AD ADG508FBRW 4/8 channel fault-protected analog multiplexer Datasheet

a
FEATURES
Low On Resistance (300 ⍀ typ)
Fast Switching Times
t ON 250 ns max
t OFF 250 ns max
Low Power Dissipation (3.3 mW max)
Fault and Overvoltage Protection (–40 V to +55 V)
All Switches OFF with Power Supply OFF
Analog Output of ON Channel Clamped Within Power
Supplies If an Overvoltage Occurs
Latch-Up Proof Construction
Break Before Make Construction
TTL and CMOS Compatible Inputs
4/8 Channel Fault-Protected
Analog Multiplexers
ADG508F/ADG509F/ADG528F*
FUNCTIONAL BLOCK DIAGRAMS
ADG508F/ADG528F
ADG509F
S1
S1A
DA
S4A
D
S1B
DB
S4B
S8
ADG528F
ONLY
WR
RS
APPLICATIONS
Existing Multiplexer Applications (Both Fault-Protected
and Nonfault-Protected)
New Designs Requiring Multiplexer Functions
1 OF 8
DECODER
1 OF 4
DECODER
A0 A1 A2 EN
A0 A1 EN
GENERAL DESCRIPTION
2. ON channel turns off while fault exists.
The ADG508F, ADG509F and ADG528F are CMOS analog
multiplexers, the ADG508F and ADG528F comprising eight
single channels and the ADG509F comprising four differential
channels. These multiplexers provide fault protection. Using a
series n-channel, p-channel, n-channel MOSFET structure,
both device and signal source protection is provided in the event
of an overvoltage or power loss. The multiplexer can withstand
continuous overvoltage inputs from –40 V to +55 V. During
fault conditions, the multiplexer input (or output) appears as an
open circuit and only a few nanoamperes of leakage current will
flow. This protects not only the multiplexer and the circuitry
driven by the multiplexer, but also protects the sensors or signal
sources that drive the multiplexer.
3. Low RON.
Model1
Temperature Range
Package Option2
The ADG508F and ADG528F switch one of eight inputs to a
common output as determined by the 3-bit binary address lines
A0, A1 and A2. The ADG509F switches one of four differential
inputs to a common differential output as determined by the 2bit binary address lines A0 and A1. The ADG528F has on-chip
address and control latches that facilitate microprocessor interfacing. An EN input on each device is used to enable or disable
the device. When disabled, all channels are switched OFF.
ADG508FBN
ADG508FBRN
ADG508FBRW
ADG508FTQ
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–55°C to +125°C
N-16
R-16N
R-16W
Q-16
ADG509FBN
ADG509FBRN
ADG509FBRW
ADG509FTQ
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–55°C to +125°C
N-16
R-16N
R-16W
Q-16
PRODUCT HIGHLIGHTS
ADG528FBN
ADG528FBP
ADG528FTQ
–40°C to +85°C
–40°C to +85°C
–55°C to +125°C
N-18
P-20A
Q-18
1. Fault Protection.
The ADG508F/ADG509F/ADG528F can withstand continuous voltage inputs from –40 V to +55 V. When a fault
occurs due to the power supplies being turned off, all the
channels are turned off and only a leakage current of a few
nanoamperes flows.
*Patent Pending.
4. Fast Switching Times.
5. Break-Before-Make Switching.
Switches are guaranteed break-before-make so that input
signals are protected against momentary shorting.
6. Trench Isolation Eliminates Latch-up.
A dielectric trench separates the p and n-channel MOSFETs
thereby preventing latch-up.
ORDERING GUIDE
NOTES
1
To order MIL-STD-883, Class B processed parts, add /883B to T grade part
numbers.
2
N = Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip;
RN = 0.15" Small Outline IC (SOIC), RW = 0.3" Small Outline IC (SOIC).
REV. C
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
World Wide Web Site: http://www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 1998
ADG508F/ADG509F/ADG528F–SPECIFICATIONS1
Dual Supply (V
DD =
+15 V ⴞ 10%, VSS = –15 V ⴞ 10%, GND = 0 V, unless otherwise noted)
Parameter
ANALOG SWITCH
Analog Signal Range
RON
B Version
–40ⴗC to
+25ⴗC +85ⴗC
300
VSS + 3
VDD – 1.5
350
T Version
–55ⴗC to
+25ⴗC +125ⴗC
VSS + 3
VDD – 1.5
400
300
400
RON Drift
RON Match
LEAKAGE CURRENTS
Source OFF Leakage IS (OFF)
Drain OFF Leakage I D (OFF)
ADG508F/ADG528F
ADG509F
Channel ON Leakage I D, IS (ON)
ADG508F/ADG528F
ADG509F
FAULT
Output Leakage Current
(With Overvoltage)
Input Leakage Current
(With Overvoltage)
Input Leakage Current
(With Power Supplies OFF)
DIGITAL INPUTS
Input High Voltage, V INH
Input Low Voltage, VINL
Input Current
IINL or IINH
CIN, Digital Input Capacitance
DYNAMIC CHARACTERISTICS 2
tTRANSITION
tOPEN
tON (EN, WR)
tOFF (EN, RS)
tSETT, Settling Time
0.1%
0.01%
ADG528F Only
tW, Write Pulsewidth
tS, Address, Enable Setup Time
tH, Address, Enable Hold Time
tRS, Reset Pulsewidth
Charge Injection
OFF Isolation
CS (OFF)
CD (OFF)
ADG508F/ADG528F
ADG509F
POWER REQUIREMENTS
IDD
ISS
0.6
5
± 0.02
±1
± 0.04
±1
±1
± 0.04
±1
±1
450
0.6
5
± 50
± 60
± 30
± 60
± 30
± 0.02
±2
±2
± 0.005
±2
± 0.001
±2
± 0.02
±1
± 0.04
±1
±1
± 0.04
±1
±1
±1
200
300
50
25
200
250
200
250
± 200
± 100
400
10
400
400
200
300
50
25
200
250
200
250
nA typ
nA max
nA typ
nA max
nA max
nA typ
nA max
nA max
VS = VD = ± 10 V;
Test Circuit 4
VS = ± 33 V, VD = 0 V, Test Circuit 3
VS = ± 25 V, VD = ⫿10 V, Test Circuit 5
VS = ± 25 V, VD = VEN = A0, A1, A2 = 0 V
Test Circuit 6
V min
V max
±1
µA max
pF typ
VIN = 0 or VDD
400
ns typ
ns max
ns typ
ns min
ns typ
ns max
ns typ
ns max
RL = 1 MΩ, CL = 35 pF;
VS1 = ± 10 V, VS8 = ⫿10 V; Test Circuit 7
RL = 1 kΩ, CL = 35 pF;
VS = +5 V; Test Circuit 8
RL = 1 kΩ, CL = 35 pF;
VS = +5 V; Test Circuit 9
RL = 1 kΩ, CL = 35 pF;
VS = +5 V; Test Circuit 9
1
2.5
µs typ
µs typ
RL = 1 kΩ, CL = 35 pF;
VS = +5 V
200
100
10
100
400
10
400
4
68
50
5
50
25
50
25
pF typ
pF typ
0.1
0.1
VD = ± 10 V, VS = ⫿10 V;
Test Circuit 2
VD = ± 10 V, VS = ⫿10 V;
Test Circuit 3
2.4
0.8
4
68
50
5
0.2
0.1
100
–10 V < VS < +10 V, IS = 1 mA;
VDD = +15 V ± 10%, VSS = –15 V ± 10%
Ω max
–10 V < VS < +10 V, IS = 1 mA;
VDD = +15 V ± 5%, VSS = –15 V ± 5%
%/°C typ VS = 0 V, IS = 1 mA
% max
VS = 0 V, IS = 1 mA
ns min
ns min
ns min
ns min
pC typ
dB typ
dB min
pF typ
0.1
0.1
120
100
10
100
Test Conditions/Comments
V min
V max
Ω typ
nA typ
µA max
µA typ
µA max
µA typ
µA max
5
1
2.5
100
± 200
± 100
± 0.02
±2
± 0.005
±2
± 0.001
±2
2.4
0.8
5
± 50
Units
0.2
0.1
mA max
mA max
VS = 0 V, RS = 0 Ω, CL= 1 nF; Test Circuit 12
RL = 1 kΩ, CL = 15 pF, f = 100 kHz;
VS = 7 V rms; Test Circuit 13
VIN = 0 V or 5 V
NOTES
1
Temperature ranges are as follows: B Version: –40°C to +85°C; T Version: –55°C to +125°C.
2
Guaranteed by design, not subject to production test.
Specifications subject to change without notice.
–2–
REV. C
ADG508F/ADG509F/ADG528F
Table I. ADG508F Truth Table
Table II. ADG509F Truth Table
A2
A1
A0
EN
ON SWITCH
A1
A0
EN
ON SWITCH PAIR
X
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
NONE
1
2
3
4
5
6
7
8
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
NONE
1
2
3
4
X = Don’t Care
X = Don’t Care
Table III. ADG528F Truth Table
A2
A1
A0
EN
WR
RS
ON
SWITCH
X
X
X
0
0
0
0
1
1
1
1
X
X
X
0
0
1
1
0
0
1
1
X
X
X
0
1
0
1
0
1
0
1
X
X
0
1
1
1
1
1
1
1
1
g
X
0
0
0
0
0
0
0
0
0
1
0
1
1
1
1
1
1
1
1
1
Retains Previous Switch Condition
NONE (Address and Enable Latches Cleared)
NONE
1
2
3
4
5
6
7
8
X = Don’t Care
TIMING DIAGRAMS (ADG528F)
3V
3V
WR
RS
50%
50%
50%
0V
tRS
tOFF (RS)
tW
tS
tH
3V
A0, A1, A2
EN
VO
0.8VO
SWITCH
OUTPUT
2V
0.8V
0V
0V
Figure 1.
Figure 2.
Figure 1 shows the timing sequence for latching the switch
address and enable inputs. The latches are level sensitive; therefore, while WR is held low, the latches are transparent and the
switches respond to the address and enable inputs. This input
data is latched on the rising edge of WR.
REV. C
50%
0V
Figure 2 shows the Reset Pulsewidth, tRS, and the Reset Turnoff Time, tOFF (RS).
Note: All digital input signals rise and fall times are measured
from 10% to 90% of 3 V. tR = tF = 20 ns.
–3–
ADG508F/ADG509F/ADG528F
ADG508F/ADG509F PIN CONFIGURATIONS
ABSOLUTE MAXIMUM RATINGS*
(TA = +25°C unless otherwise noted)
DIP/SOIC
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+44 V
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +25 V
VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –25 V
VEN, VA Digital Input . . . . . . . – 0.3 V to VDD + 2 V or 20 mA,
Whichever Occurs First
VS, Analog Input Overvoltage with Power ON . . . . . VSS – 25 V
to VDD + 40 V
VS, Analog Input Overvoltage with Power OFF
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–40 V to +55 V
Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 20 mA
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle max) . . . . . . . . . . . 40 mA
Operating Temperature Range
Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C
Extended (T Version) . . . . . . . . . . . . . . . . –55°C to +125°C
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C
Cerdip Package
θJA, Thermal Impedance
16-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76°C/W
18-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +300°C
Plastic Package
θJA, Thermal Impedance
16-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117°C
18-Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110°C
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C
SOIC Package
θJA, Thermal Impedance
Narrow Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77°C/W
Wide Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75°C/W
Lead Temperature, Soldering
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C
PLCC Package
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 90°C/W
Lead Temperature, Soldering
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C
DIP/SOIC
A0
1
16 A1
A0
1
EN
2
15 A2
EN
2
15 GND
VSS
3
14 GND
VSS
3
14 VDD
S1
4
S2
5
S3
6
S4
7
D
8
9
ADG508F
16 A1
ADG509F
S1A
4
S2A
5
13 S1B
TOP VIEW
(Not to Scale) 12 S2B
11 S6
S3A
6
11 S3B
10 S7
S4A
7
10 S4B
DA
8
9
13 VDD
TOP VIEW
(Not to Scale) 12 S5
S8
DB
ADG528F PIN CONFIGURATIONS
16 A2
4
ADG528F
15 GND
S1
5
S2
6
TOP VIEW
14 VDD
(Not to Scale)
13 S5
S3
7
12 S6
S4
8
11 S7
D
9
10 S8
RS
20 19
A1
1
18 A2
EN 4
VSS 5
ADG528F
17 GND
S1 6
TOP VIEW
(Not to Scale)
16 VDD
S2 7
15 S5
S3 8
14 S6
9
10 11 12 13
S7
3
2
S8
EN
VSS
3
WR
17 A1
NC
18 RS
2
D
1
A0
S4
WR
NC
PLCC
A0
DIP
NC = NO CONNECT
*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those listed in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability. Only one absolute
maximum rating may be applied at any one time.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection.
Although these devices feature proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
–4–
WARNING!
ESD SENSITIVE DEVICE
REV. C
ADG508F/ADG509F/ADG528F
TERMINOLOGY
Typical Performance Graphs
Most positive power supply potential.
VSS
Most negative power supply potential.
2000
GND
Ground (0 V) reference.
1750
RON
Ohmic resistance between D and S.
1500
RON Drift
Change in RON when temperature changes
by one degree Celsius.
1250
Difference between the RON of any two
channels.
IS (OFF)
Source leakage current when the switch is
off.
ID (OFF)
Drain leakage current when the switch is off.
ID, IS (ON)
Channel leakage current when the switch is
on.
VD (VS)
Analog voltage on terminals D, S.
CS (OFF)
Channel input capacitance for “OFF”
condition.
CD (OFF)
Channel output capacitance for “OFF”
condition.
CD, CS (ON)
“ON” switch capacitance.
CIN
Digital input capacitance.
tON (EN)
Delay time between the 50% and 90% points
of the digital input and switch “ON”
condition.
tOFF (EN)
tTRANSITION
0
–15
–10
–5
0
5
VD (VS) – Volts
10
15
1m
VDD = 0V
VSS = 0V
VD = 0V
100m
10m
1m
100n
10n
OPERATING RANGE
1n
100p
10p
1p
–50 –40 –30 –20 –10
0
10
20
30
VIN – INPUT VOLTAGE – Volts
40
50
60
Figure 4. Input Leakage Current as a Function of VS
(Power Supplies OFF) During Overvoltage Conditions
VINL
Maximum input voltage for Logic “0”.
1m
VINH
Minimum input voltage for Logic “1”.
100m
IINL (IINH)
Input current of the digital input.
Off Isolation
A measure of unwanted signal coupling
through an “OFF” channel.
Charge Injection
A measure of the glitch impulse transferred
from the digital input to the analog output
during switching.
I D – INPUT LEAKAGE – A
“OFF” time measured between 80% points of
both switches when switching from one
address state to another.
Negative supply current.
VDD = +15V
VSS = –15V
Figure 3. On Resistance as a Function of VD (VS)
tOPEN
ISS
VDD = +10V
VSS = –10V
250
Delay time between the 50% and 90% points
of the digital inputs and the switch “ON”
condition when switching from one address
state to another.
Positive supply current.
VDD = +5V
VSS = –5V
1000
500
Delay time between the 50% and 90% points
of the digital input and switch “OFF”
condition.
IDD
TA = +258C
750
IS – INPUT LEAKAGE – A
RON Match
RON – V
VDD
VDD = +15V
VSS = –15V
VD = 0V
10m
1m
100n
10n
OPERATING RANGE
1n
100p
10p
1p
–50 –40 –30
–20 –10
0
10
20
30
VIN – INPUT VOLTAGE – Volts
40
50
60
Figure 5. Output Leakage Current as a Function of VS
(Power Supplies ON) During Overvoltage Conditions
REV. C
–5–
ADG508F/ADG509F/ADG528F
2000
100
1750
1500
RON – V
1250
1000
750
+85 C
500
+125 C
VDD = +15V
VSS = –15V
VD = +10V
VS = –10V
10
LEAKAGE CURRENTS – nA
VDD = +15V
VSS = –15V
ID (OFF)
1
IS (OFF)
0.1
ID (ON)
250
+25 C
0
–15
–10
–5
0
5
VD (VS) – Volts
10
0.01
25
15
Figure 6. On Resistance as a Function of VD (VS) for
Different Temperatures
45
105
115
125
VIN = +2V
VDD = +15V
VSS = –15V
VD = 0V
10m
240
220
tON (EN)
1m
200
t – ns
100n
10n
OPERATING RANGE
180
tTRANSITION
160
1n
100p
140
10p
120
tOFF (EN)
1p
–50 –40
–30 –20 –10
0
10
20 30
VIN – INPUT VOLTAGE – Volts
40
50
100
10
60
Figure 7. Input Leakage Current as a Function of VS
(Power Supplies ON) During Overvoltage Conditions
11
12
13
VSUPPLY – Volts
14
15
Figure 10. Switching Time vs. Power Supply
0.3
280
260
VDD = +15V
VSS = –15V
240
TA = +258C
IS (OFF)
VDD = +15V
VSS = –15V
VIN = +5V
tON (EN)
220
0.1
ID (OFF)
t – ns
LEAKAGE CURRENTS – nA
85
95
65
75
TEMPERATURE – 8C
260
100m
0.2
55
Figure 9. Leakage Currents as a Function of Temperature
1m
IS – INPUT LEAKAGE – A
35
0.0
200
tTRANSITION
180
160
ID (ON)
–0.1
140
–0.2
–14
100
25
120
–10
–6
–2
2
VS, VD – Volts
6
10
14
Figure 8. Leakage Currents as a Function of VD (VS)
tOFF (EN)
45
65
85
TEMPERATURE – 8C
105
125
Figure 11. Switching Time vs. Temperature
–6–
REV. C
ADG508F/ADG509F/ADG528F
n-channel threshold voltage (VTN). When a voltage more negative than VSS is applied to the multiplexer, the p-channel
MOSFET will turn off since the analog input is more negative
than the difference between VSS and the p-channel threshold
voltage (VTP). Since VTN is nominally 1.5 V and VTP is typically
3 V, the analog input range to the multiplexer is limited to
–12 V to +13.5 V when a ± 15 V power supply is used.
THEORY OF OPERATION
The ADG508F/ADG509F/ADG528F multiplexers are capable
of withstanding overvoltages from –40 V to +55 V, irrespective
of whether the power supplies are present or not. Each channel
of the multiplexer consists of an n-channel MOSFET, a pchannel MOSFET and an n-channel MOSFET, connected in
series. When the analog input exceeds the power supplies, one
of the MOSFETs will switch off, limiting the current to submicroamp levels, thereby preventing the overvoltage from damaging any circuitry following the multiplexer. Figure 12 illustrates
the channel architecture that enables these multiplexers to withstand continuous overvoltages.
When the power supplies are present but the channel is off,
again either the p-channel MOSFET or one of the n-channel
MOSFETs will turn off when an overvoltage occurs.
Finally, when the power supplies are off, the gate of each
MOSFET will be at ground. A negative overvoltage switches
on the first n-channel MOSFET but the bias produced by the
overvoltage causes the p-channel MOSFET to remain turned
off. With a positive overvoltage, the first MOSFET in the
series will remain off since the gate to source voltage applied to
this MOSFET is negative.
When an analog input of VSS + 3 V to VDD – 1.5 V is applied to
the ADG508F/ADG509F/ADG528F, the multiplexer behaves
as a standard multiplexer, with specifications similar to a standard multiplexer, for example, the on-resistance is 400 Ω maximum. However, when an overvoltage is applied to the device,
one of the three MOSFETs will turn off.
Figures 12 to 15 show the conditions of the three MOSFETs for
the various overvoltage situations. When the analog input applied to an ON channel approaches the positive power supply
line, the n-channel MOSFET turns OFF since the voltage on
the analog input exceeds the difference between VDD and the
+55V
OVERVOLTAGE
Q1
Q2
Q3
+55V
OVERVOLTAGE
n-CHANNEL
MOSFET IS
OFF
VDD
VSS
n-CHANNEL
MOSFET IS
ON
VSS
Q1
Q2
VDD
Q2
Q3
Figure 14. +55 V Overvoltage with Power OFF
–40V
OVERVOLTAGE
Q3
n-CHANNEL
MOSFET IS
ON
p-CHANNEL
MOSFET IS
OFF
Q1
Q2
Q3
p-CHANNEL
MOSFET IS
OFF
Figure 15. –40 V Overvoltage with Power OFF
Figure 13. –40 V Overvoltage on an OFF Channel with
Multiplexer Power ON
REV. C
Q1
n-CHANNEL
MOSFET IS
OFF
Figure 12. +55 V Overvoltage Input to the ON Channel
–40V
OVERVOLTAGE
During fault conditions, the leakage current into and out of the
ADG508F/ADG509F/ADG528F is limited to a few microamps.
This protects the multiplexer and succeeding circuitry from over
stresses as well as protecting the signal sources which drive the
multiplexer. Also, the other channels of the multiplexer will be
undisturbed by the overvoltage and will continue to operate
normally.
–7–
ADG508F/ADG509F/ADG528F
Test Circuits
IDS
VDD
VSS
VDD
VSS
ID (ON)
D
S1
V1
A
S2
VD
S8
D
S
+2.4V
EN
VS
VS
RON = V1 /IDS
Test Circuit 4. ID (ON)
Test Circuit 1. On Resistance
VDD
VSS
A
IS (OFF)
VDD
VDD
VSS
VDD
VSS
S1
D
S2
VSS
S8
S1
A
S2
VS
EN
D
VD
+0.8V
VS
S8
+0.8V
EN
VD
Test Circuit 5. Input Leakage Current
(with Overvoltage)
Test Circuit 2. IS (OFF)
VDD
VSS
0V
0V
0V
VDD
VSS
A2
A1
VSS
VDD
A0
S1
RS
A
S8
VS
D
GND
VD
+0.8V
EN
A
S8
EN
ID (OFF)
D
S2
S1
ADG528F*
WR
VS
* SIMILAR CONNECTION FOR ADG508F/ADG509F
Test Circuit 6. Input Leakage Current
(with Power Supplies OFF)
Test Circuit 3. ID (OFF)
VDD
VSS
3V
VDD
A2
VIN
50V
A1
EN
S1
VS1
50%
50%
S2–S7
A0
+2.4V
ADDRESS
DRIVE (VIN)
VSS
S8
VS8
ADG528F*
D
RS
GND
WR
90%
VOUT
RL
1MV
CL
35pF
VOUT
90%
tTRANSITION
* SIMILAR CONNECTION FOR ADG508F/ADG509F
tTRANSITION
Test Circuit 7. Switching Time of Multiplexer, tTRANSITION
–8–
REV. C
ADG508F/ADG509F/ADG528F
VDD
VSS
3V
VIN
A0
S2–S7
ADG528F*
S8
RS
+2.4V
VS
S1
A1
50V
ADDRESS
DRIVE (VIN)
VSS
VDD
A2
D
EN
VOUT
RL
1kV
WR
GND
VOUT
CL
35pF
80%
80%
tOPEN
* SIMILAR CONNECTION FOR ADG508F/ADG509F
Test Circuit 8. Break-Before-Make Delay, tOPEN
VDD
VSS
3V
VDD
A2
VSS
S1
VS
A1
RS
50V
50%
tOFF (EN)
ADG528F*
EN
VIN
50%
0V
S2–S8
A0
+2.4V
ENABLE
DRIVE (VIN)
VO
D
GND
0.9VO
VOUT
RL
1kV
WR
CL
35pF
0.9VO
OUTPUT
0V
tON (EN)
* SIMILAR CONNECTION FOR ADG508F/ADG509F
Test Circuit 9. Enable Delay, tON (EN), tOFF (EN)
VSS
VDD
3V
VDD
A2
S1
A1
A0
0V
S2–S8
ADG528F
tON (WR)
VO
RS
WR
VWR
50%
VS
EN
+2.4V
VRS
WR
VSS
D
GND
VOUT
RL
1kV
CL
35pF
OUTPUT
0.2VO
0V
Test Circuit 10. Write Turn-On Time, tON (WR)
REV. C
–9–
ADG508F/ADG509F/ADG528F
VDD
VSS
3V
VSS
VDD
A2
RS
0V
S2–S8
A0
50%
50%
VS
S1
A1
tRS
tOFF (RS)
ADG528F
+2.4V
EN
D
RS
RL
1kV
WR
GND
VIN
VO
VOUT
CL
35pF
0.8VO
SWITCH
OUTPUT
0V
Test Circuit 11. Reset Turn-Off Time, tOFF (RS)
VDD
VSS
VDD
A2
VSS
A1
A0
S
RS
RS
VIN
LOGIC
INPUT (VIN)
+2.4V
ADG528F*
GND
0V
D
EN
VS
3V
VOUT
CL
1nF
DVOUT
VOUT
WR
Q INJ = CL x DVOUT
* SIMILAR CONNECTION FOR ADG508F/ADG509F
Test Circuit 12. Charge Injection
VDD
VDD
A2
A1
A0
+2.4V
S1
S8
VIN
ADG528F*
RS
D
EN
GND WR VSS
VOUT
RL
1kV
VSS
* SIMILAR CONNECTION FOR ADG508F/ADG509F
Test Circuit 13. OFF Isolation
–10–
REV. C
ADG508F/ADG509F/ADG528F
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
16-Lead Plastic (N-16)
16-Lead Cerdip (Q-16)
0.840 (21.34)
0.745 (18.92)
0.005 (0.13) MIN
16
9
1
8
16
0.280 (7.11)
0.240 (6.10)
PIN 1
0.210 (5.33)
MAX
PIN 1
0.200 (5.08)
MAX
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
0.015 (0.381)
0.008 (0.204)
0.070 (1.77) SEATING
0.045 (1.15) PLANE
16-Lead SOIC (R-16N)
(Narrow Body)
1
8
16
9
1
8
0.2440 (6.20)
0.2284 (5.80)
0.0688 (1.75)
0.0532 (1.35)
0.0196 (0.50)
x 45°
0.0099 (0.25)
PIN 1
SEATING
PLANE
0.0500
(1.27)
BSC
0.0192 (0.49)
0.0138 (0.35)
0.0099 (0.25)
0.0075 (0.19)
8°
0°
0.0118 (0.30)
0.0040 (0.10)
0.0500 (1.27)
0.0160 (0.41)
0.0500
(1.27)
BSC
REV. C
0.100
(2.54)
BSC
0.015 (0.38)
0.008 (0.20)
15°
0°
–11–
0.4193 (10.65)
0.3937 (10.00)
9
PIN 1
0.150
(3.81)
MIN
SEATING
0.070 (1.78) PLANE
0.030 (0.76)
0.320 (8.13)
0.290 (7.37)
0.4133 (10.50)
0.3977 (10.00)
16
0.0098 (0.25)
0.0040 (0.10)
0.060 (1.52)
0.015 (0.38)
16-Lead SOIC (R-16W)
(Wide Body)
0.3937 (10.00)
0.3859 (9.80)
0.1574 (4.00)
0.1497 (3.80)
8
0.2992 (7.60)
0.2914 (7.40)
0.100
(2.54)
BSC
1
0.840 (21.34) MAX
0.130
(3.30)
MIN
0.160 (4.06)
0.115 (2.93)
9
0.310 (7.87)
0.220 (5.59)
0.325 (8.26)
0.300 (7.62) 0.195 (4.95)
0.115 (2.93)
0.060 (1.52)
0.015 (0.38)
0.022 (0.558)
0.014 (0.356)
0.080 (2.03) MAX
0.1043 (2.65)
0.0926 (2.35)
0.0291 (0.74)
x 45°
0.0098 (0.25)
8°
0.0192 (0.49)
0°
SEATING 0.0125 (0.32)
0.0138 (0.35) PLANE
0.0091 (0.23)
0.0500 (1.27)
0.0157 (0.40)
ADG508F/ADG509F/ADG528F
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
18-Lead Cerdip (Q-18)
0.925 (23.49)
0.845 (21.47)
0.005 (0.13) MIN
10
1
9
PIN 1
0.060 (1.52)
0.015 (0.38)
0.210
(5.33)
MAX
0.160 (4.06)
0.115 (2.93)
0.022 (0.558)
0.014 (0.356)
18
0.280 (7.11)
0.240 (6.10)
0.070 (1.77)
0.045 (1.15)
0.310 (7.87)
0.220 (5.59)
0.325 (8.25)
0.300 (7.62) 0.195 (4.95)
0.115 (2.93)
1
9
PIN 1
0.960 (24.38) MAX
0.200 (5.08)
MAX
0.130
(3.30)
MIN
0.100
(2.54)
BSC
10
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
0.015 (0.381)
0.008 (0.204)
SEATING
PLANE
0.060 (1.52)
0.015 (0.38)
0.320 (8.13)
0.290 (7.37)
0.150
(3.81)
MIN
0.100
(2.54)
BSC
0.070 (1.78) SEATING
0.030 (0.76) PLANE
15°
0°
0.015 (0.38)
0.008 (0.20)
20-Lead PLCC (P-20A)
0.180 (4.57)
0.165 (4.19)
0.048 (1.21)
0.042 (1.07)
0.048 (1.21)
0.042 (1.07)
0.056 (1.42)
0.042 (1.07)
19
18
PIN 1
IDENTIFIER
3
4
TOP VIEW
(PINS DOWN)
8
9
0.020
(0.50)
R
0.025 (0.63)
0.015 (0.38)
0.021 (0.53)
0.013 (0.33) 0.330 (8.38)
0.032 (0.81) 0.290 (7.37)
0.026 (0.66)
0.050
(1.27)
BSC
14
13
0.040 (1.01)
0.025 (0.64)
0.356 (9.04)
SQ
0.350 (8.89)
0.395 (10.02)
SQ
0.385 (9.78)
0.110 (2.79)
0.085 (2.16)
PRINTED IN U.S.A.
18
0.098 (2.49) MAX
C1979c–0–8/98
18-Lead Plastic (N-18)
–12–
REV. C
Similar pages