ATMEL ATMEGA645V-8MU 8-bit microcontroller with in-system programmable flash Datasheet

Features
• High Performance, Low Power AVR® 8-Bit Microcontroller
• Advanced RISC Architecture
•
•
•
•
•
•
•
– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-Chip 2-cycle Multiplier
Non-volatile Program and Data Memories
– In-System Self-Programmable Flash, Endurance: 10,000 Write/Erase Cycles
32K bytes (ATmega325/ATmega3250)
64K bytes (ATmega645/ATmega6450)
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– EEPROM, Endurance: 100,000 Write/Erase Cycles
1K bytes (ATmega325/ATmega3250)
2K bytes (ATmega645/ATmega6450)
– Internal SRAM
2K bytes (ATmega325/ATmega3250)
4K bytes (ATmega645/ATmega6450)
– Programming Lock for Software Security
JTAG (IEEE std. 1149.1 compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and
Standby
I/O and Packages
– 53/68 Programmable I/O Lines
– 64-lead TQFP, 64-pad QFN/MLF, and 100-lead TQFP
Speed Grade:
– ATmega325V/ATmega3250V/ATmega645V/ATmega6450V:
0 - 4 MHz @ 1.8 - 5.5V, 0 - 8 MHz @ 2.7 - 5.5V
– ATmega325/3250/645/6450:
0 - 8 MHz @ 2.7 - 5.5V, 0 - 16 MHz @ 4.5 - 5.5V
Temperature range:
– -40°C to 85°C Industrial
8-bit
Microcontroller
with In-System
Programmable
Flash
ATmega325/V
ATmega3250/V
ATmega645/V
ATmega6450/V
Preliminary
Summary
2570JS–AVR–11/06
ATmega325/3250/645/6450
Features (Continued)
• Ultra-Low Power Consumption
– Active Mode:
1 MHz, 1.8V: 350 µA
32 kHz, 1.8V: 20 µA (including Oscillator)
– Power-down Mode:
100 nA at 1.8V
AVCC
AGND
AREF
PF0 (ADC0)
PF1(ADC1)
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
PF6 (ADC6/TDO)
PF7 (ADC7/TDI)
DNC
DNC
PH7 (PCINT23)
PH6 (PCINT22)
PH5 (PCINT21)
PH4 (PCINT20)
DNC
DNC
GND
VCC
DNC
PA0
PA1
PA2
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
Figure 1. Pinout ATmega3250/6450
DNC
1
75
PA3
(RXD/PCINT0) PE0
2
74
PA4
(TXD/PCINT1) PE1
3
73
PA5
(XCK/AIN0/PCINT2) PE2
4
72
PA6
(AIN1/PCINT3) PE3
5
71
PA7
(USCK/SCL/PCINT4) PE4
6
70
PG2
(DI/SDA/PCINT5) PE5
7
69
PC7
(DO/PCINT6) PE6
8
68
PC6
(CLKO/PCINT7) PE7
9
67
DNC
VCC
10
66
PH3 (PCINT19)
GND
11
65
PH2 (PCINT18)
DNC
12
64
PH1 (PCINT17)
(PCINT24) PJ0
13
63
PH0 (PCINT16)
(PCINT25) PJ1
14
62
DNC
DNC
15
61
DNC
DNC
16
60
DNC
DNC
17
59
DNC
DNC
18
58
PC5
(SS/PCINT8) PB0
19
57
PC4
(SCK/PCINT9) PB1
20
56
PC3
(MOSI/PCINT10) PB2
21
55
PC2
(MISO/PCINT11) PB3
22
54
PC1
(OC0A/PCINT12) PB4
23
53
PC0
(OC1A/PCINT13) PB5
24
52
PG1
(OC1B/PCINT14) PB6
25
51
PG0
INDEX CORNER
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
DNC
(T1) PG3
(T0) PG4
RESET/PG5
VCC
GND
XTAL2 (TOSC2)
XTAL1 (TOSC1)
DNC
DNC
(PCINT26) PJ2
(PCINT27) PJ3
(PCINT28) PJ4
(PCINT29) PJ5
(PCINT30) PJ6
DNC
(ICP1) PD0
(INT0) PD1
PD2
PD3
PD4
PD5
PD6
PD7
ATmega3250/6450
(OC2A/PCINT15) PB7
Pin Configurations
2
2570JS–AVR–11/06
DNC
1
(RXD/PCINT0) PE0
2
AVCC
GND
AREF
PF0 (ADC0)
PF1 (ADC1)
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
PF6 (ADC6/TDO)
PF7 (ADC7/TDI)
GND
VCC
PA0
PA1
PA2
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Figure 2. Pinout ATmega325/645
48 PA3
47 PA4
INDEX CORNER
(TXD/PCINT1) PE1
3
46 PA5
(XCK/AIN0/PCINT2) PE2
4
45 PA6
(AIN1/PCINT3) PE3
5
44 PA7
(USCK/SCL/PCINT4) PE4
6
43 PG2
(DI/SDA/PCINT5) PE5
7
42 PC7
(DO/PCINT6) PE6
8
(CLKO/PCINT7) PE7
9
40 PC5
(SS/PCINT8) PB0
10
39 PC4
33 PG0
Disclaimer
3
PD7 32
16
PD6 31
(OC1B/PCINT14) PB6
PD5 30
34 PG1
PD4 29
15
PD3 28
(OC1A/PCINT13) PB5
PD2 27
35 PC0
PD1 (INT0) 26
14
(ICP1) PD0 25
(OC0A/PCINT12) PB4
XTAL1 (TOSC1) 24
36 PC1
GND 22
13
XTAL2 (TOSC2) 23
(MISO/PCINT11) PB3
VCC 21
37 PC2
(T0) PG4 19
38 PC3
12
RESET/PG5 20
11
(T1) PG3 18
(SCK/PCINT9) PB1
(MOSI/PCINT10) PB2
(OC2A/PCINT15) PB7 17
Note:
41 PC6
ATmega325/645
The large center pad underneath the QFN/MLF packages is made of metal and internally
connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the
board.
Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.
ATmega325/3250/645/6450
2570JS–AVR–11/06
ATmega325/3250/645/6450
Overview
The ATmega325/3250/645/6450 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega325/3250/645/6450 achieves throughputs
approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
Block Diagram
PF0 - PF7
VCC
DATA DIR.
REG. PORTF
DATA REGISTER
PORTF
PC0 - PC7
PA0 - PA7
PORTA DRIVERS
PORTF DRIVERS
PORTC DRIVERS
DATA DIR.
REG. PORTA
DATA REGISTER
PORTA
XTAL1
GND
XTAL2
Figure 3. Block Diagram
DATA REGISTER
PORTC
DATA DIR.
REG. PORTC
8-BIT DATA BUS
AVCC
AGND
CALIB. OSC
ADC
INTERNAL
OSCILLATOR
AREF
STACK
POINTER
WATCHDOG
TIMER
ON-CHIP DEBUG
PROGRAM
FLASH
SRAM
MCU CONTROL
REGISTER
BOUNDARYSCAN
INSTRUCTION
REGISTER
TIMING AND
CONTROL
TIMER/
COUNTERS
GENERAL
PURPOSE
REGISTERS
X
PROGRAMMING
LOGIC
INSTRUCTION
DECODER
CONTROL
LINES
+
-
INTERRUPT
UNIT
ALU
EEPROM
STATUS
REGISTER
AVR CPU
ANALOG
COMPARATOR
Z
Y
RESET
DATA DIR.
REG. PORTH
DATA REGISTER
PORTH
PROGRAM
COUNTER
DATA DIR.
REG. PORTJ
DATA REGISTER
PORTJ
PORTH DRIVERS
PORTJ DRIVERS
PJ0 - PJ6
PH0 - PH7
OSCILLATOR
JTAG TAP
USART
UNIVERSAL
SERIAL INTERFACE
DATA REGISTER
PORTE
DATA DIR.
REG. PORTE
PORTE DRIVERS
PE0 - PE7
SPI
DATA REGISTER
PORTB
DATA DIR.
REG. PORTB
PORTB DRIVERS
PB0 - PB7
DATA REGISTER
PORTD
DATA DIR.
REG. PORTD
PORTD DRIVERS
PD0 - PD7
DATA REG.
PORTG
DATA DIR.
REG. PORTG
PORTG DRIVERS
PG0 - PG4
4
2570JS–AVR–11/06
The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.
The ATmega325/3250/645/6450 provides the following features: 32/64K bytes of InSystem Programmable Flash with Read-While-Write capabilities, 1/2K bytes EEPROM,
2/4K byte SRAM, 54/69 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and
programming, three flexible Timer/Counters with compare modes, internal and external
interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal
Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle
mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt
system to continue functioning. The Power-down mode saves the register contents but
freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer will continue to run, allowing
the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise
Reduction mode stops the CPU and all I/O modules except asynchronous timer and
ADC to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows
very fast start-up combined with low-power consumption.
The device is manufactured using Atmel’s high density non-volatile memory technology.
The On-chip In-System re-Programmable (ISP) Flash allows the program memory to be
reprogrammed In-System through an SPI serial interface, by a conventional non-volatile
memory programmer, or by an On-chip Boot program running on the AVR core. The
Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the
Application Flash section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic
chip, the Atmel ATmega325/3250/645/6450 is a powerful microcontroller that provides a
highly flexible and cost effective solution to many embedded control applications.
The ATmega325/3250/645/6450 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program
Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.
5
ATmega325/3250/645/6450
2570JS–AVR–11/06
ATmega325/3250/645/6450
Comparison between
ATmega325,
ATmega3250,
ATmega645 and
ATmega6450
The ATmega325, ATmega3250, ATmega645, and ATmega6450 differs only in memory
sizes, pin count and pinout. Table 1 on page 6 summarizes the different configurations
for the four devices.
Table 1. Configuration Summary
General Purpose
I/O Pins
Device
Flash
EEPROM
RAM
ATmega325
32K bytes
1K bytes
2K bytes
54
ATmega3250
32K bytes
1K bytes
2K bytes
69
ATmega645
64K bytes
2K bytes
4K bytes
54
ATmega6450
64K bytes
2K bytes
4K bytes
69
Pin Descriptions
The following section describes the I/O-pin special functions.
VCC
Digital supply voltage.
GND
Ground.
Port A (PA7..PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port A pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port B has better driving capabilities than the other ports.
Port B also serves the functions of various special features of the
ATmega325/3250/645/6450 as listed on page 66.
Port C (PC7..PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port D (PD7..PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the
ATmega325/3250/645/6450 as listed on page 69.
Port E (PE7..PE0)
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
6
2570JS–AVR–11/06
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port E also serves the functions of various special features of the
ATmega325/3250/645/6450 as listed on page 70.
Port F (PF7..PF0)
Port F serves as the analog inputs to the A/D Converter.
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port F output
buffers have symmetrical drive characteristics with both high sink and source capability.
As inputs, Port F pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port F pins are tri-stated when a reset condition becomes
active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset
occurs.
Port F also serves the functions of the JTAG interface.
Port G (PG5..PG0)
Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port G output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port G pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port G also serves the functions of various special features of the
ATmega325/3250/645/6450 as listed on page 70.
Port H (PH7..PH0)
Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port H output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port H pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port H pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port H also serves the functions of various special features of the ATmega3250/6450 as
listed on page 70.
Port J (PJ6..PJ0)
Port J is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port J output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port J pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port J pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port J also serves the functions of various special features of the ATmega3250/6450 as
listed on page 70.
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table
16 on page 40. Shorter pulses are not guaranteed to generate a reset.
XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
XTAL2
Output from the inverting Oscillator amplifier.
AVCC
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally
connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter.
7
ATmega325/3250/645/6450
2570JS–AVR–11/06
ATmega325/3250/645/6450
AREF
This is the analog reference pin for the A/D Converter.
Resources
A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.
8
2570JS–AVR–11/06
Register Summary
9
Note:
Registers with bold type only available in ATmega3250/6450.
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0xFF)
Reserved
-
-
-
-
-
-
-
-
Page
(0xFE)
Reserved
-
-
-
-
-
-
-
-
(0xFD)
Reserved
-
-
-
-
-
-
-
-
(0xFC)
Reserved
-
-
-
-
-
-
-
-
(0xFB)
Reserved
-
-
-
-
-
-
-
-
(0xFA)
Reserved
-
-
-
-
-
-
-
-
(0xF9)
Reserved
-
-
-
-
-
-
-
-
(0xF8)
Reserved
-
-
-
-
-
-
-
-
(0xF7)
Reserved
-
-
-
-
-
-
-
-
(0xF6)
Reserved
-
-
-
-
-
-
-
-
(0xF5)
Reserved
-
-
-
-
-
-
-
-
(0xF4)
Reserved
-
-
-
-
-
-
-
-
(0xF3)
Reserved
-
-
-
-
-
-
-
-
(0xF2)
Reserved
-
-
-
-
-
-
-
-
(0xF1)
Reserved
-
-
-
-
-
-
-
-
(0xF0)
Reserved
-
-
-
-
-
-
-
-
(0xEF)
Reserved
-
-
-
-
-
-
-
-
(0xEE)
Reserved
-
-
-
-
-
-
-
-
(0xED)
Reserved
-
-
-
-
-
-
-
-
(0xEC)
Reserved
-
-
-
-
-
-
-
-
(0xEB)
Reserved
-
-
-
-
-
-
-
-
(0xEA)
Reserved
-
-
-
-
-
-
-
-
(0xE9)
Reserved
-
-
-
-
-
-
-
-
(0xE8)
Reserved
-
-
-
-
-
-
-
-
(0xE7)
Reserved
-
-
-
-
-
-
-
-
(0xE6)
Reserved
-
-
-
-
-
-
-
-
(0xE5)
Reserved
-
-
-
-
-
-
-
-
(0xE4)
Reserved
-
-
-
-
-
-
-
-
(0xE3)
Reserved
-
-
-
-
-
-
-
-
(0xE2)
Reserved
-
-
-
-
-
-
-
-
(0xE1)
Reserved
-
-
-
-
-
-
-
-
(0xE0)
Reserved
-
-
-
-
-
-
-
-
(0xDF)
Reserved
-
-
-
-
-
-
-
-
(0xDE)
Reserved
-
-
-
-
-
-
-
-
(0xDD)
PORTJ
-
PORTJ6
PORTJ5
PORTJ4
PORTJ3
PORTJ2
PORTJ1
PORTJ0
82
(0xDC)
DDRJ
-
DDJ6
DDJ5
DDJ4
DDJ3
DDJ2
DDJ1
DDJ0
82
(0xDB)
PINJ
-
PINJ6
PINJ5
PINJ4
PINJ3
PINJ2
PINJ1
PINJ0
82
(0xDA)
PORTH
PORTH7
PORTH6
PORTH5
PORTH4
PORTH3
PORTH2
PORTH1
PORTH0
82
(0xD9)
DDRH
DDH7
DDH6
DDH5
DDH4
DDH3
DDH2
DDH1
DDH0
82
(0xD8)
PINH
PINH7
PINH6
PINH5
PINH4
PINH3
PINH2
PINH1
PINH0
82
(0xD7)
Reserved
-
-
-
-
-
-
-
-
(0xD6)
Reserved
-
-
-
-
-
-
-
-
(0xD5)
Reserved
-
-
-
-
-
-
-
-
(0xD4)
Reserved
-
-
-
-
-
-
-
-
(0xD3)
Reserved
-
-
-
-
-
-
-
-
(0xD2)
Reserved
-
-
-
-
-
-
-
-
(0xD1)
Reserved
-
-
-
-
-
-
-
-
(0xD0)
Reserved
-
-
-
-
-
-
-
-
(0xCF)
Reserved
-
-
-
-
-
-
-
-
(0xCE)
Reserved
-
-
-
-
-
-
-
-
(0xCD)
Reserved
-
-
-
-
-
-
-
-
(0xCC)
Reserved
-
-
-
-
-
-
-
-
(0xCB)
Reserved
-
-
-
-
-
-
-
-
(0xCA)
Reserved
-
-
-
-
-
-
-
-
(0xC9)
Reserved
-
-
-
-
-
-
-
-
(0xC8)
Reserved
-
-
-
-
-
-
-
-
(0xC7)
Reserved
-
-
-
-
-
-
-
-
(0xC6)
UDR0
(0xC5)
UBRR0H
(0xC4)
UBRR0L
(0xC3)
Reserved
USART0 Data Register
173
USART0 Baud Rate Register High
176
USART0 Baud Rate Register Low
-
-
-
-
-
176
-
-
-
ATmega325/3250/645/6450
2570JS–AVR–11/06
ATmega325/3250/645/6450
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
(0xC2)
UCSR0C
-
UMSEL0
UPM01
UPM00
USBS0
UCSZ01
UCSZ00
UCPOL0
175
(0xC1)
UCSR0B
RXCIE0
TXCIE0
UDRIE0
RXEN0
TXEN0
UCSZ02
RXB80
TXB80
174
(0xC0)
UCSR0A
RXC0
TXC0
UDRE0
FE0
DOR0
UPE0
U2X0
MPCM0
173
(0xBF)
Reserved
-
-
-
-
-
-
-
-
(0xBE)
Reserved
-
-
-
-
-
-
-
-
(0xBD)
Reserved
-
-
-
-
-
-
-
-
(0xBC)
Reserved
-
-
-
-
-
-
-
-
(0xBB)
Reserved
-
-
-
-
-
-
-
-
(0xBA)
USIDR
(0xB9)
USISR
USISIF
USIOIF
USIPF
USIDC
USICNT3
USICNT2
USICNT1
USICNT0
189
(0xB8)
USICR
USISIE
USIOIE
USIWM1
USIWM0
USICS1
USICS0
USICLK
USITC
190
USI Data Register
188
(0xB7)
Reserved
-
-
-
-
-
-
-
-
(0xB6)
ASSR
-
-
-
EXCLK
AS2
TCN2UB
OCR2UB
TCR2UB
(0xB5)
Reserved
-
-
-
-
-
-
-
-
(0xB4)
Reserved
-
-
-
-
-
-
-
-
(0xB3)
OCR2A
Timer/Counter 2 Output Compare Register A
140
(0xB2)
TCNT2
Timer/Counter2
140
(0xB1)
Reserved
-
-
-
-
-
-
-
-
(0xB0)
TCCR2A
FOC2A
WGM20
COM2A1
COM2A0
WGM21
CS22
CS21
CS20
(0xAF)
Reserved
-
-
-
-
-
-
-
-
141
138
(0xAE)
Reserved
-
-
-
-
-
-
-
-
(0xAD)
Reserved
-
-
-
-
-
-
-
-
(0xAC)
Reserved
-
-
-
-
-
-
-
-
(0xAB)
Reserved
-
-
-
-
-
-
-
-
(0xAA)
Reserved
-
-
-
-
-
-
-
-
(0xA9)
Reserved
-
-
-
-
-
-
-
-
(0xA8)
Reserved
-
-
-
-
-
-
-
-
(0xA7)
Reserved
-
-
-
-
-
-
-
-
(0xA6)
Reserved
-
-
-
-
-
-
-
-
(0xA5)
Reserved
-
-
-
-
-
-
-
-
(0xA4)
Reserved
-
-
-
-
-
-
-
-
(0xA3)
Reserved
-
-
-
-
-
-
-
-
(0xA2)
Reserved
-
-
-
-
-
-
-
-
(0xA1)
Reserved
-
-
-
-
-
-
-
-
(0xA0)
Reserved
-
-
-
-
-
-
-
-
(0x9F)
Reserved
-
-
-
-
-
-
-
-
(0x9E)
Reserved
-
-
-
-
-
-
-
-
(0x9D)
Reserved
-
-
-
-
-
-
-
-
(0x9C)
Reserved
-
-
-
-
-
-
-
-
(0x9B)
Reserved
-
-
-
-
-
-
-
-
(0x9A)
Reserved
-
-
-
-
-
-
-
-
(0x99)
Reserved
-
-
-
-
-
-
-
-
(0x98)
Reserved
-
-
-
-
-
-
-
-
(0x97)
Reserved
-
-
-
-
-
-
-
-
(0x96)
Reserved
-
-
-
-
-
-
-
-
(0x95)
Reserved
-
-
-
-
-
-
-
-
(0x94)
Reserved
-
-
-
-
-
-
-
-
(0x93)
Reserved
-
-
-
-
-
-
-
-
(0x92)
Reserved
-
-
-
-
-
-
-
-
(0x91)
Reserved
-
-
-
-
-
-
-
-
(0x90)
Reserved
-
-
-
-
-
-
-
-
(0x8F)
Reserved
-
-
-
-
-
-
-
-
(0x8E)
Reserved
-
-
-
-
-
-
-
-
(0x8D)
Reserved
-
-
-
-
-
-
-
-
(0x8C)
Reserved
-
-
-
-
-
-
-
-
(0x8B)
OCR1BH
Timer/Counter1 Output Compare Register B High
(0x8A)
OCR1BL
Timer/Counter1 Output Compare Register B Low
124
(0x89)
OCR1AH
Timer/Counter1 Output Compare Register A High
124
(0x88)
OCR1AL
Timer/Counter1 Output Compare Register A Low
124
(0x87)
ICR1H
Timer/Counter1 Input Capture Register High
124
(0x86)
ICR1L
Timer/Counter1 Input Capture Register Low
124
(0x85)
TCNT1H
Timer/Counter1 High
124
(0x84)
TCNT1L
Timer/Counter1 Low
124
124
10
2570JS–AVR–11/06
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0x83)
Reserved
-
-
-
-
-
-
-
-
Page
(0x82)
TCCR1C
FOC1A
FOC1B
-
-
-
-
-
-
123
(0x81)
TCCR1B
ICNC1
ICES1
-
WGM13
WGM12
CS12
CS11
CS10
122
120
(0x80)
TCCR1A
COM1A1
COM1A0
COM1B1
COM1B0
-
-
WGM11
WGM10
(0x7F)
DIDR1
-
-
-
-
-
-
AIN1D
AIN0D
195
(0x7E)
DIDR0
ADC7D
ADC6D
ADC5D
ADC4D
ADC3D
ADC2D
ADC1D
ADC0D
212
(0x7D)
Reserved
-
-
-
-
-
-
-
-
(0x7C)
ADMUX
REFS1
REFS0
ADLAR
MUX4
MUX3
MUX2
MUX1
MUX0
208
(0x7B)
ADCSRB
-
ACME
-
-
-
ADTS2
ADTS1
ADTS0
193/211
(0x7A)
ADCSRA
ADEN
ADSC
ADATE
ADIF
ADIE
ADPS2
ADPS1
ADPS0
(0x79)
ADCH
210
ADC Data Register High
211
(0x78)
ADCL
(0x77)
Reserved
-
-
-
ADC Data Register Low
-
-
-
-
-
211
(0x76)
Reserved
-
-
-
-
-
-
-
-
(0x75)
Reserved
-
-
-
-
-
-
-
-
(0x74)
Reserved
-
-
-
-
-
-
-
-
(0x73)
PCMSK3
-
PCINT30
PCINT29
PCINT28
PCINT27
PCINT26
PCINT25
PCINT24
(0x72)
Reserved
-
-
-
-
-
-
-
-
(0x71)
Reserved
-
-
-
-
-
-
-
-
(0x70)
TIMSK2
-
-
-
-
-
-
OCIE2A
TOIE2
143
(0x6F)
TIMSK1
-
-
ICIE1
-
-
OCIE1B
OCIE1A
TOIE1
125
(0x6E)
TIMSK0
-
-
-
-
-
-
OCIE0A
TOIE0
96
(0x6D)
PCMSK2
PCINT23
PCINT22
PCINT21
PCINT20
PCINT19
PCINT18
PCINT17
PCINT16
57
(0x6C)
PCMSK1
PCINT15
PCINT14
PCINT13
PCINT12
PCINT11
PCINT10
PCINT9
PCINT8
57
(0x6B)
PCMSK0
PCINT7
PCINT6
PCINT5
PCINT4
PCINT3
PCINT2
PCINT1
PCINT0
57
(0x6A)
Reserved
-
-
-
-
-
-
-
-
(0x69)
EICRA
-
-
-
-
-
-
ISC01
ISC00
(0x68)
Reserved
-
-
-
-
-
-
-
-
(0x67)
Reserved
-
-
-
-
-
-
-
-
(0x66)
OSCCAL
(0x65)
Reserved
-
-
-
-
-
-
-
-
56
54
Oscillator Calibration Register [CAL7..0]
29
(0x64)
PRR
-
-
-
-
PRTIM1
PRSPI
PSUSART0
PRADC
(0x63)
Reserved
-
-
-
-
-
-
-
-
(0x62)
Reserved
-
-
-
-
-
-
-
-
(0x61)
CLKPR
CLKPCE
-
-
-
CLKPS3
CLKPS2
CLKPS1
CLKPS0
31
(0x60)
WDTCR
-
-
-
WDCE
WDE
WDP2
WDP1
WDP0
45
I
T
H
S
V
N
Z
C
11
37
0x3F (0x5F)
SREG
0x3E (0x5E)
SPH
Stack Pointer High
0x3D (0x5D)
SPL
Stack Pointer Low
0x3C (0x5C)
Reserved
-
-
-
-
-
-
-
-
0x3B (0x5B)
Reserved
-
-
-
-
-
-
-
-
0x3A (0x5A)
Reserved
-
-
-
-
-
-
-
-
0x39 (0x59)
Reserved
-
-
-
-
-
-
-
-
0x38 (0x58)
Reserved
-
-
-
-
-
-
-
-
0x37 (0x57)
SPMCSR
SPMIE
RWWSB
-
RWWSRE
BLBSET
PGWRT
PGERS
SPMEN
249
0x36 (0x56)
Reserved
51/66/222
13
13
0x35 (0x55)
MCUCR
JTD
-
-
PUD
-
-
IVSEL
IVCE
0x34 (0x54)
MCUSR
-
-
-
JTRF
WDRF
BORF
EXTRF
PORF
43
0x33 (0x53)
SMCR
-
-
-
-
SM2
SM1
SM0
SE
34
0x32 (0x52)
Reserved
-
-
-
-
-
-
-
-
0x31 (0x51)
OCDR
IDRD/OCDR7
OCDR6
OCDR5
OCDR4
OCDR3
OCDR2
OCDR1
OCDR0
218
0x30 (0x50)
ACSR
ACD
ACBG
ACO
ACI
ACIE
ACIC
ACIS1
ACIS0
193
0x2F (0x4F)
Reserved
-
-
-
-
-
-
-
-
0x2E (0x4E)
SPDR
0x2D (0x4D)
SPSR
SPIF
WCOL
-
-
-
-
-
SPI2X
153
0x2C (0x4C)
SPCR
SPIE
SPE
DORD
MSTR
CPOL
CPHA
SPR1
SPR0
151
0x2B (0x4B)
GPIOR2
General Purpose I/O Register
0x2A (0x4A)
GPIOR1
General Purpose I/O Register
0x29 (0x49)
Reserved
-
-
-
0x28 (0x48)
Reserved
-
-
-
0x27 (0x47)
OCR0A
Timer/Counter0 Output Compare A
96
0x26 (0x46)
TCNT0
Timer/Counter0
95
0x25 (0x45)
Reserved
11
SPI Data Register
-
-
-
153
24
24
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ATmega325/3250/645/6450
2570JS–AVR–11/06
ATmega325/3250/645/6450
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0x24 (0x44)
TCCR0A
FOC0A
WGM00
COM0A1
COM0A0
WGM01
CS02
CS01
CS00
93
0x23 (0x43)
GTCCR
TSM
-
-
-
-
-
PSR2
PSR10
98/145
0x22 (0x42)
EEARH
-
-
-
-
-
0x21 (0x41)
EEARL
EEPROM Address Register Low
0x20 (0x40)
EEDR
EEPROM Data Register
0x1F (0x3F)
EECR
-
-
-
-
EERIE
EEPROM Address Register High
Page
20
20
20
EEMWE
EEWE
EERE
General Purpose I/O Register
20
0x1E (0x3E)
GPIOR0
0x1D (0x3D)
EIMSK
PCIE3
PCIE2
PCIE1
PCIE0
-
-
-
INT0
24
55
0x1C (0x3C)
EIFR
PCIF3
PCIF2
PCIF1
PCIF0
-
-
-
INTF0
56
0x1B (0x3B)
Reserved
-
-
-
-
-
-
-
-
0x1A (0x3A)
Reserved
-
-
-
-
-
-
-
-
0x19 (0x39)
Reserved
-
-
-
-
-
-
-
-
0x18 (0x38)
Reserved
-
-
-
-
-
-
-
-
0x17 (0x37)
TIFR2
-
-
-
-
-
-
OCF2A
TOV2
143
0x16 (0x36)
TIFR1
-
-
ICF1
-
-
OCF1B
OCF1A
TOV1
125
0x15 (0x35)
TIFR0
-
-
-
-
-
-
OCF0A
TOV0
96
0x14 (0x34)
PORTG
-
-
-
PORTG4
PORTG3
PORTG2
PORTG1
PORTG0
82
0x13 (0x33)
DDRG
-
-
-
DDG4
DDG3
DDG2
DDG1
DDG0
82
0x12 (0x32)
PING
-
-
PING5
PING4
PING3
PING2
PING1
PING0
82
0x11 (0x31)
PORTF
PORTF7
PORTF6
PORTF5
PORTF4
PORTF3
PORTF2
PORTF1
PORTF0
81
0x10 (0x30)
DDRF
DDF7
DDF6
DDF5
DDF4
DDF3
DDF2
DDF1
DDF0
81
0x0F (0x2F)
PINF
PINF7
PINF6
PINF5
PINF4
PINF3
PINF2
PINF1
PINF0
81
0x0E (0x2E)
PORTE
PORTE7
PORTE6
PORTE5
PORTE4
PORTE3
PORTE2
PORTE1
PORTE0
81
0x0D (0x2D)
DDRE
DDE7
DDE6
DDE5
DDE4
DDE3
DDE2
DDE1
DDE0
81
0x0C (0x2C)
PINE
PINE7
PINE6
PINE5
PINE4
PINE3
PINE2
PINE1
PINE0
81
0x0B (0x2B)
PORTD
PORTD7
PORTD6
PORTD5
PORTD4
PORTD3
PORTD2
PORTD1
PORTD0
81
0x0A (0x2A)
DDRD
DDD7
DDD6
DDD5
DDD4
DDD3
DDD2
DDD1
DDD0
81
81
0x09 (0x29)
PIND
PIND7
PIND6
PIND5
PIND4
PIND3
PIND2
PIND1
PIND0
0x08 (0x28)
PORTC
PORTC7
PORTC6
PORTC5
PORTC4
PORTC3
PORTC2
PORTC1
PORTC0
80
0x07 (0x27)
DDRC
DDC7
DDC6
DDC5
DDC4
DDC3
DDC2
DDC1
DDC0
80
0x06 (0x26)
PINC
PINC7
PINC6
PINC5
PINC4
PINC3
PINC2
PINC1
PINC0
80
0x05 (0x25)
PORTB
PORTB7
PORTB6
PORTB5
PORTB4
PORTB3
PORTB2
PORTB1
PORTB0
80
0x04 (0x24)
DDRB
DDB7
DDB6
DDB5
DDB4
DDB3
DDB2
DDB1
DDB0
80
0x03 (0x23)
PINB
PINB7
PINB6
PINB5
PINB4
PINB3
PINB2
PINB1
PINB0
80
0x02 (0x22)
PORTA
PORTA7
PORTA6
PORTA5
PORTA4
PORTA3
PORTA2
PORTA1
PORTA0
80
0x01 (0x21)
DDRA
DDA7
DDA6
DDA5
DDA4
DDA3
DDA2
DDA1
DDA0
80
0x00 (0x20)
PINA
PINA7
PINA6
PINA5
PINA4
PINA3
PINA2
PINA1
PINA0
80
Note:
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega325/3250/645/6450 is a complex microcontroller with more peripheral units than can be supported within the 64
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only
the ST/STS/STD and LD/LDS/LDD instructions can be used.
12
2570JS–AVR–11/06
Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD
Rd, Rr
Add two Registers
Rd ← Rd + Rr
Z,C,N,V,H
ADC
Rd, Rr
Add with Carry two Registers
Rd ← Rd + Rr + C
Z,C,N,V,H
1
ADIW
Rdl,K
Add Immediate to Word
Rdh:Rdl ← Rdh:Rdl + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract two Registers
Rd ← Rd - Rr
Z,C,N,V,H
1
SUBI
Rd, K
Subtract Constant from Register
Rd ← Rd - K
Z,C,N,V,H
1
SBC
Rd, Rr
Subtract with Carry two Registers
Rd ← Rd - Rr - C
Z,C,N,V,H
1
SBCI
Rd, K
Subtract with Carry Constant from Reg.
Rd ← Rd - K - C
Z,C,N,V,H
1
SBIW
Rdl,K
Subtract Immediate from Word
Rdh:Rdl ← Rdh:Rdl - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND Registers
Rd ← Rd • Rr
Z,N,V
1
ANDI
Rd, K
Logical AND Register and Constant
Rd ← Rd • K
Z,N,V
1
OR
Rd, Rr
Logical OR Registers
Rd ← Rd v Rr
Z,N,V
1
ORI
Rd, K
Logical OR Register and Constant
Rd ← Rd v K
Z,N,V
1
EOR
Rd, Rr
Exclusive OR Registers
Rd ← Rd ⊕ Rr
Z,N,V
1
1
COM
Rd
One’s Complement
Rd ← 0xFF − Rd
Z,C,N,V
1
NEG
Rd
Two’s Complement
Rd ← 0x00 − Rd
Z,C,N,V,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd ← Rd v K
Z,N,V
1
CBR
Rd,K
Clear Bit(s) in Register
Rd ← Rd • (0xFF - K)
Z,N,V
1
INC
Rd
Increment
Rd ← Rd + 1
Z,N,V
1
DEC
Rd
Decrement
Rd ← Rd − 1
Z,N,V
1
TST
Rd
Test for Zero or Minus
Rd ← Rd • Rd
Z,N,V
1
CLR
Rd
Clear Register
Rd ← Rd ⊕ Rd
Z,N,V
1
SER
Rd
Set Register
Rd ← 0xFF
None
1
MUL
Rd, Rr
Multiply Unsigned
R1:R0 ← Rd x Rr
Z,C
2
MULS
Rd, Rr
Multiply Signed
R1:R0 ← Rd x Rr
Z,C
2
MULSU
Rd, Rr
Multiply Signed with Unsigned
R1:R0 ← Rd x Rr
Z,C
2
FMUL
Rd, Rr
Fractional Multiply Unsigned
R1:R0 ← (Rd x Rr) <<
1
R1:R0 ← (Rd x Rr) << 1
R1:R0 ← (Rd x Rr) << 1
Z,C
2
Z,C
2
Z,C
2
2
FMULS
Rd, Rr
Fractional Multiply Signed
FMULSU
Rd, Rr
Fractional Multiply Signed with Unsigned
BRANCH INSTRUCTIONS
RJMP
k
IJMP
Relative Jump
PC ← PC + k + 1
None
Indirect Jump to (Z)
PC ← Z
None
2
JMP
k
Direct Jump
PC ← k
None
3
RCALL
k
Relative Subroutine Call
PC ← PC + k + 1
None
3
Indirect Call to (Z)
PC ← Z
None
3
Direct Subroutine Call
PC ← k
None
4
RET
Subroutine Return
PC ← STACK
None
4
RETI
Interrupt Return
PC ← STACK
I
4
ICALL
CALL
k
CPSE
Rd,Rr
Compare, Skip if Equal
if (Rd = Rr) PC ← PC + 2 or 3
None
CP
Rd,Rr
Compare
Rd − Rr
Z, N,V,C,H
1
CPC
Rd,Rr
Compare with Carry
Rd − Rr − C
Z, N,V,C,H
1
CPI
Rd,K
Compare Register with Immediate
Rd − K
Z, N,V,C,H
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b)=0) PC ← PC + 2 or 3
None
1/2/3
1/2/3
1
SBRS
Rr, b
Skip if Bit in Register is Set
if (Rr(b)=1) PC ← PC + 2 or 3
None
1/2/3
SBIC
P, b
Skip if Bit in I/O Register Cleared
if (P(b)=0) PC ← PC + 2 or 3
None
1/2/3
SBIS
P, b
Skip if Bit in I/O Register is Set
if (P(b)=1) PC ← PC + 2 or 3
None
1/2/3
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC←PC+k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC←PC+k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC ← PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC ← PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC ← PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC ← PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC ← PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC ← PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC ← PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC ← PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N ⊕ V= 0) then PC ← PC + k + 1
None
1/2
BRLT
k
Branch if Less Than Zero, Signed
if (N ⊕ V= 1) then PC ← PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC ← PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC ← PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC ← PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC ← PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC ← PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC ← PC + k + 1
None
1/2
13
ATmega325/3250/645/6450
2570JS–AVR–11/06
ATmega325/3250/645/6450
Mnemonics
Operands
Description
Operation
Flags
#Clocks
BRIE
k
Branch if Interrupt Enabled
if ( I = 1) then PC ← PC + k + 1
None
1/2
BRID
k
Branch if Interrupt Disabled
if ( I = 0) then PC ← PC + k + 1
None
1/2
BIT AND BIT-TEST INSTRUCTIONS
SBI
P,b
Set Bit in I/O Register
I/O(P,b) ← 1
None
2
CBI
P,b
Clear Bit in I/O Register
I/O(P,b) ← 0
None
2
LSL
Rd
Logical Shift Left
Rd(n+1) ← Rd(n), Rd(0) ← 0
Z,C,N,V
1
LSR
Rd
Logical Shift Right
Rd(n) ← Rd(n+1), Rd(7) ← 0
Z,C,N,V
1
ROL
Rd
Rotate Left Through Carry
Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)
Z,C,N,V
1
ROR
Rd
Rotate Right Through Carry
Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n) ← Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)
None
1
BSET
s
Flag Set
SREG(s) ← 1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s) ← 0
SREG(s)
1
BST
Rr, b
Bit Store from Register to T
T ← Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b) ← T
None
1
SEC
Set Carry
C←1
C
1
CLC
Clear Carry
C←0
C
1
SEN
Set Negative Flag
N←1
N
1
CLN
Clear Negative Flag
N←0
N
1
SEZ
Set Zero Flag
Z←1
Z
1
CLZ
Clear Zero Flag
Z←0
Z
1
SEI
Global Interrupt Enable
I←1
I
1
CLI
Global Interrupt Disable
I←0
I
1
SES
Set Signed Test Flag
S←1
S
1
CLS
Clear Signed Test Flag
S←0
S
1
SEV
Set Twos Complement Overflow.
V←1
V
1
CLV
Clear Twos Complement Overflow
V←0
V
1
SET
Set T in SREG
T←1
T
1
CLT
Clear T in SREG
T←0
T
1
SEH
CLH
Set Half Carry Flag in SREG
Clear Half Carry Flag in SREG
H←1
H←0
H
H
1
1
Rd ← Rr
Rd+1:Rd ← Rr+1:Rr
None
1
None
1
1
DATA TRANSFER INSTRUCTIONS
MOV
Rd, Rr
Move Between Registers
MOVW
Rd, Rr
Copy Register Word
LDI
Rd, K
Load Immediate
Rd ← K
None
LD
Rd, X
Load Indirect
Rd ← (X)
None
2
LD
Rd, X+
Load Indirect and Post-Inc.
Rd ← (X), X ← X + 1
None
2
2
LD
Rd, - X
Load Indirect and Pre-Dec.
X ← X - 1, Rd ← (X)
None
LD
Rd, Y
Load Indirect
Rd ← (Y)
None
2
LD
Rd, Y+
Load Indirect and Post-Inc.
Rd ← (Y), Y ← Y + 1
None
2
LD
Rd, - Y
Load Indirect and Pre-Dec.
Y ← Y - 1, Rd ← (Y)
None
2
LDD
Rd,Y+q
Load Indirect with Displacement
Rd ← (Y + q)
None
2
LD
Rd, Z
Load Indirect
Rd ← (Z)
None
2
LD
Rd, Z+
Load Indirect and Post-Inc.
Rd ← (Z), Z ← Z+1
None
2
LD
Rd, -Z
Load Indirect and Pre-Dec.
Z ← Z - 1, Rd ← (Z)
None
2
LDD
Rd, Z+q
Load Indirect with Displacement
Rd ← (Z + q)
None
2
LDS
Rd, k
Load Direct from SRAM
Rd ← (k)
None
2
ST
X, Rr
Store Indirect
(X) ← Rr
None
2
ST
X+, Rr
Store Indirect and Post-Inc.
(X) ← Rr, X ← X + 1
None
2
ST
- X, Rr
Store Indirect and Pre-Dec.
X ← X - 1, (X) ← Rr
None
2
ST
Y, Rr
Store Indirect
(Y) ← Rr
None
2
ST
Y+, Rr
Store Indirect and Post-Inc.
(Y) ← Rr, Y ← Y + 1
None
2
ST
- Y, Rr
Store Indirect and Pre-Dec.
Y ← Y - 1, (Y) ← Rr
None
2
STD
Y+q,Rr
Store Indirect with Displacement
(Y + q) ← Rr
None
2
ST
Z, Rr
Store Indirect
(Z) ← Rr
None
2
ST
Z+, Rr
Store Indirect and Post-Inc.
(Z) ← Rr, Z ← Z + 1
None
2
ST
-Z, Rr
Store Indirect and Pre-Dec.
Z ← Z - 1, (Z) ← Rr
None
2
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q) ← Rr
None
2
STS
k, Rr
Store Direct to SRAM
(k) ← Rr
None
2
Load Program Memory
R0 ← (Z)
None
3
LPM
LPM
Rd, Z
Load Program Memory
Rd ← (Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Inc
Rd ← (Z), Z ← Z+1
None
3
Store Program Memory
(Z) ← R1:R0
None
-
IN
Rd, P
In Port
Rd ← P
None
1
OUT
P, Rr
Out Port
P ← Rr
None
1
PUSH
Rr
Push Register on Stack
STACK ← Rr
None
2
SPM
14
2570JS–AVR–11/06
Mnemonics
POP
Operands
Rd
Description
Pop Register from Stack
Operation
Rd ← STACK
Flags
#Clocks
None
2
MCU CONTROL INSTRUCTIONS
NOP
No Operation
None
1
SLEEP
Sleep
(see specific descr. for Sleep function)
None
1
WDR
BREAK
Watchdog Reset
Break
(see specific descr. for WDR/timer)
For On-chip Debug Only
None
None
1
N/A
15
ATmega325/3250/645/6450
2570JS–AVR–11/06
ATmega325/3250/645/6450
Ordering Information
ATmega325
Speed (MHz)(3)
8
16
Notes:
Ordering Code
Package Type(1)
1.8 - 5.5V
ATmega325V-8AI
ATmega325V-8AU(2)
ATmega325V-8MI
ATmega325V-8MU(2)
64A
64A
64M1
64M1
Industrial
(-40°C to 85°C)
2.7 - 5.5V
ATmega325-16AI
ATmega325-16AU(2)
ATmega325-16MI
ATmega325-16MU(2)
64A
64A
64M1
64M1
Industrial
(-40°C to 85°C)
Power Supply
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
3. For Speed vs. VCC see Figure 130 on page 292 and Figure 131 on page 293.
Package Type
64A
64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)
64M1
64-pad, 9 x 9 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
100A
100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
16
2570JS–AVR–11/06
ATmega3250
Speed (MHz)(3)
Power Supply
8
16
Notes:
Ordering Code
Package Type(1)
1.8 - 5.5V
ATmega3250V-8AI
ATmega3250V-8AU(2)
100A
100A
Industrial
(-40°C to 85°C)
2.7 - 5.5V
ATmega3250-16AI
ATmega3250-16AU(2)
100A
100A
Industrial
(-40°C to 85°C)
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
3. For Speed vs. VCC see Figure 130 on page 292 and Figure 131 on page 293.
Package Type
64A
64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)
64M1
64-pad, 9 x 9 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
100A
100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
17
ATmega325/3250/645/6450
2570JS–AVR–11/06
ATmega325/3250/645/6450
ATmega645
Speed (MHz)(3)
8
16
Notes:
Ordering Code
Package Type(1)
1.8 - 5.5V
ATmega645V-8AI
ATmega645V-8AU(2)
ATmega645V-8MI
ATmega645V-8MU(2)
64A
64A
64M1
64M1
Industrial
(-40°C to 85°C)
2.7 - 5.5V
ATmega645-16AI
ATmega645-16AU(2)
ATmega645-16MI
ATmega645-16MU(2)
64A
64A
64M1
64M1
Industrial
(-40°C to 85°C)
Power Supply
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
3. For Speed vs. VCC see Figure 130 on page 292 and Figure 131 on page 293.
Package Type
64A
64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)
64M1
64-pad, 9 x 9 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
100A
100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
18
2570JS–AVR–11/06
ATmega6450
Speed (MHz)(3)
Power Supply
8
16
Notes:
Ordering Code
Package Type(1)
1.8 - 5.5V
ATmega6450V-8AI
ATmega6450V-8AU(2)
100A
100A
Industrial
(-40°C to 85°C)
2.7 - 5.5V
ATmega6450-16AI
ATmega6450-16AU(2)
100A
100A
Industrial
(-40°C to 85°C)
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
3. For Speed vs. VCC see Figure 130 on page 292 and Figure 131 on page 293.
Package Type
64A
64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)
64M1
64-pad, 9 x 9 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
100A
100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
19
ATmega325/3250/645/6450
2570JS–AVR–11/06
ATmega325/3250/645/6450
Packaging Information
64A
PIN 1
B
PIN 1 IDENTIFIER
E1
e
E
D1
D
C
0˚~7˚
A1
A2
A
L
COMMON DIMENSIONS
(Unit of Measure = mm)
Notes:
1. This package conforms to JEDEC reference MS-026, Variation AEB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.
SYMBOL
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
A2
0.95
1.00
1.05
D
15.75
16.00
16.25
D1
13.90
14.00
14.10
E
15.75
16.00
16.25
E1
13.90
14.00
14.10
B
0.30
–
0.45
C
0.09
–
0.20
L
0.45
–
0.75
e
NOTE
Note 2
Note 2
0.80 TYP
10/5/2001
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
DRAWING NO.
REV.
64A
B
20
2570JS–AVR–11/06
64M1
D
Marked Pin# 1 ID
E
C
SEATING PLANE
A1
TOP VIEW
A
K
0.08 C
L
Pin #1 Corner
D2
1
2
3
Option A
SIDE VIEW
Pin #1
Triangle
COMMON DIMENSIONS
(Unit of Measure = mm)
E2
Option B
Pin #1
Chamfer
(C 0.30)
SYMBOL
MIN
NOM
MAX
A
0.80
0.90
1.00
–
0.02
0.05
0.18
0.25
0.30
A1
b
K
Option C
b
e
Pin #1
Notch
(0.20 R)
BOTTOM VIEW
Note: 1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.
2. Dimension and tolerance conform to ASMEY14.5M-1994.
D
8.90
9.00
9.10
D2
5.20
5.40
5.60
E
8.90
9.00
9.10
E2
5.20
5.40
5.60
e
NOTE
0.50 BSC
L
0.35
0.40
0.45
K
1.25
1.40
1.55
5/25/06
R
21
2325 Orchard Parkway
San Jose, CA 95131
TITLE
64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm,
5.40 mm Exposed Pad, Micro Lead Frame Package (MLF)
DRAWING NO.
64M1
REV.
G
ATmega325/3250/645/6450
2570JS–AVR–11/06
ATmega325/3250/645/6450
100A
PIN 1
B
PIN 1 IDENTIFIER
E1
e
E
D1
D
C
0˚~7˚
A1
A2
A
L
COMMON DIMENSIONS
(Unit of Measure = mm)
Notes:
1. This package conforms to JEDEC reference MS-026, Variation AED.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.08 mm maximum.
SYMBOL
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
A2
0.95
1.00
1.05
D
15.75
16.00
16.25
D1
13.90
14.00
14.10
E
15.75
16.00
16.25
E1
13.90
14.00
14.10
B
0.17
–
0.27
C
0.09
–
0.20
L
0.45
–
0.75
e
NOTE
Note 2
Note 2
0.50 TYP
10/5/2001
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
DRAWING NO.
100A
REV.
C
22
2570JS–AVR–11/06
Errata
ATmega325 Rev. C
• Interrupts may be lost when writing the timer registers in the asynchronous timer
1. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/ Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2.
ATmega325 Rev. B
Not sampled.
ATmega325 Rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer
1. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/ Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2.
ATmega3250 Rev. C
• Interrupts may be lost when writing the timer registers in the asynchronous timer
1. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/ Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2.
ATmega3250 Rev. B
Not sampled.
23
ATmega325/3250/645/6450
2570JS–AVR–11/06
ATmega325/3250/645/6450
ATmega3250 Rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer
1. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/ Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2.
ATmega645 Rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer
1. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/ Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2.
ATmega6450 Rev. A
• Interrupts may be lost when writing the timer registers in the asynchronous timer
1. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/ Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2.
24
2570JS–AVR–11/06
Datasheet Revision
History
Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision.
Rev. 2570J – 11/06
1.
2.
Updated Table 125 on page 296.
Updated note in Table 125 on page 296.
1.
2.
3.
4.
5.
6.
Updated Table 33 on page 89.
Updated Table 47 on page 94, Table 49 on page 94, Table 54 on page 121,
Table 56 on page 122, Table 59 on page 138 and Table 61 on page 139.
Updated “Fast PWM Mode” on page 112.
Updated Features in “USI – Universal Serial Interface” on page 181.
Added “Clock speed considerations.” on page 188.
Updated “Errata” on page 342.
1.
2.
3.
Updated “Calibrated Internal RC Oscillator” on page 28.
Updated “OSCCAL – Oscillator Calibration Register” on page 29.
Added Table 126 on page 296.
1.
Updated “Calibrated Internal RC Oscillator” on page 28.
1.
Updated “Errata” on page 340.
1.
2.
3.
4.
5.
6.
7.
8.
9.
Added Addresses in Register Descriptions.
Updated number of Genearl Purpose I/O pins.
Correction of Bitnames in “Register Summary” on page 10.
Added “Resources” on page 8.
Updated “Power Management and Sleep Modes” on page 33.
Updated “Bit 0 – IVCE: Interrupt Vector Change Enable” on page 51.
Updated Introduction in “I/O-Ports” on page 58.
Updated “SPI – Serial Peripheral Interface” on page 146.
Updated “Bit 6 – ACBG: Analog Comparator Bandgap Select” on page
194.
Updated Features in “Analog to Digital Converter” on page 196.
Updated “Prescaling and Conversion Timing” on page 199.
Updated “ATmega325/3250/645/6450 Boot Loader Parameters” on page
257.
Updated “DC Characteristics” on page 290.
Rev. 2570I – 07/06
Rev. 2570H – 06/06
Rev. 2570G – 04/06
Rev. 2570F – 03/06
Rev. 2570E – 03/06
10
11.
12.
13.
25
ATmega325/3250/645/6450
2570JS–AVR–11/06
ATmega325/3250/645/6450
Rev. 2570D – 05/05
1.
2.
3.
4.
5.
6.
7.
8.
9.
MLF-package alternative changed to “Quad Flat No-Lead/Micro Lead
Frame Package QFN/MLF”.
Added “Pin Change Interrupt Timing” on page 53.
Updated “Signature Bytes” on page 261.
Updated Table 121 on page 276.
Added Figure 123 on page 277.
Updated Figure 92 on page 204 and Figure 116 on page 269.
Updated algorithm “Enter Programming Mode” on page 264.
Added “Supply Current of I/O modules” on page 301.
Updated “Ordering Information” on page 17.
Rev. 2570C – 11/04
1.
2.
3.
5.
6.
7.
8.
“Features (Continued)” on page 2 updated.
Table 10 on page 29 updated.
COM01:0 renamed COM0A1:0 in “8-bit Timer/Counter0 with PWM” on
page 83.
PRR-bit descripton added to “16-bit Timer/Counter1” on page 99, “SPI –
Serial Peripheral Interface” on page 146, and “USART0” on page 155.
“Part Number” on page 220 updated.
“Typical Characteristics – Preliminary Data” on page 296 updated.
“DC Characteristics” on page 290 updated.
“Alternate Functions of Port G” on page 74 updated.
1.
Updated “Ordering Information” on page 17.
1.
Initial revision.
4.
Rev. 2570B – 09/04
Rev. 2570A – 09/04
26
2570JS–AVR–11/06
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© 2006 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR®, Everywhere You Are ® and AVR Studio ® are registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
2570JS–AVR–11/06
Similar pages