80960JA/JF/JD/JT 3.3 V EMBEDDED 32-BIT MICROPROCESSOR Advance Information Datasheet Product Features ■ ■ ■ ■ ■ Pin/Code Compatible with all 80960Jx Processors High-Performance Embedded Architecture —One Instruction/Clock Execution —Core Clock Rate is: 80960JA/JF 1x the Bus Clock 80960JD 2x the Bus Clock 80960JT 3x the Bus Clock —Load/Store Programming Model —Sixteen 32-Bit Global Registers —Sixteen 32-Bit Local Registers (8 sets) —Nine Addressing Modes —User/Supervisor Protection Model Two-Way Set Associative Instruction Cache —80960JA - 2 Kbyte —80960JF/JD - 4 Kbyte —80960JT - 16 Kbyte —Programmable Cache-Locking Mechanism Direct Mapped Data Cache —80960JA - 1 Kbyte —80960JF/JD - 2 Kbyte —80960JT - 4 Kbyte —Write Through Operation On-Chip Stack Frame Cache —Seven Register Sets Can Be Saved —Automatic Allocation on Call/Return —0-7 Frames Reserved for High-Priority Interrupts ■ ■ ■ ■ ■ ■ ■ ■ On-Chip Data RAM —1 Kbyte Critical Variable Storage —Single-Cycle Access 3.3 V Supply Voltage —5 V Tolerant Inputs —TTL Compatible Outputs High Bandwidth Burst Bus —32-Bit Multiplexed Address/Data —Programmable Memory Configuration —Selectable 8-, 16-, 32-Bit Bus Widths —Supports Unaligned Accesses —Big or Little Endian Byte Ordering High-Speed Interrupt Controller —31 Programmable Priorities —Eight Maskable Pins plus NMI —Up to 240 Vectors in Expanded Mode Two On-Chip Timers —Independent 32-Bit Counting —Clock Prescaling by 1, 2, 4 or 8 —lnternal Interrupt Sources Halt Mode for Low Power IEEE 1149.1 (JTAG) Boundary Scan Compatibility Packages —132-Lead Pin Grid Array (PGA) —132-Lead Plastic Quad Flat Pack (PQFP) —196-Ball Mini Plastic Ball Grid Array (MPBGA) Notice: This document contains information on products in the sampling and initial production phases of development. The specifications are subject to change without notice. Verify with your local Intel sales office that you have the latest datasheet before finalizing a design. Order Number: 273159-001 March, 1998 80960JA/JF/JD/JT 3.3 V Microprocessor Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The 80960JA/JF/JD/JT 3.3 V Microprocessor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800548-4725 or by visiting Intel’s website at http://www.intel.com. Copyright © Intel Corporation, 1998 *Third-party brands and names are the property of their respective owners. Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Contents 1.0 Introduction .................................................................................................................. 7 2.0 80960Jx Overview ...................................................................................................... 7 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 3.0 Package Information ...............................................................................................14 3.1 3.2 3.3 4.0 Pin Descriptions ..................................................................................................16 3.1.1 Functional Pin Definitions.......................................................................16 3.1.2 80960Jx 132-Lead PGA Pinout..............................................................22 3.1.3 80960Jx 132-Lead PQFP Pinout............................................................26 3.1.4 80960Jx 196-Ball MPBGA Pinout ..........................................................29 Package Thermal Specifications .........................................................................34 Thermal Management Accessories.....................................................................38 3.3.1 Heatsinks................................................................................................38 Electrical Specifications ........................................................................................39 4.1 4.2 4.3 4.4 4.5 4.6 4.7 5.0 80960 Processor Core .......................................................................................... 9 Burst Bus.............................................................................................................10 Timer Unit............................................................................................................10 Priority Interrupt Controller ..................................................................................10 Instruction Set Summary .....................................................................................11 Faults and Debugging .........................................................................................11 Low Power Operation..........................................................................................11 Test Features ......................................................................................................12 Memory-Mapped Control Registers ....................................................................12 Data Types and Memory Addressing Modes ......................................................12 Absolute Maximum Ratings.................................................................................39 Operating Conditions...........................................................................................39 Connection Recommendations ...........................................................................40 VCC5 Pin Requirements (VDIFF) .......................................................................40 VCCPLL Pin Requirements.................................................................................41 DC Specifications ................................................................................................42 AC Specifications ................................................................................................44 4.7.1 AC Test Conditions and Derating Curves ..............................................47 4.7.2 AC Timing Waveforms ...........................................................................52 Bus Functional Waveforms..................................................................................58 5.1 5.2 Basic Bus States .................................................................................................68 Boundary-Scan Register .....................................................................................69 6.0 Device Identification ...............................................................................................74 7.0 Revision History .......................................................................................................77 Advance Information Datasheet 3 80960JA/JF/JD/JT 3.3 V Microprocessor Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 4 80960Jx Microprocessor Package Options...........................................................7 80960Jx Block Diagram ........................................................................................9 132-Lead Pin Grid Array Bottom View - Pins Facing Up.....................................22 132-Lead Pin Grid Array Top View - Pins Facing Down .....................................23 132-Lead PQFP - Top View ................................................................................26 196-Ball Mini Plastic Ball Grid Array Bottom View - Balls Facing Up ..................29 196-Ball Mini Plastic Ball Grid Array Top View - Balls Facing Down ..................30 VCC5 Current-Limiting Resistor ..........................................................................40 VCCPLL Lowpass Filter ......................................................................................41 AC Test Load ......................................................................................................47 Output Delay or Hold vs. Load Capacitance .......................................................48 TLX vs. AD Bus Load Capacitance......................................................................48 80960JA/JF ICC Active (Power Supply) vs. Frequency .......................................49 80960JA/JF ICC Active (Thermal) vs. Frequency ................................................49 80960JD ICC Active (Power Supply) vs. Frequency............................................50 80960JD ICC Active (Thermal) vs. Frequency.....................................................50 80960JT ICC Active (Power Supply) vs. Frequency ...........................................51 80960JT ICC Active (Thermal) vs. Frequency .....................................................51 CLKIN Waveform ................................................................................................52 TOV1 Output Delay Waveform .............................................................................52 TOF Output Float Waveform................................................................................53 TIS1 and TIH1 Input Setup and Hold Waveform ...................................................53 TIS2 and TIH2 Input Setup and Hold Waveform ...................................................53 TIS3 and TIH3 Input Setup and Hold Waveform ...................................................54 TIS4 and TIH4 Input Setup and Hold Waveform ...................................................54 TLX, TLXL and TLXA Relative Timings Waveform.................................................55 DT/R and DEN Timings Waveform .....................................................................55 TCK Waveform....................................................................................................56 TBSIS1 and TBSIH1 Input Setup and Hold Waveforms .........................................56 TBSOV1 and TBSOF1 Output Delay and Output Float Waveform..........................56 TBSOV2 and TBSOF2 Output Delay and Output Float Waveform..........................57 TBSIS2 and TBSIH2 Input Setup and Hold Waveform ...........................................57 Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus .........58 Burst Read and Write Transactions Without Wait States, 32-Bit Bus .................59 Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus...........................60 Burst Read and Write Transactions Without Wait States, 8-Bit Bus ...................61 Burst Read and Write Transactions With 1, 0 Wait States and Extra Tr State on Read, 16-Bit Bus .....................................................................62 Double Word Read Bus Request, Misaligned One Byte From Quad Word Boundary, 32-Bit Bus, Little Endian .................................................63 HOLD/HOLDA Waveform For Bus Arbitration ....................................................64 Cold Reset Waveform .........................................................................................65 Warm Reset Waveform .......................................................................................66 Entering the ONCE State ....................................................................................67 Bus States with Arbitration ..................................................................................68 Summary of Aligned and Unaligned Accesses (32-Bit Bus) ...............................72 Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued) ...........73 80960JT Device Identification Register...............................................................74 80960JD Device Identification Register ..............................................................75 80960JA/JF Device Identification Register .........................................................76 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Tables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 80960Jx Instruction Set.......................................................................................13 Pin Description Nomenclature.............................................................................16 Pin Description — External Bus Signals .............................................................17 Pin Description — Processor Control Signals, Test Signals and Power .............20 Pin Description — Interrupt Unit Signals .............................................................21 132-Lead PGA Pinout — In Signal Order............................................................24 132-Lead PGA Pinout — In Pin Order ................................................................25 132-Lead PQFP Pinout — In Signal Order .........................................................27 132-Lead PQFP Pinout — In Pin Order ..............................................................28 196-Ball MPBGA Pinout — In Signal Order ........................................................31 196-Ball MPBGA Pinout — In Pin Order .............................................................33 132-Lead PGA Package Thermal Characteristics...............................................35 196-Ball MPBGA Package Thermal Characteristics ...........................................35 132-Lead PQFP Package Thermal Characteristics ............................................36 Maximum TA at Various Airflows in °C (80960JT) ...............................................36 Maximum TA at Various Airflows in °C (80960JD) ..............................................37 Maximum TA at Various Airflows in °C (80960JA/JF)..........................................37 Absolute Maximum Ratings.................................................................................39 80960Jx Operating Conditions ............................................................................39 VDIFF Parameters ..............................................................................................40 80960Jx DC Characteristics................................................................................42 80960Jx ICC Characteristics................................................................................42 80960Jx AC Characteristics ................................................................................44 Note Definitions for Table 23, 80960Jx AC Characteristics (pg. 44) ...................47 Boundary-Scan Register Bit Order......................................................................69 Natural Boundaries for Load and Store Accesses ..............................................70 Summary of Byte Load and Store Accesses.......................................................70 Summary of Short Word Load and Store Accesses............................................70 Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)...........................71 80960Jx Device Type and Stepping Reference ..................................................74 Fields of 80960JT Device ID ...............................................................................75 80960JT Device ID Model Types ........................................................................75 Fields of 80960JD Device ID...............................................................................76 80960JD Device ID Model Types........................................................................76 Fields of 80960JA/JF Device ID ..........................................................................77 80960JA/JF Device ID Model Types ...................................................................77 Data Sheet Revision History ...............................................................................77 Advance Information Datasheet 5 80960JA/JF/JD/JT 3.3 V Microprocessor 1.0 Introduction This document contains information for the 80960Jx microprocessor, including electrical characteristics and package pinout information. Detailed functional descriptions — other than parametric performance — are published in the i960® Jx Microprocessor Developer’s Manual (272483). Figure 1. 80960Jx Microprocessor Package Options i A80960JX XXXXXXXXSS M © 19xx i960 i ® i GD80960JX XXXXXXXSS M © 19xx NG80960JX XXXXXXXX SS M © 19xx 136-Ball MPBGA 132-Pin PQFP 132-Pin PGA Throughout this data sheet, references to “80960Jx” indicate features that apply to all of the following: • 80960JA — 3.3 V (5 V Tolerant), 2 Kbyte instruction cache, 1 Kbyte data cache • 80960JF — 3.3 V (5 V Tolerant), 4 Kbyte instruction cache, 2 Kbyte data cache • 80960JD — 3.3 V (5 V Tolerant), 4 Kbyte instruction cache, 2 Kbyte data cache and clock doubling • 80960JT — 3.3 V (5 V Tolerant), 16 Kbyte instruction cache, 4 Kbyte data cache and clock tripling 2.0 80960Jx Overview The 80960Jx offers high performance to cost-sensitive 32-bit embedded applications. The 80960Jx is object code compatible with the 80960 Core Architecture and is capable of sustained execution at the rate of one instruction per clock. This processor’s features include generous instruction cache, data cache and data RAM. It also boasts a fast interrupt mechanism and dual-programmable timer units. The 80960Jx’s clock multiplication operates the processor core at two or three times the bus clock rate to improve execution performance without increasing the complexity of board designs. Memory subsystems for cost-sensitive embedded applications often impose substantial wait state penalties. The 80960Jx integrates considerable storage resources on-chip to decouple CPU execution from the external bus. Advance Information Datasheet 7 80960JA/JF/JD/JT 3.3 V Microprocessor The 80960Jx rapidly allocates and deallocates local register sets during context switches. The processor needs to flush a register set to the stack only when it saves more than seven sets to its local register cache. A 32-bit multiplexed burst bus provides a high-speed interface to system memory and I/O. A full complement of control signals simplifies the connection of the 80960Jx to external components. The user programs physical and logical memory attributes through memory-mapped control registers (MMRs) — an extension not found on the i960 Kx, Sx or Cx processors. Physical and logical configuration registers enable the processor to operate with all combinations of bus width and data object alignment. The processor supports a homogeneous byte ordering model. This processor integrates two important peripherals: a timer unit, and an interrupt controller. These and other hardware resources are programmed through memory-mapped control registers, an extension to the familiar 80960 architecture. The timer unit (TU) offers two independent 32-bit timers for use as real-time system clocks and general-purpose system timing. These operate in either single-shot or auto-reload mode and can generate interrupts. The interrupt controller unit (ICU) provides a flexible, low-latency means for requesting interrupts. The ICU provides full programmability of up to 240 interrupt sources into 31 priority levels. The ICU takes advantage of a cached priority table and optional routine caching to minimize interrupt latency. Clock doubling reduces interrupt latency by 40% compared to the 80960JA/JF, and clock tripling reduces interrupt latency by 20% compared to the 80960JD. Local registers may be dedicated to high-priority interrupts to further reduce latency. Acting independently from the core, the ICU compares the priorities of posted interrupts with the current process priority, off-loading this task from the core. The ICU also supports the integrated timer interrupts. The 80960Jx features a Halt mode designed to support applications where low power consumption is critical. The halt instruction shuts down instruction execution, resulting in a power savings of up to 90 percent. The 80960Jx’s testability features, including ONCE (On-Circuit Emulation) mode and Boundary Scan (JTAG), provide a powerful environment for design debug and fault diagnosis. The Solutions960® program features a wide variety of development tools which support the i960 processor family. Many of these tools are developed by partner companies; some are developed by Intel, such as profile-driven optimizing compilers. For more information on these products, contact your local Intel representative. 8 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 2. 80960Jx Block Diagram CLKIN 32-bit buses address / data PLL, Clocks, Power Mgmt Instruction Cache Bus Control Unit 80960JA - 2K 80960JF/JD - 4K TAP 5 Bus Request Queues 80960JT - 16K Boundary Scan Controller Constants DEST SRC1 32-bit Address 32-bit Data DEST SRC1 SRC2 DEST Memory Interface Unit 3 Independent 32-Bit SRC1, SRC2, and DEST Buses 2.1 Address/ Data Bus 32 Interrupt Port Programmable Interrupt Controller 9 Control Execution and Address Generation Unit effective address SRC2 SRC2 DEST Multiply Divide Unit SRC1 SRC1 21 Two 32-Bit Timers 8-Set Local Register Cache Global / Local Register File Control Two-Way Set Associative Instruction Sequencer 128 Physical Region Configuration Memory-Mapped Register Interface 1K Data RAM Direct Mapped Data Cache 80960JA - 1K 80960JF/JD - 2K 80960JT - 4K 80960 Processor Core The 80960Jx family is a scalar implementation of the 80960 Core Architecture. Intel designed this processor core as a very high performance device that is also cost-effective. Factors that contribute to the core’s performance include: • • • • • • • • • • Core operates at the bus speed with the 80960JA/JF Core operates at two or three times the bus speed with the 80960JD and 80960JT respectively Single-clock execution of most instructions Independent Multiply/Divide Unit Efficient instruction pipeline minimizes pipeline break latency Register and resource scoreboarding allow overlapped instruction execution 128-bit register bus speeds local register caching Two-way set associative, integrated instruction cache Direct-mapped, integrated data cache 1 Kbyte integrated data RAM delivers zero wait state program data Advance Information Datasheet 9 80960JA/JF/JD/JT 3.3 V Microprocessor 2.2 Burst Bus A 32-bit high-performance Bus Controller Unit (BCU) interfaces the 80960Jx to external memory and peripherals. The BCU fetches instructions and transfers data at the rate of up to four 32-bit words per six clock cycles. The external address/data bus is multiplexed. Users may configure the 80960Jx’s bus controller to match an application’s fundamental memory organization. Physical bus width is register-programmed for up to eight regions. Byte ordering and data caching are programmed through a group of logical memory templates and a defaults register. The BCU’s features include: • • • • • • Multiplexed external bus to minimize pin count 32-, 16- and 8-bit bus widths to simplify I/O interfaces External ready control for address-to-data, data-to-data and data-to-next-address wait state types Support for big or little endian byte ordering to facilitate the porting of existing program code Unaligned bus accesses performed transparently Three-deep load/store queue to decouple the bus from the core Upon reset, the 80960Jx conducts an internal self-test. Then, before executing its first instruction, it performs an external bus confidence test by performing a checksum on the first words of the initialization boot record (IBR). The user may examine the contents of the caches by executing special cache control instructions. 2.3 Timer Unit The timer unit (TU) contains two independent 32-bit timers that are capable of counting at several clock rates and generating interrupts. Each is programmed by use of the TU registers. These memory-mapped registers are addressable on 32-bit boundaries. The timers have a single-shot mode and auto-reload capabilities for continuous operation. Each timer has an independent interrupt request to the 80960Jx’s interrupt controller. The TU can generate a fault when unauthorized writes from user mode are detected. Clock prescaling is supported. 2.4 Priority Interrupt Controller A programmable interrupt controller manages up to 240 external sources through an 8-bit external interrupt port. Alternatively, the interrupt inputs may be configured for individual edge- or level-triggered inputs. The interrupt unit (IU) also accepts interrupts from the two on-chip timer channels and a single Non-Maskable Interrupt (NMI) pin. Interrupts are serviced according to their priority levels relative to the current process priority. Low interrupt latency is critical to many embedded applications. As part of its highly flexible interrupt mechanism, the 80960Jx exploits several techniques to minimize latency: • • • • 10 Interrupt vectors and interrupt handler routines can be reserved on-chip Register frames for high-priority interrupt handlers can be cached on-chip The interrupt stack can be placed in cacheable memory space Interrupt microcode executes at two or three times the bus frequency for the 80960JD and 80960JT respectively Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor 2.5 Instruction Set Summary The 80960Jx adds several new instructions to the i960 core architecture. The new instructions are: • • • • • • • Conditional Move Conditional Add Conditional Subtract Byte Swap Halt Cache Control Interrupt Control Table 1 identifies the instructions that the 80960Jx supports. Refer to the i960® Jx Microprocessor Developer’s Manual (272483) for a detailed description of each instruction. 2.6 Faults and Debugging The 80960Jx employs a comprehensive fault model. The processor responds to faults by making implicit calls to a fault handling routine. Specific information collected for each fault allows the fault handler to diagnose exceptions and recover appropriately. The processor also has built-in debug capabilities. In software, the 80960Jx may be configured to detect as many as seven different trace event types. Alternatively, mark and fmark instructions can generate trace events explicitly in the instruction stream. Hardware breakpoint registers are also available to trap on execution and data addresses. 2.7 Low Power Operation Intel fabricates the 80960Jx using an advanced sub-micron manufacturing process. The processor’s sub-micron topology provides the circuit density for optimal cache size and high operating speeds while dissipating modest power. The processor also uses dynamic power management to turn off clocks to unused circuits. Users may program the 80960Jx to enter Halt mode for maximum power savings. In Halt mode, the processor core stops completely while the integrated peripherals continue to function, reducing overall power requirements up to 90 percent. Processor execution resumes from internally or externally generated interrupts. Advance Information Datasheet 11 80960JA/JF/JD/JT 3.3 V Microprocessor 2.8 Test Features The 80960Jx incorporates numerous features which enhance the user’s ability to test both the processor and the system to which it is attached. These features include ONCE (On-Circuit Emulation) mode and Boundary Scan (JTAG). The 80960Jx provides testability features compatible with IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE Std. 1149.1). One of the boundary scan instructions, HIGHZ, forces the processor to float all its output pins (ONCE mode). ONCE mode can also be initiated at reset without using the boundary scan mechanism. ONCE mode is useful for board-level testing. This feature allows a mounted 80960Jx to electrically “remove” itself from a circuit board. This allows for system-level testing where a remote tester — such as an in-circuit emulator — can exercise the processor system. The provided test logic does not interfere with component or circuit board behavior and ensures that components function correctly, connections between various components are correct, and various components interact correctly on the printed circuit board. The JTAG Boundary Scan feature is an attractive alternative to conventional “bed-of-nails” testing. It can examine connections which might otherwise be inaccessible to a test system. 2.9 Memory-Mapped Control Registers The 80960Jx, though compliant with i960 series processor core, has the added advantage of memory-mapped, internal control registers not found on the i960 Kx, Sx or Cx processors. These give software the interface to easily read and modify internal control registers. Each of these registers is accessed as a memory-mapped, 32-bit register. Access is accomplished through regular memory-format instructions. The processor ensures that these accesses do not generate external bus cycles. 2.10 Data Types and Memory Addressing Modes As with all i960 family processors, the 80960Jx instruction set supports several data types and formats: • • • • • • Bit Bit fields Integer (8-, 16-, 32-, 64-bit) Ordinal (8-, 16-, 32-, 64-bit unsigned integers) Triple word (96 bits) Quad word (128 bits) The 80960Jx provides a full set of addressing modes for C and assembly programming: • • • • 12 Two Absolute modes Five Register Indirect modes Index with displacement IP with displacement Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 1. 80960Jx Instruction Set Data Movement Arithmetic Logical Bit, Bit Field and Byte Add Subtract Multiply And Divide Not And Remainder And Not Load Modulo Or Store Shift Exclusive Or Move Extended Shift Not Or *Conditional Select Extended Multiply Or Not Load Address Extended Divide Nor Add with Carry Exclusive Nor Subtract with Carry Not *Conditional Add Nand Set Bit Clear Bit Not Bit Alter Bit Scan For Bit Span Over Bit Extract Modify Scan Byte for Equal *Byte Swap *Conditional Subtract Rotate Comparison Branch Compare Conditional Compare Compare and Increment Compare and Decrement Test Condition Code Fault Call Unconditional Branch Call Extended Conditional Branch Call System Compare and Branch Return Conditional Fault Synchronize Faults Branch and Link Check Bit Debug Call/Return Processor Management Atomic Flush Local Registers Modify Arithmetic Controls Modify Trace Controls Mark Force Mark Modify Process Controls Atomic Add *Halt Atomic Modify System Control *Cache Control *Interrupt Control Asterisk (*) denotes new 80960Jx instructions unavailable on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations. Advance Information Datasheet 13 80960JA/JF/JD/JT 3.3 V Microprocessor 3.0 Package Information The 80960Jx is offered with four speeds and three package types. The 132-pin Pin Grid Array (PGA) device is specified for operation at VCC = 3.3 V ± 0.15 V over a case temperature range of 0° to 100°C: • • • • • • • • • A80960JT-100 (100 MHz core, 33 MHz bus) A80960JT-75 (75 MHz core, 25 MHz bus) A80960JD-66 (66 MHz core, 33 MHz bus) A80960JD-50 (50 MHz core, 25 MHz bus) A80960JD-40 (40 MHz core, 20 MHz bus) A80960JD-33 (33 MHz core, 16 MHz bus) A80960JA/JF-33 (33 MHz) A80960JA/JF-25 (25 MHz) A80960JA/JF-16 (16 MHz) The 132-pin Plastic Quad Flatpack (PQFP) devices are specified for operation at VCC = 3.3 V ± 0.15 V over a case temperature range of 0° to 100°C: • • • • • • • • • NG80960JT-100 (100 MHz core, 33 MHz bus) NG80960JT-75 (75 MHz core, 25 MHz bus) NG80960JD-66 (66 MHz core, 33 MHz bus) NG80960JD-50 (50 MHz core, 25 MHz bus) NG80960JD-40 (40 MHz core, 20 MHz bus) NG80960JD-33 (33 MHz core, 16 MHz bus) NG80960JA/JF-33 (33 MHz) NG80960JA/JF-25 (25 MHz) NG80960JA/JF-16 (16 MHz) An extended temperature 132-pin Plastic Quad Flatpack (PQFP) device is specified for operation at VCC = 3.3 V ± 0.15 V over a case temperature range of -40° to 100°C: • TG80960JA-25 (25 MHz) 14 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor The 196-ball Mini Plastic Ball Grid Array (MPBGA) device is specified for operation at VCC = 3.3 V ± 0.15 V over a case temperature range of 0° to 100°C: • • • • • • • • GD80960JT-100 (100 MHz core, 33 MHz bus) GD80960JT-75 (75 MHz core, 25 MHz bus) GD80960JD-50 (50 MHz core, 25 MHz bus) GD80960JD-40 (40 MHz core, 20 MHz bus) GD80960JD-33 (33 MHz core, 16 MHz bus) GD80960JA/JF-33 (33 MHz) GD80960JA/JF-25 (25 MHz) GD80960JA/JF-16 (16 MHz) For package specifications and information, refer to Intel’s Packaging Handbook (240800). Advance Information Datasheet 15 80960JA/JF/JD/JT 3.3 V Microprocessor 3.1 Pin Descriptions This section describes the pins for the 80960Jx in the 132-pin ceramic Pin Grid Array (PGA) package, 132-lead Plastic Quad Flatpack Package (PQFP) and 196-ball Mini Plastic Ball Grid Array (MPBGA). Section 3.1.1, “Functional Pin Definitions”, describes pin function; Section 3.1.2, “80960Jx 132-Lead PGA Pinout”, Section 3.1.3, “80960Jx 132-Lead PQFP Pinout” and Section 3.1.4, “80960Jx 196-Ball MPBGA Pinout”, define the signal and pin locations for the supported package types. 3.1.1 Functional Pin Definitions Table 2 presents the legend for interpreting the pin descriptions which follow. Pins associated with the bus interface are described in Table 3. Pins associated with basic control and test functions are described in Table 4. Pins associated with the Interrupt Unit are described in Table 5. Table 2. Pin Description Nomenclature Symbol Description I Input pin only. O Output pin only. I/O Pin can be either an input or output. – Pin must be connected as described. Synchronous. Inputs must meet setup and hold times relative to CLKIN for proper operation. S S(E) Edge sensitive input S(L) Level sensitive input Asynchronous. Inputs may be asynchronous relative to CLKIN. A (...) A(E) Edge sensitive input A(L) Level sensitive input While the processor’s RESET pin is asserted, the pin: R (...) R(1) is driven to VCC R(0) is driven to VSS R(Q) is a valid output R(X) is driven to unknown state R(H) is pulled up to VCC While the processor is in the hold state, the pin: H (...) H(1) is driven to VCC H(0) is driven to VSS H(Q) Maintains previous state or continues to be a valid output H(Z) Floats While the processor is halted, the pin: P (...) 16 P(1) is driven to VCC P(0) is driven to VSS P(Q) Maintains previous state or continues to be a valid output Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 3. Pin Description — External Bus Signals (Sheet 1 of 3) NAME TYPE DESCRIPTION ADDRESS / DATA BUS carries 32-bit physical addresses and 8-, 16- or 32-bit data to and from memory. During an address (Ta) cycle, bits 31:2 contain a physical word address (bits 0-1 indicate SIZE; see below). During a data (Td) cycle, read or write data is present on one or more contiguous bytes, comprising AD31:24, AD23:16, AD15:8 and AD7:0. During write operations, unused pins are driven to determinate values. SIZE, which comprises bits 0-1 of the AD lines during a Ta cycle, specifies the number of data transfers during the bus transaction. AD31:0 I/O S(L) R(X) H(Z) P(Q) AD1 AD0 Bus Transfers 0 0 1 1 0 1 0 1 1 Transfer 2 Transfers 3 Transfers 4 Transfers When the processor enters Halt mode, if the previous bus operation was a: • write — AD31:2 are driven with the last data value on the AD bus. • read — AD31:4 are driven with the last address value on the AD bus; AD3:2 are driven with the value of A3:2 from the last data cycle. Typically, AD1:0 reflect the SIZE information of the last bus transaction (either instruction fetch or load/store) that was executed before entering Halt mode. ALE O R(0) H(Z) P(0) ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is asserted during a Ta cycle and deasserted before the beginning of the Td state. It is active HIGH and floats to a high impedance state during a hold cycle (Th). ALE O R(1) H(Z) P(1) ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is the inverted version of ALE. This signal gives the 80960Jx a high degree of compatibility with existing 80960Kx systems. ADS O R(1) H(Z) P(1) ADDRESS STROBE indicates a valid address and the start of a new bus access. The processor asserts ADS for the entire Ta cycle. External bus control logic typically samples ADS at the end of the cycle. ADDRESS3:2 comprise a partial demultiplexed address bus. A3:2 O R(X) H(Z) P(Q) 32-bit memory accesses: the processor asserts address bits A3:2 during Ta. The partial word address increments with each assertion of RDYRCV during a burst. 16-bit memory accesses: the processor asserts address bits A3:1 during Ta with A1 driven on the BE1 pin. The partial short word address increments with each assertion of RDYRCV during a burst. 8-bit memory accesses: the processor asserts address bits A3:0 during Ta, with A1:0 driven on BE1:0. The partial byte address increments with each assertion of RDYRCV during a burst. Advance Information Datasheet 17 80960JA/JF/JD/JT 3.3 V Microprocessor Table 3. Pin Description — External Bus Signals (Sheet 2 of 3) NAME TYPE DESCRIPTION BYTE ENABLES select which of up to four data bytes on the bus participate in the current bus access. Byte enable encoding is dependent on the bus width of the memory region accessed: BE3:0 O R(1) H(Z) P(1) 32-bit bus: BE3 enables data on AD31:24 BE2 enables data on AD23:16 BE1 enables data on AD15:8 BE0 enables data on AD7:0 16-bit bus: BE3 becomes Byte High Enable (enables data on AD15:8) BE2 is not used (state is high) BE1 becomes Address Bit 1 (A1) BE0 becomes Byte Low Enable (enables data on AD7:0) 8-bit bus: BE3 is not used (state is high) BE2 is not used (state is high) BE1 becomes Address Bit 1 (A1) BE0 becomes Address Bit 0 (A0) The processor asserts byte enables, byte high enable and byte low enable during Ta. Since unaligned bus requests are split into separate bus transactions, these signals do not toggle during a burst. They remain active through the last Td cycle. For accesses to 8- and 16-bit memory, the processor asserts the address bits in conjunction with A3:2 described above. WIDTH/HALTED signals denote the physical memory attributes for a bus transaction: WIDTH/ HLTD1:0 O R(0) H(Z) P(1) WIDTH/HLTD1 WIDTH/HLTD0 0 0 1 1 0 1 0 1 8 Bits Wide 16 Bits Wide 32 Bits Wide Processor Halted The processor floats the WIDTH/HLTD pins whenever it relinquishes the bus in response to a HOLD request, regardless of prior operating state. D/C O R(X) H(Z) P(Q) W/R O R(0) H(Z) P(Q) DT/R O R(0) H(Z) P(Q) DEN 18 O R(1) H(Z) P(1) DATA/CODE indicates that a bus access is a data access (1) or an instruction access (0). D/C has the same timing as W/R. 0 = instruction access 1 = data access WRITE/READ specifies, during a Ta cycle, whether the operation is a write (1) or read (0). It is latched on-chip and remains valid during Td cycles. 0 = read 1 = write DATA TRANSMIT / RECEIVE indicates the direction of data transfer to and from the address/data bus. It is low during Ta and Tw/Td cycles for a read; it is high during Ta and Tw/Td cycles for a write. DT/R never changes state when DEN is asserted. 0 = receive 1 = transmit DATA ENABLE indicates data transfer cycles during a bus access. DEN is asserted at the start of the first data cycle in a bus access and deasserted at the end of the last data cycle. DEN is used with DT/R to provide control for data transceivers connected to the data bus. 0 = data cycle 1 = not data cycle Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 3. Pin Description — External Bus Signals (Sheet 3 of 3) NAME TYPE BLAST O R(1) H(Z) P(1) DESCRIPTION BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the last data transfer of burst and non-burst accesses. BLAST remains active as long as wait states are inserted via the RDYRCV pin. BLAST becomes inactive after the final data transfer in a bus cycle. 0 = last data transfer 1 = not last data transfer READY/RECOVER indicates that data on AD lines can be sampled or removed. If RDYRCV is not asserted during a Td cycle, the Td cycle is extended to the next cycle by inserting a wait state (Tw). RDYRCV I S(L) 0 = sample data 1 = don’t sample data The RDYRCV pin has another function during the recovery (Tr) state. The processor continues to insert additional recovery states until it samples the pin HIGH. This function gives slow external devices more time to float their buffers before the processor begins to drive address again. 0 = insert wait states 1 = recovery complete BUS LOCK indicates that an atomic read-modify-write operation is in progress. The LOCK output is asserted in the first clock of an atomic operation and deasserted in the last data transfer of the sequence. The processor does not grant HOLDA while it is asserting LOCK. This prevents external agents from accessing memory involved in semaphore operations. LOCK/ ONCE I/O S(L) R(H) H(Z) P(1) 0 = Atomic read-modify-write in progress 1 = Atomic read-modify-write not in progress ONCE MODE: The processor samples the ONCE input during reset. If it is asserted LOW at the end of reset, the processor enters ONCE mode. In ONCE mode, the processor stops all clocks and floats all output pins. The pin has a weak internal pullup which is active during reset to ensure normal operation when the pin is left unconnected. 0 = ONCE mode enabled 1 = ONCE mode not enabled HOLD I S(L) HOLD: A request from an external bus master to acquire the bus. When the processor receives HOLD and grants bus control to another master, it asserts HOLDA, floats the address/data and control lines and enters the Th state. When HOLD is deasserted, the processor deasserts HOLDA and enters either the Ti or Ta state, resuming control of the address/data and control lines. 0 = no hold request 1 = hold request HOLDA BSTAT O R(Q) H(1) P(Q) O R(0) H(Q) P(0) Advance Information Datasheet HOLD ACKNOWLEDGE indicates to an external bus master that the processor has relinquished control of the bus. The processor can grant HOLD requests and enter the Th state during reset and while halted as well as during regular operation. 0 = hold not acknowledged 1 = hold acknowledged BUS STATUS indicates that the processor may soon stall unless it has sufficient access to the bus; see i960® Jx Microprocessor Developer’s Manual (272483). Arbitration logic can examine this signal to determine when an external bus master should acquire/relinquish the bus. 0 = no potential stall 1 = potential stall 19 80960JA/JF/JD/JT 3.3 V Microprocessor Table 4. Pin Description — Processor Control Signals, Test Signals and Power NAME TYPE DESCRIPTION CLKIN I CLOCK INPUT provides the processor’s fundamental time base; both the processor core and the external bus run at the CLKIN rate. All input and output timings are specified relative to a rising CLKIN edge. RESET initializes the processor and clears its internal logic. During reset, the processor places the address/data bus and control output pins in their idle (inactive) states. RESET I A(L) During reset, the input pins are ignored with the exception of LOCK/ONCE, STEST and HOLD. The RESET pin has an internal synchronizer. To ensure predictable processor initialization during power up, RESET must be asserted a minimum of 10,000 CLKIN cycles with VCC and CLKIN stable. On a warm reset, RESET should be asserted for a minimum of 15 cycles. STEST I S(L) SELF TEST enables or disables the processor’s internal self-test feature at initialization. STEST is examined at the end of reset. When STEST is asserted, the processor performs its internal self-test and the external bus confidence test. When STEST is deasserted, the processor performs only the external bus confidence test. 0 = self test disabled 1 = self test enabled FAIL O R(0) H(Q) P(1) FAIL indicates a failure of the processor’s built-in self-test performed during initialization. FAIL is asserted immediately upon reset and toggles during self-test to indicate the status of individual tests: • When self-test passes, the processor deasserts FAIL and begins operation from user code. • When self-test fails, the processor asserts FAIL and then stops executing. 0 = self test failed 1 = self test passed 20 TEST CLOCK is a CPU input which provides the clocking function for IEEE 1149.1 Boundary Scan Testing (JTAG). State information and data are clocked into the processor on the rising edge; data is clocked out of the processor on the falling edge. TCK I TDI I S(L) TEST DATA INPUT is the serial input pin for JTAG. TDI is sampled on the rising edge of TCK, during the SHIFT-IR and SHIFT-DR states of the Test Access Port. TDO O R(Q) HQ) P(Q) TEST DATA OUTPUT is the serial output pin for JTAG. TDO is driven on the falling edge of TCK during the SHIFT-IR and SHIFT-DR states of the Test Access Port. At other times, TDO floats. TDO does not float during ONCE mode. TRST I A(L) TEST RESET asynchronously resets the Test Access Port (TAP) controller function of IEEE 1149.1 Boundary Scan testing (JTAG). When using the Boundary Scan feature, connect a pulldown resistor between this pin and VSS. If TAP is not used, this pin must be connected to VSS; however, no resistor is required. See Section 4.3, “Connection Recommendations” on page 40. TMS I S(L) TEST MODE SELECT is sampled at the rising edge of TCK to select the operation of the test logic for IEEE 1149.1 Boundary Scan testing. VCC – POWER pins intended for external connection to a VCC board plane. VCCPLL – PLL POWER is a separate VCC supply pin for the phase lock loop clock generator. It is intended for external connection to the VCC board plane. In noisy environments, add a simple bypass filter circuit to reduce noise-induced clock jitter and its effects on timing relationships. VCC5 – 5 V REFERENCE VOLTAGE input is the reference voltage for the 5 V-tolerant I/O buffers. This signal should be connected to +5 V for use with inputs which exceed 3.3 V. If all inputs are from 3.3 V components, this pin should be connected to 3.3 V. VSS – GROUND pins intended for external connection to a VSS board plane. NC – NO CONNECT pins. Do not make any system connections to these pins. Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 5. Pin Description — Interrupt Unit Signals NAME TYPE DESCRIPTION EXTERNAL INTERRUPT pins are used to request interrupt service. The XINT7:0 pins can be configured in three modes: Dedicated Mode: Each pin is assigned a dedicated interrupt level. Dedicated inputs can be programmed to be level (low) or edge (falling) sensitive. XINT7:0 I A(E/L) Expanded Mode: All eight pins act as a vectored interrupt source. The interrupt pins are level sensitive in this mode. Mixed Mode: The XINT7:5 pins act as dedicated sources and the XINT4:0 pins act as the five most significant bits of a vectored source. The least significant bits of the vectored source are set to 0102 internally. Unused external interrupt pins should be connected to VCC. NMI I A(E) Advance Information Datasheet NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur. NMI is the highest priority interrupt source and is falling edge-triggered. If NMI is unused, it should be connected to VCC. 21 80960JA/JF/JD/JT 3.3 V Microprocessor 3.1.2 80960Jx 132-Lead PGA Pinout Figure 3. 132-Lead Pin Grid Array Bottom View - Pins Facing Up 1 2 3 4 5 6 7 8 9 10 11 12 13 14 P P AD25 AD22 AD19 AD18 VCC VCC VCC VCC VCC VCC VCC AD13 AD11 AD6 AD27 AD26 AD24 AD20 VSS VSS VSS VSS VSS VSS VSS AD10 AD7 AD3 AD30 AD29 NC AD23 AD21 AD17 AD16 AD12 AD9 AD8 AD4 AD0 BE2 BE3 AD28 AD5 AD1 VCC VCC VSS AD31 AD2 VSS VCC VCC VSS BE1 NC VSS VCC VCC VSS BE0 VCC VSS ALE VCC VSS BSTAT VCC VSS DEN VCC VSS DT/R N N M M AD15 AD14 L L K K J J H H VCCPLL VSS CLKIN G G NC VSS VCC RDYRCV VSS VCC RESET VSS VCC F F E E D D TDI VSS VCC C C LOCK/ HOLDA BLAST ONCE A3 A2 FAIL VCC5 NC NC VSS VSS VSS VCC VCC VCC 6 7 8 HOLD XINT1 XINT0 TRST STEST NC B B W/R D/C WIDTH/ TDO HLTD0 VSS XINT6 XINT4 XINT3 TCK NC VCC NMI TMS 9 10 A A ADS 1 22 WIDTH/ ALE HLTD1 2 3 NC NC 4 5 XINT7 XINT5 XINT2 11 12 13 14 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 4. 132-Lead Pin Grid Array Top View - Pins Facing Down 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P P AD6 AD11 AD13 VCC VCC VCC VCC VCC VCC VCC AD18 AD19 AD22 AD25 AD3 AD7 AD10 VSS VSS VSS VSS VSS VSS VSS AD20 AD24 AD26 AD27 AD0 AD4 AD8 AD9 AD12 AD16 AD17 VCC AD1 VCC VCC N N M M AD14 AD15 AD21 AD23 NC AD29 AD30 AD5 AD28 BE3 BE2 VSS AD2 AD31 VSS VCC VSS NC BE1 VSS VCC BE0 VSS VCC ALE VSS VCC BSTAT VSS VCC L L K K J J i H CLKIN VSS VCCPLL G NC A80960Jx M H G © 19xx VCC VSS VCC VSS RDYRCV VCC VSS RESET DEN VSS VCC VCC VSS DT/R VSS VCC F F XXXXXXXX SS E E D D TDI C C NC STEST TRST XINT0 XINT1 HOLD NC VCC5 FAIL A2 VSS VSS VSS NC VCC VCC VCC 8 7 6 A3 BLAST HOLDA LOCK/ ONCE B B NC TCK XINT3 XINT4 XINT6 VSS TDO WIDTH/ HLTD0 D/C W/R A A TMS 14 XINT2 XINT5 XINT7 13 Advance Information Datasheet 12 11 NMI VCC 10 9 NC NC 5 4 ALE WIDTH/ HLTD1 3 2 ADS 1 23 80960JA/JF/JD/JT 3.3 V Microprocessor Table 6. 132-Lead PGA Pinout — In Signal Order Signal Pin Signal Pin Signal Pin Signal Pin A2 C5 AD31 K3 TDO B4 VSS B9 A3 C4 ADS A1 TMS A14 VSS D2 AD0 M14 ALE G3 TRST C12 VSS D13 AD1 L13 ALE A3 VCC A6 VSS E2 AD2 K12 BE0 H3 VCC A7 VSS E13 AD3 N14 BE1 J3 VCC A8 VSS F2 AD4 M13 BE2 L1 VCC A9 VSS F13 AD5 L12 BE3 L2 VCC D1 VSS G2 AD6 P14 BLAST C3 VCC D14 VSS G13 AD7 N13 BSTAT F3 VCC E1 VSS H2 AD8 M12 CLKIN H14 VCC E14 VSS H13 AD9 M11 D/C B2 VCC F1 VSS J2 AD10 N12 DEN E3 VCC F14 VSS J13 AD11 P13 DT/R D3 VCC G1 VSS K2 AD12 M10 FAIL C6 VCC G14 VSS K13 AD13 P12 HOLD C9 VCC H1 VSS N5 AD14 M9 HOLDA C2 VCC J1 VSS N6 AD15 M8 LOCK/ONCE C1 VCC J14 VSS N7 AD16 M7 NC A4 VCC K1 VSS N8 AD17 M6 NC A5 VCC K14 VSS N9 AD18 P4 NC B5 VCC L14 VSS N10 AD19 P3 NC B14 VCC P5 VSS N11 AD20 N4 NC C8 VCC P6 W/R B1 AD21 M5 NC C14 VCC P7 WIDTH/HLTD0 B3 AD22 P2 NC G12 VCC P8 WIDTH/HLTD1 A2 AD23 M4 NC J12 VCC P9 XINT0 C11 AD24 N3 NC M3 VCC P10 XINT1 C10 AD25 P1 NMI A10 VCC P11 XINT2 A13 AD26 N2 RDYRCV F12 VCCPLL H12 XINT3 B12 AD27 N1 RESET E12 VCC5 C7 XINT4 B11 AD28 L3 STEST C13 VSS B6 XINT5 A12 AD29 M2 TCK B13 VSS B7 XINT6 B10 M1 TDI D12 VSS B8 XINT7 A11 AD30 NOTE: Do not connect any external logic to pins marked NC (no connect pins). 24 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 7. 132-Lead PGA Pinout — In Pin Order Pin Signal Pin Signal Pin Signal Pin Signal A1 ADS C6 FAIL H1 VCC M10 AD12 A2 WIDTH/HLTD1 C7 VCC5 H2 VSS M11 AD9 A3 ALE C8 NC H3 BE0 M12 AD8 A4 NC C9 HOLD H12 VCCPLL M13 AD4 A5 NC C10 XINT1 H13 VSS M14 AD0 A6 VCC C11 XINT0 H14 CLKIN N1 AD27 A7 VCC C12 TRST J1 VCC N2 AD26 A8 VCC C13 STEST J2 VSS N3 AD24 A9 VCC C14 NC J3 BE1 N4 AD20 A10 NMI D1 VCC J12 NC N5 VSS A11 XINT7 D2 VSS J13 VSS N6 VSS A12 XINT5 D3 DT/R J14 VCC N7 VSS A13 XINT2 D12 TDI K1 VCC N8 VSS A14 TMS D13 VSS K2 VSS N9 VSS B1 W/R D14 VCC K3 AD31 N10 VSS B2 D/C E1 VCC K12 AD2 N11 VSS B3 WIDTH/HLTD0 E2 VSS K13 VSS N12 AD10 B4 TDO E3 DEN K14 VCC N13 AD7 B5 NC E12 RESET L1 BE2 N14 AD3 B6 VSS E13 VSS L2 BE3 P1 AD25 B7 VSS E14 VCC L3 AD28 P2 AD22 B8 VSS F1 VCC L12 AD5 P3 AD19 B9 VSS F2 VSS L13 AD1 P4 AD18 B10 XINT6 F3 BSTAT L14 VCC P5 VCC B11 XINT4 F12 RDYRCV M1 AD30 P6 VCC B12 XINT3 F13 VSS M2 AD29 P7 VCC B13 TCK F14 VCC M3 NC P8 VCC B14 NC G1 VCC M4 AD23 P9 VCC C1 LOCK/ONCE G2 VSS M5 AD21 P10 VCC C2 HOLDA G3 ALE M6 AD17 P11 VCC C3 BLAST G12 NC M7 AD16 P12 AD13 C4 A3 G13 VSS M8 AD15 P13 AD11 A2 G14 VCC M9 AD14 P14 AD6 C5 NOTE: Do not connect any external logic to pins marked NC (no connect pins). Advance Information Datasheet 25 80960JA/JF/JD/JT 3.3 V Microprocessor 3.1.3 80960Jx 132-Lead PQFP Pinout Figure 5. 132-Lead PQFP - Top View 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 AD8 AD7 AD6 AD5 AD4 V (I/O) CC VSS (I/O) AD3 AD2 AD1 AD0 VCC (I/O) VSS (I/O) VCC (Core) VSS (Core) V (Core) CC VSS (Core) CLKIN VSS (CLK) VCCPLL VCC (CLK) NC NC VCC (Core) VSS (Core) RESET NC NC STEST VCC (I/O) TDI VSS(I/O) RDYRCV TRST TCK TMS HOLD XINT0 XINT1 XINT2 XINT3 VCC (I/O) VSS (I/O) XINT4 XINT5 XINT6 XINT7 NMI VCC (Core) VSS (Core) NC NC VCC5 NC NC FAIL ALE TDO VCC (I/O) VSS(I/O) WIDTH/HLTD1 VCC(Core) VSS (Core) WIDTH/HLTD0 A2 A3 i960 ® i NG80960Jx XXXXXXXX SS M © 19xx 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 AD9 VCC (I/O) VSS (I/O) AD10 AD11 VCC (I/O) VSS (I/O) VCC (Core) VSS (Core) AD12 AD13 AD14 AD15 VCC (I/O) VSS (I/O) AD16 AD17 AD18 AD19 VCC (I/O) VSS (I/O) AD20 AD21 AD22 AD23 VCC (Core) VSS (Core) VCC (I/O) VSS (I/O) AD24 AD25 AD26 NC 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 BLAST AD27 VCC (I/O) VSS (I/O) AD28 AD29 AD30 AD31 VCC (Core) VSS (Core) VCC (I/O) VSS (I/O) BE3 BE2 BE1 BE0 BSTAT LOCK/ONCE VCC (I/O) VSS (I/O) VCC (Core) VSS (Core) ALE HOLDA DEN DT/R VCC (I/O) VSS (I/O) VCC (Core) VSS (Core) W/R ADS D/C 26 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 8. 132-Lead PQFP Pinout — In Signal Order Signal Pin Signal Pin Signal Pin Signal Pin AD31 60 ALE 24 VCC (Core) 47 VSS (Core) 124 AD30 61 ADS 36 VCC (Core) 59 VSS (I/O) 10 AD29 62 A3 33 VCC (Core) 74 VSS (I/O) 27 AD28 63 A2 32 VCC (Core) 92 VSS (I/O) 40 AD27 66 BE3 55 VCC (Core) 113 VSS (I/O) 48 AD26 68 BE2 54 VCC (Core) 115 VSS (I/O) 56 AD25 69 BE1 53 VCC (Core) 123 VSS (I/O) 64 AD24 70 BE0 52 VCC (I/O) 9 VSS (I/O) 71 AD23 75 WIDTH/HLTD1 28 VCC (I/O) 26 VSS (I/O) 79 AD22 76 WIDTH/HLTD0 31 VCC (I/O) 41 VSS (I/O) 85 AD21 77 D/C 35 VCC (I/O) 49 VSS (I/O) 93 AD20 78 W/R 37 VCC (I/O) 57 VSS (I/O) 97 AD19 81 DT/R 42 VCC (I/O) 65 VSS (I/O) 106 AD18 82 DEN 43 VCC (I/O) 72 VSS (I/O) 112 AD17 83 BLAST 34 VCC (I/O) 80 VSS (I/O) 131 AD16 84 RDYRCV 132 VCC (I/O) 86 NC 18 AD15 87 LOCK/ONCE 50 VCC (I/O) 94 NC 19 AD14 88 HOLD 4 VCC (I/O) 98 NC 21 AD13 89 HOLDA 44 VCC (I/O) 105 NC 22 AD12 90 BSTAT 51 VCC (I/O) 111 NC 67 AD11 95 CLKIN 117 VCC (I/O) 129 NC 121 AD10 96 RESET 125 VCCPLL 119 NC 122 AD9 99 STEST 128 VCC5 20 NC 126 AD8 100 FAIL 23 VSS (CLK) 118 NC 127 AD7 101 TCK 2 VSS (Core) 17 XINT7 14 AD6 102 TDI 130 VSS (Core) 30 XINT6 13 AD5 103 TDO 25 VSS (Core) 38 XINT5 12 AD4 104 TRST 1 VSS (Core) 46 XINT4 11 AD3 107 TMS 3 VSS (Core) 58 XINT3 8 AD2 108 VCC (CLK) 120 VSS (Core) 73 XINT2 7 AD1 109 VCC (Core) 16 VSS (Core) 91 XINT1 6 AD0 110 VCC (Core) 29 VSS (Core) 114 XINT0 5 45 VCC (Core) 39 VSS (Core) 116 NMI 15 ALE NOTE: Do not connect any external logic to pins marked NC (no connect pins). Advance Information Datasheet 27 80960JA/JF/JD/JT 3.3 V Microprocessor Table 9. 132-Lead PQFP Pinout — In Pin Order Pin Signal Pin Signal Pin Signal Pin Signal 1 TRST 34 BLAST 67 NC 100 AD8 2 TCK 35 D/C 68 AD26 101 AD7 3 TMS 36 ADS 69 AD25 102 AD6 4 HOLD 37 W/R 70 AD24 103 AD5 5 XINT0 38 VSS (Core) 71 VSS (I/O) 104 AD4 6 XINT1 39 VCC (Core) 72 VCC (I/O) 105 VCC (I/O) 7 XINT2 40 VSS (I/O) 73 VSS (Core) 106 VSS (I/O) 8 XINT3 41 VCC (I/O) 74 VCC (Core) 107 AD3 9 VCC (I/O) 42 DT/R 75 AD23 108 AD2 10 VSS (I/O) 43 DEN 76 AD22 109 AD1 11 XINT4 44 HOLDA 77 AD21 110 AD0 12 XINT5 45 ALE 78 AD20 111 VCC (I/O) 13 XINT6 46 VSS (Core) 79 VSS (I/O) 112 VSS (I/O) 14 XINT7 47 VCC (Core) 80 VCC (I/O) 113 VCC (Core) 15 NMI 48 VSS (I/O) 81 AD19 114 VSS (Core) 16 VCC (Core) 49 VCC (I/O) 82 AD18 115 VCC (Core) 17 VSS (Core) 50 LOCK/ONCE 83 AD17 116 VSS (Core) 18 NC 51 BSTAT 84 AD16 117 CLKIN 19 NC 52 BE0 85 VSS (I/O) 118 VSS (CLK) 20 VCC5 53 BE1 86 VCC (I/O) 119 VCCPLL 21 NC 54 BE2 87 AD15 120 VCC (CLK) 22 NC 55 BE3 88 AD14 121 NC 23 FAIL 56 VSS (I/O) 89 AD13 122 NC 24 ALE 57 VCC (I/O) 90 AD12 123 VCC (Core) 25 TDO 58 VSS (Core) 91 VSS (Core) 124 VSS (Core) 26 VCC (I/O) 59 VCC (Core) 92 VCC (Core) 125 RESET 27 VSS (I/O) 60 AD31 93 VSS (I/O) 126 NC 28 WIDTH/HLTD1 61 AD30 94 VCC (I/O) 127 NC 29 VCC (Core) 62 AD29 95 AD11 128 STEST 30 VSS (Core) 63 AD28 96 AD10 129 VCC (I/O) 31 WIDTH/HLTD0 64 VSS (I/O) 97 VSS (I/O) 130 TDI 32 A2 65 VCC (I/O) 98 VCC (I/O) 131 VSS (I/O) 33 A3 66 AD27 99 AD9 132 RDYRCV NOTE: Do not connect any external logic to pins marked NC (no connect pins). 28 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor 3.1.4 80960Jx 196-Ball MPBGA Pinout Figure 6. 196-Ball Mini Plastic Ball Grid Array Bottom View - Balls Facing Up 1 2 3 4 5 6 7 8 9 10 NC AD28 VCC NC VCC AD22 VCC VCC AD15 VCC AD30 AD27 AD29 VCC AD23 AD20 AD17 AD14 NC AD31 NC AD26 AD25 AD24 AD21 AD19 AD16 NC NC NC VSS VSS VSS VSS VSS NC NC VCC VSS VSS VSS VSS NC NC VCC VSS VSS VSS NC NC VCC VSS VSS BE1 BE2 BE3 VSS VCC BE0 BSTAT ALE LOCK/ ONCE HOLDA 11 12 13 14 AD13 VCC AD8 NC AD12 AD10 AD9 AD7 AD4 VCC VCC AD11 AD6 AD2 VSS VSS AD3 AD5 AD0 AD1 VSS VSS VSS VSS VCC VCC VCC VSS VSS VSS VSS VSS VCC VCC VCCPLL VSS VSS VSS VSS VSS VSS NC CLKIN NC VSS VSS VSS VSS VSS VSS VSS NC VCC NC VSS VSS VSS VSS VSS VSS VSS VSS TDI NC RESET VCC VSS VSS VSS VSS VSS VSS VSS VSS NC VCC STEST DEN VCC VSS VSS VSS VSS VSS VSS VSS VSS NC NC RDYRCV DT/R VCC NC NC A3 VCC ALE VCC5 VCC W/R D/C NC NC A2 VCC TDO NC XINT4 NC XINT6 XINT1 XINT3 HOLD NC ADS BLAST VCC WIDTH0 WIDTH1 FAIL NC NC NMI XINT7 XINT5 2 3 8 9 10 A A AD18 B B C C D D E E F F G G H H J J K K L L M M XINT2 XINT0 TMS TRST TCK N N P P 1 Advance Information Datasheet 4 5 6 7 11 12 VCC NC 13 14 29 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 7. 196-Ball Mini Plastic Ball Grid Array Top View - Balls Facing Down 14 13 12 11 10 9 8 7 6 5 4 3 2 1 NC AD8 VCC AD13 AD15 VCC AD18 VCC AD22 VCC NC VCC AD28 NC AD4 AD7 AD9 AD10 AD12 AD14 AD17 AD20 AD23 VCC AD29 AD27 AD30 VCC AD2 AD6 AD11 VCC VCC AD16 AD19 AD21 AD24 AD25 AD26 NC AD31 NC AD1 AD0 AD5 AD3 VSS VSS VSS VSS VSS VSS VSS NC NC NC VCC VCC VCC VSS VSS VSS VSS VSS VSS VSS VSS VCC NC NC VCCPLL VCC VCC VSS VSS VSS VSS VSS VSS VSS VSS VCC NC NC A A B B C C D D E E F F G G NC CLKIN NC VSS VSS VSS VSS VSS VSS VSS VSS VCC NC NC NC VCC NC VSS VSS VSS VSS VSS VSS VSS VSS BE3 BE2 BE1 RESET NC TDI VSS VSS VSS VSS VSS VSS VSS VSS BSTAT BE0 VCC STEST VCC NC VSS VSS VSS VSS VSS VSS VSS VSS VCC LOCK/ ONCE ALE RDYRCV NC NC VSS VSS VSS VSS VSS VSS VSS VSS VCC DEN HOLDA VCC VCC5 ALE VCC A3 NC NC VCC DT/R NC XINT4 NC TDO VCC A2 NC NC D/C W/R NMI NC NC FAIL WIDTH1 WIDTH0 VCC BLAST ADS NC 10 9 8 3 2 H H J J K K L L M M TCK TRST TMS XINT0 XINT2 N N HOLD XINT3 XINT1 XINT6 P 30 P NC VCC 14 13 XINT5 XINT7 12 11 7 6 5 4 1 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 10. 196-Ball MPBGA Pinout — In Signal Order (Sheet 1 of 2) Signal Pin Signal Pin Signal Pin Signal Pin A2 N5 BE0 J2 NC M4 VCC J1 A3 M5 BE1 H1 NC N3 VCC K3 AD0 D13 BE2 H2 NC N4 VCC K13 AD1 D14 BE3 H3 NC N8 VCC L3 AD2 C14 BLAST P3 NC N10 VCC M2 AD3 D11 BSTAT J3 NC P1 VCC M6 AD4 B14 CLKIN G13 NC P8 VCC M9 AD5 D12 DEN L2 NC P9 VCC N6 AD6 C13 D/C N2 NC P14 VCC P4 AD7 B13 DT/R M1 NMI P10 VCC P13 AD8 A13 FAIL P7 RDYRCV L14 VCCPLL F14 AD9 B12 HOLD N14 RESET J14 VSS D4 AD10 B11 HOLDA L1 STEST K14 VSS D5 AD11 C12 LOCK/ONCE K2 TCK M14 VSS D6 AD12 B10 NC A1 TDI J12 VSS D7 AD13 A11 NC A4 TDO N7 VSS D8 AD14 B9 NC A14 TMS M12 VSS D9 AD15 A10 NC C1 TRST M13 VSS D10 AD16 C9 NC C3 VCC5 M8 VSS E4 AD17 B8 NC D1 VCC A3 VSS E5 AD18 A8 NC D2 VCC A5 VSS E6 AD19 C8 NC D3 VCC A7 VSS E7 AD20 B7 NC E1 VCC A9 VSS E8 AD21 C7 NC E2 VCC A12 VSS E9 AD22 A6 NC F1 VCC B1 VSS E10 AD23 B6 NC F2 VCC B5 VSS E11 AD24 C6 NC G1 VCC C10 VSS F4 AD25 C5 NC G2 VCC C11 VSS F5 AD26 C4 NC G12 VCC E3 VSS F6 AD27 B3 NC G14 VCC E12 VSS F7 AD28 A2 NC H12 VCC E13 VSS F8 AD29 B4 NC H14 VCC E14 VSS F9 AD30 B2 NC J13 VCC F3 VSS F10 AD31 C2 NC K12 VCC F12 VSS F11 ADS P2 NC L12 VCC F13 VSS G4 ALE K1 NC L13 VCC G3 VSS G5 M7 NC M3 VCC H13 VSS G6 ALE NOTE: Do not connect any external logic to pins marked NC (no connect pins). Advance Information Datasheet 31 80960JA/JF/JD/JT 3.3 V Microprocessor Table 10. 196-Ball MPBGA Pinout — In Signal Order (Sheet 2 of 2) Signal Pin Signal Pin Signal Pin Signal Pin VSS G7 VSS H11 VSS K7 VSS L11 VSS G8 VSS J4 VSS K8 WIDTH0 P5 VSS G9 VSS J5 VSS K9 WIDTH1 P6 VSS G10 VSS J6 VSS K10 W/R N1 VSS G11 VSS J7 VSS K11 XINT0 M11 VSS H4 VSS J8 VSS L5 XINT1 N12 VSS H5 VSS J9 VSS L6 XINT2 M10 VSS H6 VSS J10 VSS L7 XINT3 N13 VSS H7 VSS J11 VSS L8 XINT4 N9 VSS H8 VSS K4 VSS L9 XINT5 P12 VSS H9 VSS K5 VSS L10 XINT6 N11 VSS H10 VSS K6 VSS L4 XINT7 P11 NOTE: Do not connect any external logic to pins marked NC (no connect pins). 32 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 11. 196-Ball MPBGA Pinout — In Pin Order (Sheet 1 of 2) Pin Signal Pin Signal Pin Signal Pin Signal A1 NC C11 VCC F7 VSS J3 BSTAT A2 AD28 C12 AD11 F8 VSS J4 VSS A3 VCC C13 AD6 F9 VSS J5 VSS A4 NC C14 AD2 F10 VSS J6 VSS A5 VCC D1 NC F11 VSS J7 VSS A6 AD22 D2 NC F12 VCC J8 VSS A7 VCC D3 NC F13 VCC J9 VSS A8 AD18 D4 VSS F14 VCCPLL J10 VSS A9 VCC D5 VSS G1 NC J11 VSS A10 AD15 D6 VSS G2 NC J12 TDI A11 AD13 D7 VSS G3 VCC J13 NC A12 VCC D8 VSS G4 VSS J14 RESET A13 AD8 D9 VSS G5 VSS K1 ALE A14 NC D10 VSS G6 VSS K2 LOCK/ONCE B1 VCC D11 AD3 G7 VSS K3 VCC B2 AD30 D12 AD5 G8 VSS K4 VSS B3 AD27 D13 AD0 G9 VSS K5 VSS B4 AD29 D14 AD1 G10 VSS K6 VSS B5 VCC E1 NC G11 VSS K7 VSS B6 AD23 E2 NC G12 NC K8 VSS B7 AD20 E3 VCC G13 CLKIN K9 VSS B8 AD17 E4 VSS G14 NC K10 VSS B9 AD14 E5 VSS H1 BE1 K11 VSS B10 AD12 E6 VSS H2 BE2 K12 NC B11 AD10 E7 VSS H3 BE3 K13 VCC B12 AD9 E8 VSS H4 VSS K14 STEST B13 AD7 E9 VSS H5 VSS L1 HOLDA B14 AD4 E10 VSS H6 VSS L2 DEN C1 NC E11 VSS H7 VSS L3 VCC C2 AD31 E12 VCC H8 VSS L4 VSS C3 NC E13 VCC H9 VSS L5 VSS C4 AD26 E14 VCC H10 VSS L6 VSS C5 AD25 F1 NC H11 VSS L7 VSS C6 AD24 F2 NC H12 NC L8 VSS C7 AD21 F3 VCC H13 VCC L9 VSS C8 AD19 F4 VSS H14 NC L10 VSS C9 AD16 F5 VSS J1 VCC L11 VSS C10 VCC F6 VSS J2 BE0 L12 NC NOTE: Do not connect any external logic to pins marked NC (no connect pins). Advance Information Datasheet 33 80960JA/JF/JD/JT 3.3 V Microprocessor Table 11. 196-Ball MPBGA Pinout — In Pin Order (Sheet 2 of 2) Pin Signal Pin Signal Pin Signal Pin L13 NC L14 RDYRCV M1 M2 Signal M10 XINT2 N7 TDO P4 VCC M11 XINT0 N8 NC P5 WIDTH0 DT/R M12 TMS N9 XINT4 P6 WIDTH1 VCC M13 TRST N10 NC P7 FAIL M3 NC M14 TCK N11 XINT6 P8 NC M4 NC N1 W/R N12 XINT1 P9 NC M5 A3 N2 D/C N13 XINT3 P10 NMI M6 VCC N3 NC N14 HOLD P11 XINT7 M7 ALE N4 NC P1 NC P12 XINT5 M8 VCC5 N5 A2 P2 ADS P13 VCC M9 VCC N6 VCC P3 BLAST P14 NC NOTE: Do not connect any external logic to pins marked NC (no connect pins). 3.2 Package Thermal Specifications The 80960Jx is specified for operation when TC (case temperature) is within the range of 0°C to 100°C for PGA, MPBGA and PQFP packages. An extended temperature device is also available in a PQFP package with TC -40°C to 100°C. Case temperature may be measured in any environment to determine whether the 80960Jx is within its specified operating range. The case temperature should be measured at the center of the top surface, opposite the pins. θCA is the thermal resistance from case to ambient. Use the following equation to calculate TA, the maximum ambient temperature to conform to a particular case temperature: TA = TC - P (θCA) Junction temperature (TJ) is commonly used in reliability calculations. TJ can be calculated from θJC (thermal resistance from junction to case) using the following equation: TJ = TC + P (θJC) Similarly, if TA is known, the corresponding case temperature (TC) can be calculated as follows: TC = TA + P (θCA) Compute P by multiplying ICC from Table 22 and VCC. Values for θJC and θCA are given in Table 12 for the PGA package, Table 13 for the MPBGA package, and Table 14 for the PQFP package. For high speed operation, the processor’s θJA may be significantly reduced by adding a heatsink and/or by increasing airflow. Tables 15, 16, and 17 show the maximum ambient temperature (TA) permitted without exceeding TC for the PGA, MPBGA, and PQFP packages. The values are based on typical ICC and VCC of +3.3 V, with a TCASE of +100°C. 34 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 12. 132-Lead PGA Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.08) θJC (Junction-to-Case) 0.7 0.7 0.7 0.7 0.7 0.7 θCA (Case-to-Ambient) (No Heatsink) 25 19 14 12 11 10 θCA (Case-to-Ambient) (Omnidirectional Heatsink) 15 9 6 5 4 4 θCA (Case-to-Ambient) (Unidirectional Heatsink) 16 8 6 5 4 4 θJA θCA θJC θJ-PIN θJ-CAP NOTES: 1. This table applies to a PGA device plugged into a socket or soldered directly into a board. 2. θJA = θJC + θCA 3. θJ-CAP = 5.6°C/W (approximate) (no heatsink) 4. θJ-PIN = 6.4°C/W (inner pins) (approximate) (no heatsink) 5. θJ-PIN = 6.2°C/W (outer pins) (approximate) (no heatsink) 6. θJ-CAP = 3°C/W (approximate) (with heatsink) 7. θJ-PIN = 3.3°C/W (inner pins) (approximate) (with heatsink) 8. θJ-PIN = 3.3°C/W (outer pins) (approximate) (with heatsink) Table 13. 196-Ball MPBGA Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.08) θJC (Junction-to-Case) TBD TBD TBD TBD TBD TBD θCA (Case-to-Ambient) (No Heatsink) TBD TBD TBD TBD TBD TBD θCA (Case-to-Ambient) (Omnidirectional Heatsink) TBD TBD TBD TBD TBD TBD θCA (Case-to-Ambient) (Unidirectional Heatsink) TBD TBD TBD TBD TBD TBD TBD Advance Information Datasheet 35 80960JA/JF/JD/JT 3.3 V Microprocessor Table 14. 132-Lead PQFP Package Thermal Characteristics Thermal Resistance — °C/Watt Airflow — ft./min (m/sec) Parameter 0 50 100 200 400 600 800 (0) (0.25) (0.50) (1.01) (2.03) (3.04) (4.06) θJC (Junction-to-Case) 4.1 4.3 4.3 4.3 4.3 4.7 4.9 θCA (Case-to-Ambient -No Heatsink) 23 19 18 16 14 11 9 θJA θCA θJC θJB θJL NOTES: 1. This table applies to a PQFP device soldered directly into board. 2. θJA = θJC + θCA 3. θJL = 13°C/W (approx.) 4. θJB = 13.5°C/W (approx.) Table 15. Maximum TA at Various Airflows in °C (80960JT) Airflow-ft/min (m/sec) fCLKIN (MHz) PQFP Package PGA Package MPBGA Package 0 200 400 600 800 1000 (0) (1.01) (2.03) (3.04) (4.06) (5.07) TA without Heatsink 33 25 62 71 73 79 76 82 81 86 85 88 88 91 TA without Heatsink 33 25 58 68 68 75 76 82 80 84 81 86 83 87 TA with Omnidirectional Heatsink1 33 25 75 81 85 88 90 92 92 94 93 95 93 95 TA with Unidirectional Heatsink2 33 25 73 79 86 90 90 92 92 94 93 95 93 95 TA without Heatsink 33 25 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD NOTES: 1. 0.248” high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing). 2. 0.250” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing). 36 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 16. Maximum TA at Various Airflows in °C (80960JD) Airflow-ft/min (m/sec) PQFP Package PGA Package MPBGA Package fCLKIN (MHz) 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.07) TA without Heatsink 33 25 20 16.67 61 70 75 79 73 79 82 86 76 82 85 87 81 86 88 90 85 88 90 92 86 90 91 93 TA without Heatsink 33 25 20 16.67 58 68 73 78 68 75 79 83 76 82 85 87 80 84 87 89 81 86 88 90 83 87 89 91 TA with Omnidirectional Heatsink1 33 25 20 16.67 75 81 84 87 85 88 90 92 90 92 93 95 92 94 95 96 93 95 96 96 93 95 96 96 TA with Unidirectional Heatsink2 33 25 20 16.67 73 79 82 86 86 90 91 93 90 92 93 95 92 94 95 96 93 95 96 96 93 96 96 96 TA without Heatsink 25 20 16.67 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD NOTES: 1. 0.248” high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing). 2. 0.250” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing). Table 17. Maximum TA at Various Airflows in °C (80960JA/JF) Airflow-ft/min (m/sec) fCLKIN (MHz) 0 (0) 200 (1.01) 400 (2.03) 600 (3.04) 800 (4.06) 1000 (5.07) 33 25 16 79 84 89 86 89 92 87 90 93 90 92 95 92 94 96 93 94 96 25 84 89 90 92 94 94 TA without Heatsink 33 25 16 78 83 88 83 87 91 87 90 93 89 92 94 90 92 95 91 93 95 TA with Omnidirectional Heatsink1 33 25 16 87 90 93 92 94 96 95 96 97 96 97 98 96 97 98 96 97 98 TA with Unidirectional Heatsink2 33 25 16 86 89 92 93 94 96 95 96 97 96 97 98 96 97 98 96 97 98 TA without Heatsink 33 25 16 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD For NG80960JA/JF PQFP Package TA without Heatsink For TG80960JA-25 TA without Heatsink PGA Package MPBGA Package NOTES: 1. 0.248” high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin spacing). 2. 0.250” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing). Advance Information Datasheet 37 80960JA/JF/JD/JT 3.3 V Microprocessor 3.3 Thermal Management Accessories The following is a list of suggested sources for 80960Jx thermal solutions. This is neither an endorsement or a warranty of the performance of any of the listed products and/or companies. 3.3.1 Heatsinks 1. Thermalloy, Inc. 2021 West Valley View Lane Dallas, TX 75234-8993 (972) 243-4321 2. Wakefield Engineering 60 Audubon Road Wakefield, MA 01880 (617) 245-5900 3. Aavid Thermal Technologies, Inc. One Kool Path Laconia, NH 03247-0400 (603) 528-3400 38 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor 4.0 Electrical Specifications 4.1 Absolute Maximum Ratings Warning: Note: Table 18. Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage. These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended and extended exposure beyond the “Operating Conditions” may affect device reliability. This document contains information on products in the sampling and initial production phases of development. It is valid for the devices indicated in the revision history. The specifications within this data sheet are subject to change without notice. Verify with your local Intel sales office that you have the latest data sheet before finalizing a design. Absolute Maximum Ratings Parameter 4.2 Maximum Rating Storage Temperature –65oC to +150oC Case Temperature Under Bias –65oC to +110oC Supply Voltage wrt. VSS –0.5 V to + 4.6 V Voltage on VCC5 wrt. VSS –0.5 V to + 6.5 V Voltage on Other Pins wrt. VSS –0.5 V to VCC + 0.5 V Operating Conditions Table 19 indicates the operating conditions for the 80960Jx. Table 19. 80960Jx Operating Conditions Symbol Parameter Min Max Units VCC Supply Voltage 3.15 3.45 V VCC5 Input Protection Bias 3.15 5.5 V 15 15 12 12 12 12 12 12 12 33.3 25 33.3 25 20 16.67 33.3 25 16 MHz 0 -40 100 100 Notes (1) Input Clock Frequency fCLKIN TC 80960JT-100 80960JT-75 80960JD-66 80960JD-50 80960JD-40 80960JD-33 80960JA/JF-33 80960JA/JF-25 80960JA/JF-16 Operating Case Temperature PGA, MPBGA, and PQFP Extended temp PQFP (TG80960JA-25) °C NOTE: 1. See Section 4.4, “VCC5 Pin Requirements (VDIFF)” on page 40. Advance Information Datasheet 39 80960JA/JF/JD/JT 3.3 V Microprocessor 4.3 Connection Recommendations For clean on-chip power distribution, VCC and VSS pins separately feed the device’s functional units. Power and ground connections must be made to all 80960Jx power and ground pins. On the circuit board, every VCC pin should connect to a power plane and every VSS pin should connect to a ground plane. Place liberal decoupling capacitance near the 80960Jx, since the processor can cause transient power surges. Pay special attention to the Test Reset (TRST) pin. It is essential that the JTAG Boundary Scan Test Access Port (TAP) controller initializes to a known state whether it will be used or not. If the JTAG Boundary Scan function will be used, connect a pulldown resistor between the TRST pin and VSS. If the JTAG Boundary Scan function will not be used (even for board-level testing), connect the TRST pin to VSS. Do not connect the TDI, TDO, and TCK pins if the TAP Controller will not be used. Note: 4.4 Pins identified as NC must not be connected in the system. VCC5 Pin Requirements (VDIFF) In 3.3 V only systems where the 80960Jx input pins are driven from 3.3 V logic, connect the VCC5 pin directly to the 3.3 V VCC plane. In mixed voltage systems where the processor is powered by 3.3 V and interfaces with 5 V components, VCC5 must be connected to 5 V. This allows proper 5 V tolerant buffer operation, and prevents damage to the input pins. The voltage differential between the 80960Jx VCC5 pin and its 3.3 V VCC pins must not exceed 2.25 V. If this requirement is not met, current flow through the pin may exceed the value at which the processor is damaged. Instances when the voltage can exceed 2.25 V is during power up or power down, where one source reaches its level faster than the other, briefly causing an excess voltage differential. Another instance is during steady-state operation, where the differential voltage of the regulator (provided a regulator is used) cannot be maintained within 2.25 V. Two methods are possible to prevent this from happening: • Use a regulator that is designed to prevent the voltage differential from exceeding 2.25 V, or, • As shown in Figure 8, place a 100 Ω resistor in series with the VCC5 pin to limit the current through VCC5. Figure 8. VCC5 Current-Limiting Resistor VCC5 Pin +5 V (±0.25 V) 100 Ω (±5%, 0.5 W) If the regulator cannot prevent the 2.25 V differential, the addition of the resistor is a simple and reliable method for limiting current. The resistor can also prevent damage in the case of a power failure, where the 5 V supply remains on and the 3.3 V supply goes to zero. Table 20. VDIFF Parameters Symbol VDIFF 40 Parameter VCC5-VCC Difference Min Max 2.25 Units Notes V VCC5 input should not exceed VCC by more than 2.25 V during power-up and power-down, or during steady-state operation. Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor 4.5 VCCPLL Pin Requirements To reduce clock skew on the i960 80960Jx processor, the VCCPLL pin for the Phase Lock Loop (PLL) circuit is isolated on the pinout. The lowpass filter, as shown in Figure 9, reduces noise induced clock jitter and its effects on timing relationships in system designs. The 4.7 µF capacitor must be low ESR solid tantalum; the 0.01 µF capacitor must be of the type X7R and the node connecting VCCPLL must be as short as possible. Figure 9. VCCPLL Lowpass Filter 100 Ω (80960JA/JF/JD) 10 Ω (80960JT) VCC (Board Plane) + 4.7 µF 0.01 µF VCCPLL (On 80960Jx) F_CA078A Advance Information Datasheet 41 80960JA/JF/JD/JT 3.3 V Microprocessor 4.6 DC Specifications Table 21. 80960Jx DC Characteristics Symbol Parameter Min Typ Max Units Notes VIL Input Low Voltage -0.3 0.8 V VIH Input High Voltage 2.0 VCC5 + 0.3 V VOL Output Low Voltage 0.4 V IOL = 3 mA 0.2 V IOL = 100 µA VOH Output High Voltage VOLP Output Ground Bounce CIN Input Capacitance PGA PQFP MPBGA 15 15 15 COUT I/O or Output Capacitance PGA PQFP MPBGA 15 15 15 CCLK CLKIN Capacitance PGA PQFP MPBGA 15 15 15 2.4 IOH = -1 mA V VCC - 0.2 <0.8 IOH = -200 µA V (1,2) pF fCLKIN = fMIN (2) pF fCLKIN = fMIN (2) pF fCLKIN = fMIN (2) NOTES: 1. Typical is measured with VCC = 3.3 V and temperature = 25 °C. 2. Not tested. Table 22. 80960Jx ICC Characteristics (Sheet 1 of 2) Symbol ILI1 Input Leakage Current for each pin except TCK, TDI, TRST and TMS ILI2 Input Leakage Current for TCK, TDI, TRST and TMS ILO Output Leakage Current Rpu Internal Pull-UP Resistance for ONCE, TMS, TDI and TRST ICC Active (Power Supply) 42 Parameter 80960JT-100 80960JT-75 80960JD-66 80960JD-50 80960JD-40 80960JD-33 80960JA/JF-33 80960JA/JF-25 80960JA/JF-16 Typ -140 20 Max Units Notes ±1 µA 0 ≤ VIN ≤ VCC -250 µA VIN = 0.45V (1) ±1 µA 0.4 ≤ VOUT ≤ VCC 30 kΩ 600 450 580 447 367 310 320 260 194 mA (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 22. 80960Jx ICC Characteristics (Sheet 2 of 2) Symbol ICC Active (Thermal) Parameter 80960JT-100 80960JT-75 80960JD-66 80960JD-50 80960JD-40 80960JD-33 80960JA/JF-33 80960JA/JF-25 80960JA/JF-16 Typ Max 500 380 510 390 320 260 271 215 152 Units Notes mA (2,4) (2,4) (2,4) (2,4) (2,4) (2,4) (2,4) (2,4) (2,4) Reset mode 80960JT-100 80960JT-75 80960JD-66 80960JD-50 80960JD-40 80960JD-33 80960JA/JF-33 80960JA/JF-25 80960JA/JF-16 ICC Test (Power modes) ONCE mode 80960JT-100 80960JT-75 80960JD-66 80960JD-50 80960JD-40 80960JD-33 80960JA/JF-33 80960JA/JF-25 80960JA/JF-16 (5) (5) (5) (5) (5) (5) (5) (5) mA Halt mode 80960JT-100 80960JT-75 80960JD-66 80960JD-50 80960JD-40 80960JD-33 80960JA/JF-33 80960JA/JF-25 80960JA/JF-16 ICC5 Current on the VCC5 Pin 450 400 475 425 345 300 250 200 150 (5) (5) (5) (5) (5) (5) (5) (5) (5) 50 40 50 40 34 34 31 26 21 (5) 10 200 µA (6) (6) (6) (6) (6) (6) (6) (6) (6) NOTES: 1. These pins have internal pullup devices. Typical leakage current is not tested. 2. Measured with device operating and outputs loaded to the test condition in Figure 10 “AC Test Load” on page 47. 3. ICC Active (Power Supply) value is provided for selecting your system’s power supply. It is measured using one of the worst case instruction mixes with VCC = 3.45 V. This parameter is characterized but not tested. 4. ICC Active (Thermal) value is provided for your system’s thermal management. Typical ICC is measured with VCC =3.3 V and temperature = 25°C. This parameter is characterized but not tested. 5. ICC Test (Power modes) refers to the ICC values that are tested when the 80960JD is in Reset mode, Halt mode or ONCE mode with VCC = 3.45 V. 6. ICC5 is tested at VCC = 3.3 V, VCC5 = 5.25 V. Advance Information Datasheet 43 80960JA/JF/JD/JT 3.3 V Microprocessor 4.7 AC Specifications The 80960Jx AC timings are based upon device characterization. Table 23. 80960Jx AC Characteristics (Sheet 1 of 3) Symbol Parameter Min Max Unit Notes INPUT CLOCK TIMINGS CLKIN Frequency TF 80960JT-100 80960JT-75 80960JD-66 80960JD-50 80960JD-40 80960JD-33 80960JA/JF-33 80960JA/JF-25 80960JA/JF-16 15 15 12 12 12 12 12 12 12 33.3 25 33.3 25 20 16.67 33.3 25 16 30 40 30 40 50 60 30 40 62.5 66.7 66.7 83.3 83.3 83.3 83.3 83.3 83.3 83.3 MHz CLKIN Period TC TCS 80960JT-100 80960JT-75 80960JD-66 80960JD-50 80960JD-40 80960JD-33 80960JA/JF-33 80960JA/JF-25 80960JA/JF-16 ± 250 CLKIN Period Stability ns ps (1, 2) TCH CLKIN High Time 8 ns Measured at 1.5 V (1) TCL CLKIN Low Time 8 ns Measured at 1.5 V (1) TCR CLKIN Rise Time 4 ns 0.8 V to 2.0 V (1) TCF CLKIN Fall Time 4 ns 2.0 V to 0.8 V (1) ns (3) SYNCHRONOUS OUTPUT TIMINGS TOV1 Output Valid Delay, Except ALE/ALE Inactive and DT/R for 3.3 V input signals 2.5 13.5 Same as above, but for 5.5 V input signals 2.5 16.5 Output Valid Delay, DT/R TOV2 80960JT 80960JD 80960JA/JF 0.5TC + 7 0.5TC + 7 0.5TC + 4 0.5TC + 9 0.5TC + 9 0.5TC + 18 TOF Output Float Delay 2.5 13.5 ns ns (4) NOTE: See Table 24 on page 47 for note definitions for this table. 44 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 23. 80960Jx AC Characteristics (Sheet 2 of 3) Symbol Parameter Min Max Unit Notes 6 6 9 ns (5) 1.5 1.5 1.0 ns (5) 6.5 6.5 10.0 ns (6) 1 ns (6) 7 7 8 ns (7) 2 2 1 ns (7) 7 7 8 ns (8) 2 2 1 ns (8) 0.5TC - 5 0.5TC - 8 ns (9) 0.5TC - 7 ns Equal Loading (9) SYNCHRONOUS INPUT TIMINGS Input Setup to CLKIN — AD31:0, NMI, XINT7:0 TIS1 80960JT 80960JD 80960JA/JF Input Hold from CLKIN — AD31:0, NMI, XINT7:0 TIH1 80960JT 80960JD 80960JA/JF Input Setup to CLKIN — RDYRCV and HOLD TIS2 TIH2 80960JT 80960JD 80960JA/JF Input Hold from CLKIN — RDYRCV and HOLD Input Setup to CLKIN — RESET TIS3 80960JT 80960JD 80960JA/JF Input Hold from CLKIN — RESET TIH3 80960JT 80960JD 80960JA/JF Input Setup to RESET — ONCE, STEST TIS4 80960JT 80960JD 80960JA/JF Input Hold from RESET — ONCE, STEST TIH4 80960JT 80960JD 80960JA/JF RELATIVE OUTPUT TIMINGS Address Valid to ALE/ALE Inactive TLX For 3.3 V Data Input Signals For 5.0 V Data Input Signals TLXL ALE/ALE Width TLXA Address Hold from ALE/ALE Inactive TDXD DT/R Valid to DEN Active TBSF TCK Frequency TBSCH TCK High Time 15 ns Measured at 1.5 V (1) TBSCL TCK Low Time 15 ns Measured at 1.5 V (1) TBSCR TCK Rise Time 5 ns 0.8 V to 2.0 V (1) TBSCF TCK Fall Time 5 ns 2.0 V to 0.8 V (1) BOUNDARY SCAN TEST SIGNAL TIMINGS 0.5TF MHz NOTE: See Table 24 on page 47 for note definitions for this table. Advance Information Datasheet 45 80960JA/JF/JD/JT 3.3 V Microprocessor Table 23. 80960Jx AC Characteristics (Sheet 3 of 3) Symbol Parameter Min Max Unit Notes TBSIS1 Input Setup to TCK — TDI, TMS 4 TBSIH1 Input Hold from TCK — TDI, TMS 6 ns TBSOV1 TDO Valid Delay 3 30 ns (1,10) TBSOF1 TDO Float Delay 3 30 ns (1,10) TBSOV2 All Outputs (Non-Test) Valid Delay 3 30 ns (1,10) TBSOF2 All Outputs (Non-Test) Float Delay 3 30 ns (1,10) TBSIS2 Input Setup to TCK — All Inputs (Non-Test) 4 ns TBSIH2 Input Hold from TCK — All Inputs (Non-Test) 6 ns ns NOTE: See Table 24 on page 47 for note definitions for this table. 46 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 24. Note Definitions for Table 23, 80960Jx AC Characteristics (pg. 44) NOTES: 1. Not tested. 2. To ensure a 1:1 relationship between the amplitude of the input jitter and the internal clock, the jitter frequency spectrum should not have any power peaking between 500 KHz and 1/3 of the CLKIN frequency. 3. Inactive ALE/ALE refers to the falling edge of ALE and the rising edge of ALE. For inactive ALE/ALE timings, refer to Relative Output Timings in this table. 4. A float condition occurs when the output current becomes less than IOL. Float delay is not tested, but is designed to be no longer than the valid delay. 5. AD31:0 are synchronous inputs. Setup and hold times must be met for proper processor operation. NMI and XINT7:0 may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a particular clock edge. For asynchronous operation, NMI and XINT7:0 must be asserted for a minimum of two CLKIN periods to guarantee recognition. 6. RDYRCV and HOLD are synchronous inputs. Setup and hold times must be met for proper processor operation. 7. RESET may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a particular clock edge. 8. ONCE and STEST must be stable at the rising edge of RESET for proper operation. 9. Guaranteed by design. May not be 100% tested. 10.Relative to falling edge of TCK. 11.Worst-case TOV condition occurs on I/O pins when pins transition from a floating high input to driving a low output state. The Address/Data Bus pins encounter this condition between the last access of a read, and the address cycle of a following write. 5 V signals take 3 ns longer to discharge than 3.3 V signals at 50 pF loads. 4.7.1 AC Test Conditions and Derating Curves The AC Specifications in Section 4.7, “AC Specifications” are tested with the 50 pF load indicated in Figure 10. Figure 11 shows how timings and output rise and fall times vary with load capacitance. Figure 10. AC Test Load Output Pin CL Advance Information Datasheet CL = 50 pF for all signals 47 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 11. Output Delay or Hold vs. Load Capacitance AC Timings vs. Load Capacitance nom + 7 nom + 6 Tov (ns) nom + 5 nom + 4 Rising nom + 3 Falling nom + 2 nom + 1 nom + 0 50 100 AD Bus Capacitive Load (pF) Rise and Fall times are identical. Figure 12. 150 TLX vs. AD Bus Load Capacitance AC Timings vs. Load Capacitance nom + 7 nom + 6 Tlx (ns) nom + 5 nom + 4 Rising nom + 3 Falling nom + 2 nom + 1 nom + 0 50 Rise and Fall times are identical. Note: 48 100 150 AD Bus Capacitive Load (pF) The TLX Derating curve applies only when an imbalance in the capacitive load occurs between the AD bus and ALE. The TLX derating is based on a 50 pF load on ALE. The derating applies to ALE and ALE. Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 13. 80960JA/JF ICC Active (Power Supply) vs. Frequency Icc Active (Power Supply) (mA) Icc Active (Power Supply) vs Frequency 350 300 250 200 150 100 50 0 12 15 18 21 24 27 30 33 CLKIN Frequency MHz Figure 14. 80960JA/JF ICC Active (Thermal) vs. Frequency ICC Active (Thermal) vs. Frequency Icc Active (Thermal) vs. Frequency Icc Active (Thermal) (mA) ICC Active (Thermal) (mA) 300 250 200 150 100 50 0 12 15 18 21 24 27 30 33 CLKIN Frequency MHz Advance Information Datasheet 49 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 15. 80960JD ICC Active (Power Supply) vs. Frequency Icc Active (Power Supply) vs. Frequency Icc Active (Power Supply) (mA) 600 500 400 300 200 100 0 12 15 18 21 24 27 30 33 CLKIN Frequency (MHz) Figure 16. 80960JD ICC Active (Thermal) vs. Frequency Icc Active (Thermal) vs. Frequency Icc Active (Thermal) (mA) 600 500 400 300 200 100 0 12 15 18 21 24 27 30 33 CLKIN Frequency (MHz) 50 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 17. 80960JT ICC Active (Power Supply) vs. Frequency Icc Active (Power Supply) vs. Frequency Icc Active (Power Supply) (mA) 600 500 400 300 200 100 0 15 18 21 24 27 30 33 CLKIN Frequency (MHz) Figure 18. 80960JT ICC Active (Thermal) vs. Frequency Icc Active (Thermal) vs. Frequency Icc Active (Thermal) (mA) 1000 800 600 400 200 0 15 18 21 24 27 30 33 CLKIN Frequency (MHz) Advance Information Datasheet 51 80960JA/JF/JD/JT 3.3 V Microprocessor 4.7.2 AC Timing Waveforms Figure 19. CLKIN Waveform TCR TCF 2.0V 1.5V 0.8V TCH TCL TC Figure 20. TOV1 Output Delay Waveform CLKIN 1.5V 1.5V TOV1 AD31:0, ALE (active), ALE (active), ADS, A3:2, BE3:0, WIDTH/HLTD1:0, D/C, W/R, DEN, BLAST, LOCK, HOLDA, BSTAT, FAIL 52 1.5V Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 21. TOF Output Float Waveform 1.5V CLKIN 1.5V TOF AD31:0, ALE, ALE ADS, A3:2, BE3:0, WIDTH/HLTD1:0, D/C, W/R, DT/R, DEN, BLAST, LOCK Figure 22. TIS1 and TIH1 Input Setup and Hold Waveform CLKIN 1.5V 1.5V 1.5V TIH1 TIS1 AD31:0 NMI XINT7:0 Figure 23. Valid 1.5V TIS2 and TIH2 Input Setup and Hold Waveform CLKIN 1.5V 1.5V 1.5V TIH2 TIS2 HOLD, RDYRCV Advance Information Datasheet 1.5V Valid 1.5V 53 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 24. TIS3 and TIH3 Input Setup and Hold Waveform CLKIN 1.5V 1.5V TIH3 TIS3 RESET Figure 25. TIS4 and TIH4 Input Setup and Hold Waveform RESET TIH4 TIS4 ONCE, STEST 54 Valid Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 26. TLX, TLXL and TLXA Relative Timings Waveform Ta Tw/Td 1.5V CLKIN 1.5V 1.5V TLXL ALE ALE TLX AD31:0 Figure 27. 1.5V Valid 1.5V 1.5V TLXA 1.5V Valid DT/R and DEN Timings Waveform Ta CLKIN Tw/Td 1.5V 1.5V 1.5V TOV2 Valid DT/R TDXD DEN TOV1 Advance Information Datasheet 55 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 28. TCK Waveform TBSCR TBSCF 2.0V 1.5V 0.8V TBSCH Figure 29. TBSCL TBSIS1 and TBSIH1 Input Setup and Hold Waveforms TCK 1.5V 1.5V TBSIS1 TMS TDI Figure 30. 1.5V TBSIH1 1.5V Valid TBSOV1 and TBSOF1 Output Delay and Output Float Waveform TCK 1.5V 1.5V TBSOV1 TDO 56 1.5V 1.5V 1.5V TBSOF1 Valid Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 31. TBSOV2 and TBSOF2 Output Delay and Output Float Waveform TCK 1.5V 1.5V TBSOF2 TBSOV2 Non-Test Outputs Figure 32. 1.5V Valid 1.5V TBSIS2 and TBSIH2 Input Setup and Hold Waveform TCK 1.5V 1.5V TBSIS2 Non-Test Inputs Advance Information Datasheet 1.5V 1.5V TBSIH2 Valid 1.5V 57 80960JA/JF/JD/JT 3.3 V Microprocessor 5.0 Bus Functional Waveforms Figure 33 through Figure 38 illustrate typical 80960Jx bus transactions. Figure 39 depicts the bus arbitration sequence. Figure 40 illustrates the processor reset sequence from the time power is applied to the device. Figure 41 illustrates the processor reset sequence when the processor is in operation. Figure 42 illustrates the processor ONCE sequence from the time power is applied to the device. Figure 44 and Figure 45 also show accesses on 32-bit buses. Table 27 through Table 29 summarize all possible combinations of bus accesses across 8-, 16-, and 32-bit buses according to data alignment. Figure 33. Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus Ta Td Tr Ti Ti Ta Td Tr Ti Ti CLKIN AD31:0 D In ADDR Invalid DATA Out ADDR ALE ADS A3:2 BE3:0 WIDTH1:0 10 10 D/C W/R BLAST DT/R DEN RDYRCV F_JF030A 58 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 34. Burst Read and Write Transactions Without Wait States, 32-Bit Bus TA TD TD TR TA TD TD TD TD TR CLKIN AD31:0 ADDR D In D In ADDR DATA DATA DATA Out Out Out DATA Out ALE ADS A3:2 00 or 10 01 or 11 00 01 10 11 BE3:0 WIDTH1:0 10 10 D/C W/R BLAST DT/R DEN RDYRCV Advance Information Datasheet 59 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 35. Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus TA TW TW TD TW TD TW TD TW TD TR CLKIN AD31:0 ADDR DATA Out DATA Out DATA Out DATA Out ALE ADS A3:2 00 01 10 11 BE3:0 WIDTH1:0 10 D/C W/R BLAST DT/R DEN RDYRCV F_JF032A 60 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 36. Burst Read and Write Transactions Without Wait States, 8-Bit Bus TA TD TD TR TA TD TD TD TD TR CLKIN AD31:0 ADDR D In D In ADDR DATA DATA DATA Out Out Out DATA Out ALE ADS A3:2 BE1/A1 BE0/A0 WIDTH1:0 00,01,10 or 11 00,01,10 or 11 00 or 10 01 or 11 00 00 01 10 11 00 D/C W/R BLAST DT/R DEN RDYRCV F_JF033A Advance Information Datasheet 61 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 37. Burst Read and Write Transactions With 1, 0 Wait States and Extra Tr State on Read, 16-Bit Bus TA TW TD TD TR TR TA TW TD TD TR CLKIN AD31:0 D In ADDR D In DATA Out ADDR DATA Out ALE ADS BE1/A1 00,01,10, or 11 00,01,10, or 11 A3:2 0 1 0 1 BE3/BHE BE0/BLE WIDTH1:0 01 01 D/C W/R BLAST DT/R DEN RDYRCV 62 F_JF034A Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 38. Double Word Read Bus Request, Misaligned One Byte From Quad Word Boundary, 32-Bit Bus, Little Endian TA TD TR TA TD TR TA TD TR TA TD TR CLKIN AD31:0 D In A D In A D In A D In A ALE ADS A3:2 00 00 BE3:0 1101 0011 WIDTH1:0 D/C 01 0000 10 1110 10 Valid W/R BLAST DT/R DEN RDYRCV Advance Information Datasheet 63 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 39. HOLD/HOLDA Waveform For Bus Arbitration TH TH TI or TA ~ TI or TR ~ Valid ~ ~ Valid ~ Outputs: AD31:0, ALE, ALE, ADS, A3:2, BE3:0, WIDTH/HLTD1:0, D/C, W/R, DT/R, DEN, BLAST, LOCK ~ ~ CLKIN ~ HOLD (Note) ~ HOLDA NOTE: HOLD is sampled on the rising edge of CLKIN. The processor asserts HOLDA to grant the bus on the same edge in which it recognizes HOLD if the last state was Ti or the last Tr of a bus transaction. Similarly, the processor deasserts HOLDA on the same edge in which it recognizes the deassertion of HOLD. 64 Advance Information Datasheet VCC and CLKIN stable to RESET High, minimum 10,000 CLKIN periods, for PLL stabilization. Valid (Output) Built-in self-test (Note 4) (Input) Valid Output (Note 3) Valid Input (Note 3) Idle (Note 2) (Note 1) First Bus Activity 3. Since the bus is idle, hold requests are honored during reset and built-in self-test. 4. When selected, built-in self test requires approximately (in CLKIN periods): 393,000 for 80960JT, 207,000 for 80960JD, and 414,000 for 80960JA/JF. 2. If the processor fails built-in self-test, it initiates one dummy load bus access. The load address indicates the point of self-test failure. Notes: 1. The processor asserts FAIL during built-in self-test. If self- test passes, the FAIL pin is deasserted.The processor also asserts FAIL during the bus confidence test. If the bus confidence test passes, FAIL is deasserted and the processor begins user program execution. RESET STEST LOCK/ ONCE HOLDA HOLD AD31:0, A3:2,D/C FAIL ~ ~ ~ ~ ~ ~ ALE, ADS, BE3:0, DEN, BLAST ALE,W/R, DT/R WIDTH/HLTD1:0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ VCC ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Advance Information Datasheet ~ ~ ~ ~ ~ ~ Figure 40. CLKIN 80960JA/JF/JD/JT 3.3 V Microprocessor Cold Reset Waveform 65 RESET STEST LOCK/ONCE HOLDA HOLD AD31:0, A3:2, D/C FAIL ALE, W/R,DT/R, BSTAT, WIDTH/HLTD1:0 ALE, ADS, BE3:0, DEN, BLAST Minimum RESET Low Time 15 CLKIN Cycles Maximum RESET Low to Reset State 4 CLKIN Cycles ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ 80960JT - 26 CLKIN Cycles 80960JD - 46 CLKIN Cycles 80960JA/JF - 92 CLKIN Cycles RESET High to First Bus Activity: Valid ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 66 ~ ~ Figure 41. ~ ~ CLKIN 80960JA/JF/JD/JT 3.3 V Microprocessor Warm Reset Waveform Advance Information Datasheet CLKIN VCC ALE, ADS, BE3:0, DEN, BLAST ALE,W/R, DT/R, WIDTH/HLTD1:0 VCC and CLKIN stable to RESET High, minimum 10,000 CLKIN periods, for PLL stabilization. (Note 1) (Input) 2. The ONCE input may be removed after the processor enters ONCE Mode. NOTES: 1. ONCE mode may be entered prior to the rising edge of RESET: ONCE input is not latched until the rising edge of RESET. RESET STEST LOCK/ ONCE HOLDA HOLD ~ ~ AD31:0, A3:2, D/C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ FAIL ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Advance Information Datasheet ~ ~ ~ ~ ~ ~ ~ ~ Figure 42. ~ ~ CLKIN may not be allowed to float. It must be driven high or low or continue to run. 80960JA/JF/JD/JT 3.3 V Microprocessor Entering the ONCE State 67 80960JA/JF/JD/JT 3.3 V Microprocessor 5.1 Basic Bus States The bus has five basic bus states: idle (Ti), address (Ta), wait/data (Tw/Td), recovery (Tr), and hold (Th). During system operation, the processor continuously enters and exits different bus states. The bus occupies the idle (Ti) state when no address/data transactions are in progress and when RESET is asserted. When the processor needs to initiate a bus access, it enters the Ta state to transmit the address. Following a Ta state, the bus enters the Tw/Td state to transmit or receive data on the address/data lines. Assertion of the RDYRCV input signal indicates completion of each transfer. When data is not ready, the processor can wait as long as necessary for the memory or I/O device to respond. After the data transfer, the bus exits the Tw/Td state and enters the recovery (Tr) state. In the case of a burst transaction, the bus exits the Td state and re-enters the Td/Tw state to transfer the next data word. The processor asserts the BLAST signal during the last Tw/Td states of an access. Once all data words transfer in a burst access (up to four), the bus enters the Tr state to allow devices on the bus to recover. The processor remains in the Tr state until RDYRCV is deasserted. When the recovery state completes, the bus enters the Ti state if no new accesses are required. If an access is pending, the bus enters the Ta state to transmit the new address. Figure 43. Bus States with Arbitration (READY AND BURST) OR NOT READY Tw/Td Ta RECOVERED AND REQUEST PENDING AND (NO HOLD OR LOCKED) READY AND NO BURST REQUEST PENDING AND (NO HOLD OR LOCKED) NOT RECOVERED REQUEST PENDING AND NO HOLD NO REQUEST AND (NO HOLD OR LOCKED) RECOVERED AND NO REQUEST AND (NO HOLD OR LOCKED) Tr Ti ONCE & RESET DEASSERTION NO REQUEST AND NO HOLD To RESET HOLD AND NOT LOCKED Ti — IDLE STATE Ta — ADDRESS STATE Tw / Td — WAIT/DATA STATE Tr — RECOVERY STATE Th — HOLD STATE To — ONCE STATE 68 Th RECOVERED AND HOLD AND NOT LOCKED READY NOT READY BURST NO BURST RECOVERED NOT RECOVERED REQUEST PENDING NO REQUEST HOLD NO HOLD LOCKED NOT LOCKED RESET ONCE HOLD — RDYRCV ASSERTED — RDYRCV NOT ASSERTED — BLAST NOT ASSERTED — BLAST ASSERTED — RDYRCV NOT ASSERTED — RDYRCV ASSERTED — NEW TRANSACTION — NO NEW TRANSACTION — HOLD REQUEST ASSERTED — HOLD REQUEST NOT ASSERTED — ATOMIC EXECUTION (ATADD, ATMOD) IN PROGRESS — NO ATOMIC EXECUTION IN PROGRESS — RESET ASSERTED — ONCE ASSERTED Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor 5.2 Boundary-Scan Register The Boundary-Scan register contains a cell for each pin as well as cells for control of I/O and HIGHZ pins. Table 25 shows the bit order of the 80960Jx processor Boundary-Scan register. All table cells that contain “CTL” select the direction of bidirectional pins or HIGHZ output pins. If a “1” is loaded into the control cell, the associated pin(s) are HIGHZ or selected as input. Table 25. Boundary-Scan Register Bit Order Bit Signal Input/ Output Bit Signal Input/ Output Bit Signal Input/ Output 0 RDYRCV (TDI) I 24 DEN O 48 AD17 I/O 1 HOLD I 25 HOLDA O 49 AD16 I/O 2 XINT0 I 26 ALE O 50 AD15 I/O 3 XINT1 I 27 LOCK/ONCE cell Enable cell1 51 AD14 I/O 4 XINT2 I 28 LOCK/ONCE I/O 52 AD13 I/O 5 XINT3 I 29 BSTAT O 53 AD12 I/O 6 XINT4 I 30 BE0 O 54 AD cells Enable cell1 7 XINT5 I 31 BE1 O 55 AD11 I/O 8 XINT6 I 32 BE2 O 56 AD10 I/O 9 XINT7 I 33 BE3 O 57 AD9 I/O 10 NMI I 34 AD31 I/O 58 AD8 I/O 11 FAIL I 35 AD30 I/O 59 AD7 I/O 12 ALE O 36 AD29 I/O 60 AD6 I/O 13 WIDTH/HLTD1 O 37 AD28 I/O 61 AD5 I/O 14 WIDTH/HLTD0 O 38 AD27 I/O 62 AD4 I/O 15 A2 O 39 AD26 I/O 63 AD3 I/O 16 A3 O 40 AD25 I/O 64 AD2 I/O 41 AD24 I/O 65 AD1 I/O 17 CONTROL1 Enable cell 1 1 18 CONTROL2 Enable cell 42 AD23 I/O 66 AD0 I/O 19 BLAST O 43 AD22 I/O 67 CLKIN I 20 D/C O 44 AD21 I/O 68 RESET I 21 ADS O 45 AD20 I/O 69 STEST (TDO) I 22 W/R O 46 AD19 I/O 23 DT/R O 47 AD18 I/O NOTE: 1. Enable cells are active low. Advance Information Datasheet 69 80960JA/JF/JD/JT 3.3 V Microprocessor Table 26. Natural Boundaries for Load and Store Accesses Data Width Table 27. Byte 1 Short Word 2 Word 4 Double Word 8 Triple Word 16 Quad Word 16 Summary of Byte Load and Store Accesses Address Offset from Natural Boundary (in Bytes) +0 (aligned) Table 28. Accesses on 8-Bit Bus (WIDTH1:0=00) • byte access Accesses on 16 Bit Bus (WIDTH1:0=01) • byte access Accesses on 32 Bit Bus (WIDTH1:0=10) • byte access Summary of Short Word Load and Store Accesses Address Offset from Natural Boundary (in Bytes) 70 Natural Boundary (Bytes) Accesses on 8-Bit Bus (WIDTH1:0=00) Accesses on 16 Bit Bus (WIDTH1:0=01) Accesses on 32 Bit Bus (WIDTH1:0=10) +0 (aligned) • burst of 2 bytes • short-word access • short-word access +1 • 2 byte accesses • 2 byte accesses • 2 byte accesses Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 29. Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4) Address Offset from Natural Boundary in Bytes Accesses on 8-Bit Bus (WIDTH1:0=00) Accesses on 16 Bit Bus (WIDTH1:0=01) Accesses on 32 Bit Bus (WIDTH1:0=10) • case n=1: burst of 2 short words +0 (aligned) (n =1, 2, 3, 4) • case n=2: burst of 4 short words • n burst(s) of 4 bytes • case n=3: burst of 4 short words burst of 2 short words • burst of n word(s) • case n=4: 2 bursts of 4 short words +1 (n =1, 2, 3, 4) • byte access +5 (n = 2, 3, 4) • burst of 2 bytes +9 (n = 3, 4) • n-1 burst(s) of 4 bytes +13 (n = 3, 4) • byte access +2 (n =1, 2, 3, 4) +6 (n = 2, 3, 4) +10 (n = 3, 4) +14 (n = 3, 4) • burst of 2 bytes • n-1 burst(s) of 4 bytes • burst of 2 bytes +3 (n =1, 2, 3, 4) • byte access +7 (n = 2, 3, 4) • n-1 burst(s) of 4 bytes +11 (n = 3, 4) • burst of 2 bytes +15 (n = 3, 4) • byte access • byte access • byte access • short-word access • short-word access • n-1 burst(s) of 2 short words • n-1 word access(es) • byte access • byte access • short-word access • short-word access • n-1 burst(s) of 2 short words • n-1 word access(es) • short-word access • short-word access • • byte access byte access • n-1 burst(s) of 2 short words • n-1 word access(es) • short-word access • short-word access • byte access • byte access • n burst(s) of 2 short words • n word access(es) +4 (n = 2, 3, 4) +8 (n = 3, 4) • n burst(s) of 4 bytes +12 (n = 3, 4) Advance Information Datasheet 71 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 44. Summary of Aligned and Unaligned Accesses (32-Bit Bus) 0 4 8 12 16 20 24 Word Offset 0 1 2 3 4 5 6 Byte Offset Short Access (Aligned) Byte, Byte Accesses Short-Word Load/Store Short Access (Aligned) Byte, Byte Accesses Word Access (Aligned) Byte, Short, Byte, Accesses Word Load/Store Short, Short Accesses Byte, Short, Byte Accesses One Double-Word Burst (Aligned) Byte, Short, Word, Byte Accesses Short, Word, Short Accesses Double-Word Load/Store Byte, Word, Short, Byte Accesses Word, Word Accesses One Double-Word Burst (Aligned) 72 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Figure 45. Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued) 0 4 8 12 16 20 24 1 2 3 4 5 6 Byte Offset Word Offset 0 One Three-Word Burst (Aligned) Byte, Short, Word, Word, Byte Accesses Triple-Word Load/Store Short, Word, Word, Short Accesses Byte, Word, Word, Short, Byte Accesses Word, Word, Word Accesses Word, Word, Word Accesses Word, Word, Word Accesses One Four-Word Burst (Aligned) Byte, Short, Word, Word, Word, Byte Accesses Quad-Word Load/Store Short, Word, Word, Word, Short Accesses Byte, Word, Word, Word, Short, Byte Accesses Word, Word, Word, Word Accesses Word, Word, Word, Word, Accesses Advance Information Datasheet 73 80960JA/JF/JD/JT 3.3 V Microprocessor 6.0 Device Identification 80960Jx processors may be identified electrically, according to device type and stepping (see Figure 46, and Table 31 through Table 36). Table 30 identifies the device type and stepping for all 5V, 80960Jx processors. Figure 46, and Table 31 through Table 36 identify all 3.3V-5V-tolerant 80960Jx processors. The device ID was enhanced to differentiate between 3.3V and 5V supply voltages, and between non-clock-doubled and clock-doubled cores when stepping from the A2 stepping to the C0 stepping. The 32-bit identifier is accessible in three ways: • Upon reset, the identifier is placed into the g0 register. • The identifier may be accessed from supervisor mode at any time by reading the DEVICEID register at address FF008710H. • The IEEE Standard 1149.1 Test Access Port may select the DEVICE ID register through the IDCODE instruction. • The device and stepping letter is also printed on the top side of the product package. Table 30. Figure 46. 80960Jx Device Type and Stepping Reference Device and Stepping Version Number 80960JT A0, A1 0000 0000 1000 0010 1011 80960JD C0 0011 0000 1000 0011 0000 80960JF C0 0011 0000 1000 0010 0000 80960JA C0 0011 0000 1000 0010 0001 Part Number X Complete ID (Hex) 0000 0001 001 1 0082B013 0000 0001 001 1 30830013 0000 0001 001 1 30820013 0000 0001 001 1 30821013 Manufacturer 80960JT Device Identification Register Part Number Version VCC 0 28 74 Product Type 0 0 0 1 24 0 0 Gen 0 20 0 0 1 Model 0 16 Manufacturer ID 1 0 1 1 0 12 0 0 0 0 8 0 0 1 4 0 0 1 1 1 0 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 31. Fields of 80960JT Device ID Field Value Definition Version See Table 32 Indicates major stepping changes. VCC 0 = 3.3 V device Indicates that a device is 3.3 V. Product Type 000 100 (Indicates i960 CPU) Designates type of product. Generation Type 0001 = J-series Indicates the generation (or series) the product belongs to. Model Indicates member within a series and specific model information. D DPCC D = Clock Multiplier (01) Clock-Tripled (P) Product Derivative (0) Jx C = Cache Size (11) 16K I-cache, 4K D-cache Manufacturer ID Table 32. Figure 47. 000 0000 1001 (Indicates Intel) Manufacturer ID assigned by IEEE. 80960JT Device ID Model Types Device Version VCC Product Gen. Model Manufacturer ID ‘1’ 80960JT A0, A1 0000 0 000100 0001 01011 00000001001 1 80960JD Device Identification Register Part Number Version VCC 0 28 Advance Information Datasheet Product Type 0 0 0 1 24 0 0 Gen 0 20 0 0 1 Model 1 16 Manufacturer ID 0 0 0 1 0 12 0 0 0 0 8 0 0 1 4 0 0 1 1 1 0 75 80960JA/JF/JD/JT 3.3 V Microprocessor Table 33. Fields of 80960JD Device ID Field Value Version Definition See Table 30 Indicates major stepping changes. 0 = 3.3 V device VCC Indicates that a device is 3.3 V. 1 = 5V device Product Type 00 0100 (Indicates i960 CPU) Designates type of product. Generation Type 0001 = J-series Indicates the generation (or series) the product belongs to. D000C D = Clock Doubled (0) Not Clock-Doubled (1) Clock Doubled Model Indicates member within a series and specific model information. C = Cache Size (0) 4K I-cache, 2K D-cache (1) 2K I-cache, 1K D-cache Manufacturer ID Table 34. Figure 48. 000 0000 1001 (Indicates Intel) Manufacturer ID assigned by IEEE. 80960JD Device ID Model Types Device Version VCC Product Gen. Model Manufacturer ID ‘1’ 80960JD C0 0011 0 000100 0001 10000 00000001001 1 80960JA/JF Device Identification Register Part Number Version VCC 0 28 76 Product Type 0 0 0 1 24 0 0 Gen 0 20 Model Manufacturer ID 0 0 1 0 16 12 0 0 0 0 8 0 0 1 4 0 0 1 1 1 0 Advance Information Datasheet 80960JA/JF/JD/JT 3.3 V Microprocessor Table 35. Fields of 80960JA/JF Device ID Field Value Definition Version See Table 36 Indicates major stepping changes. VCC 0 = 3.3 V device Indicates that a device is 3.3 V. 1 = 5V device Product Type 00 0100 (Indicates i960 CPU) Designates type of product. Generation Type 0001 = J-series Indicates the generation (or series) to which the product belongs. 0000C Indicates member within a series and specific model information. Model C = Cache Size 0 = 4K I-cache, 2K D-cache 1 = 2K I-cache, 1K D-cache Manufacturer ID Table 36. 000 0000 1001 (Indicates Intel) 80960JA/JF Device ID Model Types Device 7.0 Manufacturer ID assigned by IEEE. Version VCC Product Gen. Model Manufacturer ID ‘1’ 80960JA C0 0011 0 000100 0001 00001 00000001001 1 80960JF C0 0011 0 000100 0001 00000 00000001001 1 Revision History This data sheet supersedes revisions 273109-001, 272971-002, and 276146-001. Table 37 indicates significant changes since the previous revisions. Table 37. Data Sheet Revision History Figure 1 “80960Jx Microprocessor Package Options” on page 7 Added MPBGA package diagram Section 3.1.4, “80960Jx 196-Ball MPBGA Pinout” on page 29 Added new Figures 6 and 7, Tables 10, 11 and 13 Figure 12 “TLX vs. AD Bus Load Capacitance” on page 48 Added with following note Throughout document Merged 80960JA/JF/JD/JT 3.3 volt Processor data sheets Advance Information Datasheet 77