be set is the message control register MCx[1] in a transmit mailbox. Data field setting: In the data field, the data to be transmitted is set within the range zero to eight. The registers to be set are the message data registers MDx[1] to MDx[8]. The byte length of the data to be transmitted is determined by the data length code in the control field. Even if data exceeding the value set in the control field is set in the data field, up to the byte length set in the control field will actually be transmitted. Message transmission: If the corresponding mailbox transmit wait bit (TXPR1 to TXPR15) in the transmit wait register (TXPR) is set to 1 after message control and message data registers have been set, the message enters transmit wait state. If the message is transmitted error-free, the corresponding acknowledge bit (TXACK1 to TXACK15) in the transmit acknowledge register (TXACK) is set to 1, and the corresponding transmit wait bit (TXPR1 to TXPR15) in the transmit wait register (TXPR) is automatically cleared to 0. Also, if the corresponding bit (MBIMR1 to MBIMR15) in the mailbox interrupt mask register (MBIMR) and the mailbox empty interrupt bit (IRR8) in the interrupt mask register (IMR) are both simultaneously set to enable interrupts, interrupts may be sent to the CPU. If transmission of a transmit message is aborted in the following cases, the message is retransmitted automatically: • CAN bus arbitration failure (failure to acquire the bus) • Error during transmission (bit error, stuff error, CRC error, frame error, or ACK error) Rev. 2.00 Dec. 05, 2005 Page 458 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Message transmission cancellation: Transmission cancellation can be specified for a message stored in a mailbox as a transmit wait message. A transmit wait message is canceled by setting the bit for the corresponding mailbox (TXCR1 to TXCR15) to 1 in the transmit cancel register (TXCR). Clearing the transmit wait register (TXPR) does not cancel transmission. When cancellation is executed, the transmit wait register (TXPR) is automatically reset, and the corresponding bit is set to 1 in the abort acknowledge register (ABACK), and then an interrupt to the CPU can be requested. Also, if the corresponding bit (MBIMR1-MBIMR15) in the mailbox interrupt mask register (MBIMR) and the mailbox empty interrupt bit (IRR8) in the interrupt mask register (IMR) are both simultaneously set to enable interrupts, interrupts may be sent to the CPU. However, a transmit wait message cannot be canceled at the following times: • During internal arbitration or CAN bus arbitration • During data frame or remote frame transmission Figure 14.10 shows a flowchart for transmit message cancellation. Rev. 2.00 Dec. 05, 2005 Page 459 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Message transmit wait TXPR setting : Settings by user : Processing by hardware Set TXCR bit corresponding to message to be canceled No Cancellation possible? Yes Message not sent Clear TXCR, TXPR ABACK = 1 IRR8 = 1 IMR8 = 1? Completion of message transmission TXACK = 1 Clear TXCR, TXPR IRR8 = 1 Yes No Interrupt to CPU Clear TXACK Clear ABACK Clear IRR8 End of transmission/transmission cancellation Figure 14.10 Transmit Message Cancellation Flowchart Rev. 2.00 Dec. 05, 2005 Page 460 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.4.4 Message Reception The reception procedure after initial settings is described below. A reception flowchart is shown in Figure 14.11. Initialization : Settings by user Clear IRR0 BCR setting MBCR setting Mailbox (RAM) initialization : Processing by hardware Interrupt settings Receive data setting Arbitration field setting Local acceptance filter settings Message reception (Match of identifier in mailbox?) No Yes Yes Same RXPR = 1? Unread message No Data frame? No Yes RXPR, RFPR = 1 IRR2 = 1, IRR1 = 1 RXPR IRR1 = 1 Yes IMR1 = 1? IMR2 = 1? No No Interrupt to CPU Interrupt to CPU Message control read Message data read Message control read Message data read Clear IRR1 Clear IRR2, IRR1 Yes Transmission of data frame corresponding to remote frame End of reception Figure 14.11 Reception Flowchart Rev. 2.00 Dec. 05, 2005 Page 461 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) CPU interrupt source settings: CPU interrupt source settings are made in the interrupt mask register (IMR) and mailbox interrupt register (MBIMR). The message to be received is also specified. Data frame and remote frame receive wait interrupt requests can be generated for individual mailboxes in the MBIMR. Arbitration field setting: To receive a message, the message identifier must be set in advance in the message control registers (MCx[1] to MCx[8]) for the receiving mailbox. When a message is received, all the bits in the receive message identifier are compared with those in each message control register identifier, and if a complete match is found, the message is stored in the matching mailbox. Mailbox 0 has a local acceptance filter mask (LAFM) that allows Don't Care settings. The LAFM setting can be made only for mailbox 0. By setting the Don't Care for all the bits in the receive message identifier, messages of multiple identifiers can be received. Examples: • When the identifier of mailbox 1 is 010_1010_1010 (standard format), only one kind of message identifier can be received by mailbox 1: Identifier 1: 010_1010_1010 • When the identifier of mailbox 0 is 010_1010_1010 (standard format) and the LAFM setting is 000_0000_0011 (0: Care, 1: Don't Care), a total of four kinds of message identifiers can be received by mailbox 0: Identifier 1: 010_1010_1000 Identifier 2: 010_1010_1001 Identifier 3: 010_1010_1010 Identifier 4: 010_1010_1011 Rev. 2.00 Dec. 05, 2005 Page 462 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) Message reception: When a message is received, a CRC check is performed automatically. If the result of the CRC check is normal, ACK is transmitted in the ACK field irrespective of whether the message can be received or not. • Data frame reception If the received message is confirmed to be error-free by the CRC check, the identifier in the mailbox (and also LAFM in the case of mailbox 0 only) and the identifier of the receive message are compared. If a complete match is found, the message is stored in the matching mailbox. The message identifier comparison is carried out on each mailbox in turn, starting with mailbox 0 and ending with mailbox 15. If a complete match is found, the comparison ends at that point, the message is stored in the matching mailbox, and the corresponding receive complete bit (RXPR0 to RXPR15) in the receive complete register (RXPR) is set. However, if the identifier matches that of mailbox 0 LAFM, the mailbox comparison sequence does not end at that point, but continues from mailbox 1. Therefore, the message for mailbox 0 can also be received by another mailbox. Note that the same message cannot be stored in two or more mailbox of the mailboxes 1 to 15. On receiving a message, a CPU interrupt request may be generated according to the settings of the mailbox interrupt mask register (MBIMR) and interrupt mask register (IMR). • Remote frame reception A mailbox can store two kinds of messages: data frames and remote frames. A remote frame differs from a data frame in the value of the remote transmission request bit (RTR) in the message control register and its 0-byte data field. The data length to be returned in a data frame must be stored in the data length code (DLC) in the message control. When a remote frame (RTR = recessive) is received, the corresponding bit in the remote request wait register (RFPR) is set. Interrupts can be sent to the CPU according to the settings of the corresponding bit (MBIMR0 to MBIMR15) in the mailbox interrupt mask register (MBIMR) and the remote frame request interrupt mask (IRR2) in the interrupt mask register (IMR). Unread message overwrite: If the receive message identifier matches the mailbox identifier, the receive message is stored in the mailbox regardless of whether the mailbox contains an unread message or not. If a message overwrite occurs, the corresponding bit (UMSR0 to UMSR15) in the unread message register (UMSR) is set. In overwriting an unread message, the unread message register (UMSR) is set when a new message is received before the corresponding bit in the receive complete register (RXPR) has been cleared. If the unread interrupt flag (IRR9) in the interrupt mask register (IMR) is set to enable interrupts at this time, an interrupt can be sent to the CPU. Figure 14.12 shows a flowchart for unread message overwriting. Rev. 2.00 Dec. 05, 2005 Page 463 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) : Settings by user Unread message overwrite : Processing by hardware UMSR = 1 IRR9 = 1 IMR9 = 1? Yes No Interrupt to CPU Clear IRR9 Message control/message data read End Figure 14.12 Unread Message Overwrite Flowchart 14.4.5 HCAN Sleep Mode The HCAN is provided with an HCAN sleep mode that places the HCAN module in the sleep state in order to reduce current consumption. Figure 14.13 shows a flowchart of the HCAN sleep mode. Rev. 2.00 Dec. 05, 2005 Page 464 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) MCR5 = 1 : Settings by user : Processing by hardware No Bus idle? Initialize TEC and REC No Bus operation? Yes IRR12 = 1 Do not access MB during these steps No IMR12 = 1? CPU interrupt Yes Sleep mode clearing method MCR7 = 0? No (automatic) Yes (manual) Clear sleep mode? No GSR3 = 1? No Yes MCR5 = 0 GSR3 = 1? No Yes Yes MCR5 = 0 11 recessive bits received? No Yes CAN bus communication possible Figure 14.13 HCAN Sleep Mode Flowchart Rev. 2.00 Dec. 05, 2005 Page 465 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) HCAN sleep mode is entered by setting the HCAN sleep mode bit (MCR5) to 1 in the master control register (MCR). If the CAN bus is operating, the transition to HCAN sleep mode is delayed until the bus becomes idle. Either of the following methods of clearing HCAN sleep mode can be selected: • Clearing by software • Clearing by CAN bus operation In order to re-enter CAN bus communication enabled state, eleven recessive bits must be received after HCAN sleep mode was cleared. Clearing by software: HCAN sleep mode is cleared by writing a 0 to MCR5 from the CPU. Clearing by CAN bus operation: The cancellation method is selected by the MCR7 bit setting in MCR. Clearing by CAN bus operation occurs automatically when the CAN bus performs an operation and this change is detected. In this case, the first message is not stored in a mailbox; messages will be received normally from the second message onward. When a change is detected on the CAN bus in HCAN sleep mode, the bus operation interrupt flag (IRR12) is set in the interrupt register (IRR). If the bus interrupt mask (IMR12) in the interrupt mask register (IMR) is set to enable interrupts at this time, an interrupt can be sent to the CPU. Rev. 2.00 Dec. 05, 2005 Page 466 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.4.6 HCAN Halt Mode The HCAN halt mode is provided to enable mailbox settings to be changed without performing an HCAN hardware or software reset. Figure 14.14 shows a flowchart of the HCAN halt mode. MCR1 = 1 Bus idle? No Yes Set MBCR MCR1 = 0 : Settings by user CAN bus communication possible : Processing by hardware Figure 14.14 HCAN Halt Mode Flowchart HCAN halt mode is entered by setting the halt request bit (MCR1) to 1 in the master control register (MCR). If the CAN bus is operating, the transition to HCAN halt mode is delayed until the bus becomes idle. HCAN halt mode is cleared by clearing MCR1 to 0. Rev. 2.00 Dec. 05, 2005 Page 467 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.5 Interrupt Sources Table 14.4 lists the HCAN interrupt sources. These sources can be masked except the reset processing interrupt by power-on reset (IRR0). Masking is implemented using the mailbox interrupt mask register (MBIMR), interrupt mask register (IMR), and IRQ enable register (IER). For details on the interrupt vector of each interrupt source, see section 5, Interrupt Controller. Table 14.4 HCAN Interrupt Sources (HCAN_0, HCAN_1) Name ERS0/OVR0 Description Interrupt Flag DTC Activation Not possible Error passive interrupt (TEC ≥ 128 or REC ≥ 128) IRR5 Bus off interrupt (TEC ≥ 256) IRR6 Reset processing interrupt by power-on reset IRR0 Remote frame reception IRR2 Error warning interrupt (TEC ≥ 96) IRR3 Error warning interrupt (REC ≥ 96) IRR4 Overload frame transmission interrupt IRR7 Unread message overwrite IRR9 Detection of CAN bus operation in HCAN sleep mode IRR12 RM0 Mailbox 0 message reception IRR1 Possible RM1 Mailbox 1-15 message reception IRR1 Not possible SLE0 Message transmission/cancellation IRR8 Not possible IRQ2 Setting the RxDIE bit in HCANMON to 1 generates an IRQ2 interrupt caused by an HRxD input signal. (While HRxD1 is selected in PK7) IRQ2F Possible Rev. 2.00 Dec. 05, 2005 Page 468 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.6 DTC Interface The DTC can be activated by the reception of a message in HCAN mailbox 0. When the DTC activation is set and DTC transfer ends, the RXPR0 and RFPR0 flags are automatically cleared. An interrupt request is not sent to the CPU by a reception interrupt from the HCAN. Figure 14.15 shows a DTC transfer flowchart. : Settings by user DTC initialization DTC enable register setting DTC register information setting : Processing by hardware Message reception in HCAN’s mailbox 0 DTC activation End of DTC transfer? No Yes RXPR and RFPR clearing Transfer counter = 0 or DISEL = 1? No Yes Interrupt to CPU End Figure 14.15 DTC Transfer Flowchart Rev. 2.00 Dec. 05, 2005 Page 469 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.7 CAN Bus Interface A bus transceiver IC is necessary to connect this LSI to a CAN bus. A Philips PCA82C250 transceiver IC is recommended. If any other product is used, confirm that it is compatible with the PCA82C250. Figure 14.16 shows a sample connection diagram. 124 Ω This LSI Vcc PCA82C250 RS Vcc HRxD RxD CANH HTxD TxD CANL Vref CAN bus GND NC 124 Ω Note: NC: No Connection Figure 14.16 High-Speed Interface Using PCA82C250 Rev. 2.00 Dec. 05, 2005 Page 470 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.8 Usage Notes 14.8.1 Module Stop Mode Setting HCAN operation can be disabled or enabled using the module stop control register. The HCAN operation is set to be halted initially. Register access is enabled by clearing module stop mode. For details, see section 21, Power-Down Modes. 14.8.2 Reset The HCAN is reset by a power-on reset, in hardware standby mode, in software standby mode, and in module stop mode. All the registers are initialized by a reset, however mailboxes (message control (MCx[x])/message data (MDx[x])) are not initialized. Mailboxes (message control (MCx[x])/message data (MDx[x])) are initialized after power-on and at this time, their initial values are undefined. Therefore, always initialize mailboxes after a power-on reset, a transition to hardware standby mode, software standby mode, module stop mode, or watch mode. After a power-on reset, recovery from software standby mode, or cancellation of module stop mode, the reset interrupt flag (IRR0) is automatically set. Since this bit cannot be masked in the interrupt mask register (IMR), an HCAN interrupt will be initiated immediately after an HCAN interrupt is enabled by the interrupt controller without clearing the flag. IRR0 should therefore be cleared at initialization. 14.8.3 HCAN Sleep Mode The bus operation interrupt flag (IRR12) in the interrupt register (IRR) is set by CAN bus operation in HCAN sleep mode. Therefore, this flag is not used by the HCAN to indicate sleep mode release. Note that the reset status bit (GSR3) in the general status register (GSR) is set even in sleep mode. 14.8.4 Interrupts When the mailbox interrupt mask register (MBIMR) is set, the interrupt registers (IRR8, 2, 1) are not set by reception completion, transmission completion, or transmission cancellation of the set mailboxes. Rev. 2.00 Dec. 05, 2005 Page 471 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.8.5 Error Counters In the case of error active and error passive, REC and TEC perform count up and down normally. In the bus-off state, 11-bit recessive sequences are counted (REC + 1) using REC. When REC reaches 96 during the count, IRR4 and GSR1 are set. 14.8.6 Register Access Byte or word access can be performed for all HCAN registers. Longword access should be avoided. 14.8.7 HCAN Medium-Speed Mode In medium-speed mode, the HCAN registers cannot be read/written. 14.8.8 Register Hold in Standby Modes All HCAN registers are initialized in hardware standby mode and software standby mode. 14.8.9 Use on Bit Manipulation Instructions Since the HCAN status flag is cleared by writing 1, do not use the bit manipulation instructions to clear the flag. To clear the flag, use the MOV instructions and write 1 only to the bit to be cleared. Rev. 2.00 Dec. 05, 2005 Page 472 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.8.10 HCAN TXCR Operation 1. When the transmit wait cancel register (TXCR) is used to cancel transmission of the message in a mailbox waiting for transmission, the corresponding bit in TXCR and the transmit wait register (TXPR) may not be cleared even after the transmission is canceled. This occurs when the following conditions are all satisfied. [Conditions] The HRxD pin is tied to "1" because of a CAN bus error, etc. There is one or more mailboxes waiting for transmission or transmitting. Ongoing message transmission from a mailbox is canceled by TXCR. If this occurs, the transmission is canceled but TXPR and TXCR continue to indicate a wrong status telling that a message is being cancelled. As a result, transmission cannot be restarted even after the HRxD pin is released from the tied state and the CAN bus has recovered. If there are two or more messages for transmission, a message which is not being transmitted is canceled and a message being transmitted retains its state. To avoid this, take either of the following countermeasures. [Countermeasures] Do not cancel transmission by TXCR. Transmission will be completed after the CAN bus has recovered, then TXPR is cleared and the HCAN operates normally. To cancel transmission, write 1 to the corresponding bit in TXCR repeatedly until the bit becomes 0. TXPR and TXCR are cleared, and the HCAN operates normally. 2. When the bus-off state is entered while any mailbox is waiting for transmission with TXPR set, transmission cannot be canceled even if TXCR is set because the internal state machine does not operate during the bus-off state. Because of this, on recovery from the bus-off state, one message will be transmitted or the message will be canceled with a transmission error. For message clearing on recovery from the bus-off state, take the following countermeasure. [Countermeasure] Reset the HCAN during the bus-off period to clear the messages in the mailboxes waiting for transmission. To reset the HCAN, set the module stop bit (MSTPC3 in MSTPCRC) to 1 and then clear it. In this case, the HCAN is entirely reset. Therefore the initial settings must be made again. Rev. 2.00 Dec. 05, 2005 Page 473 of 724 REJ09B0200-0200 Section 14 Controller Area Network (HCAN) 14.8.11 HCAN Transmit Procedure When transmission is set while the bus is in the idle state, if the next transmission is set or the set transmission is canceled under the following conditions within 50 µs, the transmit message ID of being set may be damaged. • • When the second transmission has the message whose priority is higher than the first one When the massage of the highest priority is canceled in the first transmission Make whichever setting shown below to avoid the message IDs from being damaged. • Set transmission in one TXPR. After transmission of all transmit messages is completed, set transmission again (mass transmission setting). The interval between transmission settings should be 50 µs or longer. • Make the transmission setting according to the priority of transmit messages. • Set the interval to be 50 µs or longer between TXPR and another TXPR or between TXPR and TXCR. Table 14.5 Interval Limitation between TXPR and TXPR or between TXPR and TXCR Baud Rate (bps) Set Interval (µs) 1M 50 500 k 50 250 k 50 14.8.12 Note on Releasing the HCAN Reset or HCAN Sleep Before releasing the HCAN reset or HCAN sleep (MCR0 = 0 or MCR5 = 0), confirm that the GSR3 bit (the reset status bit) is set to 1. 14.8.13 Note on Accessing Mailbox during the HCAN Sleep Do not access the mailbox during the HCAN sleep. If accessed, the CPU might halt. Accessing registers during the HCAN sleep does not cause the CPU halt, nor does accessing the mailbox in other than the HCAN sleep mode. Rev. 2.00 Dec. 05, 2005 Page 474 of 724 REJ09B0200-0200 Section 15 A/D Converter Section 15 A/D Converter This LSI includes a successive approximation type 10-bit A/D converter that allows up to sixteen analog input channels to be selected. The block diagram of the A/D converter is shown in figure 15.1. 15.1 • • • • • • • • • Features 10-bit resolution Sixteen input channels Conversion time: 13.3 µs per channel (at 20 MHz operation) Two operating modes Single mode: Single-channel A/D conversion Scan mode: Continuous A/D conversion on 1 to 4 channels Four data registers Conversion results are held in a 16-bit data register for each channel Sample and hold function Three conversion start methods Software 16-bit timer pulse unit (TPU) conversion start trigger External trigger signal Interrupt request An A/D conversion end interrupt request (ADI) can be generated Module stop mode can be set ADCMS38A_000020020300 Rev. 2.00 Dec. 05, 2005 Page 475 of 724 REJ09B0200-0200 Section 15 A/D Converter Module data bus Vref 10-bit D/A AVSS Bus interface A D D R A A D D R B A D D R C A D D R D A D C S R A D C R φ/2 + φ/4 Comparator Multiplexer AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8 AN9 AN10 AN11 AN12 AN13 AN14 AN15 Successive approximations register AVCC Internal data bus Control circuit φ/8 Sample-andhold circuit φ/16 ADI interrupt Conversion start trigger from TPU ADTRG [Legend] ADCR: A/D control register ADCSR: A/D control/status register ADDRA: A/D data register A ADDRB: A/D data register B ADDRC: A/D data register C ADDRD: A/D data register D Figure 15.1 Block Diagram of A/D Converter Rev. 2.00 Dec. 05, 2005 Page 476 of 724 REJ09B0200-0200 Section 15 A/D Converter 15.2 Input/Output Pins Table 15.1 summarizes the input pins used by the A/D converter. 16 analog input pins are divided into four groups, each of which includes four channels; analog input pins 0 to 3 (AN0 to AN3) comprising group 0, analog input pins 4 to 7 (AN4 to AN7) comprising group 1, analog input pins 8 to 11 (AN8 to AN11) comprising group 2, and analog input pins 12 to 15 (AN12 to AN15) comprising group 3. The AVcc and AVss pins are the power supply pins for the A/D converter analog section. The Vref pin is the A/D conversion reference voltage pin. Table 15.1 Pin Configuration Pin Name Symbol I/O Function Analog power supply pin AVCC Input Analog section power supply and reference voltage Analog ground pin AVSS Input Analog section ground and reference voltage Reference voltage pin Vref Input Reference voltage of A/D conversion Analog input pin 0 AN0 Input Group 0 analog input pins Analog input pin 1 AN1 Input Analog input pin 2 AN2 Input Analog input pin 3 AN3 Input Analog input pin 4 AN4 Input Analog input pin 5 AN5 Input Analog input pin 6 AN6 Input Analog input pin 7 AN7 Input Analog input pin 8 AN8 Input Analog input pin 9 AN9 Input Analog input pin 10 AN10 Input Analog input pin 11 AN11 Input Analog input pin 12 AN12 Input Analog input pin 13 AN13 Input Analog input pin 14 AN14 Input Analog input pin 15 AN15 Input A/D external trigger input pin ADTRG Input Group 1 analog input pins Group 2 analog input pins Group 3 analog input pins External trigger input pin for starting A/D conversion Rev. 2.00 Dec. 05, 2005 Page 477 of 724 REJ09B0200-0200 Section 15 A/D Converter 15.3 Register Description The A/D converter has the following registers. Module stop mode for the A/D converter is specified with the MSTPA1 bit in the module stop control register (MSTPCRA). For details on the module stop control register A (MSTPCRA), refer to section 21.1.3, Module Stop Control Register A to D (MSTPCRA to MSTPCRD). • • • • • • A/D data register A (ADDRA) A/D data register B (ADDRB) A/D data register C (ADDRC) A/D data register D (ADDRD) A/D control/status register (ADCSR) A/D control register (ADCR) 15.3.1 A/D Data Registers A to D (ADDRA to ADDRD) There are four 16-bit read-only ADDR registers ADDRA to ADDRD, used to store the results of A/D conversion. The ADDR registers to store conversion results for each channel are shown in table 15.2. The converted 10-bit data is stored in bits 6 to 15 in ADDR. The lower 6 bits are always read as 0. The data bus between the CPU and the A/D converter is 8 bits wide. The upper byte can be read directly from the CPU, however the lower byte should be read via a temporary register. The temporary register contents are transferred from the ADDR when the upper byte data is read. When reading the ADDR, always read the upper byte first, and then read the lower byte, or read in word unit. Otherwise, the read contents are not guaranteed. Table 15.2 Analog Input Channels and Corresponding ADDR Registers Analog Input Channel CH3 = 0 CH3 = 1 Group 0 (CH2 = 0) Group 1 (CH2 = 1) Group 2 (CH2 = 0) Group 3 (CH2 = 1) A/D Data Register to Store the A/D Conversion Results AN0 AN4 AN8 AN12 ADDRA AN1 AN5 AN9 AN13 ADDRB AN2 AN6 AN10 AN14 ADDRC AN3 AN7 AN11 AN15 ADDRD Rev. 2.00 Dec. 05, 2005 Page 478 of 724 REJ09B0200-0200 Section 15 A/D Converter 15.3.2 A/D Control/Status Register (ADCSR) ADCSR controls A/D conversion operations. Bit Bit Name Initial Value R/W Description 7 ADF 0 R/(W) A/D End Flag A status flag that indicates the end of A/D conversion. [Setting conditions] • When A/D conversion ends • When A/D conversion ends on all specified channels [Clearing conditions] 6 ADIE 0 R/W • When 0 is written after reading ADF = 1 • When the DTC is activated by an ADI interrupt and ADDR is read A/D Interrupt Enable A/D conversion end interrupt (ADI) is enabled when this bit is set to 1. 5 ADST 0 R/W A/D Start Clearing this bit to 0 stops A/D conversion, and the A/D converter enters the wait state. Setting this bit to 1 starts A/D conversion. In single mode, this bit is automatically cleared to 0 when conversion on the specified channel is complete. In scan mode, conversion continues sequentially on the specified channels until this bit is cleared to 0 by software, a reset, or a transition to software standby mode, hardware standby mode or module stop mode. 4 SCAN 0 R/W Scan Mode Selects the A/D conversion operating mode. 0: Single mode 1: Scan mode Rev. 2.00 Dec. 05, 2005 Page 479 of 724 REJ09B0200-0200 Section 15 A/D Converter Bit Bit Name Initial Value R/W Description 3 CH3 0 R/W Channel Select 0 to 3 2 CH2 0 R/W Select analog input channels. 1 CH1 0 R/W When SCAN = 0 When SCAN = 1 0 CH0 0 R/W 0000: AN0 0000: AN0 0001: AN1 0001: AN0, AN1 0010: AN2 0010: AN0 to AN2 0011: AN3 0011: AN0 to AN3 0100: AN4 0100: AN4 0101: AN5 0101: AN4, AN5 0110: AN6 0110: AN4 to AN6 0111: AN7 0111: AN4 to AN7 1000: AN8 1000: AN8 1001: AN9 1001: AN8, AN9 1010: AN10 1010: AN8 to AN10 Rev. 2.00 Dec. 05, 2005 Page 480 of 724 REJ09B0200-0200 1011: AN11 1011: AN8 to AN11 1100: AN12 1100: AN12 1101: AN13 1101: AN12, AN13 1110: AN14 1110: AN12 to AN14 1111: AN15 1111: AN12 to AN15 Section 15 A/D Converter 15.3.3 A/D Control Register (ADCR) The ADCR enables A/D conversion started by an external trigger signal. Bit Bit Name Initial Value R/W Description 7 TRGS1 0 R/W Timer Trigger Select 0 and 1 6 TRGS0 0 R/W Enable the start of A/D conversion by a trigger signal. Bits TRGS0 and TRGS1 should be set while A/D conversion is stopped (ADST = 0). 00: A/D conversion is started by software 01: A/D conversion is started by TPU conversion start trigger 10: Setting prohibited 11: A/D conversion is started by the ADTRG pin 5, 4 All 1 Reserved These bits are always read as 1. 3 CKS1 0 R/W Clock Select 0 and 1 2 CKS0 0 R/W Specify the A/D conversion time. The conversion time should be changed only when ADST = 0. Specify a value within the range shown in table 23.7 in section 23, Electrical Characteristics. 00: Conversion time = 530 states (max.) 01: Conversion time = 266 states (max.) 10: Conversion time = 134 states (max.) 11: Conversion time = 68 states (max.) 1, 0 All 1 Reserved These bits are always read as 1. Rev. 2.00 Dec. 05, 2005 Page 481 of 724 REJ09B0200-0200 Section 15 A/D Converter 15.4 Operation The A/D converter operates by successive approximation with 10-bit resolution. It has two operating modes; single mode and scan mode. When changing the operating mode or analog input channel, clear the ADST bit in ADCSR to 0 first in order to prevent incorrect operation. The ADST bit can be set at the same time as the operating mode or analog input channel is changed. 15.4.1 Single Mode In single mode, A/D conversion is performed only once on the specified single channel as follows: 1. A/D conversion is started when the ADST bit is set to 1 by software or external trigger input. 2. When A/D conversion is completed, the result is transferred to the A/D data register corresponding to the channel. 3. On completion of conversion, the ADF bit in ADCSR is set to 1. If the ADIE bit is set to 1 at this time, an ADI interrupt request is generated. 4. The ADST bit retains 1 during A/D conversion. When A/D conversion ends, the ADST bit is automatically cleared to 0 and the A/D converter enters the wait state. If the ADST bit is cleared to 0 during A/D conversion, the conversion is stopped and the A/D converter enters the wait state. 15.4.2 Scan Mode In scan mode, A/D conversion is to be performed sequentially on the specified channels up to four channels as follows. 1. When the ADST bit is set to 1 by software, TPU or external trigger input, A/D conversion starts on the first channel in the group (for example, AN0 when CH3 and CH2 = 00, AN4 when CH3 and CH2 = 01, AN8 when CH3 and CH2 = 10, or AN12 when CH3 and CH2 = 11). 2. When the A/D conversion is completed on one channel, the result is sequentially transferred to the A/D data register corresponding to the channel. 3. When the conversion is completed on all the selected channels, the ADF bit in ADCSR is set to 1. If the ADIE bit is set to 1 at this time, an ADI interrupt is requested after A/D conversion ends. Then, the A/D converter restarts the conversion from the first channel in the group. 4. Steps 2 to 3 are repeated as long as the ADST bit is set to 1. When the ADST bit is cleared to 0, the A/D conversion stops and the A/D converter enters the wait state. Rev. 2.00 Dec. 05, 2005 Page 482 of 724 REJ09B0200-0200 Section 15 A/D Converter 15.4.3 Input Sampling and A/D Conversion Time The A/D converter includes the sample-and-hold circuit. The A/D converter samples the analog input when the A/D conversion start delay time (tD) has passed after the ADST bit is set to 1, and then conversion is started. Figure 15.2 shows the A/D conversion timing. Table 15.3 shows the A/D conversion time. As shown in figure 15.2, the A/D conversion time (tCONV) includes tD and input sampling time (tSPL). The length of tD varies depending on the timing of the write access to ADCSR. Therefore, the total conversion time varies within the range shown in table 15.3. In scan mode, the values given in table 15.3 indicate the first conversion time. The second and subsequent conversion time is shown in table 15.4. In both cases, set bits CKS1 and CKS0 in ADCR within the range shown in table 23.7 in section 23, Electrical Characteristics. (1) φ Address (2) Write signal Input sampling timing ADF tD tSPL tCONV [Legend] (1): ADCSR write cycle (2): ADCSR address A/D conversion start delay tD: Input sampling time tSPL: tCONV: A/D conversion time Figure 15.2 A/D Conversion Timing Rev. 2.00 Dec. 05, 2005 Page 483 of 724 REJ09B0200-0200 Section 15 A/D Converter Table 15.3 A/D Conversion Time (Single Mode) CKS1 = 0 CKS0 = 0 Item Symbol Min. Typ. Max. CKS1 = 1 CKS0 = 1 CKS0 = 0 CKS0 = 1 Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. A/D conversion tD start delay 18 33 10 17 6 9 4 5 Input sampling tSPL time 127 63 31 15 A/D conversion tCONV time 515 266 131 134 67 68 530 259 Note: All values represent the number of states. Table 15.4 A/D Conversion Time (Scan Mode) CKS1 CKS0 Conversion Time (State) 0 0 512 (Fixed) 1 256 (Fixed) 1 0 128 (Fixed) 1 64 (Fixed) Rev. 2.00 Dec. 05, 2005 Page 484 of 724 REJ09B0200-0200 Section 15 A/D Converter 15.4.4 External Trigger Input Timing A/D conversion can be externally triggered. When bits TRGS0 and TRGS1 in ADCR are set to 11, an external trigger is input on the ADTRG pin. At the falling edge of the ADTRG pin, the ADST bit in ADCSR is set to 1, and the A/D conversion starts. Other operations are the same as when the ADST bit has been set to 1 by software in both single and scan modes. Figure 15.3 shows the timing. φ ADTRG Internal trigger signal ADST A/D conversion Figure 15.3 External Trigger Input Timing 15.5 Interrupt Source When A/D conversion is completed, the A/D converter generates an A/D conversion end interrupt (ADI). The ADI interrupt request is enabled when the ADIE bit is set to 1 while the ADF bit in ADCSR is set to 1 after A/D conversion is completed. The DTC can be activated by an ADI interrupt. Having the converted data read by the DTC in response to an ADI interrupt enables continuous conversion without imposing a load on software. Table 15.5 A/D Converter Interrupt Source Name Interrupt Source Interrupt Source Flag DTC Activation ADI A/D conversion completed ADF Possible Rev. 2.00 Dec. 05, 2005 Page 485 of 724 REJ09B0200-0200 Section 15 A/D Converter 15.6 A/D Conversion Accuracy Definitions This LSI's A/D conversion accuracy definitions are given below. • Resolution The number of A/D converter digital output codes • Quantization error The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 15.4). • Offset error The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from the minimum voltage value B'0000000000 (H'000) to B'0000000001 (H'001) (see figure 15.5). • Full-scale error The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from B'1111111110 (H'3FE) to B'1111111111 (H'3FF) (see figure 15.5). • Nonlinearity error The error with respect to the ideal A/D conversion characteristic between zero voltage and fullscale voltage. Does not include offset error, full-scale error, or quantization error (see figure 15.5). • Absolute accuracy The deviation between the digital value and the analog input value. Includes offset error, fullscale error, quantization error, and nonlinearity error. Rev. 2.00 Dec. 05, 2005 Page 486 of 724 REJ09B0200-0200 Section 15 A/D Converter Digital output Ideal A/D conversion characteristic 111 110 101 100 011 010 Quantization error 001 000 1 2 1024 1024 1022 1023 FS 1024 1024 Analog input voltage Figure 15.4 A/D Conversion Accuracy Definitions Full-scale error Digital output Ideal A/D conversion characteristic Nonlinearity error Actual A/D conversion characteristic Offset error FS Analog input voltage Figure 15.5 A/D Conversion Accuracy Definitions Rev. 2.00 Dec. 05, 2005 Page 487 of 724 REJ09B0200-0200 Section 15 A/D Converter 15.7 Usage Notes 15.7.1 Module Stop Mode Setting Operation of the A/D converter can be disabled or enabled using the module stop control register. The initial setting is for operation of the A/D converter to be halted. Register access is enabled by clearing module stop mode. For details, refer to section 21, Power-Down Modes. 15.7.2 Permissible Signal Source Impedance This LSI's analog input is designed such that conversion accuracy is guaranteed for an input signal for which the signal source impedance is 5 kΩ or less. This specification is provided to enable the A/D converter’s sample-and-hold circuit input capacitance to be charged within the sampling time; if the sensor output impedance exceeds 5 kΩ, charging may be insufficient and it may not be possible to guarantee A/D conversion accuracy. However, for A/D conversion in single mode with a large capacitance provided externally, the input load will essentially comprise only the internal input resistance of 10 kΩ, and the signal source impedance is ignored. However, as a low-pass filter effect is obtained in this case, it may not be possible to follow an analog signal with a large differential coefficient (e.g., 5 mV/µs or greater) (see figure 15.6). When converting a high-speed analog signal or converting in scan mode, a low-impedance buffer should be inserted. 15.7.3 Influences on Absolute Accuracy Adding capacitance results in coupling with GND, and therefore noise in GND may adversely affect absolute accuracy. Be sure to make the connection to an electrically stable GND such as AVss. Care is also required to insure that filter circuits do not communicate with digital signals on the mounting board (i.e., acting as antennas). Rev. 2.00 Dec. 05, 2005 Page 488 of 724 REJ09B0200-0200 Section 15 A/D Converter This LSI Sensor output impedance to 5 kΩ A/D converter equivalent circuit 10 kΩ Sensor input Low-pass filter C to 0.1 µF Cin = 15 pF 20 pF Figure 15.6 Example of Analog Input Circuit 15.7.4 Range of Analog Power Supply and Other Pin Settings If the conditions below are not met, the reliability of the device may be adversely affected. • Analog input voltage range The voltage applied to analog input pin ANn during A/D conversion should be in the range AVss ≤ VNn ≤ AVcc. • Relationship between AVcc, AVss and Vcc, Vss Set AVss = Vss as the relationship between AVcc, AVss and Vcc, Vss. If the A/D converter is not used, the AVcc and AVss pins must not be left open. • Setting range of the Vref pin The reference voltage set by the Vref pin should be in the range Vref ≤ AVcc. 15.7.5 Notes on Board Design In board design, digital circuitry and analog circuitry should be as mutually isolated as possible, and layout in which digital circuit signal lines and analog circuit signal lines cross or are in close proximity should be avoided as far as possible. Failure to do so may result in incorrect operation of the analog circuitry due to inductance, adversely affecting A/D conversion values. Also, digital circuitry must be isolated from the analog input signals (AN0 to AN15) and analog power supply (AVcc) by the analog ground (AVss). Also, the analog ground (AVss) should be connected at one point to a stable digital ground (Vss) on the board. Rev. 2.00 Dec. 05, 2005 Page 489 of 724 REJ09B0200-0200 Section 15 A/D Converter 15.7.6 Notes on Noise Countermeasures A protection circuit should be connected in order to prevent damage due to abnormal voltage, such as an excessive surge at the analog input pins (AN0 to AN15), between AVcc and AVss, as shown in figure 15.7. Also, the bypass capacitors connected to AVcc and the filter capacitor connected to AN0 to AN15 must be connected to AVss. If a filter capacitor is connected, the input currents at the analog input pins (AN0 to AN15) are averaged, and so an error may arise. Also, when A/D conversion is performed frequently, as in scan mode, if the current charged and discharged by the capacitance of the sample-and-hold circuit in the A/D converter exceeds the current input via the input impedance (Rin), an error will arise in the analog input pin voltage. Careful consideration is therefore required when deciding circuit constants. AVCC Rin*2 100 Ω AN0 to AN15 *1 0.1 µF AVSS Notes: Values are reference values. 1. 10 µF 0.01 µF 2. Rin: Input impedance Figure 15.7 Example of Analog Input Protection Circuit Rev. 2.00 Dec. 05, 2005 Page 490 of 724 REJ09B0200-0200 Section 15 A/D Converter Table 15.6 Analog Pin Specifications Item Min. Max. Unit Analog input capacitance 20 pF Permissible signal source impedance 5 kΩ 10 kΩ AN0 to AN15 To A/D converter 20 pF Note: Values are reference values. Figure 15.8 Analog Input Pin Equivalent Circuit Rev. 2.00 Dec. 05, 2005 Page 491 of 724 REJ09B0200-0200 Section 15 A/D Converter Rev. 2.00 Dec. 05, 2005 Page 492 of 724 REJ09B0200-0200 Section 16 Motor Control PWM Timer (PWM) Section 16 Motor Control PWM Timer (PWM) This LSI has two channels of on-chip motor control PWM (pulse width modulator) with a maximum capability of 16 pulse outputs in total. 16.1 Features • Maximum of 16 pulse outputs Two 10-bit PWM channels, each with eight outputs. 10-bit counter (PWCNT) and cycle register (PWCYR). Duty and output polarity can be set for each output. • Automatic data transfer in every cycle Each of four duty registers (PWDTR) is provided with buffer registers (PWBFR), with data transferred automatically every cycle. • Duty settings selectable A duty cycle of 0% to 100% can be selected by means of a duty register setting. • Operating clock selectable There is a choice of five operating clocks (φ, φ/2, φ/4, φ/8, φ/16). • High-speed access via internal 16-bit bus • Two interrupt sources An interrupt can be requested independently for each channel by a cycle register compare match. • Automatic transfer of register data Block transfer and one-word data transfer are available by activating the data transfer controller (DTC). • On-chip output driver IOL/IOH: 15 mA typ. and 30 mA max. Total IOL/IOH: 120 mA max. (target value) • Module stop mode can be set MPWM000A_000020020200 Rev. 2.00 Dec. 05, 2005 Page 493 of 724 REJ09B0200-0200 Section 16 Motor Control PWM Timer (PWM) Figure 16.1 shows a block diagram of PWM. φ, φ/2, φ/4, φ/8, φ/16 Interrupt request PWCR 12 9 0 PWOCR PWCYR PWPR 12 9 0 PWBFRA PWDTRA PWBFRC PWDTRC PWBFRE PWBFRG [Legend] PWCR: PWOCR: PWPR: PWCNT: PWCYR: PWDTRA, PWDTRC, PWDTRE, PWDTRG: PWBFRA, PWBFRC, PWBFRE, PWBFRG: PWBTCR: PWBTCR Internal data bus Bus interface Compare match PWCNT PWDTRE PWDTRG PWM control register PWM output control register PWM polarity register PWM counter PWM cycle register PWM duty registers A, C, E, G PWM buffer registers A, C, E, G PWM buffer transfer control register Figure 16.1 Block Diagram of PWM Rev. 2.00 Dec. 05, 2005 Page 494 of 724 REJ09B0200-0200 Port control P/N P/N PWMA P/N PWMC PWMD P/N P/N P/N P/N P/N PWMB PWME PWMF PWMG PWMH Section 16 Motor Control PWM Timer (PWM) 16.2 Input/Output Pins Table 16.1 shows the PWM pin configuration. Table 16.1 Pin Configuration Channel Name Abbrev. I/O Function 1 PWM output pin 1A PWM1A Output Channel 1A PWM output PWM output pin 1B PWM1B Output Channel 1B PWM output PWM output pin 1C PWM1C Output Channel 1C PWM output PWM output pin 1D PWM1D Output Channel 1D PWM output PWM output pin 1E PWM1E Output Channel 1E PWM output PWM output pin 1F PWM1F Output Channel 1F PWM output PWM output pin 1G PWM1G Output Channel 1G PWM output PWM output pin 1H PWM1H Output Channel 1H PWM output PWM output pin 2A PWM2A Output Channel 2A PWM output PWM output pin 2B PWM2B Output Channel 2B PWM output PWM output pin 2C PWM2C Output Channel 2C PWM output PWM output pin 2D PWM2D Output Channel 2D PWM output PWM output pin 2E PWM2E Output Channel 2E PWM output PWM output pin 2F PWM2F Output Channel 2F PWM output PWM output pin 2G PWM2G Output Channel 2G PWM output PWM output pin 2H PWM2H Output Channel 2H PWM output 2 Rev. 2.00 Dec. 05, 2005 Page 495 of 724 REJ09B0200-0200 Section 16 Motor Control PWM Timer (PWM) 16.3 Register Descriptions The PWM has the following registers for each channel. • • • • • • • • • • • • • • PWM control register (PWCR) PWM output control register (PWOCR) PWM polarity register (PWPR) PWM counter (PWCNT) PWM cycle register (PWCYR) PWM duty register A (PWDTRA) PWM duty register C (PWDTRC) PWM duty register E (PWDTRE) PWM duty register G (PWDTRG) PWM buffer register A (PWBFRA) PWM buffer register C (PWBFRC) PWM buffer register E (PWBFRE) PWM buffer register G (PWBFRG) PWM buffer transfer control register (PWBTCR) Rev. 2.00 Dec. 05, 2005 Page 496 of 724 REJ09B0200-0200 Section 16 Motor Control PWM Timer (PWM) 16.3.1 PWM Control Register (PWCR) PWCR performs interrupt control, starting/stopping of the counter, and counter clock selection. It also contains a flag that indicates a compare match with PWCYR. Bit Bit Name Initial Value R/W Description 7, 6 All 1 Reserved These bits are always read as 1 and cannot be modified. 5 IE 0 R/W Interrupt Enable Enables or disables an interrupt request in the event of a compare match with PWCYR of the corresponding channel. 0: Interrupt disabled 1: Interrupt enabled 4 CMF 0 R/(W)* Compare Match Flag Indicates the occurrence of a compare match with PWCYR of the corresponding channel. [Setting condition] When PWCNT = PWCYR [Clearing condition] 3 CST 0 R/W • When 0 is written to CMF after reading CMF = 1 • When the DTC is activated by a compare match interrupt, and the DISEL bit in MRB of the DTC is 0 Counter Start Selects starting or stopping of PWCNT of the corresponding channel. 0: PWCNT is stopped 1: PWCNT is started Rev. 2.00 Dec. 05, 2005 Page 497 of 724 REJ09B0200-0200 Section 16 Motor Control PWM Timer (PWM) Bit Bit Name Initial Value R/W Description 2 CKS2 0 R/W Clock Select 1 CKS1 0 R/W 0 CKS0 0 R/W These bits select the operating clock for PWCNT of the corresponding channel. 000: Counts on φ/1 001: Counts on φ/2 010: Counts on φ/4 011: Counts on φ/8 1xx: Counts on φ/16 [Legend] x: Don't care Note: * Only 0 can be written, to clear the flag. 16.3.2 PWM Output Control Register (PWOCR) PWOCR enables or disables PWM output. Bit Bit Name Initial Value R/W Description 7 OEnH 0 R/W Output Enable 6 OEnG 0 R/W 5 OEnF 0 R/W Each of these bits enables or disables the corresponding PWM output. 4 OEnE 0 R/W 3 OEnD 0 R/W 2 OEnC 0 R/W 1 OEnB 0 R/W 0 OEnA 0 R/W (n = 1, 2) Rev. 2.00 Dec. 05, 2005 Page 498 of 724 REJ09B0200-0200 0: PWM output disabled 1: PWM output enabled Section 16 Motor Control PWM Timer (PWM) 16.3.3 PWM Polarity Register (PWPR) PWPR selects the PWM output polarity. Initial Value R/W Description OPSnH 0 R/W Output Polarity Select OPSnG 0 R/W Each of these bits selects the PWM output polarity. 5 OPSnF 0 R/W 0: PWM direct output 4 OPSnE 0 R/W 1: PWM inverse output 3 OPSnD 0 R/W 2 OPSnC 0 R/W 1 OPSnB 0 R/W 0 OPSnA 0 R/W Bit Bit Name 7 6 (n = 1, 2) 16.3.4 PWM Counter (PWCNT) PWCNT is a 10-bit up-counter incremented by the input clock. The input clock is selected by clock select bits CKS2 to CKS0 in PWCR. PWCNT can not be directly accessed by the CPU. PWCNT is initialized to H'FC00, when CST bit in PWCR is 0. 16.3.5 PWM Cycle Register (PWCYR) PWCYR is a 16-bit readable/writable register that sets the PWM conversion cycle. When a PWCYR compare match occurs, PWCNT is cleared and data is transferred from the buffer register (PWBFR) to the duty register (PWDTR). PWCYR should be written to only while PWCNT is stopped. A value of H'FC00 must not be set. PWCYR is initialized to H'FFFF. Rev. 2.00 Dec. 05, 2005 Page 499 of 724 REJ09B0200-0200 Section 16 Motor Control PWM Timer (PWM) Compare match PWCNT (lower 10 bits) Compare match 0 1 N–2 PWCYR (lower 10 bits) N–1 0 1 N Figure 16.2 Cycle Register Compare Match 16.3.6 PWM Duty Registers A, C, E, G (PWDTRA, PWDTRC, PWDTRE, PWDTRG) There are four PWDTR registers (PWDTRA, PWDTRC, PWDTRE, and PWDTRG). The PWDTRA is used for outputs PWMA and PWMB, PWDTRC for outputs PWMC and PWMD, PWDTRE for outputs PWME and PWMF, and PWDTRG for outputs PWMG and PWMH. PWDTR can not be directly accessed by the CPU. When a PWCYR compare match occurs, data is transferred from the buffer register (PWBFR) to the duty register (PWDTR). Bit Bit Name Initial Value R/W Description 15 to 13 Reserved 12 OTS 0 Output Terminal Select Selects the pin used for PWM output. Unselected pins output a low level (or a high level when the corresponding bit in PWPR is set to 1). For details, see table 16.2. 11, 10 Reserved 9 DT9 0 Duty 8 DT8 0 7 DT7 0 6 DT6 0 5 DT5 0 4 DT4 0 These bits specify the PWM output duty. A high level (or a low level when the corresponding bit in PWPR is set to 1) is output from the time PWCNT is cleared by a PWCYR compare match until a PWDTR compare match occurs. When all of the bits are 0, there is no high-level (or low-level when the corresponding bit in PWPR is set to 1) output period. 3 DT3 0 2 DT2 0 1 DT1 0 0 DT0 0 Rev. 2.00 Dec. 05, 2005 Page 500 of 724 REJ09B0200-0200 Section 16 Motor Control PWM Timer (PWM) Table 16.2 Output Selection by OTS Bit Bit 12 Register OTS Description PWDTR1A/ 0 PWMA output selected PWDTR2A 1 PWMB output selected PWDTR1C/ 0 PWMC output selected PWDTR2C 1 PWMD output selected PWDTR1E/ 0 PWME output selected PWDTR2E 1 PWMF output selected PWDTR1G/ 0 PWMG output selected PWDTR2G 1 PWMH output selected Compare match PWCNT1/2 (lower 10 bits) 0 1 M–2 PWCYR1/2 (lower 10 bits) N PWDTR1/2 (lower 10 bits) M M–1 M N–1 0 PWM output on selected pin PWM output on unselected pin Figure 16.3 Duty Register Compare Match (OPS = 0 in PWPR) Rev. 2.00 Dec. 05, 2005 Page 501 of 724 REJ09B0200-0200 Section 16 Motor Control PWM Timer (PWM) PWCNT1/2 (lower 10 bits) 0 1 N–2 PWCYR1/2 (lower 10 bits) N PWDTR1/2 (lower 10 bits) M N–1 PWM output (M = 0) PWM output (0 < M < N) PWM output (N ≤ M) Figure 16.4 Differences in PWM Output According to Duty Register Set Value (OPS = 0 in PWPR) Rev. 2.00 Dec. 05, 2005 Page 502 of 724 REJ09B0200-0200 0 Section 16 Motor Control PWM Timer (PWM) 16.3.7 PWM Buffer Registers A, C, E, G (PWBFRA, PWBFRC, PWBFRE, PWBFRG) There are four PWBFR registers (PWBFRA, PWBFRC, PWBFRE, and PWBFRG). When a PWCYR compare match occurs, data is transferred from the buffer register (PWBFR) to the duty register (PWDTR). Bit Bit Name Initial Value R/W Description 15 to 13 All 1 Reserved These bits are always read as 1 and cannot be modified. 12 OTS 0 R/W Output Terminal Select Holds the data to be sent to bit 12 in PWDTR. 11, 10 All 1 Reserved These bits are always read as 1 and cannot be modified. 9 DT9 0 R/W Duty 8 DT8 0 R/W 7 DT7 0 R/W These bits hold the data to be sent to bits 9 to 0 in PWDTR. 6 DT6 0 R/W 5 DT5 0 R/W 4 DT4 0 R/W 3 DT3 0 R/W 2 DT2 0 R/W 1 DT1 0 R/W 0 DT0 0 R/W Rev. 2.00 Dec. 05, 2005 Page 503 of 724 REJ09B0200-0200 Section 16 Motor Control PWM Timer (PWM) 16.3.8 PWM Buffer Transfer Control Register (PWBTCR) PWBTCR enables or disables the data transfer from buffer register to duty register with the compare match of PWM counter and PWM cycle register. Bit Bit Name Initial Value R/W Description 7 BTC2G 0 R/W 6 BTC2E 0 R/W 0: Data transfer from PWBFR to PWDTR enabled with PWCNT and PWCYR compare match 5 BTC2C 0 R/W 4 BTC2A 0 R/W 3 BTC1G 0 R/W 2 BTC1E 0 R/W 1 BTC1C 0 R/W 0 BTC1A 0 R/W Rev. 2.00 Dec. 05, 2005 Page 504 of 724 REJ09B0200-0200 1: Data transfer from PWBFR to PWDTR disabled with PWCNT and PWCYR compare match Section 16 Motor Control PWM Timer (PWM) 16.4 Bus Master Interface 16.4.1 16-Bit Data Registers PWCYR and PWBFR are 16-bit registers. These registers are linked to the bus master by a 16-bit data bus, and can be read or written in 16-bit units. They cannot be read or written by 8-bit access; 16-bit access must always be used. Internal data bus H Bus master L Bus interface Module data bus PWCYR Figure 16.5 16-Bit Register Access Operation (Bus Master ↔ PWCYR (16 Bits)) 16.4.2 8-Bit Data Registers PWCR, PWOCR, and PWPR are 8-bit registers that can be read and written to in 8-bit units. These registers are linked to the bus master by a 16-bit data bus, and can be read or written by 16bit access; in this case, the lower eight bits are read as an undefined value. Internal data bus H Bus master L Bus interface Module data bus PWCR Figure 16.6 8-Bit Register Access Operation (Bus Master ↔ PWCR (Upper Eight Bits)) Rev. 2.00 Dec. 05, 2005 Page 505 of 724 REJ09B0200-0200 Section 16 Motor Control PWM Timer (PWM) 16.5 Operation 16.5.1 PWM Operation PWM waveforms are output from pins PWM1A to PWM1H and PWM2A to PWM2H as shown in figure 16.7. Initial Settings: Set the PWM output polarity in PWPR; set the OEn bit in PWOCR to 1 to enable PWM output from the corresponding pin; select the clock to be input to PWCNT with the CKS2 to CKS0 bits in PWCR; set the PWM conversion cycle in PWCYR; and set the first frame of data in PWBFRA, PWBFRC, PWBFRE, and PWBFRG. Activation: Setting the CST bit in PWCR to 1 starts counting by PWCNT. When a compare match between PWCNT and PWCYR occurs, data is transferred from the buffer register to the duty register and the CMF bit in PWCR is set to 1. If the IE bit in PWCR has been set to 1 at this time, an interrupt can be requested or the DTC can be activated. Waveform Output: The PWM outputs selected by the OTS bits in PWDTRA, PWDTRC, PWDTRE, and PWDTRG go high when a compare match occurs between PWCNT and PWCYR. The PWM outputs not selected by the OTS bit are low. When a compare match occurs between PWCNT and PWDTRA, PWDTRC, PWDTRE, or PWDTRG, the corresponding PWM output goes low. If the corresponding bit in PWPR is set to 1, the output is inverted. PWCYR PWBFRA PWDTRA OTS (PWDTRA) = 0 OTS (PWDTRA) = 1 OTS (PWDTRA) = 0 OTS (PWDTRA) = 1 PWMA PWMB Figure 16.7 PWM Operation Next Frame: When a compare match occurs between PWCNT and PWCYR, data is transferred from the buffer register to the duty register. PWCNT is reset and starts counting up from H'000. The CMF bit in PWCR is set, and if the IE bit in PWCR1 or PWCR2 has been set, an interrupt can be requested or the DTC can be activated. Rev. 2.00 Dec. 05, 2005 Page 506 of 724 REJ09B0200-0200 Section 16 Motor Control PWM Timer (PWM) Stopping: When the CST bit in PWCR is cleared to 0, PWCNT is reset and stops. All PWM outputs go low (or high if the corresponding bit in PWPR is set to 1). 16.5.2 Buffer Transfer Control Setting a corresponding bit in the PWM buffer transfer control register disables a buffer transfer on compare match. This prevents the output from changing when compare match occurs while the buffer register is being changed. A buffer transfer on compare match is resumed after cleaning the bit. PWCYR PWBFR1A PWDTR1A PWBFR1C PWDTR1C PWCNT Write PWBTCR Buffer updated (PWBFR1C) Buffer updated (PWBFR1A) Disabled: 1 Buffer updated (PWBFR1A) Disabled Buffer updated (PWBFR1C) Enabled Enabled: 0 Figure 16.8 Disabling Buffer Transfer Rev. 2.00 Dec. 05, 2005 Page 507 of 724 REJ09B0200-0200 Section 16 Motor Control PWM Timer (PWM) 16.6 Usage Note Conflict between Buffer Register Write and Compare Match: If a PWBFR write is performed in the state immediately after a cycle register compare match, the buffer register and duty register are both modified. PWM output changed by the cycle register compare match is not changed by modification of the duty register due to conflict. This may result in unanticipated duty output. Buffer register modification must be completed before automatic transfer by the DTC, exception handling due to a compare match interrupt, or the occurrence of a cycle register compare match on detection of the rise of CMF (compare match flag) in PWCR. T1 Tw Tw T2 φ Address Buffer register address Write signal Compare match PWCNT (lower 10 bits) PWBFR 0 N PWDTR M N M PWM output CMF Figure 16.9 Conflict between Buffer Register Write and Compare Match Rev. 2.00 Dec. 05, 2005 Page 508 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver Section 17 LCD Controller/Driver This LSI has an on-chip segment type LCD control circuit, LCD driver, and power supply circuit, enabling direct drive of an LCD panel. 17.1 Features Features of the LCD controller/driver are given below. • Display capacity Duty Cycle Internal Driver Static 40 SEG 1/2 40 SEG 1/3 40 SEG 1/4 40 SEG • LCD RAM capacity 8 bits × 20 bytes (160 bits) Byte or word access to LCD RAM • The segment output pins can be used as ports. SEG40 to SEG1 pins can be used as ports in groups of four. • Common output pins not used because of the duty cycle can be used for common doublebuffering (parallel connection). With 1/2 duty, parallel connection of COM1 to COM2, and of COM3 to COM4, can be used In static mode, parallel connection of COM1 to COM2, COM3, and COM4 can be used • Choice of 11 frame frequencies • A or B waveform selectable by software • On-chip power supply split-resistance • Display possible in operating modes other than standby mode and module stop mode • Module stop mode Access to registers and LCD RAM is enabled by clearing module stop mode. Rev. 2.00 Dec. 05, 2005 Page 509 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver Figure 17.1 shows a block diagram of the LCD controller/driver. LPVCC M φ/8 to φ/2048 V1 V2 V3 VSS CL2 Common data latch φw Internal data bus LCD drive power supply (Built-in step-up voltage circuit) Common driver COM4 SEG40 SEG39 SEG38 SEG37 SEG36 LPCR LCR LCR2 Display timing generator COM1 40-bit shift register CL1 Segment driver LCD RAM 20 bytes SEG1 SEGn, DO [Legend] LPCR: LCD port control register LCR: LCD control register LCR2: LCD control register 2 Figure 17.1 Block Diagram of LCD Controller/Driver Rev. 2.00 Dec. 05, 2005 Page 510 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver 17.2 Input/Output Pins Table 17.1 shows the LCD controller/driver pin configuration. Table 17.1 Pin Configuration Name Abbreviation I/O Function Segment output pins SEG40 to SEG1 Output LCD segment drive pins Common output pins COM4 to COM1 LCD power supply pins V1, V2, V3 All pins are multiplexed with port pins (setting programmable) Output LCD common drive pins Pins can be used in parallel in static mode or 1/2 duty Used when a bypass capacitor is connected externally, and when an external power supply circuit is used Rev. 2.00 Dec. 05, 2005 Page 511 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver 17.3 Register Descriptions The LCD controller/driver has the following registers. • • • • LCD port control register (LPCR) LCD control register (LCR) LCD control register 2 (LCR2) LCDRAM 17.3.1 LCD Port Control Register (LPCR) LPCR selects the duty cycle, and the LCD driver and pin functions. Bit Bit Name Initial Value R/W Description 7 DTS1 0 R/W Duty Cycle Select 1 and 0 6 DTS0 0 R/W Common Function Select 5 CMX 0 R/W The combination of DTS1 and DTS0 selects static, 1/2, 1/3, or 1/4 duty. CMX specifies whether or not the same waveform is to be output from multiple pins to increase the common drive power when not all common pins are used because of the duty setting. For details, see table 17.2. 4 0 Reserved This bit is always read as 0. The write value should always be 0. 3 SGS3 0 R/W Segment Driver Select 3 to 0 2 SGS2 0 R/W These bits select the segment drivers to be used. 1 SGS1 0 R/W For details, see table 17.3. 0 SGS0 0 R/W Rev. 2.00 Dec. 05, 2005 Page 512 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver Table 17.2 Duty Cycle and Common Function Selection Bit 7: DTS1 Bit 6: DTS0 Bit 5: CMX Duty Cycle Common Drivers 0 0 0 Static COM1 1 0 1 0 0 0 1/2 duty 1 X COM2 to COM1 COM4 and COM3 can be used as ports COM4 to COM1 COM4 outputs the same waveform as COM3, and COM2 outputs the same waveform as COM1 1/3 duty 1 1 COM4, COM3, and COM2 can be used as ports COM4 to COM1 COM4, COM3, and COM2 output the same waveform as COM1 1 1 Notes COM3 to COM1 COM4 can be used as a port COM4 to COM1 Do not use COM4 1/4 duty COM4 to COM1 [Legend] X: Don't care Note: COM4 to COM1 function as ports when the setting of SGS3 to SGS0 is B'0000. Rev. 2.00 Dec. 05, 2005 Page 513 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver Table 17.3 Segment Driver Selection Bit 3 Bit 2 Bit 1 Bit 0 Function of Pins SEG40 to SEG1 SEG40 SEG32 SEG28 SEG24 SEG20 SEG16 SEG12 SEG8 SEG4 to to to to to to to to to SGS3 SGS2 SGS1 SGS0 SEG33 SEG29 SEG25 SEG21 SEG17 SEG13 SEG9 SEG5 SEG1 0 0 0 0 Port Port Port Port Port Port Port Port Port 0 0 0 1 SEG Port Port Port Port Port Port Port Port 0 0 1 0 SEG SEG Port Port Port Port Port Port Port 0 0 1 1 SEG SEG SEG Port Port Port Port Port Port 0 1 0 0 SEG SEG SEG SEG Port Port Port Port Port 0 1 0 1 SEG SEG SEG SEG SEG Port Port Port Port 0 1 1 0 SEG SEG SEG SEG SEG SEG Port Port Port 0 1 1 1 SEG SEG SEG SEG SEG SEG SEG Port Port 1 X X 0 SEG SEG SEG SEG SEG SEG SEG SEG Port 1 X X 1 SEG SEG SEG SEG SEG SEG SEG SEG SEG [Legend] X: Don't care Notes: 1. The external expanded mode can be used when SGS3 to SGS0 are set to B'0000. 2. The external expanded mode cannot be used when SGS3 to SGS0 are not set to B'0000. 3. COM4 to COM1 also function as ports when the setting of SGS3 to SGS0 is B'0000. Rev. 2.00 Dec. 05, 2005 Page 514 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver 17.3.2 LCD Control Register (LCR) LCR controls LCD power supply split-resistance connection and display data, and selects the frame frequency. Bit Bit Name Initial Value R/W Description 7 1 R/W Reserved This bit is always read as 1. The write value should always be 0. 6 PSW 0 R/W LCD Power Supply Split-Resistance Connection Control Disconnects the LCD power supply split-resistance from VCC when LCD display is not required in a power-down mode, or when an external power supply is used. When the ACT bit is cleared to 0, and also in standby mode, the LCD power supply split-resistance is disconnected from VCC regardless of the setting of this bit. 0: LCD power supply split-resistance is disconnected from VCC 1: LCD power supply split-resistance is connected to VCC 5 ACT 0 R/W Display Function Activate Specifies whether or not the LCD controller/driver is used. Clearing this bit to 0 halts operation of the LCD controller/driver. The LCD drive power supply ladder resistance is also turned off, regardless of the setting of the PSW bit. However, register contents are retained. 0: LCD controller/driver operation halted 1: LCD controller/driver operation activated 4 DISP 0 R/W Display Data Control Specifies whether the LCD RAM contents are displayed or blank data is displayed regardless of the LCD RAM contents. 0: Blank data is displayed 1: LCD RAM data is displayed Rev. 2.00 Dec. 05, 2005 Page 515 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver Bit Bit Name Initial Value R/W Description 3 CKS3 0 R/W Frame Frequency Select 3 to 0 2 CKS2 0 R/W 1 CKS1 0 R/W 0 CKS0 0 R/W These bits select the operating clock and the frame frequency. In subactive mode, watch mode, and subsleep mode, the system clock (φ) is halted, and therefore display operations are not performed if one of the clocks from φ/2 to φ/256 is selected. If LCD display is required in these modes, φSUB, φSUB/2, or φSUB/4 must be selected as the operating clock. For details, see table 17.4. Table 17.4 Frame Frequency Selection Frame Frequency*1 Bit 3 Bit 2 Bit 1 Bit 0 CKS3 CKS2 CKS1 CKS0 Operating Clock φ = 20 MHz 0 X 0 0 φSUB 128 Hz*2 1 φSUB/2 64 Hz*2 1 X φSUB/4 32 Hz*2 0 0 φ/8 4880 Hz 1 φ/16 2440 Hz 0 φ/32 1220 Hz 1 φ/64 610 Hz 0 φ/128 305 Hz 1 φ/256 152.6 Hz 0 φ/512 76.3 Hz 1 φ/1024 38.1 Hz 1 0 1 1 0 1 [Legend] X: Don't care Notes: 1. When 1/3 duty is selected, the frame frequency is 4/3 times the value shown. 2. This is the frame frequency when φSUB = 32.767 MHz. Rev. 2.00 Dec. 05, 2005 Page 516 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver 17.3.3 LCD Control Register 2 (LCR2) LCR2 controls switching between the A waveform and B waveform. Bit Bit Name Initial Value R/W 7 LCDAB 0 R/W Description A Waveform/B Waveform Switching Control Selects the A waveform or B waveform for the LCD drive waveform. 0: Drive using A waveform 1: Drive using B waveform 6, 5 All 1 Reserved These bits are always read as 1 and cannot be modified. 4 to 0 — All 0 — Reserved These bits are always read as 0. The write value should always be 0. Rev. 2.00 Dec. 05, 2005 Page 517 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver 17.4 Operation 17.4.1 Settings up to LCD Display To perform LCD display, the hardware and software related items described below must first be determined. 1. Hardware Settings A. Using 1/2 duty When 1/2 duty is used, interconnect pins V2 and V3 as shown in figure 17.2. LPVCC V1 V2 V3 VSS Figure 17.2 Handling of LCD Drive Power Supply when Using 1/2 Duty B. Large-panel display As the impedance of the built-in power supply split-resistance is large, it may not be suitable for driving a large panel. If the display lacks sharpness when using a large panel, see section 17.4.4, Boosting the LCD Drive Power Supply. When static or 1/2 duty is selected, the common output drive capability can be increased. Set CMX to 1 when selecting the duty cycle. In this mode, with a static duty cycle, pins COM4 to COM1 output the same waveform, and with 1/2 duty, the COM1 waveform is output from pins COM2 and COM1, and the COM2 waveform is output from pins COM4 and COM3. C. LCD drive power supply setting With this LSI, there are two ways of providing LCD power: by using the on-chip power supply circuit or by using an external power supply circuit. When an external power supply circuit is used for the LCD drive power supply, connect the external power supply to the V1 pin. Rev. 2.00 Dec. 05, 2005 Page 518 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver 2. Software Settings A. Duty selection Any of four duty cyclesstatic, 1/2 duty, 1/3 duty, or 1/4 dutycan be selected with bits DTS1 and DTS0. B. Segment driver selection The segment drivers to be used can be selected with bits SGS3 to SGS0. 3. Frame frequency selection The frame frequency can be selected by setting bits CKS3 to CKS0. The frame frequency should be selected in accordance with the LCD panel specification. For the clock selection method in watch mode, subactive mode, and subsleep mode, see section 17.4.3, Operation in Power-Down Modes. A. A or B waveform selection Either the A or B waveform can be selected as the LCD waveform to be used by means of LCDAB. B. LCD drive power supply selection When an external power supply circuit is used, turn the LCD drive power supply off with the PSW bit. Rev. 2.00 Dec. 05, 2005 Page 519 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver 17.4.2 Relationship between LCD RAM and Display The relationship between the LCD RAM and the display segments differs according to the duty cycle. LCD RAM maps for the different duty cycles are shown in figures 17.3 to 17.6. After setting the registers required for display, data is written to the part corresponding to the duty using the same kind of instruction as for ordinary RAM, and display is started automatically when turned on. Word- or byte-access instructions can be used for RAM setting. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 H'FC40 SEG2 SEG2 SEG2 SEG2 SEG1 SEG1 SEG1 SEG1 H'FC53 SEG40 SEG40 SEG40 SEG40 SEG39 SEG39 SEG39 SEG39 COM4 COM3 COM2 COM1 COM4 COM3 COM2 COM1 Figure 17.3 LCD RAM Map (1/4 Duty) Rev. 2.00 Dec. 05, 2005 Page 520 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver Bit 7 Bit 6 Bit 5 Bit 4 H'FC40 SEG2 SEG2 H'FC53 SEG40 COM3 Bit 3 Bit 2 Bit 1 Bit 0 SEG2 SEG1 SEG1 SEG1 SEG40 SEG40 SEG39 SEG39 SEG39 COM2 COM1 COM3 COM2 COM1 Space not used for display Figure 17.4 LCD RAM Map (1/3 Duty) H'FC40 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SEG4 SEG4 SEG3 SEG3 SEG2 SEG2 SEG1 SEG1 Display space H'FC49 SEG40 SEG40 SEG39 SEG39 SEG38 SEG38 SEG37 SEG37 Space not used for display H'FC53 COM2 COM1 COM2 COM1 COM2 COM1 COM2 COM1 Figure 17.5 LCD RAM Map (1/2 Duty) Rev. 2.00 Dec. 05, 2005 Page 521 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver H'FC40 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 Display space H'FC44 SEG40 SEG39 SEG38 SEG37 SEG36 SEG35 SEG34 SEG33 Space not used for display H'FC53 COM1 COM1 COM1 COM1 COM1 COM1 COM1 COM1 Figure 17.6 LCD RAM Map (Static Mode) Rev. 2.00 Dec. 05, 2005 Page 522 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver 1 frame 1 frame M M Data Data COM1 V1 V2 V3 VSS COM1 V1 V2 V3 VSS COM2 V1 V2 V3 VSS COM2 V1 V2 V3 VSS COM3 V1 V2 V3 VSS COM3 V1 V2 V3 VSS COM4 V1 V2 V3 VSS SEGn V1 V2 V3 VSS SEGn V1 V2 V3 VSS (a) Waveform with 1/4 duty (b) Waveform with 1/3 duty 1 frame 1 frame M M Data Data COM1 V1 V2,V3 VSS COM1 V1 COM2 V1 V2,V3 VSS SEGn SEGn V1 V2,V3 VSS VSS V1 VSS (d) Waveform with static output (c) Waveform with 1/2 duty Figure 17.7 Output Waveforms for Each Duty Cycle (A Waveform) Rev. 2.00 Dec. 05, 2005 Page 523 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver 1 frame 1 frame 1 frame 1 frame 1 frame M M Data Data 1 frame 1 frame 1 frame COM1 V1 V2 V3 VSS COM1 V1 V2 V3 VSS COM2 V1 V2 V3 VSS COM2 V1 V2 V3 VSS COM3 V1 V2 V3 VSS COM3 V1 V2 V3 VSS COM4 V1 V2 V3 VSS SEGn V1 V2 V3 VSS SEGn V1 V2 V3 VSS (a) Waveform with 1/4 duty 1 frame 1 frame 1 frame (b) Waveform with 1/3 duty 1 frame 1 frame M M Data Data COM1 V1 V2,V3 VSS COM1 COM2 V1 V2,V3 VSS SEGn V1 V2,V3 VSS SEGn 1 frame 1 frame 1 frame V1 VSS V1 VSS (d) Waveform with static output (c) Waveform with 1/2 duty Figure 17.8 Output Waveforms for Each Duty Cycle (B Waveform) Rev. 2.00 Dec. 05, 2005 Page 524 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver Table 17.5 Output Levels (A Waveform) Data 0 0 1 1 M 0 1 0 1 Common output V1 VSS V1 VSS Segment output V1 VSS VSS V1 Common output V2, V3 V2, V3 V1 VSS Segment output V1 VSS VSS V1 Common output V3 V2 V1 VSS Segment output V2 V3 VSS V1 Common output V3 V2 V1 VSS Segment output V2 V3 VSS V1 Static 1/2 duty 1/3 duty 1/4 duty 17.4.3 Operation in Power-Down Modes In this LSI, the LCD controller/driver can be operated even in power-down modes. The operating state of the LCD controller/driver in the power-down modes is summarized in table 17.6. In subactive mode, watch mode, and subsleep mode, the system clock oscillator stops, and therefore, unless φSUB, φSUB/2, or φSUB/4 has been selected by bits CKS3 to CKS0, the clock will not be supplied and display will halt. Since a DC voltage may be applied to the LCD panel in this case, it is essential to ensure that φSUB, φSUB/2, or φSUB/4 is selected. In active (medium-speed) mode, the system clock is switched. Therefore, the bits CKS3 to CKS0 must be specified appropriately so that the frame frequency is fixed. In the software standby mode, the segment output and common output pins switch to I/O ports. In this case if a port's DDR or PCR bit is set to 1, a DC voltage may be applied to the LCD panel. Therefore, DDR and PCR must never be set to 1 for ports being used for segment output or common output. Rev. 2.00 Dec. 05, 2005 Page 525 of 724 REJ09B0200-0200 Section 17 LCD Controller/Driver Table 17.6 Power-Down Modes and Display Operation Software Hardware Module Mode Clock Display operation Reset Active Sleep Watch Subactive Subsleep Standby standby Stop φ Runs Runs Runs Stops Stops Stops Stops Stops Stops*4 φSUB Runs Runs Runs Runs Runs Runs Stops*1 Stops Stops*4 ACT = 0 Stops Stops Stops Stops Stops Stops Stops*2 Stops*2 Stops 2 2 Stops 3 ACT = 1 Stops Functions Functions Functions* 3 Functions* 3 Functions* Stops* Stops* Notes: 1. The subclock oscillator does not stop, but clock supply is halted. 2. The LCD drive power supply is turned off regardless of the setting of the PSW bit. 3. Display operation is performed only if φSUB, φSUB/2, or φSUB/4 is selected as the operating clock. 4. The clock supplied to the LCD stops. 17.4.4 Boosting the LCD Drive Power Supply When a large panel is driven, the on-chip power supply capacity may be insufficient. In this case, the power supply impedance must be reduced. This can be done by connecting bypass capacitors of around 0.1 to 0.3 µF to pins V1 to V3, as shown in figure 17.9, or by adding a split-resistance externally. VCC VR V1 R This LSI R = several kΩ to several MΩ V2 R C = 0.1 to 0.3 µF V3 R VSS Figure 17.9 Connection of External Split-Resistance Rev. 2.00 Dec. 05, 2005 Page 526 of 724 REJ09B0200-0200 Section 18 RAM Section 18 RAM This LSI has an 8-kbyte on-chip high-speed static RAM. The RAM is connected to the CPU by a 16-bit data bus, enabling one-state access by the CPU to both byte data and word data. The on-chip RAM can be enabled or disabled by means of the RAME bit in the system control register (SYSCR). For details on SYSCR, see section 3.2.2, System Control Register (SYSCR). Rev. 2.00 Dec. 05, 2005 Page 527 of 724 REJ09B0200-0200 Section 18 RAM Rev. 2.00 Dec. 05, 2005 Page 528 of 724 REJ09B0200-0200 Section 19 ROM Section 19 ROM The features of the flash memory are summarized below. The block diagram of the flash memory is shown in figure 19.1. 19.1 Features • Size Product Type ROM Size ROM Address H8S/2649F 256 kbytes H'000000 to H'03FFFF • Programming/erase methods The flash memory is programmed in 128-byte units at a time. Erase is performed in singleblock units. The flash memory is configured as follows: 64 kbytes × 3 blocks, 32 kbytes × 1 block, and 4 kbytes × 8 blocks. To erase the entire flash memory, each block must be erased in turn. • Reprogramming capability The flash memory can be reprogrammed for 100 times. • Two on-board programming modes Boot mode User program mode On-board programming/erasing can be done in boot mode, in which the boot program built into the chip is started to erase or program the entire flash memory. In normal user program mode, individual blocks can be erased or programmed. • Programmer mode Flash memory can be programmed/erased in programmer mode using a PROM programmer, as well as in on-board programming mode. • Automatic bit rate adjustment For data transfer in boot mode, this LSI's bit rate can be automatically adjusted to match the transfer bit rate of the host. • Programming/erasing protection There are three protect modes, hardware, software, and error protect, which allow protected status to be designated for flash memory program/erase operations. Rev. 2.00 Dec. 05, 2005 Page 529 of 724 REJ09B0200-0200 Section 19 ROM • Emulation function for flash memory in RAM The real-time emulation for programming of flash memory is possible by overlapping the flash memory to a part of RAM. Internal address bus Module bus Internal data bus (16 bits) FLMCR1 FLMCR2 EBR1 Bus interface/controller Operating mode FWE pin Mode pin EBR2 RAMER FLPWCR Flash memory [Legend] FLMCR1: FLMCR2: EBR1: EBR2: RAMER: FLPWCR: Flash memory control register 1 Flash memory control register 2 Erase block register 1 Erase block register 2 RAM emulation register Flash memory power control register Figure 19.1 Block Diagram of Flash Memory 19.2 Mode Transitions When the mode pins and the FWE pin are set in the reset state and a reset-start is executed, this LSI enters an operating mode as shown in figure 19.2. In user mode, flash memory can be read but not programmed or erased. The boot, user program, and programmer modes are provided as modes to program and erase the flash memory. The differences between boot mode and user program mode are shown in table 19.1. Rev. 2.00 Dec. 05, 2005 Page 530 of 724 REJ09B0200-0200 Section 19 ROM Figure 19.3 shows the operation flow for boot mode and figure 19.4 shows that for user program mode. MD1 = 1, MD2 = 1, FWE = 0*1 User mode with on-chip ROM enabled FWE = 1 Reset state RES = 0 MD1 = 1, MD2 = 1, FWE = 1 RES = 0 RES = 0 FWE = 0 User program mode *2 MD1 = 0 MD2 = 1, FWE = 1 RES = 0 Programmer mode *1 Boot mode On-board programming mode Notes: Only make a transition between user mode and user program mode when the CPU is not accessing the flash memory. 1. RAM emulation possible 2. MD0 = 0, MD1 = 0, MD2 = 0, FWE = 1, P14 = 0, P16 = 0, PF0 = 1 Figure 19.2 Flash Memory State Transitions Table 19.1 Differences between Boot Mode and User Program Mode Entire erase Boot Mode User Program Mode Yes Yes Block erase No Yes Programming control program* Program/program-verify Program/program-verify/erase/ erase-verify/emulation Note: * To be provided by the user, in accordance with the recommended algorithm. Rev. 2.00 Dec. 05, 2005 Page 531 of 724 REJ09B0200-0200 Section 19 ROM 1. Initial state The old program version or data remains written in the flash memory. The user should prepare the programming control program and new application program beforehand in the host. 2. Programming control program transfer When boot mode is entered, the boot program in this LSI (originally incorporated in the chip) is started and the programming control program in the host is transferred to RAM via SCI communication. The boot program required for flash memory erasing is automatically transferred to the RAM boot program area. Host Host Programming control program New application program New application program This LSI This LSI SCI Boot program Flash memory RAM SCI Boot program RAM Flash memory Boot program area Application program (old version) Application program (old version) 3. Flash memory initialization The erase program in the boot program area (in RAM) is executed, and the flash memory is initialized (to H'FF). In boot mode, total flash memory erasure is performed, without regard to blocks. Programming control program 4. Writing new application program The programming control program transferred from the host to RAM is executed, and the new application program in the host is written into the flash memory. Host Host New application program This LSI This LSI SCI Boot program Flash memory RAM Flash memory Boot program area Flash memory preprogramming erase Programming control program SCI Boot program RAM Boot program area New application program Programming control program Program execution state Figure 19.3 Boot Mode Rev. 2.00 Dec. 05, 2005 Page 532 of 724 REJ09B0200-0200 Section 19 ROM 1. Initial state The FWE assessment program that confirms that user program mode has been entered, and the program that will transfer the programming/erase control program from flash memory to on-chip RAM should be written into the flash memory by the user beforehand. The programming/erase control program should be prepared in the host or in the flash memory. 2. Programming/erase control program transfer When user program mode is entered, user software confirms this fact, executes transfer program in the flash memory, and transfers the programming/erase control program to RAM. Host Host Programming/ erase control program New application program New application program This LSI This LSI SCI Boot program Flash memory SCI Boot program Flash memory RAM RAM FWE assessment program FWE assessment program Transfer program Transfer program Programming/ erase control program Application program (old version) Application program (old version) 3. Flash memory initialization The programming/erase program in RAM is executed, and the flash memory is initialized (to H'FF). Erasing can be performed in block units, but not in byte units. 4. Writing new application program Next, the new application program in the host is written into the erased flash memory blocks. Do not write to unerased blocks. Host Host New application program This LSI This LSI SCI Boot program Flash memory RAM FWE assessment program Flash memory RAM FWE assessment program Transfer program Transfer program Programming/ erase control program Flash memory erase SCI Boot program Programming/ erase control program New application program Program execution state Figure 19.4 User Program Mode (Example) Rev. 2.00 Dec. 05, 2005 Page 533 of 724 REJ09B0200-0200 Section 19 ROM 19.3 Block Configuration Figure 19.5 shows the block configuration of 256-kbyte flash memory. The thick lines indicate erasing units, the narrow lines indicate programming units, and the values are addresses. The flash memory is divided into 4 kbytes (8 blocks), 32 kbytes (1 block), and 64 kbytes (3 blocks). Erasing is performed in these units. Programming is performed in 128-byte units starting from an address with lower eight bits H'00 or H'80. Rev. 2.00 Dec. 05, 2005 Page 534 of 724 REJ09B0200-0200 Section 19 ROM EB0 Erase unit 4 kbytes H'000000 H'000001 H'000002 Programming unit: 128 bytes EB1 Erase unit 4 kbytes H'001000 H'001001 H'001002 Programming unit: 128 bytes EB2 Erase unit 4 kbytes H'002000 H'002001 H'002002 Programming unit: 128 bytes EB3 Erase unit 4 kbytes H'003000 H'003001 H'003002 Programming unit: 128 bytes EB4 Erase unit 4 kbytes H'004000 H'004001 H'004002 Programming unit: 128 bytes EB5 Erase unit 4 kbytes H'005000 H'005001 H'005002 Programming unit: 128 bytes EB6 Erase unit 4 kbytes H'006000 H'006001 H'006002 Programming unit: 128 bytes EB7 Erase unit 4 kbytes H'007000 H'007001 H'007002 Programming unit: 128 bytes EB8 Erase unit 32 kbytes H'008000 H'008001 H'008002 Programming unit: 128 bytes EB9 Erase unit 64 kbytes H'010000 H'010001 H'010002 Programming unit: 128 bytes EB10 Erase unit 64 kbytes H'020000 H'020001 H'020002 Programming unit: 128 bytes EB11 Erase unit 64 kbytes H'030000 H'030001 H'030002 Programming unit: 128 bytes H'00007F H'000FFF H'00107F H'001FFF H'00207F H'002FFF H'00307F H'003FFF H'00407F H'004FFF H'00507F H'005FFF H'00607F H'006FFF H'00707F H'007FFF H'00807F H'00FFFF H'01007F H'01FFFF H'02007F H'02FFFF H'03007F H'03FFFF Figure 19.5 Flash Memory Block Configuration Rev. 2.00 Dec. 05, 2005 Page 535 of 724 REJ09B0200-0200 Section 19 ROM 19.4 Input/Output Pins The flash memory is controlled by means of the pins shown in table 19.2. Table 19.2 Pin Configuration Pin Name I/O Function RES Input Reset FWE Input Flash program/erase protection by hardware MD2 Input Sets this LSI's operating mode MD1 Input Sets this LSI's operating mode MD0 Input Sets this LSI's operating mode PF0 Input Sets MCU operating mode in programmer mode P16 Input Sets MCU operating mode in programmer mode P14 Input Sets MCU operating mode in programmer mode TxD0 Output Serial transmit data output RxD0 Input Serial receive data input 19.5 Register Descriptions The flash memory has the following registers. • • • • • • Flash memory control register 1 (FLMCR1) Flash memory control register 2 (FLMCR2) Erase block register 1 (EBR1) Erase block register 2 (EBR2) RAM emulation register (RAMER) Flash memory power control register (FLPWCR) Rev. 2.00 Dec. 05, 2005 Page 536 of 724 REJ09B0200-0200 Section 19 ROM 19.5.1 Flash Memory Control Register 1 (FLMCR1) FLMCR1 is a register that makes the flash memory change to program mode, program-verify mode, erase mode, or erase-verify mode. For details on register setting, see section 19.8, Flash Memory Programming/Erasing. Bit Bit Name Initial Value R/W Description 7 FWE R Flash Write Enable Bit Reflects the input level at the FWE pin. It is set to 1 when a low level is input to the FWE pin, and cleared to 0 when a high level is input. When this bit is cleared to 0, the flash memory changes to hardware protect mode. 6 SWE 0 R/W Software Write Enable Bit When this bit is set to 1 while FWE = 1, flash memory programming/erasing is enabled. When this bit is cleared to 0, bits 5 to 0 in FLMCR1 and all EBR1 and EBR2 bits cannot be set. 5 ESU 0 R/W Erase Setup Bit When this bit is set to 1, the flash memory changes to the erase setup state. When it is cleared to 0, the erase setup state is cancelled. Set this bit to 1 before setting the E bit in FLMCR1. 4 PSU 0 R/W Program Setup Bit When this bit is set to 1, the flash memory changes to the program setup state. When it is cleared to 0, the program setup state is cancelled. Set this bit to 1 before setting the P bit in FLMCR1. 3 EV 0 R/W Erase-Verify When this bit is set to 1, the flash memory changes to erase-verify mode. When it is cleared to 0, erase-verify mode is cancelled. 2 PV 0 R/W Program-Verify When this bit is set to 1, the flash memory changes to program-verify mode. When it is cleared to 0, programverify mode is cancelled. Rev. 2.00 Dec. 05, 2005 Page 537 of 724 REJ09B0200-0200 Section 19 ROM Bit Bit Name Initial Value R/W Description 1 E 0 R/W Erase When this bit is set to 1, the flash memory changes to erase mode. When it is cleared to 0, erase mode is cancelled. 0 P 0 R/W Program When this bit is set to 1, and while the SWE and PSU bits are 1, the flash memory changes to program mode. When it is cleared to 0, program mode is cancelled. 19.5.2 Flash Memory Control Register 2 (FLMCR2) FLMCR2 is a register that displays the state of flash memory programming/erasing. FLMCR2 is a read-only register, and should not be written to. Bit Bit Name Initial Value R/W 7 FLER 0 R Description Flash Memory Error Indicates that an error has occurred during an operation on flash memory (programming or erasing). When FLER is set to 1, flash memory goes to the error-protection state. See section 19.9.3, Error Protection, for details. 6 to 0 All 0 R Reserved These bits are always read as 0. Rev. 2.00 Dec. 05, 2005 Page 538 of 724 REJ09B0200-0200 Section 19 ROM 19.5.3 Erase Block Register 1 (EBR1) EBR1 specifies the flash memory erase area block. EBR1 is initialized to H'00 when the SWE bit in FLMCR1 is 0. Do not set more than one bit at a time, as this will cause all the bits in EBR1 and EBR2 to be automatically cleared to 0. Bit Bit Name Initial Value R/W Description 7 EB7 0 R/W When this bit is set to 1, 4 kbytes of EB7 (H'007000 to H'007FFF) will be erased. 6 EB6 0 R/W When this bit is set to 1, 4 kbytes of EB6 (H'006000 to H'006FFF) will be erased. 5 EB5 0 R/W When this bit is set to 1, 4 kbytes of EB5 (H'005000 to H'005FFF) will be erased. 4 EB4 0 R/W When this bit is set to 1, 4 kbytes of EB4 (H'004000 to H'004FFF) will be erased. 3 EB3 0 R/W When this bit is set to 1, 4 kbytes of EB3 (H'003000 to H'003FFF) will be erased. 2 EB2 0 R/W When this bit is set to 1, 4 kbytes of EB2 (H'002000 to H'002FFF) will be erased. 1 EB1 0 R/W When this bit is set to 1, 4 kbytes of EB1 (H'001000 to H'001FFF) will be erased. 0 EB0 0 R/W When this bit is set to 1, 4 kbytes of EB0 (H'000000 to H'000FFF) will be erased. Rev. 2.00 Dec. 05, 2005 Page 539 of 724 REJ09B0200-0200 Section 19 ROM 19.5.4 Erase Block Register 2 (EBR2) EBR2 specifies the flash memory erase area block. EBR2 is initialized to H'00 when the SWE bit in FLMCR1 is 0. Do not set more than one bit at a time, as this will cause all the bits in EBR1 and EBR2 to be automatically cleared to 0. Bit Bit Name Initial Value R/W Description 7 to 4 All 0 R/W Reserved The write value should always be 0. 3 EB11 0 R/W When this bit is set to 1, 64 kbytes of EB11 (H'030000 to H'03FFFF) will be erased. 2 EB10 0 R/W When this bit is set to 1, 64 kbytes of EB10 (H'020000 to H'02FFFF) will be erased. 1 EB9 0 R/W When this bit is set to 1, 64 kbytes of EB9 (H'010000 to H'01FFFF) will be erased. 0 EB8 0 R/W When this bit is set to 1, 32 kbytes of EB8 (H'008000 to H'00FFFF) will be erased. 19.5.5 RAM Emulation Register (RAMER) RAMER specifies the area of flash memory to be overlapped with part of RAM when emulating real-time flash memory programming. RAMER settings should be made in user mode or user program mode. To ensure correct operation of the emulation function, the ROM for which RAM emulation is performed should not be accessed immediately after this register has been modified. Normal execution of an access immediately after register modification is not guaranteed. Bit Bit Name Initial Value R/W Description 7 to 5 All 0 R Reserved 4 0 R/W Reserved These bits are always read as 0. Always write 0 before read. 3 RAMS 0 R/W RAM Select Specifies selection or non-selection of flash memory emulation in RAM. When RAMS = 1, the flash memory is overlapped with part of RAM, and all flash memory block are program/erase-protected. Rev. 2.00 Dec. 05, 2005 Page 540 of 724 REJ09B0200-0200 Section 19 ROM Bit Bit Name Initial Value R/W Description 2 RAM2 0 R/W Flash Memory Area Selection 1 RAM1 0 R/W 0 RAM0 0 R/W When the RAMS bit is set to 1, one of the following flash memory areas is selected to overlap the RAM area. The areas correspond with 4-kbyte erase blocks. 000: H'000000 to H'000FFF (EB0) 001: H'001000 to H'001FFF (EB1) 010: H'002000 to H'002FFF (EB2) 011: H'003000 to H'003FFF (EB3) 100: H'004000 to H'004FFF (EB4) 101: H'005000 to H'005FFF (EB5) 110: H'006000 to H'006FFF (EB6) 111: H'007000 to H'007FFF (EB7) 19.5.6 Flash Memory Power Control Register (FLPWCR) FLPWCR enables/disables transition to power-down modes for the flash memory when this LSI enters sub-active mode. Bit Bit Name Initial Value R/W Description 7 PDWND 0 R/W Power Down Disable Enables/disables transition to power-down modes for the flash memory when this LSI enters sub-active mode. 0: Transition to power-down modes for the flash memory enabled. 1: Transition to power-down modes for the flash memory disabled. 6 to 0 All 0 R Reserved These bits are always read as 0. Rev. 2.00 Dec. 05, 2005 Page 541 of 724 REJ09B0200-0200 Section 19 ROM 19.6 On-Board Programming Modes When pins are set to on-board programming mode, program/erase/verify operations can be performed on the on-chip flash memory. There are two on-board programming modes: boot mode and user program mode. The pin settings for transition to each of these modes are shown in table 19.3. For a diagram of the transitions to the various flash memory modes, see figure 19.2. Table 19.3 Setting On-Board Programming Modes Mode Setting Boot mode Expanded mode FWE MD2 MD1 MD0 1 0 1 0 0 1 1 1 1 0 1 1 1 Single-chip mode User program mode Expanded mode Single-chip mode 19.6.1 1 Boot Mode Table 19.4 shows the boot mode operations between reset end and branching to the programming control program. 1. When boot mode is used, the flash memory programming control program must be prepared in the host beforehand. Prepare a programming control program in accordance with the description in section 19.8, Flash Memory Programming/Erasing. In boot mode, if any data has been programmed into the flash memory (if all data is not 1), all flash memory blocks are erased. Boot mode is for use when user program mode is unavailable, such as the first time on-board programming is performed, or if the program activated in user program mode is accidentally erased. 2. SCI_1 should be set to asynchronous mode, and the transfer format as follows: 8-bit data, 1 stop bit, and no parity. 3. When the boot program is initiated, the chip measures the low-level period of asynchronous SCI communication data (H'00) transmitted continuously from the host. The chip then calculates the bit rate of transmission from the host, and adjusts the SCI_1 bit rate to match that of the host. The reset should end with the RxD pin high. The RxD and TxD pins should be pulled up on the board if necessary. After the reset is complete, it takes approximately 100 states before the chip is ready to measure the low-level period. Rev. 2.00 Dec. 05, 2005 Page 542 of 724 REJ09B0200-0200 Section 19 ROM 4. After matching the bit rates, the chip transmits one H'00 byte to the host to indicate the completion of bit rate adjustment. The host should confirm that this adjustment end indication (H'00) has been received normally, and transmit one H'55 byte to the chip. If reception could not be performed normally, initiate boot mode again by a reset. Depending on the host's transfer bit rate and system clock frequency of this LSI, there will be a discrepancy between the bit rates of the host and the chip. To operate the SCI properly, set the host's transfer bit rate and system clock frequency of this LSI within the ranges listed in table 19.5. 5. In boot mode, a part of the on-chip RAM area is used by the boot program. The area H'FFE800 to H'FFEFBF is the area to which the programming control program is transferred from the host. The boot program area cannot be used until the execution state in boot mode switches to the programming control program. 6. Before branching to the programming control program, the chip terminates transfer operations by SCI_1 (by clearing the RE and TE bits in SCR to 0), however the adjusted bit rate value remains set in BRR. Therefore, the programming control program can still use it for transfer of write data or verify data with the host. The TxD pin is high. The contents of the CPU general registers are undefined immediately after branching to the programming control program. These registers must be initialized at the beginning of the programming control program, as the stack pointer (SP), in particular, is used implicitly in subroutine calls, etc. 7. Boot mode can be cleared by driving the reset pin low, waiting at least 20 states, then setting the FWE pin and mode pins, and executing reset release. Boot mode is also cleared when a WDT overflow occurs. 8. All interrupts are disabled during programming or erasing of the flash memory. Rev. 2.00 Dec. 05, 2005 Page 543 of 724 REJ09B0200-0200 Section 19 ROM Table 19.4 Boot Mode Operation Item Boot mode start Host Operation Processing Contents LSI Operation Communications Contents Processing Contents Branches to boot program at reset-start. Boot program initiation Bit rate adjustment Continuously transmits data H'00 at specified bit rate. Transmits data H'55 when data H'00 is received error-free. H'00, H'00 ...... H'00 H'00 · Measures low-level period of receive data H'00. · Calculates bit rate and sets it in BRR of SCI_1. · Transmits data H'00 to host as adjustment end indication. H'55 H'AA Transmits data H'AA to host when data H'55 is received. Receives data H'AA. Transfer of programming control program Transmits number of bytes (N) of programming control program to be transferred as 2-byte data (lower byte following upper byte) Transmits 1-byte of programming control program (repeated for N times) Upper byte and lower byte Echobacks the 2-byte data received. Echoback H'XX Echoback Flash memory erase Boot program erase error Receives data H'AA. H'FF H'AA Echobacks received data to host and also transfers it to RAM (repeated for N times) Checks flash memory data, erases all flash memory blocks in case of written data existing, and transmits data H'AA to host. (If erase could not be done, transmits data H'FF to host and aborts operation.) Branches to programming control program transferred to on-chip RAM and starts execution. Table 19.5 System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate is Possible Host Bit Rate System Clock Frequency Range of this LSI 19,200 bps 20 MHz 9,600 bps 8 to 20 MHz 4,800 bps 4 to 20 MHz Rev. 2.00 Dec. 05, 2005 Page 544 of 724 REJ09B0200-0200 Section 19 ROM 19.6.2 Programming/Erasing in User Program Mode On-board programming/erasing of an individual flash memory block can also be performed in user program mode by branching to a user program/erase control program. The user must prepare onboard means for controlling FWE, on-board means of supplying programming data, and branching conditions. The flash memory must contain the user program/erase control program or a program that provides the user program/erase control program from external memory. As the flash memory itself cannot be read during programming/erasing, transfer the user program/erase control program to on-chip RAM, as in boot mode. Figure 19.6 shows a sample procedure for programming/erasing in user program mode. Prepare a user program/erase control program in accordance with the description in section 19.8, Flash Memory Programming/Erasing. Reset-start No Program/erase? Yes Transfer user program/erase control program to RAM Branch to flash memory application program Branch to user program/erase control program in RAM Execute user program/erase control program (flash memory rewrite) Branch to flash memory application program Figure 19.6 Programming/Erasing Flowchart Example in User Program Mode Rev. 2.00 Dec. 05, 2005 Page 545 of 724 REJ09B0200-0200 Section 19 ROM 19.7 Flash Memory Emulation in RAM A setting in the RAM emulation register (RAMER) enables part of RAM to be overlapped onto the flash memory area so that data to be written to flash memory can be emulated in RAM in real time. Emulation can be performed in user mode or user program mode. Figure 19.7 shows an example of emulation of real-time flash memory programming. 1. Set RAMER to overlap part of RAM onto the area for which real-time programming is required. 2. Emulation is performed using the overlapping RAM. 3. After the program data has been confirmed, the RAMS bit is cleared, thus releasing the RAM overlap. 4. The data written in the overlapping RAM is written into the flash memory space. Start of emulation program Set RAMER Write tuning data to overlap RAM Execute application program No Tuning OK? Yes Clear RAMER Write to flash memory emulation block End of emulation program Figure 19.7 Flowchart for Flash Memory Emulation in RAM Rev. 2.00 Dec. 05, 2005 Page 546 of 724 REJ09B0200-0200 Section 19 ROM An example in which flash memory block area EB0 is overlapped is shown in figure 19.8. 1. The RAM area to be overlapped is fixed at a 4-kbyte area in the range H'FFD800 to H'FFE7FF. 2. The flash memory area to be overlapped is selected by RAMER from a 4-kbyte area of the EB0 to EB7 blocks. 3. The overlapped RAM area can be accessed from both the flash memory addresses and RAM addresses. 4. When the RAMS bit in RAMER is set to 1, program/erase protection is enabled for all flash memory blocks (emulation protection). In this state, setting the P or E bit in FLMCR1 to 1 does not cause a transition to program mode or erase mode. 5. A RAM area cannot be erased by execution of software in accordance with the erase algorithm. 6. Block area EB0 contains the vector table. When performing RAM emulation, the vector table is needed in the overlap RAM. Rev. 2.00 Dec. 05, 2005 Page 547 of 724 REJ09B0200-0200 Section 19 ROM H'000000 Flash memory (EB0) Flash memory (EB0) (EB1) On-chip RAM (Shadow of H'FFD000 to H'FFDFFF) (EB2) Flash memory (EB2) (EB3) (EB3) On-chip RAM (4 kbytes) On-chip RAM (4 kbytes) Normal memory map RAM overlap memory map H'001000 H'002000 H'003000 H'FFD800 H'FFE7FF Figure 19.8 Example of RAM Overlap Operation Rev. 2.00 Dec. 05, 2005 Page 548 of 724 REJ09B0200-0200 Section 19 ROM 19.8 Flash Memory Programming/Erasing A software method using the CPU is employed to program and erase flash memory in the onboard programming modes. Depending on the FLMCR1 setting, the flash memory operates in one of the following four modes: Program mode, program-verify mode, erase mode, and erase-verify mode. The programming control program in boot mode and the user program/erase control program in user program mode use these operating modes in combination to perform programming/erasing. Flash memory programming and erasing should be performed in accordance with the descriptions in section 19.8.1, Program/Program-Verify and section 19.8.2, Erase/Erase-Verify, respectively. 19.8.1 Program/Program-Verify When writing data or programs to the flash memory, the program/program-verify flowchart shown in figure 19.9 should be followed. Performing programming operations according to this flowchart will enable data or programs to be written to the flash memory without subjecting the chip to voltage stress or sacrificing program data reliability. 1. Programming must be done to an empty address. Do not reprogram an address to which programming has already been performed. 2. Programming should be carried out 128 bytes at a time. A 128-byte data transfer must be performed even if writing fewer than 128 bytes. In this case, H'FF data must be written to the extra addresses. 3. Prepare the following data storage areas in RAM: A 128-byte programming data area, a 128byte reprogramming data area, and a 128-byte additional-programming data area. Perform reprogramming data computation and additional programming data computation according to figure 19.10. 4. Consecutively transfer 128 bytes of data in byte units from the reprogramming data area or additional-programming data area to the flash memory. The program address and 128-byte data are latched in the flash memory. The lower 8 bits of the start address in the flash memory destination area must be H'00 or H'80. 5. The time during which the P bit is set to 1 is the programming time. Figure 19.10 shows the allowable programming times. 6. The watchdog timer (WDT) is set to prevent overprogramming due to program runaway, etc. Set a value greater than (tspsu + tsp200 + tcp + tcpsu) µs as the WDT overflow period. 7. For a dummy write to a verify address, write 1-byte data H'FF to an address whose lower 2 bits are B'00. Verify data can be read in words from the address to which a dummy write was performed. Rev. 2.00 Dec. 05, 2005 Page 549 of 724 REJ09B0200-0200 Section 19 ROM 8. The maximum number of repetitions of the program/program-verify sequence of the same bit is (N). Start of programming Write pulse application subroutine Perform programming in the erased state. Do not perform additional programming on previously programmed addresses. START Sub-Routine Write Pulse Set SWE1 bit in FLMCR1 WDT enable Wait (tsswe) 1µs Set PSU bit in FLMCR1 Store 128-byte program data in program data area and reprogram data area Wait (tspsu) 50µs Start of programming Set P bit in FLMCR1 *4 n=1 m=0 Wait tsp10 or 30 or 200 *5 Clear P bit in FLMCR1 End of programming Write 128-byte data in RAM reprogram data area consecutively to flash memory *1 Sub-Routine-Call Wait (tcp) 5µs Apply Write pulse tsp30 or 200 Clear PSU bit in FLMCR1 Set PV bit in FLMCR1 See Note 6 for pulse width Wait (tspv) 4µs Wait (tcpsu) 5µs H'FF dummy write to verify address Disable WDT n←n+1 tspvr = Wait 2µs End Sub Read verify data *2 Write data = verify data? No Increment address Note 6: Write Pulse Width Number of Writes n Write Time (tsp30/tsp200) µs 30 * 30 * 30 * 30 * 30 * 30 * 1 2 3 4 5 6 7 8 9 10 11 12 13 200 200 200 200 200 200 200 998 999 1000 200 200 200 m=1 Yes No 6≥n? Yes Additional-programming data computation Transfer additional-programming data to additional-programming data area *4 *3 Reprogram data computation Transfer reprogram data to reprogram data area No *4 128-byte data verification completed? Yes Clear PV bit in FLMCR1 Reprogram Wait (tcpv) µs Note: * Use a 10 µs write pulse for additional programming. No 6 ≥ n? Yes Successively write 128-byte data from additional1 programming data area in RAM to flash memory * RAM Program data storage area (128 bytes) Sub-Routine-Call Apply Write Pulse (Additional programming) Reprogram data storage area (128 bytes) No m=0? Additional-programming data storage area (128 bytes) No n ≥ 1000? Yes Clear SWE bit in FLMCR1 Yes Clear SWE bit in FLMCR1 Wait (tcswe) 100µs Wait (tcswe) 100µs End of programming Programming failure Notes: 1. Data transfer is performed by byte transfer. The lower 8 bits of the first address written to must be H'00 or H'80. A 128-byte data transfer must be performed even if writing fewer than 128 bytes; in this case, H'FF data must be written to the extra addresses. 2. Verify data is read in 16-bit (word) units. 3. Reprogram data is determined by the operation shown in the table below (comparison between the data stored in the program data area and the verify data). Bits for which the reprogram data is 0 are programmed in the next reprogramming loop. Therefore, even bits for which programming has been completed will be subjected to programming once again if the result of the subsequent verify operation is NG. 4. A 128-byte area for storing program data, a 128-byte area for storing reprogram data, and a 128-byte area for storing additional data must be provided in RAM. The contents of the reprogram data area and additional data area are modified as programming proceeds. 5. A write pulse of 30 µs or 200 µs is applied according to the progress of the programming operation. See Note 6 for details of the pulse widths. When writing of additional-programming data is executed, a 10 µs write pulse should be applied. Reprogram data X' means reprogram data when the write pulse is applied. Additional-Programming Data Computation Table Reprogram Data Computation Table Reprogram Data (X') Verify Data Additional(V) Programming Data (Y) Original Data Verify Data Reprogram Data (D) (V) (X) 0 0 1 Programming completed 0 0 0 Additional programming to be executed 0 1 0 Programming incomplete; reprogram 0 1 1 Additional programming not to be executed 1 0 1 1 0 1 1 1 1 1 1 1 Additional programming not to be executed Additional programming not to be executed Comments Still in erased state; no action Comments Figure 19.9 Program/Program-Verify Flowchart Rev. 2.00 Dec. 05, 2005 Page 550 of 724 REJ09B0200-0200 Section 19 ROM 19.8.2 Erase/Erase-Verify When erasing flash memory, the erase/erase-verify flowchart shown in figure 19.10 should be followed. 1. Prewriting (setting erase block data to all 0) is not necessary. 2. Erasing is performed in block units. Make only a single-bit specification in the erase block register 1 and 2 (EBR1 and EBR2). To erase multiple blocks, each block must be erased in turn. 3. The time during which the E bit is set to 1 is the flash memory erase time. 4. The watchdog timer (WDT) is set to prevent overprogramming due to program runaway, etc. Set a value greater than (tsesu + tse + tce + tcesu) ms as the WDT overflow period. 5. For a dummy write to a verify address, write 1-byte data H'FF to an address whose lower two bits are B'00. Verify data can be read in words from the address to which a dummy write was performed. 6. If the read data is not erased successfully, set erase mode again, and repeat the erase/eraseverify sequence as before. The maximum number of repetitions of the erase/erase-verify sequence is (N). 19.8.3 Interrupt Handling when Programming/Erasing Flash Memory All interrupts, including the NMI interrupt, are disabled while flash memory is being programmed or erased, or while the boot program is executing, for the following three reasons: 1. Interrupt during programming/erasing may cause a violation of the programming or erasing algorithm, with the result that normal operation cannot be assured. 2. If interrupt exception handling starts before the vector address is written or during programming/erasing, a correct vector cannot be fetched and the CPU malfunctions. 3. If an interrupt occurs during boot program execution, normal boot mode sequence cannot be carried out. Rev. 2.00 Dec. 05, 2005 Page 551 of 724 REJ09B0200-0200 Section 19 ROM Erase start *1 Erasing should be done to a block SWE bit in FLMCR1 ← 1 tsswe: Wait 1 µs n=1 *3 Set EBR1 (2) Enable WDT ESU bit in FLMCR1 ← 1 tsesu: Wait 100 µs E bit in FLMCR1 ← 1 start erasing tse: Wait 10 ms E bit in FLMCR1 ← 0 stop erasing tce: Wait 10 µs ESU bit in FLMCR1 ← 0 tcesu: Wait 10 µs Disable WDT EV bit in FLMCR1 ← 1 tsev: Wait 20 µs Set block start address as verify address H'FF dummy write to verify address tsevr: Wait 2 µs n←n+1 Read verify data Verify data = all 1? Increment address *2 No Yes No Last address of block? Yes EV bit in FLMCR1 ← 0 EV bit in FLMCR1 ← 0 tcev: Wait 4 µs tcev: Wait 4 µs All erase block erased? n ≥ 100? *4 No No Yes Yes SWE bit in FLMCR1 ← 0 SWE bit in FLMCR1 ← 0 tcswe: Wait 100 µs tcswe: Wait 100 µs End of erasing Erase failure Notes: 1. Pre-writing (all erase block data are cleared to 0) is not necessary. 2. Verify data is read out in 16 bit size (word access). 3. Erasing block register (EBR) can be set about 1 bit at a time. Do not specify 2 bits or more. 4. Erasing is performed block by block. when multiple blocks must be erased, erase each lock one by one. Figure 19.10 Erase/Erase-Verify Flowchart Rev. 2.00 Dec. 05, 2005 Page 552 of 724 REJ09B0200-0200 Section 19 ROM 19.9 Program/Erase Protection There are three kinds of flash memory program/erase protection; hardware protection, software protection, and error protection. 19.9.1 Hardware Protection Hardware protection refers to a state in which programming/erasing of flash memory is forcibly disabled or aborted because of a transition to reset or standby mode. Flash memory control register 1 (FLMCR1), flash memory control register 2 (FLMCR2), erase block register 1 (EBR1), and erase block register 2 (EBR2) are initialized. In a reset via the RES pin, the reset state is not entered unless the RES pin is held low until oscillation stabilizes after powering on. In the case of a reset during operation, hold the RES pin low for the RES pulse width specified in the AC Characteristics section. 19.9.2 Software Protection Software protection can be implemented against programming/erasing of all flash memory blocks by clearing the SWE bit in FLMCR1. When software protection is in effect, setting the P or E bit in FLMCR1 does not cause a transition to program mode or erase mode. By setting the erase block register 1 and 2 (EBR1 and EBR2), erase protection can be set for individual blocks. When EBR1 and EBR2 are set to H'00, erase protection is set for all blocks. By setting bit RAMS in RAMER, programming/erase protection is set for all blocks. 19.9.3 Error Protection In error protection, an error is detected when CPU runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/erase algorithm, and the program/erase operation is aborted. Aborting the program/erase operation prevents damage to the flash memory due to overprogramming or overerasing. When the following errors are detected during programming/erasing of flash memory, the FLER bit in FLMCR2 is set to 1, and the error protection state is entered. • When the flash memory of the relevant address area is read during programming/erasing (including vector read and instruction fetch) • Immediately after exception handling (excluding a reset) during programming/erasing • When a SLEEP instruction is executed during programming/erasing • When the CPU loses the bus during programming/erasing Rev. 2.00 Dec. 05, 2005 Page 553 of 724 REJ09B0200-0200 Section 19 ROM The FLMCR1, FLMCR2, EBR1, and EBR2 settings are retained, however program mode or erase mode is aborted at the point at which the error occurred. Program mode or erase mode cannot be re-entered by re-setting the P or E bit. However, PV and EV bit setting is enabled, and a transition can be made to verify mode. Error protection can be cleared only by a reset or in hardware standby. 19.10 Interrupt Handling when Programming/Erasing Flash Memory All interrupts, including NMI input, are disabled when flash memory is being programmed or erased (when the P or E bit is set in FLMCR1), and while the boot program is executing in boot mode*1, to give priority to the program or erase operation. There are three reasons for this: 1. Interrupt during programming or erasing might cause a violation of the programming or erasing algorithm, with the result that normal operation could not be assured. 2. In the interrupt exception handling sequence during programming or erasing, the vector would not be read correctly*2, possibly resulting in CPU runaway. 3. If an interrupt occurred during boot program execution, it would not be possible to execute the normal boot mode sequence. Notes: 1. Interrupt requests must be disabled inside and outside the CPU until the programming control program has completed programming. 2. The vector may not be read correctly in this case for the following two reasons: • If flash memory is read while being programmed or erased (while the P or E bit is set in FLMCR1), correct read data will not be obtained (undetermined values will be returned). • If the interrupt entry in the vector table has not been programmed yet, interrupt exception handling will not be executed correctly. 19.11 Programmer Mode In programmer mode, a PROM programmer can be used to perform programming/erasing via a socket adapter, just as for a discrete flash memory. Use a PROM programmer which supports the Renesas 256-kbyte flash memory on-chip microcomputer device type (FZTAT256V5A). Rev. 2.00 Dec. 05, 2005 Page 554 of 724 REJ09B0200-0200 Section 19 ROM 19.12 Power-Down States for Flash Memory In user mode, the flash memory will operate in either of the following states: • Normal operating mode The flash memory can be read and written to at high speed. • Power-down state The flash memory can be read when part of the power circuit is halted and the LSI operates by subclocks. • Standby mode All flash memory circuits are halted. Table 19.6 shows the correspondence between the operating modes of this LSI and the flash memory. When the flash memory returns to its normal operating state from standby mode, a period to stabilize the power supply circuits that were stopped is needed. When the flash memory returns to its normal operating state, bits STS2 to STS0 in SBYCR must be set to provide a wait time of at least 100 µs, even when the external clock is being used. Table 19.6 Flash Memory Operating States LSI Operating State Flash Memory Operating State Active mode Normal operating mode Sleep mode Normal operating mode Watch mode Standby mode Standby mode Sub-active mode PDWND = 0: Power-down mode (read only) Sub-sleep mode PDWND = 1: Normal operating mode (read only) Rev. 2.00 Dec. 05, 2005 Page 555 of 724 REJ09B0200-0200 Section 19 ROM 19.13 Usage Notes Use the specified voltages and timing for programming and erasing: Applied voltages in excess of the rating can permanently damage the device. Use a PROM programmer that supports the Renesas 256-kbyte flash memory on-chip microcomputer device type (FZTAT256V3A). Do not select the HN27C4096 setting for the PROM programmer, and only use the specified socket adapter. Failure to observe these points may result in damage to the device. Powering on and off: Do not apply a high level to the FWE pin until VCC has stabilized. Also, drive the FWE pin low before turning off VCC. When applying or disconnecting VCC power, fix the FWE pin low and place the flash memory in the hardware protection state. The power-on and power-off timing requirements should also be satisfied in the event of a power failure and subsequent recovery. FWE application/disconnection: FWE application should be carried out when MCU operation is in a stable condition. If MCU operation is not stable, fix the FWE pin low and set the protection state. The following points must be observed concerning FWE application and disconnection to prevent unintentional programming or erasing of flash memory: • Apply FWE when the VCC voltage has stabilized within its rated voltage range. • In boot mode, apply and disconnect FWE during a reset. • In user program mode, FWE can be switched between high and low level regardless of the reset state. FWE input can also be switched during execution of a program in flash memory. • Do not apply FWE if program runaway has occurred. • Disconnect FWE only when the SWE, ESU, PSU, EV, PV, P, and E bits in FLMCR1 are cleared. Make sure that the SWE, ESU, PSU, EV, PV, P, and E bits are not set by mistake when applying or disconnecting FWE. Do not apply a constant high level to the FWE pin: Apply a high level to the FWE pin only when programming or erasing flash memory. A system configuration in which a high level is constantly applied to the FWE pin should be avoided. Also, while a high level is applied to the FWE pin, the watchdog timer should be activated to prevent overprogramming or overerasing due to program runaway, etc. Rev. 2.00 Dec. 05, 2005 Page 556 of 724 REJ09B0200-0200 Section 19 ROM Use the recommended algorithm when programming and erasing flash memory: The recommended algorithm enables programming and erasing to be carried out without subjecting the device to voltage stress or sacrificing program data reliability. When setting the P or E bit in FLMCR1, the watchdog timer should be set beforehand as a precaution against program runaway, etc. Do not set or clear the SWE bit during execution of a program in flash memory: Wait for at least 100 µs after clearing the SWE bit before executing a program or reading data in flash memory. When the SWE bit is set, data in flash memory can be rewritten. Access flash memory only for verify operations (verification during programming/erasing). Also, do not clear the SWE bit during programming, erasing, or verifying. Similarly, when using the RAM emulation function while a high level is being input to the FWE pin, the SWE bit must be cleared before executing a program or reading data in flash memory. However, the RAM area overlapping flash memory space can be read and written to regardless of whether the SWE bit is set or cleared. Do not use interrupts while flash memory is being programmed or erased: All interrupt requests, including NMI, should be disabled during FWE application to give priority to program/erase operations. Do not perform additional programming. Erase the memory before reprogramming: In onboard programming, perform only one programming operation on a 128-byte programming unit block. In programmer mode, too, perform only one programming operation on a 128-byte programming unit block. Programming should be carried out with the entire programming unit block erased. Before programming, check that the chip is correctly mounted in the PROM programmer: Overcurrent damage to the device can result if the index marks on the PROM programmer socket, socket adapter, and chip are not correctly aligned. Do not touch the socket adapter or chip during programming: Touching either of these can cause contact faults and write errors. Reset the flash memory before turning on the power: To reset the flash memory during oscillation stabilization period, the reset signal must be input for at least 100 µs. Apply the reset signal while SWE is low to reset the flash memory during its operation: The reset signal is applied at least 100 µs after the SWE bit has been cleared. Rev. 2.00 Dec. 05, 2005 Page 557 of 724 REJ09B0200-0200 Section 19 ROM Note on Switching from F-ZTAT Version to Mask ROM Version: The mask ROM version does not have the internal registers for flash memory control that are provided in the F-ZTAT version. Table 19.7 lists the registers that are present in the F-ZTAT version but not in the mask ROM version. If a register listed in table 19.7 is read in the mask ROM version, an undefined value will be returned. Therefore, if application software developed on the F-ZTAT version is switched to a mask ROM version product, it must be modified to ensure that the registers in table 19.7 have no effect. Table 19.7 Registers Present in F-ZTAT Version but Absent in Mask ROM Version Register Abbreviation Address Flash memory control register 1 FLMCR1 H'FFA8 Flash memory control register 2 FLMCR2 H'FFA9 Erase block register 1 EBR1 H'FFAA RAM emulation register RAMER H'FEDB Flash memory power control register FLPWCR H'FFAC Rev. 2.00 Dec. 05, 2005 Page 558 of 724 REJ09B0200-0200 Section 20 Clock Pulse Generator Section 20 Clock Pulse Generator This LSI has an on-chip clock pulse generator that generates the system clock (φ), the bus master clock, and internal clocks. The clock pulse generator consists of an oscillator, PLL circuit, clock selection circuit, medium-speed clock divider, and bus master clock selection circuit. A block diagram of the clock pulse generator is shown in figure 20.1. LPWRCR SCKCR STC0, STC1 EXTAL XTAL System clock oscillator SCK2 to SCK0 Mediumspeed clock divider PLL circuit (x1, x2, x4) Clock selection circuit φSUB OSC1 OSC2 Subclock oscillator Waveform generation circuit φ/2 to φ/32 Bus master clock selection circuit φ System clock to φ pin Internal clock to peripheral modules Bus master clock to CPU and DTC WDT_1 count clock [Legend] LPWRCR: Low-power control register SCKCR: System clock control register Figure 20.1 Block Diagram of Clock Pulse Generator The frequency can be changed by means of the PLL circuit. Frequency changes are performed by software by settings in the low-power control register (LPWRCR) and system clock control register (SCKCR). Rev. 2.00 Dec. 05, 2005 Page 559 of 724 REJ09B0200-0200 Section 20 Clock Pulse Generator 20.1 Register Descriptions The on-chip clock pulse generator has the following registers. For details on LPWRCR, see section 21.1.2, Low-Power Control Register (LPWRCR). • System clock control register (SCKCR) • Low-power control register (LPWRCR) 20.1.1 System Clock Control Register (SCKCR) SCKCR performs φ clock output control, selection of operation when the PLL circuit frequency multiplication factor is changed, and medium-speed mode control. Bit Bit Name Initial Value R/W Description 7 PSTOP 0 R/W φ Clock Output Disable Controls φ output. High-speed Mode, Medium-Speed Mode 0: φ output 1: Fixed high Sleep Mode 0: φ output 1: Fixed high Software Standby Mode 0: Fixed high 1: Fixed high Hardware Standby Mode 0: High impedance 1: High impedance 6 to 4 All 0 Reserved These bits are always read as 0. Rev. 2.00 Dec. 05, 2005 Page 560 of 724 REJ09B0200-0200 Section 20 Clock Pulse Generator Bit Bit Name Initial Value R/W Description 3 STCS 0 R/W Frequency Multiplication Factor Switching Mode Select Selects the operation when the PLL circuit frequency multiplication factor is changed. 0: Specified multiplication factor is valid after transition to software standby mode 1: Specified multiplication factor is valid immediately after STC1 bit and STC0 bit are rewritten 2 SCK2 0 R/W System Clock Select 0 to 2 1 SCK1 0 R/W These bits select the bus master clock. 0 SCK0 0 R/W 000: High-speed mode 001: Medium-speed clock is φ/2 010: Medium-speed clock is φ/4 011: Medium-speed clock is φ/8 100: Medium-speed clock is φ/16 101: Medium-speed clock is φ/32 11X: Setting prohibited [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 561 of 724 REJ09B0200-0200 Section 20 Clock Pulse Generator 20.2 Oscillator Clock pulses can be supplied by connecting a crystal resonator, or by input of an external clock. In either case, the input clock should not exceed 20 MHz. 20.2.1 Connecting a Crystal Resonator Circuit Configuration: A crystal resonator can be connected as shown in the example in figure 20.2. Select the damping resistance Rd according to table 20.1. An AT-cut parallel-resonance crystal should be used. CL1 EXTAL XTAL Rd CL1 = CL2 = 10 to 22 pF CL2 Figure 20.2 Connection of Crystal Resonator (Example) Table 20.1 Damping Resistance Value Frequency (MHz) 4 8 10 12 16 20 Rd (Ω) 500 200 0 0 0 0 Figure 20.3 shows the equivalent circuit of the crystal resonator. Use a crystal resonator that has the characteristics shown in table 20.2. CL XTAL L Rs C0 EXTAL AT-cut parallel-resonance type Figure 20.3 Crystal Resonator Equivalent Circuit Rev. 2.00 Dec. 05, 2005 Page 562 of 724 REJ09B0200-0200 Section 20 Clock Pulse Generator Table 20.2 Crystal Resonator Characteristics Frequency (MHz) 4 8 10 12 16 20 RS max (Ω) 120 80 70 60 50 40 C0 max (pF) 7 7 7 7 7 7 20.2.2 External Clock Input Circuit Configuration: An external clock signal can be input as shown in the examples in figure 20.4. If the XTAL pin is left open, ensure that stray capacitance does not exceed 10 pF. When complementary clock is input to the XTAL pin, the external clock input should be fixed high in standby mode. External clock input EXTAL XTAL Open (a) XTAL pin left open EXTAL External clock input XTAL (b) Complementary clock input at XTAL pin Figure 20.4 External Clock Input (Examples) Rev. 2.00 Dec. 05, 2005 Page 563 of 724 REJ09B0200-0200 Section 20 Clock Pulse Generator Table 20.3 shows the input conditions for the external clock. Table 20.3 External Clock Input Conditions VCC = 5.0 V ± 10% Item Symbol Min. Max. Unit Test Conditions External clock input low pulse width tEXL 15 ns Figure 20.5 External clock input high pulse width tEXH 15 ns External clock rise time tEXr 5 ns External clock fall time tEXf 5 ns tEXH tEXL VCC × 0.5 EXTAL tEXr tEXf Figure 20.5 External Clock Input Timing Rev. 2.00 Dec. 05, 2005 Page 564 of 724 REJ09B0200-0200 Section 20 Clock Pulse Generator 20.3 PLL Circuit The PLL circuit multiplies the frequency of the clock from the oscillator by a factor of 1, 2, or 4. The multiplication factor is set by the STC0 bit and the STC1 bit in LPWRCR. The phase of the rising edge of the internal clock is controlled so as to match that at the EXTAL pin. When the multiplication factor of the PLL circuit is changed, the operation varies according to the setting of the STCS bit in SCKCR. When STCS = 0, the setting becomes valid after a transition to software standby mode. The transition time count is performed in accordance with the setting of bits STS0 to STS2 in SBYCR. For details on SBYCR, see section 21.1.1, Standby Control Register (SBYCR). 1. 2. 3. 4. 5. The initial PLL circuit multiplication factor is 1. STS0 to STS2 are set to give the specified transition time. The target value is set in STC0 and STC1, and a transition is made to software standby mode. The clock pulse generator stops and the value set in STC0 and STC1 becomes valid. Software standby mode is cleared, and a transition time is secured in accordance with the setting in STS0 to STS2. 6. After the set transition time has elapsed, this LSI resumes operation using the target multiplication factor. If a PC break is set for the SLEEP instruction, software standby mode is entered and break exception handling is executed after the oscillation settling time. In this case, the instruction following the SLEEP instruction is executed after execution of the RTE instruction. When STCS = 1, this LSI operates on the changed multiplication factor immediately after bits STC0 and STC1 are rewritten. 20.4 Medium-Speed Clock Divider The medium-speed clock divider divides the system clock to generate φ/2, φ/4, φ/8, φ/16, and φ/32. 20.5 Bus Master Clock Selection Circuit The bus master clock selection circuit selects the clock supplied to the bus master by setting the bits SCK 2 to 0 in SCKCR. The bus master clock can be selected from high-speed mode, or medium-speed clocks (φ/2, φ/4, φ/8, φ/16, φ/32). Rev. 2.00 Dec. 05, 2005 Page 565 of 724 REJ09B0200-0200 Section 20 Clock Pulse Generator 20.6 Subclock Oscillator 20.6.1 Connecting 32.768-kHz Crystal Resonator To supply a clock to the subclock divider, connect a 32.768-kHz crystal resonator, as shown in figure 20.6. Concerning the note on connection, see section 20.8.2, Note on Board Design. C1 OSC1 C2 OSC2 C1 = C2 = 15pF (typ) * Note: * C1 and C2 are reference values including the floating capacitance of the boad. Figure 20.6 Connection Example of 32.768-kHz Crystal Resonator Figure 20.7 shows the equivalent circuit for a 32.768-kHz crystal resonator. Ls Cs Rs OSC1 OSC2 Co Figure 20.7 Equivalent Circuit for 32.768-kHz Crystal Resonator Rev. 2.00 Dec. 05, 2005 Page 566 of 724 REJ09B0200-0200 Section 20 Clock Pulse Generator 20.6.2 Handling Pins when Subclock is not Used If no subclock is required, connect the OSC1 pin to Vss and leave the OSC2 pin open, as shown in figure 20.8. OSC1 OSC2 Open Figure 20.8 Pin Handling when Subclock is not Used 20.7 Subclock Waveform Generation Circuit To eliminate noise from the subclock input from the OSC1 pin, the subclock is sampled using the dividing clock φ. The sampling frequency is set using the NESEL bit in LPWRCR. For details, see section 21.1.2, Low-Power Control Register (LPWRCR). No sampling is performed in subactive, subsleep, and watch mode. 20.8 Usage Notes 20.8.1 Note on Crystal Resonator As various characteristics related to the crystal resonator are closely linked to the user's board design, thorough evaluation is necessary on the user's part, using the resonator connection examples shown in this section as a guide. As the resonator circuit ratings will depend on the floating capacitance of the resonator and the mounting circuit, the ratings should be determined in consultation with the resonator manufacturer. The design must ensure that a voltage exceeding the maximum rating is not applied to the oscillator pin. Rev. 2.00 Dec. 05, 2005 Page 567 of 724 REJ09B0200-0200 Section 20 Clock Pulse Generator 20.8.2 Note on Board Design When designing the board, place the crystal resonator and its load capacitors as close as possible to the XTAL and EXTAL pins. Other signal lines should be routed away from the oscillator circuit, as shown in figure 20.9. This is to prevent induction from interfering with correct oscillation. Signal A Signal B Avoid This LSI CL2 XTAL EXTAL CL1 Figure 20.9 Note on Board Design of Oscillator Circuit Figure 20.10 shows external circuitry recommended to be provided around the PLL circuit. Place oscillation settling capacitor C1 and resistor R1 close to the PLLCAP pin, and ensure that no other signal lines cross this line. Separate PLLVss from the other Vcc and Vss lines at the board power supply source, and be sure to insert bypass capacitors CB close to the pins. R1 : 3 kΩ C1 : 470 pF PLLCAP PLLVSS VCL VCC CB : 0.1 µF* CB : 0.1 µF VSS (Values are preliminary recommended values.) Note: * CB is laminated ceramic. Figure 20.10 External Circuitry Recommended for PLL Circuit Rev. 2.00 Dec. 05, 2005 Page 568 of 724 REJ09B0200-0200 Section 21 Power-Down Modes Section 21 Power-Down Modes In addition to the normal program execution state, this LSI has power-down modes in which operation of the CPU and oscillator is halted and power consumption is reduced. Low-power operation can be achieved by individually controlling the CPU, on-chip peripheral modules, and so on. This LSI's operating modes are as follows: 1. 2. 3. 4. 5. 6. 7. 8. 9. High-speed mode Medium-speed mode Subactive mode Sleep mode Subsleep mode Watch mode Module stop mode Software standby mode Hardware standby mode Modes 2. to 9. are power-down modes. Sleep mode and subsleep mode are CPU states, mediumspeed mode is a CPU and bus master state, subactive mode is a CPU, bus master, and on-chip peripheral function state, and module stop mode is an on-chip peripheral function (including bus masters other than the CPU) state. Some of these states can be combined. After a reset, the LSI operates in high-speed mode with on-chip peripheral modules other than the DTC in module stop mode. Table 21.1 shows the internal state of the LSI in each mode. Table 21.2 shows the conditions for shifting between the power-down modes. Figure 21.1 shows the mode transition diagram. LPWS269A_000020020200 Rev. 2.00 Dec. 05, 2005 Page 569 of 724 REJ09B0200-0200 Section 21 Power-Down Modes Table 21.1 LSI Internal States in Each Mode High- Medium- Function Speed Speed System clock pulse generator Functioning Functioning Functioning Functioning Halted Subclock generator Functioning Functioning Functioning Functioning Functioning CPU External interrupts Module Sleep Stop Watch Software Hardware Subactive Subsleep Standby Standby Halted Halted Halted Halted Functioning Functioning Halted Halted Instructions Functioning Medium- Halted High/ Halted Subclock Halted Halted Halted Registers (retained) mediumspeed operation (retained) operation (retained) (retained) (undefined) Functioning Functioning Functioning Functioning Functioning Functioning Functioning Functioning Halted Functioning Functioning Functioning Halted Subclock Subclock Halted Halted (retained) operation operation (retained) (reset) Subclock Subclock Subclock Halted Halted operation operation operation (retained) (reset) Halted Halted Halted Halted Halted (retained) (retained) (retained) (retained) (reset) Halted Halted Halted Halted Halted (retained) (retained) (retained) (retained) (reset) Halted Subclock Halted Halted Halted (retained) operation (retained) (retained) (reset) Halted Halted Halted Halted Halted (retained/ reset) (retained/ reset) (retained/ reset) (reset) (reset) Functioning Functioning Functioning Halted Halted Halted Halted Halted Halted (reset) (reset) (reset) (reset) (reset) (reset) Functioning* Functioning* Functioning* Halted Halted NMI speed operation IRQ0 to IRQ5 Peripheral WDT0 functions WDT1 DTC Functioning Functioning Functioning Functioning Medium- Functioning Halted speed operation TPU (retained) Functioning Functioning Functioning Halted (retained) PPG PBC Functioning Functioning Functioning Halted (retained) SCI0 to Functioning Functioning Functioning Halted SCI2 (retained/ reset) SCI4 PWM HCAN A/D LCD Functioning Functioning Functioning Halted (retained) RAM Functioning Functioning Functioning Functioning Retained (retained) (reset) Functioning Retained Retained Retained Functioning Retained Retained High (DTC) I/O Functioning Functioning Functioning Functioning Retained impedance Notes: "Halted (retained)" means that internal register values are retained. The internal state is "operation suspended. " "Halted (reset)" means that internal register values and internal states are initialized. In module stop mode, only modules for which a stop setting has been made are halted (reset or retained). * When the LCD is operated in watch mode, subactive mode, or subsleep mode, select the subclock as the operating clock. Rev. 2.00 Dec. 05, 2005 Page 570 of 724 REJ09B0200-0200 Section 21 Power-Down Modes Program-halted state STBY pin = Low Hardware standby mode Reset state STBY pin = High RES pin = Low Program execution state RES pin = High SSBY= 0, LSON= 0 SLEEP instruction High-speed mode (main clock) Sleep mode (main clock) Any interrupt *3 SCK2 to SCK0= 0 SCK2 to SCK0 0 Medium-speed mode (main clock) SSBY= 1, PSS= 0, LSON= 0 SLEEP instruction Software standby mode External interrupt *4 SLEEP instruction SSBY= 1, PSS= 1, DTON= 0 Interrupt *1 LSON bit = 0 SLEEP instruction SSBY = 1, PSS = 1 DTON = 1, LSON = 0 After the oscillation stabilization time (STS2 to STS0), clock switching exception handling SLEEP instruction SSBY = 1, PSS = 1 DTON = 1, LSON = 1 Clock switching exception handling SSBY= 0, PSS= 1, LSON= 1 Interrupt *1 LSON bit = 1 Subactive mode (subclock) SLEEP instruction Interrupt *2 : Transition after exception processing Notes: 1. 2. 3. 4. Watch mode (subclock) SLEEP instruction Subsleep mode (subclock) : Power-down mode NMI, IRQ0 to IRQ5, and WDT1 interrupts NMI, IRQ0 to IRQ5, IWDT0 interrupts, and WDT1 interrupts. All interrupts NMI and IRQ0 to IRQ5 • When a transition is made between modes by means of an interrupt, the transition cannot be made on interrupt source generation alone. Ensure that interrupt handling is performed after accepting the interrupt request. • From any state except hardware standby mode, a transition to the reset state occurs when RES is driven low. • From any state, a transition to hardware standby mode occurs when STBY is driven low. • Always select high-speed mode before making a transition to watch mode or subactive mode. Figure 21.1 Mode Transition Diagram Rev. 2.00 Dec. 05, 2005 Page 571 of 724 REJ09B0200-0200 Section 21 Power-Down Modes Table 21.2 Power-Down Mode Transition Conditions PreTransition State Status of Control Bit at Transition State after Transition back from PowerDown Mode Invoked by Interrupt PSS LSON DTON State after Transition Invoked by SLEEP Instruction High-speed/ 0 mediumspeed 0 X 0 X Sleep High-speed/mediumspeed X 1 X 1 0 0 X Software standby High-speed/mediumspeed 1 0 1 X 1 1 0 0 Watch High-speed 1 1 1 0 Watch Subactive 1 1 0 1 1 1 1 1 Subactive 0 0 X X 0 1 0 X 0 1 1 X Subsleep Subactive 1 0 X X 1 1 0 0 Watch High-speed 1 1 1 0 Watch Subactive Subactive SSBY 1 1 0 1 High-speed 1 1 1 1 [Legend] X: Don't care : Setting prohibited Rev. 2.00 Dec. 05, 2005 Page 572 of 724 REJ09B0200-0200 Section 21 Power-Down Modes 21.1 Register Descriptions Registers related to power-down modes are shown below. For details on SCKCR, see section 20.1.1, System Clock Control Register (SCKCR). For details on TCSR, see section 12.2.2, Timer Control/Status Register (TCSR). • • • • • • • • Standby control register (SBYCR) System clock control register (SCKCR) Low-power control register (LPWRCR) Timer control/status register (TCSR) Module stop control register A (MSTPCRA) Module stop control register B (MSTPCRB) Module stop control register C (MSTPCRC) Module stop control register D (MSTPCRD) 21.1.1 Standby Control Register (SBYCR) SBYCR controls power-down modes. Bit Bit Name Initial Value R/W Description 7 SSBY 0 R/W Software Standby This bit in combination with other control bits specifies the operating mode after executing the SLEEP instruction. For details, see table 21.2. 0: Shifts to sleep mode when the SLEEP instruction is executed in high-speed mode or medium-speed mode, or to subsleep mode when the SLEEP instruction is executed in subactive mode 1: Shifts to software standby mode, subactive mode, or watch mode when the SLEEP instruction is executed in high-speed mode or medium-speed mode, or to watch mode or high-speed mode when the SLEEP instruction is executed in subactive mode This bit does not change when shifting between modes by using interrupts. 0 should be written to this bit to clear it. Rev. 2.00 Dec. 05, 2005 Page 573 of 724 REJ09B0200-0200 Section 21 Power-Down Modes Bit Bit Name Initial Value R/W Description 6 STS2 0 R/W Standby Timer Select 5 STS1 0 R/W 4 STS0 0 R/W These bits select the MCU standby time for clock stabilization when software standby mode, watch mode, or subactive mode is cancelled by an interrupt or an instruction to shift to high-speed mode or mediumspeed mode. With a crystal resonator (table 21.3), select a standby time of 8 ms (oscillation stabilization time) or more, depending on the operating frequency. With an external clock, any standby time can be selected. 000: Standby time = 8192 states 001: Standby time = 16384 states 010: Standby time = 32768 states 011: Standby time = 65536 states 100: Standby time = 131072 states 101: Standby time = 262144 states 110: Reserved 111: Standby time = 16 states 3 OPE 1 R/W Output Port Enable Specifies whether the outputs of the address bus and bus control signals (AS, RD, HWR, LWR) are retained or set to high-impedance state in software standby mode or watch mode, or when making a direct transition. 2 to 0 — All 0 — Reserved These bits are always read as 0 and cannot be modified. Rev. 2.00 Dec. 05, 2005 Page 574 of 724 REJ09B0200-0200 Section 21 Power-Down Modes • With Crystal Resonator The STS2 to STS0 bits must be specified appropriately so that the standby time (oscillation stabilization time) is at least 8 ms. Table 21.3 shows the standby time determined by a combination of the operating frequency and the STS2 to STS0 bit setting. Table 21.3 Standby Time Settings Operating Frequency (MHz) STS2 STS1 STS0 Standby Time 20 16 12 10 8 6 Unit 4 0 0 0 8192 states 0.41 0.51 0.65 0.8 1.0 1.3 2.0 0 0 1 16384 states 0.82 1.0 1.3 1.6 2.0 2.7 4.1 0 1 0 32768 states 1.6 2.0 2.7 3.3 4.1 5.5 8.2 0 1 1 65536 states 3.3 4.1 5.5 6.6 8.2 10.9 16.4 1 0 0 131072 states 6.6 8.2 10.9 13.1 16.4 21.8 32.8 1 0 1 262144 states 13.1 16.4 21.8 26.2 32.8 43.6 65.6 1 1 0 Reserved — — — — — — — 1 1 1 16 states* 0.8 1.0 1.3 1.6 2.0 1.7 4.0 Notes: * ms µs : Recommended standby time Setting prohibited • With External Clock The PLL circuit stabilization time must be ensured. Specify 2-ms or more standby time. Rev. 2.00 Dec. 05, 2005 Page 575 of 724 REJ09B0200-0200 Section 21 Power-Down Modes 21.1.2 Low-Power Control Register (LPWRCR) LPWRCR controls power-down modes. Bit Bit Name Initial Value R/W Description 7 DTON 0 R/W Direct Transition ON Flag This bit in combination with the SSBY bit in SBYCR, the LSON bit in LPWRCR, and the PSS bit in TCSR specifies the operating mode after executing the SLEEP instruction. For details, see table 21.2. 6 LSON 0 R/W Low-Speed ON Flag This bit in combination with the SSBY bit in SBYCR, the DTON bit in LPWRCR, and the PSS bit in TCSR specifies the operating mode after executing the SLEEP instruction. For details, see table 21.2. 5 NESEL 0 R/W Noise Elimination Sampling Frequency Select Selects the frequency of the clock (φ) generated by the system clock oscillator to be used to sample the subclock (φSUB) generated by the subclock oscillator. Set this bit to 0 when φ is 5 MHz or larger. 0: Sampled at φ/32 1: Sampled at φ/4 4 SUBSTP 0 R/W Subclock Enable Enables or disables subclock generation 0: Enables subclock generation 1: Disables subclock generation 3 RFCUT 0 R/W Oscillation Circuit Feedback Resistance Control Turns the internal feedback resistance of the main clock oscillator on or off. 0: When the main clock is oscillating, sets the feedback resistance on. When the main clock is stopped, sets the feedback resistance off. 1: Sets the feedback resistance off. Rev. 2.00 Dec. 05, 2005 Page 576 of 724 REJ09B0200-0200 Section 21 Power-Down Modes Bit Bit Name Initial Value R/W Description 2 0 R/W Reserved The write value should always be 0. 1 STC1 0 R/W Frequency Multiplication Factor 0 STC0 0 R/W These bits specify the frequency multiplication factor of the PLL circuit. 00: ×1 01: ×2 10: ×4 11: Setting prohibited Rev. 2.00 Dec. 05, 2005 Page 577 of 724 REJ09B0200-0200 Section 21 Power-Down Modes 21.1.3 Module Stop Control Registers A to D (MSTPCRA to MSTPCRD) MSTPCR controls module stop mode. Setting a bit to 1 causes the corresponding module to enter module stop mode. Clearing the bit to 0 clears the module stop mode. • MSTPCRA Bit Initial Value Bit Name 7 MSTPA7* 6 MSTPA6 5 MSTPA5 4 MSTPA4* 3 MSTPA3 2 MSTPA2* 1 MSTPA1 0 MSTPA0* 1 2 2 2 R/W Module 0 R/W 0 R/W Data transfer controller (DTC) 1 R/W 16-bit timer pulse unit (TPU) 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W Programmable pulse generator (PPG) A/D converter • MSTPCRB Bit Bit Name Initial Value R/W Module 7 MSTPB7 1 R/W Serial communication interface_0 (SCI_0) 6 MSTPB6 1 R/W Serial communication interface_1 (SCI_1) 5 MSTPB5 Serial communication interface_2 (SCI_2) 1 R/W 4 MSTPB4* 2 1 R/W 3 MSTPB3*2 1 R/W 2 2 1 R/W 2 1 R/W 2 1 R/W 1 0 MSTPB2* MSTPB1* MSTPB0* Rev. 2.00 Dec. 05, 2005 Page 578 of 724 REJ09B0200-0200 Section 21 Power-Down Modes • MSTPCRC Bit Bit Name 2 Initial Value R/W 7 MSTPC7* 1 R/W 6 MSTPC6 1 R/W 2 Module Serial communication interface_4 (SCI_4) 5 MSTPC5* 1 R/W 4 MSTPC4 1 R/W PC break controller (PBC) 3 MSTPC3 1 R/W Controller area network (HCAN_0) 2 MSTPC2 Controller area network (HCAN_1) 1 0 1 R/W 2 1 R/W 2 1 R/W MSTPC1* MSTPC0* • MSTPCRD Bit Bit Name Initial Value R/W Module 7 MSTPD7 1 R/W Motor control PWM timer (PWM) 6 MSTPD6 1 R/W LCD controller/driver (LCD) 5 4 3 3 Undefined 2 1 3 Undefined 2 MSTPD5* MSTPD4* MSTPD3* R/W 2 MSTPD2* 1 1 MSTPD1*3 Undefined R/W 0 MSTPD0*3 Undefined Notes: 1. Although this bit is readable/writable, only 0 should be written to. 2. Although this bit is readable/writable, only 1 should be written to. 3. This bit is read as undefined value and cannot be modified. Rev. 2.00 Dec. 05, 2005 Page 579 of 724 REJ09B0200-0200 Section 21 Power-Down Modes 21.2 Medium-Speed Mode When the SCK2 to SCK0 bits in SCKCR are set to 1 in high-speed mode, the operating mode changes to medium-speed mode as soon as the current bus cycle ends. In medium-speed mode, the CPU operates on the operating clock (φ/2, φ/4, φ/8, φ/16, or φ/32) specified by the SCK2 to SCK0 bits. The bus master (DTC) other than the CPU operates in medium-speed mode. On-chip peripheral modules other than the bus masters always operate on the high-speed clock (φ). In medium-speed mode, a bus access is executed in the specified number of states with respect to the bus master operating clock. For example, if φ/4 is selected as the operating clock, on-chip memory is accessed in four states, and internal I/O registers in eight states. Medium-speed mode is canceled by clearing all of bits SCK2 to SCK0 to 0. A transition is made to high-speed mode and medium-speed mode is canceled at the end of the current bus cycle. If the SLEEP instruction is executed when the SSBY bit in SBYCR = 0 and LSON bit in LPWRCR = 0, a transition is made to sleep mode. When sleep mode is canceled by an interrupt, medium-speed mode is restored. When the SLEEP instruction is executed with the SSBY bit = 1, LSON bit in LPWRCR = 0, and PSS bit in TCSR (WDT1) = 0, operation shifts to software standby mode. When software standby mode is canceled by an external interrupt, medium-speed mode is restored. When the RES pin is driven low and medium-speed mode is cancelled, operation shifts to the reset state. The same applies to a reset caused by an overflow of the watchdog timer. When the STBY pin is driven low, a transition is made to hardware standby mode. Figure 21.2 shows the timing for transition to and clearance of medium-speed mode. Rev. 2.00 Dec. 05, 2005 Page 580 of 724 REJ09B0200-0200 Section 21 Power-Down Modes Medium-speed mode φ, peripheral module clock Bus master clock Internal address bus SBYCR SBYCR Internal write signal Figure 21.2 Medium-Speed Mode Transition and Clearance Timing 21.3 Sleep Mode When the SLEEP instruction is executed when the SSBY bit in SBYCR = 0 and the LSON bit in LPWRCR = 0, the CPU enters the sleep mode. In sleep mode, CPU operation stops but the contents of the CPU's internal registers are retained. Other peripheral modules do not stop. Sleep mode is canceled by any interrupt, or signals at the RES or STBY pin. When an interrupt occurs, sleep mode is canceled and interrupt exception handling starts. Sleep mode is not canceled if the interrupt is disabled, or if interrupts other than NMI are masked by the CPU. When the RES pin is driven low, operation shifts to the reset state. After the stipulated reset input duration, driving the RES pin high makes the CPU start reset exception handling. When the STBY pin is driven low, a transition is made to hardware standby mode. Rev. 2.00 Dec. 05, 2005 Page 581 of 724 REJ09B0200-0200 Section 21 Power-Down Modes 21.4 Software Standby Mode When the SLEEP instruction is executed when the SSBY bit in SBYCR = 1, the LSON bit in LPWRCR = 0, and the PSS bit in TCSR (WDT1) = 0, a transition is made to software standby mode. In this mode, the CPU, on-chip peripheral modules, and oscillator all stop. However, the contents of the CPU internal registers and on-chip RAM data, the states of on-chip peripheral modules other than the SCI, A/D converter, motor control PWM, and HCAN, and the states of I/O ports are retained. The address bus and bus control signals are placed in the high-impedance state. Software standby mode is canceled by an external interrupt (NMI and IRQ5 to IRQ0 pins), or signals at the RES pin or STBY pin. When an NMI or IRQ5 to IRQ0 interrupt request signal is input, clock oscillation starts, and after the time set in bits STS2 to STS0 in SBYCR has elapsed, stable clocks are supplied to the entire chip, software standby mode is canceled, and interrupt exception handling is started. When canceling software standby mode with an IRQ5 to IRQ0 interrupt, set the corresponding enable bit to 1 and ensure that no interrupt with a higher priority than interrupts IRQ5 to IRQ0 is generated. Software standby mode cannot be canceled if the interrupt has been masked on the CPU side or has been designated as a DTC activation source. When the RES pin is driven low, clock oscillation starts. At the same time as clock oscillation starts, the clock is supplied to the entire chip. Note that the RES pin must be held low until clock oscillation stabilizes. When the RES pin is driven high, the CPU begins reset exception handling. When the STBY pin is driven low, a transition is made to hardware standby mode. Figure 21.3 shows an example in which a transition is made to software standby mode at a falling edge of the NMI pin, and software standby mode is canceled at a rising edge of the NMI pin. In this example, an NMI interrupt is accepted with the NMIEG bit in SYSCR cleared to 0 (falling edge specification), then the NMIEG bit is set to 1 (rising edge specification), the SSBY bit is set to 1, and a SLEEP instruction is executed, causing a transition to software standby mode. Software standby mode is then canceled at the rising edge of the NMI pin. Rev. 2.00 Dec. 05, 2005 Page 582 of 724 REJ09B0200-0200 Section 21 Power-Down Modes Oscillator φ NMI NMIEG SSBY NMI exception Software standby mode handling (power-down mode) NMIEG=1 SSBY=1 SLEEP instruction Oscillation stabilization time tOSC2 NMI exception handling Figure 21.3 Software Standby Mode Application Example Rev. 2.00 Dec. 05, 2005 Page 583 of 724 REJ09B0200-0200 Section 21 Power-Down Modes 21.5 Hardware Standby Mode When the STBY pin is driven low, a transition is made to hardware standby mode from any mode. In hardware standby mode, all functions enter the reset state and stop operation, resulting in a significant reduction in power consumption. As long as the prescribed voltage is supplied, on-chip RAM data is retained. The I/O ports are set to the high-impedance state. In order to retain on-chip RAM data, the RAME bit in SYSCR should be cleared to 0 before driving the STBY pin low. Do not change the state of the mode pins (MD2 and MD0) while this LSI is in hardware standby mode. Hardware standby mode is canceled by signals at the STBY pin and the RES pin. When the STBY pin is driven high while the RES pin is low, the reset state is entered and clock oscillation is started. Ensure that the RES pin is held low until the clock oscillator stabilizes (at least 8 ms (oscillation stabilization time) when using a crystal oscillator). When the RES pin is subsequently driven high, a transition is made to the program execution state via the reset exception handling state. When the STBY pin is driven low after the RES pin has been driven low, a transition is made to hardware standby mode. Hardware standby mode is canceled by driving the STBY pin high, waiting for the oscillation stabilization time, then switching the RES pin from low to high. Oscillator RES STBY Oscillation stabilization time Figure 21.4 Hardware Standby Mode Timing Rev. 2.00 Dec. 05, 2005 Page 584 of 724 REJ09B0200-0200 Reset exception handling Section 21 Power-Down Modes 21.6 Watch Mode When the SLEEP instruction is executed in high-speed mode or subactive mode with the SSBY bit in SBYCR = 1, the DTON bit in LPWRCR = 0, and the PSS bit in TCSR (WDT1) = 1, CPU operation shifts to watch mode. In watch mode, the CPU stops and peripheral modules other than WDT1 also stop. The contents of the CPU internal registers and on-chip RAM data, the states of on-chip peripheral modules other than the SCI, A/D converter, motor control PWM, and HCAN, and the states of I/O ports are retained. Watch mode is canceled by any interrupt (WOVI1 interrupt, NMI pin, or IRQ5 to IRQ0 pins), or signals at the RES or STBY pin. When an interrupt occurs, watch mode is canceled and a transition is made to high-speed mode or medium-speed mode when the LSON bit in LPWRCR = 0 or to subactive mode when the LSON bit = 1. When a transition is made to high-speed mode, a stable clock is supplied to the entire LSI and interrupt exception handling starts after the time set in the STS2 to STS0 bits of SBYCR has elapsed. For an IRQ5 to IRQ0 interrupt, watch mode is not canceled if the corresponding enable bit has been cleared to 0. For an interrupt from an on-chip peripheral module, if the interrupt enable register has been set to disable the reception of that interrupt or is masked by the CPU, watch mode is not canceled. For the setting of the oscillation stabilization time when making a transition from watch mode to high-speed mode, see table 21.3. For canceling watch mode by the RES pin, see section 21.4, Software Standby Mode. When the STBY pin is driven low, a transition is made to hardware standby mode. Rev. 2.00 Dec. 05, 2005 Page 585 of 724 REJ09B0200-0200 Section 21 Power-Down Modes 21.7 Subsleep Mode When the SLEEP instruction is executed in subactive mode with the SSBY bit in SBYCR = 0, the LSON bit in LPWRCR = 1, and the PSS bit in TCSR (WDT1) = 1, CPU operation shifts to subsleep mode. In subsleep mode, the CPU stops and peripheral modules other than WDT0 and WDT1 also stop. The contents of the CPU internal registers and on-chip RAM data, and the states of on-chip peripheral modules other than the SCI, A/D converter, motor control PWM, and HCAN, and the states of I/O ports are retained. Subsleep mode is canceled by any interrupt (interrupts from on-chip peripheral modules, NMI pin, or IRQ5 to IRQ0 pins), or signals at the RES or STBY pin. When an interrupt occurs, subsleep mode is canceled and interrupt exception handling starts. For an IRQ5 to IRQ0 interrupt, subsleep mode is not canceled if the corresponding enable bit has been cleared to 0. For an interrupt from an on-chip peripheral module, if the interrupt enable register has been set to disable the reception of that interrupt or is masked by the CPU, subsleep mode is not canceled. For canceling subsleep mode by the RES pin, see section 21.4, Software Standby Mode. When the STBY pin is driven low, a transition is made to hardware standby mode. 21.8 Subactive Mode CPU operation shifts to subactive mode when the SLEEP instruction is executed in high-speed mode with the SSBY bit in SBYCR = 1, the DTON bit in LPWRCR = 1, the LSON bit = 1, and the PSS bit in TCSR (WDT1) = 1. When an interrupt occurs in watch mode, and if the LSON bit in LPWRCR is 1, a transition is made to subactive mode. If an interrupt occurs in subsleep mode, a transition is made to subactive mode. In subactive mode, the CPU operates at low speed on the subclock, and the program is executed one after another. Peripheral modules other than WDT0 and WDT1 are also stopped. When operating the CPU in subactive mode, the SCK2 to SCK0 bits in SCKCR must be set to 0. Subactive mode is canceled by the SLEEP instruction or signals at the RES or STBY pin. Rev. 2.00 Dec. 05, 2005 Page 586 of 724 REJ09B0200-0200 Section 21 Power-Down Modes When the SLEEP instruction is executed with the SSBY bit in SBYCR = 1, the DTON bit in LPWRCR = 0, and the PSS bit in TCSR (WDT1) = 1, subactive mode is canceled and a transition is made to watch mode. When the SLEEP instruction is executed with the SSBY bit in SBYCR = 0, the LSON bit in LPWRCR = 1, and the PSS bit in TCSR (WDT1) = 1, a transition is made to subsleep mode. When the SLEEP instruction is executed with the SSBY bit in SBYCR = 1, the DTON bit in LPWRCR = 1, the LSON bit = 0, and the PSS bit in TCSR (WDT1) = 1, a direct transition is made to high-speed mode (SCK0 to SCK2 are all 0). For details on direct transitions, see section 21.10, Direct Transitions For canceling subactive mode by the RES pin, see section 21.4, Software Standby Mode. When the STBY pin is driven low, a transition is made to hardware standby mode. 21.9 Module Stop Mode Module stop mode can be set for individual on-chip peripheral modules. When the corresponding MSTP bit in MSTPCR is set to 1, module operation stops at the end of the bus cycle and a transition is made to module stop mode. The CPU continues operating independently. Table 21.4 shows MSTP bits and the corresponding on-chip supporting modules. When the corresponding MSTP bit is cleared to 0, module stop mode is canceled and the module starts operating at the end of the bus cycle. In module stop mode, the internal states of modules other than the SCI*, motor control PWM, A/D converter, and HCAN are retained. After reset clearance, all modules other than DTC are in module stop mode. When an on-chip peripheral module is in module stop mode, read/write access to its registers is disabled. Note * Internal states in some part of registers in SCI are retained. Rev. 2.00 Dec. 05, 2005 Page 587 of 724 REJ09B0200-0200 Section 21 Power-Down Modes 21.10 Direct Transitions 21.10.1 Overview of Direct Transitions There are three modes, high-speed, medium-speed, and subactive, in which the CPU executes programs. When a direct transition is made, there is no interruption of program execution in shifting between high-speed and subactive modes. Direct transitions are enabled by setting the DTON bit in LPWRCR to 1, then executing the SLEEP instruction. After a transition, direct transition interrupt exception handling starts. Direct Transition from High-Speed Mode to Subactive Mode: Execute the SLEEP instruction in high-speed mode with the SSBY bit in SBYCR = 1, the LSON bit in LPWRCR = 1, the DTON bit = 1, and the PSS bit in TCSR (WDT1) = 1, to make a direct transition to subactive mode. Direct Transition from Subactive Mode to High-Speed Mode: Execute the SLEEP instruction in subactive mode with the SSBY bit in SBYCR = 1, the LSON bit in LPWRCR = 0, the DTON bit = 1, and the PSS bit in TCSR (WDT_1) = 1, to make a direct transition to high-speed mode after the time set in the STS2 to STS0 bits in SBYCR has elapsed. 21.11 φ Clock Output Disabling Function The output of the φ clock can be controlled by means of the PSTOP bit in SCKCR and DDR for the corresponding port. When the PSTOP bit is set to 1, the φ clock stops at the end of the bus cycle, and φ output goes high. φ clock output is enabled when the PSTOP bit is cleared to 0. When DDR for the corresponding port is cleared to 0, φ clock output is disabled and input port mode is set. Table 21.4 shows the state of the φ pin in each processing state. Table 21.4 φ Pin State in Each Processing State PSTOP High-Speed Mode, Medium-Speed Mode, Subactive Sleep Mode, Mode Subsleep Mode 0 X High impedance High impedance High impedance 1 0 φ output φ output Fixed high 1 1 Fixed high Fixed high Register Settings DDR [Legend] X: Don't care Rev. 2.00 Dec. 05, 2005 Page 588 of 724 REJ09B0200-0200 Software Standby Mode, Watch Mode, Direct Hardware Standby Transitions Mode High impedance Section 21 Power-Down Modes 21.12 Usage Notes 21.12.1 I/O Port Status The status of the I/O ports is retained in software standby mode and watch mode. When the OPE bit is set to 1, the address bus and bus control signal outputs are also retained. Therefore, when a high level is output, the current consumption is not diminished by the amount of current to support the high level output. 21.12.2 Current Consumption during Oscillation Stabilization Wait Period The current consumption increases during the oscillation stabilization wait period. 21.12.3 DTC Module Stop Setting The MSTPA6 bits cannot be set to 1 depending on the DTC operating status. Module stop mode for the DTC must be specified while the DTC is stopped. For details, see section 8, Data Transfer Controller (DTC). 21.12.4 On-Chip Peripheral Module Interrupts Relevant interrupt operations cannot be performed in module stop mode. Consequently, if module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source activation source. Interrupts should therefore be disabled before entering module stop mode. 21.12.5 Writing to MSTPCR MSTPCR should only be written to by the CPU. Rev. 2.00 Dec. 05, 2005 Page 589 of 724 REJ09B0200-0200 Section 21 Power-Down Modes Rev. 2.00 Dec. 05, 2005 Page 590 of 724 REJ09B0200-0200 Section 22 List of Registers Section 22 List of Registers The register list gives information on the on-chip I/O register addresses, how the register bits are configured, and the register states in each operating mode. The information is given as shown below. 1. • • • 2. • • • Register addresses (address order) Registers are listed from the lower allocation addresses. Registers are classified according to functional modules. The access size is indicated. Register bits Bit configurations of the registers are listed in the same order as the register addresses. Reserved bits are indicated by in the bit name column. No entry in the bit-name column indicates that the whole register is allocated as a counter or for holding data. 3. Register states in each operating mode • Register states are listed in the same order as the register addresses. • The register states shown here are for the basic operating modes. If there is a specific reset for an on-chip module, refer to the section on that on-chip module. Rev. 2.00 Dec. 05, 2005 Page 591 of 724 REJ09B0200-0200 Section 22 List of Registers 22.1 Register Addresses (Address Order) The data bus width indicates the numbers of bits by which the register is accessed. The number of access states indicates the number of states based on the specified reference clock. Register Name Number Abbreviation of Bits Address* Module Data Number of Bus Access Width States Master control register_0 MCR_0 8 H'F800 HCAN_0 16 4 General status register_0 GSR_0 8 H'F801 HCAN_0 16 4 Bit configuration register_0 BCR_0 16 H'F802 HCAN_0 16 4 Mailbox configuration register_0 MBCR_0 16 H'F804 HCAN_0 16 4 Transmit wait register_0 TXPR_0 16 H'F806 HCAN_0 16 4 Transmit wait cancel register_0 TXCR_0 16 H'F808 HCAN_0 16 4 Transmit acknowledge register_0 TXACK_0 16 H'F80A HCAN_0 16 4 Abort acknowledge register_0 ABACK_0 16 H'F80C HCAN_0 16 4 Receive complete register_0 RXPR_0 16 H'F80E HCAN_0 16 4 Remote request register_0 RFPR_0 16 H'F810 HCAN_0 16 4 Interrupt register_0 IRR_0 16 H'F812 HCAN_0 16 4 Mailbox interrupt mask register_0 MBIMR_0 16 H'F814 HCAN_0 16 4 Interrupt mask register_0 IMR_0 16 H'F816 HCAN_0 16 4 Receive error counter_0 REC_0 8 H'F818 HCAN_0 16 4 Transmit error counter_0 TEC_0 8 H'F819 HCAN_0 16 4 Unread message status register_0 UMSR_0 16 H'F81A HCAN_0 16 4 Local acceptance filter mask L_0 LAFML_0 16 H'F81C HCAN_0 16 4 Local acceptance filter mask H_0 LAFMH_0 16 H'F81E HCAN_0 16 4 Message control 0[1] MC0[1] 8 H'F820 HCAN_0 16 4 Message control 0[2] MC0[2] 8 H'F821 HCAN_0 16 4 Message control 0[3] MC0[3] 8 H'F822 HCAN_0 16 4 Message control 0[4] MC0[4] 8 H'F823 HCAN_0 16 4 Message control 0[5] MC0[5] 8 H'F824 HCAN_0 16 4 Message control 0[6] MC0[6] 8 H'F825 HCAN_0 16 4 Message control 0[7] MC0[7] 8 H'F826 HCAN_0 16 4 Rev. 2.00 Dec. 05, 2005 Page 592 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message control 0[8] MC0[8] 8 H'F827 HCAN_0 16 4 Message control 1[1] MC1[1] 8 H'F828 HCAN_0 16 4 Message control 1[2] MC1[2] 8 H'F829 HCAN_0 16 4 Message control 1[3] MC1[3] 8 H'F82A HCAN_0 16 4 Message control 1[4] MC1[4] 8 H'F82B HCAN_0 16 4 Message control 1[5] MC1[5] 8 H'F82C HCAN_0 16 4 Message control 1[6] MC1[6] 8 H'F82D HCAN_0 16 4 Message control 1[7] MC1[7] 8 H'F82E HCAN_0 16 4 Message control 1[8] MC1[8] 8 H'F82F HCAN_0 16 4 Message control 2[1] MC2[1] 8 H'F830 HCAN_0 16 4 Message control 2[2] MC2[2] 8 H'F831 HCAN_0 16 4 Message control 2[3] MC2[3] 8 H'F832 HCAN_0 16 4 Message control 2[4] MC2[4] 8 H'F833 HCAN_0 16 4 Message control 2[5] MC2[5] 8 H'F834 HCAN_0 16 4 Message control 2[6] MC2[6] 8 H'F835 HCAN_0 16 4 Message control 2[7] MC2[7] 8 H'F836 HCAN_0 16 4 Message control 2[8] MC2[8] 8 H'F837 HCAN_0 16 4 Message control 3[1] MC3[1] 8 H'F838 HCAN_0 16 4 Message control 3[2] MC3[2] 8 H'F839 HCAN_0 16 4 Message control 3[3] MC3[3] 8 H'F83A HCAN_0 16 4 Message control 3[4] MC3[4] 8 H'F83B HCAN_0 16 4 Message control 3[5] MC3[5] 8 H'F83C HCAN_0 16 4 Message control 3[6] MC3[6] 8 H'F83D HCAN_0 16 4 Message control 3[7] MC3[7] 8 H'F83E HCAN_0 16 4 Message control 3[8] MC3[8] 8 H'F83F HCAN_0 16 4 Message control 4[1] MC4[1] 8 H'F840 HCAN_0 16 4 Message control 4[2] MC4[2] 8 H'F841 HCAN_0 16 4 Message control 4[3] MC4[3] 8 H'F842 HCAN_0 16 4 Message control 4[4] MC4[4] 8 H'F843 HCAN_0 16 4 Message control 4[5] MC4[5] 8 H'F844 HCAN_0 16 4 Rev. 2.00 Dec. 05, 2005 Page 593 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message control 4[6] MC4[6] 8 H'F845 HCAN_0 16 4 Message control 4[7] MC4[7] 8 H'F846 HCAN_0 16 4 Message control 4[8] MC4[8] 8 H'F847 HCAN_0 16 4 Message control 5[1] MC5[1] 8 H'F848 HCAN_0 16 4 Message control 5[2] MC5[2] 8 H'F849 HCAN_0 16 4 Message control 5[3] MC5[3] 8 H'F84A HCAN_0 16 4 Message control 5[4] MC5[4] 8 H'F84B HCAN_0 16 4 Message control 5[5] MC5[5] 8 H'F84C HCAN_0 16 4 Message control 5[6] MC5[6] 8 H'F84D HCAN_0 16 4 Message control 5[7] MC5[7] 8 H'F84E HCAN_0 16 4 Message control 5[8] MC5[8] 8 H'F84F HCAN_0 16 4 Message control 6[1] MC6[1] 8 H'F850 HCAN_0 16 4 Message control 6[2] MC6[2] 8 H'F851 HCAN_0 16 4 Message control 6[3] MC6[3] 8 H'F852 HCAN_0 16 4 Message control 6[4] MC6[4] 8 H'F853 HCAN_0 16 4 Message control 6[5] MC6[5] 8 H'F854 HCAN_0 16 4 Message control 6[6] MC6[6] 8 H'F855 HCAN_0 16 4 Message control 6[7] MC6[7] 8 H'F856 HCAN_0 16 4 Message control 6[8] MC6[8] 8 H'F857 HCAN_0 16 4 Message control 7[1] MC7[1] 8 H'F858 HCAN_0 16 4 Message control 7[2] MC7[2] 8 H'F859 HCAN_0 16 4 Message control 7[3] MC7[3] 8 H'F85A HCAN_0 16 4 Message control 7[4] MC7[4] 8 H'F85B HCAN_0 16 4 Message control 7[5] MC7[5] 8 H'F85C HCAN_0 16 4 Message control 7[6] MC7[6] 8 H'F85D HCAN_0 16 4 Message control 7[7] MC7[7] 8 H'F85E HCAN_0 16 4 Message control 7[8] MC7[8] 8 H'F85F HCAN_0 16 4 Message control 8[1] MC8[1] 8 H'F860 HCAN_0 16 4 Message control 8[2] MC8[2] 8 H'F861 HCAN_0 16 4 Message control 8[3] MC8[3] 8 H'F862 HCAN_0 16 4 Rev. 2.00 Dec. 05, 2005 Page 594 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message control 8[4] MC8[4] 8 H'F863 HCAN_0 16 4 Message control 8[5] MC8[5] 8 H'F864 HCAN_0 16 4 Message control 8[6] MC8[6] 8 H'F865 HCAN_0 16 4 Message control 8[7] MC8[7] 8 H'F866 HCAN_0 16 4 Message control 8[8] MC8[8] 8 H'F867 HCAN_0 16 4 Message control 9[1] MC9[1] 8 H'F868 HCAN_0 16 4 Message control 9[2] MC9[2] 8 H'F869 HCAN_0 16 4 Message control 9[3] MC9[3] 8 H'F86A HCAN_0 16 4 Message control 9[4] MC9[4] 8 H'F86B HCAN_0 16 4 Message control 9[5] MC9[5] 8 H'F86C HCAN_0 16 4 Message control 9[6] MC9[6] 8 H'F86D HCAN_0 16 4 Message control 9[7] MC9[7] 8 H'F86E HCAN_0 16 4 Message control 9[8] MC9[8] 8 H'F86F HCAN_0 16 4 Message control 10[1] MC10[1] 8 H'F870 HCAN_0 16 4 Message control 10[2] MC10[2] 8 H'F871 HCAN_0 16 4 Message control 10[3] MC10[3] 8 H'F872 HCAN_0 16 4 Message control 10[4] MC10[4] 8 H'F873 HCAN_0 16 4 Message control 10[5] MC10[5] 8 H'F874 HCAN_0 16 4 Message control 10[6] MC10[6] 8 H'F875 HCAN_0 16 4 Message control 10[7] MC10[7] 8 H'F876 HCAN_0 16 4 Message control 10[8] MC10[8] 8 H'F877 HCAN_0 16 4 Message control 11[1] MC11[1] 8 H'F878 HCAN_0 16 4 Message control 11[2] MC11[2] 8 H'F879 HCAN_0 16 4 Message control 11[3] MC11[3] 8 H'F87A HCAN_0 16 4 Message control 11[4] MC11[4] 8 H'F87B HCAN_0 16 4 Message control 11[5] MC11[5] 8 H'F87C HCAN_0 16 4 Message control 11[6] MC11[6] 8 H'F87D HCAN_0 16 4 Message control 11[7] MC11[7] 8 H'F87E HCAN_0 16 4 Message control 11[8] MC11[8] 8 H'F87F HCAN_0 16 4 Rev. 2.00 Dec. 05, 2005 Page 595 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message control 12[1] MC12[1] 8 H'F880 HCAN_0 16 4 Message control 12[2] MC12[2] 8 H'F881 HCAN_0 16 4 Message control 12[3] MC12[3] 8 H'F882 HCAN_0 16 4 Message control 12[4] MC12[4] 8 H'F883 HCAN_0 16 4 Message control 12[5] MC12[5] 8 H'F884 HCAN_0 16 4 Message control 12[6] MC12[6] 8 H'F885 HCAN_0 16 4 Message control 12[7] MC12[7] 8 H'F886 HCAN_0 16 4 Message control 12[8] MC12[8] 8 H'F887 HCAN_0 16 4 Message control 13[1] MC13[1] 8 H'F888 HCAN_0 16 4 Message control 13[2] MC13[2] 8 H'F889 HCAN_0 16 4 Message control 13[3] MC13[3] 8 H'F88A HCAN_0 16 4 Message control 13[4] MC13[4] 8 H'F88B HCAN_0 16 4 Message control 13[5] MC13[5] 8 H'F88C HCAN_0 16 4 Message control 13[6] MC13[6] 8 H'F88D HCAN_0 16 4 Message control 13[7] MC13[7] 8 H'F88E HCAN_0 16 4 Message control 13[8] MC13[8] 8 H'F88F HCAN_0 16 4 Message control 14[1] MC14[1] 8 H'F890 HCAN_0 16 4 Message control 14[2] MC14[2] 8 H'F891 HCAN_0 16 4 Message control 14[3] MC14[3] 8 H'F892 HCAN_0 16 4 Message control 14[4] MC14[4] 8 H'F893 HCAN_0 16 4 Message control 14[5] MC14[5] 8 H'F894 HCAN_0 16 4 Message control 14[6] MC14[6] 8 H'F895 HCAN_0 16 4 Message control 14[7] MC14[7] 8 H'F896 HCAN_0 16 4 Message control 14[8] MC14[8] 8 H'F897 HCAN_0 16 4 Message control 15[1] MC15[1] 8 H'F898 HCAN_0 16 4 Message control 15[2] MC15[2] 8 H'F899 HCAN_0 16 4 Message control 15[3] MC15[3] 8 H'F89A HCAN_0 16 4 Message control 15[4] MC15[4] 8 H'F89B HCAN_0 16 4 Message control 15[5] MC15[5] 8 H'F89C HCAN_0 16 4 Message control 15[6] MC15[6] 8 H'F89D HCAN_0 16 4 Rev. 2.00 Dec. 05, 2005 Page 596 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message control 15[7] MC15[7] 8 H'F89E HCAN_0 16 4 Message control 15[8] MC15[8] 8 H'F89F HCAN_0 16 4 Message data 0[1] MD0[1] 8 H'F8B0 HCAN_0 16 4 Message data 0[2] MD0[2] 8 H'F8B1 HCAN_0 16 4 Message data 0[3] MD0[3] 8 H'F8B2 HCAN_0 16 4 Message data 0[4] MD0[4] 8 H'F8B3 HCAN_0 16 4 Message data 0[5] MD0[5] 8 H'F8B4 HCAN_0 16 4 Message data 0[6] MD0[6] 8 H'F8B5 HCAN_0 16 4 Message data 0[7] MD0[7] 8 H'F8B6 HCAN_0 16 4 Message data 0[8] MD0[8] 8 H'F8B7 HCAN_0 16 4 Message data 1[1] MD1[1] 8 H'F8B8 HCAN_0 16 4 Message data 1[2] MD1[2] 8 H'F8B9 HCAN_0 16 4 Message data 1[3] MD1[3] 8 H'F8BA HCAN_0 16 4 Message data 1[4] MD1[4] 8 H'F8BB HCAN_0 16 4 Message data 1[5] MD1[5] 8 H'F8BC HCAN_0 16 4 Message data 1[6] MD1[6] 8 H'F8BD HCAN_0 16 4 Message data 1[7] MD1[7] 8 H'F8BE HCAN_0 16 4 Message data 1[8] MD1[8] 8 H'F8BF HCAN_0 16 4 Message data 2[1] MD2[1] 8 H'F8C0 HCAN_0 16 4 Message data 2[2] MD2[2] 8 H'F8C1 HCAN_0 16 4 Message data 2[3] MD2[3] 8 H'F8C2 HCAN_0 16 4 Message data 2[4] MD2[4] 8 H'F8C3 HCAN_0 16 4 Message data 2[5] MD2[5] 8 H'F8C4 HCAN_0 16 4 Message data 2[6] MD2[6] 8 H'F8C5 HCAN_0 16 4 Message data 2[7] MD2[7] 8 H'F8C6 HCAN_0 16 4 Message data 2[8] MD2[8] 8 H'F8C7 HCAN_0 16 4 Message data 3[1] MD3[1] 8 H'F8C8 HCAN_0 16 4 Message data 3[2] MD3[2] 8 H'F8C9 HCAN_0 16 4 Message data 3[3] MD3[3] 8 H'F8CA HCAN_0 16 4 Message data 3[4] MD3[4] 8 H'F8CB HCAN_0 16 4 Rev. 2.00 Dec. 05, 2005 Page 597 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message data 3[5] MD3[5] 8 H'F8CC HCAN_0 16 4 Message data 3[6] MD3[6] 8 H'F8CD HCAN_0 16 4 Message data 3[7] MD3[7] 8 H'F8CE HCAN_0 16 4 Message data 3[8] MD3[8] 8 H'F8CF HCAN_0 16 4 Message data 4[1] MD4[1] 8 H'F8D0 HCAN_0 16 4 Message data 4[2] MD4[2] 8 H'F8D1 HCAN_0 16 4 Message data 4[3] MD4[3] 8 H'F8D2 HCAN_0 16 4 Message data 4[4] MD4[4] 8 H'F8D3 HCAN_0 16 4 Message data 4[5] MD4[5] 8 H'F8D4 HCAN_0 16 4 Message data 4[6] MD4[6] 8 H'F8D5 HCAN_0 16 4 Message data 4[7] MD4[7] 8 H'F8D6 HCAN_0 16 4 Message data 4[8] MD4[8] 8 H'F8D7 HCAN_0 16 4 Message data 5[1] MD5[1] 8 H'F8D8 HCAN_0 16 4 Message data 5[2] MD5[2] 8 H'F8D9 HCAN_0 16 4 Message data 5[3] MD5[3] 8 H'F8DA HCAN_0 16 4 Message data 5[4] MD5[4] 8 H'F8DB HCAN_0 16 4 Message data 5[5] MD5[5] 8 H'F8DC HCAN_0 16 4 Message data 5[6] MD5[6] 8 H'F8DD HCAN_0 16 4 Message data 5[7] MD5[7] 8 H'F8DE HCAN_0 16 4 Message data 5[8] MD5[8] 8 H'F8DF HCAN_0 16 4 Message data 6[1] MD6[1] 8 H'F8E0 HCAN_0 16 4 Message data 6[2] MD6[2] 8 H'F8E1 HCAN_0 16 4 Message data 6[3] MD6[3] 8 H'F8E2 HCAN_0 16 4 Message data 6[4] MD6[4] 8 H'F8E3 HCAN_0 16 4 Message data 6[5] MD6[5] 8 H'F8E4 HCAN_0 16 4 Message data 6[6] MD6[6] 8 H'F8E5 HCAN_0 16 4 Message data 6[7] MD6[7] 8 H'F8E6 HCAN_0 16 4 Message data 6[8] MD6[8] 8 H'F8E7 HCAN_0 16 4 Message data 7[1] MD7[1] 8 H'F8E8 HCAN_0 16 4 Message data 7[2] MD7[2] 8 H'F8E9 HCAN_0 16 4 Rev. 2.00 Dec. 05, 2005 Page 598 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message data 7[3] MD7[3] 8 H'F8EA HCAN_0 16 4 Message data 7[4] MD7[4] 8 H'F8EB HCAN_0 16 4 Message data 7[5] MD7[5] 8 H'F8EC HCAN_0 16 4 Message data 7[6] MD7[6] 8 H'F8ED HCAN_0 16 4 Message data 7[7] MD7[7] 8 H'F8EE HCAN_0 16 4 Message data 7[8] MD7[8] 8 H'F8EF HCAN_0 16 4 Message data 8[1] MD8[1] 8 H'F8F0 HCAN_0 16 4 Message data 8[2] MD8[2] 8 H'F8F1 HCAN_0 16 4 Message data 8[3] MD8[3] 8 H'F8F2 HCAN_0 16 4 Message data 8[4] MD8[4] 8 H'F8F3 HCAN_0 16 4 Message data 8[5] MD8[5] 8 H'F8F4 HCAN_0 16 4 Message data 8[6] MD8[6] 8 H'F8F5 HCAN_0 16 4 Message data 8[7] MD8[7] 8 H'F8F6 HCAN_0 16 4 Message data 8[8] MD8[8] 8 H'F8F7 HCAN_0 16 4 Message data 9[1] MD9[1] 8 H'F8F8 HCAN_0 16 4 Message data 9[2] MD9[2] 8 H'F8F9 HCAN_0 16 4 Message data 9[3] MD9[3] 8 H'F8FA HCAN_0 16 4 Message data 9[4] MD9[4] 8 H'F8FB HCAN_0 16 4 Message data 9[5] MD9[5] 8 H'F8FC HCAN_0 16 4 Message data 9[6] MD9[6] 8 H'F8FD HCAN_0 16 4 Message data 9[7] MD9[7] 8 H'F8FE HCAN_0 16 4 Message data 9[8] MD9[8] 8 H'F8FF HCAN_0 16 4 Message data 10[1] MD10[1] 8 H'F900 HCAN_0 16 4 Message data 10[2] MD10[2] 8 H'F901 HCAN_0 16 4 Message data 10[3] MD10[3] 8 H'F902 HCAN_0 16 4 Message data 10[4] MD10[4] 8 H'F903 HCAN_0 16 4 Message data 10[5] MD10[5] 8 H'F904 HCAN_0 16 4 Message data 10[6] MD10[6] 8 H'F905 HCAN_0 16 4 Message data 10[7] MD10[7] 8 H'F906 HCAN_0 16 4 Message data 10[8] MD10[8] 8 H'F907 HCAN_0 16 4 Rev. 2.00 Dec. 05, 2005 Page 599 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message data 11[1] MD11[1] 8 H'F908 HCAN_0 16 4 Message data 11[2] MD11[2] 8 H'F909 HCAN_0 16 4 Message data 11[3] MD11[3] 8 H'F90A HCAN_0 16 4 Message data 11[4] MD11[4] 8 H'F90B HCAN_0 16 4 Message data 11[5] MD11[5] 8 H'F90C HCAN_0 16 4 Message data 11[6] MD11[6] 8 H'F90D HCAN_0 16 4 Message data 11[7] MD11[7] 8 H'F90E HCAN_0 16 4 Message data 11[8] MD11[8] 8 H'F90F HCAN_0 16 4 Message data 12[1] MD12[1] 8 H'F910 HCAN_0 16 4 Message data 12[2] MD12[2] 8 H'F911 HCAN_0 16 4 Message data 12[3] MD12[3] 8 H'F912 HCAN_0 16 4 Message data 12[4] MD12[4] 8 H'F913 HCAN_0 16 4 Message data 12[5] MD12[5] 8 H'F914 HCAN_0 16 4 Message data 12[6] MD12[6] 8 H'F915 HCAN_0 16 4 Message data 12[7] MD12[7] 8 H'F916 HCAN_0 16 4 Message data 12[8] MD12[8] 8 H'F917 HCAN_0 16 4 Message data 13[1] MD13[1] 8 H'F918 HCAN_0 16 4 Message data 13[2] MD13[2] 8 H'F919 HCAN_0 16 4 Message data 13[3] MD13[3] 8 H'F91A HCAN_0 16 4 Message data 13[4] MD13[4] 8 H'F91B HCAN_0 16 4 Message data 13[5] MD13[5] 8 H'F91C HCAN_0 16 4 Message data 13[6] MD13[6] 8 H'F91D HCAN_0 16 4 Message data 13[7] MD13[7] 8 H'F91E HCAN_0 16 4 Message data 13[8] MD13[8] 8 H'F91F HCAN_0 16 4 Message data 14[1] MD14[1] 8 H'F920 HCAN_0 16 4 Message data 14[2] MD14[2] 8 H'F921 HCAN_0 16 4 Message data 14[3] MD14[3] 8 H'F922 HCAN_0 16 4 Message data 14[4] MD14[4] 8 H'F923 HCAN_0 16 4 Message data 14[5] MD14[5] 8 H'F924 HCAN_0 16 4 Message data 14[6] MD14[6] 8 H'F925 HCAN_0 16 4 Rev. 2.00 Dec. 05, 2005 Page 600 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message data 14[7] MD14[7] 8 H'F926 HCAN_0 16 4 Message data 14[8] MD14[8] 8 H'F927 HCAN_0 16 4 Message data 15[1] MD15[1] 8 H'F928 HCAN_0 16 4 Message data 15[2] MD15[2] 8 H'F929 HCAN_0 16 4 Message data 15[3] MD15[3] 8 H'F92A HCAN_0 16 4 Message data 15[4] MD15[4] 8 H'F92B HCAN_0 16 4 Message data 15[5] MD15[5] 8 H'F92C HCAN_0 16 4 Message data 15[6] MD15[6] 8 H'F92D HCAN_0 16 4 Message data 15[7] MD15[7] 8 H'F92E HCAN_0 16 4 Message data 15[8] MD15[8] 8 H'F92F HCAN_0 16 4 HCAN monitor register HCANMON_0 8 H'F930 HCAN_0 16 4 Master control register_1 MCR_1 8 H'FA00 HCAN_1 16 4 General status register_1 GSR_1 8 H'FA01 HCAN_1 16 4 Bit configuration register_1 BCR_1 16 H'FA02 HCAN_1 16 4 Mailbox configuration register_1 MBCR_1 16 H'FA04 HCAN_1 16 4 Transmit wait register_1 TXPR_1 16 H'FA06 HCAN_1 16 4 Transmit wait cancel register_1 TXCR_1 16 H'FA08 HCAN_1 16 4 Transmit acknowledge register_1 TXACK_1 16 H'FA0A HCAN_1 16 4 Abort acknowledge register_1 ABACK_1 16 H'FA0C HCAN_1 16 4 Receive complete register_1 RXPR_1 16 H'FA0E HCAN_1 16 4 Remote request register_1 RFPR_1 16 H'FA10 HCAN_1 16 4 Interrupt register_1 IRR_1 16 H'FA12 HCAN_1 16 4 Mailbox interrupt mask register_1 MBIMR_1 16 H'FA14 HCAN_1 16 4 Interrupt mask register_1 IMR_1 16 H'FA16 HCAN_1 16 4 Receive error counter_1 REC_1 8 H'FA18 HCAN_1 16 4 Transmit error counter_1 TEC_1 8 H'FA19 HCAN_1 16 4 Unread message status register_1 UMSR_1 16 H'FA1A HCAN_1 16 4 Local acceptance filter mask L_1 LAFML_1 16 H'FA1C HCAN_1 16 4 Local acceptance filter mask H_1 LAFMH_1 16 H'FA1E HCAN_1 16 4 Rev. 2.00 Dec. 05, 2005 Page 601 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message control 0[1] MC0[1] 8 H'FA20 HCAN_1 16 4 Message control 0[2] MC0[2] 8 H'FA21 HCAN_1 16 4 Message control 0[3] MC0[3] 8 H'FA22 HCAN_1 16 4 Message control 0[4] MC0[4] 8 H'FA23 HCAN_1 16 4 Message control 0[5] MC0[5] 8 H'FA24 HCAN_1 16 4 Message control 0[6] MC0[6] 8 H'FA25 HCAN_1 16 4 Message control 0[7] MC0[7] 8 H'FA26 HCAN_1 16 4 Message control 0[8] MC0[8] 8 H'FA27 HCAN_1 16 4 Message control 1[1] MC1[1] 8 H'FA28 HCAN_1 16 4 Message control 1[2] MC1[2] 8 H'FA29 HCAN_1 16 4 Message control 1[3] MC1[3] 8 H'FA2A HCAN_1 16 4 Message control 1[4] MC1[4] 8 H'FA2B HCAN_1 16 4 Message control 1[5] MC1[5] 8 H'FA2C HCAN_1 16 4 Message control 1[6] MC1[6] 8 H'FA2D HCAN_1 16 4 Message control 1[7] MC1[7] 8 H'FA2E HCAN_1 16 4 Message control 1[8] MC1[8] 8 H'FA2F HCAN_1 16 4 Message control 2[1] MC2[1] 8 H'FA30 HCAN_1 16 4 Message control 2[2] MC2[2] 8 H'FA31 HCAN_1 16 4 Message control 2[3] MC2[3] 8 H'FA32 HCAN_1 16 4 Message control 2[4] MC2[4] 8 H'FA33 HCAN_1 16 4 Message control 2[5] MC2[5] 8 H'FA34 HCAN_1 16 4 Message control 2[6] MC2[6] 8 H'FA35 HCAN_1 16 4 Message control 2[7] MC2[7] 8 H'FA36 HCAN_1 16 4 Message control 2[8] MC2[8] 8 H'FA37 HCAN_1 16 4 Message control 3[1] MC3[1] 8 H'FA38 HCAN_1 16 4 Message control 3[2] MC3[2] 8 H'FA39 HCAN_1 16 4 Message control 3[3] MC3[3] 8 H'FA3A HCAN_1 16 4 Message control 3[4] MC3[4] 8 H'FA3B HCAN_1 16 4 Message control 3[5] MC3[5] 8 H'FA3C HCAN_1 16 4 Rev. 2.00 Dec. 05, 2005 Page 602 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message control 3[6] MC3[6] 8 H'FA3D HCAN_1 16 4 Message control 3[7] MC3[7] 8 H'FA3E HCAN_1 16 4 Message control 3[8] MC3[8] 8 H'FA3F HCAN_1 16 4 Message control 4[1] MC4[1] 8 H'FA40 HCAN_1 16 4 Message control 4[2] MC4[2] 8 H'FA41 HCAN_1 16 4 Message control 4[3] MC4[3] 8 H'FA42 HCAN_1 16 4 Message control 4[4] MC4[4] 8 H'FA43 HCAN_1 16 4 Message control 4[5] MC4[5] 8 H'FA44 HCAN_1 16 4 Message control 4[6] MC4[6] 8 H'FA45 HCAN_1 16 4 Message control 4[7] MC4[7] 8 H'FA46 HCAN_1 16 4 Message control 4[8] MC4[8] 8 H'FA47 HCAN_1 16 4 Message control 5[1] MC5[1] 8 H'FA48 HCAN_1 16 4 Message control 5[2] MC5[2] 8 H'FA49 HCAN_1 16 4 Message control 5[3] MC5[3] 8 H'FA4A HCAN_1 16 4 Message control 5[4] MC5[4] 8 H'FA4B HCAN_1 16 4 Message control 5[5] MC5[5] 8 H'FA4C HCAN_1 16 4 Message control 5[6] MC5[6] 8 H'FA4D HCAN_1 16 4 Message control 5[7] MC5[7] 8 H'FA4E HCAN_1 16 4 Message control 5[8] MC5[8] 8 H'FA4F HCAN_1 16 4 Message control 6[1] MC6[1] 8 H'FA50 HCAN_1 16 4 Message control 6[2] MC6[2] 8 H'FA51 HCAN_1 16 4 Message control 6[3] MC6[3] 8 H'FA52 HCAN_1 16 4 Message control 6[4] MC6[4] 8 H'FA53 HCAN_1 16 4 Message control 6[5] MC6[5] 8 H'FA54 HCAN_1 16 4 Message control 6[6] MC6[6] 8 H'FA55 HCAN_1 16 4 Message control 6[7] MC6[7] 8 H'FA56 HCAN_1 16 4 Message control 6[8] MC6[8] 8 H'FA57 HCAN_1 16 4 Message control 7[1] MC7[1] 8 H'FA58 HCAN_1 16 4 Message control 7[2] MC7[2] 8 H'FA59 HCAN_1 16 4 Message control 7[3] MC7[3] 8 H'FA5A HCAN_1 16 4 Rev. 2.00 Dec. 05, 2005 Page 603 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message control 7[4] MC7[4] 8 H'FA5B HCAN_1 16 4 Message control 7[5] MC7[5] 8 H'FA5C HCAN_1 16 4 Message control 7[6] MC7[6] 8 H'FA5D HCAN_1 16 4 Message control 7[7] MC7[7] 8 H'FA5E HCAN_1 16 4 Message control 7[8] MC7[8] 8 H'FA5F HCAN_1 16 4 Message control 8[1] MC8[1] 8 H'FA60 HCAN_1 16 4 Message control 8[2] MC8[2] 8 H'FA61 HCAN_1 16 4 Message control 8[3] MC8[3] 8 H'FA62 HCAN_1 16 4 Message control 8[4] MC8[4] 8 H'FA63 HCAN_1 16 4 Message control 8[5] MC8[5] 8 H'FA64 HCAN_1 16 4 Message control 8[6] MC8[6] 8 H'FA65 HCAN_1 16 4 Message control 8[7] MC8[7] 8 H'FA66 HCAN_1 16 4 Message control 8[8] MC8[8] 8 H'FA67 HCAN_1 16 4 Message control 9[1] MC9[1] 8 H'FA68 HCAN_1 16 4 Message control 9[2] MC9[2] 8 H'FA69 HCAN_1 16 4 Message control 9[3] MC9[3] 8 H'FA6A HCAN_1 16 4 Message control 9[4] MC9[4] 8 H'FA6B HCAN_1 16 4 Message control 9[5] MC9[5] 8 H'FA6C HCAN_1 16 4 Message control 9[6] MC9[6] 8 H'FA6D HCAN_1 16 4 Message control 9[7] MC9[7] 8 H'FA6E HCAN_1 16 4 Message control 9[8] MC9[8] 8 H'FA6F HCAN_1 16 4 Message control 10[1] MC10[1] 8 H'FA70 HCAN_1 16 4 Message control 10[2] MC10[2] 8 H'FA71 HCAN_1 16 4 Message control 10[3] MC10[3] 8 H'FA72 HCAN_1 16 4 Message control 10[4] MC10[4] 8 H'FA73 HCAN_1 16 4 Message control 10[5] MC10[5] 8 H'FA74 HCAN_1 16 4 Message control 10[6] MC10[6] 8 H'FA75 HCAN_1 16 4 Message control 10[7] MC10[7] 8 H'FA76 HCAN_1 16 4 Message control 10[8] MC10[8] 8 H'FA77 HCAN_1 16 4 Rev. 2.00 Dec. 05, 2005 Page 604 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message control 11[1] MC11[1] 8 H'FA78 HCAN_1 16 4 Message control 11[2] MC11[2] 8 H'FA79 HCAN_1 16 4 Message control 11[3] MC11[3] 8 H'FA7A HCAN_1 16 4 Message control 11[4] MC11[4] 8 H'FA7B HCAN_1 16 4 Message control 11[5] MC11[5] 8 H'FA7C HCAN_1 16 4 Message control 11[6] MC11[6] 8 H'FA7D HCAN_1 16 4 Message control 11[7] MC11[7] 8 H'FA7E HCAN_1 16 4 Message control 11[8] MC11[8] 8 H'FA7F HCAN_1 16 4 Message control 12[1] MC12[1] 8 H'FA80 HCAN_1 16 4 Message control 12[2] MC12[2] 8 H'FA81 HCAN_1 16 4 Message control 12[3] MC12[3] 8 H'FA82 HCAN_1 16 4 Message control 12[4] MC12[4] 8 H'FA83 HCAN_1 16 4 Message control 12[5] MC12[5] 8 H'FA84 HCAN_1 16 4 Message control 12[6] MC12[6] 8 H'FA85 HCAN_1 16 4 Message control 12[7] MC12[7] 8 H'FA86 HCAN_1 16 4 Message control 12[8] MC12[8] 8 H'FA87 HCAN_1 16 4 Message control 13[1] MC13[1] 8 H'FA88 HCAN_1 16 4 Message control 13[2] MC13[2] 8 H'FA89 HCAN_1 16 4 Message control 13[3] MC13[3] 8 H'FA8A HCAN_1 16 4 Message control 13[4] MC13[4] 8 H'FA8B HCAN_1 16 4 Message control 13[5] MC13[5] 8 H'FA8C HCAN_1 16 4 Message control 13[6] MC13[6] 8 H'FA8D HCAN_1 16 4 Message control 13[7] MC13[7] 8 H'FA8E HCAN_1 16 4 Message control 13[8] MC13[8] 8 H'FA8F HCAN_1 16 4 Message control 14[1] MC14[1] 8 H'FA90 HCAN_1 16 4 Message control 14[2] MC14[2] 8 H'FA91 HCAN_1 16 4 Message control 14[3] MC14[3] 8 H'FA92 HCAN_1 16 4 Message control 14[4] MC14[4] 8 H'FA93 HCAN_1 16 4 Message control 14[5] MC14[5] 8 H'FA94 HCAN_1 16 4 Message control 14[6] MC14[6] 8 H'FA95 HCAN_1 16 4 Rev. 2.00 Dec. 05, 2005 Page 605 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message control 14[7] MC14[7] 8 H'FA96 HCAN_1 16 4 Message control 14[8] MC14[8] 8 H'FA97 HCAN_1 16 4 Message control 15[1] MC15[1] 8 H'FA98 HCAN_1 16 4 Message control 15[2] MC15[2] 8 H'FA99 HCAN_1 16 4 Message control 15[3] MC15[3] 8 H'FA9A HCAN_1 16 4 Message control 15[4] MC15[4] 8 H'FA9B HCAN_1 16 4 Message control 15[5] MC15[5] 8 H'FA9C HCAN_1 16 4 Message control 15[6] MC15[6] 8 H'FA9D HCAN_1 16 4 Message control 15[7] MC15[7] 8 H'FA9E HCAN_1 16 4 Message control 15[8] MC15[8] 8 H'FA9F HCAN_1 16 4 Message data 0[1] MD0[1] 8 H'FAB0 HCAN_1 16 4 Message data 0[2] MD0[2] 8 H'FAB1 HCAN_1 16 4 Message data 0[3] MD0[3] 8 H'FAB2 HCAN_1 16 4 Message data 0[4] MD0[4] 8 H'FAB3 HCAN_1 16 4 Message data 0[5] MD0[5] 8 H'FAB4 HCAN_1 16 4 Message data 0[6] MD0[6] 8 H'FAB5 HCAN_1 16 4 Message data 0[7] MD0[7] 8 H'FAB6 HCAN_1 16 4 Message data 0[8] MD0[8] 8 H'FAB7 HCAN_1 16 4 Message data 1[1] MD1[1] 8 H'FAB8 HCAN_1 16 4 Message data 1[2] MD1[2] 8 H'FAB9 HCAN_1 16 4 Message data 1[3] MD1[3] 8 H'FABA HCAN_1 16 4 Message data 1[4] MD1[4] 8 H'FABB HCAN_1 16 4 Message data 1[5] MD1[5] 8 H'FABC HCAN_1 16 4 Message data 1[6] MD1[6] 8 H'FABD HCAN_1 16 4 Message data 1[7] MD1[7] 8 H'FABE HCAN_1 16 4 Message data 1[8] MD1[8] 8 H'FABF HCAN_1 16 4 Message data 2[1] MD2[1] 8 H'FAC0 HCAN_1 16 4 Message data 2[2] MD2[2] 8 H'FAC1 HCAN_1 16 4 Message data 2[3] MD2[3] 8 H'FAC2 HCAN_1 16 4 Message data 2[4] MD2[4] 8 H'FAC3 HCAN_1 16 4 Rev. 2.00 Dec. 05, 2005 Page 606 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message data 2[5] MD2[5] 8 H'FAC4 HCAN_1 16 4 Message data 2[6] MD2[6] 8 H'FAC5 HCAN_1 16 4 Message data 2[7] MD2[7] 8 H'FAC6 HCAN_1 16 4 Message data 2[8] MD2[8] 8 H'FAC7 HCAN_1 16 4 Message data 3[1] MD3[1] 8 H'FAC8 HCAN_1 16 4 Message data 3[2] MD3[2] 8 H'FAC9 HCAN_1 16 4 Message data 3[3] MD3[3] 8 H'FACA HCAN_1 16 4 Message data 3[4] MD3[4] 8 H'FACB HCAN_1 16 4 Message data 3[5] MD3[5] 8 H'FACC HCAN_1 16 4 Message data 3[6] MD3[6] 8 H'FACD HCAN_1 16 4 Message data 3[7] MD3[7] 8 H'FACE HCAN_1 16 4 Message data 3[8] MD3[8] 8 H'FACF HCAN_1 16 4 Message data 4[1] MD4[1] 8 H'FAD0 HCAN_1 16 4 Message data 4[2] MD4[2] 8 H'FAD1 HCAN_1 16 4 Message data 4[3] MD4[3] 8 H'FAD2 HCAN_1 16 4 Message data 4[4] MD4[4] 8 H'FAD3 HCAN_1 16 4 Message data 4[5] MD4[5] 8 H'FAD4 HCAN_1 16 4 Message data 4[6] MD4[6] 8 H'FAD5 HCAN_1 16 4 Message data 4[7] MD4[7] 8 H'FAD6 HCAN_1 16 4 Message data 4[8] MD4[8] 8 H'FAD7 HCAN_1 16 4 Message data 5[1] MD5[1] 8 H'FAD8 HCAN_1 16 4 Message data 5[2] MD5[2] 8 H'FAD9 HCAN_1 16 4 Message data 5[3] MD5[3] 8 H'FADA HCAN_1 16 4 Message data 5[4] MD5[4] 8 H'FADB HCAN_1 16 4 Message data 5[5] MD5[5] 8 H'FADC HCAN_1 16 4 Message data 5[6] MD5[6] 8 H'FADD HCAN_1 16 4 Message data 5[7] MD5[7] 8 H'FADE HCAN_1 16 4 Message data 5[8] MD5[8] 8 H'FADF HCAN_1 16 4 Message data 6[1] MD6[1] 8 H'FAE0 HCAN_1 16 4 Message data 6[2] MD6[2] 8 H'FAE1 HCAN_1 16 4 Rev. 2.00 Dec. 05, 2005 Page 607 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message data 6[3] MD6[3] 8 H'FAE2 HCAN_1 16 4 Message data 6[4] MD6[4] 8 H'FAE3 HCAN_1 16 4 Message data 6[5] MD6[5] 8 H'FAE4 HCAN_1 16 4 Message data 6[6] MD6[6] 8 H'FAE5 HCAN_1 16 4 Message data 6[7] MD6[7] 8 H'FAE6 HCAN_1 16 4 Message data 6[8] MD6[8] 8 H'FAE7 HCAN_1 16 4 Message data 7[1] MD7[1] 8 H'FAE8 HCAN_1 16 4 Message data 7[2] MD7[2] 8 H'FAE9 HCAN_1 16 4 Message data 7[3] MD7[3] 8 H'FAEA HCAN_1 16 4 Message data 7[4] MD7[4] 8 H'FAEB HCAN_1 16 4 Message data 7[5] MD7[5] 8 H'FAEC HCAN_1 16 4 Message data 7[6] MD7[6] 8 H'FAED HCAN_1 16 4 Message data 7[7] MD7[7] 8 H'FAEE HCAN_1 16 4 Message data 7[8] MD7[8] 8 H'FAEF HCAN_1 16 4 Message data 8[1] MD8[1] 8 H'FAF0 HCAN_1 16 4 Message data 8[2] MD8[2] 8 H'FAF1 HCAN_1 16 4 Message data 8[3] MD8[3] 8 H'FAF2 HCAN_1 16 4 Message data 8[4] MD8[4] 8 H'FAF3 HCAN_1 16 4 Message data 8[5] MD8[5] 8 H'FAF4 HCAN_1 16 4 Message data 8[6] MD8[6] 8 H'FAF5 HCAN_1 16 4 Message data 8[7] MD8[7] 8 H'FAF6 HCAN_1 16 4 Message data 8[8] MD8[8] 8 H'FAF7 HCAN_1 16 4 Message data 9[1] MD9[1] 8 H'FAF8 HCAN_1 16 4 Message data 9[2] MD9[2] 8 H'FAF9 HCAN_1 16 4 Message data 9[3] MD9[3] 8 H'FAFA HCAN_1 16 4 Message data 9[4] MD9[4] 8 H'FAFB HCAN_1 16 4 Message data 9[5] MD9[5] 8 H'FAFC HCAN_1 16 4 Message data 9[6] MD9[6] 8 H'FAFD HCAN_1 16 4 Message data 9[7] MD9[7] 8 H'FAFE HCAN_1 16 4 Message data 9[8] MD9[8] 8 H'FAFF HCAN_1 16 4 Rev. 2.00 Dec. 05, 2005 Page 608 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message data 10[1] MD10[1] 8 H'FB00 HCAN_1 16 4 Message data 10[2] MD10[2] 8 H'FB01 HCAN_1 16 4 Message data 10[3] MD10[3] 8 H'FB02 HCAN_1 16 4 Message data 10[4] MD10[4] 8 H'FB03 HCAN_1 16 4 Message data 10[5] MD10[5] 8 H'FB04 HCAN_1 16 4 Message data 10[6] MD10[6] 8 H'FB05 HCAN_1 16 4 Message data 10[7] MD10[7] 8 H'FB06 HCAN_1 16 4 Message data 10[8] MD10[8] 8 H'FB07 HCAN_1 16 4 Message data 11[1] MD11[1] 8 H'FB08 HCAN_1 16 4 Message data 11[2] MD11[2] 8 H'FB09 HCAN_1 16 4 Message data 11[3] MD11[3] 8 H'FB0A HCAN_1 16 4 Message data 11[4] MD11[4] 8 H'FB0B HCAN_1 16 4 Message data 11[5] MD11[5] 8 H'FB0C HCAN_1 16 4 Message data 11[6] MD11[6] 8 H'FB0D HCAN_1 16 4 Message data 11[7] MD11[7] 8 H'FB0E HCAN_1 16 4 Message data 11[8] MD11[8] 8 H'FB0F HCAN_1 16 4 Message data 12[1] MD12[1] 8 H'FB10 HCAN_1 16 4 Message data 12[2] MD12[2] 8 H'FB11 HCAN_1 16 4 Message data 12[3] MD12[3] 8 H'FB12 HCAN_1 16 4 Message data 12[4] MD12[4] 8 H'FB13 HCAN_1 16 4 Message data 12[5] MD12[5] 8 H'FB14 HCAN_1 16 4 Message data 12[6] MD12[6] 8 H'FB15 HCAN_1 16 4 Message data 12[7] MD12[7] 8 H'FB16 HCAN_1 16 4 Message data 12[8] MD12[8] 8 H'FB17 HCAN_1 16 4 Message data 13[1] MD13[1] 8 H'FB18 HCAN_1 16 4 Message data 13[2] MD13[2] 8 H'FB19 HCAN_1 16 4 Message data 13[3] MD13[3] 8 H'FB1A HCAN_1 16 4 Message data 13[4] MD13[4] 8 H'FB1B HCAN_1 16 4 Message data 13[5] MD13[5] 8 H'FB1C HCAN_1 16 4 Message data 13[6] MD13[6] 8 H'FB1D HCAN_1 16 4 Rev. 2.00 Dec. 05, 2005 Page 609 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Message data 13[7] MD13[7] 8 H'FB1E HCAN_1 16 4 Message data 13[8] MD13[8] 8 H'FB1F HCAN_1 16 4 Message data 14[1] MD14[1] 8 H'FB20 HCAN_1 16 4 Message data 14[2] MD14[2] 8 H'FB21 HCAN_1 16 4 Message data 14[3] MD14[3] 8 H'FB22 HCAN_1 16 4 Message data 14[4] MD14[4] 8 H'FB23 HCAN_1 16 4 Message data 14[5] MD14[5] 8 H'FB24 HCAN_1 16 4 Message data 14[6] MD14[6] 8 H'FB25 HCAN_1 16 4 Message data 14[7] MD14[7] 8 H'FB26 HCAN_1 16 4 Message data 14[8] MD14[8] 8 H'FB27 HCAN_1 16 4 Message data 15[1] MD15[1] 8 H'FB28 HCAN_1 16 4 Message data 15[2] MD15[2] 8 H'FB29 HCAN_1 16 4 Message data 15[3] MD15[3] 8 H'FB2A HCAN_1 16 4 Message data 15[4] MD15[4] 8 H'FB2B HCAN_1 16 4 Message data 15[5] MD15[5] 8 H'FB2C HCAN_1 16 4 Message data 15[6] MD15[6] 8 H'FB2D HCAN_1 16 4 Message data 15[7] MD15[7] 8 H'FB2E HCAN_1 16 4 Message data 15[8] MD15[8] 8 H'FB2F HCAN_1 16 4 HCAN monitor register_1 HCANMON_1 8 H'FB30 HCAN_1 16 4 PWM control register_1 PWCR_1 8 H'FC00 PWM_1 16 4 PWM output control register_1 PWOCR_1 8 H'FC02 PWM_1 16 4 PWM polarity register_1 PWPR_1 8 H'FC04 PWM_1 16 4 PWM cycle register_1 PWCYR_1 16 H'FC06 PWM_1 16 4 PWM buffer register_1A PWBFR_1A 16 H'FC08 PWM_1 16 4 PWM buffer register_1C PWBFR_1C 16 H'FC0A PWM_1 16 4 PWM buffer register_1E PWBFR_1E 16 H'FC0C PWM_1 16 4 PWM buffer register_1G PWBFR_1G 16 H'FC0E PWM_1 16 4 PWM control register_2 PWCR_2 8 H'FC10 PWM_2 16 4 PWM output control register_2 PWOCR_2 8 H'FC12 PWM_2 16 4 PWM polarity register_2 PWPR_2 8 H'FC14 PWM_2 16 4 Rev. 2.00 Dec. 05, 2005 Page 610 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States PWM cycle register_2 PWCYR_2 16 H'FC16 PWM_2 16 4 PWM buffer register_2A PWBFR_2A 16 H'FC18 PWM_2 16 4 PWM buffer register_2C PWBFR_2C 16 H'FC1A PWM_2 16 4 PWM buffer register_2E PWBFR_2E 16 H'FC1C PWM_2 16 4 PWM buffer register_2G PWBFR_2G 16 H'FC1E PWM_2 16 4 Port H data direction register PHDDR 8 H'FC20 PORT 16 4 Port J data direction register PJDDR 8 H'FC21 PORT 16 4 Port K data direction register PKDDR 8 H'FC22 PORT 16 4 Port H data register PHDR 8 H'FC24 PORT 16 4 Port J data register PJDR 8 H'FC25 PORT 16 4 Port K data register PKDR 8 H'FC26 PORT 16 4 Port H register PORTH 8 H'FC28 PORT 16 4 Port J register PORTJ 8 H'FC29 PORT 16 4 Port K register PORTK 8 H'FC2A PORT 16 4 LCD Port control register LPCR 8 H'FC30 LCD 16 4 LCD control register LCR 8 H'FC31 LCD 16 4 LCD control register 2 LCR2 8 H'FC32 LCD 16 4 Module stop mode control register_D MSTPCRD 8 H'FC60 SYSTEM 8 4 PWM buffer transfer control register PWBTCR 8 H'FC66 PWM common 8 4 Serial mode register_4 SMR_4 8 H'FDD8 SCI_4 8 2 Bit rate register_4 BRR_4 8 H'FDD9 SCI_4 8 2 Serial control register_4 SCR_4 8 H'FDDA SCI_4 8 2 Transmit data register_4 TDR_4 8 H'FDDB SCI_4 8 2 Serial status register_4 SSR_4 8 H'FDDC SCI_4 8 2 Receive data register_4 RDR_4 8 H'FDDD SCI_4 8 2 Smart card mode register_4 SCMR_4 8 H'FDDE SCI_4 8 2 Standby control register SBYCR 8 H'FDE4 SYSTEM 8 2 System control register_4 SYSCR 8 H'FDE5 SYSTEM 8 2 System clock control register SCKCR 8 H'FDE6 SYSTEM 8 2 Rev. 2.00 Dec. 05, 2005 Page 611 of 724 REJ09B0200-0200 Section 22 List of Registers Number of Data Access Bus Width States Register Name Number Abbreviation of Bits Address* Module Mode control register MDCR 8 H'FDE7 SYSTEM 8 2 Module stop control register A MSTPCRA 8 H'FDE8 SYSTEM 8 2 Module stop control register B MSTPCRB 8 H'FDE9 SYSTEM 8 2 Module stop control register C MSTPCRC 8 H'FDEA SYSTEM 8 2 Pin function control register PFCR 8 H'FDEB BSC 8 2 Low power control register LPWRCR 8 H'FDEC SYSTEM 8 2 Break address register A BARA 32 H'FE00 PBC 32 2 Break address register B BARB 32 H'FE04 PBC 32 2 Break control register A BCRA 8 H'FE08 PBC 8 2 Break control register B BCRB 8 H'FE09 PBC 8 2 IRQ sense control register H ISCRH 8 H'FE12 INT 8 2 IRQ sense control register L ISCRL 8 H'FE13 INT 8 2 IRQ enable register IER 8 H'FE14 INT 8 2 IRQ status register ISR 8 H'FE15 INT 8 2 DTC enable register A DTCERA 8 H'FE16 DTC 8 2 DTC enable register B DTCERB 8 H'FE17 DTC 8 2 DTC enable register C DTCERC 8 H'FE18 DTC 8 2 DTC enable register D DTCERD 8 H'FE19 DTC 8 2 DTC enable register E DTCERE 8 H'FE1A DTC 8 2 DTC enable register F DTCERF 8 H'FE1B DTC 8 2 DTC enable register G DTCERG 8 H'FE1C DTC 8 2 DTC enable register I DTCERI 8 H'FE1E DTC 8 2 DTC vector register DTVECR 8 H'FE1F DTC 8 2 PPG output control register PCR 8 H'FE26 PPG 8 2 PPG output mode register PMR 8 H'FE27 PPG 8 2 Next data enable register H NDERH 8 H'FE28 PPG 8 2 Next data enable register L NDERL 8 H'FE29 PPG 8 2 Output data register H PODRH 8 H'FE2A PPG 8 2 Output data register L PODRL 8 H'FE2B PPG 8 2 Next data register H NDRH 8 H'FE2C PPG 8 2 Rev. 2.00 Dec. 05, 2005 Page 612 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Next data register L NDRL 8 H'FE2D PPG 8 2 Next data register H NDRH 8 H'FE2E PPG 8 2 Next data register L NDRL 8 H'FE2F PPG 8 2 Port 1 data direction register P1DDR 8 H'FE30 PORT 8 2 Port 2 data direction register P2DDR 8 H'FE31 PORT 8 2 Port 3 data direction register P3DDR 8 H'FE32 PORT 8 2 Port 5 data direction register P5DDR 8 H'FE34 PORT 8 2 Port A data direction register PADDR 8 H'FE39 PORT 8 2 Port B data direction register PBDDR 8 H'FE3A PORT 8 2 Port C data direction register PCDDR 8 H'FE3B PORT 8 2 Port D data direction register PDDDR 8 H'FE3C PORT 8 2 Port E data direction register PEDDR 8 H'FE3D PORT 8 2 Port F data direction register PFDDR 8 H'FE3E PORT 8 2 Port A pull-up MOS control register PAPCR 8 H'FE40 PORT 8 2 Port B pull-up MOS control register PBPCR 8 H'FE41 PORT 8 2 Port C pull-up MOS control register PCPCR 8 H'FE42 PORT 8 2 Port D pull-up MOS control register PDPCR 8 H'FE43 PORT 8 2 Port E pull-up MOS control register PEPCR 8 H'FE44 PORT 8 2 Port 3 open-drain control register P3ODR 8 H'FE46 PORT 8 2 Port A open-drain control register PAODR 8 H'FE47 PORT 8 2 Port B open-drain control register PBODR 8 H'FE48 PORT 8 2 Port C open-drain control register PCODR 8 H'FE49 PORT 8 2 Timer control register_3 TCR_3 8 H'FE80 TPU_3 16 2 Timer mode register_3 TMDR_3 8 H'FE81 TPU_3 16 2 Timer I/O control register H_3 TIORH_3 8 H'FE82 TPU_3 16 2 Timer I/O control register L_3 TIORL_3 8 H'FE83 TPU_3 16 2 Rev. 2.00 Dec. 05, 2005 Page 613 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Timer interrupt enable register_3 TIER_3 8 H'FE84 TPU_3 16 2 Timer status register_3 TSR_3 8 H'FE85 TPU_3 16 2 Timer counter H_3 TCNTH_3 8 H'FE86 TPU_3 16 2 Timer counter L_3 TCNTL_3 8 H'FE87 TPU_3 16 2 Timer general register AH_3 TGRAH_3 8 H'FE88 TPU_3 16 2 Timer general register AL_3 TGRAL_3 8 H'FE89 TPU_3 16 2 Timer general register BH_3 TGRBH_3 8 H'FE8A TPU_3 16 2 Timer general register BL_3 TGRBL_3 8 H'FE8B TPU_3 16 2 Timer general register CH_3 TGRCH_3 8 H'FE8C TPU_3 16 2 Timer general register CL_3 TGRCL_3 8 H'FE8D TPU_3 16 2 Timer general register DH_3 TGRDH_3 8 H'FE8E TPU_3 16 2 Timer general register DL_3 TGRDL_3 8 H'FE8F TPU_3 16 2 Timer control register_4 TCR_4 8 H'FE90 TPU_4 16 2 Timer mode register_4 TMDR_4 8 H'FE91 TPU_4 16 2 Timer I/O control register _4 TIOR_4 8 H'FE92 TPU_4 16 2 Timer interrupt enable register_4 TIER_4 8 H'FE94 TPU_4 16 2 Timer status register_4 TSR_4 8 H'FE95 TPU_4 16 2 Timer counter H_4 TCNTH_4 8 H'FE96 TPU_4 16 2 Timer counter L_4 TCNTL_4 8 H'FE97 TPU_4 16 2 Timer general register AH_4 TGRAH_4 8 H'FE98 TPU_4 16 2 Timer general register AL_4 TGRAL_4 8 H'FE99 TPU_4 16 2 Timer general register BH_4 TGRBH_4 8 H'FE9A TPU_4 16 2 Timer general register BL_4 TGRBL_4 8 H'FE9B TPU_4 16 2 Timer control register_5 TCR_5 8 H'FEA0 TPU_5 16 2 Timer mode register_5 TMDR_5 8 H'FEA1 TPU_5 16 2 Timer I/O control register _5 TIOR_5 8 H'FEA2 TPU_5 16 2 Timer interrupt enable register_5 TIER_5 8 H'FEA4 TPU_5 16 2 Timer status register_5 TSR_5 8 H'FEA5 TPU_5 16 2 Timer counter H_5 TCNTH_5 8 H'FEA6 TPU_5 16 2 Timer counter L_5 TCNTL_5 8 H'FEA7 TPU_5 16 2 Rev. 2.00 Dec. 05, 2005 Page 614 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Timer general register AH_5 TGRAH_5 8 H'FEA8 TPU_5 16 2 Timer general register AL_5 TGRAL_5 8 H'FEA9 TPU_5 16 2 Timer general register BH_5 TGRBH_5 8 H'FEAA TPU_5 16 2 Timer general register BL_5 TGRBL_5 8 H'FEAB TPU_5 16 2 Timer start register TSTR 8 H'FEB0 TPU common 16 2 Timer synchro register TSYR 8 H'FEB1 TPU common 16 2 Interrupt priority register A IPRA 8 H'FEC0 INT 8 2 Interrupt priority register B IPRB 8 H'FEC1 INT 8 2 Interrupt priority register C IPRC 8 H'FEC2 INT 8 2 Interrupt priority register D IPRD 8 H'FEC3 INT 8 2 Interrupt priority register E IPRE 8 H'FEC4 INT 8 2 Interrupt priority register F IPRF 8 H'FEC5 INT 8 2 Interrupt priority register G IPRG 8 H'FEC6 INT 8 2 Interrupt priority register H IPRH 8 H'FEC7 INT 8 2 Interrupt priority register J IPRJ 8 H'FEC9 INT 8 2 Interrupt priority register K IPRK 8 H'FECA INT 8 2 Interrupt priority register M IPRM 8 H'FECC INT 8 2 Interrupt priority register O IPRO 8 H'FECE INT 8 2 Bus width control register ABWCR 8 H'FED0 BSC 8 2 Access state control register ASTCR 8 H'FED1 BSC 8 2 Wait control register H WCRH 8 H'FED2 BSC 8 2 Wait control register L WCRL 8 H'FED3 BSC 8 2 Bus control register H BCRH 8 H'FED4 BSC 8 2 Bus control register L BCRL 8 H'FED5 BSC 8 2 RAM emulation register RAMER 8 H'FEDB FLASH 8 (F-ZTAT) 2 Port 1 data direction register P1DR 8 H'FF00 PORT 8 2 Port 2 data direction register P2DR 8 H'FF01 PORT 8 2 Port 3 data direction register P3DR 8 H'FF02 PORT 8 2 Rev. 2.00 Dec. 05, 2005 Page 615 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Port 5 data direction register P5DR 8 H'FF04 PORT 8 2 Port A data direction register PADR 8 H'FF09 PORT 8 2 Port B data direction register PBDR 8 H'FF0A PORT 8 2 Port C data direction register PCDR 8 H'FF0B PORT 8 2 Port D data direction register PDDR 8 H'FF0C PORT 8 2 Port E data direction register PEDR 8 H'FF0D PORT 8 2 Port F data direction register PFDR 8 H'FF0E PORT 8 2 Timer control register_0 TCR_0 8 H'FF10 TPU_0 16 2 Timer mode register_0 TMDR_0 8 H'FF11 TPU_0 16 2 Timer I/O control register H_0 TIORH_0 8 H'FF12 TPU_0 16 2 Timer I/O control register L_0 TIORL_0 8 H'FF13 TPU_0 16 2 Timer interrupt enable register_0 TIER_0 8 H'FF14 TPU_0 16 2 Timer status register_0 TSR_0 8 H'FF15 TPU_0 16 2 Timer counter H_0 TCNTH_0 8 H'FF16 TPU_0 16 2 Timer counter L_0 TCNTL_0 8 H'FF17 TPU_0 16 2 Timer general register AH_0 TGRAH_0 8 H'FF18 TPU_0 16 2 Timer general register AL_0 TGRAL_0 8 H'FF19 TPU_0 16 2 Timer general register BH_0 TGRBH_0 8 H'FF1A TPU_0 16 2 Timer general register BL_0 TGRBL_0 8 H'FF1B TPU_0 16 2 Timer general register CH_0 TGRCH_0 8 H'FF1C TPU_0 16 2 Timer general register CL_0 TGRCL_0 8 H'FF1D TPU_0 16 2 Timer general register DH_0 TGRDH_0 8 H'FF1E TPU_0 16 2 Timer general register DL_0 TGRDL_0 8 H'FF1F TPU_0 16 2 Timer control register_1 TCR_1 8 H'FF20 TPU_1 16 2 Timer mode register_1 TMDR_1 8 H'FF21 TPU_1 16 2 Timer I/O control register _1 TIOR_1 8 H'FF22 TPU_1 16 2 Timer interrupt enable register_1 TIER_1 8 H'FF24 TPU_1 16 2 Timer status register_1 TSR_1 8 H'FF25 TPU_1 16 2 Timer counter H_1 TCNTH_1 8 H'FF26 TPU_1 16 2 Timer counter L_1 TCNTL_1 8 H'FF27 TPU_1 16 2 Rev. 2.00 Dec. 05, 2005 Page 616 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Timer general register AH_1 TGRAH_1 8 H'FF28 TPU_1 16 2 Timer general register AL_1 TGRAL_1 8 H'FF29 TPU_1 16 2 Timer general register BH_1 TGRBH_1 8 H'FF2A TPU_1 16 2 Timer general register BL_1 TGRBL_1 8 H'FF2B TPU_1 16 2 Timer control register_2 TCR_2 8 H'FF30 TPU_2 16 2 Timer mode register_2 TMDR_2 8 H'FF31 TPU_2 16 2 Timer I/O control register_2 TIOR_2 8 H'FF32 TPU_2 16 2 Timer interrupt enable register_2 TIER_2 8 H'FF34 TPU_2 16 2 Timer status register_2 TSR_2 8 H'FF35 TPU_2 16 2 Timer counter H_2 TCNTH_2 8 H'FF36 TPU_2 16 2 Timer counter L_2 TCNTL_2 8 H'FF37 TPU_2 16 2 Timer general register AH_2 TGRAH_2 8 H'FF38 TPU_2 16 2 Timer general register AL_2 TGRAL_2 8 H'FF39 TPU_2 16 2 Timer general register BH_2 TGRBH_2 8 H'FF3A TPU_2 16 2 Timer general register BL_2 TGRBL_2 8 H'FF3B TPU_2 16 2 Timer control/status register_0 TCSR_0 8 H'FF74 WDT_0 16 2 Timer counter_0 TCNT_0 8 H'FF75 WDT_0 16 2 Reset control/status register RSTCSR 8 H'FF77 WDT_0 16 2 Serial mode register_0 SMR_0 8 H'FF78 SCI_0 8 2 Bit rate register_0 BRR_0 8 H'FF79 SCI_0 8 2 Serial control register_0 SCR_0 8 H'FF7A SCI_0 8 2 Transmit data register_0 TDR_0 8 H'FF7B SCI_0 8 2 Serial status register_0 SSR_0 8 H'FF7C SCI_0 8 2 Receive data register_0 RDR_0 8 H'FF7D SCI_0 8 2 Smart card mode register_0 SCMR_0 8 H'FF7E SCI_0 8 2 Serial mode register_1 SMR_1 8 H'FF80 SCI_1 8 2 Bit rate register_1 BRR_1 8 H'FF81 SCI_1 8 2 Serial control register_1 SCR_1 8 H'FF82 SCI_1 8 2 Transmit data register_1 TDR_1 8 H'FF83 SCI_1 8 2 Serial status register_1 SSR_1 8 H'FF84 SCI_1 8 2 Rev. 2.00 Dec. 05, 2005 Page 617 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Receive data register_1 RDR_1 8 H'FF85 SCI_1 8 2 Smart card mode register_1 SCMR_1 8 H'FF86 SCI_1 8 2 Serial mode register_2 SMR_2 8 H'FF88 SCI_2 8 2 Bit rate register_2 BRR_2 8 H'FF89 SCI_2 8 2 Serial control register_2 SCR_2 8 H'FF8A SCI_2 8 2 Transmit data register_2 TDR_2 8 H'FF8B SCI_2 8 2 Serial status register_2 SSR_2 8 H'FF8C SCI_2 8 2 Receive data register_2 RDR_2 8 H'FF8D SCI_2 8 2 Smart card mode register_2 SCMR_2 8 H'FF8E SCI_2 8 2 A/D data register AH ADDR AH 8 H'FF90 A/D 8 2 A/D data register AL ADDRAL 8 H'FF91 A/D 8 2 A/D data register BH ADDRBH 8 H'FF92 A/D 8 2 A/D data register BL ADDRBL 8 H'FF93 A/D 8 2 A/D data register CH ADDRCH 8 H'FF94 A/D 8 2 A/D data register CL ADDRCL 8 H'FF95 A/D 8 2 A/D data register DH ADDRDH 8 H'FF96 A/D 8 2 A/D data register DL ADDRDL 8 H'FF97 A/D 8 2 A/D control/status register ADCSR 8 H'FF98 A/D 8 2 A/D control register ADCR 8 H'FF99 A/D 8 2 Timer control/status register_1 TCSR_1 8 H'FFA2 WDT_1 16 2 Timer counter_1 TCNT_1 8 H'FFA3 WDT_1 16 2 Flash memory control register 1 FLMCR1 8 H'FFA8 FLASH 8 (F-ZTAT) 2 Flash memory control register 2 FLMCR2 8 H'FFA9 FLASH 8 (F-ZTAT) 2 Erase block register 1 EBR1 8 H'FFAA FLASH 8 (F-ZTAT) 2 Erase block register 2 EBR2 8 H'FFAB FLASH 8 (F-ZTAT) 2 Flash memory power control register FLPWCR 8 H'FFAC FLASH 8 (F-ZTAT) 2 Rev. 2.00 Dec. 05, 2005 Page 618 of 724 REJ09B0200-0200 Section 22 List of Registers Register Name Number Abbreviation of Bits Address* Module Number of Data Access Bus Width States Port 1 register PORT1 8 H'FFB0 PORT 8 2 Port 2 register PORT2 8 H'FFB1 PORT 8 2 Port 3 register PORT3 8 H'FFB2 PORT 8 2 Port 4 register PORT4 8 H'FFB3 PORT 8 2 Port 5 register PORT5 8 H'FFB4 PORT 8 2 Port 9 register PORT9 8 H'FFB8 PORT 8 2 Port A register PORTA 8 H'FFB9 PORT 8 2 Port B register PORTB 8 H'FFBA PORT 8 2 Port C register PORTC 8 H'FFBB PORT 8 2 Port D register PORTD 8 H'FFBC PORT 8 2 Port F register PORTF 8 H'FFBE PORT 8 2 Note: * The lower 16 bits are indicated. Rev. 2.00 Dec. 05, 2005 Page 619 of 724 REJ09B0200-0200 Section 22 List of Registers 22.2 Register Bits Register addresses and bit names of the on-chip peripheral modules are described below. Each line covers eight bits, and 16-bit registers are shown as 2 lines, respectively. Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MCR_0 MCR7 MCR5 MCR2 MCR1 MCR0 HCAN_0 GSR_0 GSR3 GSR2 GSR1 GSR0 BCR_0 BCR7 BCR6 BCR5 BCR4 BCR3 BCR2 BCR1 BCR0 BCR15 BCR14 BCR13 BCR12 BCR11 BCR10 BCR9 BCR8 MBCR7 MBCR6 MBCR5 MBCR4 MBCR3 MBCR2 MBCR1 MBCR15 MBCR14 MBCR13 MBCR12 MBCR11 MBCR10 MBCR9 MBCR8 MBCR_0 TXPR7 TXPR6 TXPR5 TXPR4 TXPR3 TXPR2 TXPR1 TXPR15 TXPR14 TXPR13 TXPR12 TXPR11 TXPR10 TXPR9 TXPR8 TXCR7 TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 TXCR15 TXCR14 TXCR13 TXCR12 TXCR11 TXCR10 TXCR9 TXCR8 TXACK7 TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 TXACK1 TXACK15 TXACK14 TXACK13 TXACK12 TXACK11 TXACK10 TXACK9 TXACK8 ABACK7 ABACK6 ABACK5 ABACK4 ABACK3 ABACK2 ABACK1 ABACK15 ABACK14 ABACK13 ABACK12 ABACK11 ABACK10 ABACK9 ABACK8 RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 RXPR1 RXPR0 RXPR15 RXPR14 RXPR13 RXPR12 RXPR11 RXPR10 RXPR9 RXPR8 RFPR7 RFPR6 RFPR5 RFPR4 RFPR3 RFPR2 RFPR1 RFPR0 RFPR15 RFPR14 RFPR13 RFPR12 RFPR11 RFPR10 RFPR9 RFPR8 IRR7 IRR6 IRR5 IRR4 IRR3 IRR2 IRR1 IRR0 IRR12 IRR9 IRR8 MBIMR7 MBIMR6 MBIMR5 MBIMR4 MBIMR3 MBIMR2 MBIMR1 MBIMR0 MBIMR15 MBIMR14 MBIMR13 MBIMR12 MBIMR11 MBIMR10 MBIMR9 MBIMR8 IMR7 IMR6 IMR5 IMR4 IMR3 IMR2 IMR1 IMR12 IMR9 IMR8 REC_0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TEC_0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TXPR_0 TXCR_0 TXACK_0 ABACK_0 RXPR_0 RFPR_0 IRR_0 MBIMR_0 IMR_0 Rev. 2.00 Dec. 05, 2005 Page 620 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module UMSR_0 UMSR7 UMSR6 UMSR5 UMSR4 UMSR3 UMSR2 UMSR1 UMSR0 HCAN_0 UMSR15 UMSR14 UMSR13 UMSR12 UMSR11 UMSR10 UMSR9 UMSR8 LAFML7 LAFML6 LAFML5 LAFML4 LAFML3 LAFML2 LAFML1 LAFML0 LAFML15 LAFML14 LAFML13 LAFML12 LAFML11 LAFML10 LAFML9 LAFML8 LAFMH7 LAFMH6 LAFMH5 LAFMH1 LAFMH0 LAFMH15 LAFMH14 LAFMH13 LAFMH12 LAFMH11 LAFMH10 LAFMH9 LAFMH8 MC0[1] DLC3 DLC2 DLC1 DLC0 MC0[2] MC0[3] MC0[4] MC0[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC0[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 LAFML_0 LAFMH_0 MC0[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC0[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC1[1] DLC3 DLC2 DLC1 DLC0 MC1[2] MC1[3] MC1[4] MC1[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC1[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC1[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC1[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC2[1] DLC3 DLC2 DLC1 DLC0 MC2[2] MC2[3] MC2[4] MC2[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC2[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC2[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC2[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 Rev. 2.00 Dec. 05, 2005 Page 621 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module HCAN_0 MC3[1] DLC3 DLC2 DLC1 DLC0 MC3[2] MC3[3] MC3[4] MC3[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC3[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC3[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC3[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC4[1] DLC3 DLC2 DLC1 DLC0 MC4[2] MC4[3] MC4[4] MC4[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC4[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC4[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC4[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC5[1] DLC3 DLC2 DLC1 DLC0 MC5[2] MC5[3] MC5[4] MC5[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC5[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC5[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC5[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC6[1] DLC3 DLC2 DLC1 DLC0 MC6[2] MC6[3] MC6[4] MC6[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC6[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC6[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 Rev. 2.00 Dec. 05, 2005 Page 622 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MC6[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 HCAN_0 MC7[1] DLC3 DLC2 DLC1 DLC0 MC7[2] MC7[3] MC7[4] MC7[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC7[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC7[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC7[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC8[1] DLC3 DLC2 DLC1 DLC0 MC8[2] MC8[3] MC8[4] MC8[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC8[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC8[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC8[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC9[1] DLC3 DLC2 DLC1 DLC0 MC9[2] MC9[3] MC9[4] MC9[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC9[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC9[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC9[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC10[1] DLC3 DLC2 DLC1 DLC0 MC10[2] MC10[3] MC10[4] MC10[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC10[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 Rev. 2.00 Dec. 05, 2005 Page 623 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MC10[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 HCAN_0 MC10[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC11[1] DLC3 DLC2 DLC1 DLC0 MC11[2] MC11[3] MC11[4] MC11[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC11[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC11[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC11[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC12[1] DLC3 DLC2 DLC1 DLC0 MC12[2] MC12[3] MC12[4] MC12[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC12[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC12[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC12[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC13[1] DLC3 DLC2 DLC1 DLC0 MC13[2] MC13[3] MC13[4] MC13[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC13[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC13[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC13[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC14[1] DLC3 DLC2 DLC1 DLC0 MC14[2] MC14[3] MC14[4] MC14[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 Rev. 2.00 Dec. 05, 2005 Page 624 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MC14[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 HCAN_0 MC14[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC14[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC15[1] DLC3 DLC2 DLC1 DLC0 MC15[2] MC15[3] MC15[4] MC15[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC15[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC15[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC15[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MD0[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Rev. 2.00 Dec. 05, 2005 Page 625 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MD2[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 HCAN_0 MD2[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Rev. 2.00 Dec. 05, 2005 Page 626 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MD6[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 HCAN_0 MD6[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Rev. 2.00 Dec. 05, 2005 Page 627 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MD10[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 HCAN_0 MD10[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Rev. 2.00 Dec. 05, 2005 Page 628 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MD14[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 HCAN_0 MD14[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 HCANMON0 RxDIE TxSTP TxD RxD MCR_1 MCR7 MCR5 MCR2 MCR1 MCR0 GSR_1 GSR3 GSR2 GSR1 GSR0 BCR_1 BCR7 BCR6 BCR5 BCR4 BCR3 BCR2 BCR1 BCR0 BCR15 BCR14 BCR13 BCR12 BCR11 BCR10 BCR9 BCR8 MBCR_1 TXPR_1 TXCR_1 TXACK_1 ABACK_1 MBCR7 MBCR6 MBCR5 MBCR4 MBCR3 MBCR2 MBCR1 MBCR15 MBCR14 MBCR13 MBCR12 MBCR11 MBCR10 MBCR9 MBCR8 TXPR7 TXPR6 TXPR5 TXPR4 TXPR3 TXPR2 TXPR1 TXPR15 TXPR14 TXPR13 TXPR12 TXPR11 TXPR10 TXPR9 TXPR8 TXCR7 TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 TXCR15 TXCR14 TXCR13 TXCR12 TXCR11 TXCR10 TXCR9 TXCR8 TXACK7 TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 TXACK1 TXACK15 TXACK14 TXACK13 TXACK12 TXACK11 TXACK10 TXACK9 TXACK8 ABACK7 ABACK6 ABACK5 ABACK4 ABACK3 ABACK2 ABACK1 ABACK13 ABACK12 ABACK11 ABACK10 ABACK9 ABACK8 ABACK15 ABACK14 HCAN_1 Rev. 2.00 Dec. 05, 2005 Page 629 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module RXPR_1 RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 RXPR1 RXPR0 HCAN_1 RXPR15 RXPR14 RXPR13 RXPR12 RXPR11 RXPR10 RXPR9 RXPR8 RFPR7 RFPR6 RFPR5 RFPR4 RFPR3 RFPR2 RFPR1 RFPR0 RFPR15 RFPR14 RFPR13 RFPR12 RFPR11 RFPR10 RFPR9 RFPR8 RFPR_1 IRR_1 IRR7 IRR6 IRR5 IRR4 IRR3 IRR2 IRR1 IRR0 IRR12 IRR9 IRR8 MBIMR7 MBIMR6 MBIMR5 MBIMR4 MBIMR3 MBIMR2 MBIMR1 MBIMR0 MBIMR15 MBIMR14 MBIMR13 MBIMR12 MBIMR11 MBIMR10 MBIMR9 MBIMR8 IMR7 IMR6 IMR5 IMR4 IMR3 IMR2 IMR1 IMR12 IMR9 IMR8 REC_1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TEC_1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MBIMR_1 IMR_1 UMSR_1 UMSR7 UMSR6 UMSR5 UMSR4 UMSR3 UMSR2 UMSR1 UMSR0 UMSR15 UMSR14 UMSR13 UMSR12 UMSR11 UMSR10 UMSR9 UMSR8 LAFML7 LAFML6 LAFML5 LAFML4 LAFML3 LAFML2 LAFML1 LAFML0 LAFML15 LAFML14 LAFML13 LAFML12 LAFML11 LAFML10 LAFML9 LAFML8 LAFMH7 LAFMH6 LAFMH5 LAFMH1 LAFMH0 LAFMH15 LAFMH14 LAFMH13 LAFMH12 LAFMH11 LAFMH10 LAFMH9 LAFMH8 MC0[1] DLC3 DLC2 DLC1 DLC0 MC0[2] MC0[3] MC0[4] MC0[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC0[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC0[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC0[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC1[1] DLC3 DLC2 DLC1 DLC0 MC1[2] MC1[3] MC1[4] MC1[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 LAFML_1 LAFMH_1 Rev. 2.00 Dec. 05, 2005 Page 630 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MC1[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 HCAN_1 MC1[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC1[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC2[1] DLC3 DLC2 DLC1 DLC0 MC2[2] MC2[3] MC2[4] MC2[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC2[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC2[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC2[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC3[1] DLC3 DLC2 DLC1 DLC0 MC3[2] MC3[3] MC3[4] MC3[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC3[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC3[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC3[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC4[1] DLC3 DLC2 DLC1 DLC0 MC4[2] MC4[3] MC4[4] MC4[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC4[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC4[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC4[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC5[1] DLC3 DLC2 DLC1 DLC0 MC5[2] MC5[3] MC5[4] Rev. 2.00 Dec. 05, 2005 Page 631 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MC5[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 HCAN_1 MC5[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC5[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC5[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC6[1] DLC3 DLC2 DLC1 DLC0 MC6[2] MC6[3] MC6[4] MC6[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC6[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC6[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC6[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC7[1] DLC3 DLC2 DLC1 DLC0 MC7[2] MC7[3] MC7[4] MC7[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC7[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC7[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC7[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC8[1] DLC3 DLC2 DLC1 DLC0 MC8[2] MC8[3] MC8[4] MC8[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC8[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC8[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC8[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC9[1] DLC3 DLC2 DLC1 DLC0 MC9[2] MC9[3] Rev. 2.00 Dec. 05, 2005 Page 632 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module HCAN_1 MC9[4] MC9[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC9[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC9[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC9[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC10[1] DLC3 DLC2 DLC1 DLC0 MC10[2] MC10[3] MC10[4] MC10[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC10[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC10[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC10[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC11[1] DLC3 DLC2 DLC1 DLC0 MC11[2] MC11[3] MC11[4] MC11[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC11[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC11[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC11[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC12[1] DLC3 DLC2 DLC1 DLC0 MC12[2] MC12[3] MC12[4] MC12[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC12[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC12[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC12[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC13[1] DLC3 DLC2 DLC1 DLC0 MC13[2] Rev. 2.00 Dec. 05, 2005 Page 633 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module HCAN_1 MC13[3] MC13[4] MC13[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC13[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC13[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC13[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC14[1] DLC3 DLC2 DLC1 DLC0 MC14[2] MC14[3] MC14[4] MC14[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC14[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC14[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC14[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MC15[1] DLC3 DLC2 DLC1 DLC0 MC15[2] MC15[3] MC15[4] MC15[5] ID-20 ID-19 ID-18 RTR IDE ID-17 ID-16 MC15[6] ID-28 ID-27 ID-26 ID-25 ID-24 ID-23 ID-22 ID-21 MC15[7] ID-7 ID-6 ID-5 ID-4 ID-3 ID-2 ID-1 ID-0 MC15[8] ID-15 ID-14 ID-13 ID-12 ID-11 ID-10 ID-9 ID-8 MD0[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD0[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Rev. 2.00 Dec. 05, 2005 Page 634 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MD1[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 HCAN_1 MD1[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD1[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD2[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD3[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Rev. 2.00 Dec. 05, 2005 Page 635 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MD5[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 HCAN_1 MD5[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD6[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD7[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD8[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Rev. 2.00 Dec. 05, 2005 Page 636 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MD8[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 HCAN_1 MD8[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD9[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD10[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD11[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Rev. 2.00 Dec. 05, 2005 Page 637 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module MD12[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 HCAN_1 MD12[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD12[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD13[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD14[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD15[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TxSTP PKFE TxD RxD HCANMON_1 RxDIE PWCR_1 IE CMF CST CKS2 CKS1 CKS0 PWOCR_1 OE1H OE1G OE1F OE1E OE1D OE1C OE1B OE1A PWPR_1 OPS1H OPS1G OPS1F OPS1E OPS1D OPS1C OPS1B OPS1A Rev. 2.00 Dec. 05, 2005 Page 638 of 724 REJ09B0200-0200 PWM_1 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module Bit9 Bit8 PWM_1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 OTS DT9 DT8 DT7 DT6 DT5 DT4 DT3 DT2 DT1 DT0 OTS DT9 DT8 DT7 DT6 DT5 DT4 DT3 DT2 DT1 DT0 OTS DT9 DT8 DT7 DT6 DT5 DT4 DT3 DT2 DT1 DT0 OTS DT9 DT8 DT7 DT6 DT5 DT4 DT3 DT2 DT1 DT0 PWCR_2 IE CMF CST CKS2 CKS1 CKS0 PWOCR_2 OE2H OE2G OE2F OE2E OE2D OE2C OE2B OE2A PWCYR_1 PWBFR_1A PWBFR_1C PWBFR_1E PWBFR_1G PWPR_2 OPS2H OPS2G OPS2F OPS2E OPS2D OPS2C OPS2B OPS2A PWCYR_2 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TDS DT9 DT8 DT7 DT6 DT5 DT4 DT3 DT2 DT1 DT0 TDS DT9 DT8 DT7 DT6 DT5 DT4 DT3 DT2 DT1 DT0 TDS DT9 DT8 PWBFR_2A PWBFR_2C PWBFR_2E DT7 DT6 DT5 DT4 DT3 DT2 DT1 DT0 TDS DT9 DT8 DT7 DT6 DT5 DT4 DT3 DT2 DT1 DT0 PHDDR PH7DDR PH6DDR PH5DDR PH4DDR PH3DDR PH2DDR PH1DDR PH0DDR PJDDR PJ7DDR PJ6DDR PJ5DDR PJ4DDR PJ3DDR PJ2DDR PJ1DDR PJ0DDR PKDDR PK7DDR PK6DDR PHDR PH7DR PH6DR PH5DR PH4DR PH3DR PH2DR PH1DR PH0DR PJDR PJ7DR PJ6DR PJ5DR PJ4DR PJ3DR PJ2DR PJ1DR PJ0DR PKDR PK7DR PK6DR PORTH PH7 PH6 PH5 PH4 PH3 PH2 PH1 PH0 PWBFR_2G PWM_2 PORT Rev. 2.00 Dec. 05, 2005 Page 639 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module PORTJ PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 PORT PORTK PK7 PK6 LPCR DTS1 DTS0 CMX SGS3 SGS2 SGS1 SGS0 LCR PSW ACT DISP CKS3 CKS2 CKS1 CKS0 LCR2 LCDAB MSTPCRD MSTPD7 MSTPD6 MSTPD5 MSTPD4 MSTPD3 MSTPD2 MSTPD1 MSTPD0 PWBTCR BTC2G BTC2E BTC2C BTC2A BTC2G BTC1E BTC1C BTC1A LCD SYSTEM PWM common SMR_4* C/A CHR PE O/E STOP MP CKS1 CKS0 (GM) (BLK) (PE) (O/E) (BCP1) (BCP0) (CKS1) (CKS0) BRR_4 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SCR_4 TIE RIE TE RE MPIE TEIE CKE1 CKE0 TDR_4 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SSR_4* TDRE RDRF ORER FER PER TEND MPB MPBT (TDRE) (RDRF) (ORER) (ERS) (PER) (TEND) (MPB) (MPBT) RDR_4 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SCMR_4 SDIR SINV SMIF SBYCR SSBY STS2 STS1 STS0 OPE SYSCR MACS INTM1 INTM0 NMIEG RAME SCKCR PSTOP STCS SCK2 SCK1 SCK0 MDCR MDS2 MDS1 MDS0 MSTPCRA MSTPA7 MSTPA6 MSTPA5 MSTPA4 MSTPA3 MSTPA2 MSTPA1 MSTPA0 MSTPCRB MSTPB7 MSTPB6 MSTPB5 MSTPB4 MSTPB3 MSTPB2 MSTPB1 MSTPB0 MSTPCRC MSTPC7 MSTPC6 MSTPC5 MSTPC4 MSTPC3 MSTPC2 MSTPC1 MSTPC0 PFCR AE3 AE2 AE1 AE0 BSC LPWRCR DTON LSON NESEL SUBSTP RFCUT STC1 STC0 SYSTEM BARA PBC Bit23 Bit22 Bit21 Bit20 Bit19 Bit18 Bit17 Bit16 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Rev. 2.00 Dec. 05, 2005 Page 640 of 724 REJ09B0200-0200 SCI_4 SYSTEM Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module PBC Bit23 Bit22 Bit21 Bit20 Bit19 Bit18 Bit17 Bit16 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 BCRA CMFA CDA BAMA2 BAMA1 BAMA0 CSELA1 CSELA0 BIEA BCRB CMFB CDB BAMB2 BAMB1 BAMB0 CSELB1 CSELB0 BIEB ISCRH IRQ5SCB IRQ5SCA IRQ4SCB IRQ4SCA ISCRL IRQ3SCB IRQ3SCA IRQ2SCB IRQ2SCA IRQ1SCB IRQ1SCA IRQ0SCB IRQ0SCA IER IRQ5E IRQ4E IRQ3E IRQ2E IRQ1E IRQ0E ISR IRQ5F IRQ4F IRQ3F IRQ2F IRQ1F IRQ0F DTCERA DTCEA7 DTCEA6 DTCEA5 DTCEA4 DTCEA3 DTCEA2 DTCEA1 DTCEA0 DTCERB DTCEB7 DTCEB6 DTCEB5 DTCEB4 DTCEB3 DTCEB2 DTCEB1 DTCEB0 DTCERC DTCEC7 DTCEC6 DTCEC5 DTCEC4 DTCEC3 DTCEC2 DTCEC1 DTCEC0 DTCERD DTCED7 DTCED6 DTCED5 DTCED4 DTCED3 DTCED2 DTCED1 DTCED0 DTCERE DTCEE7 DTCEE6 DTCEE5 DTCEE4 DTCEE3 DTCEE2 DTCEE1 DTCEE0 DTCERF DTCEF7 DTCEF6 DTCEF5 DTCEF4 DTCEF3 DTCEF2 DTCEF1 DTCEF0 DTCERG DTCEG7 DTCEG6 DTCEG5 DTCEG4 DTCEG3 DTCEG2 DTCEG1 DTCEG0 DTCERI DTCEI7 DTCEI6 DTCEI5 DTCEI4 DTCEI3 DTCEI2 DTCEI1 DTCEI0 DTVECR SWDTE DTVEC6 DTVEC5 DTVEC4 DTVEC3 DTVEC2 DTVEC1 DTVEC0 PCR G3CMS1 G3CMS0 G2CMS1 G2CMS0 G1CMS1 G1CMS0 G0CMS1 G0CMS0 PMR G3INV G2INV G1INV G0INV G3NOV G2NOV G1NOV G0NOV NDERH NDER15 NDER14 NDER13 NDER12 NDER11 NDER10 NDER9 NDER8 NDERL NDER7 NDER6 NDER5 NDER4 NDER3 NDER2 NDER1 NDER0 PODRH POD15 POD14 POD13 POD12 POD11 POD10 POD9 POD8 PODRL POD7 POD6 POD5 POD4 POD3 POD2 POD1 POD0 NDRH NDR15 NDR14 NDR13 NDR12 NDRL NDR7 NDR6 NDR5 NDR4 NDRH NDR11 NDR10 NDR9 NDR8 NDRL NDR3 NDR2 NDR1 NDR0 BARB INT DTC PPG Rev. 2.00 Dec. 05, 2005 Page 641 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module P1DDR P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P11DDR P10DDR PORT P2DDR P27DDR P26DDR P25DDR P24DDR P23DDR P22DDR P21DDR P20DDR P3DDR P37DDR P36DDR P35DDR P34DDR P33DDR P32DDR P31DDR P30DDR P5DDR P52DDR P51DDR P50DDR PADDR PA7DDR PA6DDR PA5DDR PA4DDR PA3DDR PA2DDR PA1DDR PA0DDR PBDDR PB7DDR PB6DDR PB5DDR PB4DDR PB3DDR PB2DDR PB1DDR PB0DDR PCDDR PC7DDR PC6DDR PC5DDR PC4DDR PC3DDR PC2DDR PC1DDR PC0DDR PDDDR PD7DDR PD6DDR PD5DDR PD4DDR PD3DDR PD2DDR PD1DDR PD0DDR PEDDR PE7DDR PE6DDR PE5DDR PE4DDR PE3DDR PE2DDR PE1DDR PE0DDR PFDDR PF7DDR PF6DDR PF5DDR PF4DDR PF3DDR PF2DDR PF0DDR PAPCR PA7PCR PA6PCR PA5PCR PA4PCR PA3PCR PA2PCR PA1PCR PA0PCR PBPCR PB7PCR PB6PCR PB5PCR PB4PCR PB3PCR PB2PCR PB1PCR PB0PCR PCPCR PC7PCR PC6PCR PC5PCR PC4PCR PC3PCR PC2PCR PC1PCR PC0PCR PDPCR PD7PCR PD6PCR PD5PCR PD4PCR PD3PCR PD2PCR PD1PCR PD0PCR PEPCR PE7PCR PE6PCR PE5PCR PE4PCR PE3PCR PE2PCR PE1PCR PE0PCR P3ODR P37ODR P36ODR P35ODR P34ODR P33ODR P32ODR P31ODR P30ODR PAODR PA7ODR PA6ODR PA5ODR PA4ODR PA3ODR PA2ODR PA1ODR PA0ODR PBODR PB7ODR PB6ODR PB5ODR PB4ODR PB3ODR PB2ODR PB1ODR PB0ODR PCODR PC7ODR PC6ODR PC5ODR PC4ODR PC3ODR PC2ODR PC1ODR PC0ODR TCR_3 CCLR2 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TPSC0 TMDR_3 BFB BFA MD3 MD2 MD1 MD0 TIORH_3 IOB3 IOB2 IOB1 IOB0 IOA3 IOA2 IOA1 IOA0 TIORL_3 IOD3 IOD2 IOD1 IOD0 IOC3 IOC2 IOC1 IOC0 TIER_3 TTGE TCIEV TGIED TGIEC TGIEB TGIEA TSR_3 TCFV TGFD TGFC TGFB TGFA TCNTH_3 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TCNTL_3 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRAH_3 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRAL_3 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRBH_3 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRBL_3 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Rev. 2.00 Dec. 05, 2005 Page 642 of 724 REJ09B0200-0200 TPU_3 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module TGRCH_3 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TPU_3 TGRCL_3 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRDH_3 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRDL_3 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TCR_4 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TPSC0 TMDR_4 MD3 MD2 MD1 MD0 TIOR_4 IOB3 IOB2 IOB1 IOB0 IOA3 IOA2 IOA1 IOA0 TIER_4 TTGE TCIEU TCIEV TGIEB TGIEA TSR_4 TCFD TCFU TCFV TGFB TGFA TCNTH_4 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TCNTL_4 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRAH_4 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRAL_4 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRBH_4 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRBL_4 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TCR_5 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TPSC0 TMDR_5 MD3 MD2 MD1 MD0 TIOR_5 IOB3 IOB2 IOB1 IOB0 IOA3 IOA2 IOA1 IOA0 TIER_5 TTGE TCIEU TCIEV TGIEB TGIEA TSR_5 TCFD TCFU TCFV TGFB TGFA TCNTH_5 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TCNTL_5 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRAH_5 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRAL_5 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRBH_5 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRBL_5 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TSTR CST5 CST4 CST3 CST2 CST1 CST0 TSYR SYNC5 SYNC4 SYNC3 SYNC2 SYNC1 SYNC0 IPRA IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 IPRB IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 IPRC IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 TPU_4 TPU_5 TPU common INT Rev. 2.00 Dec. 05, 2005 Page 643 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module INT IPRD IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 IPRE IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 IPRF IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 IPRG IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 IPRH IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 IPRJ IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 IPRK IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 IPRM IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 IPRO IPR6 IPR5 IPR4 IPR2 IPR1 IPR0 ABWCR ABW7 ABW6 ABW5 ABW4 ABW3 ABW2 ABW1 ABW0 ASTCR AST7 AST6 AST5 AST4 AST3 AST2 AST1 AST0 WCRH W71 W70 W61 W60 W51 W50 W41 W40 WCRL W31 W30 W21 W20 W11 W10 W01 W00 BCRH ICIS1 ICIS0 BRSTRM BRSTS1 BRSTS0 BCRL WDBE WAITE RAMER RAMS RAM2 RAM1 RAM0 BSC FLASH (F-ZTAT) P1DR P17DR P16DR P15DR P14DR P13DR P12DR P11DR P10DR P2DR P27DR P26DR P25DR P24DR P23DR P22DR P21DR P20DR P3DR P37DR P36DR P35DR P34DR P33DR P32DR P31DR P30DR P5DR P52DR P51DR P50DR PADR PA7DR PA6DR PA5DR PA4DR PA3DR PA2DR PA1DR PA0DR PBDR PB7DR PB6DR PB5DR PB4DR PB3DR PB2DR PB1DR PB0DR PCDR PC7DR PC6DR PC5DR PC4DR PC3DR PC2DR PC1DR PC0DR PDDR PD7DR PD6DR PD5DR PD4DR PD3DR PD2DR PD1DR PD0DR PEDR PE7DR PE6DR PE5DR PE4DR PE3DR PE2DR PE1DR PE0DR PFDR PF7DR PF6DR PF5DR PF4DR PF3DR PF2DR PF0DR TCR_0 CCLR2 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TPSC0 TMDR_0 BFB BFA MD3 MD2 MD1 MD0 TIORH_0 IOB3 IOB2 IOB1 IOB0 IOA3 IOA2 IOA1 IOA0 TIORL_0 IOD3 IOD2 IOD1 IOD0 IOC3 IOC2 IOC1 IOC0 Rev. 2.00 Dec. 05, 2005 Page 644 of 724 REJ09B0200-0200 PORT TPU_0 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module TIER_0 TTGE TCIEV TGIED TGIEC TGIEB TGIEA TPU_0 TSR_0 TCFV TGFD TGFC TGFB TGFA TCNTH_0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TCNTL_0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRAH_0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRAL_0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRBH_0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRBL_0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRCH_0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRCL_0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRDH_0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRDL_0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TCR_1 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TPSC0 TMDR_1 MD3 MD2 MD1 MD0 TIOR_1 IOB3 IOB2 IOB1 IOB0 IOA3 IOA2 IOA1 IOA0 TIER_1 TTGE TCIEU TCIEV TGIEB TGIEA TSR_1 TCFD TCFU TCFV TGFB TGFA TCNTH_1 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TCNTL_1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRAH_1 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRAL_1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRBH_1 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRBL_1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TCR_2 CCLR1 CCLR0 CKEG1 CKEG0 TPSC2 TPSC1 TPSC0 TMDR_2 MD3 MD2 MD1 MD0 TIOR_2 IOB3 IOB2 IOB1 IOB0 IOA3 IOA2 IOA1 IOA0 TIER_2 TTGE TCIEU TCIEV TGIEB TGIEA TSR_2 TCFD TCFU TCFV TGFB TGFA TCNTH_2 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TCNTL_2 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TGRAH_2 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TPU_1 TPU_2 Rev. 2.00 Dec. 05, 2005 Page 645 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module TGRAL_2 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TPU_2 TGRBH_2 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 TGRBL_2 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TCSR_0 OVF WT/IT TME CKS2 CKS1 CKS0 TCNT_0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RSTCSR WOVF RSTE RSTS SMR_0* C/A CHR PE O/E STOP MP CKS1 CKS0 (GM) (BLK) (PE) (O/E) (BCP1) (BCP0) (CKS1) (CKS0) BRR_0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SCR_0 TIE RIE TE RE MPIE TEIE CKE1 CKE0 TDR_0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SSR_0* TDRE RDRF ORER FER PER TEND MPB MPBT (TDRE) (RDRF) (ORER) (ERS) (PER) (TEND) (MPB) (MPBT) RDR_0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SCMR_0 SDIR SINV SMIF SMR_1* C/A CHR PE O/E STOP MP CKS1 CKS0 (GM) (BLK) (PE) (O/E) (BCP1) (BCP0) (CKS1) (CKS0) BRR_1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SCR_1 TIE RIE TE RE MPIE TEIE CKE1 CKE0 TDR_1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SSR_1* TDRE RDRF ORER FER PER TEND MPB MPBT (TDRE) (RDRF) (ORER) (ERS) (PER) (TEND) (MPB) (MPBT) RDR_1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SCMR_1 SDIR SINV SMIF SMR_2* C/A CHR PE O/E STOP MP CKS1 CKS0 (GM) (BLK) (PE) (O/E) (BCP1) (BCP0) (CKS1) (CKS0) BRR_2 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SCR_2 TIE RIE TE RE MPIE TEIE CKE1 CKE0 TDR_2 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SSR_2* TDRE RDRF ORER FER PER TEND MPB MPBT (TDRE) (RDRF) (ORER) (ERS) (PER) (TEND) (MPB) (MPBT) Rev. 2.00 Dec. 05, 2005 Page 646 of 724 REJ09B0200-0200 WDT_0 SCI_0 SCI_1 SCI_2 Section 22 List of Registers Register Abbreviation Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module RDR_2 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SCI_2 SCMR_2 SDIR SINV SMIF ADDRAH AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 ADDRAL AD1 AD0 A/D ADDRBH AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 ADDRBL AD1 AD0 ADDRCH AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 ADDRCL AD1 AD0 ADDRDH AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 ADDRDL AD1 AD0 ADCSR ADF ADIE ADST SCAN CH2 CH1 CH0 ADCR TRGS1 TRGS0 CKS1 CKS0 TCSR_1 OVF WT/IT TME PSS RST/NMI CKS2 CKS1 CKS0 TCNT_1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 FLMCR1 FWE SWE ESU PSU EV PV E P FLASH FLMCR2 FLER (F-ZTAT) EBR1 EB7 EB6 EB5 EB4 EB3 EB2 EB1 EB0 EBR2 EB11 EB10 EB9 EB8 FLPWCR PDWND PORT1 P17 P16 P15 P14 P13 P12 P11 P10 PORT2 P27 P26 P25 P24 P23 P22 P21 P20 PORT3 P37 P36 P35 P34 P33 P32 P31 P30 PORT4 P47 P46 P45 P44 P43 P42 P41 P40 PORT5 P52 P51 P50 PORT9 P97 P96 P95 P94 P93 P92 P91 P90 PORTA PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 PORTB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 PORTC PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 PORTD PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PORTF PF7 PF6 PF5 PF4 PF3 PF2 PF1 Note: * WDT_1 PORT Parts of the bit functions differ in normal mode and the smart card interface mode. The bit function in smart card interface mode is enclosed in parentheses. Rev. 2.00 Dec. 05, 2005 Page 647 of 724 REJ09B0200-0200 Section 22 List of Registers 22.3 Register States in Each Operating Mode Register Abbrevia- High Medium speed speed Sleep Stop Initialized − − − Initialized Initialized Initialized Initialized GSR_0 Initialized − − − Initialized Initialized Initialized BCR_0 Initialized − − − MBCR_0 Initialized − − TXPR_0 Initialized − TXCR_0 Initialized − TXACK_0 tion Reset MCR_0 Module Software Hardware Standby Module Initialized Initialized HCAN_0 Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized − Initialized Initialized Initialized Initialized Initialized Initialized − − Initialized Initialized Initialized Initialized Initialized Initialized − − Initialized Initialized Initialized Initialized Initialized Initialized Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized ABACK_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized RXPR_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized RFPR_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized IRR_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized MBIMR_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized IMR_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized REC_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized TEC_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized UMSR_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized LAFML_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized LAFMH_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized MC0[1] − − − − − − − − − − MC0[2] − − − − − − − − − − MC0[3] − − − − − − − − − − MC0[4] − − − − − − − − − − MC0[5] − − − − − − − − − − MC0[6] − − − − − − − − − − MC0[7] − − − − − − − − − − MC0[8] − − − − − − − − − − MC1[1] − − − − − − − − − − MC1[2] − − − − − − − − − − Rev. 2.00 Dec. 05, 2005 Page 648 of 724 REJ09B0200-0200 Watch Subactive Subsleep Standby Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MC1[3] − − − − − − − − − − HCAN_0 MC1[4] − − − − − − − − − − MC1[5] − − − − − − − − − − MC1[6] − − − − − − − − − − MC1[7] − − − − − − − − − − MC1[8] − − − − − − − − − − MC2[1] − − − − − − − − − − MC2[2] − − − − − − − − − − MC2[3] − − − − − − − − − − MC2[4] − − − − − − − − − − MC2[5] − − − − − − − − − − MC2[6] − − − − − − − − − − MC2[7] − − − − − − − − − − MC2[8] − − − − − − − − − − MC3[1] − − − − − − − − − − MC3[2] − − − − − − − − − − MC3[3] − − − − − − − − − − MC3[4] − − − − − − − − − − MC3[5] − − − − − − − − − − MC3[6] − − − − − − − − − − MC3[7] − − − − − − − − − − MC3[8] − − − − − − − − − − MC4[1] − − − − − − − − − − MC4[2] − − − − − − − − − − MC4[3] − − − − − − − − − − MC4[4] − − − − − − − − − − MC4[5] − − − − − − − − − − MC4[6] − − − − − − − − − − MC4[7] − − − − − − − − − − MC4[8] − − − − − − − − − − Software Hardware Rev. 2.00 Dec. 05, 2005 Page 649 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MC5[1] − − − − − − − − − − HCAN_0 MC5[2] − − − − − − − − − − MC5[3] − − − − − − − − − − MC5[4] − − − − − − − − − − MC5[5] − − − − − − − − − − MC5[6] − − − − − − − − − − MC5[7] − − − − − − − − − − MC5[8] − − − − − − − − − − MC6[1] − − − − − − − − − − MC6[2] − − − − − − − − − − MC6[3] − − − − − − − − − − MC6[4] − − − − − − − − − − MC6[5] − − − − − − − − − − MC6[6] − − − − − − − − − − MC6[7] − − − − − − − − − − MC6[8] − − − − − − − − − − MC7[1] − − − − − − − − − − MC7[2] − − − − − − − − − − MC7[3] − − − − − − − − − − MC7[4] − − − − − − − − − − MC7[5] − − − − − − − − − − MC7[6] − − − − − − − − − − MC7[7] − − − − − − − − − − MC7[8] − − − − − − − − − − MC8[1] − − − − − − − − − − MC8[2] − − − − − − − − − − MC8[3] − − − − − − − − − − MC8[4] − − − − − − − − − − MC8[5] − − − − − − − − − − MC8[6] − − − − − − − − − − Rev. 2.00 Dec. 05, 2005 Page 650 of 724 REJ09B0200-0200 Software Hardware Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MC8[7] − − − − − − − − − − HCAN_0 MC8[8] − − − − − − − − − − MC9[1] − − − − − − − − − − MC9[2] − − − − − − − − − − MC9[3] − − − − − − − − − − MC9[4] − − − − − − − − − − MC9[5] − − − − − − − − − − MC9[6] − − − − − − − − − − MC9[7] − − − − − − − − − − MC9[8] − − − − − − − − − − MC10[1] − − − − − − − − − − MC10[2] − − − − − − − − − − MC10[3] − − − − − − − − − − MC10[4] − − − − − − − − − − MC10[5] − − − − − − − − − − MC10[6] − − − − − − − − − − MC10[7] − − − − − − − − − − MC10[8] − − − − − − − − − − MC11[1] − − − − − − − − − − MC11[2] − − − − − − − − − − MC11[3] − − − − − − − − − − MC11[4] − − − − − − − − − − MC11[5] − − − − − − − − − − MC11[6] − − − − − − − − − − MC11[7] − − − − − − − − − − MC11[8] − − − − − − − − − − MC12[1] − − − − − − − − − − MC12[2] − − − − − − − − − − MC12[3] − − − − − − − − − − MC12[4] − − − − − − − − − − Software Hardware Rev. 2.00 Dec. 05, 2005 Page 651 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MC12[5] − − − − − − − − − − HCAN_0 MC12[6] − − − − − − − − − − MC12[7] − − − − − − − − − − MC12[8] − − − − − − − − − − MC13[1] − − − − − − − − − − MC13[2] − − − − − − − − − − MC13[3] − − − − − − − − − − MC13[4] − − − − − − − − − − MC13[5] − − − − − − − − − − MC13[6] − − − − − − − − − − MC13[7] − − − − − − − − − − MC13[8] − − − − − − − − − − MC14[1] − − − − − − − − − − MC14[2] − − − − − − − − − − MC14[3] − − − − − − − − − − MC14[4] − − − − − − − − − − MC14[5] − − − − − − − − − − MC14[6] − − − − − − − − − − MC14[7] − − − − − − − − − − MC14[8] − − − − − − − − − − MC15[1] − − − − − − − − − − MC15[2] − − − − − − − − − − MC15[3] − − − − − − − − − − MC15[4] − − − − − − − − − − MC15[5] − − − − − − − − − − MC15[6] − − − − − − − − − − MC15[7] − − − − − − − − − − MC15[8] − − − − − − − − − − MD0[1] − − − − − − − − − − MD0[2] − − − − − − − − − − Rev. 2.00 Dec. 05, 2005 Page 652 of 724 REJ09B0200-0200 Software Hardware Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MD0[3] − − − − − − − − − − HCAN_0 MD0[4] − − − − − − − − − − MD0[5] − − − − − − − − − − MD0[6] − − − − − − − − − − MD0[7] − − − − − − − − − − MD0[8] − − − − − − − − − − MD1[1] − − − − − − − − − − MD1[2] − − − − − − − − − − MD1[3] − − − − − − − − − − MD1[4] − − − − − − − − − − MD1[5] − − − − − − − − − − MD1[6] − − − − − − − − − − MD1[7] − − − − − − − − − − MD1[8] − − − − − − − − − − MD2[1] − − − − − − − − − − MD2[2] − − − − − − − − − − MD2[3] − − − − − − − − − − MD2[4] − − − − − − − − − − MD2[5] − − − − − − − − − − MD2[6] − − − − − − − − − − MD2[7] − − − − − − − − − − MD2[8] − − − − − − − − − − MD3[1] − − − − − − − − − − MD3[2] − − − − − − − − − − MD3[3] − − − − − − − − − − MD3[4] − − − − − − − − − − MD3[5] − − − − − − − − − − MD3[6] − − − − − − − − − − MD3[7] − − − − − − − − − − MD3[8] − − − − − − − − − − Software Hardware Rev. 2.00 Dec. 05, 2005 Page 653 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MD4[1] − − − − − − − − − − HCAN_0 MD4[2] − − − − − − − − − − MD4[3] − − − − − − − − − − MD4[4] − − − − − − − − − − MD4[5] − − − − − − − − − − MD4[6] − − − − − − − − − − MD4[7] − − − − − − − − − − MD4[8] − − − − − − − − − − MD5[1] − − − − − − − − − − MD5[2] − − − − − − − − − − MD5[3] − − − − − − − − − − MD5[4] − − − − − − − − − − MD5[5] − − − − − − − − − − MD5[6] − − − − − − − − − − MD5[7] − − − − − − − − − − MD5[8] − − − − − − − − − − MD6[1] − − − − − − − − − − MD6[2] − − − − − − − − − − MD6[3] − − − − − − − − − − MD6[4] − − − − − − − − − − MD6[5] − − − − − − − − − − MD6[6] − − − − − − − − − − MD6[7] − − − − − − − − − − MD6[8] − − − − − − − − − − MD7[1] − − − − − − − − − − MD7[2] − − − − − − − − − − MD7[3] − − − − − − − − − − MD7[4] − − − − − − − − − − MD7[5] − − − − − − − − − − MD7[6] − − − − − − − − − − Rev. 2.00 Dec. 05, 2005 Page 654 of 724 REJ09B0200-0200 Software Hardware Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MD7[7] − − − − − − − − − − HCAN_0 MD7[8] − − − − − − − − − − MD8[1] − − − − − − − − − − MD8[2] − − − − − − − − − − MD8[3] − − − − − − − − − − MD8[4] − − − − − − − − − − MD8[5] − − − − − − − − − − MD8[6] − − − − − − − − − − MD8[7] − − − − − − − − − − MD8[8] − − − − − − − − − − MD9[1] − − − − − − − − − − MD9[2] − − − − − − − − − − MD9[3] − − − − − − − − − − MD9[4] − − − − − − − − − − MD9[5] − − − − − − − − − − MD9[6] − − − − − − − − − − MD9[7] − − − − − − − − − − MD9[8] − − − − − − − − − − MD10[1] − − − − − − − − − − MD10[2] − − − − − − − − − − MD10[3] − − − − − − − − − − MD10[4] − − − − − − − − − − MD10[5] − − − − − − − − − − MD10[6] − − − − − − − − − − MD10[7] − − − − − − − − − − MD10[8] − − − − − − − − − − MD11[1] − − − − − − − − − − MD11[2] − − − − − − − − − − MD11[3] − − − − − − − − − − MD11[4] − − − − − − − − − − Software Hardware Rev. 2.00 Dec. 05, 2005 Page 655 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MD11[5] − − − − − − − − − − HCAN_0 MD11[6] − − − − − − − − − − MD11[7] − − − − − − − − − − MD11[8] − − − − − − − − − − MD12[1] − − − − − − − − − − MD12[2] − − − − − − − − − − MD12[3] − − − − − − − − − − MD12[4] − − − − − − − − − − MD12[5] − − − − − − − − − − MD12[6] − − − − − − − − − − MD12[7] − − − − − − − − − − MD12[8] − − − − − − − − − − MD13[1] − − − − − − − − − − MD13[2] − − − − − − − − − − MD13[3] − − − − − − − − − − MD13[4] − − − − − − − − − − MD13[5] − − − − − − − − − − MD13[6] − − − − − − − − − − MD13[7] − − − − − − − − − − MD13[8] − − − − − − − − − − MD14[1] − − − − − − − − − − MD14[2] − − − − − − − − − − MD14[3] − − − − − − − − − − MD14[4] − − − − − − − − − − MD14[5] − − − − − − − − − − MD14[6] − − − − − − − − − − MD14[7] − − − − − − − − − − MD14[8] − − − − − − − − − − MD15[1] − − − − − − − − − − MD15[2] − − − − − − − − − − Rev. 2.00 Dec. 05, 2005 Page 656 of 724 REJ09B0200-0200 Software Hardware Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MD15[3] − − − − − − − − − − HCAN_0 MD15[4] − − − − − − − − − − MD15[5] − − − − − − − − − − MD15[6] − − − − − − − − − − MD15[7] − − − − − − − − − − MD15[8] − − − − − − − − − − HCANMON_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized MCR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized GSR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized BCR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized MBCR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized TXPR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized TXCR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized TXACK_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized ABACK_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized RXPR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized RFPR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized IRR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized MBIMR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized IMR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized REC_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized TEC_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized UMSR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized LAFML_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized LAFMH_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized MC0[1] − − − − − − − − − − MC0[2] − − − − − − − − − − MC0[3] − − − − − − − − − − MC0[4] − − − − − − − − − − MC0[5] − − − − − − − − − − Software Hardware HCAN_1 Rev. 2.00 Dec. 05, 2005 Page 657 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MC0[6] − − − − − − − − − − HCAN_1 MC0[7] − − − − − − − − − − MC0[8] − − − − − − − − − − MC1[1] − − − − − − − − − − MC1[2] − − − − − − − − − − MC1[3] − − − − − − − − − − MC1[4] − − − − − − − − − − MC1[5] − − − − − − − − − − MC1[6] − − − − − − − − − − MC1[7] − − − − − − − − − − MC1[8] − − − − − − − − − − MC2[1] − − − − − − − − − − MC2[2] − − − − − − − − − − MC2[3] − − − − − − − − − − MC2[4] − − − − − − − − − − MC2[5] − − − − − − − − − − MC2[6] − − − − − − − − − − MC2[7] − − − − − − − − − − MC2[8] − − − − − − − − − − MC3[1] − − − − − − − − − − MC3[2] − − − − − − − − − − MC3[3] − − − − − − − − − − MC3[4] − − − − − − − − − − MC3[5] − − − − − − − − − − MC3[6] − − − − − − − − − − MC3[7] − − − − − − − − − − MC3[8] − − − − − − − − − − MC4[1] − − − − − − − − − − MC4[2] − − − − − − − − − − MC4[3] − − − − − − − − − − Rev. 2.00 Dec. 05, 2005 Page 658 of 724 REJ09B0200-0200 Software Hardware Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MC4[4] − − − − − − − − − − HCAN_1 MC4[5] − − − − − − − − − − MC4[6] − − − − − − − − − − MC4[7] − − − − − − − − − − MC4[8] − − − − − − − − − − MC5[1] − − − − − − − − − − MC5[2] − − − − − − − − − − MC5[3] − − − − − − − − − − MC5[4] − − − − − − − − − − MC5[5] − − − − − − − − − − MC5[6] − − − − − − − − − − MC5[7] − − − − − − − − − − MC5[8] − − − − − − − − − − MC6[1] − − − − − − − − − − MC6[2] − − − − − − − − − − MC6[3] − − − − − − − − − − MC6[4] − − − − − − − − − − MC6[5] − − − − − − − − − − MC6[6] − − − − − − − − − − MC6[7] − − − − − − − − − − MC6[8] − − − − − − − − − − MC7[1] − − − − − − − − − − MC7[2] − − − − − − − − − − MC7[3] − − − − − − − − − − MC7[4] − − − − − − − − − − MC7[5] − − − − − − − − − − MC7[6] − − − − − − − − − − MC7[7] − − − − − − − − − − MC7[8] − − − − − − − − − − MC8[1] − − − − − − − − − − Software Hardware Rev. 2.00 Dec. 05, 2005 Page 659 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MC8[2] − − − − − − − − − − HCAN_1 MC8[3] − − − − − − − − − − MC8[4] − − − − − − − − − − MC8[5] − − − − − − − − − − MC8[6] − − − − − − − − − − MC8[7] − − − − − − − − − − MC8[8] − − − − − − − − − − MC9[1] − − − − − − − − − − MC9[2] − − − − − − − − − − MC9[3] − − − − − − − − − − MC9[4] − − − − − − − − − − MC9[5] − − − − − − − − − − MC9[6] − − − − − − − − − − MC9[7] − − − − − − − − − − MC9[8] − − − − − − − − − − MC10[1] − − − − − − − − − − MC10[2] − − − − − − − − − − MC10[3] − − − − − − − − − − MC10[4] − − − − − − − − − − MC10[5] − − − − − − − − − − MC10[6] − − − − − − − − − − MC10[7] − − − − − − − − − − MC10[8] − − − − − − − − − − MC11[1] − − − − − − − − − − MC11[2] − − − − − − − − − − MC11[3] − − − − − − − − − − MC11[4] − − − − − − − − − − MC11[5] − − − − − − − − − − MC11[6] − − − − − − − − − − MC11[7] − − − − − − − − − − Rev. 2.00 Dec. 05, 2005 Page 660 of 724 REJ09B0200-0200 Software Hardware Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MC11[8] − − − − − − − − − − HCAN_1 MC12[1] − − − − − − − − − − MC12[2] − − − − − − − − − − MC12[3] − − − − − − − − − − MC12[4] − − − − − − − − − − MC12[5] − − − − − − − − − − MC12[6] − − − − − − − − − − MC12[7] − − − − − − − − − − MC12[8] − − − − − − − − − − MC13[1] − − − − − − − − − − MC13[2] − − − − − − − − − − MC13[3] − − − − − − − − − − MC13[4] − − − − − − − − − − MC13[5] − − − − − − − − − − MC13[6] − − − − − − − − − − MC13[7] − − − − − − − − − − MC13[8] − − − − − − − − − − MC14[1] − − − − − − − − − − MC14[2] − − − − − − − − − − MC14[3] − − − − − − − − − − MC14[4] − − − − − − − − − − MC14[5] − − − − − − − − − − MC14[6] − − − − − − − − − − MC14[7] − − − − − − − − − − MC14[8] − − − − − − − − − − MC15[1] − − − − − − − − − − MC15[2] − − − − − − − − − − MC15[3] − − − − − − − − − − MC15[4] − − − − − − − − − − MC15[5] − − − − − − − − − − Software Hardware Rev. 2.00 Dec. 05, 2005 Page 661 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MC15[6] − − − − − − − − − − HCAN_1 MC15[7] − − − − − − − − − − MC15[8] − − − − − − − − − − MD0[1 − − − − − − − − − − MD0[2] − − − − − − − − − − MD0[3] − − − − − − − − − − MD0[4] − − − − − − − − − − MD0[5] − − − − − − − − − − MD0[6] − − − − − − − − − − MD0[7] − − − − − − − − − − MD0[8] − − − − − − − − − − MD1[1] − − − − − − − − − − MD1[2] − − − − − − − − − − MD1[3] − − − − − − − − − − MD1[4] − − − − − − − − − − MD1[5] − − − − − − − − − − MD1[6] − − − − − − − − − − MD1[7] − − − − − − − − − − MD1[8] − − − − − − − − − − MD2[1] − − − − − − − − − − MD2[2] − − − − − − − − − − MD2[3] − − − − − − − − − − MD2[4] − − − − − − − − − − MD2[5] − − − − − − − − − − MD2[6] − − − − − − − − − − MD2[7] − − − − − − − − − − MD2[8] − − − − − − − − − − MD3[1] − − − − − − − − − − MD3[2] − − − − − − − − − − MD3[3] − − − − − − − − − − Rev. 2.00 Dec. 05, 2005 Page 662 of 724 REJ09B0200-0200 Software Hardware Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MD3[4] − − − − − − − − − − HCAN_1 MD3[5] − − − − − − − − − − MD3[6] − − − − − − − − − − MD3[7] − − − − − − − − − − MD3[8] − − − − − − − − − − MD4[1] − − − − − − − − − − MD4[2] − − − − − − − − − − MD4[3] − − − − − − − − − − MD4[4] − − − − − − − − − − MD4[5] − − − − − − − − − − MD4[6] − − − − − − − − − − MD4[7] − − − − − − − − − − MD4[8] − − − − − − − − − − MD5[1] − − − − − − − − − − MD5[2] − − − − − − − − − − MD5[3] − − − − − − − − − − MD5[4] − − − − − − − − − − MD5[5] − − − − − − − − − − MD5[6] − − − − − − − − − − MD5[7] − − − − − − − − − − MD5[8] − − − − − − − − − − MD6[1] − − − − − − − − − − MD6[2] − − − − − − − − − − MD6[3] − − − − − − − − − − MD6[4] − − − − − − − − − − MD6[5] − − − − − − − − − − MD6[6] − − − − − − − − − − MD6[7] − − − − − − − − − − MD6[8] − − − − − − − − − − MD7[1] − − − − − − − − − − Software Hardware Rev. 2.00 Dec. 05, 2005 Page 663 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MD7[2] − − − − − − − − − − HCAN_1 MD7[3] − − − − − − − − − − MD7[4] − − − − − − − − − − MD7[5] − − − − − − − − − − MD7[6] − − − − − − − − − − MD7[7] − − − − − − − − − − MD7[8] − − − − − − − − − − MD8[1] − − − − − − − − − − MD8[2] − − − − − − − − − − MD8[3] − − − − − − − − − − MD8[4] − − − − − − − − − − MD8[5] − − − − − − − − − − MD8[6] − − − − − − − − − − MD8[7] − − − − − − − − − − MD8[8] − − − − − − − − − − MD9[1] − − − − − − − − − − MD9[2] − − − − − − − − − − MD9[3] − − − − − − − − − − MD9[4] − − − − − − − − − − MD9[5] − − − − − − − − − − MD9[6] − − − − − − − − − − MD9[7] − − − − − − − − − − MD9[8] − − − − − − − − − − MD10[1] − − − − − − − − − − MD10[2] − − − − − − − − − − MD10[3] − − − − − − − − − − MD10[4] − − − − − − − − − − MD10[5] − − − − − − − − − − MD10[6] − − − − − − − − − − MD10[7] − − − − − − − − − − Rev. 2.00 Dec. 05, 2005 Page 664 of 724 REJ09B0200-0200 Software Hardware Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MD10[8] − − − − − − − − − − HCAN_1 MD11[1] − − − − − − − − − − MD11[2] − − − − − − − − − − MD11[3] − − − − − − − − − − MD11[4] − − − − − − − − − − MD11[5] − − − − − − − − − − MD11[6] − − − − − − − − − − MD11[7] − − − − − − − − − − MD11[8] − − − − − − − − − − MD12[1] − − − − − − − − − − MD12[2] − − − − − − − − − − MD12[3] − − − − − − − − − − MD12[4] − − − − − − − − − − MD12[5] − − − − − − − − − − MD12[6] − − − − − − − − − − MD12[7] − − − − − − − − − − MD12[8] − − − − − − − − − − MD13[1] − − − − − − − − − − MD13[2] − − − − − − − − − − MD13[3] − − − − − − − − − − MD13[4] − − − − − − − − − − MD13[5] − − − − − − − − − − MD13[6] − − − − − − − − − − MD13[7] − − − − − − − − − − MD13[8] − − − − − − − − − − MD14[1] − − − − − − − − − − MD14[2] − − − − − − − − − − MD14[3] − − − − − − − − − − MD14[4] − − − − − − − − − − Software Hardware MD14[5] Rev. 2.00 Dec. 05, 2005 Page 665 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium tion Reset speed speed Sleep Module Stop Watch Subactive Subsleep Standby Standby Module MD14[6] − − − − − − − − − − HCAN_1 MD14[7] − − − − − − − − − − MD14[8] − − − − − − − − − − MD15[1] − − − − − − − − − − MD15[2] − − − − − − − − − − MD15[3] − − − − − − − − − − MD15[4] − − − − − − − − − − MD15[5] − − − − − − − − − − MD15[6] − − − − − − − − − − MD15[7] − − − − − − − − − − MD15[8] − − − − − − − − − − HCANMON_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWCR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWOCR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWPR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWCYR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWBFR_1A Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWBFR_1C Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWBFR_1E Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWBFR_1G Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWCR_2 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWOCR_2 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWPR_2 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWCYR_2 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWBFR_2A Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWBFR_2C Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWBFR_2E Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized PWBFR_2G Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized Rev. 2.00 Dec. 05, 2005 Page 666 of 724 REJ09B0200-0200 Software Hardware PWM_1 PWM_2 Section 22 List of Registers Register Abbrevia- High Medium speed speed Sleep Stop Watch Subactive Subsleep Standby Standby Module Initialized − − − − − − − − Initialized PORT PJDDR Initialized − − − − − − − − Initialized PKDDR Initialized − − − − − − − − Initialized PHDR Initialized − − − − − − − − Initialized PJDR Initialized − − − − − − − − Initialized PKDR Initialized − − − − − − − − Initialized PORTH Initialized − − − − − − − − Initialized PORTJ Initialized − − − − − − − − Initialized PORTK Initialized − − − − − − − − Initialized LPCR Initialized − − − − − − − − Initialized LCR Initialized − − − − − − − − Initialized LCR2 Initialized − − − − − − − − Initialized MSTPCRD Initialized − − − − − − − − Initialized PWBTCR Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized tion Reset PHDDR Module Software Hardware LCD SYSTEM PWM common SMR_4 Initialized − − − − − − − − Initialized BRR_4 Initialized − − − − − − − − Initialized SCR_4 Initialized − − − − − − − − Initialized TDR_4 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized SSR_4 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized RDR_4 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized SCMR_4 Initialized − − − − − − − − Initialized SBYCR Initialized − − − − − − − − Initialized SYSCR Initialized − − − − − − − − Initialized SCKCR Initialized − − − − − − − − Initialized MDCR Initialized − − − − − − − − Initialized MSTPCRA Initialized − − − − − − − − Initialized MSTPCRB Initialized − − − − − − − − Initialized MSTPCRC Initialized − − − − − − − − Initialized PFCR Initialized − − − − − − − − Initialized SCI_4 SYSTEM BSC Rev. 2.00 Dec. 05, 2005 Page 667 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium speed speed Sleep Stop Watch Subactive Subsleep Standby Standby Module Initialized − − − − − − − − Initialized SYSTEM BARA Initialized − − − − − − − − Initialized PBC BARB Initialized − − − − − − − − Initialized BCRA Initialized − − − − − − − − Initialized BCRB Initialized − − − − − − − − Initialized ISCRH Initialized − − − − − − − − Initialized ISCRL Initialized − − − − − − − − Initialized IER Initialized − − − − − − − − Initialized ISR Initialized − − − − − − − − Initialized DTCERA Initialized − − − − − − − − Initialized DTCERB Initialized − − − − − − − − Initialized DTCERC Initialized − − − − − − − − Initialized DTCERD Initialized − − − − − − − − Initialized DTCERE Initialized − − − − − − − − Initialized DTCERF Initialized − − − − − − − − Initialized DTCERG Initialized − − − − − − − − Initialized DTCERI Initialized − − − − − − − − Initialized DTVECR Initialized − − − − − − − − Initialized PCR Initialized − − − − − − − − Initialized PMR Initialized − − − − − − − − Initialized NDERH Initialized − − − − − − − − Initialized NDERL Initialized − − − − − − − − Initialized PODRH Initialized − − − − − − − − Initialized PODRL Initialized − − − − − − − − Initialized NDRH Initialized − − − − − − − − Initialized NDRL Initialized − − − − − − − − Initialized NDRH Initialized − − − − − − − − Initialized NDRL Initialized − − − − − − − − Initialized tion Reset LPWRCR Module Rev. 2.00 Dec. 05, 2005 Page 668 of 724 REJ09B0200-0200 Software Hardware INT DTC PPG Section 22 List of Registers Register Abbrevia- High Medium speed speed Sleep Stop Watch Subactive Subsleep Standby Standby Module Initialized − − − − − − − − Initialized PORT P2DDR Initialized − − − − − − − − Initialized P3DDR Initialized − − − − − − − − Initialized P5DDR Initialized − − − − − − − − Initialized PADDR Initialized − − − − − − − − Initialized PBDDR Initialized − − − − − − − − Initialized PCDDR Initialized − − − − − − − − Initialized PDDDR Initialized − − − − − − − − Initialized PEDDR Initialized − − − − − − − − Initialized PFDDR Initialized − − − − − − − − Initialized PAPCR Initialized − − − − − − − − Initialized PBPCR Initialized − − − − − − − − Initialized PCPCR Initialized − − − − − − − − Initialized PDPCR Initialized − − − − − − − − Initialized PEPCR Initialized − − − − − − − − Initialized P3ODR Initialized − − − − − − − − Initialized PAODR Initialized − − − − − − − − Initialized PBODR Initialized − − − − − − − − Initialized PCODR Initialized − − − − − − − − Initialized TCR_3 Initialized − − − − − − − − Initialized TMDR_3 Initialized − − − − − − − − Initialized TIORH_3 Initialized − − − − − − − − Initialized TIORL_3 Initialized − − − − − − − − Initialized TIER_3 Initialized − − − − − − − − Initialized TSR_3 Initialized − − − − − − − − Initialized TCNTH_3 Initialized − − − − − − − − Initialized TCNTL_3 Initialized − − − − − − − − Initialized TGRAH_3 Initialized − − − − − − − − Initialized TGRAL_3 Initialized − − − − − − − − Initialized TGRBH_3 Initialized − − − − − − − − Initialized tion Reset P1DDR Module Software Hardware TPU_3 Rev. 2.00 Dec. 05, 2005 Page 669 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium speed speed Sleep Stop Watch Subactive Subsleep Standby Standby Module Initialized − − − − − − − − Initialized TPU_3 Initialized − − − − − − − − Initialized TGRCL_3 Initialized − − − − − − − − Initialized TGRDH_3 Initialized − − − − − − − − Initialized TGRDL_3 Initialized − − − − − − − − Initialized TCR_4 Initialized − − − − − − − − Initialized TMDR_4 Initialized − − − − − − − − Initialized TIOR_4 Initialized − − − − − − − − Initialized TIER_4 Initialized − − − − − − − − Initialized TSR_4 Initialized − − − − − − − − Initialized TCNTH_4 Initialized − − − − − − − − Initialized TCNTL_4 Initialized − − − − − − − − Initialized TGRAH_4 Initialized − − − − − − − − Initialized TGRAL_4 Initialized − − − − − − − − Initialized TGRBH_4 Initialized − − − − − − − − Initialized TGRBL_4 Initialized − − − − − − − − Initialized TCR_5 Initialized − − − − − − − − Initialized TMDR_5 Initialized − − − − − − − − Initialized TIOR_5 Initialized − − − − − − − − Initialized TIER_5 Initialized − − − − − − − − Initialized TSR_5 Initialized − − − − − − − − Initialized TCNTH_5 Initialized − − − − − − − − Initialized TCNTL_5 Initialized − − − − − − − − Initialized TGRAH_5 Initialized − − − − − − − − Initialized TGRAL_5 Initialized − − − − − − − − Initialized TGRBH_5 Initialized − − − − − − − − Initialized TGRBL_5 Initialized − − − − − − − − Initialized TSTR Initialized − − − − − − − − Initialized TSYR Initialized − − − − − − − − Initialized tion Reset TGRBL_3 TGRCH_3 Module Rev. 2.00 Dec. 05, 2005 Page 670 of 724 REJ09B0200-0200 Software Hardware TPU_4 TPU_5 TPU common Section 22 List of Registers Register Abbrevia- High Medium speed speed Sleep Stop Watch Subactive Subsleep Standby Standby Module Initialized − − − − − − − − Initialized INT IPRB Initialized − − − − − − − − Initialized IPRC Initialized − − − − − − − − Initialized IPRD Initialized − − − − − − − − Initialized IPRE Initialized − − − − − − − − Initialized IPRF Initialized − − − − − − − − Initialized IPRG Initialized − − − − − − − − Initialized IPRH Initialized − − − − − − − − Initialized IPRJ Initialized − − − − − − − − Initialized IPRK Initialized − − − − − − − − Initialized IPRM Initialized − − − − − − − − Initialized IPRO Initialized − − − − − − − − Initialized ABWCR Initialized − − − − − − − − Initialized ASTCR Initialized − − − − − − − − Initialized WCRH Initialized − − − − − − − − Initialized WCRL Initialized − − − − − − − − Initialized BCRH Initialized − − − − − − − − Initialized BCRL Initialized − − − − − − − − Initialized RAMER Initialized − − − − − − − − Initialized tion Reset IPRA Module Software Hardware BSC FLASH (F-ZTAT) P1DR Initialized − − − − − − − − Initialized P2DR Initialized − − − − − − − − Initialized P3DR Initialized − − − − − − − − Initialized P5DR Initialized − − − − − − − − Initialized PADR Initialized − − − − − − − − Initialized PBDR Initialized − − − − − − − − Initialized PCDR Initialized − − − − − − − − Initialized PDDR Initialized − − − − − − − − Initialized PEDR Initialized − − − − − − − − Initialized PFDR Initialized − − − − − − − − Initialized PORT Rev. 2.00 Dec. 05, 2005 Page 671 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium speed speed Sleep Stop Watch Subactive Subsleep Standby Standby Module Initialized − − − − − − − − Initialized TPU_0 TMDR_0 Initialized − − − − − − − − Initialized TIORH_0 Initialized − − − − − − − − Initialized TIORL_0 Initialized − − − − − − − − Initialized TIER_0 Initialized − − − − − − − − Initialized TSR_0 Initialized − − − − − − − − Initialized TCNTH_0 Initialized − − − − − − − − Initialized TCNTL_0 Initialized − − − − − − − − Initialized TGRAH_0 Initialized − − − − − − − − Initialized TGRAL_0 Initialized − − − − − − − − Initialized TGRBH_0 Initialized − − − − − − − − Initialized TGRBL_0 Initialized − − − − − − − − Initialized TGRCH_0 Initialized − − − − − − − − Initialized TGRCL_0 Initialized − − − − − − − − Initialized TGRDH_0 Initialized − − − − − − − − Initialized TGRDL_0 Initialized − − − − − − − − Initialized TCR_1 Initialized − − − − − − − − Initialized TMDR_1 Initialized − − − − − − − − Initialized TIOR_1 Initialized − − − − − − − − Initialized TIER_1 Initialized − − − − − − − − Initialized TSR_1 Initialized − − − − − − − − Initialized TCNTH_1 Initialized − − − − − − − − Initialized TCNTL_1 Initialized − − − − − − − − Initialized TGRAH_1 Initialized − − − − − − − − Initialized TGRAL_1 Initialized − − − − − − − − Initialized TGRBH_1 Initialized − − − − − − − − Initialized TGRBL_1 Initialized − − − − − − − − Initialized TCR_2 Initialized − − − − − − − − Initialized TMDR_2 Initialized − − − − − − − − Initialized TIOR_2 Initialized − − − − − − − − Initialized tion Reset TCR_0 Module Rev. 2.00 Dec. 05, 2005 Page 672 of 724 REJ09B0200-0200 Software Hardware TPU_1 TPU_2 Section 22 List of Registers Register Abbrevia- High Medium speed speed Sleep Stop Watch Subactive Subsleep Standby Standby Module Initialized − − − − − − − − Initialized TPU_2 Initialized − − − − − − − − Initialized TCNTH_2 Initialized − − − − − − − − Initialized TCNTL_2 Initialized − − − − − − − − Initialized TGRAH_2 Initialized − − − − − − − − Initialized TGRAL_2 Initialized − − − − − − − − Initialized TGRBH_2 Initialized − − − − − − − − Initialized TGRBL_2 Initialized − − − − − − − − Initialized TCSR_0 Initialized − − − − − − − − Initialized TCNT_0 Initialized − − − − − − − − Initialized RSTCSR Initialized − − − − − − − − Initialized SMR_0 Initialized − − − − − − − − Initialized BRR_0 Initialized − − − − − − − − Initialized SCR_0 Initialized − − − − − − − − Initialized TDR_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized SSR_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized RDR_0 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized SCMR_0 Initialized − − − − − − − − Initialized SMR_1 Initialized − − − − − − − − Initialized BRR_1 Initialized − − − − − − − − Initialized SCR_1 Initialized − − − − − − − − Initialized TDR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized SSR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized RDR_1 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized SCMR_1 Initialized − − − − − − − − Initialized SMR_2 Initialized − − − − − − − − Initialized BRR_2 Initialized − − − − − − − − Initialized SCR_2 Initialized − − − − − − − − Initialized TDR_2 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized SSR_2 Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized tion Reset TIER_2 TSR_2 Module Software Hardware WDT_0 SCI_0 SCI_1 SCI_2 Rev. 2.00 Dec. 05, 2005 Page 673 of 724 REJ09B0200-0200 Section 22 List of Registers Register Abbrevia- High Medium speed speed Sleep Stop Initialized − − − Initialized Initialized Initialized Initialized Initialized − − − − ADDRAH Initialized − − − ADDRAL Initialized − − − ADDRBH Initialized − − ADDRBL Initialized − ADDRCH tion Reset RDR_2 SCMR_2 Module Software Hardware Standby Module Initialized Initialized SCI_2 − − Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized − Initialized Initialized Initialized Initialized Initialized Initialized − − Initialized Initialized Initialized Initialized Initialized Initialized Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized ADDRCL Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized ADDRDH Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized ADDRDL Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized ADCSR Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized ADCR Initialized − − − Initialized Initialized Initialized Initialized Initialized Initialized TCSR_1 Initialized − − − − − − − − Initialized TCNT_1 Initialized − − − − − − − − Initialized FLMCR1 Initialized − − − − − − − − Initialized FLMCR2 Initialized − − − − − − − − Initialized EBR1 Initialized − − − − − − − − Initialized EBR2 Initialized − − − − − − − − Initialized FLPWCR Initialized − − − − − − − − Initialized PORT1 − − − − − − − − − − PORT2 − − − − − − − − − − PORT3 − − − − − − − − − − PORT4 − − − − − − − − − − PORT5 − − − − − − − − − − PORT9 − − − − − − − − − − PORTA − − − − − − − − − − PORTB − − − − − − − − − − PORTC − − − − − − − − − − PORTD − − − − − − − − − − PORTF − − − − − − − − − − Note: is not initialized. Rev. 2.00 Dec. 05, 2005 Page 674 of 724 REJ09B0200-0200 Watch − Subactive Subsleep Standby − A/D WDT_1 FLASH (F-ZTAT) PORT Section 23 Electrical Characteristics [Preliminary] Section 23 Electrical Characteristics [Preliminary] 23.1 Absolute Maximum Ratings Table 23.1 lists the absolute maximum ratings. Table 23.1 Absolute Maximum Ratings Item Symbol Value Unit VCC –0.3 to +7.0 V LPVCC –0.3 to +7.0 V Input voltage (XTAL, EXTAL) Vin –0.3 to VCC +0.3 V Input voltage (OSC1, OSC2) Vin –0.3 to +3.5 V Input voltage (ports A, B, C, D, E, Vin PF2, PF4 to PF6) –0.3 to LPVCC +0.3 V Input voltage (ports H and J) –0.3 to PWMVCC +0.3 V Input voltage (except XTAL, Vin EXTAL, OSC1, OSC2, ports 4, 9, A, B, C, D, E, PF2, PF4 to PF6, H, and J) –0.3 to VCC +0.3 V Reference voltage Vref –0.3 to AVCC +0.3 V Analog power supply voltage AVCC –0.3 to +7.0 V Analog input voltage VAN –0.3 to AVCC +0.3 V Operating temperature Topr Regular specifications: –20 to +75 °C Wide-range specifications: –40 to +85 °C –55 to +125 °C Power supply voltage PMWVCC Storage temperature Vin Tstg Caution: Permanent damage to the chip may result if absolute maximum rating are exceeded. Rev. 2.00 Dec. 05, 2005 Page 675 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] 23.2 DC Characteristics Table 23.2 lists the DC characteristics. Table 23.3 lists the permissible output currents. Table 23.2 DC Characteristics Conditions: VCC = AVCC = 4.5 V to 5.5 V, LPVCC = 4.5 V to 5.5 V, PWMVCC = 4.5 V to 5.5 V, Vref = 4.5 V to AVCC, VSS = PWMVSS = PLLVSS = AVSS = 0 V, Ta = –20°C to +75°C (regular specifications), Ta = –40°C to +85°C (wide-range specifications)*1 Item Schmitt trigger input voltage Symbol IRQ0 to IRQ5 VT– Ports A to E, PF2, 4 to 6 Unit V VCC × 0.2 — — — VCC × 0.7 VT+ – VT– VCC × 0.05 — — LPVCC × 0.2 — — — — LPVCC × 0.7 LPVCC × 0.05 — — VT– PWMVCC × — 0.2 — VT+ — PWMVCC × 0.7 VT+ – VT– PWMVCC × — 0.05 — AVCC × 0.7 AVCC + 0.3 VT – VT – VT Ports 4, 9 RES, STBY, NMI, FWE, MD2 to MD0 Max. — + Input high voltage Typ. VT+ VT+ Ports H, J Min. – — VCC × 0.9 — VCC + 0.3 Ports 1 to 3, 5, K, PF0, PF3, PF7, EXTAL VCC × 0.7 — VCC + 0.3 HRxD0, HRxD1 VCC × 0.7 — VCC + 0.3 Ports 4 and 9 AVCC × 0.7 — AVCC + 0.3 VIH Rev. 2.00 Dec. 05, 2005 Page 676 of 724 REJ09B0200-0200 V V V Test Conditions Section 23 Electrical Characteristics [Preliminary] Item Input low voltage Output high voltage Test Conditions Symbol Min. Typ. Max. Unit VIL –0.3 — VCC × 0.1 V Ports 1 to 3, 5, K, PF0, 3, 7, EXTAL –0.3 — VCC × 0.2 HRxD0, HRxD1 –0.3 — VCC × 0.2 Ports 4 and 9 –0.3 — AVCC × 0.2 VCC – 0.5 — — Ports A to E, PF2, PF4 to PF6 LPVCC – 0.5 — — IOH = –200 µA Ports H, J PWMVCC − 0.5 — — IOH = –200 µA Ports 1 to 3, 5, K, PF0, PF3, PF7, HRxD0, HRxD1 VCC − 1.0 — — IOH = –1 mA Ports A to E, PF2, PF4 to PF6 LPVCC − 1.0 — — IOH = –1 mA Ports H, J PWMVCC – 1.0 — — IOH = –1 mA PWM1A to PWM1H, PWM2A to PWM2H PWMVCC – 0.5 — — IOH = –15 mA RES, STBY, NMI, FWE, MD2 to MD0 Ports 1 to 3, 5, K, PF0, PF3, PF7, HRxD0, HRxD1 VOH V IOH = –200 µA Rev. 2.00 Dec. 05, 2005 Page 677 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] Item Output low voltage Symbol Min. Typ. Max. Unit Test Conditions — — 0.4 V IOL = 1.6 mA — — 0.5 — — 1.0 STBY, NMI, MD2 to MD0 — — 1.0 HRxD0, HRxD1, FWE — — 1.0 Ports 4 and 9 — — 1.0 — — 1.0 Ports H, J — — 1.0 Vin =0.5 to PWMVCC – 0.5 Ports A to E, PF2, PF4 to PF6 — — 1.0 Vin = 0.5 to LPVCC – 0.5 All output pins except PWM1A to PWM1H, PWM2A to PWM2H VOL PWM1A to PWM1H, PWM2A to PWM2H Input leakage current Three-state leakage current (off state) RES Ports 1 to 3, 5, K, PF0, PF3, PF7, HRxD0, HRxD1 Iin ITSI IOL = 15 mA µA Vin = 0.5 to VCC – 0.5 Vin = 0.5 to AVCC – 0.5 µA Vin = 0.5 to VCC – 0.5 Input pull-up Ports A to E MOS current –IP 10 — 300 µA Vin = 0 V Input RES capacitance NMI Cin — — 30 pF — — 30 — — 15 Vin = 0 V f = 1 MHz Ta = 25°C All input pins except RES and NMI Rev. 2.00 Dec. 05, 2005 Page 678 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] Item Symbol Min. Typ. Max. Unit Test Conditions — 60 80 mA f = 20 MHz — 50 65 mA f = 20 MHz All modules stopped — 40 — mA f = 20 MHz (reference values) Mediumspeed mode (φ/32) — 40 — mA f = 20 MHz (reference values) Subactive mode — 130 220 µA Using 32.768 kHz crystal resonator Subsleep mode — 95 160 µA Using 32.768 kHz crystal resonator Watch mode — 25 60 µA Using 32.768 kHz crystal resonator — 2.0 10 µA Ta ≤ 50°C — — 80 — 10 20 mA — 0.1 10 µA — — 80 — 1.0 2.0 mA — — 5.0 µA — 2.5 4.0 mA — — 5.0 µA 2.0 — — V Current Normal consumption operation 2 * Sleep mode Standby* LCD power supply port power supply current 3 ICC* 3 During operation LPlCC Standby mode Analog During A/D power supply conversion current Idle AlCC Reference current AlCC During A/D conversion Idle RAM standby voltage VRAM 50°C < Ta Ta = 50°C 50°C < Ta AVCC = 5.0 V Vref = 5.0 V Notes: 1. If the A/D converter is not used, do not leave the AVCC, Vref , and AVSS pins open. Apply a voltage between 4.5 V and 5.5 V to the AVCC and Vref pins by connecting them to VCC, for instance. Set Vref ≤ AVCC. 2. Current consumption values are for VIH = VCC, AVCC (port 4, 9), PWMVCC (port H, J), LPVCC (port A to E), VIL = 0 V with all output pins unloaded and the on-chip pull-up resistors in the off state. 3. ICC depends on VCC and f as follows: ICC max. = 31 (mA) + 0.45 (mA/(MHz × V)) × VCC × f (normal operation) ICC max. = 27 (mA) + 0.35 (mA/(MHz × V)) × VCC × f (sleep mode) Rev. 2.00 Dec. 05, 2005 Page 679 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] Table 23.3 Permissible Output Currents Conditions: VCC = AVCC = 4.5 V to 5.5 V, LPVCC = 4.5 V to 5.5 V, PWMVCC = 4.5 V to 5.5 V, Vref = 4.5 V to AVCC, VSS = PWMVSS = PLLVSS = AVSS = 0 V, Ta = –20°C to +75°C (regular specifications) , Ta = –40°C to +85°C (wide-range specifications) Item Symbol Typ. Max. Unit — — 10 mA — — 25 mA Ta = 75°C to 85°C — — 30 mA Ta = 25°C — — 40 mA Ta = -40°C Total of all output pins Σ IOL except PWM1A to PWM1H, PWM2A to PWM2H — — 80 mA Σ IOL — — 150 mA Ta = 75°C to 85°C — — 180 mA Ta = 25°C — — 220 mA Ta = -40°C All output pins except –IOH PWM1A to PWM1H, PWM2A to PWM2H — — 2.0 mA PWM1A to PWM1H, PWM2A to PWM2H — — 25 mA Ta = 75°C to 85°C — — 30 mA Ta = 25°C — — 40 mA Ta = -40°C Total of all output pins –Σ IOH except PWM1A to PWM1H, PWM2A to PWM2H — — 40 mA Total of PWM1A to PWM1H, PWM2A to PWM2H — — 150 mA Ta = 75°C to 85°C — — 180 mA Ta = 25°C — — 220 mA Ta = -40°C Permissible output All output pins except IOL low current (per pin) PWM1A to PWM1H, PWM2A to PWM2H PWM1A to PWM1H, PWM2A to PWM2H Permissible output low current (total) Total of PWM1A to PWM1H, PWM2A to PWM2H Permissible output high current (per pin) Permissible output high current (total) Test Conditions Min. IOL –IOH –Σ IOH Note: To protect chip reliability, do not exceed the output current values in table 23.3. Rev. 2.00 Dec. 05, 2005 Page 680 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] 23.3 AC Characteristics Figure 23.1 shows the test conditions for the AC characteristics. 5V RL LSI output pin C RH C = 50 pF: Ports A to F (In case of expansion bus control signal output pin setting) C = 30 pF: All ports except ports A to F RL = 2.4 k RH = 12 k Input/output timing measurement levels · Low level : 0.8 V · High level : 2.0 V Figure 23.1 Output Load Circuit Rev. 2.00 Dec. 05, 2005 Page 681 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] 23.3.1 Clock Timing Table 23.4 lists the clock timing Table 23.4 Clock Timing Condition: VCC = AVCC = 4.5 V to 5.5 V, LPVCC = 4.5 V to 5.5 V, PWMVCC = 4.5 V to 5.5 V, Vref = 4.5 V to AVCC, VSS = PWMVSS = PLLVSS = AVSS = 0 V, Ta = –20°C to +75°C (regular specifications), Ta = –40°C to +85°C (wide-range specifications) Item Symbol Min. Max. Unit Test Conditions Clock cycle time tcyc 50 250 ns Figure 23.2 Clock high pulse width tCH 15 — ns Clock low pulse width tCL 15 — ns Clock rise time tCr — 10 ns Clock fall time tCf — 10 ns Clock oscillator settling time at reset (crystal) tOSC1 20 — ms Figure 23.3 Clock oscillator settling time in software standby (crystal) tOSC2 8 — ms Figure 21.3 External clock output settling time tDEXT 2 — ms Figure 23.3 Subclock oscillator settling time tOSC3 — 2 s Subclock oscillator frequency fSUB 32.768 kHz Subclock (φSUB) cycle time tSUB 30.5 µs tcyc tCH tCf φ tCL tCr Figure 23.2 System Clock Timing Rev. 2.00 Dec. 05, 2005 Page 682 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] EXTAL tDEXT tDEXT VCC STBY tOSC1 tOSC1 RES φ Figure 23.3 Oscillator Settling Timing 23.3.2 Control Signal Timing Table 23.5 lists the control signal timing. Table 23.5 Control Signal Timing Condition: VCC = AVCC = 4.5 V to 5.5 V, LPVCC = 4.5 V to 5.5 V, PWMVCC = 4.5 V to 5.5 V, Vref = 4.5 V to AVCC, VSS = PWMVSS = PLLVSS = AVSS = 0 V, Ta = –20°C to +75°C (regular specifications), Ta = –40°C to +85°C (wide-range specifications) Item Symbol Min. Max. Unit Test Conditions RES setup time tRESS 200 — ns Figure 23.4 RES pulse width tRESW 20 — tcyc NMI setup time tNMIS 150 — ns NMI hold time tNMIH 10 — ns NMI pulse width (exiting software standby mode) tNMIW 200 — ns IRQ setup time tIRQS 150 — ns IRQ hold time tIRQH 10 — ns IRQ pulse width (exiting software standby mode) tIRQW 200 — ns Figure 23.5 Rev. 2.00 Dec. 05, 2005 Page 683 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] φ tRESS tRESS RES tRESW Figure 23.4 Reset Input Timing φ tNMIS tNMIH NMI tNMIW IRQ tIRQW tIRQS tIRQH IRQ Edge input tIRQS IRQ Level input Figure 23.5 Interrupt Input Timing Rev. 2.00 Dec. 05, 2005 Page 684 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] 23.3.3 Bus Timing Table 23.6 lists the bus timing. Table 23.6 Bus Timing Condition: VCC = AVCC = 4.5 V to 5.5 V, LPVCC = 4.5 V to 5.5 V, PWMVCC = 4.5 V to 5.5 V, Vref = 4.5 V to AVCC, VSS = PWMVSS = PLLVSS = AVSS = 0 V, Ta = –20°C to +75°C (regular specifications), Ta = –40°C to +85°C (wide-range specifications) Item Symbol Min. Max. Unit Test Conditions Address delay time tAD — Address setup time tAS 45 ns Figure 23.6 to 0.5 × tcyc – 32 — ns Figure 23.10 Address hold time tAH 0.5 × tcyc – 15 — ns AS delay time tASD — 45 ns RD delay time 1 tRSD1 — 45 ns RD delay time 2 tRSD2 — 45 ns Read data setup time tRDS 20 — ns Read data hold time tRDH 10 — ns Read data access time 1 tACC1 — 1.0 × tcyc – 60 ns Read data access time 2 tACC2 — 1.5 × tcyc – 50 ns Read data access time 3 tACC3 — 2.0 × tcyc – 60 ns Read data access time 4 tACC4 — 2.5 × tcyc – 50 ns Read data access time 5 tACC5 — 3.0 × tcyc – 60 ns WR delay time 1 tWRD1 — 35 ns WR delay time 2 tWRD2 — 45 ns WR pulse width 1 tWSW1 1.0 × tcyc – 40 — ns WR pulse width 2 tWSW2 1.5 × tcyc – 30 — ns Write data delay time tWDD — 45 ns Write data setup time tWDS 0.5 × tcyc – 20 — ns Write data hold time tWDH 0.5 × tcyc – 10 — ns WAIT setup time tWTS 30 — ns WAIT hold time tWTH 5 — ns Rev. 2.00 Dec. 05, 2005 Page 685 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] T1 T2 φ tAD A23 to A0 tAS tAH tASD tASD AS tRSD1 RD (read) tRSD2 tACC2 tAS tACC3 tRDS tRDH D15 to D0 (read) tWRD2 WR (write) tWRD2 tAS tAH tWDD tWSW1 tWDH D15 to D0 (write) Figure 23.6 Basic Bus Timing (Two-State Access) Rev. 2.00 Dec. 05, 2005 Page 686 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] T1 T2 T3 φ tAD A23 to A0 tAS tAH tASD tASD AS tRSD1 RD (read) tRSD2 tACC4 tAS tRDS tACC5 tRDH D15 to D0 (read) tWRD1 tWRD2 WR (write) tAH tWDD tWDS tWSW2 tWDH D15 to D0 (write) Figure 23.7 Basic Bus Timing (Three-State Access) Rev. 2.00 Dec. 05, 2005 Page 687 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] T1 T2 Tw tWTS tWTH tWTS tWTH T3 φ A23 to A0 AS RD (read) D15 to D0 (read) WR (write) D15 to D0 (write) WAIT Figure 23.8 Basic Bus Timing (Three-State Access with One Wait State) Rev. 2.00 Dec. 05, 2005 Page 688 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] T1 T1 T2 or T3 T2 φ tAD A23 to A0 tAS tAH tASD tASD AS tRSD2 RD (read) tACC3 tRDS tRDH D15 to D0 (read) Figure 23.9 Burst ROM Access Timing (Two-State Access) Rev. 2.00 Dec. 05, 2005 Page 689 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] T1 T2 or T3 T1 φ tAD A23 to A0 AS tRSD2 RD (read) tACC1 tRDS tRDH D15 to D0 (read) Figure 23.10 Burst ROM Access Timing (Two-State Access) Rev. 2.00 Dec. 05, 2005 Page 690 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] 23.3.4 Timing of On-Chip Peripheral Modules Table 23.7 lists the timing of on-chip peripheral modules. Table 23.7 Timing of On-Chip Peripheral Modules Condition: VCC = AVCC = 4.5 V to 5.5 V, LPVCC = 4.5 V to 5.5 V, PWMVCC = 4.5 V to 5.5 V, Vref = 4.5 V to AVCC, VSS = PWMVSS = PLLVSS = AVSS = 0 V, Ta = –20°C to +75°C (regular specifications), Ta = –40°C to +85°C (wide-range specifications) Item Symbol Min. Max. Unit Test Conditions Output data delay time tPWD — 50 ns Figure 23.11 Input data setup time tPRS 30 — Input data hold time tPRH 30 — PPG Pulse output delay time tPOD — 50 ns Figure 23.12 TPU Timer output delay time tTOCD — 50 ns Figure 23.13 Timer input setup time tTICS 30 — Figure 23.14 I/O port Timer clock input setup time Timer clock pulse width tTCKS 30 — ns Single edge tTCKWH 1.5 — tcyc Both edges tTCKWL 2.5 — PWM Pulse output delay time tMPWMOD — 50 ns Figure 23.15 SCI Input clock cycle tScyc 4 — tcyc Figure 23.16 6 — Asynchronous Synchronous Input clock pulse width tSCKW 0.4 0.6 tScyc Input clock rise time tSCKr — 1.5 tcyc Input clock fall time tSCKf — 1.5 Transmit data delay time tTXD — 50 Receive data setup time (synchronous) tRXS 50 — Receive data hold time (synchronous) tRXH 50 — A/D Trigger input setup time converter tTRGS 50 HCAN Transmit data delay time tHTXD Transmit data setup time Transmit data hold time ns Figure 23.17 — ns Figure 23.18 — 100 ns Figure 23.19 tHRXS 100 — tHRXH 100 — Rev. 2.00 Dec. 05, 2005 Page 691 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] T2 T1 φ tPRS tPRH Port 1 to 5, 9, A to F, K (read) tPWD Port 1 to 3, 5, A to F, K (write) T1 T3 T2 T4 φ tPRS tPRH Port H, J (read) tPWD Port H, J (write) Figure 23.11 I/O Port Input/Output Timing φ tPOD PO15 to PO8 Figure 23.12 PPG Output Timing Rev. 2.00 Dec. 05, 2005 Page 692 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] φ tTOCD Output compare output* tTICS Input capture input* Note: * TIOCA0 to TIOCA5, TIOCB0 to TIOCB5, TIOCC0, TIOCC3, TIOCD0, TIOCD3 Figure 23.13 TPU Input/Output Timing φ tTCKS tTCKS TCLKA to TCLKD tTCKWL tTCKWH Figure 23.14 TPU Clock Input Timing φ tMPWMOD PWM1A to PWM1H, PWM2A to PWM2H Figure 23.15 Motor Control PWM Output Timing Rev. 2.00 Dec. 05, 2005 Page 693 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] tSCKr tSCKW tSCKf SCK0 to SCK4 tScyc Figure 23.16 SCK Clock Input Timing SCK0 to SCK2, SCK4 tTXD TxD0 to TxD2, TxD4 (transmit data) tRXS tRXH RxD0 to RxD2, RxD4 (receive data) Figure 23.17 SCI Input/Output Timing (Clock Synchronous Mode) φ tTRGS ADTRG Figure 23.18 A/D Converter External Trigger Input Timing Rev. 2.00 Dec. 05, 2005 Page 694 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] CK tHTXD HTxD (transmit data) tHRXS tHRXH HRxD (receive data) Figure 23.19 HCAN Input/Output Timing Rev. 2.00 Dec. 05, 2005 Page 695 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] 23.4 A/D Conversion Characteristics Table 23.8 lists the A/D conversion characteristics. Table 23.8 A/D Conversion Characteristics Condition: VCC = AVCC = 4.5 V to 5.5 V, LPVCC = 4.5 V to 5.5 V, PWMVCC = 4.5 V to 5.5 V, Vref = 4.5 V to AVCC, VSS = PWMVSS = PLLVSS = AVSS = 0 V, Ta = –20°C to +75°C (regular specifications), Ta = –40°C to +85°C (wide-range specifications) Condition Item Min. Typ. Max. Unit Resolution 10 10 10 bits Conversion time 10 — 200 µs Analog input capacitance — — 20 pF Permissible signal-source impedance — — 5 kΩ Nonlinearity error — — ±3.5 LSB Offset error — — ±3.5 LSB Full-scale error — — ±3.5 LSB Quantization — ±0.5 — LSB Absolute accuracy — — ±4.0 LSB Rev. 2.00 Dec. 05, 2005 Page 696 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] 23.5 LCD Characteristics Table 23.9 LCD Characteristics Condition: VCC = AVCC = 4.5 V to 5.5 V, LPVCC = 4.5 V to 5.5 V, PWMVCC = 4.5 V to 5.5 V, Vref = 4.5 V to AVCC, VSS = PWMVSS = PLLVSS = AVSS = 0 V, Ta = –20 to +75°C (regular specifications), Ta = –40 to +85°C (wide-range specifications) Applicable Pins Test Conditions Min. Typ. Max. Unit Notes Segment driver VDS step-down voltage SEG1 to SEG40 ID = 2 µA — — 0.6 V *1 Common driver VDS step-down voltage COM1 to COM4 ID = 2 µA — — 0.3 V *1 300 1000 kΩ — LPVCC V Item Symbol LCD power supply RLCD split resistor LCD voltage VLCD Between V1 40 and VSS V1 4.5 *2 Notes: 1. Voltage step-down between power supply pins V1, V2, V3, and VSS, and segment pins, or common pins. 2. If the LCD voltage is provided by an external power supply, the following relationship must be maintained: LPVCC ≥ V1 ≥ V2 ≥ V3 ≥ VSS. Rev. 2.00 Dec. 05, 2005 Page 697 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] 23.6 Flash Memory Characteristics Table 23.10 shows the flash memory characteristics. Table 23.10 Flash Memory Characteristics Conditions: VCC = AVCC = 4.5 V to 5.5 V, LPVCC = 4.5 V to 5.5 V, PWMVCC = 4.5 V to 5.5 V, Vref = 4.5 V to AVCC, VSS = PWMVSS = PLLVSS = AVSS = 0 V, Ta = 0 to +75°C (Programming/erasing operating temperature range) Item 1, 2, 4 Programming time* * * 1, 3, 5 Erase time* * * Reprogramming count 1 Programming Wait time after SWE bit setting* 1 Wait time after PSU bit setting* Symbol Min. Typ. Max. Unit tP — 10 200 ms/ 128 bytes tE — 100 1200 ms/block NWEC — — 100 Times tsswe 1 1 — µs tspsu 50 50 — µs tsp30 28 30 32 µs Programming time wait tsp200 198 200 202 µs Programming time wait tsp10 8 10 12 µs Additionalprogramming time wait tcp 5 5 — µs tcpsu 5 5 — µs Wait time after PV bit setting* tspv 4 4 — µs Wait time after H'FF dummy 1 write* tspvr 2 2 — µs tcpv 2 2 — µs tcswe 100 100 — µs 1, 4 Wait time after P bit setting* * 1 Wait time after P bit clear* 1 Wait time after PSU bit clear* 1 1 Wait time after PV bit clear* 1 Wait time after SWE bit clear* 1, 4 Maximum programming count* * N Erase Test Conditions 1 — — 1000 Times 1 1 — µs tsesu 100 100 — µs tse 10 10 100 ms tce 10 10 — µs Wait time after SWE bit setting* tsswe 1 Wait time after ESU bit setting* 1, 5 Wait time after E bit setting* * 1 Wait time after E bit clear* Rev. 2.00 Dec. 05, 2005 Page 698 of 724 REJ09B0200-0200 Erase time wait Section 23 Electrical Characteristics [Preliminary] Item Erase Symbol Min. Typ. Max. Unit 1 tcesu 10 10 — µs 1 Wait time after EV bit setting* tsev 20 20 — µs Wait time after H'FF dummy 1 write* tsevr 2 2 — µs Wait time after ESU bit clear* 1 Wait time after EV bit clear* 1 Wait time after SWE bit clear* 1, 5 Maximum erase count* * Test Conditions tcev 4 4 — µs tcswe 100 100 — µs N 12 — 120 Times Notes: 1. Make each time setting in accordance with the program or erase algorithm. 2. Programming time per 128 bytes (shows the total period for which the P bit in the flash memory control register (FLMCR1) is set and does not include the programming verification time.) 3. Block erase time (shows the total period for which the E bit in FLMCR1 is set and does not include the erase verification time.) 4. To specify the maximum programming time value (tp (max.)) in the 128-byte programming algorithm, set the max. value (1000) for the maximum programming count (N). The wait time after P bit setting should be changed as follows according to the value of the programming counter (n). Programming counter (n) = 1 to 6: tsp30 = 30 µs Programming counter (n) = 7 to 1000: tsp200 = 200 µs [In additional programming] Programming counter (n)= 1 to 6: tsp10 = 10 µs 5. For the maximum erase time (tE (max.)), the following relationship applies between the wait time after E bit setting (tse) and the maximum erase count (N): tE (max.) = Wait time after E bit setting (tse) x maximum erase count (N) To specify the maximum erase time, the values of (tse) and (N) should be set so as to satisfy the above formula. Examples: When tse = 100 [ms], N = 12 times When tse = 10 [ms], N = 120 times Rev. 2.00 Dec. 05, 2005 Page 699 of 724 REJ09B0200-0200 Section 23 Electrical Characteristics [Preliminary] Rev. 2.00 Dec. 05, 2005 Page 700 of 724 REJ09B0200-0200 Appendix Appendix A. I/O Port States in Each Operating State Port Name MCU Operating Mode Hardware Power-on Standby Reset Mode Program Execution State, Software Standby Mode Sleep Mode Port 1 4 to 7 T T Keep I/O port Port 2 4 to 7 T T Keep I/O port Port 3 4 to 7 T T Keep I/O port Port 4 4 to 7 T T T Input port Port 5 4 to 7 T T Keep I/O port Port 9 4 to 7 T T T Input port Port A 4 and 5 L T [Address output, OPE = 0] [Address output] 6 T T A23 to A16 [Address output, OPE = 1] [Segment, common output] Keep 7 T T [Segment, common output] SEG40 to SEG37 Port COM4 to COM1 [Otherwise] [Otherwise] Keep I/O port [Segment, common output] [Segment, common output] Port [Otherwise] SEG40 to SEG37 Keep COM4 to COM1 [Otherwise] I/O port Rev. 2.00 Dec. 05, 2005 Page 701 of 724 REJ09B0200-0200 Appendix Port Name MCU Operating Mode Hardware Power-on Standby Reset Mode Program Execution State, Software Standby Mode Sleep Mode Port B 4 and 5 L [Address output, OPE = 0] [Address output] 6 T T T A15 to A8 [Address output, OPE = 1] [Segment output] Keep [Segment output] SEG32 to SEG25 Port [Otherwise] [Otherwise] I/O port Keep 7 T T [Segment output] [Segment output] Port [Otherwise] SEG32 to SEG25 Keep [Otherwise] I/O port Port C 4 and 5 L T [OPE = 0] A7 to A0 T [OPE = 1] Keep 6 T T [Segment output] [Segment output] Port [DDR = 1, OPE = 0] SEG24 to SEG17 T [DDR = 1] [DDR = 1, OPE = 1] A7 to A0 Keep [DDR = 0] [DDR = 0] Input port Keep 7 T T [Segment output] [Segment output] Port [Otherwise] SEG24 to SEG17 Keep [Otherwise] I/O port Rev. 2.00 Dec. 05, 2005 Page 702 of 724 REJ09B0200-0200 Appendix Port Name MCU Operating Mode Hardware Power-on Standby Reset Mode Program Execution State, Software Standby Mode Sleep Mode Port D 4 to 6 T T T Data bus 7 T T [Segment output] [Segment output] Port SEG16 to SEG9 [Otherwise] [Otherwise] Keep I/O port [Segment output] [Segment output] Port SEG8 to SEG1 [Otherwise] [Otherwise] Keep I/O port Port E 4 to 6 8-bit bus 16-bit bus 7 PF7/φ 4 to 6 7 PF6/AS 4 to 6 T T T T T Data bus T T [Segment output] [Segment output] Port SEG8 to SEG1 [Otherwise] [Otherwise] Keep I/O port [DDR = 0] [DDR = 0] T T [DDR = 1] [DDR = 1] H Clock output [OPE = 0] AS Clock output T T H T T [OPE = 1] H 7 T T [Segment output] [Segment output] Port SEG36 [Otherwise] [Otherwise] Keep I/O port Rev. 2.00 Dec. 05, 2005 Page 703 of 724 REJ09B0200-0200 Appendix Port Name PF5/RD, PF4/HWR MCU Operating Mode Hardware Power-on Standby Reset Mode Program Execution State, Software Standby Mode Sleep Mode 4 to 6 H [OPE = 0] T RD, HWR T [OPE = 1] H 7 PF3/LWR 4 to 6 T H T T [Segment output] [Segment output] Port SEG35, SEG34 [Otherwise] [Otherwise] Keep I/O port [OPE = 0] LWR T [OPE = 1] H PF2/WAIT 7 T T Keep I/O port 4 to 6 T T [Segment output] [WAITE = 1] Port WAIT [Otherwise] Keep 7 T T [Segment output] [Segment output] Port SEG33 [Otherwise] [Otherwise] Keep I/O port PF0 4 to 7 T T Keep I/O port Port H 4 to 7 T T Keep I/O port Port J 4 to 7 T T Keep I/O port Port K 4 to 7 T T [PKFE = 0] [PKFE = 0] Keep I/O port [PKFE = 1] [PKFE = 1] PK7:T, PK6:H PK7:HRxD1 input PK6:HTxD1 output Rev. 2.00 Dec. 05, 2005 Page 704 of 724 REJ09B0200-0200 Appendix Port Name MCU Operating Mode Hardware Power-on Standby Reset Mode Program Execution State, Software Standby Mode Sleep Mode RxD 4 to 7 T T T HRxD0 input TxD 4 to 7 H T H HTxD0 input [Legend] H: High level L: Low level T: High impedance Keep: Input port becomes high-impedance, and output port retains state Port: Depends on the port setting (input becomes high-impedance) DDR: Data direction register OPE: Output port enable WAITE: Wait input enable Rev. 2.00 Dec. 05, 2005 Page 705 of 724 REJ09B0200-0200 Appendix B. Product Code Lineup Product Code Mark Code Package (Renesas Package Code) F-ZTAT version HD64F2649 HD64F2649 144-pin QFP (FP-144G) Masked ROM version HD6432649 HD6432649 Product Type H8S/2649 Rev. 2.00 Dec. 05, 2005 Page 706 of 724 REJ09B0200-0200 144 e 1 ZD D y *3 bp 36 73 37 72 x M ZE F Detail F L L1 θ 21.8 0.17 bp θ L1 L ZE ZD 1.0 0.5 1.25 1.25 0.6 0.10 8° 0.10 0.5 y 0.4 0° 0.22 0.27 0.25 3.05 22.2 22.2 Max x e 0.15 0.17 c c1 0.20 0.22 b1 0.12 0.00 A1 0.10 22.0 22.0 21.8 HD HE A 20 2.70 A2 20 Nom Dimension in Millimeters Min E D Reference Symbol NOTE) 1. DIMENSIONS"*1"AND"*2" DO NOT INCLUDE MOLD FLASH 2. DIMENSION"*3"DOES NOT INCLUDE TRIM OFFSET. Terminal cross section b1 bp MASS[Typ.] 2.4g c1 HD E *2 109 108 *1 Previous Code FP-144G/FP-144GV A2 A1 c RENESAS Code PRQP0144KA-A c A HE C. JEITA Package Code P-QFP144-20x20-0.50 Appendix Package Dimensions The package dimensions that are shown in the Renesas Semiconductor Package Data Book have priority. Figure C.1 FP-144G Package Dimensions Rev. 2.00 Dec. 05, 2005 Page 707 of 724 REJ09B0200-0200 Appendix Rev. 2.00 Dec. 05, 2005 Page 708 of 724 REJ09B0200-0200 Main Revisions and Additions in this Edition Item Page Revision (See Manual for Details) Section 1 Overview 1 Amended 1.1 Features Body Size • 20.0 × 20.0 mm Compact package Section 12 Watchdog Timer (WDT) 342 Amended 12.2.2 Timer Control/Status Register (TCSR) Bit Initial Bit Name Value 2 CKS2 • 1 0 TCSR_1 R/W Description 0 R/W Clock Select 2 to 0 CKS1 0 R/W CKS0 0 R/W 000: φSUB/2 (cycle: 15.6 ms) 001: φSUB/4 (cycle: 31.3 ms) 010: φSUB/8 (cycle: 62.5 ms) 011: φSUB/16 (cycle: 125 ms) 100: φSUB/32 (cycle: 250 ms) 101: φSUB/64 (cycle: 500 ms) 110: φSUB/128 (cycle: 1 s) 111: φSUB/256 (cycle: 2 s) Rev. 2.00 Dec. 05, 2005 Page 709 of 724 REJ09B0200-0200 Item Page Revision (See Manual for Details) Section 14 Controller Area Network (HCAN) 425 Amended 14.3.1 Master Control Register (MCR) Bit Initial Bit Name Value R/W Description 0 MCR0 R/W Reset Request 1 When this bit is set to 1, the HCAN requests reset mode transition. For details, see section 14.4.1, Hardware and Software Resets. [Setting conditions] • Power-on reset • Hardware standby • Software standby • Writing 1 to this bit (software reset) [Clearing condition] • When 0 is written to this bit while the GSR3 bit in GSR is 1 14.3.2 General Status Register (GSR) 427 Amended Bit Initial Bit Name Value R/W 1 GSR1 R 0 Description Transmit/Receive Warning Flag This bit cannot be modified. [Clearing condition] • When TEC < 96 and REC < 96 • TEC ≥ 256 (bus-off state) [Setting condition] • Rev. 2.00 Dec. 05, 2005 Page 710 of 724 REJ09B0200-0200 When TEC ≥ 96 or REC ≥ 96 Item Page 14.3.11 Interrupt Register 438 (IRR) Revision (See Manual for Details) Amended Bit Initial Bit Name Value R/W Description 10 IRR2 R Remote Frame Request Interrupt Flag 0 Status flag indicating that a remote frame has been received in a mailbox (buffer) when the corresponding bit in MBIMR is 0. [Setting condition] • When remote frame reception is completed, when corresponding MBIMR = 0 [Clearing condition] • Clearing of all bits in RFPR (remote request register) 9 IRR1 0 R Receive Message Interrupt Flag Status flag indicating that a mailbox (buffer) has received a message normally when the corresponding bit in MBIMR is 0. [Setting condition] • When data frame or remote frame reception is completed, when corresponding MBIMR = 0 [Clearing condition] • Clearing of all bits in RXPR (receive complete register) Rev. 2.00 Dec. 05, 2005 Page 711 of 724 REJ09B0200-0200 Item Page 14.3.16 Unread Message 444 Status Register (UMSR) Revision (See Manual for Details) Amended Bit Initial Bit Name Value 15 UMSR7 0 : : : 0 UMSR8 0 R/W Description R/(W)* Each bit indicates that the received message has been : overwritten by a new message R/(W)* before being read. [Setting condition] • When a new message is received before RXPR is cleared [Clearing condition] • 14.3.18 Message Control 448 (MC0 to MC15) Writing 1 Amended Register Name MCx[1] Bit Bit Name R/W 3 to 0 DLC3 to DLC0 R/W Description Data Length Code Set the data length of a data frame or the data length requested in a remote frame within the range of 0 to 8 bits. 0000: 0 byte 0001: 1 byte 0010: 2 bytes 0011: 3 bytes 0100: 4 bytes 0101: 5 bytes 0110: 6 bytes 0111: 7 bytes 1xxx: 8 bytes Rev. 2.00 Dec. 05, 2005 Page 712 of 724 REJ09B0200-0200 Item Page Revision (See Manual for Details) 14.4 Operation 454 Amended 14.4.2 Initialization after Hardware Reset 1-bit time (8–25 time quanta) Figure 14.8 Detailed Description of One-Bit Time SYNC_SEG PRSEG PHSEG2 Time segment 1 (TSEG1) Time segment 2 (TSEG2) 4–16 time quanta 2–8 time quanta 1 time quantum Table 14.3 Setting Range 455 for TSEG1 and TSEG2 in BCR PHSEG1 Amended Note: The time quantum values for TSEG1 and TSEG2 are determined by TSEG value + 1. * Settable unless BRP = B'000000. 14.8.2 Reset 471 Amended Therefore, always initialize mailboxes after a power-on reset, a transition to hardware standby mode, software standby mode, module stop mode, or watch mode. After a power-on reset, recovery from software standby mode, or cancellation of module stop mode, the reset interrupt flag (IRR0) is automatically set. Section 16 Motor Control 503 PWM Timer (PWM) 16.3.7 PWM Buffer Registers A, C, E, G Amended Bit Initial Bit Name Value R/W Description 12 OTS R/W Output Terminal Select 0 Holds the data to be sent to bit 12 in PWDTR. 16.5 Operation 16.5.1 PWM Operation Activation: 506 Amended Activation: Setting the CST bit in PWCR to 1 starts counting by PWCNT. When a compare match between PWCNT and PWCYR occurs, data is transferred from the buffer register to the duty register and the CMF bit in PWCR is set to 1. If the IE bit in PWCR has been set to 1 at this time, an interrupt can be requested or the DTC can be activated. Rev. 2.00 Dec. 05, 2005 Page 713 of 724 REJ09B0200-0200 Item Page Revision (See Manual for Details) Figure 16.8 Disabling Buffer Transfer 507 Amended PWBTCR Section 17 LCD Controller/Driver 510 Disabled: 1 Disabled Enabled Enabled: 0 Amended 17.1 Features Figure 17.1 Block Diagram of LCD Controller/Driver 17.3.2 LCD Control Register (LCR) φ/8 to φ/2048 516 Amended 1 Frame Frequency* Table 17.4 Frame Frequency Selection Section 19 ROM 19.6.1 Boot Mode CL2 φw 542, 543 Operating Clock φ = 20 MHz φ/8 4880 Hz φ/16 2440 Hz Amended 2. SCI_1 should be set to asynchronous mode, and the transfer format as follows: 8-bit data, 1 stop bit, and no parity. 5. In boot mode, a part of the on-chip RAM area is used by the boot program. The area H'FFE800 to H'FFEFBF is the area to which the … Table 19.5 System Clock 544 Frequencies for which Automatic Adjustment of LSI Bit Rate is Possible 19.7 Flash Memory Emulation in RAM 547 Amended Host Bit Rate System Clock Frequency Range of this LSI 19,200 bps 20 MHz 9,600 bps 8 to 20 MHz 4,800 bps 4 to 20 MHz Amended 1. The RAM area to be overlapped is fixed at a 4-kbyte area in the range H'FFD800 to H'FFE7FF. Rev. 2.00 Dec. 05, 2005 Page 714 of 724 REJ09B0200-0200 Item Page Revision (See Manual for Details) Figure 19.8 Example of RAM Overlap Operation 548 Amended H'FFD800 On-chip RAM (4 kbytes) On-chip RAM (4 kbytes) Normal memory map RAM overlap memory map H'FFE7FF 19.11 Programmer Mode 554 Amended … Use a PROM programmer which supports the Renesas 256kbyte flash memory on-chip microcomputer device type (FZTAT256V5A). Section 21 Power-Down Modes 570 Amended Medium- Table 21.1 LSI Internal States in Each Mode Function Peripheral SCI0 to functions SCI2 Module Software Hardware High-Speed Speed Sleep Stop Watch Subactive Subsleep Standby Standby Functioning Functioning Functioning Halted Halted Halted Halted Halted Halted (retained/ (retained/ (retained/ (retained/ (reset) (reset) reset) reset) reset) reset) Halted Halted Halted Halted Halted Halted (reset) (reset) (reset) (reset) (reset) (reset) SCI4 PWM Functioning Functioning Functioning HCAN A/D 21.1.1 Standby Control Register (SBYCR) 575 The column of "2 MHz" removed 579 Amended Table 21.3 Standby Time Settings 21.1.3 Module Stop Control Registers A to D • MSTPCRD Bit Initial Value R/W 2 1 R/W 2 1 R/W Bit Name 4 MSTPD4* 2 MSTPD2* Module Rev. 2.00 Dec. 05, 2005 Page 715 of 724 REJ09B0200-0200 Item Page Revision (See Manual for Details) Section 22 List of Registers 667, 673, 674 Amended 22.3 Register States in Each Operating Mode Register Abbrevia- Module tion Stop Watch Subactive Subsleep Standby Standby Module SMR_4 − − − − − Initialized SCI_4 BRR_4 − − − − − Initialized SCR_4 − − − − − Initialized SCMR_4 − − − − − Initialized SMR_0 − − − − − Initialized BRR_0 − − − − − Initialized SCR_0 − − − − − Initialized SCMR_0 − − − − − Initialized SMR_1 − − − − − Initialized BRR_1 − − − − − Initialized SCR_1 − − − − − Initialized SCMR_1 − − − − − Initialized SMR_2 − − − − − Initialized BRR_2 − − − − − Initialized SCR_2 − − − − − Initialized SCMR_2 − − − − − Initialized Rev. 2.00 Dec. 05, 2005 Page 716 of 724 REJ09B0200-0200 Software Hardware SCI_0 SCI_1 SCI_2 Item Page Revision (See Manual for Details) Section 23 Electrical Characteristics [Preliminary] 677, 678 Amended Test Item 23.2 DC Characteristics Symbol Min. Output high PWM1A to PWM1H, Table 23.2 DC Characteristics voltage PWM2A to PWM2H Output low All output pins voltage except VOH Typ. Max. Unit Conditions PWMVCC — — V IOH = –15 mA V IOL = 1.6 mA – 0.5 VOL — — 0.4 — — 0.5 PWM1A to PWM1H, PWM2A to PWM2H PWM1A to PWM1H, IOL = 15 mA PWM2A to PWM2H 679 Amended Item Min. Max. Current 2 consumption* Normal operation — 80 Sleep mode — 65 LCD power supply port power supply current During operation — 20 Standby mode — 10 — 80 2.0 — RAM standby voltage Notes: 3. ICC depends on VCC and f as follows: ICC max. = 31 (mA) + 0.45 (mA/(MHz × V)) × VCC × f (normal operation) ICC max. = 27 (mA) + 0.35 (mA/(MHz × V)) × VCC × f (sleep mode) Rev. 2.00 Dec. 05, 2005 Page 717 of 724 REJ09B0200-0200 Item Page Revision (See Manual for Details) 23.3.1 Clock Timing 682 Amended Table 23.4 Clock Timing Item Symbol Subclock oscillator settling time Subclock (φSUB) cycle time 23.4 A/D Conversion Characteristics 696 23.5 LCD Characteristics 697 Table 23.9 LCD Characteristics 705 A. I/O Port States in Each Operating State C. Package Dimensions tSUB Amended 707 Item Min. Typ. Max. Unit Resolution 10 10 10 bits Conversion time 10 — 200 µs Amended Item Max. Notes Common driver step-down voltage 0.3 * Amended Port Name Power-on Reset TxD H Replaced Figure C.1 FP-144G Package Dimensions Rev. 2.00 Dec. 05, 2005 Page 718 of 724 REJ09B0200-0200 s Condition Table 23.8 A/D Conversion Characteristics Appendix Unit 1 Index Numerics B 16-Bit Timer Pulse Unit (TPU) .............. 229 Buffer Operation................................. 276 Cascaded Operation ............................ 280 Free-running count operation.............. 269 Input Capture ...................................... 272 periodic count operation ..................... 269 Phase Counting Mode......................... 287 PWM Modes....................................... 282 Synchronous Operation ...................... 274 toggle output ....................................... 270 Waveform Output by Compare Match ............................. 270 Bcc ...................................................... 31, 39 Bit Rate ................................................... 454 Break address ...................................... 93, 96 Break conditions ....................................... 96 Bus Controller......................................... 103 Basic Bus Interface ............................. 115 Basic Timing............................... 118, 127 Burst ROM Interface........................... 127 Bus Arbitration.................................... 134 Data Size and Data Alignment............ 115 Idle Cycle............................................ 130 Valid Strobes....................................... 117 Wait Control ....................................... 125 Write Data Buffer Function ................ 133 A A/D Converter ........................................ 475 A/D Converter Activation................... 295 Conversion Time ................................ 483 External Trigger.................................. 485 Scan Mode .......................................... 482 Single Mode........................................ 482 Address Map............................................. 58 Address Space........................................... 22 Addressing Modes .................................... 43 Absolute Address.................................. 44 Immediate ............................................. 45 Memory Indirect ................................... 45 Program-Counter Relative .................... 45 Register Direct...................................... 43 Register Indirect ................................... 43 Register Indirect with Displacement ................................ 44 Register Indirect with Post-Increment.............................. 44 Register Indirect with Pre-Decrement .............................. 44 C Clock Pulse Generator ............................ 559 Condition Field ......................................... 42 Condition-Code Register (CCR) ............... 26 CPU Operating Modes.............................. 18 Advanced Mode .................................... 20 Normal Mode ........................................ 18 D Data Transfer Controller ......................... 137 Activation by Software ....................... 158 Block Transfer Mode .......................... 152 Chain Transfer ............................ 154, 160 DTC Vector Table............................... 146 Normal Mode .............................. 150, 159 Register Information ........................... 146 Repeat Mode ....................................... 151 software activation .............................. 155 Software Activation ............................ 161 Rev. 2.00 Dec. 05, 2005 Page 719 of 724 REJ09B0200-0200 Control field........................................ 458 Data field ............................................ 458 Data frame .......................................... 463 DTC Interface ..................................... 469 HCAN Halt Mode............................... 467 HCAN Sleep Mode............................. 464 mailbox ............................................... 447 Message Control (MC0 to MC15) ...... 447 Message Data (MD0 to MD15) .......... 449 Message transmission cancellation ..... 459 Message Transmission Method........... 456 Remote frame...................................... 463 remote transmission request bit........... 463 Unread message overwrite.................. 463 vector number for the software activation interrupt.............................. 144 E Effective Address ............................... 43, 46 Effective Address Extension..................... 42 Exception Handling .................................. 59 Interrupts............................................... 65 Reset Exception Handling .................... 61 Stack Status .......................................... 67 Traces ................................................... 64 Trap Instruction .................................... 66 Extended Control Register (EXR) ............ 25 F Flash memory ......................................... 529 Boot mode .......................................... 542 Emulation ........................................... 546 Erase/erase-verify ............................... 551 Erasing units ....................................... 534 Error protection .................................. 553 Hardware protection ........................... 553 Program/program-verify..................... 549 Software protection............................. 553 User program mode ............................ 545 G General Registers...................................... 24 H HCAN..................................................... 421 11 consecutive recessive bits .............. 451 Arbitration field .......................... 458, 462 buffer segment .................................... 454 Configuration mode............................ 451 Rev. 2.00 Dec. 05, 2005 Page 720 of 724 REJ09B0200-0200 I Instruction Set ........................................... 31 Arithmetic Operations Instructions....... 34 Bit Manipulation Instructions ............... 37 Block Data Transfer Instructions .......... 41 Branch Instructions ............................... 39 Data Transfer Instructions..................... 33 Logic Operations Instructions............... 36 Shift Instructions................................... 36 System Control Instructions.................. 40 Interrupt Control Modes ........................... 83 Interrupt Controller ................................... 69 Interrupt Exception Handling Vector Table ............................................. 79 Interrupt Mask Bit..................................... 26 interrupt mask level .................................. 25 interrupt priority register (IPR) ................. 69 Interrupts ADI ..................................................... 485 ERS0/OVR0........................................ 468 NMI....................................................... 78 RM0 .................................................... 468 RM1 .................................................... 468 SLE0 ................................................... 468 SWDTEND......................................... 155 TCIU_1............................................... 294 TCIU_2............................................... 294 TCIU_4............................................... 294 TCIU_5............................................... 294 TCIV_0............................................... 294 TCIV_1............................................... 294 TCIV_2............................................... 294 TCIV_3............................................... 294 TCIV_4............................................... 294 TCIV_5............................................... 294 TGIA_0............................................... 294 TGIA_1............................................... 294 TGIA_2............................................... 294 TGIA_3............................................... 294 TGIA_4............................................... 294 TGIA_5............................................... 294 TGIB_0............................................... 294 TGIB_1............................................... 294 TGIB_2............................................... 294 TGIB_3............................................... 294 TGIB_4............................................... 294 TGIB_5............................................... 294 TGIC_0............................................... 294 TGIC_3............................................... 294 TGID_0............................................... 294 TGID_3............................................... 294 WOVI ................................................. 346 L LCD controller/driver ............................. 509 Common drivers ................................. 513 Duty cycle........................................... 509 LCD display........................................ 518 LCD RAM .......................................... 520 List of registers ....................................... 591 M MAC instruction ....................................... 55 Motor Control PWM Timer .................... 493 PWM Channel..................................... 506 Multiply-Accumulate Register (MAC) ..... 27 O On-board programming .......................... 542 Operating Mode Selection ........................ 53 Operation Field ......................................... 42 P PC Break Controller.................................. 93 PLL Circuit ............................................. 565 Power-Down Modes ............................... 569 Direct Transitions................................ 588 Hardware Standby Mode .................... 584 Medium-Speed Mode.......................... 580 Module Stop Mode ............................. 587 Sleep Mode ......................................... 581 Software Standby Mode...................... 582 Subactive Mode .................................. 586 Subsleep Mode.................................... 586 Watch Mode........................................ 585 Program Counter (PC) .............................. 25 Program/erase protection ........................ 553 Programmable Pulse Generator .............. 315 Non-Overlapping Pulse Output........... 329 output trigger....................................... 323 Programmer mode................................... 554 R Register addresses................................... 592 Register bits ............................................ 620 Register Field............................................ 42 Register states in each operating mode ... 648 Rev. 2.00 Dec. 05, 2005 Page 721 of 724 REJ09B0200-0200 Registers ABACK .......................434, 592, 620, 648 ABWCR ......................106, 615, 644, 671 ADCR..........................481, 618, 647, 674 ADCSR........................479, 618, 647, 674 ADDR..........................478, 618, 647, 674 ASTCR ........................106, 615, 644, 671 BARA............................94, 612, 640, 668 BARB ............................95, 612, 641, 668 BCR .............................427, 592, 620, 648 BCRA ............................95, 612, 641, 668 BCRB ............................96, 612, 641, 668 BCRH ..........................109, 615, 644, 671 BCRL...........................110, 615, 644, 671 BRR .............................366, 617, 646, 673 CRA.................................................... 142 CRB .................................................... 142 DAR.................................................... 142 DTCER........................143, 612, 641, 668 DTVECR .....................144, 612, 641, 668 EBR1 ...........................539, 618, 647, 674 EBR2 ...........................540, 618, 647, 674 FLMCR1......................537, 618, 647, 674 FLMCR2......................538, 618, 647, 674 FLPWCR .....................541, 618, 647, 674 GSR .............................426, 592, 620, 648 HCANMON ................450, 601, 629, 657 IER.................................74, 612, 641, 668 IMR .............................442, 592, 620, 648 IPR.................................73, 615, 643, 671 IRR ..............................437, 592, 620, 648 ISCR ..............................75, 612, 641, 668 ISR.................................77, 612, 641, 668 LAFM..........................444, 592, 621, 648 LCR .............................515, 611, 640, 667 LCR2 ...........................517, 611, 640, 667 LPCR ...........................512, 611, 640, 667 LPWRCR.....................576, 612, 640, 668 MBCR .........................430, 592, 620, 648 MBIMR .......................441, 592, 620, 648 Rev. 2.00 Dec. 05, 2005 Page 722 of 724 REJ09B0200-0200 MC .............................. 447, 592, 621, 648 MCR ........................... 425, 592, 620, 648 MD.............................. 449, 597, 625, 652 MDCR........................... 54, 612, 640, 667 MRA ................................................... 140 MRB ................................................... 141 MSTPCR..................... 578, 612, 640, 667 NDER ......................... 318, 612, 641, 668 NDR............................ 320, 612, 641, 668 P1DDR........................ 168, 613, 642, 669 P1DR........................... 169, 615, 644, 671 P2DDR........................ 178, 613, 642, 669 P2DR........................... 179, 615, 644, 671 P3DDR........................ 188, 613, 642, 669 P3DR........................... 189, 615, 644, 671 P3ODR........................ 190, 613, 642, 669 P5DDR........................ 194, 613, 642, 669 P5DR........................... 194, 616, 644, 671 PADDR....................... 197, 613, 642, 669 PADR.......................... 198, 616, 644, 671 PAODR....................... 199, 613, 642, 669 PAPCR........................ 199, 613, 642, 669 PBDDR ....................... 202, 613, 642, 669 PBDR.......................... 203, 616, 644, 671 PBODR ....................... 204, 613, 642, 669 PBPCR........................ 204, 613, 642, 669 PCDDR ....................... 206, 613, 642, 669 PCDR.......................... 207, 616, 644, 671 PCODR ....................... 208, 613, 642, 669 PCPCR........................ 208, 613, 642, 669 PCR............................. 323, 612, 641, 668 PDDDR....................... 210, 613, 642, 669 PDDR.......................... 211, 616, 644, 671 PDPCR........................ 212, 613, 642, 669 PEDDR ....................... 214, 613, 642, 669 PEDR .......................... 215, 616, 644, 671 PEPCR ........................ 216, 613, 642, 669 PFCR........................... 111, 612, 640, 667 PFDDR ....................... 218, 613, 642, 669 PFDR .......................... 219, 616, 644, 671 PHDDR....................... 223, 611, 639, 667 PHDR ......................... 224, 611, 639, 667 PJDDR........................ 225, 611, 639, 667 PJDR........................... 226, 611, 639, 667 PKDDR....................... 227, 611, 639, 667 PKDR ......................... 228, 611, 639, 667 PMR............................ 324, 612, 641, 668 PODR ......................... 319, 612, 641, 668 PORT1........................ 169, 619, 647, 674 PORT2........................ 179, 619, 647, 674 PORT3........................ 189, 619, 647, 674 PORT4........................ 193, 619, 647, 674 PORT5........................ 195, 619, 647, 674 PORT9........................ 196, 619, 647, 674 PORTA ....................... 198, 619, 647, 674 PORTB ....................... 203, 619, 647, 674 PORTC ....................... 207, 619, 647, 674 PORTD ....................... 211, 619, 647, 674 PORTE ............................................... 215 PORTF........................ 219, 619, 647, 674 PORTH ....................... 224, 611, 639, 667 PORTJ ........................ 226, 611, 640, 667 PORTK ....................... 228, 611, 640, 667 PWBFR....................... 503, 610, 639, 666 PWBTCR.................... 504, 611, 640, 667 PWCNT .............................................. 499 PWCR......................... 497, 610, 638, 666 PWCYR...................... 499, 610, 639, 666 PWDTR .............................................. 500 PWOCR...................... 498, 610, 638, 666 PWPR ......................... 499, 610, 638, 666 RAMER...................... 540, 615, 644, 671 RDR............................ 354, 617, 646, 673 REC ............................ 443, 592, 620, 648 RFPR .......................... 436, 592, 620, 648 RSR..................................................... 354 RSTCSR ..................... 343, 617, 646, 673 RXPR.......................... 435, 592, 620, 648 SAR .................................................... 142 SBYCR ....................... 573, 611, 640, 667 SCKCR ....................... 560, 611, 640, 667 SCMR ......................... 365, 617, 646, 673 SCR............................. 358, 617, 646, 673 SMR ............................ 355, 617, 646, 673 SSR ............................. 361, 617, 646, 673 SYSCR.......................... 55, 611, 640, 667 TCNT ......................... 266, 339, 616, 617, 645, 646, 672, 673 TCR............................. 237, 616, 644, 672 TCSR .......................... 339, 617, 646, 673 TDR ............................ 355, 617, 646, 673 TEC............................. 443, 592, 620, 648 TGR ............................ 266, 616, 645, 672 TIER............................ 261, 616, 645, 672 TIOR ........................... 244, 616, 644, 672 TMDR......................... 242, 616, 644, 672 TSR ..................... 263, 355, 616, 645, 672 TSTR........................... 266, 615, 643, 670 TSYR .......................... 267, 615, 643, 670 TXACK....................... 433, 592, 620, 648 TXCR.......................... 432, 592, 620, 648 TXPR .......................... 431, 592, 620, 648 UMSR ......................... 444, 592, 621, 648 WCR ........................... 107, 615, 644, 671 Reset ......................................................... 61 S Serial Communication Interface ............. 351 Asynchronous Mode ........................... 373 bit rate ................................................. 366 Break................................................... 414 framing error ....................................... 380 Mark State........................................... 414 overrun error ....................................... 380 parity error .......................................... 380 Stack pointer (SP) ..................................... 24 Rev. 2.00 Dec. 05, 2005 Page 723 of 724 REJ09B0200-0200 T W Time Quanta (TQ) .................................. 455 Trace Bit ................................................... 25 TRAPA instruction ............................. 45, 66 Watchdog Timer Interval Timer Mode ........................... 346 Overflows ........................................... 344 Watchdog Timer (WDT)......................... 337 Rev. 2.00 Dec. 05, 2005 Page 724 of 724 REJ09B0200-0200 Renesas 16-Bit Single-Chip Microcomputer Hardware Manual H8S/2649 Group Publication Date: Rev.1.00, Sep. 17, 2004 Rev.2.00, Dec. 05, 2005 Published by: Sales Strategic Planning Div. Renesas Technology Corp. Edited by: Customer Support Department Global Strategic Communication Div. Renesas Solutions Corp. 2005. Renesas Technology Corp., All rights reserved. Printed in Japan. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan RENESAS SALES OFFICES http://www.renesas.com Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology (Shanghai) Co., Ltd. Unit 205, AZIA Center, No.133 Yincheng Rd (n), Pudong District, Shanghai 200120, China Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145 Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510 Colophon 5.0 H8S/2649 Group Hardware Manual