Maxim MAX11116AUT+ 2msps/3msps, low-power, serial 12-/10-/8-bit adc Datasheet

19-5245; Rev 0; 4/10
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
Features
The MAX11102/MAX11103/MAX11105/MAX11106/MAX11110
MAX11111/MAX11115/MAX11116/MAX11117 are 12-/10/8-bit, compact, high-speed, low-power, successive
approximation analog-to-digital converters (ADCs).
These high-performance ADCs include a high-dynamic
range sample-and-hold and a high-speed serial interface. These ADCs accept a full-scale input from 0V to the
power supply or to the reference voltage.
S 2Msps/3Msps Conversion Rate, No Pipeline Delay
The MAX11102/MAX11103/MAX11106/MAX11111 feature dual, single-ended analog inputs connected to the
ADC core using a 2:1 MUX. The devices also include a
separate supply input for data interface and a dedicated
input for reference voltage. In contrast, the single-channel devices generate the reference voltage internally
from the power supply.
S 2.2V to 3.6V Supply Voltage
S 12-/10-/8-Bit Resolution
S 1-/2-Channel, Single-Ended Analog Inputs
Y
S Low-Noise 73dB SNR
AR
S Variable I/O: 1.5V to 3.6V (Dual-Channel Only)
Allows the Serial Interface to Connect Directly
to 1.5V, 1.8V, 2.5V, or 3V Digital Systems
S Low Power
8.3mW at 3Msps
6.2mW at 2Msps
Very Low Power Consumption at 2.5µA/ksps
IN
S External Reference Input (Dual-Channel Devices Only)
These ADCs operate from a 2.2V to 3.6V supply and
consume only 8.3mW at 3Msps and 6.2mW at 2Msps.
The devices include full power-down mode and fast
wake-up for optimal power management and a highspeed 3-wire serial interface. The 3-wire serial interface
directly connects to SPIK, QSPIK, and MICROWIREK
devices without external logic.
S 1.3µA Power-Down Current
Excellent dynamic performance, low voltage, low power,
ease of use, and small package size make these converters ideal for portable battery-powered data-acquisition applications, and for other applications that demand
low-power consumption and minimal space.
S Wide -40NC to +125NC Operation
S SPI-/QSPI-/MICROWIRE-Compatible Serial
Interface
S 10-Pin, 3mm x 3mm TDFN Package
PR
EL
IM
S 10-Pin, 3mm x 5mm µMAX Package
These ADCs are available in a 10-pin TDFN package,
10-pin FMAX® package, and a 6-pin SOT23 package.
These devices operate over the -40NC to +125NC temperature range.
PART
S 6-Pin, 2.8mm x 2.9mm SOT23 Package
Applications
Data Acquisition
Portable Data Logging
Medical Instrumentation
Battery-Operated Systems
Communication Systems
Automotive Systems
Ordering Information
PIN-PACKAGE
BITS
SPEED (Msps)
NO. OF CHANNELS
MAX11102AUB+
10 FMAX-EP*
12
2
2
MAX11102ATB+**
10 TDFN-EP*
12
2
2
MAX11103AUB+
10 FMAX-EP*
12
3
2
Ordering Information continued at end of data sheet.
Note: All devices are specified over the -40°C to +125°C operating temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
**Future product—contact factory for availability.
SPI and QSPI are trademarks of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp.
µMAX is a registered trademark of Maxim Integrated Products, Inc.
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX11102/03/05/06/10/11/15/16/17
General Description
ABSOLUTE MAXIMUM RATINGS
10-Pin TDFN (derate 24.4mW/NC above +70NC)........1951mW
10-Pin FMAX (derate 8.8mW/NC above +70NC)........707.3mW
Operating Temperature Range........................ .-40NC to +125NC
Junction Temperature......................................................+150NC
Storage Temperature Range............................. -65NC to +150NC
Lead Temperature (soldering, 10s).................................+300NC
Soldering Temperature (reflow).......................................+260NC
AR
Y
VDD to GND.............................................................-0.3V to +4V
REF, OVDD, AIN1, AIN2, AIN to GND.........-0.3V to the lower of
(VDD + 0.3V) and +4V
CS, SCLK, CHSEL, DOUT TO GND.............-0.3V to the lower of
(VOVDD + 0.3V) and +4V
AGND to GND.......................................................-0.3V to +0.3V
Input/Output Current (all pins)............................................50mA
Continuous Power Dissipation (TA = +70NC)
6-Pin SOT23 (derate 8.7mW/NC above +70NC)............696mW
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (MAX11102/MAX11103/MAX11105)
PARAMETER
SYMBOL
DC ACCURACY
Resolution
Differential Nonlinearity
Offset Error
Gain Error
Total Unadjusted Error
Channel-to-Channel Offset
Matching
CONDITIONS
12 bits
INL
MIN
DNL
Excluding offset and reference errors
TUE
Channel-to-Channel Gain
Matching
MAX
UNITS
Q1
LSB
Bits
No missing codes
OE
GE
TYP
12
IM
Integral Nonlinearity
IN
(VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11103); fSCLK = 32MHz, 50%
duty cycle, 2Msps (MAX11102/MAX11105), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at
TA = +25NC.)
Q1
LSB
Q0.3
Q3
LSB
Q1
Q3
LSB
Q1.5
LSB
MAX11102/MAX11103
Q0.4
LSB
MAX11102/MAX11103
Q0.05
LSB
PR
EL
MAX11102/03/05/06/10/11/15/16/17
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
DYNAMIC PERFORMANCE (MAX11102/MAX11105: fIN = 0.5MHz, MAX11103: fIN = 1MHz)
Signal-to-Noise and Distortion
SINAD
Signal-to-Noise Ratio
SNR
Total Harmonic Distortion
THD
Spurious-Free Dynamic Range
SFDR
Intermodulation Distortion
IMD
MAX11103
70
72
MAX11102/MAX11105
70
72.5
MAX11103
70.5
72
MAX11102/MAX11105
70.5
73
dB
dB
MAX11103
-85
-75
MAX11102/MAX11105
-85
-76
MAX11103
76
85
MAX11102/MAX11105
77
85
f1 = 1.0003MHz, f2 = 0.99955MHz
(MAX11103),
f1 = 500.15kHz, f2 = 499.56 kHz
(MAX11102/MAX11105)
dB
dB
-84
dB
Full-Power Bandwidth
-3dB point
40
MHz
Full-Linear Bandwidth
SINAD > 68dB
2.5
MHz
2 _______________________________________________________________________________________
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
(VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11103); fSCLK = 32MHz, 50%
duty cycle, 2Msps (MAX11102/MAX11105), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at
TA = +25NC.)
SYMBOL
CONDITIONS
Small-Signal Bandwidth
Crosstalk
MAX11102/MAX11103
CONVERSION RATE
Conversion Time
45
MHz
dB
MAX11102/MAX11105
0.02
2
MAX11103
260
ns
4
From CS falling edge
fCLK
ANALOG INPUT (AIN1, AIN2/AIN)
Input Leakage Current
Input Capacitance
VINA__
IILA
CAIN_
ps
MAX11103
0.48
48
MAX11102/MAX11105
0.32
32
IM
Input Voltage Range
IN
15
Serial-Clock Frequency
0
2nA
Track
20
Hold
4
Msps
ns
391
52
Aperture Jitter
UNITS
-90
3
tACQ
Aperture Delay
MAX
0.03
MAX11102/MAX11105
Acquisition Time
TYP
AR
MAX11103
Throughput
MIN
Y
PARAMETER
MHz
VREF
V
Q1
FA
pF
EXTERNAL REFERENCE INPUT (REF) (MAX11102/MAX11103)
Reference Input Voltage Range
IILR
Reference Input Capacitance
0.005
CREF
DIGITAL INPUTS (SCLK, CS, CHSEL)
Digital Input High Voltage
VIH
(Note 2)
Digital Input Low Voltage
VIL
(Note 2)
VHYST
(Note 2)
Digital Input Hysteresis
1
Conversion stopped
PR
EL
Reference Input Leakage Current
VREF
Digital Input Leakage Current
IIL
Digital Input Capacitance
CIN
VDD +
0.05
V
Q1
FA
5
pF
75
%OVDD
25
15
Inputs at GND or VDD
1nA
%OVDD
%OVDD
Q1
2
FA
pF
DIGITAL OUTPUT (DOUT)
Output High Voltage
VOH
ISOURCE = 200FA (Note 2)
Output Low Voltage
VOL
ISINK = 200FA (Note 2)
High-Impedance Leakage
Current
IOL
High-Impedance Output
Capacitance
85
COUT
%OVDD
15
%OVDD
Q1.0
FA
4
pF
POWER SUPPLY
Positive Supply Voltage
Digital I/O Supply Voltage
VDD
VOVDD
MAX11102/MAX11103
2.2
3.6
V
1.5
VDD
V
_______________________________________________________________________________________ 3
MAX11102/03/05/06/10/11/15/16/17
ELECTRICAL CHARACTERISTICS (MAX11102/MAX11103/MAX11105) (continued)
ELECTRICAL CHARACTERISTICS (MAX11102/MAX11103/MAX11105) (continued)
(VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11103); fSCLK = 32MHz, 50%
duty cycle, 2Msps (MAX11102/MAX11105), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at
TA = +25NC.)
Positive Supply Current
(Full-Power Mode)
IOVDD
Positive Supply Current (FullPower Mode), No Clock
IVDD
Power-Down Current
IPD
Line Rejection
tQ
CS Pulse Width
t1
CS Fall to SCLK Setup
t2
CS Falling Until DOUT High
Impedance Disabled
t3
SCLK Pulse Width High
Data Hold Time from SCLK
Falling Edge
MAX11103, VIN = GND
MAX11102, VIN = GND
MAX11103
SCLK Falling Until DOUT High
Impedance
MAX
2.6
MAX11102/MAX11105
1.48
Leakage only
1.3
(Note 1)
UNITS
mA
0.33
0.22
1.98
IM
Quiet Time
SCLK Pulse Width Low
fSAMPLE = 2Msps, MAX11102/MAX11105,
VIN = GND
TYP
3.3
VDD = 2.2V to 3.6V, VREF = 2.2V
TIMING CHARACTERISTICS (Note 3)
Data Access Time After SCLK
Falling Edge
fSAMPLE = 3Msps, MAX11103,
VIN = GND
MIN
AR
IVDD
CONDITIONS
Y
SYMBOL
IN
PARAMETER
mA
10
0.7
FA
LSB/V
4
ns
10
ns
5
ns
1
ns
Figure 2, VOVDD = 2.2V - 3.6V
15
16.5
t5
Figure 2, VOVDD = 1.5V - 2.2V
Percentage of clock period
40
60
%
t6
Percentage of clock period
40
60
%
t4
PR
EL
MAX11102/03/05/06/10/11/15/16/17
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
t7
Figure 3
t8
Figure 4 (Note 1)
Power-Up Time
5
ns
ns
2.5
Conversion cycle
14
ns
1
Cycle
ELECTRICAL CHARACTERISTICS (MAX11106/MAX11110/MAX11117))
(VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11106/MAX11117); fSCLK = 32MHz,
50% duty cycle, 2Msps (MAX11110), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA =
+25NC.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Q0.5
LSB
Q0.5
LSB
DC ACCURACY
Resolution
10 bits
Integral Nonlinearity
INL
Differential Nonlinearity
DNL
Offset Error
OE
Gain Error
GE
10
Bits
No missing codes
MAX11106/MAX11110
Q0.3
Q1.2
MAX11117
Q0.5
Q1.65
Excluding offset and reference errors,
MAX11106/MAX11110
Q0.15
Q1
MAX11117
Q0.7
Q1.4
4 _______________________________________________________________________________________
LSB
LSB
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
(VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11106/MAX11117); fSCLK = 32MHz,
50% duty cycle, 2Msps (MAX11110), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA =
+25NC.)
CONDITIONS
TUE
Channel-to-Channel Offset
Matching
MAX11106
Channel-to-Channel Gain
Matching
MAX11106
MIN
TYP
MAX
UNITS
Y
SYMBOL
Q1
LSB
Q0.1
LSB
AR
PARAMETER
Total Unadjusted Error
LSB
Q0.1
DYNAMIC PERFORMANCE (MAX11106/MAX11117: fIN = 1MHz, MAX11110: fIN = 0.5MHz)
SINAD
SNR
Total Harmonic Distortion
THD
Spurious-Free Dynamic Range
SFDR
Intermodulation Distortion
Full-Power Bandwidth
Full-Linear Bandwidth
MAX11106/MAX11117
MAX11110
59
61.5
60.5
61.5
59
61.5
60.5
61.5
IMD
Crosstalk
dB
dB
MAX11106/MAX11117
-85
-74
MAX11110
-85
-73
MAX11106/MAX11117
75
MAX11110
75
f1 = 1.0003MHz, f2 = 0.99955MHz
(MAX11106/MAXX11117);
f1 = 500.15kHz, f2 = 499.56 kHz
(MAX11110)
dB
dB
-82
dB
-3dB point
40
MHz
SINAD > 60dB
2.5
MHz
45
MHz
-90
dB
PR
EL
Small-Signal Bandwidth
MAX11110
IM
Signal-to-Noise Ratio
MAX11106/MAX11117
IN
Signal-to-Noise and Distortion
MAX11106
CONVERSION RATE
Throughput
Conversion Time
Acquisition Time
MAX11106/MAX11117
0.03
3
Msps
MAX11110
0.02
2
Msps
MAX11106/MAX11117
260
ns
MAX11110
391
ns
tACQ
Aperture Delay
52
From CS falling edge
Aperture Jitter
Serial-Clock Frequency
fCLK
ns
4
ns
15
ps
MAX11106/MAX11117
0.48
48
MAX11110
0.32
32
MHz
ANALOG INPUT (AIN1/AIN2 for MAX11106) (AIN for MAX11110/MAX11117)
Input Voltage Range
Input Leakage Current
Input Capacitance
VINA__
0
IILA
CAIN_
2nA
Track
20
Hold
4
VREF
V
Q1
FA
pF
EXTERNAL REFERENCE INPUT (REF) (MAX11106)
Reference Input Voltage Range
VREF
Reference Input Leakage Current
IILR
1
Conversion stopped
VDD + 0.05
0.005
Q1
V
FA
_______________________________________________________________________________________ 5
MAX11102/03/05/06/10/11/15/16/17
ELECTRICAL CHARACTERISTICS (MAX11106/MAX11110/MAX11117) (continued)
ELECTRICAL CHARACTERISTICS (MAX11106/MAX11110/MAX11117) (continued)
(VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11106/MAX11117); fSCLK = 32MHz,
50% duty cycle, 2Msps (MAX11110), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA =
+25NC.)
CONDITIONS
CREF
(Note 2)
Digital Input Hysteresis
(Note 2)
Digital Input Leakage Current
IIL
Digital Input Capacitance
CIN
(Note 2)
ISOURCE = 200µA (Note 2)
VOL
ISINK = 200µA (Note 2)
High-Impedance Leakage
Current
IOL
IM
Digital I/O Supply Voltage
VDD
VOVDD
0.001
MAX11106
IVDD
IOVDD
Positive Supply Current (FullPower Mode), No Clock
Power-Down Current
IVDD
IPD
Line Rejection
Q1
FA
pF
%OVDD
15
%OVDD
Q1.0
FA
4
pF
2.2
3.6
V
1.5
VDD
V
fSAMPLE = 3Msps, MAX11106, VIN = GND
Positive Supply Current (FullPower Mode)
%OVDD
%OVDD
85
IN
VOH
Positive Supply Voltage
%OVDD
25
2
Output Low Voltage
POWER SUPPLY
UNITS
pF
15
Output High Voltage
COUT
MAX
75
Inputs at GND or VDD
DIGITAL OUTPUT (DOUT)
High-Impedance Output
Capacitance
TYP
5
DIGITAL INPUTS (SCLK, CS, CHSEL)
Digital Input High Voltage
VIH
Digital Input Low Voltage
VIL
VHYST
MIN
Y
SYMBOL
AR
PARAMETER
Reference Input Capacitance
3.3
fSAMPLE = 2Msps, MAX11110, VIN = GND
2.6
fSAMPLE = 3Msps, MAX11117, VIN = GND
3.55
MAX11106
PR
EL
MAX11102/03/05/06/10/11/15/16/17
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
mA
0.33
MAX11106/MAX11117
1.98
MAX11110
1.48
Leakage only
1.3
VDD = 2.2V to 3.6V, VREF = 2.2V
0.17
mA
10
FA
LSB/V
TIMING CHARACTERISTICS (Note 3)
Quiet Time
tQ
4
ns
CS Pulse Width
t1
10
ns
CS Fall to SCLK Setup
t2
5
ns
CS Falling Until DOUT High
Impedance Disabled
t3
(Note 1)
1
ns
Data Access Time After SCLK
Falling Edge
t4
Figure 2
SCLK Pulse Width Low
t5
Percentage of clock period
40
60
%
SCLK Pulse Width High
t6
Percentage of clock period
40
60
%
Data Hold Time from SCLK
Falling Edge
t7
Figure 3
5
SCLK Falling Until DOUT High
Impedance
t8
Figure 4 (Note 1)
Power-Up Time
VOVDD = 2.2V - 3.6V
15
VOVDD = 1.5V - 2.2V
16.5
2.5
Conversion cycle
6 _______________________________________________________________________________________
ns
ns
14
ns
1
Cycle
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
(VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11111/MAX11116); fSCLK = 32MHz,
50% duty cycle, 2Msps (MAX11115), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA =
+25NC.)
SYMBOL
CONDITIONS
8 bits
Integral Nonlinearity
INL
Differential Nonlinearity
DNL
Offset Error
OE
Gain Error
GE
Total Unadjusted Error
TUE
No missing codes
Channel-to-Channel Gain
Matching
MAX11111
IN
MAX11111
MAX
8
Excluding offset and reference errors
Channel-to-Channel Offset
Matching
TYP
UNITS
Bits
Q0.25
LSB
Q0.25
LSB
Q0.45
Q0.75
LSB
Q0.04
Q0.5
LSB
AR
Resolution
MIN
Y
PARAMETER
DC ACCURACY
Q0.75
LSB
0.025
LSB
0.025
LSB
DYNAMIC PERFORMANCE (MAX11111/MAX11116: fIN = 1MHz, MAX11115: fIN = 500kHz)
Signal-to-Noise Ratio
Total Harmonic Distortion
SNR
MAX11111/MAX11116
49
49.5
MAX11115
49
49.5
MAX11111/MAX11116
49
49.5
49
49.5
THD
SFDR
MAX11115
Intermodulation Distortion
IMD
dB
dB
MAX11111/MAX11116
-70
-66
MAX11115
-75
-67
MAX11111/MAX11116
63
66
MAX11115
63
66
f1 = 1.0003MHz, f2 = 0.99955MHz
(MAX11111/MAX11116);
f1 = 500.15kHz, f2 = 499.56kHz
(MAX11115)
PR
EL
Spurious-Free Dynamic Range
SINAD
IM
Signal-to-Noise and Distortion
dB
dB
-65
dB
Full-Power Bandwidth
-3dB point
40
MHz
Full-Linear Bandwidth
SINAD > 49dB
2.5
MHz
45
MHz
-90
dB
Small-Signal Bandwidth
Crosstalk
MAX11111
CONVERSION RATE
Throughput
Conversion Time
Acquisition Time
MAX11111/MAX11116
0.03
3
MAX11115
0.02
2
MAX11111/MAX11116
260
MAX11115
391
tACQ
Aperture Delay
ns
52
ns
4
From CS falling edge
Aperture Jitter
ns
15
Serial-Clock Frequency
fCLK
Msps
ps
MAX11111/MAX11116
0.48
48
MAX11115
0.32
32
MHz
_______________________________________________________________________________________ 7
MAX11102/03/05/06/10/11/15/16/17
ELECTRICAL CHARACTERISTICS (MAX11111/MAX11115/MAX11116)
ELECTRICAL CHARACTERISTICS (MAX11111/MAX11115/MAX11116) (continued)
(VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11111/MAX11116); fSCLK = 32MHz,
50% duty cycle, 2Msps (MAX11115), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA =
+25NC.)
SYMBOL
CONDITIONS
ANALOG INPUT (AIN1/AIN2 for MAX11111)(AIN for MAX11115/MAX11116)
VINA_
Input Leakage Current
IILA
Input Capacitance
CAIN
0
2nA
Track
Hold
EXTERNAL REFERENCE INPUT (REF)
Reference Input Voltage Range
VREF
Reference Input Leakage Current
IILR
VIH
(Note 2)
Digital Input Low Voltage
VIL
(Note 2)
VHYST
(Note 2)
Digital Input Hysteresis
Digital Input Capacitance
DIGITAL OUTPUT (DOUT)
Output High Voltage
Output Low Voltage
IIL
FA
pF
VDD +
0.05
V
Q1
FA
VOH
ISOURCE = 200µA (Note 2)
VOL
ISINK = 200µA (Note 2)
pF
75
%OVDD
25
15
0.001
CIN
High-Impedance Leakage Current
High-Impedance Output
Capacitance
0.005
Inputs at GND or VDD
IM
Digital Input Leakage Current
V
Q1
5
Digital Input High Voltage
UNITS
VREF
4
Conversion stopped
CREF
DIGITAL INPUTS (SCLK, CS)
MAX
20
1
IN
Reference Input Capacitance
TYP
AR
Input Voltage Range
MIN
Y
PARAMETER
FA
pF
85
COUT
%OVDD
%OVDD
Q1
2
%OVDD
IOL
PR
EL
MAX11102/03/05/06/10/11/15/16/17
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
15
%OVDD
Q1.0
FA
4
pF
POWER SUPPLY
Positive Supply Voltage
Digital I/O Supply Voltage
VDD
VOVDD
Positive Supply Current (FullPower Mode)
Positive Supply Current (FullPower Mode), No Clock
Power-Down Current
IVDD
IVDD
IPD
Line Rejection
MAX11111
2.2
3.6
V
1.5
VDD
V
fSAMPLE = 3Msps, MAX11111,
VIN = GND
3.3
fSAMPLE = 2Msps, MAX11115,
VIN = GND
2.6
fSAMPLE = 3Msps, MAX11116,
VIN = GND
3.55
MAX11111/MAX11116, VIN = GND
1.98
MAX11115, VIN = GND
1.48
Leakage only
1.3
VDD = 2.2V to 3.6V, VREF = 2.2V
0.17
mA
mA
10
FA
LSB/V
TIMING CHARACTERISTICS (Note 3)
Quiet Time
tQ
4
ns
CS Pulse Width
t1
10
ns
CS Fall to SCLK Setup
t2
5
ns
8 _______________________________________________________________________________________
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
(VDD = 2.2V to 3.6V, VREF = VDD, VOVDD = VDD, fSCLK = 48MHz, 50% duty cycle, 3Msps (MAX11111/MAX11116); fSCLK = 32MHz,
50% duty cycle, 2Msps (MAX11115), CDOUT = 10pF, TA = -40NC to +125NC, unless otherwise noted. Typical values are at TA =
+25NC.)
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Y
PARAMETER
CS Falling Until DOUT High
Impedance Disabled
t3
(Note 1)
Data Access Time After SCLK
Falling Edge
t4
Figure 2
SCLK Pulse Width Low
t5
Percentage of clock period
40
60
%
SCLK Pulse Width High
t6
Percentage of clock period
40
60
%
Data Hold Time from SCLK Falling
Edge
t7
Figure 3
5
SCLK Falling Until DOUT High
Impedance
t8
Figure 4 (Note 1)
VOVDD = 2.2V - 3.6V
15
AR
VOVDD = 1.5V - 2.2V
IN
Power-Up Time
1
Conversion cycle
2.5
16.5
ns
ns
ns
14
ns
1
Cycles
PR
EL
IM
Note 1: Guaranteed by design and characterization; not production tested.
Note 2: VOVDD is tied to VDD internally for all SOT devices.
Note 3: All timing specifications given are with a 10pF load capacitor.
_______________________________________________________________________________________ 9
MAX11102/03/05/06/10/11/15/16/17
ELECTRICAL CHARACTERISTICS (MAX11111/MAX11115/MAX11116) (continued)
SAMPLE
SAMPLE
t1
CS
t5
Y
t6
t2
DOUT
16
1
2
0
HIGH
IMPEDANCE
3
D11
4
D10
5
D9
6
7
D8
D7
8
D6
(MSB)
t3
t4
t7
tCONVERT
9
10
11
12
13
14
15
AR
SCLK
D5
D4
D3
D2
D1
D0
0
16
0
t8 tQUIET
tACQ
IN
Figure 1. Interface Signals for Maximum Throughput, 12-Bit Devices
SCLK
IM
t4
t7
SCLK
VIH
DOUT
OLD DATA
NEW DATA
Figure 2. Setup Time After SCLK Falling Edge
VIL
VIH
DOUT
OLD DATA
Figure 3. Hold Time After SCLK Falling Edge
t8
SCLK
DOUT
NEW DATA
VIL
HIGH IMPEDANCE
Figure 4. SCLK Falling Edge DOUT Three-State
10 �������������������������������������������������������������������������������������
1
HIGH
IMPEDANCE
1/fSAMPLE
PR
EL
MAX11102/03/05/06/10/11/15/16/17
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
0
-0.5
2
OFFSET ERROR (LSB)
DNL (LSB)
0.5
0
-0.5
Y
fS = 3.0Msps
MAX11102 toc03
OFFSET ERROR vs. TEMPERATURE
3
1
AR
fS = 3.0Msps
0.5
INL (LSB)
1.0
MAX11102 toc01
1.0
DIFFERENTIAL NONLINEARITY
vs. DIGITAL OUTPUT CODE
MAX11102 toc02
INTEGRAL NONLINEARITY
vs. DIGITAL OUTPUT CODE
0
-1
-2
-1.0
2000
4000
3000
0
DIGITAL OUTPUT CODE
1000
2000
GAIN ERROR vs. TEMPERATURE
35,000
MAX11102 toc04
0
PR
EL
-1
30,000
25,000
CODE COUNT
1
20,000
15,000
10,000
-2
5000
-3
0
-40 -25 -10 5 20 35 50 65 80 95 110 125
2047
2046
TEMPERATURE (˚C)
74
2049
2050
THD vs. ANALOG INPUT FREQUENCY
-60
MAX11102 toc06
fS = 3Msps
2048
DIGITAL CODE OUTPUT
SNR AND SINAD
vs. ANALOG INPUT FREQUENCY
75
TEMPERATURE (˚C)
HISTOGRAM FOR 30,000 CONVERSIONS
IM
2
GAIN ERROR (LSB)
-40 -25 -10 5 20 35 50 65 80 95 110 125
DIGITAL OUTPUT CODE
3
fS = 3Msps
-70
SNR
73
72
SINAD
-80
THD (dB)
SNR AND SINAD (dB)
-3
4000
3000
MAX11102 toc05
1000
MAX11102 toc07
0
IN
-1.0
-90
-100
71
-110
70
0
300
600
900
fIN (kHz)
1200
1500
-120
0
300
600
900
1200
1500
fIN (kHz)
______________________________________________________________________________________ 11
MAX11102/03/05/06/10/11/15/16/17
µMAX Typical Operating Characteristics
(MAX11103AUB+, TA = +25°C, unless otherwise noted.)
µMAX Typical Operating Characteristics (continued)
(MAX11103AUB+, TA = +25°C, unless otherwise noted.)
THD vs. INPUT RESISTANCE
fS = 3Msps
120
-75
THD (dB)
AR
-80
100
90
-85
-90
80
-95
70
-100
600
900
1200
fIN (kHz)
0
-40
-60
20
40
60
80
100
RIN (I)
REFERENCE CURRENT
vs. SAMPLING RATE
IM
fS = 3.0Msps
fIN = 1.0183MHz
-20
0
200
MAX11102 toc10
1MHz SINE-WAVE INPUT
(16,834-POINT FFT PLOT)
1500
MAX11102 toc11
300
IN
0
150
IREF (µA)
SFDR (dB)
110
AMPLITUDE (dB)
fS = 3.0Msps
fIN = 1.0183MHz
Y
MAX11102 toc08
-70
MAX11102 toc09
SFDR vs. ANALOG INPUT FREQUENCY
130
100
AHD3 = -91.2dB
-80
PR
EL
AHD2 = -110.3dB
50
-100
0
-120
250
500
750
1000
1250
0
1500
500
1000
ANALOG SUPPLY CURRENT
vs. TEMPERATURE
IVDD (mA)
3.2
VDD = 3.6V
2000
2500
3000
SNR vs. REFERENCE VOLTAGE
73.5
2.9
2.6
73.0
SNR (dB)
3.5
1500
fS (ksps)
FREQUENCY (kHz)
MAX11102 toc13
0
MAX11102 toc12
MAX11102/03/05/06/10/11/15/16/17
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
fS = 3Msps
fIN = 1.0183MHz
72.5
72.0
VDD = 3.0V
71.5
2.3
VDD = 2.2V
71.0
2.0
-40 -25 -10 5 20 35 50 65 80 95 110 125
TEMPERATURE (˚C)
2.2
2.4
2.6
2.8
3.0
3.2
3.4
VREF (V)
12 �������������������������������������������������������������������������������������
3.6
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
INTEGRAL NONLINEARITY
vs. DIGITAL OUTPUT CODE
DIFFERENTIAL NONLINEARITY
vs. DIGITAL OUTPUT CODE
0
-0.5
-1.0
3000
DIGITAL OUTPUT CODE
4000
0
GAIN ERROR (LSB)
0
PR
EL
-1
4000
GAIN ERROR vs. TEMPERATURE
MAX11102 toc16
1
3000
2
IM
2
2000
DIGITAL OUTPUT CODE
OFFSET ERROR vs. TEMPERATURE
3
1000
-2
MAX11102 toc17
2000
IN
1000
0
1
0
-1
-2
-3
-3
-4
-40 -25 -10 5 20 35 50 65 80 95 110 125
-40 -25 -10 5 20 35 50 65 80 95 110 125
TEMPERATURE (˚C)
TEMPERATURE (˚C)
HISTOGRAM FOR 30,000 CONVERSIONS
SNR AND SINAD
vs. ANALOG INPUT FREQUENCY
25,000
20,000
15,000
10,000
fS = 2.0Msps
SNR AND SINAD (dB)
30,000
73.5
MAX11102 toc18
35,000
MAX11102 toc19
OFFSET ERROR (LSB)
Y
0
-0.5
-1.0
CODE COUNT
MAX11102 toc15
0.5
DNL (LSB)
0.5
fS = 2.0Msps
AR
fS = 2.0Msps
INL (LSB)
1.0
MAX11102 toc14
1.0
73.0
SNR
72.5
SINAD
72.0
5000
71.5
0
2046
2047
2048
2049
DIGITAL CODE OUTPUT
2050
0
200
400
600
800
1000
fIN (kHz)
______________________________________________________________________________________ 13
MAX11102/03/05/06/10/11/15/16/17
SOT Typical Operating Characteristics
(MAX11105AUB+, TA = +25°C, unless otherwise noted.)
SOT Typical Operating Characteristics (continued)
(MAX11105AUB+, TA = +25°C, unless otherwise noted.)
THD vs. ANALOG INPUT FREQUENCY
SFDR vs. ANALOG INPUT FREQUENCY
fS = 2.0Msps
105
SFDR (dB)
-95
-100
95
90
-105
85
-110
80
600
800
fIN (kHz)
-75
-85
-90
0
40
60
80
AHD3 = -96.5dB
-80
2.0
AHD2 = -92.0dB
-120
0
100
250
500
750
1000
FREQUENCY (kHz)
SNR vs. REFERENCE VOLTAGE (VDD)
MAX11102 toc24
75
VDD = 3.0V
fS = 2.0Msps
fIN = 500.122kHz
74
SNR (dB)
IVDD (mA)
2.4
1000
-60
ANALOG SUPPLY CURRENT
vs. TEMPERATURE
VDD = 3.6V
800
-40
RIN (I)
2.6
600
fIN (kHz)
-100
-100
20
400
fS = 2.0Msps
fIN = 500.122kHz
-20
-95
0
200
500kHz SINE-WAVE INPUT
(16,834-POINT FFT PLOT)
IM
fS = 2.0Msps
fIN = 500.122kHz
-80
0
MAX11102 toc22
THD vs. INPUT RESISTANCE
1000
MAX11102 toc23
400
MAX11102 toc25
200
IN
0
THD (dB)
AR
100
AMPLITUDE (dB)
THD (dB)
-90
2.2
Y
fS = 2.0Msps
-85
MAX11102 toc21
110
MAX11102 toc20
-80
PR
EL
MAX11102/03/05/06/10/11/15/16/17
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
73
VDD = 2.2V
72
1.8
71
1.6
-40 -25 -10 5 20 35 50 65 80 95 110 125
TEMPERATURE (˚C)
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VDD (V)
14 �������������������������������������������������������������������������������������
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
1
AIN2
2
AGND
3
REF
4
VDD
5
+
MAX11102
MAX11103
MAX11106
MAX11111
EP*
AIN1
1
AIN2
2
10
SCLK
9
DOUT
AGND
3
8
OVDD
REF
4
7
CHSEL
VDD
5
6
CS
TOP VIEW
+
MAX11102
MAX11103
10
SCLK
9
DOUT
8
OVDD
7
CHSEL
VDD 1 +
GND 2
EP*
6
CS
AIN 3
CS
MAX11105
MAX11110
MAX11115
MAX11116
MAX11117
5
DOUT
4
SCLK
SOT23
µMAX
TDFN
6
Y
AIN1
TOP VIEW
AR
TOP VIEW
SOT23
1
1
—
2
2
—
—
—
3
NAME
FUNCTION
AIN1
Analog Input Channel 1. Single-ended analog input with respect to AGND with range
of 0V to VREF.
AIN2
Analog Input Channel 2. Single-ended analog input with respect to AGND with range
of 0V to VREF.
AIN
Analog Input Channel. Single-ended analog input with respect to GND with range of
0V to VDD.
PR
EL
µMAX
Pin Description
IM
PIN
TDFN
IN
*CONNECT EXPOSED PAD TO GROUND PLANE. DEVICES DO NOT OPERATE WHEN EP IS NOT CONNECTED TO GROUND!
—
—
2
GND
3
3
—
AGND
Ground. Connect GND to the GND ground plane.
4
4
—
REF
External Reference Input. REF defines the signal range of the input signal AIN1/AIN2:
0V to VREF. The range of VREF is 1V to VDD. Bypass REF to AGND with 10FF || 0.1FF
capacitor.
5
5
1
VDD
Positive Supply Voltage. Bypass VDD with a 10FF || 0.1FF capacitor to GND. VDD
range is 2.2V to 3.6V. For the SOT23 package, VDD also defines the signal range of
the input signal AIN: 0V to VDD.
6
6
6
CS
Active-Low Chip-Select Input. The falling edge of CS samples the analog input signal,
starts a conversion, and frames the serial data transfer.
7
7
—
CHSEL
Channel Select. Set CHSEL high to select AIN2 for conversion. Set CHSEL low to
select AIN1 for conversion.
8
8
—
OVDD
Digital Interface Supply for SCLK, CS, DOUT, and CHSEL. The OVDD range is 1.5V
to VDD. Bypass OVDD with a 10FF || 0.1FF capacitor to GND.
9
9
5
DOUT
Three-State Serial Data Output. ADC conversion results are clocked out on the falling
edge of SCLK, MSB first. See Figure 1.
10
10
4
SCLK
Serial Clock Input. SCLK drives the conversion process. DOUT is updated on the falling edge of SCLK. See Figures 2 and 3.
EP
EP
—
GND
Exposed Pad. Connect EP directly to a solid ground plane. Devices do not operate
when EP is not connected to ground!
Analog Ground. Connect AGND directly the GND ground plane.
______________________________________________________________________________________ 15
MAX11102/03/05/06/10/11/15/16/17
Pin Configurations
Functional Diagrams
CONTROL
LOGIC
SAR
VDD
CS
SCLK
MAX11102/MAX11103/
MAX11106/MAX11111
OUTPUT
BUFFER
DOUT
CHSEL
AIN
MUX
CDAC
MAX11105/MAX11110/
MAX11115/MAX11116/
MAX11117
OUTPUT
BUFFER
SAR
DOUT
CDAC
VREF = VDD
REF
GND (EP)
IM
AGND
IN
AIN1
AIN2
CONTROL
LOGIC
Y
CS
SCLK
OVDD
AR
VDD
VDD
+3V
AIN1
ANALOG
INPUTS
AIN2
MAX11102
MAX11103
MAX11106
MAX11111
AGND
REF
+2.5V
GND (EP)
Typical Operating Circuit
OVDD
PR
EL
MAX11102/03/05/06/10/11/15/16/17
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
GND (EP)
SCLK
VOVDD
SCK
CPU
DOUT
CS
MISO
SS
CHSEL
VDD
+3V
GND (EP)
ANALOG
INPUT
AIN
MAX11105
MAX11110
MAX11115
MAX11116
MAX11117
SCLK
SCK
DOUT
MISO
CS
CPU
SS
16 �������������������������������������������������������������������������������������
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
These ADCs include a power-down feature allowing
minimized power consumption at 2.5FA/ksps for lower
throughput rates. The wake-up and power-down feature
is controlled using the SPI interface as described in the
Operating Modes section.
The MAX11102/MAX11103/MAX11105/MAX11106/MAX11110/
MAX11111/MAX11115/MAX11116/MAX11117 are fast,
12-/10-/8-bit, low-power, single-supply ADCs. The
devices operate from a 2.2V to 3.6V supply and consume only 8.3mW at 3Msps and 6.2mW at 2Msps. The
3Msps devices are capable of sampling at full rate
when driven by a 48MHz clock and the 2Msps devices
can sample at full rate when driven by a 32MHz clock.
The dual-channel devices provide a separate digital
supply input (OVDD) to power the digital interface
enabling communication with 1.5V, 1.8V, 2.5V, or 3V
digital systems.
Y
Serial Interface
AR
The devices feature a 3-wire serial interface that directly
connects to SPI, QSPI, and MICROWIRE devices without
external logic. Figures 1 and 5 show the interface signals for a single conversion frame to achieve maximum
throughput.
The falling edge of CS defines the sampling instant.
Once CS transitions low, the external clock signal
(SCLK) controls the conversion.
The conversion result appears at DOUT, MSB first, with a
leading zero followed by the 12-bit, 10-bit, or 8-bit result.
A 12-bit result is followed by two trailing zeros, a 10-bit
result is followed by four trailing zeros, and an 8-bit result
is followed by six trailing zeros. See Figures 1 and 5.
IN
The SAR core successively extracts binary-weighted bits
in every clock cycle. The MSB appears on the data bus
during the 2nd clock cycle with a delay outlined in the
timing specifications. All extracted data bits appear successively on the data bus with the LSB appearing during
the 13th/11th/9th clock cycle for 12-/10-/8-bit operation.
The serial data stream of conversion bits is preceded by
a leading “zero” and succeeded by trailing “zeros.” The
data output (DOUT) goes into high-impedance state during the 16th clock cycle.
IM
The dual-channel devices feature a dedicated reference input (REF). The input signal range for AIN1/AIN2
is defined as 0V to VREF with respect to AGND. The
single-channel devices use VDD as the reference. The
input signal range of AIN is defined as 0V to VDD with
respect to GND.
PR
EL
SAMPLE
SAMPLE
CS
SCLK
DOUT
16
1
2
D9
0
HIGH
IMPEDANCE
3
4
D8
5
D7
6
D6
7
D5
8
D4
9
D3
10
D2
11
D1
12
D0
13
0
14
0
15
0
16
1
0
HIGH
IMPEDANCE
SAMPLE
SAMPLE
CS
SCLK
DOUT
16
HIGH
IMPEDANCE
1
2
0
3
D7
4
D6
5
D5
6
D4
7
D3
8
D2
9
D1
10
D0
11
0
12
0
13
0
14
0
15
0
16
1
0
HIGH
IMPEDANCE
Figure 5. 10-/8-Bit Timing Diagrams
______________________________________________________________________________________ 17
MAX11102/03/05/06/10/11/15/16/17
Detailed Description
The source impedance of the external driving stage in
conjunction with the sampling switch resistance affects
the settling performance. The THD vs. Input Resistance
graph in the Typical Operating Characteristics shows
THD sensitivity as a function of the signal source impedance. Keep the source impedance at a minimum for
high-dynamic performance applications. Use a highperformance op amp such as the MAX4430 to drive the
analog input, thereby decoupling the signal source and
the ADC.
Y
To sustain the maximum sample rate, all devices have to
be resampled immediately after the 16th clock cycle. For
lower sample rates, the CS falling edge can be delayed
leaving DOUT in a high-impedance condition. Pull CS
high after the 10th SCLK falling edge (see the Operating
Modes section).
Analog Input
AR
The devices produce a digital output that corresponds to
the analog input voltage within the specified operating
range of 0 to VREF for the dual-channel devices and 0 to
VDD for the single-channel devices.
While the ADC is in conversion mode, the sampling
switch is open presenting a pin capacitance, CP (CP
= 5pF), to the driving stage. See the Applications
Information section for information on choosing an
appropriate buffer for the ADC.
Figure 6 shows an equivalent circuit for the analog input
AIN (for single-channel devices) and AIN1/AIN2 (for
dual-channel devices). Internal protection diodes D1/D2
confine the analog input voltage within the power rails
(VDD, GND). The analog input voltage can swing from
GND - 0.3V to VDD + 0.3V without damaging the device.
Operating Modes
IN
The ICs offer two modes of operation: normal mode and
power-down mode. The logic state of the CS signal
during a conversion activates these modes. The powerdown mode can be used to optimize power dissipation
with respect to sample rate.
The electric load presented to the external stage driving the analog input varies depending on which mode
the ADC is in: track mode vs. conversion mode. In track
mode, the internal sampling capacitor CS (16pF) has to
be charged through the resistor R (R = 50I) to the input
voltage. For faithful sampling of the input, the capacitor
voltage on CS has to settle to the required accuracy during the track time.
IM
Normal Mode
In normal mode, the devices are powered up at all times,
thereby achieving their maximum throughput rates.
Figure 7 shows the timing diagram of these devices in
normal mode. The falling edge of CS samples the analog
input signal, starts a conversion, and frames the serial
data transfer.
PR
EL
MAX11102/03/05/06/10/11/15/16/17
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
VDD
SWITCH CLOSED IN TRACK MODE
SWITCH OPEN IN CONVERSION MODE
D1
R
AIN1/AIN2
AIN
CP
To remain in normal mode, keep CS low until the falling
edge of the 10th SCLK cycle. Pulling CS high after the
10th SCLK falling edge keeps the part in normal mode.
However, pulling CS high before the 10th SCLK falling
edge terminates the conversion, DOUT goes into highimpedance mode, and the device enters power-down
mode. See Figure 8.
CS
D2
Figure 6. Analog Input Circuit
KEEP CS LOW UNTIL AFTER THE 10TH SCLK FALLING EDGE
PULL CS HIGH AFTER THE 10TH SCLK FALLING EDGE
CS
SCLK
DOUT
1
2
HIGH
IMPEDANCE
3
4
5
6
7
8
9
10
11
12
13
14
VALID DATA
Figure 7. Normal Mode
18 �������������������������������������������������������������������������������������
15
16
HIGH
IMPEDANCE
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
CS
1
2
3
4
5
6
7
8
9
10
11
HIGH
IMPEDANCE
INVALID
DATA
INVALID DATA OR HIGH IMPEDANCE
CS
2
3
4
DOUT
5
6
7
8
9
10
11
INVALID DATA (DUMMY CONVERSION)
HIGH
IMPEDANCE
13
14
15
16
OUTPUT CODE
111...110
000...010
000...001
1
16
1
2
3
4
5
6
7
8
9
VALID DATA
10
11
12
13
14
15
16
HIGH
IMPEDANCE
conversions is ideal for saving power when sampling the
analog input infrequently.
PR
EL
111...101
0
N
HIGH
IMPEDANCE
FS - 1.5 x LSB
111...111
000...000
15
IM
Figure 9. Exiting Power-Down Mode
12
IN
1
14
HIGH IMPEDANCE
Figure 8. Entering Power-Down Mode
SCLK
13
AR
DOUT
12
Y
SCLK
2
3
2n-2 2n-1 2n
ANALOG
INPUT (LSB)
FULL SCALE (FS):
AIN1/AIN2 = REF (TDFN, µMax)
AIN = VDD (SOT)
n = RESOLUTION
Figure 10. ADC Transfer Function
Power-Down Mode
In power-down mode, all bias circuitry is shut down
drawing typically only 1.3FA of leakage current. To save
power, put the device in power-down mode between
conversions. Using the power-down mode between
Entering Power-Down Mode
To enter power-down mode, drive CS high between the
2nd and 10th falling edges of SCLK (see Figure 8). By
pulling CS high, the current conversion terminates and
DOUT enters high impedance.
Exiting Power-Down Mode
To exit power-down mode, implement one dummy conversion by driving CS low for at least 10 clock cycles
(see Figure 9). The data on DOUT is invalid during this
dummy conversion. The first conversion following the
dummy cycle contains a valid conversion result.
The power-up time equals the duration of the dummy
cycle, and is dependent on the clock frequency. The
power-up time for 3Msps operation (48MHz SCLK) is
333ns. The power-up time for 2Msps operation (32MHz
SCLK) is 500ns.
ADC Transfer Function
The output format is straight binary. The code transitions midway between successive integer LSB values
such as 0.5 LSB, 1.5 LSB, etc. The LSB size for singlechannel devices is VDD/2n and for dual-channel devices
is VREF/2n, where n is the resolution. The ideal transfer
characteristic is shown in Figure 10.
______________________________________________________________________________________ 19
MAX11102/03/05/06/10/11/15/16/17
PULL CS HIGH AFTER THE 2ND AND BEFORE THE 10TH SCLK FALLING EDGE
VDD = 3V
fSCLK = VARIABLE
16 CYCLES/CONVERSION
3
IVDD (mA)
3
2
2
IN
IVDD (mA)
AR
VDD = 3V
fSCLK = VARIABLE
16 CYCLES/CONVERSION
4
4
MAX11102 fig11
5
The user can also power down the ADC between conversions by using the power-down mode. Figure 12 shows
for the 3Msps device that as the sample rate is reduced,
the device remains in the power-down state longer and
the average supply current (IVDD) drops accordingly
over time. Figure 14 pertains to the 2Msps devices.
Y
Supply Current vs. Sampling Rate
For applications requiring lower throughput rates, the
user can reduce the clock frequency (fSCLK) to lower the
sample rate. Figure 11 shows the typical supply current
(IVDD) as a function of sample rate (fS) for the 3Msps
devices. The part operates in normal mode and is never
powered down. Figure 13 pertains to the 2Msps devices.
1
1
0
0
0
500
1000
1500
2000
2500
3000
Figure 11. Supply Current vs. Sample Rate (Normal Operating
Mode, 3Msps Devices)
3.0
VDD = 3V
fSCLK = 48MHz
2.5
0
IM
fS (ksps)
PR
EL
500
1000
1500
2000
fS (ksps)
Figure 13. Supply Current vs. Sample Rate (Normal Operating
Mode, 2Msps Devices)
2.0
VDD = 3V
fSCLK = 32MHz
1.5
IVDD (mA)
2.0
1.5
IVDD (mA)
MAX11102/03/05/06/10/11/15/16/17
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
1.0
1.0
0.5
0.5
0
0
200
400
600
800
1000
fS (ksps)
Figure 12. Supply Current vs. Sample Rate (Device Powered
Down Between Conversions, 3Msps Devices)
0
0
100
200
300
400
500
fS (ksps)
Figure 14. Supply Current vs. Sample Rate (Device Powered
Down Between Conversions, 2Msps Devices)
20 �������������������������������������������������������������������������������������
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
The MAX11102/MAX11103/MAX11106/MAX11111 feature dual-input channels. These devices use a channelselect (CHSEL) input to select between analog input AIN1
(CHSEL = 0) or AIN2 (CHSEL = 1). As shown in Figure
15, the CHSEL signal is required to change between the
2nd and 12th clock cycle within a regular conversion to
guarantee proper switching between channels.
Layout, Grounding, and Bypassing
Y
For best performance, use PCBs with a solid ground
plane. Ensure that digital and analog signal lines are
separated from each other. Do not run analog and digital
(especially clock) lines parallel to one another or digital
lines underneath the ADC package. Noise in the VDD
power supply, OVDD, and REF affects the ADC’s performance. Bypass the VDD, OVDD, and REF to ground with
0.1FF and 10FF bypass capacitors. Minimize capacitor
lead and trace lengths for best supply-noise rejection.
AR
14-Cycle Conversion Mode
The ICs can operate with 14 cycles per conversion.
Figure 16 shows the corresponding timing diagram.
Observe that DOUT does not go into high-impedance
mode. Also, observe that tACQ needs to be sufficiently
long to guarantee proper settling of the analog input
voltage. See the Electrical Characteristics table for tACQ
requirements and the Analog Input section for a description of the analog inputs.
Choosing an Input Amplifier
CS
SCLK
1
2
3
4
5
6
8
9
10
11
12
13
14
PR
EL
CHSEL
7
IM
IN
It is important to match the settling time of the input
amplifier to the acquisition time of the ADC. The conversion results are accurate when the ADC samples the
input signal for an interval longer than the input signal’s
worst-case settling time. By definition, settling time is
the interval between the application of an input voltage
step and the point at which the output signal reaches
DOUT
15
16
1
2
3
4
5
6
DATA CHANNEL AIN2
7
8
9
10
11
12
13
14
15
16
DATA CHANNEL AIN1
Figure 15. Channel Select Timing Diagram
SAMPLE
SAMPLE
CS
SCLK
DOUT
1
2
0
3
D11
4
D10
5
D9
6
D8
D7
7
8
D6
(MSB)
9
D5
10
D4
11
D3
12
D2
13
D1
14
D0
1
0
0
tACQ
1/fSAMPLE
tCONVERT
Figure 16. 14-Clock Cycle Operation
______________________________________________________________________________________ 21
MAX11102/03/05/06/10/11/15/16/17
Applications Information
Dual-Channel Operation
Y
Figure 17 shows a typical application circuit. The
MAX4430, offering a settling time of 37ns at 16 bits, is
an excellent choice for this application. See the THD
vs. Input Resistance graph in the Typical Operating
Characteristics.
Choosing a Reference
For devices using an external reference, the choice of
the reference determines the output accuracy of the
ADC. An ideal voltage reference provides a perfect initial
accuracy and maintains the reference voltage independent of changes in load current, temperature, and time.
Considerations in selecting a reference include initial
voltage accuracy, temperature drift, current source,
sink capability, quiescent current, and noise. Figure 17
shows a typical application circuit using the MAX6126
to provide the reference voltage. The MAX6033 and
MAX6043 are also excellent choices.
AR
and stays within a given error band centered on the
resulting steady-state amplifier output level. The ADC
input sampling capacitor charges during the sampling
cycle, referred to as the acquisition period. During this
acquisition period, the settling time is affected by the
input resistance and the input sampling capacitance.
This error can be estimated by looking at the settling of
an RC time constant using the input capacitance and
the source impedance over the acquisition time period.
IN
+5V
0.1µF
10µF
VOVDD
3V
100pF COG
IM
VDD
500I
AIN1
500I
0.1µF
10I
1
MAX4430
VDC
4
0.1µF
-5V
10µF
+5V
0.1µF
10I
1
MAX4430
VDC
AIN2
SCLK
SCK
DOUT
MISO
CS
REF
10µF
SS
CPU
CHSEL
10µF
EP
+3V
7
8
0.1µF
4
5
3
MAX11102
MAX11103
MAX11106
MAX11111
10µF
500I
AIN2
AIN1
470pF
COG CAPACITOR
100pF COG
500I
0.1µF
AGND
470pF
COG CAPACITOR
2
OVDD
10µF
5
3
PR
EL
MAX11102/03/05/06/10/11/15/16/17
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
3
OUTF
IN
2
1µF
OUTS
MAX6126
GNDS
GND
NR
1
0.1µF
-5V
4
2
0.1µF
10µF
Figure 17. Typical Application Circuit
22 �������������������������������������������������������������������������������������
0.1µF
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
Offset Error


SIGNAL RMS
SINAD(dB) = 20 × log 

NOISE + DISTORTION) RMS 
 (

Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the RMS
sum of the first five harmonics of the input signal to the
fundamental itself. This is expressed as:
IN
The deviation of the first code transition (00 . . . 000) to
(00 . . . 001) from the ideal, that is, AGND + 0.5 LSB.
.
Y
Differential Nonlinearity
Differential nonlinearity (DNL) is the difference between
an actual step width and the ideal value of 1 LSB. A DNL
error specification of ±1 LSB or less guarantees no missing codes and a monotonic transfer function.
SINAD is a dynamic figure of merit that indicates the
converter’s noise and distortion performance. SINAD
is computed by taking the ratio of the RMS signal to
the RMS noise plus distortion. RMS noise plus distortion includes all spectral components to the Nyquist
frequency excluding the fundamental and the DC offset:
AR
Integral Nonlinearity
Integral nonlinearity (INL) is the deviation of the values
on an actual transfer function from a straight line. For
these devices, the straight line is a line drawn between
the end points of the transfer function after offset and
gain errors are nulled.
Signal-to-Noise Ratio and Distortion
(SINAD)
Gain Error


V 2 + V32 + V42 + V52 
THD = 20 × log 2


V1


The deviation of the last code transition (111 . . . 110) to
(111 . . . 111) from the ideal after adjusting for the offset
error, that is, VREF - 1.5 LSB.
where V1 is the fundamental amplitude and V2–V5 are
the amplitudes of the 2nd- through 5th-order harmonics.
Aperture Delay
SFDR is a dynamic figure of merit that indicates the lowest usable input signal amplitude. SFDR is the ratio of
the RMS amplitude of the fundamental (maximum signal
component) to the RMS value of the next largest spurious component, excluding DC offset. SFDR is specified
in decibels with respect to the carrier (dBc).
IM
Aperture Jitter
Aperture jitter (tAJ) is the sample-to-sample variation in
the time between the samples.
PR
EL
Aperture delay (tAD) is the time between the falling edge
of sampling clock and the instant when an actual sample
is taken.
Signal-to-Noise Ratio (SNR)
SNR is a dynamic figure of merit that indicates the converter’s noise performance. For a waveform perfectly
reconstructed from digital samples, the theoretical maximum SNR is the ratio of the full-scale analog input (RMS
value) to the RMS quantization error (residual error).
The ideal, theoretical minimum analog-to-digital noise
is caused by quantization error only and results directly
from the ADC’s resolution (N bits):
SNR (dB) (MAX) = (6.02 x N + 1.76) (dB)
In reality, there are other noise sources such as thermal
noise, reference noise, and clock jitter that also degrade
SNR. SNR is computed by taking the ratio of the RMS
signal to the RMS noise. RMS noise includes all spectral
components to the Nyquist frequency excluding the
fundamental, the first five harmonics, and the DC offset.
Spurious-Free Dynamic Range (SFDR)
Full-Power Bandwidth
Full-power bandwidth is the frequency at which the input
signal amplitude attenuates by 3dB for a full-scale input.
Full-Linear Bandwidth
Full-linear bandwidth is the frequency at which the
signal-to-noise ratio and distortion (SINAD) is equal to a
specified value.
Intermodulation Distortion
Any device with nonlinearities creates distortion products when two sine waves at two different frequencies
(f1 and f2) are applied into the device. Intermodulation
distortion (IMD) is the total power of the IM2 to IM5 intermodulation products to the Nyquist frequency relative to
the total input power of the two input tones, f1 and f2. The
individual input tone levels are at -6dBFS.
______________________________________________________________________________________ 23
MAX11102/03/05/06/10/11/15/16/17
Definitions
Ordering Information (continued)
PIN-PACKAGE
BITS
SPEED (Msps)
NO. OF CHANNELS
10 TDFN-EP*
12
3
2
6 SOT23
12
2
1
10 TDFN-EP*
10
3
2
MAX11105AUT+
MAX11106ATB+**
10
2
8
3
MAX11115AUT+
6 SOT23
8
2
MAX11116AUT+
6 SOT23
8
MAX11117AUT+
6 SOT23
10
MAX11111ATB+**
1
2
AR
6 SOT23
10 TDFN-EP*
MAX11110AUT+
Y
PART
MAX11103ATB+**
1
3
1
3
1
IN
Note: All devices are specified over the -40°C to +125°C operating temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
**Future product—contact factory for availability.
PROCESS: CMOS
IM
Chip Information
PR
EL
MAX11102/03/05/06/10/11/15/16/17
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
Package Information
For the latest package outline information and land patterns,
go to www.maxim-ic.com/packages. Note that a “+”, “#”, or
“-” in the package code indicates RoHS status only. Package
drawings may show a different suffix character, but the drawing
pertains to the package regardless of RoHS status.
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
10 TDFN-EP
T1033+2
21-0137
10 FMAX
U10+2
21-0061
6 SOT23
U6+1
21-0058
24 �������������������������������������������������������������������������������������
2Msps/3Msps, Low-Power,
Serial 12-/10-/8-Bit ADCs
REVISION
DATE
0
4/10
PAGES
CHANGED
DESCRIPTION
Initial release
—
PR
EL
IM
IN
AR
Y
REVISION
NUMBER
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
©
2010 Maxim Integrated Products
25
Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX11102/03/05/06/10/11/15/16/17
Revision History
Similar pages