AD ADV202BBCZ-115 Jpeg2000 video codec Datasheet

JPEG2000 Video Codec
ADV202
Data Sheet
FEATURES
APPLICATIONS
Complete single-chip JPEG2000 compression and
decompression solution for video and still images
Patented SURF® (spatial ultra-efficient recursive filtering)
technology enables low power and low cost waveletbased compression
Supports both 9/7 and 5/3 wavelet transforms with up to
6 levels of transform
Programmable tile/image size with widths up to 2048 pixels in
3-component 4:2:2 interleaved mode, and up to 4096 pixels
in single-component mode
Maximum tile/image width: 4096 pixels
Video interface directly supporting ITU.R-BT656,
SMPTE125M PAL/ NTSC, SMPTE274M, SMPTE293M (525p),
ITU.R-BT1358 (625p) or any video format with a maximum
input rate of 65 MSPS for irreversible mode or 40 MSPS for
reversible mode
Two or more ADV202s can be combined to support fullframe SMPTE274M HDTV (1080i) or SMPTE296M (720p)
Flexible asynchronous SRAM-style host interface allows
glueless connection to most 16-/32-bit microcontrollers
and ASICs
2.5 V to 3.3 V I/O and 1.5 V core supply
12 mm × 12 mm 121-lead CSPBGA, speed grade 115 MHz, or
13 mm × 13 mm 144-lead CSPBGA, speed grade 135 MHz, or
13 mm × 13 mm 144-lead CSPBGA, speed grade 150 MHz
Networked video and image distribution systems
Wireless video and image distribution
Image archival/retrieval
Digital CCTV and surveillance systems
Digital cinema systems
Professional video editing and recording
Digital still cameras
Digital camcorders
GENERAL DESCRIPTION
The ADV202 is a single-chip JPEG2000 codec targeted for
video and high bandwidth image compression applications that
can benefit from the enhanced quality and feature set provided
by the JPEG2000 (J2K)—ISO/IEC15444-1 image compression
standard. The part implements the computationally intensive
operations of the JPEG2000 image compression standard as well
as providing fully compliant code-stream generation for most
applications.
The ADV202’s dedicated video port provides glueless connection
to common digital video standards such as ITU.R-BT656,
SMPTE125M, SMPTE293M (525p), ITU.R-BT1358 (625p),
SMPTE274M (1080i), or SMPTE296M (720p). A variety of other
high speed, synchronous pixel and video formats can also be supported using the programmable framing and validation signals.
(continued on Page 4)
FUNCTIONAL BLOCK DIAGRAM
ADV202
PIXEL I/F
PIXEL I/F
HOST I/F
EXTERNAL
DMA CTRL
PIXEL FIFO
WAVELET
ENGINE
EC1
EC2
EC3
INTERNAL BUS AND DMA ENGINE
CODE FIFO
EMBEDDED
RISC
PROCESSOR
SYSTEM
RAM
ROM
04723-001
ATTR FIFO
Figure 1.
Rev. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
www.analog.com
Tel: 781.329.4700
Fax: 781.461.3113 ©2006–2012 Analog Devices, Inc. All rights reserved.
ADV202
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Embedded Processor System .................................................... 26
Applications ....................................................................................... 1
Memory System .......................................................................... 26
General Description ......................................................................... 1
Internal DMA Engine ................................................................ 26
Functional Block Diagram .............................................................. 1
ADV202 Interface........................................................................... 27
Revision History ............................................................................... 3
Video Interface (VDATA Bus).................................................. 27
General Description ......................................................................... 4
Host Interface (HDATA Bus) ................................................... 27
JPEG2000 Feature Support.......................................................... 4
Direct and Indirect Registers .................................................... 27
Specifications..................................................................................... 5
Control Access Registers ........................................................... 27
Supply Voltages and Current ...................................................... 5
Pin Configuration and Bus Sizes/Modes ................................ 28
Input/Output Specifications........................................................ 5
Stage Register .............................................................................. 28
Clock and RESET Specifications ................................................ 6
JDATA Mode............................................................................... 28
Normal Host Mode—Read Operation ...................................... 7
External DMA Engine ............................................................... 28
Normal Host Mode—Write Operation ..................................... 8
Internal Registers ............................................................................ 29
DREQ/DACK DMA Mode—Single FIFO Write Operation .. 9
Direct Registers........................................................................... 29
DREQ/DACK DMA Mode—Single FIFO Read Operation . 11
Indirect Registers........................................................................ 30
External DMA Mode—FIFO Write, Burst Mode .................. 13
PLL ............................................................................................... 31
External DMA Mode—FIFO Read, Burst Mode ................... 14
Hardware Boot ............................................................................ 31
Streaming Mode (JDATA)—FIFO Read/Write ...................... 16
Video Input Formats ...................................................................... 32
VDATA Mode Timing ............................................................... 17
Applications..................................................................................... 34
Raw Pixel Mode Timing ............................................................ 18
Encode—Multichip Mode ......................................................... 34
Absolute Maximum Ratings .......................................................... 19
Decode—Multichip Master/Slave ............................................ 35
Thermal Resistance .................................................................... 19
Digital Still Camera/Camcorder .............................................. 35
ESD Caution ................................................................................ 19
Encode/Decode SDTV Video Application ............................. 36
Pin BGA Assignments and Function Descriptions ................... 20
ASIC Application (32-Bit Host/32-Bit ASIC)......................... 37
Pin BGA Assignments ............................................................... 20
HIPI (Host Interface—Pixel Interface) ................................... 38
Pin Function Descriptions ........................................................ 23
JDATA Interface ......................................................................... 38
Theory of Operation ...................................................................... 26
Outline Dimensions ....................................................................... 39
Wavelet Engine ........................................................................... 26
Ordering Guide .......................................................................... 40
Entropy Codecs........................................................................... 26
Rev. D | Page 2 of 40
Data Sheet
ADV202
REVISION HISTORY
1/12—Rev. C to Rev. D
Updated Outline Dimensions ........................................................39
Changes to Ordering Guide ...........................................................40
11/06—Rev. B to Rev. C
Deleted ANC FIFO References ........................................ Universal
Changes to Features .......................................................................... 1
Changes to Figure 1........................................................................... 1
Changes to JPEG2000 Feature Support Section ............................ 4
Changes to Figure 8.........................................................................10
Changes to Figure 10 ......................................................................11
Changes to Figure 12 ......................................................................12
Changes to External DMA Mode—FIFO Write,
Burst Mode Section .........................................................................13
Changes to External DMA Mode—FIFO Read,
Burst Mode Section .........................................................................13
Changes to Table 11 ........................................................................17
Changes to Figure 22 ......................................................................18
Deleted SPI Port Timing Section ..................................................18
Added Absolute Maximum Ratings Section ...............................19
Changes to Pin BGA Assignments and Function
Descriptions Section ....................................................................... 20
Changes to ADV202 Interface Section ........................................ 27
Changes to Table 19 ........................................................................ 29
Changes to Indirect Registers Section .......................................... 30
Changes to PLL Section.................................................................. 31
Changes to Table 23 ........................................................................ 31
Changes to Video Input Formats Section .................................... 32
Changes to Figure 24 ...................................................................... 34
Changes to Figure 26 ...................................................................... 35
Changes to Ordering Guide ........................................................... 40
1/05—Rev. A to Rev. B
Updated Outline Dimensions........................................................ 39
12/04—Rev. 0 to Rev. A
Changes to Features .......................................................................... 1
Changes to Table 2 ............................................................................ 4
Changes to Table 16 ........................................................................ 24
Changes to Table 23 ........................................................................ 32
7/04—Revision 0: Initial Version
Rev. D | Page 3 of 40
ADV202
Data Sheet
GENERAL DESCRIPTION
(continued from Page 1)
JPEG2000 FEATURE SUPPORT
The ADV202 can process images at a rate of 40 MSPS in
reversible mode and at higher rates when used in irreversible
mode. The ADV202 contains a dedicated wavelet transform
engine, three entropy codecs, an on-board memory system, and
an embedded RISC processor that can provide a complete
JPEG2000 compression/decompression solution.
The ADV202 supports a broad set of features that are included
in Part 1 of the JPEG2000 standard (ISO/IEC 15444). See
Getting Started with ADV202 for information on the JPEG2000
features that the ADV202 currently supports.
The wavelet processor supports the 9/7 irreversible wavelet
transform and the 5/3 wavelet transform in reversible and
irreversible modes. The entropy codecs support all features in
the JPEG2000 Part 1 specification, except Maxshift ROI.
The ADV202 operates on a rectangular array of pixel samples
called a tile. A tile can contain a complete image, up to the
maximum supported size, or some portion of an image. The
maximum horizontal tile size supported depends on the wavelet
transform selected and the number of samples in the tile.
Images larger than the ADV202’s maximum tile size can be
broken into individual tiles and then sent sequentially to the
chip while still maintaining a single, fully compliant JPEG2000
code stream for the entire image.
Depending on the particular application requirements, the
ADV202 can provide varying levels of JPEG2000 compression
support. It can provide raw code-block and attribute data
output, which allow the host software to have complete control
over the generation of the JPEG2000 code stream and other
aspects of the compression process such as bit-rate control.
Otherwise, the ADV202 can create a complete, fully compliant
JPEG2000 code stream (.j2c) and enhanced file formats such as
.jp2 and .j2c. See Getting Started with ADV202 for information
on the formats that the ADV202 currently supports.
Application notes and other ADV202 support documents can
be accessed over the ADV202 product page at:
•
•
Rev. D | Page 4 of 40
http://www.analog.com/ADV202Notes or from
ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_FTP_s
ite_contents_3.html
Data Sheet
ADV202
SPECIFICATIONS
SUPPLY VOLTAGES AND CURRENT
Table 1.
Parameter
VDD
IOVDD
PLLVDD
VINPUT
Temp
IDD
1
2
Description
DC Supply Voltage, Core
DC Supply Voltage, I/O
DC Supply Voltage, PLL
Input Range
Operating Ambient Temperature Range in Free Air
Static Current 1
Dynamic Current, Core (JCLK Frequency = 150 MHz) 2
Dynamic Current, Core (JCLK Frequency = 108 MHz)
Dynamic Current, Core (JCLK Frequency = 81 MHz)
Dynamic Current, I/O
Dynamic Current, PLL
Min
1.425
2.375
1.425
−0.3
−40
Typ
1.5
3.3
1.5
+25
Max
1.575
3.63
1.575
VDDI/O + 0.3
+85
300
570
420
325
20
2.6
Unit
V
V
V
V
°C
mA
mA
mA
mA
mA
mA
No clock or I/O activity.
ADV202-150 only.
INPUT/OUTPUT SPECIFICATIONS
Table 2.
Parameter
VIH (3.3 V)
VIH (2.5 V)
VIL (3.3 V, 2.5 V)
VOH (3.3 V)
VOH (2.5 V)
VOL (3.3 V, 2.5 V)
IIH
IIL
IOZH
IOZL
CI
CO
Description
High Level Input Voltage
High Level Input Voltage
Low Level Input Voltage
High Level Output Voltage
High Level Output Voltage
Low Level Output Voltage
High Level Input Current
Low Level Input Current
High Level Three-State Leakage Current
Low Level Three-State Leakage Current
Input Pin Capacitance
Output Pin Capacitance
Test Conditions
VDD = max
VDD = max
VDD = min
VDD = min, IOH = −0.5 mA
VDD = min, IOH = −0.5 mA
VDD = min, IOL = 2 mA
VDD = max, VIN = VDD
VDD = max, VIN = 0 V
VDD = max, VIN = VDD
VDD = max, VIN = 0 V
Rev. D | Page 5 of 40
Min
2.2
1.9
Typ
Max
0.6
2.4
2.0
0.4
1.0
1
1.0
1.0
8
8
Unit
V
V
V
V
V
V
µA
µA
µA
µA
pF
pF
ADV202
Data Sheet
CLOCK AND RESET SPECIFICATIONS
Table 3.
Parameter
tMCLK
tMCLKL
tMCLKH
tVCLK
tVCLKL
tVCLKH
tRST
Min
13.3
6
6
13.4
5
5
5
Typ
Max
100
50
Unit
ns
ns
ns
ns
ns
ns
MCLK cycles
For a definition of MCLK, see the PLL section.
tMCLK
tMCLKL
tMCLKH
MCLK
tVCLK
tVCLKL
tVCLKH
04723-010
1
Description
MCLK 1 Period
MCLK Width Low
MCLK Width High
VCLK Period
VCLK Width Low
VCLK Width High
RESET Width Low
VCLK
Figure 2. Input Clock
Rev. D | Page 6 of 40
Data Sheet
ADV202
NORMAL HOST MODE—READ OPERATION
Table 4.
Parameter
tACK [dir]
Description
RD to ACK, Direct Registers and FIFO Accesses
Min
5
Typ
Max
1.5 × JCLK 1 + 7.0
Unit
ns
tACK [indir]
RD to ACK, Indirect Registers
10.5 × JCLK
15.5 × JCLK + 7.0
ns
tDRD [dir]
tDRD [indir]
tHZRD
tSC
tSA
tHC
tHA
tRH
tRL
tRCYC
Read Access Time, Direct Registers
Read Access Time, Indirect Registers
Data Hold
CS to RD Setup
Address Setup
CS Hold
Address Hold
Read Inactive Pulse Width
Read Active Pulse Width
Read Cycle Time, Direct Registers
5
10.5 × JCLK
2
0
2
0
2
2.5
2.5
5.0
1.5 × JCLK + 7.0
15.5 × JCLK + 7.0
8.5
ns
ns
ns
ns
ns
ns
ns
JCLK
JCLK
JCLK
For a definition of JCLK, see the PLL section.
tSA
tHA
ADDR
tSC
tHC
CS
tRCYC
tRL
tRH
RD
tACK
ACK
tDRD
HDATA
tHZRD
VALID
Figure 3. Normal Host Mode—Read Operation
Rev. D | Page 7 of 40
04723-011
1
ADV202
Data Sheet
NORMAL HOST MODE—WRITE OPERATION
Table 5.
Parameter
tACK (Direct)
Description
WE to ACK, Direct Registers and FIFO Accesses
Min
5
tACK (Indirect)
WE to ACK, Indirect Registers
5
tSD
tHD
tSA
tHA
tSC
tHC
tWH
tWL
tWCYC
Data Setup
Data Hold
Address Setup
Address Hold
CS to WE Setup
CS Hold
Write Inactive Pulse Width (Minimum Time Until Next WE Pulse)
Write Active Pulse Width
Write Cycle Time
3.0
1.5
2
2
0
0
2.5
2.5
5
Max
1.5 × JCLK 1 + 7.0
Unit
ns
2.5 × JCLK + 7.0
ns
ns
ns
ns
ns
ns
ns
JCLK
JCLK
JCLK
For a definition of JCLK, see the PLL section.
tSA
tHA
ADDR
tSC
tHC
CS
tWCYC
tWL
tWH
WE
tACK
ACK
tHD
tSD
HDATA
04723-012
1
Typ
VALID
Figure 4. Nor/
mal Host Mode—Write Operation
Rev. D | Page 8 of 40
Data Sheet
ADV202
DREQ/DACK DMA MODE—SINGLE FIFO WRITE OPERATION
Table 6.
Parameter
DREQPULSE 1
tDREQ
Description
DREQ Pulse Width
DACK Assert to Subsequent DREQ Delay
Min
1
2.5
tWESU
WE to DACK Setup
0
ns
tSU
tHD
DACKLO
DACKHI
tWEHD
Data to DACK Deassert Setup
Data to DACK Deassert Hold
DACK Assert Pulse Width
DACK Deassert Pulse Width
WE Hold After DACK Deassert
2
2
2
2
0
ns
ns
JCLK cycles
JCLK cycles
ns
WFSRQ
tDREQRTN
WE Assert to FSRQ Deassert (FIFO Full)
DACK to DREQ Deassert (DR × PULS = 0)
1.5
2.5
2.5 × JCLK + 7.5 ns
3.5 × JCLK + 7.5 ns
Unit
JCLK cycles 2
JCLK cycles
JCLK cycles
JCLK cycles
Applies to assigned DMA channel, if EDMOD0 or EDMOD1[14:11] is programmed to a value that is not 0. Pulse width depends on the value programmed
For a definition of JCLK, see the PLL section.
DREQPULSE
tDREQ
DREQ
DACK HI
DACK LO
DACK
tWESU
tWEHD
WE
tHD
tSU
0
HDATA
1
2
3
04723-013
2
Max
15
3.5 × JCLK + 7.5 ns
Figure 5. Single Write for DREQ/DACK DMA Mode for Assigned DMA Channel
(EDMOD0/EDMOD1[14:11] NOT Programmed to a Value of 0000)
tDREQRTN
DREQ
DACK HI
DACK LO
DACK
tWESU
tWEHD
WE
tHD
tSU
HDATA
0
1
2
Figure 6. Single Write for DREQ/DACK DMA Mode for Assigned DMA Channel
(EDMOD0/EDMOD1[14:11] Programmed to a Value of 0000)
Rev. D | Page 9 of 40
04723-014
1
Typ
ADV202
Data Sheet
DREQPULSE
tDREQ
DREQ
DACK HI
DACK LO
DACK
tWESU
tWEHD
WEFB
tHD
0
HDATA
1
04723-015
tSU
2
Figure 7. Fly-By DMA Mode—Single Write Cycle (DREQ Pulse Width Is Programmable)
FSC0
WE
WFSRQ
FIFO NOT FULL
1
0
HDATA
tSU
tHD
2
NOT WRITTEN TO FIFO
Figure 8. DCS DMA Mode—Single Write Access (Rev. 0.1 and Higher)
Rev. D | Page 10 of 40
04723-016
FIFO FULL
FSRQ0
Data Sheet
ADV202
DREQ/DACK DMA MODE—SINGLE FIFO READ OPERATION
Table 7.
Parameter
DREQPULSE
tDREQ
Description
DREQ Pulse Width 1
DACK Assert to Subsequent DREQ Delay
Min
1
2.5
tRDSU
RD to DACK Setup
0
tRD
DACK to Data Valid
2.5
tHD
DACKLO
DACKHI
tRDHD
Data Hold
DACK Assert Pulse Width
DACK Deassert Pulse Width
RD Hold After DACK Deassert
1.5
2
2
0
RDFSRQ
tDREQRTN
RD Assert to FSRQ Deassert (FIFO Empty)
DACK to DREQ Deassert (DR × PULS = 0)
1.5
2.5
Unit
JCLK cycles 2
JCLK cycles
ns
11
ns
ns
JCLK cycles
JCLK cycles
ns
2.5 × JCLK + 7.5 ns
3.5 × JCLK + 7.5 ns
JCLK cycles
JCLK cycles
Applies to assigned DMA channel, if EDMOD0 or EDMOD1[14:11] is programmed to a nonzero value.
For a definition of JCLK, see the PLL section.
DREQPULSE
tDREQ
DREQ
DACK HI
DACK LO
DACK
tRDHD
tRDSU
RD
tRD
HDATA
tHD
1
0
04723-018
2
Max
15
3.5 × JCLK + 7.5 ns
2
Figure 9. Single Read for DREQ/DACK DMA Mode for Assigned DMA Channel
(EDMOD0/EDMOD1[14:11] Not Programmed to a Value of 0000)
tDREQRTN
DREQ
DACK HI
DACK LO
DACK
tRDHD
tRDSU
RD
tRD
HDATA
tHD
0
1
2
Figure 10. Single Read for DREQ/DACK DMA Mode for Assigned DMA Channel
(EDMOD0/EDMOD1[14:11] Programmed to a Value of 0000)
Rev. D | Page 11 of 40
04723-019
1
Typ
ADV202
Data Sheet
DREQPULSE
tDREQ
DREQ
DACK HI
DACK LO
DACK
tRDSU
tRDHD
tHD
tRD
0
HDATA
1
2
04723-020
RDFB
Figure 11. Fly-By DMA Mode—Single Read Cycle
(DREQ Pulse Width Is Programmable)
FCS0
RD
RDFSRQ
FIFO NOT EMPTY
FIFO EMPTY
FSRQ0
HDATA
0
1
Figure 12. DCS DMA Mode—Single Read Access (Rev. 0.1 and Higher)
Rev. D | Page 12 of 40
04723-021
tHD
tRD
Data Sheet
ADV202
EXTERNAL DMA MODE—FIFO WRITE, BURST MODE
Table 8.
Parameter
DREQPULSE
tDREQRTN
Description
DREQ Pulse Width 1
WE to DREQ Deassert (DR × Pulse = 0)
Min
1
2.5
tDACKSU
DACK to WE Setup
0
ns
tSU
tHD
WELO
WEHI
tDREQWAIT
Data Setup
Data Hold
WE Assert Pulse Width
WE Deassert Pulse Width
Last Burst Access to Next DREQ
2.5
2
1.5
1.5
2.5
ns
ns
JCLK cycles
JCLK cycles
JCLK cycles
3
4.5 × JCLK + 7.5 ns 3
Unit
JCLK 2 cycles
JCLK cycles
Applies to assigned DMA channel, if EDMOD0 or EDMOD1[14:11] is programmed to a value that is not 0. Pulse width depends on the value programmed.
For a definition of JCLK, see the PLL section.
If sufficient space is available in FIFO.
DREQPULSE
tDREQWAIT
DREQ
DACK
tDACKSU
WEHI
WELO
WE
tHD
tSU
HDATA
0
1
13
14
04723-022
2
Max
15
3.5 × JCLK + 7.5 ns
15
Figure 13. Burst Write Cycle for DREQ/DMA Mode for Assigned DMA Channel
(EDMOD0/EDMOD1[14:11] NOT Programmed to a Value of 0000)
tDREQRTN
tDREQWAIT
DREQ
DACK
tDACKSU
WELO
WEHI
WE
tHD
tSU
HDATA
0
1
13
14
15
Figure 14. Burst Write Cycle for DREQ/DMA Mode for Assigned DMA Channel
(EDMOD0/EDMOD1[14:11] Programmed to a Value of 0000)
Rev. D | Page 13 of 40
04723-023
1
Typ
ADV202
Data Sheet
tDREQRTN
tDREQWAIT
DREQ
DACK
tDACKSU
WEHI
WELO
WEFB
tHD
0
HDATA
1
13
14
04723-024
tSU
15
Figure 15. Burst Write Cycle for Fly-By DMA Mode
(DREQ Pulse Width Is Programmable)
EXTERNAL DMA MODE—FIFO READ, BURST MODE
Table 9.
Parameter
DREQPULSE
tDREQRTN
Description
DREQ Pulse Width 1
RD to DREQ Deassert (DR × PULS = 0)
Min
1
2.5
tDACKSU
DACK to RD Setup
0
tRD
RD to Data Valid
2.5
tHD
RDLO
RDHI
tDREQWAIT
Data Hold
RD Assert Pulse Width
RD Deassert Pulse Width
Last Burst Access to Next DREQ
2.5
1.5
1.5
2.5
Typ
Max
15
3.5 × JCLK + 7.5 ns
Unit
JCLK cycles 2
JCLK cycles
9.7
ns
3.5 × JCLK + 7.5 ns 3
ns
JCLK cycles
JCLK cycles
JCLK cycles
ns
1
Applies to assigned DMA channel, if EDMOD0 or EDMOD1[14:11] is programmed to a value that is not 0. Pulse width depends on the value programmed.
For a definition of JCLK, see the PLL section.
3
If sufficient space is available in FIFO.
2
DREQPULSE
tDREQWAIT
DREQ
DACK
tDACKSU
RDLO
RDHI
RD
0
HDATA
1
13
14
15
tRD
Figure 16. Burst Read Cycle for DREQ/DACK DMA Mode for Assigned DMA Channel
(EMOD0/EDMOD1[14:11] NOT Programmed to a Value of 0)
Rev. D | Page 14 of 40
04723-025
tHD
Data Sheet
ADV202
tDREQWAIT
DREQ
tDREQRTN
DACK
tDACKSU
RDLO
RDHI
RD
0
HDATA
1
13
14
04723-026
tHD
15
tRD
Figure 17. Burst Read Cycle for DREQ/DACK DMA Mode for Assigned DMA Channel
(EMOD0/EDMOD1[14:11] Programmed to a Value of 0000)
tDREQRTN
DREQ
tDREQWAIT
DACK
tDACKSU
RDFB
0
HDATA
1
13
14
tRD
Figure 18. Burst Read Cycle, Fly-By DMA Mode
(DREQ Pulse Width Is Programmable)
Rev. D | Page 15 of 40
15
04723-027
tHD
ADV202
Data Sheet
STREAMING MODE (JDATA)—FIFO READ/WRITE
Table 10.
Parameter
JDATATD
VALIDTD
HOLDSU
HOLDHD
JDATASU
JDATAHD
Min
1.5
1.5
3
3
3
3
Typ
Max
2.5 × JCLK + 7.0 ns
2.5 × JCLK + .7.0 ns
Unit
JCLK cycles 1
JCLK cycles
ns
ns
ns
ns
For a definition of JCLK, see the PLL section.
MCLK
JDATAHD
JDATATD
JDATA
JDATASU
VALIDTD
HOLDSU
HOLDHD
HOLD
04723-028
VALID
Figure 19. Streaming Mode Timing—Encode Mode JDATA Output
MCLK
JDATASU
JDATAHD
JDATA
VALIDTD
VALID
HOLDHD
HOLDSU
HOLD
Figure 20. Streaming Mode Timing—Decode Mode JDATA Input
Rev. D | Page 16 of 40
04723-029
1
Description
MCLK to JDATA Valid
MCLK to VALID Assert/Deassert
HOLD Setup to Rising MCLK
HOLD Hold from Rising MCLK
JDATA Setup to Rising MCLK
JDATA Hold from Rising MCLK
Data Sheet
ADV202
VDATA MODE TIMING
Table 11.
Parameter
VDATATD
VDATASU
VDATAHD
HSYNCSU
HSYNCHD
HSYNCTD
VSYNCSU
VSYNCHD
VSYNCTD
FIELDSU
FIELDHD
FIELDTD
SYNC DELAY
Description
VCLK to VDATA Valid Delay (VDATA Output)
VDATA Setup to Rising VCLK (VDATA Input)
VDATA Hold from Rising VCLK (VDATA Input)
HSYNC Setup to Rising VCLK
HSYNC Hold from Rising VCLK
VCLK to HSYNC Valid Delay
VSYNC Setup to Rising VCLK
VSYNC Hold from Rising VCLK
VCLK to VSYNC Valid Delay
FIELD Setup to Rising VCLK
FIELD Hold from Rising VCLK
VCLK to FIELD Valid
Decode Data Sync Delay for HD Input with EAV/SAV Codes
Decode Data Sync Delay for SD Input with EAV/SAV Codes
Decode Data Sync Delay for HVF Input (from First Rising VCLK after HSYNC Low to
First Data Sample)
Min
Typ
Max
12
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
VCLK cycles
VCLK cycles
VCLK cycles
4
4
3
4
12
3
4
12
4
3
12
7
9
10
VCLK
VDATAHD
VDATASU
VDATA(IN)
Cr
Y
Cb
Y
FF
EAV
FF
SAV
Cb
Y
SAV
Cb
Cr
ENCODE CCIR-656 LINE
VCLK
VDATATD
VDATA(OUT)
Cr
Y
Cb
Y
FF
EAV
FF
Y
Cr
DECODE MASTER CCIR-656 LINE
VCLK
VDATATD
VDATA(OUT)
Y
Cr
Y
SYNC DELAY
Cb
Y
FF
EAV
FF
SAV
Cb
Y
DECODE SLAVE CCIR-656 LINE
VCLK
VDATATD
Cb
VDATA(OUT)
Y
Cr
SYNC DELAY
Y
Cb
Cb
Y
Y
Cr
Y
Cb
HSYNCHD*
HSYNC
VSYNCHD*
VSYNC
DECODE SLAVE HVF MODE
VCLK
VDATA(IN)
Y
Cr
Y
Cb
Y
Cr
Y
Cb
Cb
Y
Y
HSYNCSU
HSYNCHD
VSYNCSU
ENCODE HVF MODE
*HSYNC AND VSYNC DO NOT HAVE TO BE APPLIED SIMULTANEOUSLY
VSYNCHD
Cr
Y
Cb
HSYNC
Figure 21. Video Mode Timing
Rev. D | Page 17 of 40
04723-030
VSYNC
ADV202
Data Sheet
RAW PIXEL MODE TIMING
Table 12.
Description
VCLK to PIXELDATA Valid Delay (PIXELDATA Output)
PIXELDATA Setup to Rising VCLK (PIXELDATA Input)
PIXELDATA Hold from Rising VCLK (PIXELDATA Input)
VCLK to VRDY Valid Delay
VFRM Setup to Rising VCLK (VFRAME Input)
VFRM Hold from Rising VCLK (VFRAME Input)
VCLK to VFRM Valid Delay (VFRAME Output)
VSTRB Setup to Rising VCLK
VSTRB Hold from Rising VCLK
Min
Typ
Max
12
4
4
12
3
4
12
4
3
VCLK
VDATAHD
VDATASU
PIXEL
DATA(IN)
N–1
N
0
1
2
VFRMHD
VFRMSU
VFRM(IN)
VRDYTD
VRDY
VSTRBHD
VSTRBSU
VSTRB
RAW PIXEL MODE – ENCODE
VCLK
VDATATD
PIXEL
DATA
N
N
0
1
2
VRFMTD
04723-031
Parameter
VDATATD
VDATASU
VDATAHD
VRDYTD
VFRMSU
VFRMHD
VFRMTD
VSTRBSU
VSTRBHD
VFRM(OUT)
RAW PIXEL MODE – DECODE
Figure 22. Raw Pixel Mode Timing
Rev. D | Page 18 of 40
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
Data Sheet
ADV202
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 13.
Parameter
VDD (Supply Voltage, Core)
IOVDD (Supply Voltage, I/O)
PLLVDD (Supply Voltage, PLL)
Storage Temperature (TS) Range
Rating
−0.3 V to +1.65 V
−0.3 V to +IOVDD + 0.3 V
−0.3 V to +1.65 V
−65°C to 150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 14. Thermal Resistance
Package Type
ADV202 (144-Lead)
ADV202 (121-Lead)
ESD CAUTION
Rev. D | Page 19 of 40
θJA
22.5°
32.8°
θJC
3.8°
7.92°
Unit
C/W
C/W
ADV202
Data Sheet
PIN BGA ASSIGNMENTS AND FUNCTION DESCRIPTIONS
PIN BGA ASSIGNMENTS
Table 15. Pin BGA Assignments for 121-Lead Package
Pin. No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Pin Location
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
E1
E2
E3
E4
E5
Pin Description
DGND
HDATA[2]
VDD
DGND
HDATA[0]
HDATA[1]
VDATA[1]
VDD
DGND
VDATA[0]
DGND
HDATA[3]
HDATA[4]
HDATA[5]
HDATA[7]
HDATA[8]
IOVDD
VDATA[6]
VDATA[5]
VDATA[4]
VDATA[2]
VDATA[3]
DGND
HDATA[6]
HDATA[9]
HDATA[10]
HDATA[11]
IOVDD
VDATA[9]
IOVDD
VDATA[8]
VDATA[7]
DGND
HDATA[12]
HDATA[13]
HDATA[14]
HDATA[15]
IOVDD
DGND
VDD
VSYNC
HSYNC
VDATA[10]
VDATA[11]
DGND
HDATA[18]_VDATA[14]
HDATA[17]_VDATA[13]
HDATA[16]_VDATA[12]
DGND
Pin. No.
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
Rev. D | Page 20 of 40
Pin Location
E6
E7
E8
E9
E10
E11
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
G1
G2
G3
G4
G5
G6
G7
G8
G9
G10
G11
H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
J1
J2
J3
J4
J5
J6
J7
J8
J9
Pin Description
DGND
DGND
IOVDD
VCLK
FIELD
DGND
DGND
HDATA[19]_VDATA[15]
HDATA[20]
HDATA[21]
DGND
DGND
DGND
DREQ0
DACK0
DREQ1
DGND
DGND
HDATA[22]
HDATA[23]
HDATA[24]_JDATA[0]
DGND
DGND
DGND
IOVDD
DACK1
IRQ
DGND
HDATA[28]_JDATA[4]
HDATA[27]_JDATA[3]
HDATA[26]_JDATA[2]
HDATA[25]_JDATA[1]
IOVDD
DGND
VDD
ACK
RD
ADDR[1]
ADDR[3]
DGND
HDATA[31]_JDATA[7]
HDATA[30]_JDATA[6]
HDATA[29]_JDATA[5]
IOVDD
TEST1
WE
CS
ADDR[0]
Data Sheet
Pin. No.
98
99
100
101
102
103
104
105
106
107
108
109
Pin Location
J10
J11
K1
K2
K3
K4
K5
K6
K7
K8
K9
K10
ADV202
Pin Description
TEST3
DGND
SCOMM[4]
SCOMM[3]
SCOMM[0]
SCOMM[1]
IOVDD
IOVDD
IOVDD
ADDR[2]
TEST2
TEST5
Pin. No.
110
111
112
113
114
115
116
117
118
119
120
121
Pin Location
K11
L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
Pin Description
DGND
DGND
SCOMM[7]
SCOMM[6]
SCOMM[5]
SCOMM[2]
TEST4
RESET
DGND
MCLK
PLLVDD
DGND
Pin No.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
Pin Location
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
G1
G2
Pin Description
HDATA[10]
HDATA[9]
IOVDD
DGND
VDD
VDD
DGND
IOVDD
VDATA[11]
VDATA[10]
VDATA[9]
HDATA[14]
HDATA[13]
HDATA[12]
DGND
DGND
DGND
DGND
DGND
FIELD
VSYNC
HSYNC
VCLK
HDATA[18]_VDATA[14]
HDATA[17]_VDATA[13]
HDATA[16]_VDATA[12]
HDATA[15]
DGND
DGND
DGND
DGND
DACK1
DREQ1
DACK0
DREQ0
HDATA[22]
HDATA[21]
Table 16. Pin BGA Assignments for 144-Lead Package
Pin No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Pin Location
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
D1
Pin Description
DGND
HDATA[2]
HDATA[1]
HDATA[0]
DGND
DGND
DGND
DGND
VDATA[2]
VDATA[1]
VDATA[0]
DGND
HDATA[5]
HDATA[4]
HDATA[3]
IOVDD
DGND
VDD
VDD
DGND
IOVDD
VDATA[5]
VDATA[4]
VDATA[3]
HDATA[8]
HDATA[7]
HDATA[6]
IOVDD
DGND
VDD
VDD
DGND
IOVDD
VDATA[8]
VDATA[7]
VDATA[6]
HDATA[11]
Rev. D | Page 21 of 40
ADV202
Pin No.
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
Pin Location
G3
G4
G5
G6
G7
G8
G9
G10
G11
G12
H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
J1
J2
J3
J4
J5
J6
J7
J8
J9
J10
J11
J12
K1
Data Sheet
Pin Description
HDATA[20]
HDATA[19]_VDATA[15]
DGND
DGND
DGND
DGND
DGND
IRQ
ACK
RD
HDATA[26]_JDATA[2]
HDATA[25]_JDATA[1]
HDATA[24]_JDATA[0]
HDATA[23]
DGND
DGND
DGND
DGND
DGND
WR
CS
ADDR[0]
HDATA[30]_JDATA[6]
HDATA[29]_JDATA[5]
HDATA[28]_JDATA[4]
HDATA[27]_JDATA[3]
DGND
VDD
VDD
DGND
DGND
ADDR[1]
ADDR[2]
ADDR[3]
SCOMM[1]
Pin No.
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
Rev. D | Page 22 of 40
Pin Location
K2
K3
K4
K5
K6
K7
K8
K9
K10
K11
K12
L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
Pin Description
SCOMM[0]
HDATA[31]_JDATA[7]
IOVDD
DGND
VDD
VDD
DGND
IOVDD
TEST3
TEST2
TEST1
SCOMM[4]
SCOMM[3]
SCOMM[2]
IOVDD
DGND
VDD
VDD
DGND
IOVDD
TEST5
RESET
MCLK
DGND
SCOMM[7]
SCOMM[6]
SCOMM[5]
DGND
DGND
DGND
DGND
TEST4
PLLVDD
DGND
DGND
Data Sheet
ADV202
PIN FUNCTION DESCRIPTIONS
Table 17.
Mnemonic
MCLK
Pins
Used
1
121-Lead Package
L9
144-Lead Package
L12
I/O
I
RESET
1
L7
L11
I
HDATA[15:0]
16
D4 to D1, C5 to C3,
B5, B4, C2, B3 to B1,
A2, A6 to A5
F4, E1 to E3, D1 to D3,
C1 to C3, B1 to B3, A2,
A3, A4
I/O
ADDR[3:0]
CS
4
1
H11, K8, H10, J9
J8
J12, J11, J10, H12
H11
I
I
WE
RDFB
1
J7
H10
I
RD
WEFB
1
H9
G12
I
ACK
1
H8
G11
O
IRQ
1
G10
G10
O
DREQ0
1
F8
F12
O
FSRQ0
O
VALID
O
CFG[1]
I
DACK0
1
F9
F11
I
Rev. D | Page 23 of 40
Description
System Input Clock. For details, see the PLL section.
Maximum input frequency on MCLK is 74.25 MHz.
Reset. Causes the ADV202 to immediately reset. CS, RD,
WE, DACK0, DACK1, DREQ0, and DREQ1 must be held
high when a RESET is applied.
Host Data Bus. With HDATA[23:16], [27:24], [31:28], these
pins make up the 32-bit wide host data bus.
The async host interface is interfaced together with
ADDR[3:0], CS, WE, RD, and ACK. Unused HDATA pins
should be pulled down via a 10 kΩ resistor.
Address Bus for the Host Interface.
Chip Select. This signal is used to qualify addressed read
and write access to the ADV202 using the host interface.
Write Enable Used with the Host Interface.
Read Enable When Fly-By DMA Is Enabled.
Note: Simultaneous assertion of WE and DACK low activates
the HDATA bus, even if the DMA channels are disabled.
Read Enable. Used with the host interface.
Write Enable When Fly-By DMA Is Enabled.
Note: Simultaneous assertion of RD and DACK low activates
the HDATA bus, even if the DMA channels are disabled.
Acknowledge. Used for direct register accesses. This signal
indicates that the last register access was successful.
Note: Due to synchronization issues, control and status
register accesses can incur an additional delay, so the host
software should wait for acknowledgment from the ADV202.
Accesses to the FIFOs (external DMA modes), on the other
hand, are guaranteed to occur immediately, if space is
available, and should not wait for ACK, if the timing
constraints are observed. If ACK is shared with more than
one device, ACK should be connected to a pull-up resistor
(10 kΩ) and the PLL_HI register, Bit 4, must be set to 1.
Interrupt. This pin indicates that the ADV202 requires the
attention of the host processor. This pin can be
programmed to indicate the status of the internal
interrupt conditions within the ADV202. The interrupt
sources are enabled via bits in Register EIRQIE.
Data Request for External DMA Interface. Indicates that
the ADV202 is ready to send/receive data to/from the FIFO
assigned to DMA Channel 0.
Used in DCS-DMA Mode. Service request from the FIFO
assigned to Channel 0 (asynchronous mode).
Valid Indication for JDATA Input/Output Stream. Polarity
of this pin is programmable in the EDMOD0 register.
VALID is always an output.
Boot Mode Configuration. This pin is read on reset to
determine the boot configuration of the on-board
processor. The pin should be tied to IOVDD or DGND
through a 10 kΩ resistor.
Data Acknowledge for External DMA Interface. Signal
from the host CPU, which indicates that the data transfer
request (DREQ0) has been acknowledged and data
transfer can proceed. This pin must be held high at all
times if the DMA interface is not used, even if the DMA
channels are disabled.
ADV202
Mnemonic
HOLD
Data Sheet
Pins
Used
121-Lead Package
144-Lead Package
I
FCS0
DREQ1
I/O
I
1
F10
F10
O
FSRQ1
O
CFG[2]
I
DACK1
1
G9
F9
I
I
FCS1
HDATA[31:28]
JDATA[7:4]
HDATA[27:24]
JDATA[3:0]
HDATA[23:16]
4
J2 to J4, H1
K3, J1 to J3
4
H2 to H4, G4
J4, H1 to H3
8
H4, G1 to G4, F1 to F3
SCOMM[7]
8
G3, G2, F4, F3, F2 E2,
E3, E4
L2
I/O
I/O
I/O
I/O
I/O
M2
I/O
SCOMM[6]
L3
M3
I/O
SCOMM[5]
L4
M4
I/O
SCOMM[4]
K1
L1
O
SCOMM[3]
SCOMM[2]
SCOMM[1]
SCOMM[0]
VCLK
1
K2
L5
K4
K3
E9
L2
L3
K1
K2
E12
O
O
I
O
I
VDATA[11:0]
12
1
D10 to D12,
C10 to C12,
B10 to B12, A9 to A11
E10
I/O
VSYNC
VFRM
D11, D10, C7, C9,
C10, B7, B8, B9, B11,
B10, A7, A10
D8
HSYNC
VRDY
1
D9
E11
I/O
I/O
O
Rev. D | Page 24 of 40
Description
External Hold Indication for JDATA Input/Output Stream.
Polarity is programmable in the EDMOD0 register. This pin
is always an input.
Used in DCS-DMA Mode. Chip select for the FIFO assigned
to Channel 0 (asynchronous mode).
Data Request for External DMA Interface. Indicates that
the ADV202 is ready to send/receive data to/from the FIFO
assigned to DMA Channel 1.
Used in DCS-DMA Mode. Service request from the FIFO
assigned to Channel 1 (asynchronous mode).
Boot Mode Configuration. This pin is read on reset to
determine the boot configuration of the on-board
processor. The pin should be tied to IOVDD or DGND
through a 10 kΩ resistor.
Data Acknowledge for External DMA Interface. Signal
from the host CPU, which indicates that the data transfer
request (DREQ1) has been acknowledged and data
transfer can proceed. This pin must be held high at all
times unless a DMA or JDATA access is occurring. This pin
must be held high at all times if the DMA interface is not
used, even if the DMA channels are disabled.
Used in DCS-DMA Mode. Chip select for the FIFO assigned
to Channel 1 (asynchronous mode).
Host Expansion Bus.
JDATA Bus (JDATA Mode).
Host Expansion Bus.
JDATA Bus (JDATA Mode).
Host Expansion Bus.
When not used, this pin should be tied low via a 10 kΩ
resistor.
When not used, this pin should be tied low via a 10 kΩ
resistor.
This pin must be used in multiple chip mode to align the
outputs of two or more ADV202s. For details, see the
Applications section and AN-796 ADV202 Multichip
Application application note. When not used, this pin
should be tied low via a 10 kΩ resistor.
LCODE Output in Encode Mode. When LCODE is enabled,
the output on this pin indicates on a high transition that
the last data-word for a field has been read from the FIFO.
For an 8-bit interface, such as JDATA, LCODE is asserted for
four consecutive bytes and is enabled by default.
This pin should be tied low via a 10 kΩ resistor.
This pin should be tied low via a 10 kΩ resistor.
This pin should be tied low via a 10 kΩ resistor.
This pin should be tied low via a 10 kΩ resistor.
Video Data Clock. Must be supplied if video data is
input/output on the VDATA bus.
Video Data. Unused pins should be pulled down via a
10 kΩ resistor.
Vertical Sync for Video Mode.
Raw Pixel Mode Framing Signal. Indicates first sample of a
tile when asserted high.
Horizontal Sync for Video Mode.
Raw Pixel Mode Ready Signal.
Data Sheet
ADV202
Pins
Used
1
121-Lead Package
E10
144-Lead Package
E9
1
J6
K12
I/O
I/O
I
I
TEST2
1
K9
K11
I
TEST3
1
J10
K10
I
TEST4
1
L6
M9
I
TEST5
VDD
1
K10
A3, A8, D7, H7
L10
B6, B7, C6, C7, D6, D7,
J6, J7, K6, K7, L6, L7
A1, A5 to A8, A12, B5,
B8, C5, C8, D5, D8, E4
to E8, F5 to F8, G5 to
G9, H5 to H9, J5, J8 to
J9, K5, K8, L5, L8, M1,
M5 to M8, M11, M12
M10
B4, B9, C4, C9, D4, D9,
K4, K9, L4, L9
O
V
Description
Field Sync for Video Mode.
Raw Pixel Mode Transfer Strobe.
This pin should be connected to ground via a pull-down
resistor.
This pin should be connected to ground via a pull-down
resistor.
This pin should be connected to ground via a pull-down
resistor.
This pin should be connected to ground via a pull-down
resistor.
No Connect.
Positive Supply for Core.
GND
Ground.
V
V
Positive Supply for PLL.
Positive Supply for I/O.
Mnemonic
FIELD
VSTRB
TEST1
DGND
PLLVDD
IOVDD
1
A1, A11, A4, A9, C1,
C11, D6, E1, E5 to E7,
E11, F1, F5 to F7,
F11, G1, G5 to G7,
G11, H6, J1, J11,
K11, L1, L8, L11
L10
B6, C6, C8, D5, E8,
G8, H5, J5, K5, K6, K7
Rev. D | Page 25 of 40
ADV202
Data Sheet
THEORY OF OPERATION
The input video or pixel data is passed on to the ADV202’s pixel
interface, where samples are de-interleaved and passed on to the
wavelet engine, which decomposes each tile or frame into
subbands using the 5/3 or 9/7 filters. The resulting wavelet
coefficients are then written to internal memory. Next, the
entropy codecs code the image data so it conforms to the
JPEG2000 standard. An internal DMA provides high
bandwidth memory-to-memory transfers, as well as high
performance transfers between functional blocks and memory.
ENTROPY CODECS
WAVELET ENGINE
EMBEDDED PROCESSOR SYSTEM
The ADV202 provides a dedicated wavelet transform processor
based on Analog Devices’ proven and patented SURF
technology. This processor can perform up to six wavelet
decomposition levels on a tile. In encode mode, the wavelet
transform processor takes in uncompressed samples, performs
the wavelet transform and quantization, and writes the wavelet
coefficients in all frequency subbands to internal memory. Each
of these subbands is then further broken down into code blocks.
The code-block dimensions can be user-defined and are used
by the wavelet transform processor to organize the wavelet
coefficients into code blocks when writing to internal memory.
Each completed code block is then entropy coded by one of the
entropy codecs.
In decode mode, wavelet coefficients are read from internal
memory and recomposed into uncompressed samples.
The entropy codec block performs context modeling and
arithmetic coding on a code block of the wavelet coefficients.
Additionally, this block performs the distortion metric
calculations during compression that are required for optimal
rate and distortion performance. Because the entropy coding
process is the most computationally intensive operation in the
JPEG2000 compression process, three dedicated hardware
entropy codecs are provided on the ADV202.
The ADV202 incorporates an embedded 32-bit RISC processor.
This processor is used for configuration, control, and management of the dedicated hardware functions, as well as for parsing
and generating the JPEG2000 code stream. The processor
system includes memory for both program and data memory,
an interrupt controller, standard bus interfaces, and other
hardware functions such as timers and counters.
MEMORY SYSTEM
The memory system’s main function is to manage wavelet
coefficient data, interim code-block attribute data, and
temporary work space for creating, parsing, and storing the
JPEG2000 code stream. The memory system can also be used
for program and data memory for the embedded processor.
INTERNAL DMA ENGINE
The internal DMA engine provides high bandwidth memoryto-memory transfers, as well as high performance transfers
between memory and functional blocks. This function is critical
for high speed generation and parsing the code stream.
Rev. D | Page 26 of 40
Data Sheet
ADV202
ADV202 INTERFACE
There are several possible modes to interface to the ADV202 using
the VDATA bus and the HDATA bus or the HDATA bus alone.
VIDEO INTERFACE (VDATA BUS)
The video interface can be used in applications in which
uncompressed pixel data is on a separate bus from compressed
data. For example, it is possible to use the VDATA bus to input
uncompressed video while using the HDATA bus to output the
compressed data. This interface is ideal for applications
requiring very high throughput such as live video capture.
Optionally, the ADV202 can compress ITU.R-BT656 resolution
video on a field-by-field basis or on a two-fields-combined
basis, which yields significantly more efficient compression
performance. Additionally, high definition digital video such as
SMPTE274M (1080i) is supported using two or more ADV202
devices.
The video interface can support video data or still image data
input/output, 8-, 10-, and 12-bit single or multiplexed
components. The VDATA interface supports digital video in
YCbCr format or single component format. YCbCr data must
be in 4:2:2 format.
Video data can be input/output in several different modes on
the VDATA bus, as described in Table 18. In all these modes,
the pixel clock must be input on the VCLK pin.
Table 18. Video Input/Output Modes
Mode
EAV/SAV
HVF
Raw
Video
Description
Accepts video with embedded EAV/SAV codes, where
the YCbCr data is interleaved onto a single bus.
Accepts video data accompanied with separate H, V,
and F signals where YCbCr data is interleaved onto a
single bus.
Used for still picture data and nonstandard video.
VFRM, VSTRB, and VRDY are used to program the
dimensions of the image.
HOST INTERFACE (HDATA BUS)
The ADV202 can connect directly to a wide variety of host
processors and ASICs using an asynchronous SRAM-style
interface, DMA accesses, or streaming mode (JDATA) interface.
The ADV202 supports 16- and 32-bit buses for control and
8-, 16-, and 32-bit buses for data transfer.
The control and data channel bus widths can be specified
independently, which allows the ADV202 to support applications that require control and data buses of different widths.
The host interface is used for configuration, control, and status
functions, as well as for transferring compressed data streams. It
can be used for uncompressed data transfers in certain modes.
The host interface can be shared by as many as four concurrent
data streams in addition to control and status communications.
The data streams are
•
•
•
Uncompressed tile data (for example, still image data)
Fully encoded JPEG2000 code stream (or unpackaged code
blocks)
Code-block attributes
The ADV202 uses big endian byte alignment for 16- and 32-bit
transfers. All data is left-justified (MSB).
Pixel Input on the Host Interface
Pixel input on the host interface supports 8-, 10-, 12-, 14-, and
16-bit raw pixel data formats. It can be used for pixel (still
image) input/output or compressed video output. Because there
are no timing codes or sync signals associated with the input
data on the host interface, dimension registers and internal
counters are used and must be programmed to indicate the start
and end of the frame. See the technical note on using HIPI
mode for details on how to use the ADV202 in this mode.
Host Bus Configuration
For maximum flexibility, the host interface provides several
configurations to meet particular system requirements. The
default bus mode uses the same pins to transfer control, status,
and data to and from the ADV202. In this mode, the ADV202
can support 16- and 32-bit control transfers and 8-, 16-, and
32-bit data transfers. The size of these buses can be selected
independently, allowing, for example, a 16-bit microcontroller
to configure and control the ADV202 while still providing
32-bit data transfers to an ASIC or external memory system.
DIRECT AND INDIRECT REGISTERS
To minimize pin count and cost, the number of address pins has
been limited to four, which yields a total direct address space of
16 locations. These locations are most commonly used by the
external controller and are, therefore, accessible directly. All
other registers in the ADV202 can be accessed indirectly
through the IADDR and IDATA registers.
CONTROL ACCESS REGISTERS
With the exception of the indirect address and data registers
(IADDR and IDATA), all control/status registers in the ADV202
are 16 bits wide and are half-word (16-bit) addressable only.
When 32-bit host mode is enabled, the upper 16 bits of the
HDATA bus are ignored on writes and return all 0s on reads of
16-bit registers.
Rev. D | Page 27 of 40
ADV202
Data Sheet
PIN CONFIGURATION AND BUS SIZES/MODES
The ADV202 provides a wide variety of control and data
configurations, which allows it to be used in many applications
with little or no glue logic. The following modes are configured
using the BUSMODE register. In the following descriptions,
host refers to normal addressed accesses (CS/RD/WR/ADDR)
and data refers to external DMA accesses (DREQ/DACK).
32-Bit Host/32-Bit Data
In this mode, the HDATA[31:0] pins provide full 32-bit wide data
accesses to PIXEL, CODE, and ATTR FIFOs. The expanded
video interface (VDATA) is not available in this mode.
16-Bit Host/32-Bit Data
This mode allows a 16-bit host to configure and communicate
with the ADV202 while still allowing 32-bit accesses to the
PIXEL, CODE, and ATTR FIFOs using the external DMA
capability.
All addressed host accesses are 16 bits and, therefore, use only
the HDATA[15:0] pins. The HDATA[31:16] pins provide the
additional 16 bits necessary to support the 32-bit external DMA
transfers to and from the FIFOs only. The expanded video
interface (VDATA) is not available in this mode.
16-Bit Host/16-Bit Data
This mode uses 16-bit transfers, if used for host or external
DMA data transfers. This mode allows for the use of the
extended pixel interface modes.
16-Bit Host/8-Bit Data (JDATA Bus Mode)
This mode provides separate data input/output and host
control interface pins. Host control accesses are 16 bits and use
HDATA[15:0], while the dedicated data bus uses JDATA[7:0].
JDATA uses a valid/hold synchronous transfer protocol. The
direction of the JDATA bus is determined by the mode of the
ADV202. If the ADV202 is encoding (compression), JDATA[7:0]
is an output. If the ADV202 is decoding (decompression),
JDATA[7:0] is an input. Host control accesses remain
asynchronous (also refer to the JDATA Mode section).
STAGE REGISTER
Because the ADV202 contains both 16-bit and 32-bit registers
and its internal memory is mapped as 32-bit data, a mechanism
has been provided to allow 16-bit hosts to access these registers
and memory locations using the stage register (STAGE).
STAGE is accessed as a 16-bit register using HDATA[15:0].
Prior to writing to the desired register, the stage register must be
written with the upper (most significant) half-word.
When the host subsequently writes the lower half-word to the
desired control register, HDATA is combined with the previously
staged value to create the required 32-bit value that is written.
When a register is read, the upper (most significant) half-word
is returned immediately on HDATA and the lower half-word
can be retrieved by reading the stage register on a subsequent
access. For details on using the stage register, see the ADV202
User’s Guide.
Note that the stage register does not apply to the three data
channels (PIXEL, CODE, and ATTR). These channels are
always accessed at the specified data width and do not require
the use of the stage register.
JDATA MODE
JDATA mode is typically used only when the dedicated video
interface (VDATA) is also enabled. This mode allows code
stream data (compressed data compliant with JPEG2000) to be
input or output on a single dedicated 8-bit bus (JDATA[7:0]).
The bus is always an output during compression operations
and is an input during decompression.
A 2-pin handshake is used to transfer data over this synchronous interface. VALID is used to indicate that the ADV202 is
ready to provide or accept data and is always an output. HOLD
is always an input and is asserted by the host if it cannot accept/
provide data. For example, JDATA mode allows real-time
applications, in which pixel data is input over the VDATA bus
while the compressed data stream is output over the JDATA bus.
EXTERNAL DMA ENGINE
The external DMA interface is provided to enable high
bandwidth data I/O between an external DMA controller and
the ADV202 data FIFOs. Two independent DMA channels can
each be assigned to any one of the three data stream FIFOs
(PIXEL, CODE, or ATTR).
The controller supports asynchronous DMA using a datarequest/data-acknowledge (DREQ/DACK) protocol in either
single or burst access modes. Additional functionality is provided
for single address compatibility (fly-by) and dedicated chip
select (DCS) modes.
Rev. D | Page 28 of 40
ADV202
INTERNAL REGISTERS
This section describes the internal registers of the ADV202.
DIRECT REGISTERS
The ADV202 has 16 direct registers, as listed in Table 19.
The direct registers are accessed over the ADDR[3:0],
HDATA[31:0], CS, RD, WR, and ACK pins.
The host must first initialize the direct registers before any
application-specific operation can be implemented.
For additional information on accessing and configuring these
registers, see the ADV202 User’s Guide.
Table 19. Direct Registers
Address
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
Name
PIXEL
CODE
ATTR
Reserved
CMDSTA
EIRQIE
EIRQFLG
SWFLAG
BUSMODE
MMODE
STAGE
IADDR
IDATA
BOOT
PLL_HI
PLL_LO
Description
Pixel FIFO Access Register
Compressed Code Stream Access Register
Attribute FIFO Access Register
Reserved
Command Stack
External Interrupt Enabled
External Interrupt Flags
Software Flag Register
Bus Mode Configuration Register
Miscellaneous Mode Register
Staging Register
Indirect Address Register
Indirect Data Register
Boot Mode Register
PLL Control Register—High Byte
PLL Control Register—Low Byte
Rev. D | Page 29 of 40
ADV202
Data Sheet
INDIRECT REGISTERS
In certain modes, such as custom-specific input format or HIPI
mode, indirect registers must be accessed by the user through
the use of the IADDR and IDATA registers. The indirect
register address space starts at Internal Address 0xFFFF0000.
Both 32-bit and 16-bit hosts can access the indirect registers.
32-bit hosts use the IADDR and IDATA registers, while the
16-bit hosts use IADDR, IDATA, and the stage register.
For additional information on accessing and configuring these
registers, see the ADV202 User’s Guide.
Table 20. Indirect Registers
Address
0xFFFF0400
0xFFFF0404
0xFFFF0408
0xFFFF040C
0xFFFF0410
0xFFFF0414
0xFFFF0418
0xFFFF041C
0xFFFF0420
0xFFFF0424
0xFFFF0428
0xFFFF042C
0xFFFF0430
0xFFFF0440
0xFFFF0444
0xFFFF0448
0xFFFF044C
0xFFFF1408
0xFFFF140C
0xFFFF1410
0xFFFF1414
0xFFFF1418
0xFFFF141C
0xFFFF1420
0xFFFF1428 to 0xFFFF14FC
Name
PMODE1
COMP_CNT_STATUS
LINE_CNT_STATUS
XTOT
YTOT
F0_START
F1_START
V0_START
V1_START
V0_END
V1_END
PIXEL_START
PIXEL_END
MS_CNT_DEL
Reserved
PMODE2
VMODE
EDMOD0
EDMOD1
FFTHRP
Reserved
Reserved
FFTHRC
FFTHRA
Reserved
Rev. D | Page 30 of 40
Description
Pixel/Video Format
Horizontal Count
Vertical Count
Total Samples per Line
Total Lines per Frame
Start Line of Field 0 [F0]
Start Line of Field 1 [F1]
Start of Active Video Field 0 [F0]
Start of Active Video Field 1 [F1]
End of Active Video Field 0 [F0]
End of Active Video Field 1 [F1]
Horizontal Start of Active Video
Horizontal End of Active Video
Master/Slave Delay
Reserved
Pixel Mode 2
Video Mode
External DMA Mode Register 0
External DMA Mode Register 1
FIFO Threshold for Pixel FIFO
Reserved
Reserved
FIFO Threshold for CODE FIFO
FIFO Threshold for ATTR FIFO
Reserved
Data Sheet
ADV202
PLL
The ADV202 uses the PLL_HI and PLL_LO direct registers to
configure the PLL. Any time the PLL_LO register is modified,
the host must wait at least 20 µs before reading or writing to any
other register. If this delay is not implemented, erratic behavior
could result.
•
The PLL can be programmed to have any possible final
multiplier value as long as
To achieve the lowest power consumption, an MCLK frequency
of 27 MHz is recommended for a standard definition CCIR656
input. The PLL circuit is recommended to have a multiplier of 3.
This sets JCLK and HCLK to 81 MHz.
•
•
•
JCLK > 50 MHz and < 150 MHz (144-lead version).
JCLK > 50 MHz and < 135 MHz (144-lead version).
JCLK > 50 MHz and < 115 MHz (121-lead version).
HCLK < 108 MHz (144-lead, 150 MHz version).
HCLK < 100 MHz (144-lead, 135 MHz version).
HCLK < 81 MHz (121-lead version).
JCLK ≥ 2 × VCLK for single-component input.
JCLK ≥ 2 × VCLK for YCrCb [4:2:2] input.
In JDATA mode (JDATA), JCLK must be 4 × MCLK or
higher.
For de-interlaced modes, JCLK must be ≥ 4 × MCLK.
BYPASS
IPD
MCLK
2
PHASE
DETECT
LPF
JCLK
VCO
2
2
HCLK
 PLLMULT
HCLKD
LFB
04723-009
•
•
•
•
•
•
•
•
•
The maximum burst frequency for external DMA modes is
≤0.36 JCLK.
For MCLK frequencies greater than 50 MHz, the input
clock divider must be enabled, that is, IPD set to 1.
IPD cannot be enabled for MCLK frequencies below 20 MHz.
Figure 23. PLL Architecture and Control Functions
Table 21. Recommended PLL Register Settings
IPD
0
0
0
0
1
1
1
1
LFB
0
0
1
1
0
0
1
1
PLLMULT
N
N
N
N
N
N
N
N
HCLKD
0
1
0
1
0
1
0
1
HCLK
N × MCLK
N × MCLK/2
2 × N × MCLK
N × MCLK
N × MCLK/2
N × MCLK/4
N × MCLK
N × MCLK/2
JCLK
N × MCLK
N × MCLK
2 × N × MCLK
2 × N × MCLK
N × MCLK/2
N × MCLK/2
N × MCLK
N × MCLK
Table 22. Recommended Values for PLL_HI and PLL_LO Registers
Video Standard
SMPTE125M or ITU-R.BT656 (NTSC or PAL)
SMPTE293M (525p)
ITU-R.BT1358 (625p)
SMPTE274M (1080i)
CLKIN Frequency on MCLK
27 MHz
27 MHz
27 MHz
74.25 MHz
PLL_HI
0x0008
0x0008
0x0008
0x0008
PLL_LO
0x0004
0x0004
0x0004
0x0084
HARDWARE BOOT
The boot mode can be configured via hardware using the CFG pins or via software (see the ADV202 User’s Guide). The first boot mode
after power-up is set by the CFG pins. Only Boot Mode 2, Boot Mode 4, and Boot Mode 6, described in Table 23, are available via hardware.
Table 23. Hardware Boot Modes
Boot Mode
Hardware Boot
Mode 2
Settings
CFG[1] tied high,
CFG[2] tied low
Hardware Boot
Mode 4
Hardware Boot
Mode 6
CFG[1] tied low,
CFG[2] tied high
CFG[1] and CFG[2]
tied high
Description
No-Boot Host Mode. ADV202 does not boot, but all internal registers and memory are accessible
through normal host I/O operations.
For details, see the ADV202 User’s Guide and the Getting Started with the ADV202 application note.
SoC Boot Mode.
Reserved.
Rev. D | Page 31 of 40
ADV202
VIDEO INPUT FORMATS
The ADV202 supports a wide variety of formats for
uncompressed video and still image data. The actual interface
and bus modes selected for transferring uncompressed data
dictates the allowed size of the input data and the number of
samples transferred with each access.
The host interface can support 8-, 10-, 12-, 14-, and 16-bit data
formats. The video interface can support video data or still image
data input/output. Supported formats are 8-, 10-, 12-, or 16-bit
single component or YCbCr 4:2:2 formats. See the ADV202
User’s Guide for details. All formats can support less precision
than provided by specifying the actual data width/precision in
the PMODE register.
The maximum allowable data input rate is limited by using
irreversible or reversible compression modes and the data width
(or precision) of the input samples. Use Table 24 and Table 25 to
determine the maximum data input rate.
Table 24. Maximum Pixel Data Input Rates
Compression
Interface Mode
144-LEAD PACKAGE
HDATA
Irreversible
Irreversible
Irreversible
Irreversible
Reversible
Reversible
Reversible
Reversible
VDATA
Irreversible
Irreversible
Irreversible
Reversible
Reversible
Reversible
121-LEAD PACKAGE
HDATA
Irreversible
Irreversible
Irreversible
Irreversible
Reversible
Reversible
Reversible
Reversible
VDATA
Irreversible
Irreversible
Irreversible
Reversible
Reversible
Reversible
Input Format
Input Rate Limit Active
Resolution (MSPS) 1
Approx Min Output Rate,
Compressed Data 2 (Mbps)
Approx Max Output Rate,
Compressed Data 3
(Mbps)
8-bit data
10-bit data
12-bit data
16-bit data
8-bit data
10-bit data
12-bit data
14-bit data
8-bit data
10-bit data
12-bit data
8-bit data
10-bit data
12-bit data
45 [40]
45 [40]
45 [40]
45 [40]
40 [36]
32 [28]
27 [24]
23 [20]
65 [55]
65 [55]
65 [55]
40 [34]
32 [28]
27 [23]
130
130
130
130
130
130
130
130
130
130
130
130
130
130
200
200
200
200
200
200
200
200
200
200
200
200
200
200
8-bit data
10-bit data
12-bit data
16-bit data
8-bit data
10-bit data
12-bit data
14-bit data
8-bit data
10-bit data
12-bit data
8-bit data
10-bit data
12-bit data
34
34
34
34
30
24
20
17
48
48
48
30
24
20
98
98
98
98
98
98
98
98
98
98
98
98
98
98
150
150
150
150
150
150
150
150
150
150
150
150
150
150
1
Input rate limits for HDATA can be less for certain applications depending on input picture size and content, host interface settings, and DMA transfer settings. Values
in brackets refer to the 135 MHz speed grade version of the ADV202.
Minimum guaranteed sustained output rate or minimum sustainable compression rate (input rate/minimum peak output rate).
3
Maximum peak output rate, or output rate above this value is not possible .
2
Rev. D | Page 32 of 40
Data Sheet
ADV202
Table 25. Maximum Supported Tile Width for Data Input on HDATA and VDATA Buses
Compression Mode
9/7i
9/7i
9/7i
5/3i
5/3i
5/3i
5/3r
5/3r
5/3r
Input Format
Single-component
Two-component
Three-component
Single-component
Two-component
Three-component
Single-component
Two-component
Three-component
Rev. D | Page 33 of 40
Tile/Precinct Maximum Width
2048
1024 each
1024 (Y)
4096
2048 (each)
2048 (Y)
4096
2048
1024
ADV202
Data Sheet
APPLICATIONS
In decode mode, a master/slave configuration (as shown in
Figure 25) or a slave/slave configuration can be used to
synchronize the outputs of the two ADV202s. See AN-796
ADV202 Multichip Application application note for details on
how to configure the ADV202s in a multichip application.
This section describes typical video applications for the
ADV202 JPEG2000 video processor.
ENCODE—MULTICHIP MODE
Due to the data input rate limitation (see Table 24), an 1080i
application requires at least two ADV202s to encode or decode
full-resolution 1080i video. In encode mode, the ADV202
accepts Y and CbCr data on separate buses. The input data must
be in EAV/SAV format. An encode example is shown in Figure 24.
32-BIT HOST CPU
ADV202
_1_SLAVE
DATA[31:0]
HDATA[31:0]
ADDR[3:0]
ADDR[3:0]
CS
CS
RD
RD
WR
WE
ACK
ACK
IRQ
IRQ
10-BIT SD/HD
VIDEO
DECODER
LLC
VCLK
1080i
VIDEO IN
MCLK
VDATA[11:2]
DREQ
DREQ
DACK
DACK
G I/O
Applications that have two separate VDATA outputs sent to an
FPGA or buffer before they are sent to an encoder do not
require synchronization at the ADV202 outputs
Y
FIELD
VSYNC
HSYNC
SCOMM[5]
Y[9:0]
CbCr
C[9:0]
ADV202
_2_SLAVE
HDATA[31:0]
ADDR[3:0]
CS
RD
RD
WR
WE
ACK
ACK
IRQ
IRQ
DREQ
DREQ
DACK
DACK
MCLK
HSYNC
VSYNC
FIELD
VDATA[11:2]
CbCr
SCOMM[5]
Figure 24. Encode—Multichip Application
Rev. D | Page 34 of 40
04723-002
CS
VCLK
Data Sheet
ADV202
DECODE—MULTICHIP MASTER/SLAVE
In a slave/slave configuration, the common HVF for both
ADV202s is generated by an external house sync, and each
SCOMM[5] is connected to the same GPIO output on the host.
SWIRQ1, Software Interrupt 1 in the EIRQIE register, must be
unmasked on both devices to enable multichip mode.
In a master/slave configuration, it is expected that the master HVF
outputs are connected to the slave HVF inputs and that each
SCOMM[5] pin is connected to the same GPIO on the host.
32-BIT HOST CPU
74.25MHz
OSC
ADV202
_1_MASTER
DATA[31:0]
HDATA[31:0]
ADDR[3:0]
ADDR[3:0]
CS
10-BIT SD/HD
VIDEO
ENCODER
CS
RD
RD
WR
WE
ACK
ACK
IRQ
IRQ
DREQ
DREQ
DACK
DACK
G I/O
VCLK
CLKIN
1080i
VIDEO OUT
MCLK
VDATA[11:2]
Y
Y
FIELD
VSYNC
HSYNC
SCOMM[5]
Y[9:0]
CbCr
C[9:0]
ADV202
HDATA[31:0]
ADDR[3:0]
VCLK
MCLK
CS
RD
RD
WR
WE
ACK
ACK
IRQ
IRQ
DREQ
DREQ
DACK
DACK
HSYNC
VSYNC
FIELD
VDATA[11:2]
CbCr
04723-003
CS
SCOMM[5]
Figure 25. Decode—Multichip Master/Slave Application
DIGITAL STILL CAMERA/CAMCORDER
Figure 26 is a typical configuration for a digital camera or camcorder.
FPGA
D[9:0]
SDATA
SCK
SL
10
DATA INPUTS[9:0]
SERIAL DATA
SERIAL CLK
SERIAL EN
ADV202
MCLK
VCLK
VFRM
VRDY
VSTRB
VDATA[15:6]
HDATA[15:0]
ADDR[3:0]
CS
RD
WE
ACK
IRQ
16-BIT
HOST CPU
DATA[15:0]
ADDR[3:0]
CS
RD
WE
ACK
IRQ
Figure 26. Digital Still Camera/Camcorder Encode Application for 10-Bit Pixel Data Using Raw Pixel Mode
Rev. D | Page 35 of 40
04723-004
AD9843A
ADV202
Data Sheet
ENCODE/DECODE SDTV VIDEO APPLICATION
Figure 27 shows two ADV202 chips using 10-bit CCIR656 in normal host mode.
ADV202
10-BIT
VIDEO
DECODER
VDATA[11:2]
VCLK
32-BIT
HOST CPU
DATA[31:0]
INTR
ADDR[3:0]
CS
RD
WE
ACK
DECODE MODE
MCLK
LLC1
HDATA[31:0]
IRQ
ADDR[3:0]
CS
RD
WE
ACK
ADV202
10-BIT
VIDEO
ENCODER
VDATA[11:2]
VIDEO OUT
P[9:0]
VCLK
32-BIT
HOST CPU
DATA[31:0]
INTR
ADDR[3:0]
CS
RD
WE
ACK
VIDEO IN
P[19:10]
CLKIN
MCLK
HDATA[31:0]
IRQ
ADDR[3:0]
CS
RD
WE
ACK
27MHz
OSC
Figure 27. Encode/Decode—SDTV Video Application
Rev. D | Page 36 of 40
04723-005
ENCODE MODE
Data Sheet
ADV202
ASIC APPLICATION (32-BIT HOST/32-BIT ASIC)
Figure 28 shows two ADV202 chips using 10-bit CCIR656 in normal host mode.
ASIC
ADV202
10-BIT
VIDEO
DECODER
DREQ0
DREQ0
DACK0
DACK0 VDATA[11:2]
DATA[31:0]
HDATA[31:0]
VIDEO IN
P[19:10]
VCLK
LLC1
MCLK
32-BIT
HOST CPU
DATA[31:0]
IRQ
ADDR[3:0]
CS
RD
WE
ACK
ASIC
IRQ
ADDR[3:0]
CS
RD
WE
ACK
ENCODE MODE
ADV202
10-BIT
VIDEO
ENCODER
DREQ0
DREQ0
DACK0
DACK0 VDATA[11:2]
HDATA[31:0]
31 -BIT
HOST CPU
DATA[31:0]
IRQ
ADDR[3:0]
CS
RD
WE
ACK
P[9:0]
VCLK
CLKIN
MCLK
27MHz
OSC
IRQ
ADDR[3:0]
CS
RD
WE
ACK
Figure 28. Encode/Decode ASIC Application
Rev. D | Page 37 of 40
DECODE MODE
04723-006
DATA[31:0]
VIDEO OUT
ADV202
Data Sheet
HIPI (HOST INTERFACE—PIXEL INTERFACE)
Figure 29 is a typical configuration using HIPI mode.
Y0/G0<MSB>
Y0/G0<6>
Y0/G0<5>
Y0/G0<4>
Y0/G0<3>
Y0/G0<2>
Y0/G0<1>
Y0/G0<0>
Cb0/G1<MSB>
Cb0/G1<6>
Cb0/G1<5>
Cb0/G1<4>
Cb0/G1<3>
Cb0/G1<2>
Cb0/G1<1>
Cb0/G1<0>
Y1/G2<MSB>
Y1/G2<6>
Y1/G2<5>
Y1/G2<4>
Y1/G2<3>
Y1/G2<2>
Y1/G2<1>
Y1/G2<0>
Cr0/G3<MSB>
Cr0/G3<6>
Cr0/G3<5>
Cr0/G3<4>
Cr0/G3<3>
Cr0/G3<2>
Cr0/G3<1>
Cr0/G3<0>
32-BIT HOST
HDATA<31>
HDATA<30>
HDATA<29>
HDATA<28>
HDATA<27>
HDATA<26>
HDATA<25>
HDATA<24>
HDATA<23>
HDATA<22>
HDATA<21>
HDATA<20>
HDATA<19>
HDATA<18>
HDATA<17>
HDATA<16>
HDATA<15>
HDATA<14>
HDATA<13>
HDATA<12>
HDATA<11>
HDATA<10>
HDATA<9>
HDATA<8>
HDATA<7>
HDATA<6>
HDATA<5>
HDATA<4>
HDATA<3>
HDATA<2>
HDATA<1>
HDATA<0>
DATA [31:0]
CS
CS
RD
RD
WR
WE
ACK
ACK
IRQ
IRQ
DREQ0
DACK0
RAW PIXEL
DATAPATH
DREQ
DACK
DREQ1
DACK1
COMPRESSED
DATAPATH
74.25MHz
04723-007
DREQ
DACK
MCLK
Figure 29. Host Interface—Pixel Interface Mode
JDATA INTERFACE
Figure 30 shows a typical configuration using JDATA with a dedicated JDATA output, 16-bit host, and 10-bit CCIR656.
ADV202
JDATA[7:0]
HOLD
VALID
16-BIT
HOST CPU
DATA[15:0]
IRQ
ADDR[3:0]
CS
RD
WE
ACK
VDATA[11:2]
YCrCb
FIELD
VSYNC
HSYNC
P[19:10]
FIELD
VS
HS
VIDEO IN
VCLK
MCLK
HDATA[15:0]
IRQ
ADDR[3:0]
CS
RD
WE
ACK
Figure 30. JDATA Application
Rev. D | Page 38 of 40
LLC1
04723-008
ASIC
Data Sheet
ADV202
OUTLINE DIMENSIONS
A1 CORNER
INDEX AREA
12.20
12.00 SQ
11.80
BALL A1
CORNER
11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
10.00
BSC SQ
E
F
G
H
J
K
L
1.00
BSC
BOTTOM VIEW
TOP VIEW
*1.85
1.71
1.40
DETAIL A
*1.31
1.21
1.11
DETAIL A
0.50 NOM
0.30 MIN
0.70
0.60
0.50
BALL DIAMETER
0.20
COPLANARITY
082406-A
SEATING
PLANE
*COMPLIANT WITH JEDEC STANDARDS MO-192-ABD-1 WITH
EXCEPTION TO PACKAGE HEIGHT AND THICKNESS.
Figure 31. 121-Lead Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-121-1)
Dimensions shown in millimeters
A1 CORNER
INDEX AREA
13 .00
BSC SQ
12 11 10
9
8
7
6
5
4
3
2
A
B
C
D
E
F
G
H
J
K
L
M
BALL A1
INDICATOR
TOP VIEW
DETAIL A
11.00
BCS SQ
1.00 BSC
*1.85
MAX
1
BOTTOM VIEW
*1.32
1.21
1.11
DETAIL A
0.53
0.43
SEATING
PLANE
*COMPLIANT WITH JEDEC STANDARDS MO-192-AAD-1 WITH
EXCEPTION TO PACKAGE HEIGHT AND THICKNESS.
Figure 32. 144-Lead Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-144-3)
Dimensions shown in millimeters
Rev. D | Page 39 of 40
COPLANARITY
0.20 MAX
021506-A
0.70
0.60
0.50
BALL DIAMETER
ADV202
Data Sheet
ORDERING GUIDE
Model 1
ADV202BBCZ-115
ADV202BBCZRL-115
ADV202BBCZ-135
ADV202BBCZ-150
ADV202BBCZRL-150
1
Temperature
Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Speed
Grade
115 MHz
115 MHz
135 MHz
150 MHz
150 MHz
Operating Voltage
1.5 V Internal, 2.5 V or 3.3 V I/O
1.5 V Internal, 2.5 V or 3.3 V I/O
1.5 V Internal, 2.5 V or 3.3 V I/O
1.5 V Internal, 2.5 V or 3.3 V I/O
1.5 V Internal, 2.5 V or 3.3 V I/O
Z = RoHS Compliant Part.
©2006–2012 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D04723-0-1/12(D)
Rev. D | Page 40 of 40
Package Description
121-Lead CSP_BGA
121-Lead CSP_BGA
144-Lead CSP_BGA
144-Lead CSP_BGA
144-Lead CSP_BGA
Package
Option
BC-121-1
BC-121-1
BC-144-3
BC-144-3
BC-144-3
Similar pages