STMicroelectronics M36W832BE85ZA6T 32 mbit 2mb x16, boot block flash memory and 8 mbit 512kb x16 sram, multiple memory product Datasheet

M36W832TE
M36W832BE
32 Mbit (2Mb x16, Boot Block) Flash Memory
and 8 Mbit (512Kb x16) SRAM, Multiple Memory Product
FEATURES SUMMARY
■ SUPPLY VOLTAGE
Figure 1. Packages
– VDDF = 2.7V to 3.3V
– VDDS = VDDQF = 2.7V to 3.3V
■
– VPPF = 12V for Fast Program (optional)
ACCESS TIMES: 70ns and 85ns
■
LOW POWER CONSUMPTION
■
ELECTRONIC SIGNATURE
FBGA
– Manufacturer Code: 20h
– Top Device Code, M36W832TE: 88BAh
Stacked LFBGA66 (ZA)
12 x 8mm
– Bottom Device Code, M36W832BE: 88BBh
FLASH MEMORY
■ 32 Mbit (2Mb x16) BOOT BLOCK
– 8 x 4 KWord Parameter Blocks (Top or
Bottom Location)
■
PROGRAMMING TIME
– 10µs typical
– Double Word Programming Option
– Quadruple Word Programming Option
■
BLOCK LOCKING
– All blocks locked at Power up
– Any combination of blocks can be locked
– WPF for Block Lock-Down
■
AUTOMATIC STANDBY MODE
■
PROGRAM and ERASE SUSPEND
■
100,000 PROGRAM/ERASE CYCLES per
BLOCK
■
COMMON FLASH INTERFACE
■
SECURITY
SRAM
■ 8 Mbit (512Kb x 16)
■
ACCESS TIME: 70ns
■
LOW VDDS DATA RETENTION: 1.5V
■
POWER DOWN FEATURES USING TWO
CHIP ENABLE INPUTS
– 128 bit user programmable OTP cells
– 64 bit unique device identifier
May 2003
1/64
M36W832TE, M36W832BE
TABLE OF CONTENTS
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. LFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Address Inputs (A0-A18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Address Inputs (A19-A20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Chip Enable (EF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Output Enable (GF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Write Enable (WF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Write Protect (WPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Reset (RPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Chip Enable (E1S, E2S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Write Enable (WS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Output Enable (GS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Upper Byte Enable (UBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Lower Byte Enable (LBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
VDDF Supply Voltage (2.7V to 3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
VDDQF and VDDS Supply Voltage (2.7V to 3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
VPPF Program Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
VSSF and VSSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. Main Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Flash Memory Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. Flash Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Flash Security Block and Protection Register Memory Map . . . . . . . . . . . . . . . . . . . 12
SRAM Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. SRAM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Flash Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Read.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Flash Command Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3. Flash Command Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2/64
M36W832TE, M36W832BE
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Block Lock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 4. Flash Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5. Flash Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6. Flash Read Block Lock Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 7. Flash Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 8. Flash Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . 20
Flash Block Locking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 9. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 10. Protection Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Flash Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
VPPF Status (Bit 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Block Protection Status (Bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Reserved (Bit 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 11. Flash Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
SRAM Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Standby/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Data Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 12. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3/64
M36W832TE, M36W832BE
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 13. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 8. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 9. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 14. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 15. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 10. Flash Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 16. Flash Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 11. Flash Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 17. Flash Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 12. Flash Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 18. Flash Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 13. Flash Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 19. Flash Power-Up and Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 14. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = VIL . . . . . . 36
Figure 15. SRAM Read AC Waveforms, GS Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 16. SRAM Standby AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 17. SRAM Write AC Waveforms, E1S or E2S Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 20. SRAM Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 18. SRAM Write AC Waveforms, WS Controlled, GS High during Write . . . . . . . . . . . . . . . 38
Figure 19. SRAM Write AC Waveforms, WS Controlled with GS Low . . . . . . . . . . . . . . . . . . . . . . 38
Figure 20. SRAM Write Cycle Waveform, UBS and LBS Controlled GS Low, . . . . . . . . . . . . . . . . 39
Table 21. SRAM Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 21. SRAM Low V DDS Data Retention AC Waveforms, E1S Controlled . . . . . . . . . . . . . . . . 41
Figure 22. SRAM Low V DDS Data Retention AC Waveforms, E2S Controlled . . . . . . . . . . . . . . . . 41
Table 22. SRAM Low VDDS Data Retention Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 23. Stacked LFBGA66 12x8mm, 8x8 array, 0.8mm pitch, Bottom View Package Outline. . 42
Table 23. Stacked LFBGA66, 12x8mm, 8x8 ball array, 0.8mm pitch, Package Mechanical Data . 42
Figure 24. Stacked LFBGA66 Daisy Chain - Package Connections (Top view through package) . 43
Figure 25. Stacked LFBGA66 Daisy Chain - PCB Connections proposal (Top view through package)44
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 24. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 25. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
APPENDIX A. FLASH MEMORY BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 26. Top Boot Block Addresses, M36W832TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 27. Bottom Boot Block Addresses, M36W832BE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 28. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 29. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 30. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4/64
M36W832TE, M36W832BE
Table 31. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 32. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 33. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
APPENDIX C. FLASH MEMORY FLOWCHARTS and PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . 53
Figure 26. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 27. Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 28. Quadruple Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 29. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 56
Figure 30. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 31. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 32. Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 33. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 60
APPENDIX D. FLASH MEMORY COMMAND INTERFACE and PROGRAM/ERASE CONTROLLER
STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 34. Write State Machine Current/Next, sheet 1 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 35. Write State Machine Current/Next, sheet 2 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 36. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5/64
M36W832TE, M36W832BE
SUMMARY DESCRIPTION
The M36W832TE is a low voltage Multiple Memory Product which combines two memory devices;
a 32 Mbit boot block Flash memory and an 8 Mbit
SRAM. Recommended operating conditions do
not allow both the Flash and the SRAM to be active at the same time.
The memory is offered in a Stacked LFBGA66
(12x8mm, 0.8 mm pitch) package and is supplied
with all the bits erased (set to ‘1’).
Table 1. Signal Names
A0-A18
Address Inputs common to the Flash
and SRAM chips
A19-A20
Address Inputs for Flash Chip only
DQ0-DQ15
Data Input/Output
VDDF
Flash Power Supply
VDDQF
Flash Power Supply for I/O Buffers
VPPF
Flash Optional Supply Voltage for Fast
Program & Erase
VSSF
Flash Ground
VDDS
SRAM Power Supply
VSSS
SRAM Ground
NC
Not Connected Internally
Figure 2. Logic Diagram
VDDQF
VDDF
VDDS
VPPF
21
16
A0-A20
DQ0-DQ15
EF
Flash control functions
GF
EF
Chip Enable input
GF
Output Enable input
WF
Write Enable input
RPF
Reset input
WPF
Write Protect input
WF
RPF
WPF
M36W832TE
M36W832BE
E1S
E2S
SRAM control functions
GS
E1S, E2S
Chip Enable inputs
UBS
GS
Output Enable input
LBS
WS
Write Enable input
UBS
Upper Byte Enable input
LBS
Lower Byte Enable input
WS
VSSF
6/64
VSSS
AI90161b
H
NC
NC
A7
A4
A17
A5
A18
NC
G
GS
UBS
F
LBS
WPF
E
A19
DQ12
RPF
VSSS
D
VPPF
DQ13
NC
WF
A0
A6
DQ11
EF
A3
DQ9
DQ15
C
A9
A10
A13
A8
A
A16
A14
7
B
6
5
A15
4
A11
NC
NC
3
A20
2
1
VSSF
A2
DQ8
DQ10
E2S
DQ6
WS
A12
8
GF
A1
DQ0
DQ2
VDDS
DQ4
DQ14
VSSF
9
NC
E1S
DQ1
DQ3
VDDF
DQ5
DQ7
VDDQF
10
NC
NC
11
AI90162b
NC
NC
12
M36W832TE, M36W832BE
Figure 3. LFBGA Connections (Top view through package)
7/64
M36W832TE, M36W832BE
Signal Descriptions
See Figure 2 Logic Diagram and Table 1,Signal
Names, for a brief overview of the signals connected to this device.
Address Inputs (A0-A18). Addresses
A0-A18
are common inputs for the Flash and the SRAM
components. The Address Inputs select the cells
in the memory array to access during Bus Read
operations. During Bus Write operations they control the commands sent to the Command Interface
of the internal state machine. The Flash memory is
accessed through the Chip Enable ( EF) and Write
Enable (WF) signals, while the SRAM is accessed
through two Chip Enable signals (E1S and E2S)
and the Write Enable signal (WS).
Address Inputs (A19-A20). Addresses A19-A20
are inputs for the Flash component only. The
Flash memory is accessed through the Chip Enable (EF) and Write Enable (WF) signals
Data Input/Output (DQ0-DQ15). The Data I/O
outputs the data stored at the selected address
during a Bus Read operation or inputs a command
or the data to be programmed during a Write Bus
operation.
Flash Chip Enable (EF). The Chip Enable input
activates the Flash memory control logic, input
buffers, decoders and sense amplifiers. When
Chip Enable is at VIL and Reset is at VIH the device
is in active mode. When Chip Enable is at VIH the
memory is deselected, the outputs are high impedance and the power consumption is reduced to the
standby level.
Flash Output Enable (GF). The Output Enable
controls the data outputs during the Bus Read operation of the Flash memory.
Flash Write Enable (WF). The Write Enable
controls the Bus Write operation of the Flash
memory’s Command Interface. The data and address inputs are latched on the rising edge of Chip
Enable, EF, or Write Enable, WF, whichever occurs first.
Flash Write Protect (WPF). Write Protect is an
input that gives an additional hardware protection
for each block. When Write Protect is at V IL, the
Lock-Down is enabled and the protection status of
the block cannot be changed. When Write Protect
is at V IH, the Lock-Down is disabled and the block
can be locked or unlocked. (refer to Table 6, Read
Protection Register and Protection Register Lock).
Flash Reset (RPF). The Reset input provides a
hardware reset of the Flash memory. When Reset
is at V IL, the memory is in reset mode: the outputs
are high impedance and the current consumption
is minimized. After Reset all blocks are in the
Locked state. When Reset is at V IH, the device is
in normal operation. Exiting reset mode the device
enters read array mode, but a negative transition
8/64
of Chip Enable or a change of the address is required to ensure valid data outputs.
SRAM Chip Enable (E1S, E2S). The Chip Enable inputs activate the SRAM memory control
logic, input buffers and decoders. E1S at VIH or
E2S at VIL deselects the memory and reduces the
power consumption to the standby level. E1S and
E2S can also be used to control writing to the
SRAM memory array, while WS remains at VIL. It
is not allowed to set EF at VIL, E1S at V IL and E2S
at VIH at the same time.
SRAM Write Enable (WS). The Write Enable input controls writing to the SRAM memory array.
WS is active low.
SRAM Output Enable (GS). The Output Enable
gates the outputs through the data buffers during
a read operation of the SRAM memory. GS is active low.
SRAM Upper Byte Enable (UBS). The Upper
Byte Enable enables the upper bytes for SRAM
(DQ8-DQ15). UBS is active low.
SRAM Lower Byte Enable (LBS). The Lower
Byte Enable enables the lower bytes for SRAM
(DQ0-DQ7). LBS is active low.
VDDF Supply Voltage (2.7V to 3.3V). VDDF provides the power supply to the internal core of the
Flash Memory device. It is the main power supply
for all operations (Read, Program and Erase).
VDDQF and V DDS Supply Voltage (2.7V to 3.3V).
VDDQF provides the power supply for the Flash
memory I/O pins and VDDS provides the power
supply for the SRAM control pins. This allows all
Outputs to be powered independently of the Flash
core power supply, VDDF. VDDQF can be tied to
VDDS
VPPF Program Supply Voltage. VPPF is both a
control input and a power supply pin for the Flash
memory. The two functions are selected by the
voltage range applied to the pin. The Supply Voltage VDDF and the Program Supply Voltage VPPF
can be applied in any order.
If V PPF is kept in a low voltage range (0V to 3.6V)
VPPF is seen as a control input. In this case a voltage lower than VPPLK gives an absolute protection
against program or erase, while VPPF > VPP1 enables these functions (see Table 15, DC Characteristics for the relevant values). V PPF is only
sampled at the beginning of a program or erase; a
change in its value after the operation has started
does not have any effect on Program or Erase,
however for Double or Quadruple Word Program
the results are uncertain.
If VPPF is in the range 11.4V to 12.6V it acts as a
power supply pin. In this condition V PPF must be
stable until the Program/Erase algorithm is completed (see Table 17 and 18).
M36W832TE, M36W832BE
VSSF and VSSS Ground. VSSF and VSSS are the
ground reference for all voltage measurements in
the Flash and SRAM chips, respectively.
Note: Each device in a system should have V DDF, VDDQF and VPPF decoupled with a 0.1µF ca-
FUNCTIONAL DESCRIPTION
The Flash and SRAM components have separate
power supplies and grounds and are distinguished
by three chip enable inputs: EF for the Flash memory and, E1S and E2S for the SRAM.
Recommended operating conditions do not allow
both the Flash and the SRAM to be in active mode
at the same time. The most common example is
pacitor close to the pin. See Figure 9, AC
Measurement Load Circuit. The PCB trace
widths should be sufficient to carry the required V PPF program and erase currents.
simultaneous read operations on the Flash and
the SRAM which would result in a data bus contention. Therefore it is recommended to put the
SRAM in the high impedance state when reading
the Flash and vice versa (see Table 2 Main Operation Modes for details).
Figure 4. Functional Block Diagram
VDDF
VDDQF
VPPF
EF
GF
WF
RPF
WPF
Flash Memory
32 Mbit (x16)
A19-A20
A0-A18
VSSF
VDDS
DQ0-DQ15
E1S
E2S
GS
SRAM
8 Mbit (x16)
WS
UBS
LBS
VSSS
AI90163
9/64
M36W832TE, M36W832BE
Table 2. Main Operation Modes
EF
GF
WF
RPF WPF
Read
VIL
VIL
VIH
VIH
X
Don’t care
SRAM must be disabled
Data Output
Write
VIL
VIH
VIL
VIH
X
VDDF or
VPPFH
SRAM must be disabled
Data Input
Block
Locking
VIL
X
X
VIH
VIL
Don’t care
SRAM must be disabled
X
Standby
VIH
X
X
VIH
X
Don’t care
Any SRAM mode is allowed
Hi-Z
Reset
X
X
X
VIL
X
Don’t care
Any SRAM mode is allowed
Hi-Z
Output
Disable
VIL
VIH
VIH
VIH
X
Don’t care
Any SRAM mode is allowed
Hi-Z
Flash Memory
Operation
Mode
Read
SRAM
Write
VPPF
Flash must be disabled
Flash must be disabled
Standby/
Power
Down
Any Flash mode is allowable
Data
Retention
Any Flash mode is allowable
Output
Disable
Any Flash mode is allowable
Note: X = VIL or VIH, VPPFH = 12V ± 5%.
10/64
E1S E2S WS
GS
UBS LBS DQ15-DQ8 DQ7-DQ0
X
X
VIH
VIL
VIL
VIL
VIL
VIH
VIH
VIL
VIH
VIL
Hi-Z
Data out
VIL
VIH
VIH
VIL
VIL
VIH
Data out
Hi-Z
VIL
VIH
VIL
X
VIL
VIL
VIL
VIH
VIL
X
VIH
VIL
Hi-Z
Data in
VIL
VIH
VIL
X
VIL
VIH
Data in
Hi-Z
VIH
X
X
X
X
X
Hi-Z
X
VIL
X
X
VIH
VIH
Hi-Z
VIH
X
X
X
X
X
Hi-Z
X
VIL
X
X
X
X
Hi-Z
VIL
VIH
VIH
VIH
X
X
Hi-Z
Data out
Data in
M36W832TE, M36W832BE
Flash Memory Component
The Flash Memory is a 32 Mbit (2 Mbit x 16) device
that can be erased electrically at block level and
programmed in-system on a Word-by-Word basis.
These operations can be performed using a single
low voltage (2.7 to 3.6V) supply. V DDQF allows to
drive the I/O pin down to 1.65V. An optional 12V
VPPF power supply is provided to speed up customer programming.
The device features an asymmetrical blocked architecture with an array of 71 blocks: 8 Parameter
Blocks of 4 KWords and 63 Main Blocks of 32
KWords. The M36W832TE has the Parameter
Blocks at the top of the memory address space
while the M36W832BE locates the Parameter
Blocks starting from the bottom. The memory
maps are shown in Figure 5, Block Addresses.
The Flash Memory features an instant, individual
block locking scheme that allows any block to be
locked or unlocked with no latency, enabling instant code and data protection. All blocks have
three levels of protection. They can be locked and
locked-down individually preventing any accidental programming or erasure. There is an additional
hardware protection against program and erase.
When V PPF ≤ VPPLK all blocks are protected
against program or erase. All blocks are locked at
Power Up.
Each block can be erased separately. Erase can
be suspended in order to perform either read or
program in any other block and then resumed.
Program can be suspended to read data in any
other block and then resumed. Each block can be
programmed and erased over 100,000 cycles.
The device includes a Protection Register to increase the protection of a system design. The Protection Register is divided into two segments, the
first is a 64 bit area which contains a unique device
number written by ST, while the second is a 128 bit
area, one-time-programmable by the user. The
user programmable segment can be permanently
protected. Figure 6, shows the Flash Security
Block and Protection Register Memory Map.
Program and Erase commands are written to the
Command Interface of the memory. An on-chip
Program/Erase Controller takes care of the timings necessary for program and erase operations.
The end of a program or erase operation can be
detected and any error conditions identified. The
command set required to control the memory is
consistent with JEDEC standards.
Figure 5. Flash Block Addresses
Bottom Boot Block Addresses
Top Boot Block Addresses
1FFFFF
1FFFFF
32 KWords
4 KWords
1F8000
1F7FFF
1FF000
Total of 8
4 KWord Blocks
32 KWords
1F0000
Total of 63
32 KWord Blocks
1F8FFF
4 KWords
1F8000
1F7FFF
32 KWords
1F0000
00FFFF
32 KWords
008000
007FFF
4 KWords
Total of 63
32 KWord Blocks
007000
Total of 8
4 KWord Blocks
00FFFF
32 KWords
008000
007FFF
000FFF
32 KWords
000000
4 KWords
000000
AI90164
Note: Also see Appendix A, Tables 26 and 27 for a full listing of the Flash Block Addresses.
11/64
M36W832TE, M36W832BE
Figure 6. Flash Security Block and Protection Register Memory Map
PROTECTION REGISTER
8Ch
User Programmable OTP
85h
84h
Unique device number
81h
80h
Protection Register Lock
2(1)
1
0
AI90165b
Note: 1. Bit 2 of the Protection Register Lock must not be programmed to 0.
12/64
M36W832TE, M36W832BE
SRAM Component
The SRAM is an 8 Mbit asynchronous random access memory which features a super low voltage
operation and low current consumption with an ac-
cess time of 70ns in all conditions. The memory
operations can be performed using a single low
voltage supply, 2.7V to 3.3V, which is the same as
the Flash voltage supply.
Figure 7. SRAM Block Diagram
512Kb x 16
RAM Array
2048 x 4096
SENSE AMPS
A0-A10
ROW DECODER
DATA IN DRIVERS
DQ0-DQ7
DQ8-DQ15
COLUMN DECODER
UBS
WS
A11-A18
GS
LBS
E2S
E1S
E2S
POWER-DOWN
CIRCUIT
UBS
E1S
LBS
AI07964
13/64
M36W832TE, M36W832BE
OPERATING MODES
Flash Bus Operations
There are six standard bus operations that control
the device. These are Bus Read, Bus Write, Output Disable, Standby, Automatic Standby and Reset. See Table 2, Main Operation Modes, for a
summary.
Typically glitches of less than 5ns on Chip Enable
or Write Enable are ignored by the memory and do
not affect bus operations.
Read. Read Bus operations are used to output
the contents of the Memory Array, the Electronic
Signature, the Status Register and the Common
Flash Interface. Both Chip Enable and Output Enable must be at VIL in order to perform a read operation. The Chip Enable input should be used to
enable the device. Output Enable should be used
to gate data onto the output. The data read depends on the previous command written to the
memory (see Command Interface section). See
Figure 10, Flash Read Mode AC Waveforms, and
Table 16, Flash Read AC Characteristics, for details of when the output becomes valid.
Read mode is the default state of the device when
exiting Reset or after power-up.
Write. Bus Write operations write Commands to
the memory or latch Input Data to be programmed.
A write operation is initiated when Chip Enable
and Write Enable are at V IL with Output Enable at
VIH. Commands, Input Data and Addresses are
latched on the rising edge of Write Enable or Chip
Enable, whichever occurs first.
14/64
See Figures 11 and 12, Flash Write AC Waveforms, and Tables 17 and 18, Write AC Characteristics, for details of the timing requirements.
Output Disable. The data outputs are high impedance when the Output Enable is at V IH.
Standby. Standby disables most of the internal
circuitry allowing a substantial reduction of the current consumption. The memory is in stand-by
when Chip Enable is at VIH and the device is in
read mode. The power consumption is reduced to
the stand-by level and the outputs are set to high
impedance, independently from the Output Enable
or Write Enable inputs. If Chip Enable switches to
VIH during a program or erase operation, the device enters Standby mode when finished.
Automatic Standby. Automatic Standby provides a low power consumption state during Read
mode. Following a read operation, the device enters Automatic Standby after 150ns of bus inactivity even if Chip Enable is Low, VIL, and the supply
current is reduced to IDD1. The data Inputs/Outputs will still output data if a bus Read operation is
in progress.
Reset. During Reset mode when Output Enable
is Low, VIL, the memory is deselected and the outputs are high impedance. The memory is in Reset
mode when Reset is at V IL. The power consumption is reduced to the Standby level, independently
from the Chip Enable, Output Enable or Write Enable inputs. If Reset is pulled to VSSF during a Program or Erase, this operation is aborted and the
memory content is no longer valid.
M36W832TE, M36W832BE
Flash Command Interface
All Bus Write operations to the memory are interpreted by the Command Interface. Commands
consist of one or more sequential Bus Write operations. An internal Program/Erase Controller handles all timings and verifies the correct execution
of the Program and Erase commands. The Program/Erase Controller provides a Status Register
whose output may be read at any time during, to
monitor the progress of the operation, or the Program/Erase states. See Table 4, Command
Codes, for a summary of the commands and see
Appendix 31, Table 34, Write State Machine Current/Next, for a summary of the Command Interface.
The Command Interface is reset to Read mode
when power is first applied, when exiting from Reset or whenever VDDF is lower than VLKO. Command sequences must be followed exactly. Any
invalid combination of commands will reset the device to Read mode. Refer to Table 3, Flash Command Codes, in conjunction with the following text
descriptions.
Table 3. Flash Command Codes
Hex Code
Command
01h
Block Lock confirm
10h
Program
20h
Erase
2Fh
Block Lock-Down confirm
30h
Double Word Program
40h
Program
50h
Clear Status Register
55h
Reserved
56h
Quadruple Word Program
60h
Block Lock, Block Unlock, Block LockDown
70h
Read Status Register
90h
Read Electronic Signature
98h
Read CFI Query
B0h
Program/Erase Suspend
C0h
Protection Register Program
D0h
Program/Erase Resume, Block Unlock
confirm
FFh
Read Memory Array
Read Memory Array Command. The
Read
command returns the memory to its Read mode.
One Bus Write cycle is required to issue the Read
Memory Array command and return the memory to
Read mode. Subsequent read operations will read
the addressed location and output the data. When
a device Reset occurs, the memory defaults to
Read mode.
Read Status Register Command. The Status
Register indicates when a program or erase operation is complete and the success or failure of the
operation itself. Issue a Read Status Register
command to read the Status Register’s contents.
Subsequent Bus Read operations read the Status
Register at any address, until another command is
issued. See Table 11, Status Register Bits, for details on the definitions of the bits.
The Read Status Register command may be issued at any time, even during a Program/Erase
operation. Any Read attempt during a Program/
Erase operation will automatically output the content of the Status Register.
Read Electronic Signature Command. The
Read Electronic Signature command reads the
Manufacturer and Device Codes and the Block
Locking Status, or the Protection Register.
The Read Electronic Signature command consists
of one write cycle, a subsequent read will output
the Manufacturer Code, the Device Code, the
Block Lock and Lock-Down Status, or the Protection and Lock Register. See Tables 5, 6 and 7 for
the valid address.
Read CFI Query Command. The Read Query
Command is used to read data from the Common
Flash Interface (CFI) Memory Area, allowing programming equipment or applications to automatically match their interface to the characteristics of
the device. One Bus Write cycle is required to issue the Read Query Command. Once the command is issued subsequent Bus Read operations
read from the Common Flash Interface Memory
Area. See Appendix B, Common Flash Interface,
Tables 28, 29, 30, 31, 32 and 33 for details on the
information contained in the Common Flash Interface memory area.
Block Erase Command. The Block Erase command can be used to erase a block. It sets all the
bits within the selected block to ’1’. All previous
data in the block is lost. If the block is protected
then the Erase operation will abort, the data in the
block will not be changed and the Status Register
will output the error.
Two Bus Write cycles are required to issue the
command.
■ The first bus cycle sets up the Erase command.
15/64
M36W832TE, M36W832BE
The second latches the block address in the
internal state machine and starts the Program/
Erase Controller.
If the second bus cycle is not Write Erase Confirm
(D0h), Status Register bits b4 and b5 are set and
the command aborts.
Erase aborts if Reset turns to VIL. As data integrity
cannot be guaranteed when the Erase operation is
aborted, the block must be erased again.
During Erase operations the memory will accept
the Read Status Register command and the Program/Erase Suspend command, all other commands will be ignored. Typical Erase times are
given in Table 8, Flash Program, Erase Times and
Program/Erase Endurance Cycles.
See Appendix C, Figure 30, Erase Flowchart and
Pseudo Code, for a suggested flowchart for using
the Erase command.
Program Command. The memory array can be
programmed word-by-word. Two bus write cycles
are required to issue the Program Command.
■ The first bus cycle sets up the Program
command.
■ The second latches the Address and the Data to
be written and starts the Program/Erase
Controller.
During Program operations the memory will accept the Read Status Register command and the
Program/Erase Suspend command. Typical Program times are given in Table 8, Flash Program,
Erase Times and Program/Erase Endurance Cycles.
Programming aborts if Reset goes to VIL. As data
integrity cannot be guaranteed when the program
operation is aborted, the block containing the
memory location must be erased and reprogrammed.
See Appendix C, Figure 26, Program Flowchart
and Pseudo Code, for the flowchart for using the
Program command.
Double Word Program Command. This feature
is offered to improve the programming throughput,
writing a page of two adjacent words in parallel.The two words must differ only for the address
A0. Programming should not be attempted when
VPPF is not at VPPH.
Three bus write cycles are necessary to issue the
Double Word Program command.
■ The first bus cycle sets up the Double Word
Program Command.
■ The second bus cycle latches the Address and
the Data of the first word to be written.
■ The third bus cycle latches the Address and the
Data of the second word to be written and starts
the Program/Erase Controller.
■
16/64
Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity
cannot be guaranteed when the program operation is aborted, the block containing the memory
location must be erased and reprogrammed.
See Appendix C, Figure 27, Double Word Program Flowchart and Pseudo Code, for the flowchart for using the Double Word Program
command.
Quadruple Word Program Command. This
feature is offered to improve the programming
throughput, writing a page of four adjacent words
in parallel.The four words must differ only for the
addresses A0 and A1. Programming should not be
attempted when VPPF is not at VPPH.
Five bus write cycles are necessary to issue the
Quadruple Word Program command.
■ The first bus cycle sets up the Quadruple Word
Program Command.
■ The second bus cycle latches the Address and
the Data of the first word to be written.
■ The third bus cycle latches the Address and the
Data of the second word to be written.
■ The fourth bus cycle latches the Address and
the Data of the third word to be written.
■ The fifth bus cycle latches the Address and the
Data of the fourth word to be written and starts
the Program/Erase Controller.
Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity
cannot be guaranteed when the program operation is aborted, the block containing the memory
location must be erased and reprogrammed.
See Appendix C, Figure 28, Quadruple Word Program Flowchart and Pseudo Code, for the flowchart for using the Quadruple Word Program
command.
Clear Status Register Command. The
Clear
Status Register command can be used to reset
bits 1, 3, 4 and 5 in the Status Register to ‘0’. One
bus write cycle is required to issue the Clear Status Register command.
The bits in the Status Register do not automatically return to ‘0’ when a new Program or Erase command is issued. The error bits in the Status
Register should be cleared before attempting a
new Program or Erase command.
Program/Erase Suspend Command. The Program/Erase Suspend command is used to pause
a Program or Erase operation. One bus write cycle
is required to issue the Program/Erase command
and pause the Program/Erase controller.
During Program/Erase Suspend the Command Interface will accept the Program/Erase Resume,
M36W832TE, M36W832BE
Read Array, Read Status Register, Read Electronic Signature and Read CFI Query commands. Additionally, if the suspend operation was Erase then
the Program, Double Word Program, Quadruple
Word Program, Block Lock, Block Lock-Down or
Protection Program commands will also be accepted. The block being erased may be protected
by issuing the Block Protect, Block Lock or Protection Program commands. When the Program/
Erase Resume command is issued the operation
will complete. Only the blocks not being erased
may be read or programmed correctly.
During a Program/Erase Suspend, the device can
be placed in a pseudo-standby mode by taking
Chip Enable to V IH. Program/Erase is aborted if
Reset turns to VIL.
See Appendix C, Figure 29, Program or Double
Word Program Suspend & Resume Flowchart and
Pseudo Code, and Figure 31, Erase Suspend &
Resume Flowchart and Pseudo Code for flowcharts for using the Program/Erase Suspend command.
Program/Erase Resume Command. The Program/Erase Resume command can be used to restart the Program/Erase Controller after a
Program/Erase Suspend operation has paused it.
One Bus Write cycle is required to issue the command. Once the command is issued subsequent
Bus Read operations read the Status Register.
See Appendix C, Figure 29, Program or Double
Word Program Suspend & Resume Flowchart and
Pseudo Code, and Figure 31, Erase Suspend &
Resume Flowchart and Pseudo Code for flowcharts for using the Program/Erase Resume command.
Protection Register Program Command. The
Protection Register Program command is used to
Program the 128 bit user One-Time-Programmable (OTP) segment of the Protection Register. The
segment is programmed 16 bits at a time. When
shipped all bits in the segment are set to ‘1’. The
user can only program the bits to ‘0’.
Two write cycles are required to issue the Protection Register Program command.
■ The first bus cycle sets up the Protection
Register Program command.
■ The second latches the Address and the Data to
be written to the Protection Register and starts
the Program/Erase Controller.
Read operations output the Status Register content after the programming has started.
The segment can be protected by programming bit
1 of the Protection Lock Register (see Figure 6,
Flash Security Block and Protection Register
Memory Map). Attempting to program a previously
protected Protection Register will result in a Status
Register error. The protection of the Protection
Register is not reversible.
The Protection Register Program cannot be suspended.
Block Lock Command. The Block Lock command is used to lock a block and prevent Program
or Erase operations from changing the data in it.
All blocks are locked at power-up or reset.
Two Bus Write cycles are required to issue the
Block Lock command.
■ The first bus cycle sets up the Block Lock
command.
■ The second Bus Write cycle latches the block
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Table. 10 shows the protection status after issuing
a Block Lock command.
The Block Lock bits are volatile, once set they remain set until a hardware reset or power-down/
power-up. They are cleared by a Blocks Unlock
command. Refer to the section, Block Locking, for
a detailed explanation.
Block Unlock Command. The Blocks Unlock
command is used to unlock a block, allowing the
block to be programmed or erased. Two Bus Write
cycles are required to issue the Blocks Unlock
command.
■ The first bus cycle sets up the Block Unlock
command.
■ The second Bus Write cycle latches the block
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Table. 10 shows the protection status after issuing
a Block Unlock command. Refer to the “Flash
Block Locking” section, for a detailed explanation.
Block Lock-Down Command. A locked block
cannot be Programmed or Erased, or have its protection status changed when WPF is low, VIL.
When WPF is high, VIH, the Lock-Down function is
disabled and the locked blocks can be individually
unlocked by the Block Unlock command.
Two Bus Write cycles are required to issue the
Block Lock-Down command.
■ The first bus cycle sets up the Block Lock
command.
■ The second Bus Write cycle latches the block
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Locked-Down blocks revert to the locked (and not
locked-down) state when the device is reset on
power-down. Table. 10 shows the protection status after issuing a Block Lock-Down command.
17/64
M36W832TE, M36W832BE
Refer to the “Flash Block Locking” section for a detailed explanation.
Commands
Cycles
Table 4. Flash Commands
Bus Write Operations
1st Cycle
2nd Cycle
Op. Add Data
Op. Add Data
3rd Cycle
4th Cycle
Op. Add Data Op.
Read Memory
Array
1+ Write
X
FFh
Read
RA
RD
Read Status
Register
1+ Write
X
70h
Read
X
SRD
Read Electronic
Signature
1+ Write
X
90h
Read SA(2)
IDh
Read CFI Query
1+ Write
X
98h
Read
QA
QD
Erase
2
Write
X
20h
Write
BA
D0h
Program
2
Write
X
40h
or
10h
Write
PA
PD
Double Word
Program(3)
3
Write
X
30h
Write PA1
PD1
Write
PA2
PD2
Quadruple Word
Program(4)
5
Write
X
56h(6) Write PA1
PD1
Write
PA2
PD2 Write
Clear Status
Register
1
Write
X
50h
Program/Erase
Suspend
1
Write
X
B0h
Program/Erase
Resume
1
Write
X
D0h
Block Lock
2
Write
X
60h
Write
BA
01h
Block Unlock
2
Write
X
60h
Write
BA
D0h
Block Lock-Down
2
Write
X
60h
Write
BA
2Fh
Protection
Register Program
2
Write
X
C0h
Write PRA
PRD
Note: X = Don’t Care.
1. The signature addresses are listed in Tables 5, 6 and 7.
2. Addr 1 and Addr 2 must be consecutive Addresses differing only for A0.
3. Program Addresses 1 and 2 must be consecutive Addresses differing only for A0.
4. Program Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.
5. 55h is reserved.
6. To be characterized.
18/64
Add Data
PA3
5th Cycle
Op. Add Data
PD3 Write
PA4
PD4
M36W832TE, M36W832BE
Table 5. Flash Read Electronic Signature
Code
Device
EF
GF
WF
A0
A1
A2-A7
A8-A11
A12-A20
VIL
VIL
VIH
VIL
VIL
0
Don’t Care
20h
00h
VIL
VIL
VIL
VIH
VIH
VIL
0
Don’t Care
BAh
88h
VIL
M36W832BE VIL
VIL
VIH
VIH
VIL
0
Don’t Care
BBh
88h
VIL
Manufacture
Code
Device
Code
M36W832TE
DQ0-DQ7 DQ8-DQ15
Note: RPF = V IH.
Table 6. Flash Read Block Lock Signature
Block Status
EF
GF
WF
A0
A1
A2-A7
Locked Block
VIL
VIL
VIH
VIL
VIH
0
Unlocked Block
VIL
VIL
VIH
VIL
VIH
Locked-Down
Block
VIL
VIL
VIH
VIL
VIH
A8-A20
A12-A20
DQ0
DQ1
DQ2-DQ15
Don’t Care Block Address
1
0
00h
0
Don’t Care Block Address
0
0
00h
0
Don’t Care Block Address
X (1)
1
00h
Note: 1. A Locked Block can be protected "DQ0 = 1" or unprotected "DQ0 = 0"; see Block Locking section.
Table 7. Flash Read Protection Register and Lock Register
Word
EF
GF
WF A0-A7
Lock
VIL
VIL
VIH
Unique ID 0
VIL
VIL
Unique ID 1
VIL
Unique ID 2
A8-A20
DQ0
DQ1
DQ2
DQ3-DQ7 DQ8-DQ15
80h
Don’t Care
Don’t Care
OTP Prot.
data
Don’t Care
See note (1)
Don’t
Care
Don’t Care
VIH
81h
Don’t Care
ID data
ID data
ID data
ID data
ID data
VIL
VIH
82h
Don’t Care
ID data
ID data
ID data
ID data
ID data
VIL
VIL
VIH
83h
Don’t Care
ID data
ID data
ID data
ID data
ID data
Unique ID 3
VIL
VIL
VIH
84h
Don’t Care
ID data
ID data
ID data
ID data
ID data
OTP 0
VIL
VIL
VIH
85h
Don’t Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 1
VIL
VIL
VIH
86h
Don’t Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 2
VIL
VIL
VIH
87h
Don’t Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 3
VIL
VIL
VIH
88h
Don’t Care
OTP data
OTP data
OTP data
OTP data
OTP data
19/64
M36W832TE, M36W832BE
Table 8. Flash Program, Erase Times and Program/Erase Endurance Cycles
Flash Device
Parameter
Test Conditions
Unit
Min
Typ
Max
VPPF = VDDF
10
200
µs
Double Word Program
VPPF = 12V ±5%
10
200
µs
Quadruple Word Program
VPPF = 12V ±5%
10
200
µs
VPPF = 12V ±5%
0.16/0.08 (1)
5
s
VPPF = VDDF
0.32
5
s
VPPF = 12V ±5%
0.02/0.01 (1)
4
s
VPPF = VDDF
0.04
4
s
VPPF = 12V ±5%
1
10
s
VPPF = VDDVDDF
1
10
s
VPPF = 12V ±5%
0.4
10
s
VPPF = VDDF
0.4
10
s
Word Program
Main Block Program
Parameter Block Program
Main Block Erase
Parameter Block Erase
Program/Erase Cycles (per Block)
100,000
cycles
Note: 1. Typical time to program a Main or Parameter Block using the Double Word Program and the Quadruple Word Program commands
respectively.
20/64
M36W832TE, M36W832BE
Flash Block Locking
The Flash Memory features an instant, individual
block locking scheme that allows any block to be
locked or unlocked with no latency. This locking
scheme has three levels of protection.
■ Lock/Unlock - this first level allows softwareonly control of block locking.
■
■
Lock-Down - this second level requires
hardware interaction before locking can be
changed.
VPPF ≤ VPPLK - the third level offers a complete
hardware protection against program and erase
on all blocks.
The protection status of each block can be set to
Locked, Unlocked, and Lock-Down. Table 10, defines all of the possible protection states (WPF,
DQ1, DQ0), and Appendix C, Figure 32, shows a
flowchart for the locking operations.
Reading a Block’s Lock Status. The lock status
of every block can be read in the Read Electronic
Signature mode of the device. To enter this mode
write 90h to the device. Subsequent reads at the
address specified in Table 6, will output the protection status of that block. The lock status is represented by DQ0 and DQ1. DQ0 indicates the Block
Lock/Unlock status and is set by the Lock command and cleared by the Unlock command. It is
also automatically set when entering Lock-Down.
DQ1 indicates the Lock-Down status and is set by
the Lock-Down command. It cannot be cleared by
software, only by a hardware reset or power-down.
The following sections explain the operation of the
locking system.
Locked State. The default status of all blocks on
power-up or after a hardware reset is Locked
(states (0,0,1) or (1,0,1)). Locked blocks are fully
protected from any program or erase. Any program or erase operations attempted on a locked
block will return an error in the Status Register.
The Status of a Locked block can be changed to
Unlocked or Lock-Down using the appropriate
software commands. An Unlocked block can be
Locked by issuing the Lock command.
Unlocked State. Unlocked blocks (states (0,0,0),
(1,0,0) (1,1,0)), can be programmed or erased. All
unlocked blocks return to the Locked state after a
hardware reset or when the device is powereddown. The status of an unlocked block can be
changed to Locked or Locked-Down using the ap-
propriate software commands. A locked block can
be unlocked by issuing the Unlock command.
Lock-Down State. Blocks that are Locked-Down
(state (0,1,x))are protected from program and
erase operations (as for Locked blocks) but their
protection status cannot be changed using software commands alone. A Locked or Unlocked
block can be Locked-Down by issuing the LockDown command. Locked-Down blocks revert to
the Locked state when the device is reset or powered-down.
The Lock-Down function is dependent on the WPF
input pin. When WPF=0 (VIL), the blocks in the
Lock-Down state (0,1,x) are protected from program, erase and protection status changes. When
WPF=1 (VIH) the Lock-Down function is disabled
(1,1,1) and Locked-Down blocks can be individually unlocked to the (1,1,0) state by issuing the
software command, where they can be erased and
programmed. These blocks can then be relocked
(1,1,1) and unlocked (1,1,0) as desired while WPF
remains high. When WPF is low , blocks that were
previously Locked-Down return to the Lock-Down
state (0,1,x) regardless of any changes made
while WPF was high. Device reset or power-down
resets all blocks , including those in Lock-Down, to
the Locked state.
Locking Operations During Erase Suspend.
Changes to block lock status can be performed
during an erase suspend by using the standard
locking command sequences to unlock, lock or
lock-down a block. This is useful in the case when
another block needs to be updated while an erase
operation is in progress.
To change block locking during an erase operation, first write the Erase Suspend command, then
check the status register until it indicates that the
erase operation has been suspended. Next write
the desired Lock command sequence to a block
and the lock status will be changed. After completing any desired lock, read, or program operations,
resume the erase operation with the Erase Resume command.
If a block is locked or locked-down during an erase
suspend of the same block, the locking status bits
will be changed immediately, but when the erase
is resumed, the erase operation will complete.
Locking operations cannot be performed during a
program suspend. Refer to Appendix D, Command Interface and Program/Erase Controller
State, for detailed information on which commands are valid during erase suspend.
21/64
M36W832TE, M36W832BE
Table 9. Block Lock Status
Item
Address
Data
Block Lock Configuration
LOCK
Block is Unlocked
DQ0=0
xx002
Block is Locked
DQ0=1
Block is Locked-Down
DQ1=1
Table 10. Protection Status
Current
Lock Status(1)
(WPF, DQ1, DQ0)
Next Lock Status(1)
(WPF, DQ1, DQ0)
Current State
Program/Erase
Allowed
After
Block Lock
Command
After
Block Unlock
Command
After Block
Lock-Down
Command
After
WPF transition
1,0,0
yes
1,0,1
1,0,0
1,1,1
0,0,0
no
1,0,1
1,0,0
1,1,1
0,0,1
1,1,0
yes
1,1,1
1,1,0
1,1,1
0,1,1
1,1,1
no
1,1,1
1,1,0
1,1,1
0,1,1
0,0,0
yes
0,0,1
0,0,0
0,1,1
1,0,0
0,0,1(2)
no
0,0,1
0,0,0
0,1,1
1,0,1
0,1,1
no
0,1,1
0,1,1
0,1,1
1,1,1 or 1,1,0 (3)
(2)
1,0,1
Note: 1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for a locked block) as read
in the Read Electronic Signature command with A1 = VIH and A0 = VIL.
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WPF status.
3. A WPF transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110.
22/64
M36W832TE, M36W832BE
Flash Status Register
The Status Register provides information on the
current or previous Program or Erase operation.
The various bits convey information and errors on
the operation. To read the Status register the
Read Status Register command can be issued, refer to Read Status Register Command section. To
output the contents, the Status Register is latched
on the falling edge of the Chip Enable or Output
Enable signals, and can be read until Chip Enable
or Output Enable returns to VIH. Either Chip Enable or Output Enable must be toggled to update
the latched data.
Bus Read operations from any address always
read the Status Register during Program and
Erase operations.
The bits in the Status Register are summarized in
Table 11, Status Register Bits. Refer to Table 11
in conjunction with the following text descriptions.
Program/Erase Controller Status (Bit 7). The Program/Erase Controller Status bit indicates whether
the Program/Erase Controller is active or inactive.
When the Program/Erase Controller Status bit is
Low (set to ‘0’), the Program/Erase Controller is
active; when the bit is High (set to ‘1’), the Program/Erase Controller is inactive, and the device
is ready to process a new command.
The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend command is issued until the Program/Erase Controller
pauses. After the Program/Erase Controller pauses the bit is High .
During Program, Erase, operations the Program/
Erase Controller Status bit can be polled to find the
end of the operation. Other bits in the Status Register should not be tested until the Program/Erase
Controller completes the operation and the bit is
High.
After the Program/Erase Controller completes its
operation the Erase Status, Program Status, VPPF
Status and Block Lock Status bits should be tested
for errors.
Erase Suspend Status (Bit 6). The Erase Suspend Status bit indicates that an Erase operation
has been suspended or is going to be suspended.
When the Erase Suspend Status bit is High (set to
‘1’), a Program/Erase Suspend command has
been issued and the memory is waiting for a Program/Erase Resume command.
The Erase Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive).
Bit 7 is set within 30µs of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than
entering the Suspend mode.
When a Program/Erase Resume command is issued the Erase Suspend Status bit returns Low.
Erase Status (Bit 5). The Erase Status bit can be
used to identify if the memory has failed to verify
that the block has erased correctly. When the
Erase Status bit is High (set to ‘1’), the Program/
Erase Controller has applied the maximum number of pulses to the block and still failed to verify
that the block has erased correctly. The Erase Status bit should be read once the Program/Erase
Controller Status bit is High (Program/Erase Controller inactive).
Once set High, the Erase Status bit can only be reset Low by a Clear Status Register command or a
hardware reset. If set High it should be reset before a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Status (Bit 4). The Program Status bit
is used to identify a Program failure. When the
Program Status bit is High (set to ‘1’), the Program/Erase Controller has applied the maximum
number of pulses to the byte and still failed to verify that it has programmed correctly. The Program
Status bit should be read once the Program/Erase
Controller Status bit is High (Program/Erase Controller inactive).
Once set High, the Program Status bit can only be
reset Low by a Clear Status Register command or
a hardware reset. If set High it should be reset before a new command is issued, otherwise the new
command will appear to fail.
VPPF Status (Bit 3). The VPPF Status bit can be
used to identify an invalid voltage on the VPPF pin
during Program and Erase operations. The VPPF
pin is only sampled at the beginning of a Program
or Erase operation. Indeterminate results can occur if V PPF becomes invalid during an operation.
When the VPPF Status bit is Low (set to ‘0’), the
voltage on the V PPF pin was sampled at a valid
voltage; when the VPPF Status bit is High (set to
‘1’), the VPPF pin has a voltage that is below the
VPPF Lockout Voltage, VPPLK, the memory is protected and Program and Erase operations cannot
be performed.
Once set High, the VPPF Status bit can only be reset Low by a Clear Status Register command or a
hardware reset. If set High it should be reset before a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Suspend Status (Bit 2). The Program
Suspend Status bit indicates that a Program operation has been suspended. When the Program
Suspend Status bit is High (set to ‘1’), a Program/
Erase Suspend command has been issued and
the memory is waiting for a Program/Erase Resume command. The Program Suspend Status
should only be considered valid when the Pro-
23/64
M36W832TE, M36W832BE
gram/Erase Controller Status bit is High (Program/
Erase Controller inactive). Bit 2 is set within 5µs of
the Program/Erase Suspend command being issued therefore the memory may still complete the
operation rather than entering the Suspend mode.
When a Program/Erase Resume command is issued the Program Suspend Status bit returns Low.
Block Protection Status (Bit 1). The Block Protection Status bit can be used to identify if a Program or Erase operation has tried to modify the
contents of a locked block.
When the Block Protection Status bit is High (set
to ‘1’), a Program or Erase operation has been attempted on a locked block.
Once set High, the Block Protection Status bit can
only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be
reset before a new command is issued, otherwise
the new command will appear to fail.
Reserved (Bit 0). Bit 0 of the Status Register is
reserved. Its value must be masked.
Note: Refer to Appendix C, Flowcharts and
Pseudo Codes, for using the Status Register.
Table 11. Flash Status Register Bits
Bit
7
6
5
4
3
2
1
0
Name
Definition
’1’
Ready
’0’
Busy
’1’
Suspended
’0’
In progress or Completed
’1’
Erase Error
’0’
Erase Success
’1’
Program Error
’0’
Program Success
’1’
VPPF Invalid, Abort
’0’
VPPF OK
’1’
Suspended
’0’
In Progress or Completed
’1’
Program/Erase on protected Block, Abort
’0’
No operation to protected blocks
P/E.C. Status
Erase Suspend Status
Erase Status
Program Status
VPPF Status
Program Suspend Status
Block Protection Status
Reserved
Note: Logic level ’1’ is High, ’0’ is Low.
24/64
Logic Level
M36W832TE, M36W832BE
SRAM Operations
There are five standard operations that control the
SRAM component. These are Bus Read, Bus
Write, Standby/Power-down, Data Retention and
Output Disable. A summary is shown in Table 2,
Main Operation Modes
Read. Read operations are used to output the
contents of the SRAM Array.
The SRAM is in Byte Read mode whenever Write
Enable, WS, is at V IH, Output Enable, GS, is at VIL,
Chip Enable, E1S, is at V IL, Chip Enable, E2S, is
at VIH, and UBS or LBS is at V IL.
The SRAM is in Word Read mode whenever Write
Enable, WS, is at V IH, Output Enable, GS, is at VIL,
Byte Enable inputs UBS and LBS are both at V IL
and the two Chip Enable inputs, E1S, and E2S are
Don’t Care.
Valid data will be available on the output pins after
a time of tAVQV after the last stable address. If the
Chip Enable or Output Enable access times are
not met, data access will be measured from the
limiting parameter (tE1LQV, tE2HQV, or tGLQV) rather than the address. Data out may be indeterminate at tE1LQX, tE2HQX and tGLQX, but data lines
will always be valid at tAVQV (see Table 20, Figures
14 and 15).
Write. Write operations are used to write data to
the SRAM. The SRAM is in Write mode whenever
WS and E1S are at VIL, and E2S is at VIH. Either
the Chip Enable inputs, E1S and E2S, or the Write
Enable input, WS, must be deasserted during address transitions for subsequent write cycles.
A Write operation is initiated when E1S is at VIL,
E2S is at V IH and WS is at VIL. The data is latched
o the falling edge of E1S, the rising edge of E2S or
the falling edge of WS, whichever occurs last. The
Write cycle is terminated on the rising edge of
E1S, the rising edge of WS or the falling edge of
E2S, whichever occurs first.
If the Output is enabled (E1S=VIL, E2S=VIH and
GS=V IL), then WS will return the outputs to high
impedance within t WLQZ of its falling edge. Care
must be taken to avoid bus contention in this type
of operation. The Data input must be valid for t DVWH before the rising edge of Write Enable, for
tDVE1H before the rising edge of E1S or for tDVE2L
before the falling edge of E2S, whichever occurs
first, and remain valid for tWHDX, tE1HAX or tE2LAX
(see Table 21, Figure 17, 18, 19 and 20).
Standby/Power-Down. The SRAM component
has a chip enabled power-down feature which invokes an automatic standby mode (see Table 20
and Figure 16). The SRAM is in Standby mode
whenever either Chip Enable is deasserted, E1S
at VIH or E2S at VIL.
Data Retention. The SRAM data retention performance as VDDS goes down to VDR are described in Table 22, Figures 21 and 22, SRAM
Low V DDS Data Retention AC Waveforms, E1S
Controlled and SRAM Low VDDS Data Retention
AC Waveforms, E2S Controlled, respectively.
Output Disable. The data outputs are high impedance when the Output Enable, GS, is at VIH
with Write Enable, WS, at VIH.
25/64
M36W832TE, M36W832BE
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings table may cause permanent damage to the device. These are stress
ratings only and operation of the device at these or
any other conditions above those indicated in the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics
SURE Program and other relevant quality documents.
Table 12. Absolute Maximum Ratings
Value
Symbol
Parameter
Max
Ambient Operating Temperature (1)
–40
85
°C
TBIAS
Temperature Under Bias
–40
125
°C
TSTG
Storage Temperature
–55
150
°C
Input or Output Voltage
–0.5
VDDQF +0.5
V
Flash Supply Voltage
–0.6
4.1
V
VPPF
Program Voltage
–0.6
13
V
VDDS
SRAM Supply Voltage
–0.5
3.6
V
TA
VIO
VDDF, VDDQF
Note: 1. Depends on range.
26/64
Unit
Min
M36W832TE, M36W832BE
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC
and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 13,
Operating and AC Measurement Conditions. Designers should check that the operating conditions
in their circuit match the measurement conditions
when relying on the quoted parameters.
The operating and AC measurement parameters
given below (see Table 13, Operating and AC
Measurement Conditions) are those of the standalone Flash and SRAM devices and some differ
from those of the stacked product.
Table 13. Operating and AC Measurement Conditions
SRAM
Flash Memory
70
70 / 85
Parameter
Units
Min
Max
Min
Max
VDDF Supply Voltage
–
–
2.7
3.6
V
VDDQF Supply Voltage
–
–
2.7
3.6
V
VDDS Supply Voltage
2.7
3.3
–
–
V
Ambient Operating Temperature
– 40
85
– 40
85
°C
Load Capacitance (CL)
50
50
Input Rise and Fall Times
pF
3.3
Input Pulse Voltages
Input and Output Timing Ref. Voltages
Figure 8. AC Measurement I/O Waveform
5
ns
0 to VDDQF
0 to VDDQF
V
VDDQF/2
VDDQF/2
V
Figure 9. AC Measurement Load Circuit
VDDQF
VDDQ
VDDQ/2
VDDQF
VDDF
0V
25kΩ
AI90166
DEVICE
UNDER
TEST
Note: VDDQ means VDDQF = VDDS
CL
0.1µF
25kΩ
0.1µF
CL includes JIG capacitance
AI90167
Table 14. Device Capacitance
Symbol
CIN
COUT
Parameter
Input Capacitance
Output Capacitance
Test Condition
Max
Unit
VIN = 0V, f=1 MHz
12
pF
VOUT = 0V, f=1 MHz
16
pF
Note: Sampled only, not 100% tested.
27/64
M36W832TE, M36W832BE
Table 15. DC Characteristics
Symbol
Parameter
ILI
Input Leakage Current
ILO
Output Leakage Current
IDDS
Device
Test Condition
Flash &
SRAM
Max
Unit
0V ≤ VIN ≤ VDDQF
±2
µA
Flash
0V ≤ VOUT ≤ VDDQF,
±10
µA
SRAM
0V ≤ VOUT ≤ VDDQF,
SRAM Outputs Hi-Z
±1
µA
Flash
EF = VDDQF ± 0.2V
VDDQF = VDDF max
15
50
µA
E1S ≥ VDDS – 0.3V
or E2S ≤ 0.3V
VIN ≥ VDDS – 0.3V or VIN ≤ 0.3V
f = fmax (Address and Data
inputs only)
f = 0 (GS, WS, UBS and LBS)
8
25
µA
E1S ≥ VDDS – 0.3V
or E2S ≤ 0.3V
VIN ≥ VDDS – 0.3V or VIN ≤ 0.3V
f = 0, VDDS = VDDS max
8
25
µA
Flash
RPF = VSSF ± 0.2V
15
50
µA
7
15
mA
SRAM
VOUT = 0mA
f = fmax = 1/tAVAV, CMOS levels
VDDS = VDDS max
IOUT = 0 mA, f = 1MHz, CMOS
Levels
1
2
mA
EF = VIL, GF = VIH, f = 5 MHz
9
18
mA
Program in progress
VPPF = 12V ± 5%
5
10
mA
Program in progress
VPPF = VDDF
10
20
mA
Erase in progress
VPPF = 12V ± 5%
5
20
mA
Erase in progress
VPPF = VDDF
10
20
mA
EF = VDDQF ± 0.2V,
Erase suspended
15
50
µA
400
µA
VDD Standby Current
SRAM
IDDD
IDD
Supply Current
(Reset)
Supply Current
IDDR
Supply Current
(Read)
IDDW
Supply Current
(Program)
IDDE
IDDES
IPP
IPP1
IPP2
IPPW
28/64
Supply Current
(Erase)
Flash
Typ
Flash
Flash
Supply Current
(Program/Erase
Suspend)
Flash
Program Current
(Read or Standby)
Flash
Program Current
(Reset)
Flash
Program Current
(Program)
Min
VPPF > VDDF
VPPF ≤ VDDF
1
5
µA
RPF = VSSF ± 0.2V
1
5
µA
Program in progress
VPPF = 12V ± 5%
1
10
mA
Program in progress
VPPF = VDDF
1
5
µA
Flash
M36W832TE, M36W832BE
Symbol
IPPE
Parameter
Program Current
(Erase)
Device
Test Condition
Min
Typ
Max
Unit
Erase in progress
VPPF = 12V ± 5%
3
10
mA
Erase in progress
VPPF = VDDF
1
5
µA
Flash
VIL
Input Low Voltage
Flash &
SRAM
VDDQF = VDDS ≥ 2.7V
–0.3
0.8
V
VIH
Input High Voltage
Flash &
SRAM
VDDQF = VDDS ≥ 2.7V
0.7VDD
VDDQF
+0.4
V
VOL
Output Low Voltage
Flash &
SRAM
VDDQF = VDDS = VDD min
IOL = 100µA
0.1
V
VOH
Output High Voltage
Flash &
SRAM
VDDQF = VDDS = VDD min
IOH = –100µA
VPPL
Program Voltage
(Program or Erase
operations)
Flash
1.65
3.6
V
VPPH
Program Voltage
(Program or Erase
operations)
Flash
11.4
12.6
V
VPPLK
Program Voltage
(Program and Erase
lock-out)
Flash
1
V
VLKO
VDDF Supply Voltage
(Program and Erase
lock-out)
Flash
2
V
QF
2.4
V
29/64
M36W832TE, M36W832BE
Figure 10. Flash Read Mode AC Waveforms
tAVAV
A0-A20
VALID
tAVQV
tAXQX
EF
tELQV
tELQX
tEHQX
tEHQZ
GF
tGLQV
tGHQX
tGLQX
tGHQZ
DQ0-DQ15
VALID
ADDR. VALID
CHIP ENABLE
OUTPUTS
ENABLED
DATA VALID
STANDBY
AI90168b
Table 16. Flash Read AC Characteristics
Flash Device
Symbol
Alt
Parameter
Unit
70
85
tAVAV
tRC
Address Valid to Next Address Valid
Min
70
85
ns
tAVQV
tACC
Address Valid to Output Valid
Max
70
85
ns
tAXQX (1)
tOH
Address Transition to Output Transition
Min
0
0
ns
tEHQX (1)
tOH
Chip Enable High to Output Transition
Min
0
0
ns
tEHQZ (1)
tHZ
Chip Enable High to Output Hi-Z
Max
20
20
ns
tELQV (2)
tCE
Chip Enable Low to Output Valid
Max
70
85
ns
tELQX (1)
tLZ
Chip Enable Low to Output Transition
Min
0
0
ns
tGHQX (1)
tOH
Output Enable High to Output Transition
Min
0
0
ns
tGHQZ (1)
tDF
Output Enable High to Output Hi-Z
Max
20
20
ns
tGLQV (2)
tOE
Output Enable Low to Output Valid
Max
20
20
ns
tGLQX (1)
tOLZ
Output Enable Low to Output Transition
Min
0
0
ns
Note: 1. Sampled only, not 100% tested.
2. GF may be delayed by up to tELQV - tGLQV after the falling edge of EF without increasing tELQV.
30/64
VPPF
WPF
DQ0-DQ15
WF
GF
EF
A0-A20
tWLWH
COMMAND
SET-UP COMMAND
tDVWH
tELWL
tWHDX
tWHWL
tWHEH
CMD or DATA
CONFIRM COMMAND
OR DATA INPUT
tVPHWH
tWPHWH
tAVWH
VALID
tAVAV
tWHEL
tWHGL
tWHAX
PROGRAM OR ERASE
AI90169b
tQVVPL
tQVWPL
STATUS REGISTER
STATUS REGISTER
READ
1st POLLING
tELQV
M36W832TE, M36W832BE
Figure 11. Flash Write AC Waveforms, Write Enable Controlled
31/64
M36W832TE, M36W832BE
Table 17. Flash Write AC Characteristics, Write Enable Controlled
Flash Device
Symbol
Alt
Parameter
Unit
70
85
tAVAV
tWC
Write Cycle Time
Min
70
85
ns
tAVWH
tAS
Address Valid to Write Enable High
Min
45
45
ns
tDVWH
tDS
Data Valid to Write Enable High
Min
45
45
ns
tELWL
tCS
Chip Enable Low to Write Enable Low
Min
0
0
ns
Chip Enable Low to Output Valid
Min
70
85
ns
Output Valid to VPPF Low
Min
0
0
ns
Output Valid to Write Protect Low
Min
0
0
ns
tELQV
tQVVPL (1,2)
tQVWPL
tVPHWH (1)
tVPS
VPPF High to Write Enable High
Min
200
200
ns
tWHAX
tAH
Write Enable High to Address Transition
Min
0
0
ns
tWHDX
tDH
Write Enable High to Data Transition
Min
0
0
ns
tWHEH
tCH
Write Enable High to Chip Enable High
Min
0
0
ns
tWHEL
Write Enable High to Chip Enable Low
Min
25
25
ns
tWHGL
Write Enable High to Output Enable Low
Min
20
20
ns
tWHWL
tWPH
Write Enable High to Write Enable Low
Min
25
25
ns
tWLWH
tWP
Write Enable Low to Write Enable High
Min
45
45
ns
Write Protect High to Write Enable High
Min
45
45
ns
tWPHWH
Note: 1. Sampled only, not 100% tested.
2. Applicable if VPPF is seen as a logic input (VPPF < 3.6V).
32/64
VPPF
WPF
DQ0-DQ15
EF
GF
WF
A0-A20
tELEH
COMMAND
POWER-UP AND
SET-UP COMMAND
tDVEH
tWLEL
tEHDX
tEHEL
tEHWH
CMD or DATA
CONFIRM COMMAND
OR DATA INPUT
tVPHEH
tWPHEH
tAVEH
VALID
tAVAV
tEHGL
tEHAX
PROGRAM OR ERASE
AI90170b
tQVVPL
tQVWPL
STATUS REGISTER
STATUS REGISTER
READ
1st POLLING
tELQV
M36W832TE, M36W832BE
Figure 12. Flash Write AC Waveforms, Chip Enable Controlled
33/64
M36W832TE, M36W832BE
Table 18. Flash Write AC Characteristics, Chip Enable Controlled
Flash Device
Symbol
Alt
Parameter
Unit
70
85
tAVAV
tWC
Write Cycle Time
Min
70
85
ns
tAVEH
tAS
Address Valid to Chip Enable High
Min
45
45
ns
tDVEH
tDS
Data Valid to Chip Enable High
Min
45
45
ns
tEHAX
tAH
Chip Enable High to Address Transition
Min
0
0
ns
tEHDX
tDH
Chip Enable High to Data Transition
Min
0
0
ns
tEHEL
tCPH
Chip Enable High to Chip Enable Low
Min
25
25
ns
Chip Enable High to Output Enable Low
Min
25
25
ns
tEHGL
tEHWH
tWH
Chip Enable High to Write Enable High
Min
0
0
ns
tELEH
tCP
Chip Enable Low to Chip Enable High
Min
45
45
ns
Chip Enable Low to Output Valid
Min
70
85
ns
Output Valid to VPPF Low
Min
0
0
ns
Data Valid to Write Protect Low
Min
0
0
ns
tELQV
tQVVPL (1,2)
tQVWPL
tVPHEH (1)
tVPS
VPPF High to Chip Enable High
Min
200
200
ns
tWLEL
tCS
Write Enable Low to Chip Enable Low
Min
0
0
ns
Write Protect High to Chip Enable High
Min
45
45
ns
tWPHEH
Note: 1. Sampled only, not 100% tested.
2. Applicable if VPPF is seen as a logic input (VPPF < 3.6V).
34/64
M36W832TE, M36W832BE
Figure 13. Flash Power-Up and Reset AC Waveforms
WF, EF,GF
tPHWL
tPHEL
tPHGL
tPHWL
tPHEL
tPHGL
RPF
tVDHPH
tPLPH
VDDF, VDDQF
Power-Up
Reset
AI90171
Table 19. Flash Power-Up and Reset AC Characteristics
Flash Device
Symbol
tPHWL
tPHEL
tPHGL
Parameter
Reset High to Write Enable Low, Chip Enable Low,
Output Enable Low
Test Condition
Unit
70
85
During
Program and
Erase
Min
50
50
µs
others
Min
30
30
ns
tPLPH(1,2)
Reset Low to Reset High
Min
100
100
ns
tVDHPH(3)
Supply Voltages High to Reset High
Min
50
50
µs
Note: 1. The device Reset is possible but not guaranteed if tPLPH < 100ns.
2. Sampled only, not 100% tested.
3. It is important to assert RPF in order to allow proper CPU initialization during power up or reset.
35/64
M36W832TE, M36W832BE
Figure 14. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V IL
tAVAV
A0-A18
VALID
tAVQV
tAXQX
DQ0-DQ15
DATA VALID
DATA VALID
AI90180
Note: E1S = Low, E2S = High, GS = Low, WS = High.
Figure 15. SRAM Read AC Waveforms, GS Controlled
tAVAV
A0-A18
VALID
tE1LQV
tE1HQZ
E1S
tE1LQX
tE2HQV
tE2LQZ
E2S
tE2HQX
tGLQV
tGHQZ
GS
tGLQX
DATA VALID
DQ0-DQ15
tPU
tPD
50%
VDDS
50%
AI07965
Note: Write Enable (WS) = High. Address Valid prior to or at the same time as E1S goes Low and E2S goes High.
Figure 16. SRAM Standby AC Waveforms
E1S
E2S
IDD
IDDS
tPU
tPD
50%
AI07985
36/64
M36W832TE, M36W832BE
Table 20. SRAM Read AC Characteristics
SRAM
Symbol
Alt
Parameter
Unit
Min
Max
tAVAV
tRC
Read Cycle Time
tAVQV
tACC
Address Valid to Output Valid
tAXQX
tOH
Address Transition to Output Transition
tE1HQZ
tE2LQZ
tCHZ1
Chip Enable 1 High to Output Hi-Z
25
ns
tE1LQV
tE2HQV
tACS1
Chip Enable 1 Low or Chip Enable 2 High to Output Valid
70
ns
tE1LQX
tE2HQX
tCLZ1
Chip Enable 1 Low to Output Transition
tGHQZ
tOHZ
Output Enable High to Output Hi-Z
25
ns
tGLQV
tOE
Output Enable Low to Output Valid
35
ns
tGLQX
tOLZ
Output Enable Low to Output Transition
70
ns
70
10
ns
10
ns
5
tPD (1)
Chip Enable 1 High or Chip Enable 2 Low to Power Down
tPU (1)
Chip Enable 1 Low or Chip Enable 2 High to Power Up
ns
ns
70
0
ns
ns
Note: 1. Sampled only. Not 100% tested.
Figure 17. SRAM Write AC Waveforms, E1S or E2S Controlled
tAVAV
ADDRESS VALID
A0-A18
tAVE1H
tAVE2L
tAVE1L
tE1LE1H
tE1HAX
tAVE2H
tE2HE2L
tE2LAX
E1S
E2S
tWLE1H
tWLE2L
WS
tDVE1H
tDVE2L
DQ0-DQ15
tE1HDZ
tE2LDZ
INPUT VALID
AI07966
Note: 1. DQ0-DQ15 are high impedance if GS = V IH.
2. If E1S or E2S and WS are deasserted at the same time, DQ0-DQ15 remain high impedance.
37/64
M36W832TE, M36W832BE
Figure 18. SRAM Write AC Waveforms, WS Controlled, GS High during Write
tAVAV
VALID
A0-A18
tAVWH
tE1LWH
tWHAX
E1S
E2S
tE2HWH
tAVWL
tWLWH
WS
GS
tDVWH
tGHQZ
DQ0-DQ15
Note 2
tWHDZ
INPUT VALID
AI07967
Note: 1. DQ0-DQ15 are high impedance if GS = V IH.
2. If E1S or E2s and WS are deasserted at the same time, DQ0-DQ15 remain high impedance.
Figure 19. SRAM Write AC Waveforms, WS Controlled with GS Low
tAVAV
VALID
A0-A18
tAVWH
tE1LWH
tE2HWH
tWHAX
E1S
E2S
tAVWL
tWLWH
WS
tWHQX
tWLQZ
DQ0-DQ15
Note 3
tDVWH
tWHDZ
INPUT VALID
AI07968
Note: 1. If E1S, E2S and WS are deasserted at the same time, DQ0-DQ15 remain high impedance.
2. The minimum write cycle time (t AVAV) is the sum of tWLQZ and t DVWH.
3. During this period, the I/O pins are in output mode and input signals should not be applied.
38/64
M36W832TE, M36W832BE
Figure 20. SRAM Write Cycle Waveform, UBS and LBS Controlled GS Low,
tAVAV
VALID
A0-A18
tAVBH
E1S
E2S
tBLBH
tBHAX
UBS, LBS
tAVWL
WS
tBHQX
tWLQZ
DQ0-DQ15
Note 1
tDVBH
tBHDZ
INPUT VALID
AI07969
Note: 1. During this period, the I/O pins are in output mode and input signals should not be applied.
39/64
M36W832TE, M36W832BE
Table 21. SRAM Write AC Characteristics
SRAM
Symbol
Alt
Parameter
Unit
Min
Max
tAVAV
tWC
Write Cycle Time
70
ns
tAVE1L,
tAVE2H,
tAVWL,
tAS
Address Valid to Beginning of Write
0
ns
tAVE1H,
tAVE2L
tAVBH
tAW
Address Valid to Chip Enable 1 Low or Chip Enable 2
High
60
ns
tAVWH
tAW
Address Valid to Write Enable High
60
ns
tBLBH
tBW
UBS, LBS Low to UBS, LBS High
60
ns
tDVE1H,
tDVE2L,
tDVWH
tDVBH
tDW
Input Valid to End of Write
30
ns
tE1HAX,
tE2LAX,
tWHAX
tBHAX
tWR
End of Write to Address Change
0
ns
tE1HDZ ,
tE2LDZ,
tWHDZ
tBHDZ
tHD
Address Transition to End of Write
0
ns
tE1LE1H,
tE1LWH
tCW1
Chip Enable 1 Low to End of Write
60
ns
tE2HE2L,
tE2HWH
tCW2
Chip Enable 2 High to End of Write
60
ns
tGHQZ
tGHZ
Output Enable High to Output Hi-Z
tWHQX
tBHQX
tDH
Write Enable High to Input Transition
tWLQZ
tWHZ
Write Enable Low to Output Hi-Z
tWLWH
tWLE1H
tWLE2L
tWP
Write Enable Pulse Width
40/64
25
10
ns
20
50
ns
ns
ns
M36W832TE, M36W832BE
Figure 21. SRAM Low VDDS Data Retention AC Waveforms, E1S Controlled
DATA RETENTION MODE
VDDS
VDDS (min)
VDDS (min)
VDR > 1.5V
tCDR
E1S
tR
E1S > VDDS - 0.3V and E2S < 0.3V
or E2S > VDDS - 0.3V
AI07970
Figure 22. SRAM Low VDDS Data Retention AC Waveforms, E2S Controlled
DATA RETENTION MODE
VDDS
VDDS (min)
VDDS (min)
VDR > 1.5V
tCDR
tR
E2S < 0.3V
E2S
AI07982
Table 22. SRAM Low VDDS Data Retention Characteristic
Symbol
Parameter
Test Condition
IDDDR
Supply Current (Data Retention)
VDDS = 1.5V, E1S ≥ VDDS – 0.3V,
VIN ≥ VDDS – 0.3V or VIN ≤ 0.3V
No input may exceed VDDS + 0.3V
VDR
Supply Voltage (Data Retention)
tCDR
Chip Disable to Power Down
0
ns
Operation Recovery Time
70
ns
tR
Min
1.5
Typ
Max
Unit
4
20
µA
3.3
V
Note: 1. Sampled only. Not 100% tested.
41/64
M36W832TE, M36W832BE
PACKAGE MECHANICAL
Figure 23. Stacked LFBGA66 12x8mm, 8x8 array, 0.8mm pitch, Bottom View Package Outline
D
D2
D1
SE
b
BALL "A1"
e
E E1
FE
FD
SD
ddd
e
A
A2
A1
BGA-Z12
Note: Drawing is not to scale.
Table 23. Stacked LFBGA66, 12x8mm, 8x8 ball array, 0.8mm pitch, Package Mechanical Data
Symbol
millimeters
Typ
Min
A
Max
Typ
Min
1.400
A1
Max
0.0551
0.300
A2
0.0118
1.100
0.0433
b
0.400
0.300
0.500
0.0157
0.0118
0.0197
D
12.000
–
–
0.4724
–
–
D1
5.600
–
–
0.2205
–
–
D2
8.800
–
–
0.3465
–
–
ddd
42/64
inches
0.100
0.0039
E
8.000
–
–
0.3150
–
–
E1
5.600
–
–
0.2205
–
–
e
0.800
–
–
0.0315
–
–
FD
1.600
–
–
0.0630
–
–
FE
1.200
–
–
0.0472
–
–
SD
0.400
–
–
0.0157
–
–
SE
0.400
–
–
0.0157
–
–
M36W832TE, M36W832BE
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10
11
12
AI90172b
Figure 24. Stacked LFBGA66 Daisy Chain - Package Connections (Top view through package)
43/64
M36W832TE, M36W832BE
10
3
44/64
H
G
F
E
D
C
B
A
1
2
START
POINT
4
5
6
7
8
9
END
POINT
11
12
AI90173b
Figure 25. Stacked LFBGA66 Daisy Chain - PCB Connections proposal (Top view through package)
M36W832TE, M36W832BE
PART NUMBERING
Table 24. Ordering Information Scheme
Example:
M36 W 8 32T E
70 ZA
6
T
Device Type
M36 = MMP (Flash + SRAM)
Operating Voltage
W = VDDF = 2.7V to 3.3V, VDDS = VDDQF = 2.7V to 3.3V
SRAM Chip Size & Organization
8 = 8 Mbit (512Kb x 16 bit)
Flash Chip Size & Organization
32T = 32 Mbit (x16), Boot Block, Top configuration
32B = 32 Mbit (x16), Boot Block, Bottom configuration
SRAM Component
E = 8Mb, 0.16µm, 70ns, 3.0V
Speed
70 = 70ns
85 = 85ns
Package
ZA = LFBGA66: 12x8mm, 0.8mm pitch
Temperature Range
1 = 0 to 70°C
6 = –40 to 85°C
Option
T = Tape & Reel packing
S = Special Tape
Devices are shipped from the factory with the memory content bits erased to ’1’.
Table 25. Daisy Chain Ordering Scheme
Example:
M36W832TE
-ZA T
Device Type
M36W832TE
Daisy Chain
-ZA = LFBGA66: 12x8mm, 0.8mm pitch
Option
T = Tape & Reel Packing
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device,
please contact the STMicroelectronics Sales Office nearest to you.
45/64
M36W832TE, M36W832BE
APPENDIX A. FLASH MEMORY BLOCK ADDRESS TABLES
Table 26. Top Boot Block Addresses,
M36W832TE
#
Size
(KWord)
34
32
120000-127FFF
35
32
118000-11FFFF
Address Range
36
32
110000-117FFF
32
108000-10FFFF
0
4
1FF000-1FFFFF
37
1
4
1FE000-1FEFFF
38
32
100000-107FFF
39
32
0F8000-0FFFFF
40
32
0F00000-F7FFF
32
0E8000-0EFFFF
2
4
1FD000-1FDFFF
3
4
1FC000-1FCFFF
4
4
1FB000-1FBFFF
41
5
4
1FA000-1FAFFF
42
32
0E0000-0E7FFF
6
4
1F9000-1F9FFF
43
32
0D8000-0DFFFF
32
0D0000-0D7FFF
7
4
1F8000-1F8FFF
44
8
32
1F0000-1F7FFF
45
32
0C8000-0CFFFF
46
32
0C0000-0C7FFF
47
32
0B8000-0BFFFF
32
0B0000-0B7FFF
9
32
1E8000-1EFFFF
10
32
1E0000-1E7FFF
11
32
1D8000-1DFFFF
48
12
32
1D0000-1D7FFF
49
32
0A8000-0AFFFF
50
32
0A0000-0A7FFF
32
098000-09FFFF
13
32
1C8000-1CFFFF
14
32
1C0000-1C7FFF
51
15
32
1B8000-1BFFFF
52
32
090000-097FFF
32
088000-08FFFF
16
32
1B0000-1B7FFF
53
17
32
1A8000-1AFFFF
54
32
080000-087FFF
32
078000-07FFFF
18
32
1A0000-1A7FFF
55
19
32
198000-19FFFF
56
32
070000-077FFF
57
32
068000-06FFFF
20
32
190000-197FFF
21
32
188000-18FFFF
58
32
060000-067FFF
22
32
180000-187FFF
59
32
058000-05FFFF
60
32
050000-057FFF
23
32
178000-17FFFF
24
32
170000-177FFF
61
32
048000-04FFFF
32
040000-047FFF
25
32
168000-16FFFF
62
26
32
160000-167FFF
63
32
038000-03FFFF
64
32
030000-037FFF
028000-02FFFF
27
32
158000-15FFFF
28
32
150000-157FFF
65
32
148000-14FFFF
66
32
020000-027FFF
67
32
018000-01FFFF
29
32
30
32
140000-147FFF
31
32
138000-13FFFF
68
32
010000-017FFF
32
008000-00FFFF
32
000000-007FFF
32
32
130000-137FFF
69
33
32
128000-12FFFF
70
46/64
M36W832TE, M36W832BE
Table 27. Bottom Boot Block Addresses,
M36W832BE
#
Size
(KWord)
Address Range
70
32
1F8000-1FFFFF
69
32
1F0000-1F7FFF
68
32
1E8000-1EFFFF
67
32
1E0000-1E7FFF
66
32
1D8000-1DFFFF
65
32
1D0000-1D7FFF
64
32
1C8000-1CFFFF
63
32
1C0000-1C7FFF
62
32
1B8000-1BFFFF
61
32
1B0000-1B7FFF
60
32
1A8000-1AFFFF
59
32
1A0000-1A7FFF
58
32
198000-19FFFF
57
32
190000-197FFF
56
32
188000-18FFFF
55
32
180000-187FFF
54
32
178000-17FFFF
53
32
170000-177FFF
52
32
168000-16FFFF
51
32
160000-167FFF
50
32
158000-15FFFF
49
32
150000-157FFF
48
32
148000-14FFFF
47
32
140000-147FFF
46
32
138000-13FFFF
45
32
130000-137FFF
44
32
128000-12FFFF
43
32
120000-127FFF
42
32
118000-11FFFF
41
32
110000-117FFF
40
32
108000-10FFFF
39
32
100000-107FFF
38
32
0F8000-0FFFFF
37
32
0F0000-0F7FFF
36
32
35
32
0E8000-0EFFFF
0E0000-0E7FFF
34
32
0D8000-0DFFFF
33
32
0D0000-0D7FFF
32
32
0C8000-0CFFFF
31
32
0C0000-0C7FFF
30
32
0B8000-0BFFFF
29
32
0B0000-0B7FFF
28
32
0A8000-0AFFFF
27
32
0A0000-0A7FFF
26
32
098000-09FFFF
25
32
090000-097FFF
24
32
088000-08FFFF
23
32
080000-087FFF
22
32
078000-07FFFF
21
32
070000-077FFF
20
32
068000-06FFFF
19
32
060000-067FFF
18
32
058000-05FFFF
17
32
050000-057FFF
16
32
048000-04FFFF
15
32
040000-047FFF
14
32
038000-03FFFF
13
32
030000-037FFF
12
32
028000-02FFFF
11
32
020000-027FFF
10
32
018000-01FFFF
9
32
010000-017FFF
8
32
008000-00FFFF
7
4
007000-007FFF
6
4
006000-006FFF
5
4
005000-005FFF
4
4
004000-004FFF
3
4
003000-003FFF
2
4
002000-002FFF
1
4
001000-001FFF
0
4
000000-000FFF
47/64
M36W832TE, M36W832BE
APPENDIX B. COMMON FLASH INTERFACE (CFI)
The Common Flash Interface is a JEDEC approved, standardized data structure that can be
read from the Flash memory device. It allows a
system software to query the device to determine
various electrical and timing parameters, density
information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when
necessary.
When the CFI Query Command (RCFI) is issued
the device enters CFI Query mode and the data
structure is read from the memory. Tables 28, 29,
30, 31, 32 and 33 show the addresses used to retrieve the data.
The CFI data structure also contains a security
area where a 64 bit unique security number is written (see Table 33, Security Code area). This area
can be accessed only in Read mode by the final
user. It is impossible to change the security number after it has been written by ST. Issue a Read
command to return to Read mode.
Table 28. Query Structure Overview
Offset
Sub-section Name
Description
00h
Reserved
Reserved for algorithm-specific information
10h
CFI Query Identification String
Command set ID and algorithm data offset
1Bh
System Interface Information
Device timing & voltage information
27h
Device Geometry Definition
Flash device layout
P
Primary Algorithm-specific Extended Query table
Additional information specific to the Primary
Algorithm (optional)
A
Alternate Algorithm-specific Extended Query table
Additional information specific to the Alternate
Algorithm (optional)
Note: Query data are always presented on the lowest order data outputs.
Table 29. CFI Query Identification String
Offset
Data
Description
00h
0020h
Manufacturer Code
01h
88BAh
88BBh
Device Code
02h-0Fh
reserved
10h
0051h
11h
0052h
12h
0059h
13h
0003h
14h
0000h
15h
0035h
16h
0000h
17h
0000h
18h
0000h
19h
0000h
1Ah
0000h
ST
Top
Bottom
Reserved
"Q"
Query Unique ASCII String "QRY"
"R"
"Y"
Primary Algorithm Command Set and Control Interface ID code 16 bit ID code
defining a specific algorithm
Address for Primary Algorithm extended Query table (see Table 31)
Intel
compatible
P = 35h
Alternate Vendor Command Set and Control Interface ID Code second vendor specified algorithm supported (0000h means none exists)
NA
Address for Alternate Algorithm extended Query table
(0000h means none exists)
NA
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
48/64
Value
M36W832TE, M36W832BE
Table 30. CFI Query System Interface Information
Offset
Data
Description
Value
1Bh
0027h
VDDF Logic Supply Minimum Program/Erase or Write voltage
bit 7 to 4
BCD value in volts
bit 3 to 0
BCD value in 100 mV
2.7V
1Ch
0036h
VDDF Logic Supply Maximum Program/Erase or Write voltage
bit 7 to 4
BCD value in volts
bit 3 to 0
BCD value in 100 mV
3.6V
1Dh
00B4h
VPPF [Programming] Supply Minimum Program/Erase voltage
bit 7 to 4
HEX value in volts
bit 3 to 0
BCD value in 100 mV
11.4V
1Eh
00C6h
VPPF [Programming] Supply Maximum Program/Erase voltage
bit 7 to 4
HEX value in volts
bit 3 to 0
BCD value in 100 mV
12.6V
1Fh
0004h
Typical time-out per single word program = 2n µs
16µs
20h
0004h
Typical time-out for Double/ Quadruple Word Program = 2n µs
16µs
21h
000Ah
Typical time-out per individual block erase = 2n ms
1s
22h
0000h
Typical time-out for full chip erase = 2n ms
NA
23h
0005h
Maximum time-out for word program = 2n times typical
512µs
24h
0005h
Maximum time-out for Double/ Quadruple Word Program = 2n times typical
512µs
25h
0003h
Maximum time-out per individual block erase = 2n times typical
8s
26h
0000h
Maximum time-out for chip erase = 2n times typical
NA
49/64
M36W832TE, M36W832BE
Table 31. Device Geometry Definition
Data
27h
0016h
Device Size = 2n in number of bytes
28h
29h
0001h
0000h
Flash Device Interface Code description
2Ah
2Bh
0003h
0000h
Maximum number of bytes in multi-byte program or page = 2n
8
2Ch
0002h
Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing contiguous
Erase Blocks of the same size.
2
2Dh
2Eh
003Eh
0000h
Region 1 Information
Number of identical-size erase block = 003Eh+1
63
2Fh
30h
0000h
0001h
Region 1 Information
Block size in Region 1 = 0100h * 256 byte
31h
32h
0007h
0000h
Region 2 Information
Number of identical-size erase block = 0007h+1
33h
34h
0020h
0000h
Region 2 Information
Block size in Region 2 = 0020h * 256 byte
2Dh
2Eh
0007h
0000h
Region 1 Information
Number of identical-size erase block = 0007h+1
2Fh
30h
0020h
0000h
Region 1 Information
Block size in Region 1 = 0020h * 256 byte
31h
32h
003Eh
0000h
Region 2 Information
Number of identical-size erase block = 003Eh=1
33h
34h
0000h
0001h
Region 2 Information
Block size in Region 2 = 0100h * 256 byte
M28W320ECB
M28W320ECT
Offset Word
Mode
50/64
Description
Value
4 MByte
x16
Async.
64 KByte
8
8 KByte
8
8 KByte
63
64 KByte
M36W832TE, M36W832BE
Table 32. Primary Algorithm-Specific Extended Query Table
Offset
P = 35h (1)
Data
(P+0)h = 35h
0050h
(P+1)h = 36h
0052h
(P+2)h = 37h
0049h
(P+3)h = 38h
0031h
Major version number, ASCII
"1"
(P+4)h = 39h
0030h
Minor version number, ASCII
"0"
(P+5)h = 3Ah
0066h
(P+6)h = 3Bh
0000h
(P+7)h = 3Ch
0000h
(P+8)h = 3Dh
0000h
Extended Query table contents for Primary Algorithm. Address (P+5)h
contains less significant byte.
bit 0
Chip Erase supported
(1 = Yes, 0 = No)
bit 1
Suspend Erase supported
(1 = Yes, 0 = No)
bit 2
Suspend Program supported
(1 = Yes, 0 = No)
bit 3
Legacy Lock/Unlock supported
(1 = Yes, 0 = No)
bit 4
Queued Erase supported
(1 = Yes, 0 = No)
bit 5
Instant individual block locking supported (1 = Yes, 0 = No)
bit 6
Protection bits supported
(1 = Yes, 0 = No)
bit 7
Page mode read supported
(1 = Yes, 0 = No)
bit 8
Synchronous read supported
(1 = Yes, 0 = No)
bit 31 to 9 Reserved; undefined bits are ‘0’
No
Yes
Yes
No
No
Yes
Yes
No
No
(P+9)h = 3Eh
0001h
Supported Functions after Suspend
Read Array, Read Status Register and CFI Query are always supported
during Erase or Program operation
bit 0
Program supported after Erase Suspend (1 = Yes, 0 = No)
bit 7 to 1
Reserved; undefined bits are ‘0’
Yes
(P+A)h = 3Fh
0003h
(P+B)h = 40h
0000h
Description
Value
"P"
Primary Algorithm extended Query table unique ASCII string “PRI”
"R"
"I"
Block Lock Status
Defines which bits in the Block Status Register section of the Query are
implemented.
Address (P+A)h contains less significant byte
bit 0 Block Lock Status Register Lock/Unlock bit active (1 = Yes, 0 = No)
bit 1 Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)
bit 15 to 2 Reserved for future use; undefined bits are ‘0’
Yes
Yes
(P+C)h = 41h
0030h
VDDF Logic Supply Optimum Program/Erase voltage (highest performance)
bit 7 to 4
HEX value in volts
bit 3 to 0
BCD value in 100 mV
3V
(P+D)h = 42h
00C0h
VPPF Supply Optimum Program/Erase voltage
bit 7 to 4
HEX value in volts
bit 3 to 0
BCD value in 100 mV
12V
(P+E)h = 43h
0001h
Number of Protection register fields in JEDEC ID space.
"00h," indicates that 256 protection bytes are available
01
(P+F)h = 44h
0080h
80h
(P+10)h = 45h
0000h
(P+11)h = 46h
0003h
(P+12)h = 47h
0003h
Protection Field 1: Protection Description
This field describes user-available. One Time Programmable (OTP)
Protection register bytes. Some are pre-programmed with device unique
serial numbers. Others are user programmable. Bits 0–15 point to the
Protection register Lock byte, the section’s first byte.
The following bytes are factory pre-programmed and user-programmable.
bit 0 to 7
Lock/bytes JEDEC-plane physical low address
bit 8 to 15
Lock/bytes JEDEC-plane physical high address
bit 16 to 23 "n" such that 2n = factory pre-programmed bytes
bit 24 to 31 "n" such that 2n = user programmable bytes
(P+13)h = 48h
00h
8 Byte
8 Byte
Reserved
Note: 1. See Table 29, offset 15 for P pointer definition.
51/64
M36W832TE, M36W832BE
Table 33. Security Code Area
Offset
Data
80h
00XX
81h
XXXX
82h
XXXX
83h
XXXX
84h
XXXX
85h
XXXX
86h
XXXX
87h
XXXX
88h
XXXX
89h
XXXX
8Ah
XXXX
8Bh
XXXX
8Ch
XXXX
52/64
Description
Protection Register Lock
64 bits: unique device number
128 bits: User Programmable OTP
M36W832TE, M36W832BE
APPENDIX C. FLASH MEMORY FLOWCHARTS AND PSEUDO CODES
Figure 26. Program Flowchart and Pseudo Code
Start
program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0x40) ;
/*or writeToFlash (any_address, 0x10) ; */
Write 40h or 10h
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
Write Address
& Data
do {
status_register=readFlash (any_address) ;
/* EF or GF must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPPF Invalid
Error (1, 2)
NO
Program
Error (1, 2)
NO
Program to Protected
Block Error (1, 2)
if (status_register.b3==1) /*VPPF invalid error */
error_handler ( ) ;
YES
b4 = 0
if (status_register.b4==1) /*program error */
error_handler ( ) ;
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI90174b
Note: 1. Status check of b1 (Protected Block), b3 (V PPF Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
53/64
M36W832TE, M36W832BE
Figure 27. Double Word Program Flowchart and Pseudo Code
Start
Write 30h
double_word_program_command (addressToProgram1, dataToProgram1,
addressToProgram2, dataToProgram2)
{
writeToFlash (any_address, 0x30) ;
writeToFlash (addressToProgram1, dataToProgram1) ;
/*see note (3) */
writeToFlash (addressToProgram2, dataToProgram2) ;
/*see note (3) */
/*Memory enters read status state after
the Program command*/
Write Address 1
& Data 1 (3)
Write Address 2
& Data 2 (3)
do {
status_register=readFlash (any_address) ;
/* EF or GF must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPPF Invalid
Error (1, 2)
NO
Program
Error (1, 2)
if (status_register.b3==1) /*VPPF invalid error */
error_handler ( ) ;
YES
b4 = 0
if (status_register.b4==1) /*program error */
error_handler ( ) ;
YES
b1 = 0
NO
Program to Protected
Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI90175b
Note: 1. Status check of b1 (Protected Block), b3 (V PPF Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.
54/64
M36W832TE, M36W832BE
Figure 28. Quadruple Word Program Flowchart and Pseudo Code
Start
quadruple_word_program_command (addressToProgram1, dataToProgram1,
addressToProgram2, dataToProgram2,
addressToProgram3, dataToProgram3,
addressToProgram4, dataToProgram4)
{
writeToFlash (any_address, 0x56) ;
Write 56h
Write Address 1
& Data 1 (3)
writeToFlash (addressToProgram1, dataToProgram1) ;
/*see note (3) */
Write Address 2
& Data 2 (3)
writeToFlash (addressToProgram2, dataToProgram2) ;
/*see note (3) */
writeToFlash (addressToProgram3, dataToProgram3) ;
/*see note (3) */
Write Address 3
& Data 3 (3)
writeToFlash (addressToProgram4, dataToProgram4) ;
/*see note (3) */
Write Address 4
& Data 4 (3)
/*Memory enters read status state after
the Program command*/
do {
status_register=readFlash (any_address) ;
/* EF or GF must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPPF Invalid
Error (1, 2)
NO
Program
Error (1, 2)
if (status_register.b3==1) /*VPPF invalid error */
error_handler ( ) ;
YES
b4 = 0
if (status_register.b4==1) /*program error */
error_handler ( ) ;
YES
b1 = 0
NO
Program to Protected
Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI07950
Note: 1. Status check of b1 (Protected Block), b3 (V PPF Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.
55/64
M36W832TE, M36W832BE
Figure 29. Program Suspend & Resume Flowchart and Pseudo Code
Start
program_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
Write B0h
writeToFlash (any_address, 0x70) ;
/* read status register to check if
program has already completed */
Write 70h
do {
status_register=readFlash (any_address) ;
/* EF or GF must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b2 = 1
NO
Program Complete
YES
Write FFh
}
Read data from
another address
Write D0h
if (status_register.b2==0) /*program completed */
{ writeToFlash (any_address, 0xFF) ;
read_data ( ) ; /*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
else
{ writeToFlash (any_address, 0xFF) ;
read_data ( ); /*read data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume program*/
}
Write FFh
}
Program Continues
Read Data
AI90176b
56/64
M36W832TE, M36W832BE
Figure 30. Erase Flowchart and Pseudo Code
Start
erase_command ( blockToErase ) {
writeToFlash (any_address, 0x20) ;
Write 20h
writeToFlash (blockToErase, 0xD0) ;
/* only A12-A20 are significannt */
/* Memory enters read status state after
the Erase Command */
Write Block
Address & D0h
do {
status_register=readFlash (any_address) ;
/* EF or GF must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPPF Invalid
Error (1)
YES
Command
Sequence Error (1)
if (status_register.b3==1) /*VPPF invalid error */
error_handler ( ) ;
YES
b4, b5 = 1
if ( (status_register.b4==1) && (status_register.b5==1) )
/* command sequence error */
error_handler ( ) ;
NO
b5 = 0
NO
Erase Error (1)
if ( (status_register.b5==1) )
/* erase error */
error_handler ( ) ;
YES
b1 = 0
NO
Erase to Protected
Block Error (1)
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI90177b
Note: If an error is found, the Status Register must be cleared before further Program/Erase operations.
57/64
M36W832TE, M36W832BE
Figure 31. Erase Suspend & Resume Flowchart and Pseudo Code
Start
erase_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
Write B0h
writeToFlash (any_address, 0x70) ;
/* read status register to check if
erase has already completed */
Write 70h
do {
status_register=readFlash (any_address) ;
/* EF or GF must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b6 = 1
NO
Erase Complete
if (status_register.b6==0) /*erase completed */
{ writeToFlash (any_address, 0xFF) ;
YES
read_data ( ) ;
/*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
Write FFh
Read data from
another block
or
Program/Protection Program
or
Block Protect/Unprotect/Lock
}
else
Write D0h
Write FFh
Erase Continues
Read Data
{ writeToFlash (any_address, 0xFF) ;
read_program_data ( );
/*read or program data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume erase*/
}
}
AI90178b
58/64
M36W832TE, M36W832BE
Figure 32. Locking Operations Flowchart and Pseudo Code
Start
locking_operation_command (address, lock_operation) {
writeToFlash (any_address, 0x60) ; /*configuration setup*/
Write 60h
if (lock_operation==PROTECT) /*to protect the block*/
writeToFlash (address, 0x01) ;
else if (lock_operation==UNPROTECT) /*to unprotect the block*/
writeToFlash (address, 0xD0) ;
else if (lock_operation==LOCK) /*to lock the block*/
writeToFlash (address, 0x2F) ;
Write
01h, D0h or 2Fh
writeToFlash (any_address, 0x90) ;
Write 90h
Read Status
Register
Locking
change
confirmed?
if (readFlash (address) ! = locking_state_expected)
error_handler () ;
/*Check the locking state (see Read Block Signature table )*/
NO
YES
writeToFlash (any_address, 0xFF) ; /*Reset to Read Array mode*/
Write FFh
}
End
AI90179
59/64
M36W832TE, M36W832BE
Figure 33. Protection Register Program Flowchart and Pseudo Code
Start
protection_register_program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0xC0) ;
Write C0h
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
Write Address
& Data
do {
status_register=readFlash (any_address) ;
/* EF or GF must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPPF Invalid
Error (1, 2)
NO
Program
Error (1, 2)
NO
Program to Protected
Block Error (1, 2)
if (status_register.b3==1) /*VPPF invalid error */
error_handler ( ) ;
YES
b4 = 0
if (status_register.b4==1) /*program error */
error_handler ( ) ;
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI07951
Note: 1. Status check of b1 (Protected Block), b3 (V PPF Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
60/64
M36W832TE, M36W832BE
APPENDIX D. FLASH MEMORY COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER
STATE
Table 34. Write State Machine Current/Next, sheet 1 of 2
Command Input (and Next State)
Current
State
SR
bit 7
Data
When
Read
Read Array
“1”
Array
Read Array Prog.Setup
Read
Status
“1”
Status
Read Array
Read
Elect.Sg.
“1”
Electronic
Signature
Read CFI
Query
“1”
CFI
Lock Setup
“1”
Status
Lock Cmd
Error
“1”
Status
Read Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read Array
Lock
(complete)
“1”
Status
Read Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read Array
Prot. Prog.
Setup
“1”
Status
Protection Register Program
Prot. Prog.
(continue)
“0”
Status
Protection Register Program continue
Prot. Prog.
(complete)
“1”
Status
Read
Status
Read Array
Prog. Setup
“1”
Status
Program
(continue)
“0”
Status
Prog. Sus
Status
“1”
Status
Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read Array
“1”
Array
Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read
Elect.Sg.
“1”
Electronic
Signature
Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read CFI
“1”
CFI
Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Program
(complete)
“1”
Status
Read Array
Read
Status
Read Array
Erase
Setup
“1”
Status
Erase
Cmd.Error
“1”
Status
Erase
(continue)
“0”
Status
Erase Sus
Read Sts
“1”
Status
Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus Erase Sus
Read Sts Read Array
Erase Sus
Read Array
“1”
Array
Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus Erase Sus
Read Sts Read Array
Erase Sus
Read
Elect.Sg.
“1”
Electronic
Signature
Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus Erase Sus
Read Sts Read Array
Erase Sus
Read CFI
“1”
CFI
Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus Erase Sus
Read Sts Read Array
Erase
(complete)
“1”
Status
Read Array
Program
Setup
Erase
Setup
Read
Array
(FFh)
Program
Setup
(10/40h)
Erase
Setup
(20h)
Erase
Confirm
(D0h)
Prog/Ers
Suspend
(B0h)
Prog/Ers
Resume
(D0h)
Read
Status
(70h)
Clear
Status
(50h)
Ers. Setup
Read Array
Read Sts.
Read Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read Array
Read Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read Array
Read Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read Array
Lock
(complete)
Lock Command Error
Read Array
Program
Setup
Erase
Setup
Lock Cmd
Error
Lock
(complete)
Read Array
Lock Command Error
Program
Prog. Sus
Read Sts
Program (continue)
Program
Setup
Erase
Setup
Erase Command Error
Read Array
Program
Setup
Program (continue)
Read Array
Erase
(continue)
Erase
Setup
Erase (continue)
Erase
CmdError
Erase
(continue)
Erase Command Error
Read Array
Read
Status
Erase Sus
Read Sts
Erase (continue)
Read Array
Read
Status
Read Array
Read Array
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Erase, Prog. = Program, Prot = Protection, Sus = Suspend.
61/64
M36W832TE, M36W832BE
Table 35. Write State Machine Current/Next, sheet 2 of 2
Command Input (and Next State)
Current State
Read Elect.Sg.
(90h)
Read CFI
Query
(98h)
Lock Setup
(60h)
Prot. Prog.
Setup (C0h)
Lock Confirm
(01h)
Lock Down
Confirm (2Fh)
Read Array
Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Read Array
Read Status
Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Read Array
Read Elect.Sg.
Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Read Array
Read CFI Query Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Read Array
Lock Setup
Lock Command Error
Lock (complete)
Lock Cmd Error
Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Lock (complete)
Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Protection Register Program
Prot. Prog.
(continue)
Protection Register Program (continue)
Prot. Prog.
(complete)
Read Elect.Sg. Read CFI Query
Unlock
Confirm
(D0h)
Lock Setup
Prot. Prog.
Setup
Prog. Setup
Program
Program
(continue)
Program (continue)
Read Array
Read Array
Read Array
Prog. Suspend
Read Status
Prog. Suspend Prog. Suspend
Read Elect.Sg. Read CFI Query
Program Suspend Read Array
Program
(continue)
Prog. Suspend
Read Array
Prog. Suspend Prog. Suspend
Read Elect.Sg. Read CFI Query
Program Suspend Read Array
Program
(continue)
Prog. Suspend
Read Elect.Sg.
Prog. Suspend Prog. Suspend
Read Elect.Sg. Read CFI Query
Program Suspend Read Array
Program
(continue)
Prog. Suspend
Read CFI
Prog. Suspend Prog. Suspend
Read Elect.Sg. Read CFI Query
Program Suspend Read Array
Program
(continue)
Program
(complete)
Read Elect.Sg.
Read CFIQuery
Erase Setup
Erase
Cmd.Error
Lock Setup
Prot. Prog.
Setup
Read Array
Erase
(continue)
Erase Command Error
Read Elect.Sg. Read CFI Query
Lock Setup
Erase (continue)
Prot. Prog.
Setup
Read Array
Erase (continue)
Erase Suspend
Read Ststus
Erase Suspend Erase Suspend
Read Elect.Sg. Read CFI Query
Lock Setup
Erase Suspend Read Array
Erase
(continue)
Erase Suspend
Read Array
Erase Suspend Erase Suspend
Read Elect.Sg. Read CFI Query
Lock Setup
Erase Suspend Read Array
Erase
(continue)
Erase Suspend
Read Elect.Sg.
Erase Suspend Erase Suspend
Read Elect.Sg. Read CFI Query
Lock Setup
Erase Suspend Read Array
Erase
(continue)
Erase Suspend Erase Suspend Erase Suspend
Read CFI Query Read Elect.Sg. Read CFI Query
Lock Setup
Erase Suspend Read Array
Erase
(continue)
Erase
(complete)
Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Prog. = Program, Prot = Protection.
62/64
Read Array
M36W832TE, M36W832BE
REVISION HISTORY
Table 36. Document Revision History
Date
Version
16-Jul-2002
1.0
First Issue
2.0
Revision History moved to end of document. Flash and SRAM components updated.
Table 2, Main Operation Modes, modified.
Flash Device: “Quadruple Word Program Command” added, “Double Word Program
Command” clarified, VDDQF Maximum changed to 3.6V, Corrections to Table 8, Flash
Program, Erase Times and Program/Erase Endurance Cycles, Table 15, DC
Characteristicss Table and to CFI Tables 30 and 31. Security block removed.
Command Codes Table added, DQ0, DQ2, DQ3-DQ7 and DQ8-DQ15 parameters
modified for Lock in Table 7, Flash Read Protection Register and Lock Register.
70ns Speed Class added. 100ns Speed Class removed.
SRAM device: “Data Retention” on Page 25 and SRAM read and write AC
characteristics (Figures 14, 15, 16, 17, 18, 19, 20, 21 and 22) modified. Figure 7,
SRAM Block Diagram, added.
24-Mar-2003
3.0
Document promoted to full Datasheet status. Minor corrections to SRAM Block
Diagram. Input Rise and Fall Time for 70ns speed class modified in Operating and AC
Measurement Conditions Table. LFBGA Connections and Daisy Chain pin numbers
modified.
26-May-2003
3.1
Special tape option added to ordering information scheme
29-Nov-2002
Revision Details
63/64
M36W832TE, M36W832BE
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2003 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
64/64
Similar pages