The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix “MB”. However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix “CY”. How to Check the Ordering Part Number 1. Go to www.cypress.com/pcn. 2. Enter the keyword (for example, ordering part number) in the SEARCH PCNS field and click Apply. 3. Click the corresponding title from the search results. 4. Download the Affected Parts List file, which has details of all changes For More Information Please contact your local sales office for additional information about Cypress products and solutions. About Cypress Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com. MB9B210T Series 32-bit Arm® Cortex®-M3 FM3 Microcontroller The MB9B210T Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers with high-performance and competitive cost. These series are based on the Arm Cortex-M3 Processor with on-chip Flash memory and SRAM, and has peripheral functions such as Motor Control Timers, ADCs, and Communication Interfaces (USB, UART, CSIO, I 2C, LIN, Ethernet-MAC). The products which are described in this data sheet are placed into TYPE2 product categories in "FM3 Family PERIPHERAL MANUAL". Features 32-bit Arm Cortex-M3 Core Processor version: r2p1 USB Interface (Max 2 channels) USB interface is composed of Device and Host. PLL for USB is built-in, USB clock or Ethernet clock can be generated by multiplication of Main clock. Up to 144 MHz Frequency Operation Memory Protection Unit (MPU): improves the reliability of an embedded system Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 48 peripheral interrupts and 16 priority levels [USB device] USB2.0 Full-Speed supported Max 6 EndPoint supported EndPoint 0 is control transfer 1, 2 can be selected Bulk-transfer, Interrupt-transfer or Isochronous-transfer EndPoint 3-5 can be selected Bulk-transfer or Interrupt-transfer EndPoint 1 to 5 is comprised Double Buffer • EndPoint 0, 2 to 5:64 bytes • EndPoint 1: 256 bytes EndPoint 24-bit System timer (Sys Tick): System timer for OS task management On-chip Memories [Flash memory] Up to 1 Mbyte Built-in Flash Accelerator System with 16 Kbyte trace buffer memory The read access to Flash memory can be achieved without wait cycle up to operation frequency of 72 MHz. Even at the operation frequency more than 72 MHz, an equivalent access to Flash memory can be obtained by Flash Accelerator System. [USB host] USB2.0 Full/Low speed supported Bulk-transfer, interrupt-transfer and Isochronous-transfer support USB Device connected/dis-connected automatically detect Security function for code protection IN/OUT token handshake packet automatically [SRAM] Max 256-byte packet-length supported This Series contain a total of up to 128 Kbyte on-chip SRAM. This is composed of two independent SRAM (SRAM0, SRAM1) . SRAM0 is connected to I-code bus and D-code bus of Cortex-M3 core. SRAM1 is connected to System bus. SRAM0: Up to 64 Kbyte. Wake-up function supported SRAM1: Up to 64 Kbyte. Ethernet-MAC (Max 1 channel) Compliant with IEEE802.3 specification 10Mbps / 100 Mbps data transfer rates supported MII/RMII for external PHY device supported. External Bus Interface Supports SRAM, NOR and NAND Flash device Up to 8 chip selects MII: Max 1channel Max 1channel RMII: Full-Duplex and Half-Duplex mode supported. Wake-ON-LAN supported 8-/16-bit Data width Built-in dedicated descriptor-system DMAC Up to 25-bit Address bit Built-in 2 Kbyte Transmit FIFO and 2 Kbyte Receive FIFO. Maximum area size: Up to 256 Mbytes Compliant IEEE1558-2008 (PTP) Supports Address/Data multiplex Supports external RDY input Cypress Semiconductor Corporation Document Number: 002-04680 Rev. *D • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised January 15, 2018 MB9B210T Series Multi-function Serial Interface (Max 8 channels) 4 channels with 16steps×9-bit FIFO (ch.4 to ch.7), 4 channels without FIFO (ch.0 to ch.3) Operation mode is selectable from the followings for each channel. UART CSIO LIN I2 C [UART] Full-duplex double buffer Selection with or without parity supported Built-in dedicated baud rate generator A/D Converter (Max 32 channels) [12-bit A/D Converter] Successive Approximation Register type Built-in 3 unit Conversion time: 1.0 μs@ 5 V Priority conversion available (priority at 2 levels) Scanning conversion mode Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for Priority conversion: 4 steps) Base Timer (Max 16 channels) External clock available as a serial clock Operation mode is selectable from the followings for each channel. Hardware Flow control: Automatically control the 16-bit PWM timer transmission by CTS/RTS (only ch.4) Various error detect functions available (parity errors, framing errors, and overrun errors) [CSIO] Full-duplex double buffer Built-in dedicated baud rate generator Overrun error detect function available [LIN] LIN protocol Rev.2.1 supported Full-duplex double buffer Master/Slave mode supported LIN break field generate (can be changed 13-16-bit length) LIN break delimiter generate (can be changed 1-4-bit length) Various error detect functions available (parity errors, framing errors, and overrun errors) [I2C] Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps) supported DMA Controller (8 channels) DMA Controller has an independent bus for CPU, so CPU and DMA Controller can process simultaneously. 16-bit PPG timer 16-/32-bit reload timer 16-/32-bit PWC timer General Purpose I/O Port This series can use its pins as General Purpose I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated. Capable of pull-up control per pin Capable of reading pin level directly Built-in the port relocate function Up 154 fast General Purpose I/O Ports@ 176 pin Package Some pin is 5 V tolerant I/O. See "Pin Description" to confirm the corresponding pins Multi-function Timer (Max 3 units) The Multi-function timer is composed of the following blocks. 16-bit free-run timer × 3 ch./unit Input capture × 4 ch./unit Output compare × 6 ch./unit A/D activation compare × 3 ch./unit Waveform generator × 3 ch./unit 8 independently configured and operated channels 16-bit PPG timer × 3 ch./unit Transfer can be started by software or request from the The following function can be used to achieve the motor control. Transfer address area: 32 bit (4 Gbyte) PWM signal output function Transfer mode: Block transfer/Burst transfer/Demand DC chopper waveform output function built-in peripherals transfer Dead time function Transfer data type: byte/half-word/word Input capture function Transfer block count: 1 to 16 A/D convertor activate function Number of transfers: 1 to 65536 Document Number: 002-04680 Rev. *D DTIF (Motor emergency stop) interrupt function Page 2 of 140 MB9B210T Series Quadrature Position/Revolution Counter (QPRC) (Max 3 channels) The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. Moreover, it is possible to use up/down counter. The detection edge of the three external event input pins AIN, BIN and ZIN is configurable. Clock and Reset [Clocks] Five clock sources (2 external oscillators, 2 internal CR oscillator, and Main PLL) that are dynamically selectable. Main Clock: 4 MHz to 50 MHz Sub Clock: 32.768 kHz 16-bit position counter High-speed internal CR Clock: 4 MHz 16-bit revolution counter Low-speed internal CR Clock: 100 kHz Two 16-bit compare registers Main PLL Clock Dual Timer (32-/16-bit Down Counter) [Resets] The Dual Timer consists of two programmable 32-/16-bit down counters. Operation mode is selectable from the followings for each channel. Free-running Periodic (=Reload) One-shot Watch Counter The Watch counter is used for wake up from Low Power Consumption mode. Interval timer: up to 64 s (Max)@ Sub Clock: 32.768 kHz External Interrupt Controller Unit Up to 32 external interrupt input pin Include one non-maskable interrupt (NMI) Watch dog Timer (2 channels) A watchdog timer can generate interrupts or a reset when a time-out value is reached. This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog. "Hardware" watchdog timer is clocked by low speed internal CR oscillator. Therefore, "Hardware" watchdog is active in any power saving mode except STOP mode. Reset requests from INITX pin Power on reset Software reset Watchdog timers reset Low-voltage detector reset Clock supervisor reset Clock Super Visor (CSV) Clocks generated by internal CR oscillators are used to supervise abnormality of the external clocks. External OSC clock failure (clock stop) is detected, reset is asserted. External OSC frequency anomaly is detected, interrupt or reset is asserted. Low-Voltage Detector (LVD) This Series include 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage has been set, Low-Voltage Detector generates an interrupt or reset. LVD1: error reporting via interrupt LVD2: auto-reset operation Low Power Mode Three Low Power Consumption modes supported. CRC (Cyclic Redundancy Check) Accelerator SLEEP The CRC accelerator helps a verify data transmission or storage integrity. TIMER CCITT CRC16 and IEEE-802.3 CRC32 are supported. STOP CCITT CRC16 Generator Polynomial: 0x1021 Debug IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7 Serial Wire JTAG Debug Port (SWJ-DP) Embedded Trace Macrocells (ETM) provide comprehensive debug and trace facilities. Document Number: 002-04680 Rev. *D Page 3 of 140 MB9B210T Series Power Supply Four Power Supplies Wide range voltage VCC = 2.7 V to 5.5 V USBVCC0 = 3.0 V to 3.6 V: for USB ch.0 I/O voltage, when USB ch.0 is used. = 2.7 V to 5.5 V: when GPIO is used. USBVCC1 = 3.0 V to 3.6 V: for USB ch.1 I/O voltage, when USB ch.1 is used. = 2.7 V to 5.5 V: when GPIO is used. ETHVCC = 3.0 V to 5.5 V: for Ethernet I/O voltage, when Ethernet is used. = 2.7 V to 5.5 V: when GPIO is used. Document Number: 002-04680 Rev. *D Page 4 of 140 MB9B210T Series Contents 1. Product Lineup .................................................................................................................................................................. 7 2. Packages ........................................................................................................................................................................... 8 3. Pin Assignment ................................................................................................................................................................. 9 4. List of Pin Functions....................................................................................................................................................... 12 5. I/O Circuit Type................................................................................................................................................................ 53 6. Handling Precautions ..................................................................................................................................................... 60 6.1 Precautions for Product Design ................................................................................................................................... 60 6.2 Precautions for Package Mounting .............................................................................................................................. 61 6.3 Precautions for Use Environment ................................................................................................................................ 62 7. Handling Devices ............................................................................................................................................................ 63 8. Block Diagram ................................................................................................................................................................. 66 9. Memory Size .................................................................................................................................................................... 67 10. Memory Map .................................................................................................................................................................... 68 11. Pin Status in Each CPU State ........................................................................................................................................ 71 12. Electrical Characteristics ............................................................................................................................................... 77 12.1 Absolute Maximum Ratings ......................................................................................................................................... 77 12.2 Recommended Operating Conditions.......................................................................................................................... 79 12.3 DC Characteristics....................................................................................................................................................... 81 12.3.1 Current Rating .............................................................................................................................................................. 81 12.3.2 Pin Characteristics ....................................................................................................................................................... 83 12.4 AC Characteristics ....................................................................................................................................................... 85 12.4.1 Main Clock Input Characteristics .................................................................................................................................. 85 12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 86 12.4.3 Internal CR Oscillation Characteristics ......................................................................................................................... 86 12.4.4 Operating Conditions of Main and USB/Ethernet PLL (In the case of using main clock for input of PLL) .................... 87 12.4.5 Operating Conditions of Main PLL (In the case of using high-speed internal CR)........................................................ 87 12.4.6 Reset Input Characteristics .......................................................................................................................................... 89 12.4.7 Power-on Reset Timing................................................................................................................................................ 89 12.4.8 External Bus Timing ..................................................................................................................................................... 90 12.4.9 Base Timer Input Timing ............................................................................................................................................ 100 12.4.10 CSIO/UART Timing ................................................................................................................................................ 101 12.4.11 External Input Timing .............................................................................................................................................. 109 12.4.12 Quadrature Position/Revolution Counter timing ...................................................................................................... 110 12.4.13 I2C Timing ............................................................................................................................................................... 112 12.4.14 ETM Timing ............................................................................................................................................................ 113 12.4.15 JTAG Timing ........................................................................................................................................................... 114 12.4.16 Ethernet-MAC Timing ............................................................................................................................................. 115 12.5 12-bit A/D Converter .................................................................................................................................................. 120 12.6 USB characteristics ................................................................................................................................................... 123 12.7 Low-Voltage Detection Characteristics ...................................................................................................................... 127 12.7.1 Low-Voltage Detection Reset ..................................................................................................................................... 127 12.7.2 Interrupt of Low-Voltage Detection ............................................................................................................................. 127 12.8 Flash Memory Write/Erase Characteristics ............................................................................................................... 128 12.8.1 Write / Erase time....................................................................................................................................................... 128 12.8.2 Write cycles and data hold time ................................................................................................................................. 128 12.9 Return Time from Low-Power Consumption Mode .................................................................................................... 129 12.9.1 Return Factor: Interrupt .............................................................................................................................................. 129 12.9.2 Return Factor: Reset .................................................................................................................................................. 131 Document Number: 002-04680 Rev. *D Page 5 of 140 MB9B210T Series 13. Ordering Information .................................................................................................................................................... 133 14. Package Dimensions .................................................................................................................................................... 134 15. Major Changes .............................................................................................................................................................. 137 Document History ............................................................................................................................................................... 139 Sales, Solutions, and Legal Information ........................................................................................................................... 140 Document Number: 002-04680 Rev. *D Page 6 of 140 MB9B210T Series 1. Product Lineup Memory size Product name MB9BF216S MB9BF216T MB9BF217S MB9BF217T MB9BF218S MB9BF218T On-chip Flash memory On-chip RAM 512 Kbyte 64 Kbyte 768 Kbyte 96 Kbyte 1 Mbyte 128 Kbyte Function Product name Pin count CPU MB9BF216S MB9BF217S MB9BF218S MB9BF216T MB9BF217T MB9BF218T 144 Freq. Power supply voltage range USB2.0 (Device/Host) Ethernet-MAC DMAC External Bus Interface Multi-function Serial Interface (UART/CSIO/LIN/I2C) 176/192 Cortex-M3 144 MHz VCC: 2.7 V to 5.5 V, (USBVCC0: 3.0 V to 3.6 V) (USBVCC1: 3.0 V to 3.6 V) (ETHVCC: 3.0 V to 5.5 V) 2 ch. (Max) 1ch.(Max) MII: 1ch. / RMII: 1ch.(Max) 8 ch. Addr:19-bit (Max) Addr:25-bit (Max) R/Wdata:8-/16-bit (Max) R/Wdata:8-/16-bit (Max) CS: 8 (Max) CS:8 (Max) Support: SRAM, Support: SRAM, NOR & NAND Flash NOR & NAND Flash 8 ch. (Max) ch.4 to ch.7: FIFO (16steps × 9-bit) ch.0 to ch.3: No FIFO Base Timer 16 ch. (Max) (PWC/ Reload timer/PWM/PPG) A/D activation 3 ch. compare Input capture 4 ch. MFFree-run timer 3 ch. 3 units (Max) Timer Output compare 6 ch. Waveform 3 ch. generator PPG 3 ch. QPRC 3 ch. (Max) Dual Timer 1 unit Watch Counter 1 unit CRC Accelerator Yes Watchdog timer 1 ch. (SW) + 1 ch. (HW) External Interrupts 32 pins (Max) + NMI × 1 I/O ports 122 pins (Max) 154 pins (Max) 12-bit A/D converter 24 ch. (3 units) 32 ch. (3 units) CSV (Clock Super Visor) Yes LVD (Low-Voltage Detector) 2 ch. High-speed 4 MHz Built-in CR Low-speed 100 kHz Debug Function SWJ-DP/ETM Note: − All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the General I/O port according to your function use. See "Electrical Characteristics” AC Characteristics Built-in CR Oscillation Characteristics" for accuracy of built-in CR. Document Number: 002-04680 Rev. *D Page 7 of 140 MB9B210T Series 2. Packages Product name Package LQFP: LQFP: BGA: LQS144 (0.5 mm pitch) LQP176 (0.5 mm pitch) LBE192 (0.8 mm pitch) MB9BF216S MB9BF217S MB9BF218S - MB9BF216T MB9BF217T MB9BF218T : Supported Note: − See "Package Dimensions" for detailed information on each package. Document Number: 002-04680 Rev. *D Page 8 of 140 MB9B210T Series 3. Pin Assignment LQP176 VCC P00/TRSTX 134 133 P02/TDI P01/TCK/SWCLK P03/TMS/SWDIO 137 136 135 P90/TIOB08_0/RTO20_1/INT30_0/MAD19_0 P04/TDO/SWO P91/TIOB09_0/RTO21_1/INT31_0/MAD20_0 140 139 138 P93/TIOB11_0/RTO23_1/SOT5_1/MAD22_0 P92/TIOB10_0/RTO22_1/SIN5_1/MAD21_0 P94/TIOB12_0/RTO24_1/SCK5_1/INT26_0/MAD23_0 143 142 141 PC1/E_RX03 PC0/E_RXER P95/TIOB13_0/RTO25_1/INT27_0/MAD24_0 144 147 146 145 PC3/E_RX01/TIOA06_1 PC2/E_RX02 PC4/E_RX00/TIOA08_2 149 148 PC6/E_MDIO/TIOA14_0 PC5/E_RXDV/TIOA10_2 PC7/E_MDC/CROUT_1 152 151 150 PC9/E_COL PC8/E_RXCK_REFCK PCA/E_CRS 155 154 153 VSS ETHVCC PCB/E_COUT 158 157 156 PCD/E_TCK PCC PCE/E_TXER/RTS4_0/TIOB06_1 161 160 159 PD0/E_TX02/SCK4_0/TIOB10_2/INT30_1 PCF/E_TX03/CTS4_0/TIOB08_2 PD1/E_TX01/SOT4_0/TIOB14_0/INT31_1 164 163 162 P62/E_PPS/SCK5_0/ADTG_3 PD3/E_TXEN/TIOB03_2 PD2/E_TX00/SIN4_0/TIOA03_2/INT00_2 165 168 167 166 P60/SIN5_0/TIOA02_2/INT15_1 P61/SOT5_0/TIOB02_2/UHCONX0 PF3/TIOA06_0/SIN6_2/INT06_0/AIN2_1 170 169 PF5/SCK6_2/INT08_0/ZIN2_1 PF4/TIOB06_0/SOT6_2/INT07_0/BIN2_1 USBVCC0 173 172 171 P81/UDP0 VSS 176 175 174 P80/UDM0 (TOP VIEW) VCC 1 132 VSS PA0/RTO20_0/TIOA08_0/FRCK1_0 2 131 P83/UDP1 PA1/RTO21_0/TIOA09_0/IC10_0 3 130 P82/UDM1 PA2/RTO22_0/TIOA10_0/IC11_0 4 129 USBVCC1 PA3/RTO23_0/TIOA11_0/IC12_0 5 128 PF6/FRCK2_0/NMIX PA4/RTO24_0/TIOA12_0/IC13_0/INT03_0 6 127 P20/INT05_0/CROUT_0/UHCONX1/AIN1_1/MAD18_0 PA5/RTO25_0/TIOA13_0/INT10_2 7 126 P21/SIN0_0/INT06_1/BIN1_1 P05/TRACED0/TIOA05_2/SIN4_2/INT00_1 8 125 P22/AN31/SOT0_0/TIOB07_1/ZIN1_1 P06/TRACED1/TIOB05_2/SOT4_2/INT01_1 9 124 P23/AN30/SCK0_0/TIOA07_1/RTO00_1 P07/TRACED2/ADTG_0/SCK4_2 10 123 P24/AN29/SIN2_1/INT01_2/RTO01_1/MAD17_0 P08/TRACED3/TIOA00_2/CTS4_2 11 122 P25/AN28/SOT2_1/RTO02_1/MAD16_0 P09/TRACECLK/TIOB00_2/RTS4_2/DTTI2X_0 12 121 P26/AN27/SCK2_1/RTO03_1/MAD15_0 P50/INT00_0/AIN0_2/SIN3_1/RTO10_0/IC20_0/MOEX_0 13 120 P27/AN26/INT02_2/RTO04_1/MAD14_0 P51/INT01_0/BIN0_2/SOT3_1/RTO11_0/IC21_0/MWEX_0 14 119 P28/AN25/ADTG_4/INT09_0/RTO05_1/MAD13_0 P52/INT02_0/ZIN0_2/SCK3_1/RTO12_0/IC22_0/MDQM0_0 15 118 P29/AN24/MAD12_0 P53/SIN6_0/TIOA01_2/INT07_2/RTO13_0/IC23_0/MDQM1_0 16 117 PB7/AN23/TIOB12_1/INT23_0/ZIN2_2 P54/SOT6_0/TIOB01_2/RTO14_0/MALE_0 17 116 PB6/AN22/TIOA12_1/SCK0_2/INT22_0/BIN2_2 P55/SCK6_0/ADTG_1/RTO15_0/MRDY_0 18 115 PB5/AN21/TIOB11_1/SOT0_2/INT21_0/AIN2_2 P56/SIN1_0/INT08_2/TIOA09_2/DTTI1X_0/MNALE_0 19 114 PB4/AN20/TIOA11_1/SIN0_2/INT20_0 P57/SOT1_0/TIOB09_2/INT16_1/MNCLE_0 20 113 PB3/AN19/TIOB10_1/INT19_0 P58/SCK1_0/TIOA11_2/INT17_1/MNWEX_0 21 112 PB2/AN18/TIOA10_1/SCK7_2/INT18_0 P59/SIN7_0/TIOB11_2/INT09_2/MNREX_0 22 111 PB1/AN17/TIOB09_1/SOT7_2/INT17_0 P5A/SOT7_0/TIOA13_1/INT18_1/MCSX0_0 23 110 PB0/AN16/TIOA09_1/SIN7_2/INT16_0 P5B/SCK7_0/TIOB13_1/INT19_1/MCSX1_0 24 109 VSS P5C/TIOA06_2/INT28_0/IC20_1 25 108 AVSS P5D/TIOB06_2/INT29_0/DTTI2X_1 26 107 AVRH VSS 27 106 AVCC P30/AIN0_0/TIOB00_1/INT03_2 28 105 P1F/AN15/ADTG_5/INT29_1/TIOB15_2/FRCK0_1/MAD11_0 P31/BIN0_0/TIOB01_1/SCK6_1/INT04_2 29 104 P1E/AN14/RTS4_1/INT28_1/TIOA15_2/DTTI0X_1/MAD10_0 P32/ZIN0_0/TIOB02_1/SOT6_1/INT05_2 30 103 P1D/AN13/CTS4_1/INT27_1/TIOB14_2/IC03_1/MAD09_0 P33/INT04_0/TIOB03_1/SIN6_1/ADTG_6 31 102 P1C/AN12/SCK4_1/INT26_1/TIOA14_2/IC02_1/MAD08_0 P34/FRCK0_0/TIOB04_1 32 101 P1B/AN11/SOT4_1/INT25_1/TIOB13_2/IC01_1/MAD07_0 P35/IC03_0/TIOB05_1/INT08_1 33 100 P1A/AN10/SIN4_1/INT05_1/TIOA13_2/IC00_1/MAD06_0 P36/IC02_0/SIN5_2/INT09_1/TIOA12_2/MCSX2_0 34 99 P19/AN09/SCK2_2/INT22_1/MAD05_0 P37/IC01_0/SOT5_2/INT10_1/TIOB12_2/MCSX3_0 35 98 P18/AN08/SOT2_2/INT21_1/MAD04_0 P38/IC00_0/SCK5_2/INT11_1/MCLKOUT_0 36 97 P17/AN07/SIN2_2/INT04_1/MAD03_0 P39/DTTI0X_0/ADTG_2 37 96 P16/AN06/SCK0_1/INT20_1/MAD02_0 P3A/RTO00_0/TIOA00_1 38 95 P15/AN05/SOT0_1/IC03_2/MAD01_0 P3B/RTO01_0/TIOA01_1 39 94 P14/AN04/SIN0_1/INT03_1/IC02_2/MAD00_0 P3C/RTO02_0/TIOA02_1 40 93 P13/AN03/SCK1_1/IC01_2/MCSX4_0 P3D/RTO03_0/TIOA03_1 41 92 P12/AN02/SOT1_1/IC00_2/MCSX5_0 P3E/RTO04_0/TIOA04_1 42 91 P11/AN01/SIN1_1/INT02_1/FRCK0_2/MCSX6_0 P3F/RTO05_0/TIOA05_1 43 90 P10/AN00/MCSX7_0 VSS 44 89 VCC 87 88 PE3/X1 VSS 84 85 86 MD0 PE2/X0 PE0/MD1 81 82 83 PF1/TIOA08_1/SOT1_2/INT14_0 PF0/TIOB15_1/SIN1_2/INT13_0/IC23_1 PF2/TIOB08_1/SCK1_2/INT15_0 78 79 80 P7E/TIOB14_1/IC21_1/INT24_0 P7C/TIOA07_0/INT11_0 P7F/TIOA15_1/IC22_1/INT25_0 77 P7B/TIOB07_0/INT10_0 P7D/TIOA14_1/FRCK2_1/INT12_0 74 75 76 P7A/ZIN1_0/INT24_1/MADATA15_0 P78/AIN1_0/TIOA15_0/MADATA13_0 P79/BIN1_0/TIOB15_0/INT23_1/MADATA14_0 72 73 P77/SCK3_0/TIOB07_2/INT12_2/MADATA12_0 69 70 71 P74/SCK2_0/ZIN2_0/MADATA09_0 P75/SIN3_0/ADTG_8/INT07_1/MADATA10_0 P76/SOT3_0/TIOA07_2/INT11_2/MADATA11_0 66 67 68 P71/INT13_2/TIOB04_2/MADATA06_0 P72/SIN2_0/INT14_2/AIN2_0/MADATA07_0 P70/TIOA04_2/MADATA05_0 P73/SOT2_0/INT15_2/BIN2_0/MADATA08_0 63 64 65 P4E/TIOB05_0/INT06_2/SIN7_1/ZIN1_2/MADATA04_0 P4B/TIOB02_0/IC12_1/ZIN0_1/MADATA01_0 P4D/TIOB04_0/FRCK1_1/SOT7_1/BIN1_2/MADATA03_0 60 61 62 P4A/TIOB01_0/IC11_1/BIN0_1/SCK3_2/MADATA00_0 P4C/TIOB03_0/IC13_1/SCK7_1/AIN1_2/MADATA02_0 57 58 59 INITX P48/DTTI1X_1/INT14_1/SIN3_2 56 P47/X1A P49/TIOB00_0/IC10_1/AIN0_1/SOT3_2 53 54 55 C VSS P45/TIOA05_0/RTO15_1 VCC 51 52 P44/TIOA04_0/RTO14_1 P46/X0A 48 49 50 P42/TIOA02_0/RTO12_1 P43/TIOA03_0/RTO13_1/ADTG_7 45 46 47 VCC P40/TIOA00_0/RTO10_1/INT12_1 P41/TIOA01_0/RTO11_1/INT13_1 LQFP - 176 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. TIOA09_0, TIOA09_1, and TIOA09_2 cannot be used as the external startup trigger input (TGIN signal) at I/O mode 1 (timer full mode) of the Base Timer. See "Base Timer" in “Handling Devices" for details. Document Number: 002-04680 Rev. *D Page 9 of 140 MB9B210T Series LQS144 P00/TRSTX VCC P01/TCK/SWCLK 111 110 109 P03/TMS/SWDIO P02/TDI P04/TDO/SWO 114 113 112 PC0/E_RXER PC1/E_RX03 116 115 PC3/E_RX01/TIOA06_1 PC2/E_RX02 PC4/E_RX00/TIOA08_2 119 118 117 PC6/E_MDIO/TIOA14_0 PC5/E_RXDV/TIOA10_2 PC7/E_MDC/CROUT_1 122 121 120 PC8/E_RXCK_REFCK PC9/E_COL 124 123 ETHVCC PCA/E_CRS VSS 127 126 125 PCC PCB/E_COUT PCD/E_TCK 130 129 128 PCF/E_TX03/CTS4_0/TIOB08_2 PCE/E_TXER/RTS4_0/TIOB06_1 PD0/E_TX02/SCK4_0/TIOB10_2/INT30_1 133 132 131 PD1/E_TX01/SOT4_0/TIOB14_0/INT31_1 PD2/E_TX00/SIN4_0/TIOA03_2/INT00_2 135 134 P62/E_PPS/SCK5_0/ADTG_3 PD3/E_TXEN/TIOB03_2 P61/SOT5_0/TIOB02_2/UHCONX0 138 137 136 PF5/SCK6_2/INT08_0/ZIN2_1 P60/SIN5_0/TIOA02_2/INT15_1 USBVCC0 141 140 139 P81/UDP0 VSS 144 143 142 P80/UDM0 (TOP VIEW) VCC 1 108 VSS PA0/RTO20_0/TIOA08_0/FRCK1_0 2 107 P83/UDP1 PA1/RTO21_0/TIOA09_0/IC10_0 3 106 P82/UDM1 PA2/RTO22_0/TIOA10_0/IC11_0 4 105 USBVCC1 PA3/RTO23_0/TIOA11_0/IC12_0 5 104 PF6/FRCK2_0/NMIX PA4/RTO24_0/TIOA12_0/IC13_0/INT03_0 6 103 P20/INT05_0/CROUT_0/UHCONX1/AIN1_1/MAD18_0 PA5/RTO25_0/TIOA13_0/INT10_2 7 102 P21/SIN0_0/INT06_1/BIN1_1 P05/TRACED0/TIOA05_2/SIN4_2/INT00_1 8 101 P22/AN31/SOT0_0/TIOB07_1/ZIN1_1 P06/TRACED1/TIOB05_2/SOT4_2/INT01_1 9 100 P23/AN30/SCK0_0/TIOA07_1/RTO00_1 P07/TRACED2/ADTG_0/SCK4_2 10 99 P24/AN29/SIN2_1/INT01_2/RTO01_1/MAD17_0 P08/TRACED3/TIOA00_2/CTS4_2 11 98 P25/AN28/SOT2_1/RTO02_1/MAD16_0 P09/TRACECLK/TIOB00_2/RTS4_2/DTTI2X_0 12 97 P26/AN27/SCK2_1/RTO03_1/MAD15_0 P50/INT00_0/AIN0_2/SIN3_1/RTO10_0/IC20_0/MOEX_0 13 96 P27/AN26/INT02_2/RTO04_1/MAD14_0 P51/INT01_0/BIN0_2/SOT3_1/RTO11_0/IC21_0/MWEX_0 14 95 P28/AN25/ADTG_4/INT09_0/RTO05_1/MAD13_0 P52/INT02_0/ZIN0_2/SCK3_1/RTO12_0/IC22_0/MDQM0_0 15 94 P29/AN24/MAD12_0 P53/SIN6_0/TIOA01_2/INT07_2/RTO13_0/IC23_0/MDQM1_0 16 93 VSS P54/SOT6_0/TIOB01_2/RTO14_0/MALE_0 17 92 AVSS P55/SCK6_0/ADTG_1/RTO15_0/MRDY_0 18 91 AVRH P56/SIN1_0/INT08_2/TIOA09_2/DTTI1X_0/MNALE_0 19 90 AVCC P57/SOT1_0/TIOB09_2/INT16_1/MNCLE_0 20 89 P1F/AN15/ADTG_5/INT29_1/TIOB15_2/FRCK0_1/MAD11_0 P58/SCK1_0/TIOA11_2/INT17_1/MNWEX_0 21 88 P1E/AN14/RTS4_1/INT28_1/TIOA15_2/DTTI0X_1/MAD10_0 LQFP - 144 73 VCC VSS PE2/X0 PE3/X1 MD0 PE0/MD1 P7A/ZIN1_0/INT24_1/MADATA15_0 P78/AIN1_0/TIOA15_0/MADATA13_0 P79/BIN1_0/TIOB15_0/INT23_1/MADATA14_0 P75/SIN3_0/ADTG_8/INT07_1/MADATA10_0 P76/SOT3_0/TIOA07_2/INT11_2/MADATA11_0 P77/SCK3_0/TIOB07_2/INT12_2/MADATA12_0 P74/SCK2_0/ZIN2_0/MADATA09_0 P72/SIN2_0/INT14_2/AIN2_0/MADATA07_0 P73/SOT2_0/INT15_2/BIN2_0/MADATA08_0 P70/TIOA04_2/MADATA05_0 P71/INT13_2/TIOB04_2/MADATA06_0 P4C/TIOB03_0/IC13_1/SCK7_1/AIN1_2/MADATA02_0 P4E/TIOB05_0/INT06_2/SIN7_1/ZIN1_2/MADATA04_0 P4D/TIOB04_0/FRCK1_1/SOT7_1/BIN1_2/MADATA03_0 P49/TIOB00_0/IC10_1/AIN0_1/SOT3_2 P4B/TIOB02_0/IC12_1/ZIN0_1/MADATA01_0 P4A/TIOB01_0/IC11_1/BIN0_1/SCK3_2/MADATA00_0 INITX P47/X1A P48/DTTI1X_1/INT14_1/SIN3_2 VCC P46/X0A C VSS P45/TIOA05_0/RTO15_1 P42/TIOA02_0/RTO12_1 P44/TIOA04_0/RTO14_1 P43/TIOA03_0/RTO13_1/ADTG_7 VCC P40/TIOA00_0/RTO10_1/INT12_1 P41/TIOA01_0/RTO11_1/INT13_1 70 36 71 P10/AN00/MCSX7_0 VSS 72 74 67 35 68 P11/AN01/SIN1_1/INT02_1/FRCK0_2/MCSX6_0 P3F/RTO05_0/TIOA05_1 69 P12/AN02/SOT1_1/IC00_2/MCSX5_0 75 65 76 34 66 33 P3E/RTO04_0/TIOA04_1 62 P13/AN03/SCK1_1/IC01_2/MCSX4_0 P3D/RTO03_0/TIOA03_1 63 77 64 32 59 P14/AN04/SIN0_1/INT03_1/IC02_2/MAD00_0 P3C/RTO02_0/TIOA02_1 60 P15/AN05/SOT0_1/IC03_2/MAD01_0 78 61 79 31 57 30 P3B/RTO01_0/TIOA01_1 58 P16/AN06/SCK0_1/INT20_1/MAD02_0 P3A/RTO00_0/TIOA00_1 54 80 55 29 56 P17/AN07/SIN2_2/INT04_1/MAD03_0 P39/DTTI0X_0/ADTG_2 51 P18/AN08/SOT2_2/INT21_1/MAD04_0 81 52 82 28 53 27 P38/IC00_0/SCK5_2/INT11_1/MCLKOUT_0 48 P19/AN09/SCK2_2/INT22_1/MAD05_0 P37/IC01_0/SOT5_2/INT10_1/TIOB12_2/MCSX3_0 49 83 50 26 46 P1A/AN10/SIN4_1/INT05_1/TIOA13_2/IC00_1/MAD06_0 P36/IC02_0/SIN5_2/INT09_1/TIOA12_2/MCSX2_0 47 84 43 25 44 P1B/AN11/SOT4_1/INT25_1/TIOB13_2/IC01_1/MAD07_0 VSS 45 85 40 24 41 P1C/AN12/SCK4_1/INT26_1/TIOA14_2/IC02_1/MAD08_0 P5B/SCK7_0/TIOB13_1/INT19_1/MCSX1_0 42 P1D/AN13/CTS4_1/INT27_1/TIOB14_2/IC03_1/MAD09_0 86 37 87 23 38 22 39 P59/SIN7_0/TIOB11_2/INT09_2/MNREX_0 P5A/SOT7_0/TIOA13_1/INT18_1/MCSX0_0 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. TIOA09_0, TIOA09_1, and TIOA09_2 cannot be used as the external startup trigger input (TGIN signal) at I/O mode 1 (timer full mode) of the Base Timer. See "Base Timer" in "Handling Devices" for details. Document Number: 002-04680 Rev. *D Page 10 of 140 MB9B210T Series LBE192 (TOP VIEW) 1 A 2 3 UDP0 UDM0 4 5 6 7 8 9 USB ETH VSS PCD PCB VSS VCC VCC0 10 11 12 13 14 PC8 VSS TCK VCC B VSS PA0 PF5 PF3 P61 PD1 PCA PC1 P95 P92 TDO TMS C VCC PA1 PA2 PF4 P60 PD2 PCC PC5 PC0 P93 P90 D PA5 PA4 P05 P06 PA3 PD3 PCE PC6 PC2 P94 P91 P21 P20 UDM1 E VSS P07 P08 P09 P50 P62 PCF PC7 PC3 P25 P24 P23 P22 VCC1 F P51 P52 P53 P54 P55 P56 PD0 PC9 PC4 P29 P28 P27 P26 VSS G VSS P57 P58 P59 P5A P5B VSS VSS PB7 PB6 PB5 PB4 PB3 AVSS H P5C P5D P30 P31 P32 P33 VSS VSS P1F P1E PB2 PB1 PB0 AVRH J VSS P37 P36 P35 P34 P70 VSS P76 P1D P1C P1B P1A P19 AVCC K P38 P39 P3A P3B P4A P4E VSS P74 P7B P7F P18 P16 P15 P17 L P3C P3D P3E P43 P49 P4D VSS P73 P7A P7E P14 P13 P12 VSS M VSS P3F P42 P44 P48 P4C VSS P72 P79 PF0 PF2 P11 P10 VCC N VCC P40 P41 P45 INITX P4B VSS P71 P78 P7D PF1 MD0 MD1 VSS P TRSTX VSS TDI PF6 UDP1 USB C VSS VCC X0A X1A VSS P75 P77 P7C VSS X0 X1 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. TIOA09_0, TIOA09_1, and TIOA09_2 cannot be used as the external startup trigger input (TGIN signal) at I/O mode 1 (timer full mode) of the Base Timer. See "Base Timer" in "Handling Devices" for details. Document Number: 002-04680 Rev. *D Page 11 of 140 MB9B210T Series 4. List of Pin Functions List of pin numbers The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin No LQFP-144 LQFP-176 1 1 BGA-192 C1 Pin Name I/O circuit type VCC Pin state type - PA0 2 2 B2 RTO20_0 TIOA08_0 G I G I G I G I G H G H E F E F FRCK1_0 PA1 3 3 C2 RTO21_0 TIOA09_0 IC10_0 PA2 4 4 C3 RTO22_0 TIOA10_0 IC11_0 PA3 5 5 D5 RTO23_0 TIOA11_0 IC12_0 PA4 RTO24_0 6 6 D2 TIOA12_0 IC13_0 INT03_0 PA5 7 7 D1 RTO25_0 TIOA13_0 INT10_2 P05 TRACED0 8 8 D3 TIOA05_2 SIN4_2 INT00_1 P06 TRACED1 9 9 D4 TIOB05_2 SOT4_2 INT01_1 Document Number: 002-04680 Rev. *D Page 12 of 140 MB9B210T Series LQFP-176 Pin No LQFP-144 Pin Name BGA-192 I/O circuit type Pin state type E G E G E G E H E H E H P07 10 10 E2 TRACED2 ADTG_0 SCK4_2 P08 11 11 E3 TRACED3 TIOA00_2 CTS4_2 P09 TRACECLK 12 12 E4 TIOB00_2 RTS4_2 DTTI2X_0 P50 INT00_0 AIN0_2 13 13 E5 SIN3_1 RTO10_0 IC20_0 MOEX_0 P51 INT01_0 BIN0_2 14 14 F1 SOT3_1 RTO11_0 IC21_0 MWEX_0 P52 INT02_0 ZIN0_2 15 15 F2 SCK3_1 RTO12_0 IC22_0 MDQM0_0 Document Number: 002-04680 Rev. *D Page 13 of 140 MB9B210T Series LQFP-176 Pin No LQFP-144 Pin Name BGA-192 I/O circuit type Pin State type E H E I E I E H E H E H E H P53 SIN6_0 TIOA01_2 16 16 F3 INT07_2 RTO13_0 IC23_0 MDQM1_0 P54 SOT6_0 17 17 F4 TIOB01_2 RTO14_0 MALE_0 P55 SCK6_0 18 18 F5 ADTG_1 RTO15_0 MRDY_0 P56 SIN1_0 19 19 F6 INT08_2 TIOA09_2 DTTI1X_0 MNALE_0 P57 SOT1_0 20 20 G2 TIOB09_2 INT16_1 MNCLE_0 P58 SCK1_0 21 21 G3 TIOA11_2 INT17_1 MNWEX_0 P59 SIN7_0 22 22 G4 TIOB11_2 INT09_2 MNREX_0 Document Number: 002-04680 Rev. *D Page 14 of 140 MB9B210T Series Pin No LQFP-144 LQFP-176 Pin name BGA-192 I/O circuit type Pin state type E H E H E H E H P5A SOT7_0 23 23 G5 TIOA13_1 INT18_1 MCSX0_0 P5B SCK7_0 24 24 G6 TIOB13_1 INT19_1 MCSX1_0 P5C 25 - H1 TIOA06_2 INT28_0 IC20_1 P5D 26 - H2 TIOB06_2 INT29_0 DTTI2X_1 27 25 J1 VSS - P30 28 - H3 AIN0_0 TIOB00_1 E H E H E H E H INT03_2 P31 BIN0_0 29 - H4 TIOB01_1 SCK6_1 INT04_2 P32 ZIN0_0 30 - H5 TIOB02_1 SOT6_1 INT05_2 P33 INT04_0 31 - H6 TIOB03_1 SIN6_1 ADTG_6 Document Number: 002-04680 Rev. *D Page 15 of 140 MB9B210T Series Pin No LQFP-144 LQFP-176 Pin name BGA-192 I/O circuit type Pin state type E I E H E H E H E H E I G I G I G I P34 32 - J5 FRCK0_0 TIOB04_1 P35 33 - J4 IC03_0 TIOB05_1 INT08_1 P36 IC02_0 34 26 J3 SIN5_2 INT09_1 TIOA12_2 MCSX2_0 P37 IC01_0 35 27 J2 SOT5_2 INT10_1 TIOB12_2 MCSX3_0 P38 IC00_0 36 28 K1 SCK5_2 INT11_1 MCLKOUT_0 P39 37 29 K2 DTTI0X_0 ADTG_2 P3A 38 30 K3 RTO00_0 TIOA00_1 P3B 39 31 K4 RTO01_0 TIOA01_1 P3C 40 32 L1 RTO02_0 TIOA02_1 Document Number: 002-04680 Rev. *D Page 16 of 140 MB9B210T Series LQFP-176 Pin No LQFP-144 Pin name BGA-192 I/O circuit type Pin state type G I G I G I P3D 41 33 L2 RTO03_0 TIOA03_1 P3E 42 34 L3 RTO04_0 TIOA04_1 P3F 43 35 M2 RTO05_0 44 36 M1 VSS - 45 37 N1 VCC - TIOA05_1 P40 46 38 N2 TIOA00_0 RTO10_1 G H G H G I G I G I G I INT12_1 P41 47 39 N3 TIOA01_0 RTO11_1 INT13_1 P42 48 40 M3 TIOA02_0 RTO12_1 P43 49 41 L4 TIOA03_0 RTO13_1 ADTG_7 P44 50 42 M4 TIOA04_0 RTO14_1 P45 51 43 N4 TIOA05_0 52 44 P2 C - 53 45 P3 VSS - 54 46 P4 VCC - 55 47 P5 56 48 P6 57 49 N5 RTO15_1 P46 X0A P47 X1A INITX D M D N B C E H P48 58 50 M5 DTTI1X_1 INT14_1 SIN3_2 Document Number: 002-04680 Rev. *D Page 17 of 140 MB9B210T Series LQFP-176 Pin No LQFP-144 Pin name BGA-192 I/O circuit type Pin state type E I E I E I E I E I E H E I E H P49 TIOB00_0 59 51 L5 IC10_1 AIN0_1 SOT3_2 P4A TIOB01_0 60 52 K5 IC11_1 BIN0_1 SCK3_2 MADATA00_0 P4B TIOB02_0 61 53 N6 IC12_1 ZIN0_1 MADATA01_0 P4C TIOB03_0 62 54 M6 IC13_1 SCK7_1 AIN1_2 MADATA02_0 P4D TIOB04_0 63 55 L6 FRCK1_1 SOT7_1 BIN1_2 MADATA03_0 P4E TIOB05_0 64 56 K6 INT06_2 SIN7_1 ZIN1_2 MADATA04_0 P70 65 57 J6 TIOA04_2 MADATA05_0 P71 66 58 N8 INT13_2 TIOB04_2 MADATA06_0 Document Number: 002-04680 Rev. *D Page 18 of 140 MB9B210T Series Pin No LQFP-144 LQFP-176 Pin name BGA-192 I/O circuit type Pin state type E H E H E I E H E H E H E I E H P72 SIN2_0 67 59 M8 INT14_2 AIN2_0 MADATA07_0 P73 SOT2_0 68 60 L8 INT15_2 BIN2_0 MADATA08_0 P74 69 61 K8 SCK2_0 ZIN2_0 MADATA09_0 P75 SIN3_0 70 62 P8 ADTG_8 INT07_1 MADATA10_0 P76 SOT3_0 71 63 J8 TIOA07_2 INT11_2 MADATA11_0 P77 SCK3_0 72 64 P9 TIOB07_2 INT12_2 MADATA12_0 P78 73 65 N9 AIN1_0 TIOA15_0 MADATA13_0 P79 BIN1_0 74 66 M9 TIOB15_0 INT23_1 MADATA14_0 - - E1 VSS - - - G1 VSS - Document Number: 002-04680 Rev. *D Page 19 of 140 MB9B210T Series Pin No LQFP-144 LQFP-176 Pin name BGA-192 I/O circuit type Pin state type E H E H E H E H E H E H I* H I* H I* H C P J D A A A B P7A 75 67 L9 ZIN1_0 INT24_1 MADATA15_0 P7B 76 - K9 TIOB07_0 INT10_0 P7C 77 - P10 TIOA07_0 INT11_0 P7D 78 - N10 TIOA14_1 FRCK2_1 INT12_0 P7E 79 - L10 TIOB14_1 IC21_1 INT24_0 P7F 80 - K10 TIOA15_1 IC22_1 INT25_0 PF0 TIOB15_1 81 - M10 SIN1_2 INT13_0 IC23_1 PF1 82 - N11 TIOA08_1 SOT1_2 INT14_0 PF2 83 - M11 TIOB08_1 SCK1_2 INT15_0 84 68 N13 85 69 N12 86 70 P12 87 71 P13 Document Number: 002-04680 Rev. *D PE0 MD1 MD0 PE2 X0 PE3 X1 Page 20 of 140 MB9B210T Series LQFP-176 88 Pin No LQFP-144 72 BGA-192 N14 VSS - 89 73 M14 VCC - - - L7 VSS - - - K7 VSS - Document Number: 002-04680 Rev. *D Pin name I/O circuit type Pin state type Page 21 of 140 MB9B210T Series Pin No LQFP-176 LQFP-144 Pin name BGA-192 I/O circuit type Pin state type F K F L F K F K F L F K F L F L P10 90 74 M13 AN00 MCSX7_0 P11 AN01 91 75 M12 SIN1_1 INT02_1 FRCK0_2 MCSX6_0 P12 AN02 92 76 L13 SOT1_1 IC00_2 MCSX5_0 P13 AN03 93 77 L12 SCK1_1 IC01_2 MCSX4_0 P14 AN04 94 78 L11 SIN0_1 INT03_1 IC02_2 MAD00_0 P15 AN05 95 79 K13 SOT0_1 IC03_2 MAD01_0 P16 AN06 96 80 K12 SCK0_1 INT20_1 MAD02_0 P17 AN07 97 81 K14 SIN2_2 INT04_1 MAD03_0 - - P7 VSS - - - P11 VSS - - - L14 VSS - Document Number: 002-04680 Rev. *D Page 22 of 140 MB9B210T Series LQFP-176 Pin No LQFP-144 Pin name BGA-192 I/O circuit type Pin state type F L F L F L F L F L F L F L P18 AN08 98 82 K11 SOT2_2 INT21_1 MAD04_0 P19 AN09 99 83 J13 SCK2_2 INT22_1 MAD05_0 P1A AN10 SIN4_1 100 84 J12 INT05_1 TIOA13_2 IC00_1 MAD06_0 P1B AN11 SOT4_1 101 85 J11 INT25_1 TIOB13_2 IC01_1 MAD07_0 P1C AN12 SCK4_1 102 86 J10 INT26_1 TIOA14_2 IC02_1 MAD08_0 P1D AN13 CTS4_1 103 87 J9 INT27_1 TIOB14_2 IC03_1 MAD09_0 P1E AN14 RTS4_1 104 88 H10 INT28_1 TIOA15_2 DTTI0X_1 MAD10_0 Document Number: 002-04680 Rev. *D Page 23 of 140 MB9B210T Series Pin No LQFP-144 LQFP-176 Pin name BGA-192 I/O circuit type Pin state type F L P1F AN15 ADTG_5 105 89 H9 INT29_1 TIOB15_2 FRCK0_1 MAD11_0 106 90 J14 AVCC - 107 91 H14 AVRH - 108 92 G14 AVSS - 109 93 F14 VSS - PB0 AN16 110 - H13 TIOA09_1 F L F L F L F L F L F L SIN7_2 INT16_0 PB1 AN17 111 - H12 TIOB09_1 SOT7_2 INT17_0 PB2 AN18 112 - H11 TIOA10_1 SCK7_2 INT18_0 PB3 113 - G13 AN19 TIOB10_1 INT19_0 PB4 AN20 114 - G12 TIOA11_1 SIN0_2 INT20_0 PB5 AN21 115 - G11 TIOB11_1 SOT0_2 INT21_0 AIN2_2 - - G7 VSS - - - J7 VSS - Document Number: 002-04680 Rev. *D Page 24 of 140 MB9B210T Series Pin No LQFP-144 LQFP-176 Pin name BGA-192 I/O circuit type Pin state type F L F L F K F L F L F K F K F L PB6 AN22 116 - G10 TIOA12_1 SCK0_2 INT22_0 BIN2_2 PB7 AN23 117 - G9 TIOB12_1 INT23_0 ZIN2_2 P29 118 94 F10 AN24 MAD12_0 P28 AN25 119 95 F11 ADTG_4 INT09_0 RTO05_1 MAD13_0 P27 AN26 120 96 F12 INT02_2 RTO04_1 MAD14_0 P26 AN27 121 97 F13 SCK2_1 RTO03_1 MAD15_0 P25 AN28 122 98 E10 SOT2_1 RTO02_1 MAD16_0 P24 AN29 123 99 E11 SIN2_1 INT01_2 RTO01_1 MAD17_0 Document Number: 002-04680 Rev. *D Page 25 of 140 MB9B210T Series LQFP-176 Pin No LQFP-144 Pin name BGA-192 I/O circuit type Pin state type F K F K E H E H I* J P23 AN30 124 100 E12 SCK0_0 TIOA07_1 RTO00_1 P22 AN31 125 101 E13 SOT0_0 TIOB07_1 ZIN1_1 P21 126 102 D12 SIN0_0 INT06_1 BIN1_1 P20 INT05_0 127 103 D13 CROUT_0 UHCONX1 AIN1_1 MAD18_0 PF6 128 104 C13 FRCK2_0 129 105 E14 130 106 D14 131 107 C14 132 108 B14 VSS - 133 109 A13 VCC - NMIX 134 110 B13 135 111 A12 136 112 C12 137 113 B12 138 114 B11 USBVCC1 P82 UDM1 P83 UDP1 P00 TRSTX P01 TCK SWCLK P02 TDI H O H O E E E E E E E E E E P03 Document Number: 002-04680 Rev. *D TMS SWDIO P04 TDO SWO Page 26 of 140 MB9B210T Series Pin No LQFP-144 LQFP-176 Pin name BGA-192 I/O circuit type Pin state type E H P90 TIOB08_0 139 - C11 RTO20_1 INT30_0 MAD19_0 - - A8 Document Number: 002-04680 Rev. *D VSS - Page 27 of 140 MB9B210T Series Pin No LQFP-144 LQFP-176 Pin name BGA-192 I/O circuit type Pin state type E H E I E I E H E H K Q K Q K Q K Q K Q K Q P91 TIOB09_0 140 - D11 RTO21_1 INT31_0 MAD20_0 P92 TIOB10_0 141 - B10 RTO22_1 SIN5_1 MAD21_0 P93 TIOB11_0 142 - C10 RTO23_1 SOT5_1 MAD22_0 P94 TIOB12_0 143 - D10 RTO24_1 SCK5_1 INT26_0 MAD23_0 P95 TIOB13_0 144 - B9 RTO25_1 INT27_0 MAD24_0 145 115 C9 146 116 B8 147 117 D9 PC0 E_RXER PC1 E_RX03 PC2 E_RX02 PC3 148 118 E9 E_RX01 TIOA06_1 PC4 149 119 F9 E_RX00 TIOA08_2 PC5 150 120 C8 E_RXDV TIOA10_2 - - A5 Document Number: 002-04680 Rev. *D VSS - Page 28 of 140 MB9B210T Series Pin No LQFP-144 LQFP-176 Pin name BGA-192 I/O circuit type Pin state type K Q L Q K Q K Q K Q PC6 151 121 D8 E_MDIO TIOA14_0 PC7 152 122 E8 E_MDC CROUT_1 PC8 153 123 A10 154 124 F8 155 125 B7 156 126 A9 ETHVCC - 157 127 A11 VSS - 158 128 A7 159 129 C7 160 130 A6 E_RXCK_REFCK PC9 E_COL PCA E_CRS PCB E_COUT PCC PCD E_TCK L Q K Q K Q L Q L Q L R L R PCE 161 131 D7 E_TXER RTS4_0 TIOB06_1 PCF 162 132 E7 E_TX03 CTS4_0 TIOB08_2 PD0 E_TX02 163 133 F7 SCK4_0 TIOB10_2 INT30_1 PD1 E_TX01 164 134 B6 SOT4_0 TIOB14_0 INT31_1 - - N7 VSS - - - G8 VSS - - - H7 VSS - - - H8 VSS - Document Number: 002-04680 Rev. *D Page 29 of 140 MB9B210T Series Pin No LQFP-144 LQFP-176 Pin name BGA-192 I/O circuit type Pin state type L R L Q E Q E I E H I* H I* H I* H PD2 E_TX00 165 135 C6 SIN4_0 TIOA03_2 INT00_2 PD3 166 136 D6 E_TXEN TIOB03_2 P62 167 137 E6 E_PPS SCK5_0 ADTG_3 P61 168 138 B5 SOT5_0 TIOB02_2 UHCONX0 P60 169 139 C5 SIN5_0 TIOA02_2 INT15_1 PF3 TIOA06_0 170 - B4 SIN6_2 INT06_0 AIN2_1 PF4 TIOB06_0 171 - C4 SOT6_2 INT07_0 BIN2_1 PF5 SCK6_2 172 140 B3 173 141 A4 174 142 A3 175 143 A2 176 144 B1 VSS - M7 VSS - INT08_0 ZIN2_1 *: 5 V tolerant I/O Document Number: 002-04680 Rev. *D USBVCC0 P80 UDM0 P81 UDP0 H O H O Page 30 of 140 MB9B210T Series List of pin functions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Module ADC ADTG_0 LQFP176 10 Pin No LQFP144 10 BGA192 E2 ADTG_1 18 18 F5 Pin name Function ADTG_2 37 29 K2 ADTG_3 167 137 E6 ADTG_4 119 95 F11 ADTG_5 105 89 H9 ADTG_6 31 - H6 ADTG_7 49 41 L4 ADTG_8 70 62 P8 AN00 90 74 M13 AN01 91 75 M12 AN02 92 76 L13 AN03 93 77 L12 AN04 94 78 L11 AN05 95 79 K13 AN06 96 80 K12 AN07 97 81 K14 AN08 98 82 K11 AN09 99 83 J13 AN10 100 84 J12 AN11 101 85 J11 AN12 102 86 J10 AN13 103 87 J9 AN14 104 88 H10 105 89 H9 110 - H13 AN17 111 - H12 AN18 112 - H11 AN19 113 - G13 AN20 114 - G12 AN21 115 - G11 AN22 116 - G10 AN23 117 - G9 AN24 118 94 F10 AN25 119 95 F11 AN26 120 96 F12 AN27 121 97 F13 AN28 122 98 E10 AN29 123 99 E11 AN30 124 100 E12 AN31 125 101 E13 AN15 AN16 Document Number: 002-04680 Rev. *D A/D converter external trigger input pin A/D converter analog input pin. ANxx describes ADC ch.xx. Page 31 of 140 MB9B210T Series Module Base Timer 0 Pin name TIOA0_0 TIOA0_1 Base timer ch.0 TIOA pin K3 11 E3 L5 28 - H3 TIOB0_2 12 12 E4 TIOA1_0 47 39 N3 39 31 K4 16 16 F3 60 52 K5 29 - H4 TIOB1_2 17 17 F4 TIOA2_0 48 40 M3 TIOA1_1 Base timer ch.0 TIOB pin Base timer ch.1 TIOA pin TIOA2_1 Base timer ch.1 TIOB pin 40 32 L1 169 139 C5 61 53 N6 30 - H5 TIOB2_2 168 138 B5 TIOA3_0 49 41 L4 Base timer ch.2 TIOA pin TIOB2_0 TIOB2_1 TIOA3_1 Base timer ch.2 TIOB pin 41 33 L2 165 135 C6 62 54 M6 31 - H6 TIOB3_2 166 136 D6 TIOA4_0 50 42 M4 42 34 L3 65 57 J6 63 55 L6 32 - J5 TIOB4_2 66 58 N8 TIOA5_0 51 43 N4 43 35 M2 8 8 D3 64 56 K6 33 - J4 TIOB5_2 9 9 D4 TIOA6_0 170 - B4 148 118 E9 25 - H1 171 - C4 161 131 D7 26 - H2 Base timer ch.3 TIOA pin TIOA3_2 TIOB3_0 TIOB3_1 TIOA4_1 Base timer ch.3 TIOB pin Base timer ch.4 TIOA pin TIOA4_2 TIOB4_0 TIOB4_1 TIOA5_1 Base timer ch.4 TIOB pin Base timer ch.5 TIOA pin TIOA5_2 TIOB5_0 TIOB5_1 Base Timer 6 30 51 TIOA2_2 Base Timer 5 38 11 TIOB1_1 Base Timer 4 BGA192 N2 59 TIOB1_0 Base Timer 3 Pin No LQFP144 38 TIOB0_0 TIOA1_2 Base Timer 2 LQFP176 46 TIOA0_2 TIOB0_1 Base Timer 1 Function TIOA6_1 Base timer ch.5 TIOB pin Base timer ch.6 TIOA pin TIOA6_2 TIOB6_0 TIOB6_1 TIOB6_2 Document Number: 002-04680 Rev. *D Base timer ch.6 TIOB pin Page 32 of 140 MB9B210T Series Module Base Timer 7 LQFP176 77 Pin No LQFP144 - BGA192 P10 124 100 E12 TIOA07_2 71 63 J8 TIOB07_0 76 - K9 Pin name TIOA07_0 TIOA07_1 TIOB07_1 Base Timer 8 Function Base timer ch.7 TIOA pin 125 101 E13 TIOB07_2 72 64 P9 TIOA08_0 2 2 B2 TIOA08_1 Base timer ch.7 TIOB pin 82 - N11 149 119 F9 139 - C11 83 - M11 TIOB08_2 162 132 E7 TIOA09_0 3 3 C2 110 - H13 19 19 F6 140 - D11 111 - H12 TIOB09_2 20 20 G2 TIOA10_0 4 4 C3 Base timer ch.8 TIOA pin TIOA08_2 TIOB08_0 TIOB08_1 Base Timer 9 TIOA09_1 Base timer ch.8 TIOB pin Base timer ch.9 TIOA pin TIOA09_2 TIOB09_0 TIOB09_1 Base Timer 10 TIOA10_1 Base timer ch.9 TIOB pin 112 - H11 150 120 C8 141 - B10 113 - G13 TIOB10_2 163 133 F7 TIOA11_0 5 5 D5 114 - G12 21 21 G3 142 - C10 115 - G11 TIOB11_2 22 22 G4 TIOA12_0 6 6 D2 116 - G10 34 26 J3 143 - D10 117 - G9 TIOB12_2 35 27 J2 TIOA13_0 7 7 D1 23 23 G5 100 84 J12 Base timer ch.10 TIOA pin TIOA10_2 TIOB10_0 TIOB10_1 Base Timer 11 TIOA11_1 Base timer ch.10 TIOB pin Base timer ch.11 TIOA pin TIOA11_2 TIOB11_0 TIOB11_1 Base Timer 12 TIOA12_1 Base timer ch.11 TIOB pin Base timer ch.12 TIOA pin TIOA12_2 TIOB12_0 TIOB12_1 Base Timer 13 TIOA13_1 Base timer ch.12 TIOB pin Base timer ch.13 TIOA pin TIOA13_2 TIOB13_0 TIOB13_1 TIOB13_2 Document Number: 002-04680 Rev. *D Base timer ch.13 TIOB pin 144 - B9 24 24 G6 101 85 J11 Page 33 of 140 MB9B210T Series Module Base Timer 14 Pin name TIOA14_0 TIOA14_1 Base timer ch.14 TIOA pin Pin No LQFP144 121 BGA192 D8 78 - N10 102 86 J10 TIOB14_0 164 134 B6 79 - L10 TIOB14_2 103 87 J9 TIOA15_0 73 65 N9 TIOA15_1 Base timer ch.14 TIOB pin Base timer ch.15 TIOA pin TIOA15_2 TIOB15_0 TIOB15_1 Base timer ch.15 TIOB pin TIOB15_2 Debugger LQFP176 151 TIOA14_2 TIOB14_1 Base Timer 15 Function 80 - K10 104 88 H10 74 66 M9 81 - M10 105 89 H9 135 111 A12 137 113 B12 SWO Serial wire debug interface clock input pin Serial wire debug interface data input / output pin Serial wire viewer output pin 138 114 B11 TCK JTAG test clock input pin 135 111 A12 TDI JTAG test data input pin 136 112 C12 TDO JTAG debug data output pin 138 114 B11 TMS JTAG test mode state input/output pin 137 113 B12 TRACECLK Trace CLK output pin of ETM 12 12 E4 TRACED0 8 8 D3 TRACED1 9 9 D4 10 10 E2 11 11 E3 134 110 B13 SWCLK SWDIO TRACED2 Trace data output pin of ETM TRACED3 TRSTX Document Number: 002-04680 Rev. *D JTAG test reset input pin Page 34 of 140 MB9B210T Series Module External Bus MAD00_0 LQFP176 94 Pin No LQFP144 78 BGA192 L11 MAD01_0 95 79 K13 MAD02_0 96 80 K12 MAD03_0 97 81 K14 MAD04_0 98 82 K11 MAD05_0 99 83 J13 MAD06_0 100 84 J12 MAD07_0 101 85 J11 MAD08_0 102 86 J10 MAD09_0 103 87 J9 MAD10_0 104 88 H10 105 89 H9 118 94 F10 MAD13_0 119 95 F11 MAD14_0 120 96 F12 MAD15_0 121 97 F13 MAD16_0 122 98 E10 MAD17_0 123 99 E11 MAD18_0 127 103 D13 MAD19_0 139 - C11 MAD20_0 140 - D11 MAD21_0 141 - B10 MAD22_0 142 - C10 MAD23_0 143 - D10 MAD24_0 144 - B9 MCSX0_0 23 23 G5 MCSX1_0 24 24 G6 MCSX2_0 34 26 J3 MCSX3_0 35 27 J2 Pin name Function MAD11_0 MAD12_0 MCSX4_0 External bus interface address bus External bus interface chip select output pin 93 77 L12 MCSX5_0 92 76 L13 MCSX6_0 91 75 M12 MCSX7_0 90 74 M13 15 15 F2 16 16 F3 13 13 E5 14 14 F1 MDQM0_0 MDQM1_0 MOEX_0 MWEX_0 Document Number: 002-04680 Rev. *D External bus interface byte mask signal output External bus interface read enable signal for SRAM External bus interface write enable signal for SRAM Page 35 of 140 MB9B210T Series Module External Bus LQFP176 Pin No LQFP144 BGA192 19 19 F6 20 20 G2 22 22 G4 21 21 G3 MADATA00_0 60 52 K5 MADATA01_0 61 53 N6 MADATA02_0 62 54 M6 MADATA03_0 63 55 L6 MADATA04_0 64 56 K6 MADATA05_0 65 57 J6 MADATA06_0 66 58 N8 67 59 M8 68 60 L8 MADATA09_0 69 61 K8 MADATA10_0 70 62 P8 MADATA11_0 71 63 J8 MADATA12_0 72 64 P9 MADATA13_0 73 65 N9 MADATA14_0 74 66 M9 75 67 L9 17 17 F4 18 18 F5 36 28 K1 Pin name MNALE_0 MNCLE_0 MNREX_0 MNWEX_0 MADATA07_0 MADATA08_0 Function External bus interface ALE signal to control NAND Flash output pin External bus interface CLE signal to control NAND Flash output pin External bus interface read enable signal to control NAND Flash External bus interface write enable signal to control NAND Flash External bus interface data bus (Address / data multiplex bus) MADATA15_0 MALE_0 MRDY_0 MCLKOUT_0 Document Number: 002-04680 Rev. *D External bus interface Address Latch enable output signal for multiplex External bus interface external RDY input signal External bus interface external clock output Page 36 of 140 MB9B210T Series Module External Interrupt Function LQFP176 13 Pin No LQFP144 13 BGA192 E5 External interrupt request 00 input pin 8 8 D3 INT00_2 165 135 C6 INT01_0 14 14 F1 Pin name INT00_0 INT00_1 INT01_1 9 9 D4 INT01_2 123 99 E11 INT02_0 15 15 F2 91 75 M12 120 96 F12 INT02_1 External interrupt request 01 input pin External interrupt request 02 input pin INT02_2 INT03_0 6 6 D2 94 78 L11 INT03_2 28 - H3 INT04_0 31 - H6 97 81 K14 29 - H4 INT03_1 INT04_1 External interrupt request 03 input pin External interrupt request 04 input pin INT04_2 INT05_0 INT05_1 INT05_2 INT06_0 INT06_1 127 103 D13 External interrupt request 05 input pin 100 84 J12 External interrupt request 06 input pin 30 170 126 102 H5 B4 D12 64 56 K6 171 - C4 70 62 P8 INT06_2 INT07_0 INT07_1 External interrupt request 07 input pin INT07_2 16 16 F3 INT08_0 172 140 B3 INT08_1 33 - J4 INT08_2 19 19 F6 INT09_0 119 95 F11 34 26 J3 22 22 G4 INT09_1 External interrupt request 08 input pin External interrupt request 09 input pin INT09_2 INT10_0 INT10_1 INT10_2 INT11_0 INT11_1 76 - K9 External interrupt request 10 input pin 35 27 J2 External interrupt request 11 input pin 7 77 36 7 28 D1 P10 K1 71 63 J8 INT11_2 INT12_0 78 - N10 External interrupt request 12 input pin 46 38 N2 External interrupt request 13 input pin 72 81 47 64 39 P9 M10 N3 INT13_2 66 58 N8 INT14_0 82 - N11 58 67 50 59 M5 M8 INT12_1 INT12_2 INT13_0 INT13_1 INT14_1 INT14_2 Document Number: 002-04680 Rev. *D External interrupt request 14 input pin Page 37 of 140 MB9B210T Series Module External Interrupt Function LQFP176 83 Pin No LQFP144 - BGA192 M11 External interrupt request 15 input pin 169 139 C5 INT15_2 68 60 L8 INT16_0 110 - H13 Pin name INT15_0 INT15_1 INT16_1 INT17_0 INT17_1 INT18_0 INT18_1 INT19_0 INT19_1 INT20_0 INT20_1 INT21_0 INT21_1 INT22_0 INT22_1 INT23_0 INT23_1 INT24_0 INT24_1 INT25_0 INT25_1 INT26_0 INT26_1 INT27_0 INT27_1 INT28_0 INT28_1 INT29_0 INT29_1 INT30_0 INT30_1 INT31_0 INT31_1 NMIX Document Number: 002-04680 Rev. *D External interrupt request 16 input pin External interrupt request 17 input pin External interrupt request 18 input pin External interrupt request 19 input pin External interrupt request 20 input pin External interrupt request 21 input pin External interrupt request 22 input pin External interrupt request 23 input pin External interrupt request 24 input pin External interrupt request 25 input pin External interrupt request 26 input pin External interrupt request 27 input pin External interrupt request 28 input pin External interrupt request 29 input pin External interrupt request 30 input pin External interrupt request 31 input pin Non-Maskable Interrupt input 20 20 G2 111 - H12 21 21 G3 112 - H11 23 23 G5 113 - G13 24 24 G6 114 - G12 96 80 K12 115 - G11 98 82 K11 116 - G10 99 83 J13 117 - G9 74 66 M9 79 - L10 75 67 L9 80 - K10 101 85 J11 143 - D10 102 86 J10 144 - B9 103 87 J9 25 - H1 104 88 H10 26 - H2 105 89 H9 139 - C11 163 133 F7 140 - D11 164 134 B6 128 104 C13 Page 38 of 140 MB9B210T Series P00 LQFP176 134 Pin No LQFP144 110 BGA192 B13 P01 135 111 A12 P02 136 112 C12 P03 137 113 B12 138 114 B11 8 8 D3 P06 9 9 D4 P07 10 10 E2 P08 11 11 E3 P09 12 12 E4 P10 90 74 M13 P11 91 75 M12 P12 92 76 L13 P13 93 77 L12 P14 94 78 L11 P15 95 79 K13 P16 96 80 K12 97 81 K14 98 82 K11 P19 99 83 J13 P1A 100 84 J12 P1B 101 85 J11 P1C 102 86 J10 P1D 103 87 J9 P1E 104 88 H10 P1F 105 89 H9 P20 127 103 D13 P21 126 102 D12 P22 125 101 E13 P23 124 100 E12 P24 123 99 E11 Module GPIO Pin name P04 P05 P17 P18 P25 Function General-purpose I/O port 0 General-purpose I/O port 1 General-purpose I/O port 2 122 98 E10 P26 121 97 F13 P27 120 96 F12 P28 119 95 F11 P29 118 94 F10 Document Number: 002-04680 Rev. *D Page 39 of 140 MB9B210T Series Module GPIO Pin name P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P3A P3B P3C P3D P3E P3F P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P4A P4B P4C P4D P4E P50 P51 P52 P53 P54 P55 P56 P57 P58 P59 P5A P5B P5C P5D Document Number: 002-04680 Rev. *D Function General-purpose I/O port 3 General-purpose I/O port 4 General-purpose I/O port 5 LQFP176 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 46 47 48 49 50 51 55 56 58 59 60 61 62 63 64 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Pin No LQFP144 26 27 28 29 30 31 32 33 34 35 38 39 40 41 42 43 47 48 50 51 52 53 54 55 56 13 14 15 16 17 18 19 20 21 22 23 24 - BGA192 H3 H4 H5 H6 J5 J4 J3 J2 K1 K2 K3 K4 L1 L2 L3 M2 N2 N3 M3 L4 M4 N4 P5 P6 M5 L5 K5 N6 M6 L6 K6 E5 F1 F2 F3 F4 F5 F6 G2 G3 G4 G5 G6 H1 H2 Page 40 of 140 MB9B210T Series Module GPIO Pin name P60 P61 P62 P70 P71 P72 P73 P74 P75 P76 P77 P78 P79 P7A P7B P7C P7D P7E P7F P80 P81 P82 P83 P90 P91 P92 P93 P94 P95 PA0 PA1 PA2 PA3 PA4 PA5 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 Document Number: 002-04680 Rev. *D Function General-purpose I/O port 6 General-purpose I/O port 7 General-purpose I/O port 8 General-purpose I/O port 9 General-purpose I/O port A General-purpose I/O port B LQFP176 169 168 167 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 174 175 130 131 139 140 141 142 143 144 2 3 4 5 6 7 110 111 112 113 114 115 116 117 Pin No LQFP144 139 138 137 57 58 59 60 61 62 63 64 65 66 67 142 143 106 107 2 3 4 5 6 7 - BGA192 C5 B5 E6 J6 N8 M8 L8 K8 P8 J8 P9 N9 M9 L9 K9 P10 N10 L10 K10 A3 A2 D14 C14 C11 D11 B10 C10 D10 B9 B2 C2 C3 D5 D2 D1 H13 H12 H11 G13 G12 G11 G10 G9 Page 41 of 140 MB9B210T Series Module GPIO Pin name PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PCA PCB PCC PCD PCE PCF PD0 PD1 PD2 PD3 PE0 PE2 PE3 PF0 PF1 PF2 PF3 PF4 PF5 PF6 Document Number: 002-04680 Rev. *D Function General-purpose I/O port C General-purpose I/O port D General-purpose I/O port E General-purpose I/O port F* LQFP176 145 146 147 148 149 150 151 152 153 154 155 158 159 160 161 162 163 164 165 166 84 86 87 81 82 83 170 171 172 128 Pin no LQFP144 115 116 117 118 119 120 121 122 123 124 125 128 129 130 131 132 133 134 135 136 68 70 71 140 104 BGA192 C9 B8 D9 E9 F9 C8 D8 E8 A10 F8 B7 A7 C7 A6 D7 E7 F7 B6 C6 D6 N13 P12 P13 M10 N11 M11 B4 C4 B3 C13 Page 42 of 140 MB9B210T Series Module MultiFunction Serial 0 Pin name Pin No. LQFP144 102 BGA192 D12 94 78 L11 114 - G12 Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA0 when it is used in an I2C (operation mode 4). 125 101 E13 95 79 K13 115 - G11 Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is used in a CSIO (operation mode 2) and as SCL0 when it is used in an I2C (operation mode 4). 124 100 E12 96 80 K12 116 - G10 19 19 F6 91 75 M12 81 - M10 Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA1 when it is used in an I2C (operation mode 4). 20 20 G2 92 76 L13 82 - N11 Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used in a CSIO (operation mode 2) and as SCL1 when it is used in an I2C (operation mode 4). 21 21 G3 93 77 L12 83 - M11 SIN0_0 SIN0_1 SIN0_2 SOT0_0 (SDA0_0) SOT0_1 (SDA0_1) SOT0_2 (SDA0_2) SCK0_0 (SCL0_0) SCK0_1 (SCL0_1) SCK0_2 (SCL0_2) MultiFunction Serial 1 LQFP176 126 Function Multi-function serial interface ch.0 input pin SIN1_0 SIN1_1 SIN1_2 SOT1_0 (SDA1_0) SOT1_1 (SDA1_1) SOT1_2 (SDA1_2) SCK1_0 (SCL1_0) SCK1_1 (SCL1_1) SCK1_2 (SCL1_2) Document Number: 002-04680 Rev. *D Multi-function serial interface ch.1 input pin Page 43 of 140 MB9B210T Series Module MultiFunction Serial 2 Pin name SIN2_0 SIN2_1 SIN2_2 SOT2_0 (SDA2_0) SOT2_1 (SDA2_1) SOT2_2 (SDA2_2) SCK2_0 (SCL2_0) SCK2_1 (SCL2_1) SCK2_2 (SCL2_2) MultiFunction Serial 3 Function SIN3_2 SOT3_0 (SDA3_0) SOT3_1 (SDA3_1) SOT3_2 (SDA3_2) SCK3_0 (SCL3_0) SCK3_1 (SCL3_1) SCK3_2 (SCL3_2) Document Number: 002-04680 Rev. *D Pin No. LQFP144 BGA192 M8 67 59 Multi-function serial interface ch.2 input pin 123 99 E11 97 81 K14 Multi-function serial interface ch.2 output pin. This pin operates as SOT2 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA2 when it is used in an I2C (operation mode 4). 68 60 L8 122 98 E10 98 82 K11 69 61 K8 121 97 F13 99 83 J13 Multi-function serial interface ch.2 clock I/O pin. This pin operates as SCK2 when it is used in a CSIO (operation mode 2) and as SCL2 when it is used in an I2C (operation mode 4). SIN3_0 SIN3_1 LQFP176 70 62 P8 Multi-function serial interface ch.3 input pin 13 13 E5 58 50 M5 Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an I2C (operation mode 4). 71 63 J8 14 14 F1 59 51 L5 Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when it is used in a CSIO (operation mode 2) and as SCL3 when it is used in an I2C (operation mode 4). 72 64 P9 15 15 F2 60 52 K5 Page 44 of 140 MB9B210T Series Module MultiFunction Serial 4 Pin name LQFP176 165 Pin No LQFP144 135 BGA192 C6 Multi-function serial interface ch.4 input pin 100 84 J12 8 8 D3 Multi-function serial interface ch.4 output pin. This pin operates as SOT4 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA4 when it is used in an I2C (operation mode 4). 164 134 B6 101 85 J11 9 9 D4 Multi-function serial interface ch.4 clock I/O pin. This pin operates as SCK4 when it is used in a CSIO (operation mode 2) and as SCL4 when it is used in an I2C (operation mode 4). 163 133 F7 102 86 J10 10 10 E2 161 131 D7 104 88 H10 12 12 E4 162 132 E7 103 87 J9 Function SIN4_0 SIN4_1 SIN4_2 SOT4_0 (SDA4_0) SOT4_1 (SDA4_1) SOT4_2 (SDA4_2) SCK4_0 (SCL4_0) SCK4_1 (SCL4_1) SCK4_2 (SCL4_2) RTS4_0 RTS4_1 RTS4_2 Multi-function serial interface ch.4 RTS output pin CTS4_0 CTS4_1 CTS4_2 MultiFunction Serial 5 Multi-function serial interface ch.4 CTS input pin SIN5_0 SIN5_1 SIN5_2 SOT5_0 (SDA5_0) SOT5_1 (SDA5_1) SOT5_2 (SDA5_2) SCK5_0 (SCL5_0) SCK5_1 (SCL5_1) SCK5_2 (SCL5_2) Document Number: 002-04680 Rev. *D 11 11 E3 169 139 C5 Multi-function serial interface ch.5 input pin 141 - B10 34 26 J3 Multi-function serial interface ch.5 output pin. This pin operates as SOT5 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA5 when it is used in an I2C (operation mode 4). 168 138 B5 142 - C10 35 27 J2 Multi-function serial interface ch.5 clock I/O pin. This pin operates as SCK5 when it is used in a CSIO (operation mode 2) and as SCL5 when it is used in an I2C (operation mode 4). 167 137 E6 143 - D10 36 28 K1 Page 45 of 140 MB9B210T Series Module MultiFunction Serial 6 Pin name SIN6_0 SIN6_1 SIN6_2 SOT6_0 (SDA6_0) SOT6_1 (SDA6_1) SOT6_2 (SDA6_2) SCK6_0 (SCL6_0) SCK6_1 (SCL6_1) SCK6_2 (SCL6_2) MultiFunction Serial 7 Function Multi-function serial interface ch.6 input pin Multi-function serial interface ch.6 output pin. This pin operates as SOT6 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.6 clock I/O pin. This pin operates as SCK6 when it is used in a CSIO (operation mode 2) and as SCL6 when it is used in an I2C (operation mode 4). SIN7_0 SIN7_1 SIN7_2 SOT7_0 (SDA7_0) SOT7_1 (SDA7_1) SOT7_2 (SDA7_2) SCK7_0 (SCL7_0) SCK7_1 (SCL7_1) SCK7_2 (SCL7_2) Document Number: 002-04680 Rev. *D Multi-function serial interface ch.7 input pin Multi-function serial interface ch.7 output pin. This pin operates as SOT7 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA7 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is used in a CSIO (operation mode 2) and as SCL7 when it is used in an I2C (operation mode 4). LQFP176 16 Pin No LQFP144 16 BGA192 F3 31 - H6 170 - B4 17 17 F4 30 - H5 171 - C4 18 18 F5 29 - H4 172 140 B3 22 22 G4 64 56 K6 110 - H13 23 23 G5 63 55 L6 111 - H12 24 24 G6 62 54 M6 112 - H11 Page 46 of 140 MB9B210T Series Module MultiFunction Timer 0 LQFP176 Pin No LQFP144 BGA192 37 29 K2 104 88 H10 32 - J5 105 89 H9 91 75 M12 IC00_0 36 28 K1 IC00_1 100 84 J12 IC00_2 92 76 L13 IC01_0 35 27 J2 101 85 J11 93 77 L12 Pin name DTTI0X_0 DTTI0X_1 Function Input signal controlling wave form generator outputs RTO00 to RTO05 of multi-function timer 0. FRCK0_0 FRCK0_1 FRCK0_2 16-bit free-run timer ch.0 external clock input pin IC01_1 IC01_2 IC02_0 16-bit input capture ch.0 input pin of multi-function timer 0. ICxx describes channel number. 34 26 J3 IC02_1 102 86 J10 IC02_2 94 78 L11 IC03_0 33 - J4 IC03_1 103 87 J9 IC03_2 95 79 K13 38 30 K3 124 100 E12 39 31 K4 123 99 E11 40 32 L1 122 98 E10 41 33 L2 121 97 F13 42 34 L3 120 96 F12 43 35 M2 119 95 F11 RTO00_0 (PPG00_0) RTO00_1 (PPG00_1) RTO01_0 (PPG00_0) RTO01_1 (PPG00_1) RTO02_0 (PPG02_0) RTO02_1 (PPG02_1) RTO03_0 (PPG02_0) RTO03_1 (PPG02_1) RTO04_0 (PPG04_0) RTO04_1 (PPG04_1) RTO05_0 (PPG04_0) RTO05_1 (PPG04_1) Document Number: 002-04680 Rev. *D Wave form generator output of multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output modes. Wave form generator output of multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output modes. Wave form generator output of multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output modes. Wave form generator output of multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output modes. Wave form generator output of multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output modes. Wave form generator output of multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output modes. Page 47 of 140 MB9B210T Series Module MultiFunction Timer 1 Pin name DTTI1X_0 DTTI1X_1 FRCK1_0 FRCK1_1 LQFP176 Pin No LQFP144 BGA192 Input signal controlling wave form generator outputs RTO10 to RTO15 of multi-function timer 1. 19 19 F6 58 50 M5 16-bit free-run timer ch.1 external clock input pin 2 2 B2 Function 63 55 L6 IC10_0 3 3 C2 IC10_1 59 51 L5 IC11_0 4 4 C3 60 52 K5 5 5 D5 IC12_1 61 53 N6 IC13_0 6 6 D2 IC13_1 62 54 M6 Wave form generator output of multi-function timer 1. This pin operates as PPG10 when it is used in PPG1 output modes. 13 13 E5 46 38 N2 Wave form generator output of multi-function timer 1. This pin operates as PPG10 when it is used in PPG1 output modes. 14 14 F1 47 39 N3 Wave form generator output of multi-function timer 1. This pin operates as PPG12 when it is used in PPG1 output modes. 15 15 F2 48 40 M3 Wave form generator output of multi-function timer 1. This pin operates as PPG12 when it is used in PPG1 output modes. 16 16 F3 49 41 L4 Wave form generator output of multi-function timer 1. This pin operates as PPG14 when it is used in PPG1 output modes. 17 17 F4 50 42 M4 Wave form generator output of multi-function timer 1. This pin operates as PPG14 when it is used in PPG1 output modes. 18 18 F5 51 43 N4 IC11_1 IC12_0 RTO10_0 (PPG10_0) RTO10_1 (PPG10_1) RTO11_0 (PPG10_0) RTO11_1 (PPG10_1) RTO12_0 (PPG12_0) RTO12_1 (PPG12_1) RTO13_0 (PPG12_0) RTO13_1 (PPG12_1) RTO14_0 (PPG14_0) RTO14_1 (PPG14_1) RTO15_0 (PPG14_0) RTO15_1 (PPG14_1) Document Number: 002-04680 Rev. *D 16-bit input capture ch.1 input pin of multi-function timer 1. ICxx describes channel number Page 48 of 140 MB9B210T Series Module MultiFunction Timer 2 Pin name DTTI2X_0 DTTI2X_1 FRCK2_0 FRCK2_1 LQFP176 Pin No LQFP144 BGA192 Input signal controlling wave form generator outputs RTO20 to RTO25 of multi-function timer 2. 12 12 E4 26 - H2 16-bit free-run timer ch.2 external clock input pin 128 104 C13 Function 78 - N10 IC20_0 13 13 E5 IC20_1 25 - H1 IC21_0 14 14 F1 79 - L10 15 15 F2 IC21_1 IC22_0 16-bit input capture ch.2 input pin of multi-function timer 2. ICxx describes channel number. IC22_1 80 - K10 IC23_0 16 16 F3 IC23_1 81 - M10 2 2 B2 139 - C11 3 3 C2 140 - D11 4 4 C3 141 - B10 5 5 D5 142 - C10 6 6 D2 143 - D10 7 7 D1 144 - B9 RTO20_0 (PPG20_0) RTO20_1 (PPG20_1) RTO21_0 (PPG20_0) RTO21_1 (PPG20_1) RTO22_0 (PPG22_0) RTO22_1 (PPG22_1) RTO23_0 (PPG22_0) RTO23_1 (PPG22_1) RTO24_0 (PPG24_0) RTO24_1 (PPG24_1) RTO25_0 (PPG24_0) RTO25_1 (PPG24_1) Document Number: 002-04680 Rev. *D Wave form generator output of multi-function timer 2. This pin operates as PPG20 when it is used in PPG2 output modes. Wave form generator output of multi-function timer 2. This pin operates as PPG20 when it is used in PPG2 output modes. Wave form generator output of multi-function timer 2. This pin operates as PPG22 when it is used in PPG2 output modes. Wave form generator output of multi-function timer 2. This pin operates as PPG22 when it is used in PPG2 output modes. Wave form generator output of multi-function timer 2. This pin operates as PPG24 when it is used in PPG2 output modes. Wave form generator output of multi-function timer 2. This pin operates as PPG24 when it is used in PPG2 output modes. Page 49 of 140 MB9B210T Series Module Quadrature Position/ Revolution Counter 0 LQFP176 28 Pin No LQFP144 - BGA192 H3 59 51 L5 AIN0_2 13 13 E5 BIN0_0 29 - H4 Pin name Function AIN0_0 AIN0_1 BIN0_1 QPRC ch.0 AIN input pin 60 52 K5 BIN0_2 14 14 F1 ZIN0_0 30 - H5 61 53 N6 15 15 F2 ZIN0_1 QPRC ch.0 BIN input pin QPRC ch.0 ZIN input pin ZIN0_2 Quadrature Position/ Revolution Counter 1 AIN1_0 73 65 N9 127 103 D13 AIN1_2 62 54 M6 BIN1_0 74 66 M9 126 102 D12 63 55 L6 AIN1_1 BIN1_1 QPRC ch.1 AIN input pin QPRC ch.1 BIN input pin BIN1_2 ZIN1_0 75 67 L9 125 101 E13 ZIN1_2 64 56 K6 AIN2_0 67 59 M8 170 - B4 115 - G11 68 60 L8 171 - C4 ZIN1_1 Quadrature Position/ Revolution Counter 2 AIN2_1 QPRC ch.1 ZIN input pin QPRC ch.2 AIN input pin AIN2_2 BIN2_0 BIN2_1 QPRC ch.2 BIN input pin BIN2_2 116 - G10 ZIN2_0 69 61 K8 172 140 B3 117 - G9 ZIN2_1 QPRC ch.2 ZIN input pin ZIN2_2 USB0 UDM0 USB ch.0 device/host D – pin 174 142 A3 UDP0 USB ch.0 device/host D + pin USB ch.0. USB external pull-up control pin USB ch.1 device/host D – pin 175 143 A2 168 138 B5 130 106 D14 USB ch.1 device/host D + pin USB ch.1. USB external pull-up control pin 131 107 C14 127 103 D13 UHCONX0 USB1 UDM1 UDP1 UHCONX1 Document Number: 002-04680 Rev. *D Page 50 of 140 MB9B210T Series Module Ethernet Pin name Pin No LQFP144 124 BGA192 F8 Collision detection E_COUT Clock output for EtherPHY 158 128 A7 E_CRS Carrier detection 155 125 B7 E_MDC Management clock 152 122 E8 E_MDIO Management data input/output 151 121 D8 E_PPS PTP counter monitor 167 137 E6 E_RX00 Received data0 149 119 F9 E_RX01 Received data1 148 118 E9 E_RX02 Received data2 147 117 D9 E_RX03 146 116 B8 153 123 A10 E_RXDV Received data3 Received clock input/ reference clock Received data enable 150 120 C8 E_RXER Received data error detection 145 115 C9 E_TCK Transition clock input 160 130 A6 E_TX00 Transition data0 165 135 C6 E_TX01 Transition data1 164 134 B6 E_TX02 Transition data2 163 133 F7 E_TX03 Transition data3 162 132 E7 E_TXEN Transition data enable 166 136 D6 E_TXER Transition data error detection External Reset Input Pin. A reset is valid when INITX="L". Mode 0 pin. During normal operation, MD0="L" must be input. During serial programming to flash memory, MD0="H" must be input. Mode 1 pin. During serial programming to flash memory, MD1="L" must be input. Power supply Pin Power supply pin Power supply Pin Power supply Pin Power supply Pin 161 131 D7 57 49 N5 85 69 N12 84 68 N13 1 45 54 89 133 173 129 1 37 46 73 109 141 105 C1 N1 P4 M14 A13 A4 E14 156 126 A9 INITX Mode MD0 MD1 Power LQFP176 154 E_COL E_RXCK_REFCK Reset Function VCC VCC VCC VCC VCC USBVCC0 USBVCC1 ETHVCC Document Number: 002-04680 Rev. *D 3.3V Power supply port for USB I/O 3.3V Power supply port for Ethernet I/O Page 51 of 140 MB9B210T Series Module GND Clock Analog Power Pin name VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS X0 X0A X1 X1A CROUT_0 Function GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin Main clock (oscillation) input pin Sub clock (oscillation) input pin Main clock (oscillation) I/O pin Sub clock (oscillation) I/O pin LQFP176 27 44 53 88 109 132 157 176 86 55 87 56 127 Pin No LQFP144 25 36 45 72 93 108 127 144 70 47 71 48 103 BGA192 J1 M1 P3 N14 F14 B14 A11 B1 E1 G1 P7 P11 L14 A8 A5 N7 M7 L7 K7 J7 G7 H7 H8 G8 P12 P5 P13 P6 D13 152 122 E8 CROUT_1 Built-in high-speed CR-osc clock output port AVCC A/D converter analog power pin 106 90 J14 AVRH A/D converter analog reference voltage input pin 107 91 H14 Analog AVSS A/D converter GND pin 108 92 G14 GND C pin C Power stabilization capacity pin 52 44 P2 Note: − While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP controller. Document Number: 002-04680 Rev. *D Page 52 of 140 MB9B210T Series 5. I/O Circuit Type Type A Circuit Remarks It is possible to select the main oscillation / GPIO function Pull-up When the main oscillation is selected. resistor P-ch P-ch Digital output − Oscillation feedback resistor : Approximately 1 MΩ X1 − N-ch Digital output R Pull-up resistor control With Standby mode control When the GPIO is selected. − CMOS level output. − CMOS level hysteresis input − With pull-up resistor control − With standby mode control − Pull-up resistor : Approximately 50 kΩ Digital input − IOH=-4 mA, IOL=4 mA Standby mode control Clock input Feedback resistor Standby mode control Digital input Standby mode control Pull-up resistor R P-ch P-ch Digital output N-ch Digital output X0 Pull-up resistor control Document Number: 002-04680 Rev. *D Page 53 of 140 MB9B210T Series Type B Circuit Remarks − CMOS level hysteresis input − Pull-up resistor : Approximately 50 kΩ Pull-up resistor Digital input C Digital input N-ch Document Number: 002-04680 Rev. *D − Open drain output − CMOS level hysteresis input Control pin Page 54 of 140 MB9B210T Series Type D Circuit Remarks It is possible to select the sub oscillation / GPIO function Pull-up When the sub oscillation is selected. resistor P-ch P-ch − Digital output X1A Oscillation feedback resistor : Approximately 5 MΩ − With Standby mode control When the GPIO is selected. N-ch Digital output R Pull-up resistor control − CMOS level output. − CMOS level hysteresis input − With pull-up resistor control − With standby mode control − Pull-up resistor : Approximately 50 kΩ Digital input − IOH=-4 mA, IOL=4 mA Standby mode control Clock input Feedback resistor Standby mode control Digital input Standby mode control Pull-up resistor R P-ch P-ch Digital output N-ch Digital output X0A Pull-up resistor control Document Number: 002-04680 Rev. *D Page 55 of 140 MB9B210T Series Type E Circuit P-ch P-ch Remarks Digital output − CMOS level output − CMOS level hysteresis input − With pull-up resistor control − With standby mode control − Pull-up resistor : Approximately 50 kΩ − IOH=-4 mA, IOL=4 mA − When this pin is used as an I2C pin, the digital output P-ch N-ch transistor is always off Digital output R − +B input is available − CMOS level output − CMOS level hysteresis input − With input control − Analog input − With pull-up resistor control − With standby mode control − Pull-up resistor Pull-up resistor control Digital input Standby mode control F P-ch P-ch Digital output : Approximately 50 kΩ N-ch Digital output − IOH=-4 mA, IOL=4 mA − When this pin is used as an I2C pin, the digital output P-ch transistor is always off − R +B input is available Pull-up resistor control Digital input Standby mode control Analog input Input control Document Number: 002-04680 Rev. *D Page 56 of 140 MB9B210T Series Type G Circuit P-ch Remarks Digital output P-ch N-ch − CMOS level output − CMOS level hysteresis input − With pull-up resistor control − With standby mode control − Pull-up resistor : Approximately 50 kΩ − IOH=-12 mA, IOL=12 mA − +B input is available Digital output R Pull-up resistor control Digital input Standby mode control H GPIO Digital output GPIO Digital input/output direction GPIO Digital input It is possible to select the USB I/O / GPIO function. When the USB I/O is selected. − Full-speed, Low-speed control GPIO Digital input circuit control UDP (+) output EBP Differential EBM When the GPIO is selected. − CMOS level output USB Full-speed/Low-speed control − CMOS level hysteresis input UDP (+) input − With standby mode control − IOH= -20.5 mA, Differential input IOL= 18.5 mA USB/GPIO select UDM (-) input UDM (-) output USB Digital input/output direction GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control Document Number: 002-04680 Rev. *D Page 57 of 140 MB9B210T Series Type I Circuit P-ch Remarks Digital output − CMOS level output − CMOS level hysteresis input − 5 V tolerant − With standby mode control − IOH=-4 mA, IOL=4 mA − Available to control of PZR registers. − When this pin is used as an I2C pin, the digital output P-ch N-ch transistor is always off Digital output R Digital input Standby mode control J CMOS level hysteresis input Mode input Document Number: 002-04680 Rev. *D Page 58 of 140 MB9B210T Series Type K Circuit P-ch P-ch N-ch Remarks Digital output − CMOS level output − TTL level hysteresis input − With pull-up resistor control − With standby mode control − Pull-up resistor : Approximately 50 kΩ − IOH=-4 mA, IOL=4 mA − CMOS level output − CMOS level hysteresis input − With pull-up resistor control − With standby mode control − Pull-up resistor Digital output R Pull-up resistor control Digital input Standby mode control L P-ch P-ch Digital output : Approximately 50 kΩ − IOH=-8 mA, IOL=8 mA − When this pin is used as an I2C pin, the digital output P-ch N-ch transistor is always off Digital output − R +B input is available Pull-up resistor control Digital input Standby mode control Document Number: 002-04680 Rev. *D Page 59 of 140 MB9B210T Series 6. Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices. 6.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. 1. Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. 2. Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. 3. Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. Latch-up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. 2. Be sure that abnormal current flows do not occur during the power-on sequence. Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Document Number: 002-04680 Rev. *D Page 60 of 140 MB9B210T Series Precautions Related to Usage of Devices Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 6.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions. Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. 2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking. Condition: 125°C/24 h Document Number: 002-04680 Rev. *D Page 61 of 140 MB9B210T Series Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. 4. Ground all fixtures and instruments, or protect with anti-static measures. 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. 6.3 Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: 1. Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. 2. Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. 3. Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. 4. Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. 5. Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives. Document Number: 002-04680 Rev. *D Page 62 of 140 MB9B210T Series 7. Handling Devices Power supply pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with each Power supply pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 μF be connected as a bypass capacitor between each Power supply pins and GND pins, between AVCC pin and AVSS pin near this device. Stabilizing power supply voltage A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary fluctuation on switching the power supply. Crystal oscillator circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation. Evaluate oscillation of your using crystal oscillator by your mount board. Using an external clock When using an external clock, the clock signal should be input to the X0, X0A pin only and the X1,X1A pin should be kept open. Example of Using an External Clock Device X0(X0A) Open X1(X1A) Handling when using Multi-function serial pin as I2C pin If it is using multi-function serial pin as I2C pins, P-ch transistor of digital output is always disable. However, I 2C pins need to keep the electrical characteristic like other pins and not to connect to external I2C bus system with power OFF. Document Number: 002-04680 Rev. *D Page 63 of 140 MB9B210T Series C Pin This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7 μF would be recommended for this series. C Device Cs VSS GND Mode pins (MD0) Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise. Notes on power-on Turn power on/off in the following order or at the same time. If not using the A/D converter, connect AVCC =VCC and AVSS = VSS. Turning on: VCC → USBVCC0 VCC → USBVCC1 VCC → ETHVCC VCC → AVCC → AVRH Turning off: AVRH → AVCC → VCC ETHVCC → VCC USBVCC1 → VCC USBVCC0 → VCC Serial Communication There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. Document Number: 002-04680 Rev. *D Page 64 of 140 MB9B210T Series Differences in features among the products with different memory sizes and between Flash products and MASK products The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash products and MASK products are different because chip layout and memory structures are different. If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics. Base Timer In the case of using ch.8 and ch.9 at I/O mode 1 (timer full mode), the TIOA09 pin cannot be used for external startup trigger input (TGIN). Be sure to use the pin with making ESG1 and ESG2 bits of the Timer Control Register (Ch.9-TMCR) in the Base Timer to be "0b00" in order to disable trigger input. Document Number: 002-04680 Rev. *D Page 65 of 140 MB9B210T Series 8. Block Diagram MB9BF216/217/218 TRSTX,TCK, TDI,TMS TDO TRACED[3:0], TRACECLK SWJ-DP ETM TPIU ROM Table SRAM0 32/48/64Kbyte MPU NVIC Multi-layer AHB (Max 144MHz) Cortex-M3 Core I 144MHz(Max) D Sys AHB-APB Bridge: APB0(Max 72MHz) Dual-Timer Watchdog Timer (Software) Clock Reset Generator INITX Watchdog Timer (Hardware) On-chip Flash 512Kbyte/ 768Kbyte/ 1024Kbyte Flash I/F Security Trace Buffer (16Kbyte) SRAM1 32/48/64Kbyte USBVCC0 USB 2.0 (Host/ Func) PHY USB 2.0 (Host/ Func) PHY UDP0,UDM0 UHCONX0 USBVCC1 UDP1,UDM1 UHCONX1 CSV DMAC 8ch. CLK X0A X1A CROUT AVCC, AVSS,AVRH Main Osc Sub Osc PLL Source Clock CR 4MHz AHB-AHB Bridge (Slave) X1 CR 100kHz E_TXx, E_RXx, E_MDx Ethernet-MAC 12-bit A/D Converter AHB-AHB Bridge (Master) X0 Unit 0 AN[31:00] Unit 1 ADTG[8:0] Unit 2 MAD[24:00] AIN[2:0] BIN[2:0] QPRC 3ch. ZIN[2:0] A/D Activation Compare 3ch. IC0[3:0] IC1[3:0] IC2[3:0] FRCK[2:0] 16-bit Input Capture 4ch. 16-bit Free-run Timer 3ch. 16-bit Output Compare 6ch. DTTI[2:0]X RTO0[5:0] RTO1[5:0] RTO2[5:0] USB-Ethernet Clk Ctrl AHB-APB Bridge : APB2 (Max 72MHz) TIOB[15:00] External Bus I/F Base Timer 16-bit 16ch./ 32-bit 8ch. AHB-APB Bridge : APB1 (Max 72MHz) TIOA[15:00] MADATA[15:00] PLL Power On Reset LVD Ctrl IRQ-Monitor MCSX[7:0], MOEX,MWEX, MNALE, MNCLE, MNWEX, MNREX, MDQM[1:0] MALE MRDY MCLKOUT LVD Regulator C CRC Accelerator Watch Counter External Interrupt Controller 32-pin + NMI Waveform Generator 3ch. MODE-Ctrl 16-bit PPG 3ch. GPIO Multi-function Timer ×3 Multi-Function Serial I/F 8ch. (with FIFO ch.4 to ch.7) HW flow control(ch.4) INT[31:00] NMIX MD[1:0] PIN-Function-Ctrl P0x, P1x, . . . PFx SCK[7:0] SIN[7:0] SOT[7:0] CTS4 RTS4 Note: − The following items vary depending on the package. • External bus address • 12-bit A/D converter channel Document Number: 002-04680 Rev. *D Page 66 of 140 MB9B210T Series 9. Memory Size See "Memory Size" in "Product Lineup" to confirm the memory size. Document Number: 002-04680 Rev. *D Page 67 of 140 MB9B210T Series 10. Memory Map Memory Map(1) Peripherals Area 0x41FF_FFFF Reserved 0x4006_7000 0xFFFF_FFFF 0x4006_6000 Reserved 0x4006_4000 Cortex-M3 Private Peripherals 0x4006_1000 Ethernet-Control-Reg. Ethernet-MAC0 0xE010_0000 0xE000_0000 Reserved 0x4006_0000 DMAC USB ch.1 0x4005_0000 Reserved USB ch.0 0x4004_0000 0x4003_F000 0x7000_0000 0x6000_0000 0x4200_0000 0x4000_0000 Reserved External Device Area 0x4003_B000 Reserved 0x4003_8000 0x4400_0000 0x4003_A000 0x4003_9000 0x4003_7000 32Mbyte Bit band alias Peripherals 0x4003_6000 0x4003_5000 0x4003_4000 0x4003_3000 0x4003_2000 Reserved 0x2400_0000 0x2200_0000 0x2008_0000 0x2000_0000 0x1FFF_0000 0x0010_2000 See the next page “●Memory Map (2)” for the memory size details. 0x0010_0000 0x4003_1000 0x4003_0000 32Mbyte Bit band alias 0x4002_F000 0x4002_E000 Reserved 0x4002_8000 SRAM1 SRAM0 Reserved Security/CR Trim Watch Counter CRC MFS Reserved USB-Ethernet Clk Ctrl LVD Ctrl Reserved GPIO Reserved Int-Req.Read EXTI Reserved CR Trim Reserved 0x4002_7000 0x4002_6000 0x4002_5000 0x4002_4000 0x4002_3000 0x4002_2000 0x4002_1000 0x4002_0000 On-chip Flash EXT-bus I/F 0x4001_6000 0x4001_5000 0x0000_0000 0x4001_3000 0x4001_2000 0x4001_1000 0x4001_0000 A/DC QPRC Base Timer PPG Reserved MFT unit2 MFT unit1 MFT unit0 Reserved Dual Timer Reserved SW WDT HW WDT Clock/Reset Reserved 0x4000_1000 0x4000_0000 Document Number: 002-04680 Rev. *D Flash I/F Page 68 of 140 MB9B210T Series Memory Map(2) MB9BF218S/T MB9BF217S/T 0x2008_0000 MB9BF216S/T 0x2008_0000 0x2008_0000 Reserved Reserved 0x2001_0000 Reserved 0x2001_C000 SRAM1 64Kbyte 0x2000_8000 SRAM1 48Kbyte 0x2000_0000 SRAM1 32Kbyte 0x2000_0000 0x2000_0000 SRAM0 32Kbyte SRAM0 48Kbyte SRAM0 64Kbyte 0x1FFF_8000 0x1FFF_4000 Reserved 0x1FFF_0000 Reserved Reserved 0x0010_2000 0x0010_1000 0x0010_0000 0x0010_2000 CR trimming Security 0x0010_1000 0x0010_0000 0x0010_2000 CR trimming Security 0x0010_1000 0x0010_0000 CR trimming Security Reserved 0x000C_0000 Reserved SA10-19(64KBx10) 0x0000_0000 SA4-7(8KBx4) 0x0008_0000 SA10-15(64KBx6) SA8-9(48KBx2) 0x0000_0000 SA4-7(8KBx4) Flash 512Kbyte SA8-9(48KBx2) Flash 768Kbyte Flash 1Mbyte SA10-23(64KBx14) SA8-9(48KBx2) 0x0000_0000 SA4-7(8KBx4) See "MB9BD10T/610T/510T/410T/310T/210T/110T Series Flash Programming Manual" for sector structure of Flash. Document Number: 002-04680 Rev. *D Page 69 of 140 MB9B210T Series Peripheral Address Map Start address End address Bus Peripherals 0x4000_0000 0x4000_0FFF 0x4000_1000 0x4000_FFFF 0x4001_0000 0x4001_0FFF Clock/Reset Control 0x4001_1000 0x4001_1FFF Hardware Watchdog timer 0x4001_2000 0x4001_2FFF 0x4001_3000 0x4001_4FFF 0x4001_5000 0x4001_5FFF Dual-Timer 0x4001_6000 0x4001_FFFF Reserved 0x4002_0000 0x4002_0FFF Multi-function timer unit0 0x4002_1000 0x4002_1FFF Multi-function timer unit1 0x4002_2000 0x4002_3FFF Multi-function timer unit2 0x4002_4000 0x4002_4FFF PPG 0x4002_5000 0x4002_5FFF 0x4002_6000 0x4002_6FFF 0x4002_7000 0x4002_7FFF A/D Converter 0x4002_8000 0x4002_DFFF Reserved 0x4002_E000 0x4002_EFFF Internal CR trimming 0x4002_F000 0x4002_FFFF Reserved 0x4003_0000 0x4003_0FFF External Interrupt Controller 0x4003_1000 0x4003_1FFF Interrupt Request Batch-Read Function 0x4003_2000 0x4003_2FFF Reserved 0x4003_3000 0x4003_3FFF GPIO 0x4003_4000 0x4003_4FFF Reserved 0x4003_5000 0x4003_5FFF 0x4003_6000 0x4003_6FFF 0x4003_7000 0x4003_7FFF Reserved 0x4003_8000 0x4003_8FFF Multi-function serial Interface 0x4003_9000 0x4003_9FFF CRC 0x4003_A000 0x4003_AFFF Watch Counter 0x4003_B000 0x4003_EFFF Reserved 0x4003_F000 0x4003_FFFF External Memory interface 0x4004_0000 0x4004_FFFF USB ch.0 0x4005_0000 0x4005_FFFF USB ch.1 0x4006_0000 0x4006_3FFF 0x4006_4000 0x4006_6FFF Ethernet-MAC/Ethernet-MAC Control Register 0x4006_7000 0x41FF_FFFF Reserved Document Number: 002-04680 Rev. *D AHB APB0 APB1 Flash memory I/F register Reserved Software Watchdog timer Reserved Base Timer Quadrature Position/Revolution Counter Low-Voltage Detector APB2 AHB USB-Ethernet clock generator DMAC register Page 70 of 140 MB9B210T Series 11. Pin Status in Each CPU State The terms used for pin status have the following meanings. INITX=0 This is the period when the INITX pin is the "L" level. INITX=1 This is the period when the INITX pin is the "H" level. SPL=0 This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "0". SPL=1 This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "1". Input enabled Indicates that the input function can be used. Internal input fixed at "0" This is the status that the input function cannot be used. Internal input is fixed at "L". Hi-Z Indicates that the output drive transistor is disabled and the pin is put in the Hi-Z state. Setting disabled Indicates that the setting is disabled. Maintain previous state Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained. Analog input is enabled Indicates that the analog input is enabled. Trace output Indicates that the trace function can be used. Document Number: 002-04680 Rev. *D Page 71 of 140 MB9B210T Series List of Pin Status Pin status type Power-on reset or low voltage detection state Power supply unstable Setting disabled INITX=0 Setting disabled INITX=1 Setting disabled Main crystal oscillator input pin GPIO selected Input enabled Input enabled Setting disabled Main crystal oscillator output pin INITX input pin Function group GPIO selected A B C D E F INITX input state Run mode or sleep mode state Timer mode or sleep mode state Power supply stable INITX=1 Maintain previous state SPL=0 Maintain previous state Input enabled Input enabled Input enabled Input enabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Hi-Z/ Internal input fixed at "0"/ or Input enable Hi-Z/ Internal input fixed at "0" Hi-Z/ Internal input fixed at "0" Maintain previous state Pull-up/ Input enabled Input enabled Hi-Z Pull-up/ Input enabled Input enabled Pull-up/ Input enabled Setting disabled Pull-up/ Input enabled Maintain previous state/ Hi-Z at oscillation stop*1/ Internal input fixed at "0" Pull-up/ Input enabled Maintain previous state/ Hi-Z at oscillation stop*1/ Internal input fixed at "0" Pull-up/ Input enabled Input enabled Maintain previous state Input enabled Maintain previous state Input enabled Setting disabled Maintain previous state Power supply stable GPIO selected Setting disabled Pull-up/ Input enabled Input enabled Pull-up/ Input enabled Setting disabled Trace selected External interrupt enabled selected GPIO selected, or other than above resource selected Setting disabled Setting disabled Mode input pin JTAG selected Device internal reset state Hi-Z Document Number: 002-04680 Rev. *D Hi-Z/ Input enabled Hi-Z/ Input enabled Power supply stable Maintain previous state INITX=1 SPL=1 Hi-Z/ Internal input fixed at "0" Maintain previous state Hi-Z/ Internal input fixed at "0" Trace output Maintain previous state Hi-Z/ Internal input fixed at "0" Page 72 of 140 MB9B210T Series Pin status type G H I J Function group Trace selected GPIO selected, or other than above resource selected External interrupt enabled selected GPIO selected, or other than above resource selected GPIO selected, resource selected NMIX selected GPIO selected, or other than above resource selected Power-on reset or low voltage detection state Power supply unstable Setting disabled Hi-Z INITX input state Device internal reset state Power supply stable Run mode or sleep mode state Timer mode or sleep mode state Power supply stable INITX=1 Maintain previous state SPL=0 Maintain previous state Maintain previous state Maintain previous state Power supply stable INITX=0 Setting disabled Hi-Z/ Input enabled INITX=1 Setting disabled Hi-Z/ Input enabled Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Setting disabled Hi-Z Setting disabled Hi-Z/ Input enabled Setting disabled Hi-Z/ Input enabled Maintain previous state Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Document Number: 002-04680 Rev. *D INITX=1 SPL=1 Trace output Hi-Z/ Internal input fixed at "0" Maintain previous state Hi-Z/ Internal input fixed at "0" Page 73 of 140 MB9B210T Series Pin status type Function group Power-on reset or low voltage detection state Power supply unstable Hi-Z INITX input state Device internal reset state Power supply stable Run mode or sleep mode state Timer mode or sleep mode state Power supply stable INITX=1 Hi-Z/ Internal input fixed at "0"/ Analog input enabled INITX=1 SPL=0 SPL=1 Hi-Z/ Hi-Z/ Internal input Internal input fixed at "0"/ fixed at "0"/ Analog input Analog input enabled enabled Power supply stable GPIO selected, or other than above resource selected External interrupt enabled selected Analog input selected Setting disabled INITX=0 Hi-Z/ Internal input fixed at "0"/ Analog input enabled Setting disabled Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Maintain previous state Hi-Z Hi-Z/ Internal input fixed at "0"/ Analog input enabled Hi-Z/ Internal input fixed at "0"/ Analog input enabled Hi-Z/ Internal input fixed at "0"/ Analog input enabled Hi-Z/ Internal input fixed at "0"/ Analog input enabled GPIO selected, or other than above resource selected GPIO selected Setting disabled Hi-Z/ Internal input fixed at "0"/ Analog input enabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Sub crystal oscillator input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Analog input selected K L INITX=1 Hi-Z/ Internal input fixed at "0"/ Analog input enabled Setting disabled Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" M Document Number: 002-04680 Rev. *D Page 74 of 140 MB9B210T Series Pin status type Function group GPIO selected N Power-on reset or low voltage detection state Power supply unstable Setting disabled INITX input state Device internal reset state Power supply stable INITX=0 Setting disabled INITX=1 Setting disabled Power supply stable INITX=1 Maintain previous state Sub crystal oscillator output pin Hi-Z/ Internal input fixed at "0"/ or Input enable Hi-Z/ Internal input fixed at "0" Hi-Z/ Internal input fixed at "0" Maintain previous state GPIO selected Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled Maintain previous state USB I/O pin Setting disabled Setting disabled Setting disabled Mode input pin Input enabled Input enabled GPIO selected Setting disabled Ethernet input or output pin selected*3 Setting disabled GPIO selected, or other than above resource selected Hi-Z O Document Number: 002-04680 Rev. *D Timer mode or sleep mode state Power supply stable SPL=0 Maintain previous state INITX=1 SPL=1 Hi-Z/ Internal input fixed at "0" Maintain previous state/ Hi-Z at oscillation stop*2/ Internal input fixed at "0" Maintain previous state Maintain previous state/ Hi-Z at oscillation stop*2/ Internal input fixed at "0" Hi-Z/ Internal input fixed at "0" Maintain previous state Output Hi-Z at transmission / Input enabled/ Internal input fixed at "0" at reception Hi-Z at transmission/ Input enabled/ Internal input fixed at "0" at reception Input enabled Input enabled Input enabled Input enabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z/ Input enabled Setting disabled Setting disabled P Q Run mode or sleep mode state Hi-Z/ Input enabled Hi-Z/ Input enabled Maintain previous state Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Page 75 of 140 MB9B210T Series Pin status type Function group Power-on reset or low voltage detection state Power supply unstable - INITX input state Device internal reset state Power supply stable INITX=0 - INITX=1 - Run mode or sleep mode state Power supply stable INITX=1 - Timer mode or sleep mode state Power supply stable SPL=0 Ethernet input or output pin selected*3 Setting Setting Setting disabled disabled disabled External interrupt Maintain Maintain enabled R previous previous selected state state GPIO selected, or Hi-Z/ Hi-Z/ other than Hi-Z Input Input above enabled enabled resource selected *1: Oscillation is stopped at Sub timer mode, Low speed CR timer mode, and STOP mode. INITX=1 SPL=1 Maintain previous state Hi-Z/ Internal input fixed at "0" *2: Oscillation is stopped at STOP mode. *3: When selected by EPFR14.E_SPLC register. Document Number: 002-04680 Rev. *D Page 76 of 140 MB9B210T Series 12. Electrical Characteristics 12.1 Absolute Maximum Ratings Parameter Power supply voltage*1,*2 Power supply voltage (for USB ch.0)*1,*3 Power supply voltage (for USB ch.1)*1,*3 Ethernet)*1,*4 Power supply voltage (for Analog power supply voltage*1,*5 Analog reference voltage*1,*5 Symbol Vcc USBVcc 0 USBVcc 1 ETHVcc AVcc AVRH Min Vss - 0.5 Input Vss - 0.5 Vss + 6.5 V Vss - 0.5 Vss + 6.5 V Vss - 0.5 Vss - 0.5 Vss - 0.5 Vss + 6.5 Vss + 6.5 Vss + 6.5 V V V Vss - 0.5 Vcc + 0.5 (≤ 6.5 V) V Except for USB pin and Ethernet-MAC pin V USB ch.0 pin V USB ch.1 pin V Ethernet-MAC pin V 5 V tolerant Vss - 0.5 Vss - 0.5 Vss - 0.5 Analog pin input VIA Vss - 0.5 Output voltage*1 VO Vss - 0.5 Clamp maximum current ICLAMP Σ [ICLAMP] -2 Clamp total maximum current Remarks V VI voltage*1 Unit Max Vss + 6.5 Vss - 0.5 voltage*1 Rating USBVcc0 + 0.5 (≤ 6.5 V) USBVcc1 + 0.5 (≤ 6.5 V) ETHVcc + 0.5 (≤ 6.5 V) Vss + 6.5 AVcc + 0.5 (≤ 6.5 V) Vcc + 0.5 (≤ 6.5 V) +2 +20 10 20 "L" level maximum output IOL 20 39 4 8 "L" level average output current*7 IOLAV 12 18.5 "L" level total maximum output current ∑IOL 100 "L" level total average output current*8 ∑IOLAV 50 - 10 - 20 "H" level maximum output current*6 IOH - 20 - 39 -4 -8 7 "H" level average output current* IOHAV - 12 - 20.5 "H" level total maximum output current ∑IOH - 100 "H" level total average output current*8 ∑IOHAV - 50 Power consumption PD 1000 Storage temperature TSTG - 55 + 150 *1: These parameters are based on the condition that Vss = AVss = 0.0 V. current*6 V V mA *9 mA *9 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mW °C 4 mA type 8 mA type 12 mA type P80,P81,P82,P83 4 mA type 8 mA type 12 mA type P80,P81,P82,P83 4 mA type 8 mA type 12 mA type P80,P81,P82,P83 4 mA type 8 mA type 12 mA type P80,P81,P82,P83 *2: Vcc must not drop below Vss - 0.5 V. *3: USBVcc0 and USBVcc1 must not drop below Vss - 0.5 V. *4: ETHVcc must not drop below Vss - 0.5 V. Document Number: 002-04680 Rev. *D Page 77 of 140 MB9B210T Series *5: Ensure that the voltage does not to exceed Vcc + 0.5 V, for example, when the power is turned on. *6: The maximum output current is the peak value for a single pin. *7: The average output is the average current for a single pin over a period of 100 ms. *8: The total average output current is the average current for all pins over a period of 100 ms. *9: • • • • • See "List of Pin Functions" and "I/O Circuit Type" about +B input available pin. Use within recommended operating conditions. Use at DC voltage (current) the +B input. The +B signal should always be applied a limiting resistance placed between the +B signal and the device. The value of the limiting resistance should be set so that when the +B signal is applied the input current to the device pin does not exceed rated values, either instantaneously or for prolonged periods. • Note that when the device drive current is low, such as in the low-power consumption modes, the +B input potential may pass through the protective diode and increase the potential at the VCC and AVCC pin, and this may affect other devices. • Note that if a +B signal is input when the device power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result. • The following is a recommended circuit example (I/O equivalent circuit). Protection Diode VCC VCC Limiting resistor P-ch +B input (0V to 16V) N-ch Digital output Digital input AVCC Analog input WARNING: − Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. Document Number: 002-04680 Rev. *D Page 78 of 140 MB9B210T Series 12.2 Recommended Operating Conditions (Vss = AVss = 0.0V) Parameter Symbol Conditions Power supply voltage Vcc - Power supply voltage (3 V power supply) for USB ch.0 USBVcc0 - Power supply voltage (3 V power supply) for USB ch.1 USBVcc1 Value Min 2.7*8 3.0 2.7 3.0 2.7 3.0 Power supply voltage for Ethernet ETHVcc - 4.5 2.7 Analog power supply voltage Analog reference voltage Smoothing capacitor AVcc AVRH CS Max 5.5 3.6 (≤ Vcc) 5.5 (≤ Vcc) 3.6 (≤ Vcc) 5.5 (≤ Vcc) 3.6 (≤ Vcc) 5.5 (≤ Vcc) 5.5 (≤ Vcc) 5.5 AVcc 10 2.7 2.7 1 When LQS144, Operating mounted on LQP176, TA - 40 + 85 temperature four-layer LBE192 PCB *1: When P81/UDP0 and P80/UDM0 pin are used as USB (UDP0, UDM0). Unit Remarks V *1 V *2 *3 V *4 *5 V *5 *6 V V μF AVcc = Vcc for built-in regulator *7 °C *2: When P81/UDP0 and P80/UDM0 pin are used as GPIO (P81, P80). *3: When P83/UDP1 and P82/UDM1 pin are used as USB (UDP1, UDM1). *4: When P83/UDP1 and P82/UDM1 pin are used as GPIO (P83, P82). *5: When the pins in "Ethernet-MAC pins" except P62/E_PPS0_PPS1/SCK5_0/ADTG_3 pin are used as Ethernet-MAC pin. *6: When the pins in "Ethernet-MAC pins" except P62/E_PPS0_PPS1/SCK5_0/ADTG_3 pin are used as function pins other than Ethernet-MAC pin. *7: See "C pin" in "Handling Devices" for the connection of the smoothing capacitor. *8: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or built-in Low-speed CR is possible to operate only. WARNING: − The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand. Document Number: 002-04680 Rev. *D Page 79 of 140 MB9B210T Series Ethernet-MAC pins Pin Name P62/E_PPS0_PPS1/SCK5_0/ADTG_3 PC0/E_RXER0_RXDV1 PC1/E_RX03_RX11 PC2/E_RX02_RX10 PC3/E_RX01/TIOA06_1 PC4/E_RX00/TIOA08_2 PC5/E_RXDV0/TIOA10_2 PC6/E_MDIO0/TIOA14_0 PC7/E_MDC0/CROUT_1 PC8/E_RXCK0_REFCK PC9/E_COL0 PCA/E_CRS0 PCB/E_COUT PCC/E_MDIO1 PCD/E_TCK0_MDC1 PCE/E_TXER0_TXEN1/RTS4_0/ TIOB06_1 PCF/E_TX03_TX11/CTS4_0/TIOB08_2 PD0/E_TX02_TX10/SCK4_0/TIOB10_2/ INT30_1 Ethernet-MAC function Except for Ethernet-MAC function E_PPS0_PPS1* E_RXER0_RXDV1 E_RX03_RX11 E_RX02_RX10 E_RX01 E_RX00 E_RXDV0 E_MDIO0 E_MDC0 E_RXCK0_REFCK E_COL0 E_CRS0 E_COUT E_MDIO1 E_TCK0_MDC1 P62 /SCK5_0/ADTG_3 PC0 PC1 PC2 PC3/TIOA06_1 PC4/TIOA08_2 PC5/TIOA10_2 PC6/TIOA14_0 PC7/CROUT_1 PC8 PC9 PCA PCB PCC PCD E_TXER0_TXEN PCE/RTS4_0/TIOB06_1 Power Supply type Vcc ETHVcc PCF/CTS4_0/TIOB08_2 PD0/SCK4_0/TIOB10_2/ E_TX02_TX10 INT30_1 PD1/SOT4_0/TIOB14_0/ PD1/E_TX01/SOT4_0/TIOB14_0/INT31_1 E_TX01 INT31_1 PD2/E_TX00/SIN4_0/TIOA03_2/INT00_2 E_TX00 PD2/TIOA03_2/INT00_2 PD3/E_TXEN0/TIOB03_2 E_TXEN0 PD3/TIOB03_2 *: It is used to confirm the PTP counter cycle in Ethernet-MAC by wave forms. Document Number: 002-04680 Rev. *D E_TX03_TX11 Page 80 of 140 MB9B210T Series 12.3 DC Characteristics 12.3.1 Current Rating (Vcc = AVcc = USBVcc0 = USBVcc1 = ETHVcc = 2.7V to 5.5V, Vss = AVss = 0V, TA = - 40°C to + 85°C) Parameter Symbo l Pin name Conditions PLL RUN mode RUN mode current Icc High-speed CR RUN mode VCC Sub RUN mode Low-speed CR RUN mode CPU: 144 MHz, Peripheral: 72 MHz, Flash 2 Wait, TraceBuffer: ON, FRWTR.RWT = 10, FSYNDN.SD = 000, FBFCR.BE = 1 CPU: 72 MHz, Peripheral: 72 MHz, Flash 0 Wait, TraceBuffer: OFF, FRWTR.RWT = 00, FSYNDN.SD = 000, FBFCR.BE = 0 CPU/ Peripheral: 4 MHz*2, Flash 0 Wait, FRWTR.RWT = 00, FSYNDN.SD = 000 CPU/ Peripheral: 32 kHz, Flash 0 Wait, FRWTR.RWT = 00, FSYNDN.SD = 000 CPU/ Peripheral: 100 kHz, Flash 0 Wait, FRWTR.RWT = 00, FSYNDN.SD = 000 PLL SLEEP Peripheral: 72 MHz mode High-speed CR Peripheral: 4 MHz*2 SLEEP SLEEP mode mode Iccs Sub current SLEEP Peripheral: 32 kHz mode Low-speed CR Peripheral: 100 kHz SLEEP mode *1: When all ports are fixed, Ethernet is stopped. Value Typ*3 Max*4 Unit 100 180 mA *1, *5 65 135 mA *1, *5 6 57.8 mA *1 1.3 51.7 mA *1, *6 1.3 51.7 mA *1 30 89 mA *1, *5 4.5 55.9 mA *1 1.2 51.6 mA *1, *6 1.2 51.6 mA *1 Remarks *2: When setting it to 4 MHz by trimming. *3: TA=+25°C, VCC=5.5 V *4: TA=+85°C, VCC=5.5 V *5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit) *6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit) Document Number: 002-04680 Rev. *D Page 81 of 140 MB9B210T Series (Vcc = AVcc = USBVcc0 = USBVcc1 = ETHVcc = 2.7V to 5.5V, Vss = AVss = 0V, TA = - 40°C to + 85°C) Parameter TIMER mode current Symbo l Pin name Main TIMER mode ICCT VCC STOP mode current ICCH Value Typ*2 Max*2 Conditions Sub TIMER mode STOP mode TA = + 25°C, When LVD is off TA = + 85°C, When LVD is off TA = + 25°C, When LVD is off TA = + 85°C, When LVD is off TA = + 25°C, When LVD is off TA = + 85°C, When LVD is off Unit Remarks 4 10 mA *1, *3 - 55 mA *1, *3 1.1 5 mA *1, *4 - 50 mA *1, *4 1 5 mA *1 - 50 mA *1 *1: When all ports are fixed. *2: VCC=5.5 V *3: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit) *4: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit) Low-Voltage Detection Current (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Low-voltage detection circuit (LVD) power supply current Pin name Symbol ICCLVD VCC Conditions At operation for interrupt Typ 4 Value Max 7 Unit μA Remarks At not detect Flash Memory Current (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Flash memory write/erase current Pin name Symbol ICCFLASH VCC Conditions At Write/Erase Typ 12 Value Max 14 Unit Remarks mA A/D Converter Current (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 85°C) Parameter Power supply current Reference power supply current Pin name Symbol ICCAD ICCAVRH AVCC AVRH Document Number: 002-04680 Rev. *D Conditions Typ Value Max Unit At 1unit operation 0.57 0.72 mA At stop 0.06 35 μA At 1unit operation AVRH=5.5 V 1.1 1.96 mA At stop 0.06 4 μA Remarks Page 82 of 140 MB9B210T Series 12.3.2 Pin Characteristics (Vcc = USBVcc0 = USBVcc1 = ETHVcc = AVcc = 2.7V to 5.5V, Vss = AVss = 0V, TA = - 40°C to + 85°C) Parameter "H" level input voltage (hysteresis input) "L" level input voltage (hysteresis input) Symbol VIHS VILS Pin name CMOS hysteresis input pin, MD0, MD1 - 5 V tolerant input pin - TTL Schmitt input pin Min Max Unit Remarks *1 Vcc (ETHVcc) + 0.3 V Vcc × 0.8 - Vss + 5.5 V - 2.0 - ETHVcc + 0.3 V CMOS hysteresis input pin, MD0, MD1 - Vss - 0.3 - Vcc (ETHVcc) × 0.2 V 5 V tolerant input pin - Vss - 0.3 - Vcc × 0.2 V TTL Schmitt input pin - Vss - 0.3 - 0.8 V Vcc (ETHVcc) - 0.5 - Vcc (ETHVcc) V *1 ETHVcc - 0.5 - ETHVcc V *1 Vcc - 0.5 - Vcc V USBVcc - 0.4 - USBVcc V 4 mA type 8 mA type VOH 12 mA type P80, P81, P82, P83 Document Number: 002-04680 Rev. *D Vcc (ETHVcc) < 4.5 V, IOH = - 2 mA ETHVcc ≥ 4.5 V, IOH = - 8 mA ETHVcc < 4.5 V, IOH = - 4 mA Vcc ≥ 4.5 V, IOH = - 12 mA Vcc < 4.5 V, IOH = - 8 mA USBVcc ≥ 4.5 V, IOH = - 20.5 mA USBVcc < 4.5 V, IOH = - 13.0 mA Vcc (ETHVcc) × 0.8 Typ - Vcc (ETHVcc) ≥ 4.5 V, IOH = - 4 mA "H" level output voltage Value Conditions *1 *2 Page 83 of 140 MB9B210T Series Parameter Symbol Pin name 4 mA type 8 mA type "L" level output voltage VOL 12 mA type P80, P81, P82, P83 Input leak current Pull-up resistance value IIL - RPU Pull-up pin Value Conditions Vcc (ETHVcc) ≥ 4.5 V, IOL = 4 mA Min Typ Max Unit Remarks Vss - 0.4 V *1 Vss - 0.4 V *1 Vss - 0.4 V Vss - 0.4 V - -5 - +5 μA Vcc ≥ 4.5 V 25 50 100 Vcc < 4.5 V 30 80 200 Vcc (ETHVcc) < 4.5 V, IOL = 2 mA ETHVcc ≥ 4.5 V, IOL = 8 mA ETHVcc < 4.5 V, IOL = 4 mA Vcc ≥ 4.5 V, IOL = 12 mA Vcc < 4.5 V, IOL = 8 mA USBVcc ≥ 4.5 V, IOL = 18.5 mA USBVcc < 4.5 V, IOL = 10.5 mA *2 kΩ Other than VCC, USBVCC0, USBVCC1, Input CIN ETHVCC, 5 15 pF capacitance VSS, AVCC, AVSS, AVRH *1: The power supply type varies depending on the pin position. For example, power supply A (power supply B) shows that either of power supply A or power supply B becomes a power supply voltage. *2: USBVcc0 and USBVcc1 are described as USBVcc. Document Number: 002-04680 Rev. *D Page 84 of 140 MB9B210T Series 12.4 AC Characteristics 12.4.1 Main Clock Input Characteristics (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Input frequency Input clock cycle Input clock pulse width Input clock rise time and fall time Internal operating clock*1 frequency Symbol Pin name FCH X0, X1 Value Conditions Min Max Unit Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V PWH/tCYLH, PWL/tCYLH 4 4 4 4 20 50 50 20 50 20 250 250 45 55 % - - 5 ns Remarks MHz When crystal oscillator is connected MHz When using external clock tCF, tCR FCM - - - 144 MHz When using external clock When using external clock When using external clock Master clock FCC FCP0 FCP1 FCP2 - - - 144 72 72 72 MHz MHz MHz MHz Base clock (HCLK/FCLK) APB0 bus clock*2 APB1 bus clock*2 APB2 bus clock*2 tCYLH - ns tCYCC tCYCP0 tCYCP1 tCYCP2 6.94 ns Base clock (HCLK/FCLK) 13.8 ns APB0 bus clock*2 Internal operating 1 clock* cycle time 13.8 ns APB1 bus clock*2 13.8 ns APB2 bus clock*2 *1: For more information about each internal operating clock, see "CHAPTER 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL". *2: For about each APB bus which each peripheral is connected to, see "Block Diagram" in this data sheet. X0 Document Number: 002-04680 Rev. *D Page 85 of 140 MB9B210T Series 12.4.2 Sub Clock Input Characteristics (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Input frequency Input clock cycle Input clock pulse width Pin name Symbol 1/tCYLL X0A, X1A tCYLL - Value Conditions Min Typ Max Unit Remarks - - 32.768 - kHz - 32 - 100 kHz When crystal oscillator is connected When using external clock PWH/tCYLL, PWL/tCYLL 10 - 31.25 μs When using external clock 45 - 55 % When using external clock X0A 12.4.3 Internal CR Oscillation Characteristics High-speed Internal CR (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Clock frequency Frequency stability time Symbo l FCRH tCRWT Value Conditions Min Typ Max TA = + 25°C 3.96 4 4.04 TA = 0°C to + 70°C 3.84 4 4.16 TA = - 40°C to + 85°C 3.8 4 4.2 TA = - 40°C to + 85°C 3 4 5 - - - 90 Unit Remarks When trimming* MHz When not trimming μs *2 *1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming. *2: Frequency stable time is time to stable of the frequency of the High-speed CR clock after the trim value is set. After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock. Low-speed Internal CR (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Clock frequency Symbol FCRL Conditions - Document Number: 002-04680 Rev. *D Value Min 50 Typ 100 Max 150 Unit Remarks kHz Page 86 of 140 MB9B210T Series 12.4.4 Operating Conditions of Main and USB/Ethernet PLL (In the case of using main clock for input of PLL) (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter PLL oscillation stabilization wait time*1 (LOCK UP time) PLL input clock frequency Value Symbol Min Typ Max Unit Remarks tLOCK 100 - - μs FPLLI 4 - 16 PLL multiple rate - 13 - 75 PLL macro oscillation clock frequency Main PLL clock frequency*2 FPLLO FCLKPLL 200 - - 300 144 MHz multip le MHz MHz USB/Ethernet clock frequency*3 FCLKSPLL - - 50 MHz After the M frequency division *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see "CHAPTER 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL". *3: For more information about USB/Ethernet clock, see "CHAPTER 2-3: USB/Ethernet Clock Generation" in "FM3 Family PERIPHERAL MANUAL Communication Macro Part". 12.4.5 Operating Conditions of Main PLL (In the case of using high-speed internal CR) (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Value Ty Ma p x Symbol Mi n tLOCK 100 - - μs FPLLI 3.8 4 4.2 PLL multiple rate - 50 - 71 PLL macro oscillation clock frequency Main PLL clock frequency*2 FPLLO FCLKPLL 190 - - 300 144 MHz multip le MHz MHz PLL oscillation stabilization wait time*1 (LOCK UP time) PLL input clock frequency Unit Remarks *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see "CHAPTER 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL". Note: − Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the frequency has been trimmed. Main PLL connection Main clock (CLKMO) High-speed CR clock (CLKHC) PLL input clock K divider Main PLL PLL macro oscillation clock M divider Main PLL clock (CLKPLL) N divider Document Number: 002-04680 Rev. *D Page 87 of 140 MB9B210T Series USB/Ethernet PLL connection Main clock (CLKMO) PLL input clock K divider USB/Ethernet PLL PLL macro oscillation clock M divider USB/Ethernet clock N divider Document Number: 002-04680 Rev. *D Page 88 of 140 MB9B210T Series 12.4.6 Reset Input Characteristics (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Pin name Symbol Reset input time tINITX INITX Value Conditions Min 500 - Unit Max Remarks ns - 12.4.7 Power-on Reset Timing (Vss = 0V, TA = - 40°C to + 85°C) Parameter Symbol Power supply shut down time tOFF Power ramp rate Time until releasing Power-on reset dV/dt Pin name Value Conditions VCC Unit Remarks Min Typ Max - 50 - - ms *1 Vcc:0.2 V to 2.70 V 0.9 - 1000 mV/μs *2 - 0.46 - 0.76 ms tPRT *1: VCC must be held below 0.2 V for minimum period of tOFF. Improper initialization may occur if this condition is not met. *2: This dV/dt characteristic is applied at the power-on of cold start (tOFF>50 ms). Note: − If tOFF cannot be satisfied designs must assert external reset(INITX) at power-up and at any brownout event per 12. 4. 6. 2.7V VCC VDH 0.2V dV/dt 0.2V tPRT Internal RST CPU Operation RST Active 0.2V tOFF release start Glossary VDH: detection voltage of Low Voltage detection reset. See “12.7 Low-Voltage Detection Characteristics” Document Number: 002-04680 Rev. *D Page 89 of 140 MB9B210T Series 12.4.8 External Bus Timing External bus clock output characteristics (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Output frequency Symbol tCYCLE Pin name MCLKOUT*1 Value Conditions Vcc ≥ 4.5 V Vcc < 4.5 V Min Max 50*2 32*3 - Unit MHz MHz *1: External bus clock (MCLKOUT) is divided clock of HCLK. For more information about setting of clock divider, see "CHAPTER 12: External Bus Interface" in "FM3 Family PERIPHERAL MANUAL". When external bus clock is not output, this characteristic does not give any effect on external bus operation. *2: When AHB bus clock frequency is more than 100 MHz, the divider setting for MCLKOUT must be more than 4. *3: When AHB bus clock frequency is more than 64 MHz, the divider setting for MCLKOUT must be more than 4. MCLKOUT 1 External bus signal input/output characteristics (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Signal input characteristics Signal output characteristics Symbol Conditions Value VIH VIL VOH - VOL 0.8 × VCC V 0.2 × VCC V 0.8 × VCC V 0.2 × VCC V Input signal VIH VIL VIH VIL Output signal VOH VOL VOH VOL Document Number: 002-04680 Rev. *D Unit Remarks Page 90 of 140 MB9B210T Series Separate Bus Access Asynchronous SRAM Mode (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name MOEX Min pulse width tOEW MOEX MCSX ↓ → Address output delay time tCSL – AV MCSX[7:0], MAD[24:0] MOEX ↑ → Address hold time tOEH - AX MOEX, MAD[24:0] MCSX ↓ → MOEX ↓ delay time tCSL - OEL MOEX ↑ → MCSX ↑ time tOEH - CSH MCSX ↓ → MDQM ↓ delay time tCSL - RDQML MCSX, MDQM[1:0] Data set up → MOEX ↑ time tDS - OE MOEX, MADATA[15:0] MOEX ↑ → Data hold time tDH - OE MOEX, MADATA[15:0] MWEX Min pulse width tWEW MWEX MWEX ↑ → Address output delay time tWEH - AX MWEX, MAD[24:0] MCSX ↓ → MWEX ↓ delay time tCSL - WEL MWEX ↑ → MCSX ↑ delay time tWEH - CSH MCSX ↓ → MDQM ↓ delay time tCSL-WDQML MCSX, MDQM[1:0] MCSX ↓ → Data output time tCSL - DV MCSX, MADATA[15:0] MWEX ↑ → Data hold time tWEH - DX MWEX, MADATA[15:0] MOEX, MCSX[7:0] MWEX, MCSX[7:0] Conditions Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Min Value Max Unit MCLK×n-3 - -9 -12 MCLK×m-9 MCLK×m-12 20 38 +9 +12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 - 0 - ns MCLK×n-3 - ns 0 MCLK×m-9 MCLK×m-12 0 0 MCLK×n-9 MCLK×n-12 0 MCLK×n-9 MCLK×n-12 MCLK-9 MCLK-12 0 MCLK×m+9 MCLK×m+12 MCLK×n+9 MCLK×n+12 MCLK×m+9 MCLK×m+12 MCLK×n+9 MCLK×n+12 MCLK+9 MCLK+12 MCLK×m+9 MCLK×m+12 ns ns ns ns ns ns ns ns ns ns ns ns ns Note: − When the external load capacitance = 30 pF. (m = 0 to 15, n = 1 to 16) Document Number: 002-04680 Rev. *D Page 91 of 140 MB9B210T Series tCYCLE MCLK tOEH-CSH tWEH-CSH MCSX[7:0] tCSL-AV MAD[24:0] tOEH-AX Address tWEH-AX tCSL-AV Address tCSL-OEL MOEX tOEW tCSL-WDQML tCSL-RDQML MDQM[1:0] MWEX MADATA[15:0] tCSL-WEL tWEW tDS-OE tDH-OE RD tWEH-DX WD Invalid tCSL-DV Document Number: 002-04680 Rev. *D Page 92 of 140 MB9B210T Series Separate Bus Access Synchronous SRAM Mode (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Address delay time Symbol tAV tCSL MCSX delay time tCSH tREL MOEX delay time tREH Pin name MCLK, MAD[24:0] MCLK, MCSX[7:0] MCLK, MOEX Data set up → MCLK ↑ time tDS MCLK, MADATA[15:0] MCLK ↑ → Data hold time tDH MCLK, MADATA[15:0] tWEL MWEX delay time tWEH MDQM[1:0] delay time tDQML tDQMH MCLK, MWEX MCLK, MDQM[1:0] MCLK ↑ → Data output time tOD MCLK, MADATA[15:0] MCLK ↑ → Data hold time tOD MCLK, MADATA[15:0] Conditions Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Min 1 1 1 1 1 Value Max 9 12 9 12 9 12 9 12 9 12 Unit ns ns ns ns ns 19 37 - ns 0 - ns 1 1 1 1 MCLK+1 1 9 12 9 12 9 12 9 12 MCLK+18 MCLK+24 18 24 ns ns ns ns ns ns Note: − When the external load capacitance = 30 pF. Document Number: 002-04680 Rev. *D Page 93 of 140 MB9B210T Series tCYCLE MCLK tCSL tCSH MCSX[7:0] tAV MAD[24:0] tAV Address Address tREL tREH tDQML tDQMH MOEX tDQML tDQMH tWEL tWEH MDQM[1:0] MWEX MADATA[15:0] tDS tDH RD tOD WD Invalid tODS Document Number: 002-04680 Rev. *D Page 94 of 140 MB9B210T Series Multiplexed Bus Access Asynchronous SRAM Mode (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Symbol Multiplexed address delay time tALE-CHMADV Multiplexed address hold time tCHMADH Pin name MALE, MADATA[15:0] Value Conditions Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Min 0 MCLK×n+0 MCLK×n+0 Max 10 20 MCLK×n+10 MCLK×n+20 Unit ns ns Note: − When the external load capacitance = 30 pF. (m = 0 to 15, n = 1 to 16) MCLK MCSX[7:0] MALE MAD [24:0] MOEX MDQM [1:0] MWEX MADATA[15:0] Document Number: 002-04680 Rev. *D Page 95 of 140 MB9B210T Series Multiplexed Bus Access Synchronous SRAM Mode (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Symbol tCHAL MALE delay time tCHAH MCLK ↑ → Multiplexed Address delay time tCHMADV MCLK ↑ → Multiplexed Data output time tCHMADX Pin name MCLK, ALE Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V MCLK, MADATA[15:0] Value Conditions Min Max Unit 9 12 9 12 ns ns ns ns 1 tOD ns 1 tOD ns 1 1 Remarks Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Note: − When the external load capacitance = 30 pF. MCLK MCSX[7:0] MALE MAD [24:0] MOEX MDQM [1:0] MWEX MADATA[15:0] Document Number: 002-04680 Rev. *D Page 96 of 140 MB9B210T Series NAND Flash Mode (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name Value Conditions Vcc ≥ 4.5 V MNREX tNREW MNREX Min pulse width Vcc < 4.5 V Vcc ≥ 4.5 V Data setup → MNREX, tDS – NRE MNREX↑time MADATA[15:0] Vcc < 4.5 V Vcc ≥ 4.5 V MNREX↑→ MNREX, tDH – NRE Data hold time MADATA[15:0] Vcc < 4.5 V Vcc ≥ 4.5 V MNALE↑→ MNALE, tALEH - NWEL MNWEX delay time MNWEX Vcc < 4.5 V Vcc ≥ 4.5 V MNALE↓→ MNALE, tALEL - NWEL MNWEX delay time MNWEX Vcc < 4.5 V Vcc ≥ 4.5 V MNCLE↑→ MNCLE, tCLEH - NWEL MNWEX delay time MNWEX Vcc < 4.5 V Vcc ≥ 4.5 V MNWEX↑→ MNCLE, tNWEH - CLEL MNCLE delay time MNWEX Vcc < 4.5 V Vcc ≥ 4.5 V MNWEX tNWEW MNWEX Min pulse width Vcc < 4.5 V Vcc ≥ 4.5 V MNWEX↓→ MNWEX, tNWEL – DV Data output time MADATA[15:0] Vcc < 4.5 V Vcc ≥ 4.5 V MNWEX↑→ MNWEX, tNWEH – DX Data hold time MADATA[15:0] Vcc < 4.5 V Note: − When the external load capacitance = 30 pF. (m=0 to 15, n=1 to 16) Min Max Unit MCLK×n-3 - ns 20 38 - ns 0 - ns MCLK×m-9 MCLK×m-12 MCLK×m-9 MCLK×m-12 MCLK×m-9 MCLK×m-12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 0 MCLK×n-3 - -9 -12 +9 +12 MCLK×m+9 MCLK×m+12 0 ns ns ns ns ns ns ns NAND Flash Read MCLK MNREX MADATA[15:0] Document Number: 002-04680 Rev. *D Read Page 97 of 140 MB9B210T Series NAND Flash Address Write MCLK MNALE MNCLE MNWEX MADATA[15:0] Write NAND Flash Command Write MCLK MNALE MNCLE MNWEX MADATA[15:0] Document Number: 002-04680 Rev. *D Write Page 98 of 140 MB9B210T Series External Ready Input Timing (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter MCLK ↑ MRDY input setup time Symbol tRDYI Pin name Conditions MCLK, MRDY Vcc ≥ 4.5 V 19 Vcc < 4.5 V 37 Min Value Max - Unit Remarks ns When RDY is input ··· MCLK Over 2cycles Original MOEX MWEX tRDYI MRDY When RDY is released MCLK ··· ··· 2 cycles Extended MOEX MWEX MRDY Document Number: 002-04680 Rev. *D tRDYI 0.5×VCC Page 99 of 140 MB9B210T Series 12.4.9 Base Timer Input Timing Timer input timing (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Input pulse width Symbol Pin name Conditions TIOAn/TIOBn (when using as ECK, TIN) tTIWH, tTIWL Min 2tCYCP - tTIWH Value Max Unit Remarks ns - tTIWL ECK VIHS TIN VIHS VILS VILS Trigger input timing (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Input pulse width Symbol tTRGH, tTRGL Pin name Conditions TIOAn/TIOBn (when using as TGIN) 2tCYCP - tTRGH TGIN VIHS Min Value - Max Unit Remarks ns tTRGL VIHS VILS VILS Note: − tCYCP indicates the APB bus clock cycle time. − About the APB bus number which Base Timer is connected to, see "Block Diagram" in this data sheet. Document Number: 002-04680 Rev. *D Page 100 of 140 MB9B210T Series 12.4.10 CSIO/UART Timing CSIO (SPI = 0, SCINV = 0) (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Baud rate Serial clock cycle time Symbo l tSCYC SCK ↓ → SOT delay time tSLOVI SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI Serial clock "L" pulse width Serial clock "H" pulse width tSLSH tSHSL SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK fall time SCK rise time tF tR Parameter Pin name SCKx SCKx , SOTx SCKx , SINx SCKx , SINx SCKx SCKx SCKx , SOTx SCKx , SINx SCKx , SINx SCKx SCKx Conditions - Master mode Slave mode Vcc ≥ 4.5 V Min Max Vcc < 4.5 V Min Max Unit - 8 - 8 4tCYCP - 4tCYCP - Mbps ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance = 30 pF. Document Number: 002-04680 Rev. *D Page 101 of 140 MB9B210T Series tSCYC VOH SCK VOL VOL tSLOVI VOH VOL SOT tIVSHI VIH VIL SIN tSHIXI VIH VIL Master mode tSLSH SCK VIH tF SOT VIL tSHSL VIL VIH VIH tR tSLOVE VOH VOL SIN tIVSHE VIH VIL tSHIXE VIH VIL Slave mode Document Number: 002-04680 Rev. *D Page 102 of 140 MB9B210T Series CSIO (SPI = 0, SCINV = 1) (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Baud rate Serial clock cycle time Symbo l tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓ → SIN hold time tSLIXI Serial clock "L" pulse width Serial clock "H" pulse width tSLSH tSHSL SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓ → SIN hold time tSLIXE SCK fall time SCK rise time tF tR Parameter Pin name SCKx SCKx , SOTx SCKx , SINx SCKx , SINx SCKx SCKx SCKx , SOTx SCKx , SINx SCKx , SINx SCKx SCKx Conditions - Master mode Slave mode Vcc ≥ 4.5 V Min Max Vcc < 4.5 V Min Max Unit - 8 - 8 4tCYCP - 4tCYCP - Mbps ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance = 30 pF. Document Number: 002-04680 Rev. *D Page 103 of 140 MB9B210T Series tSCYC VOH SCK VOH VOL tSHOVI VOH VOL SOT tIVSLI tSLIXI VIH VIL VIH VIL SIN Master mode tSHSL SCK VIH VIH VIL tR SOT tSLSH VIL VIL tF tSHOVE VOH VOL SIN tIVSLE VIH VIL tSLIXE VIH VIL Slave mode Document Number: 002-04680 Rev. *D Page 104 of 140 MB9B210T Series CSIO (SPI = 1, SCINV = 0) (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Symbol Baud rate Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓ → SIN hold time tSLIXI SOT → SCK ↓ delay time tSOVLI Serial clock "L" pulse width Serial clock "H" pulse width tSLSH tSHSL SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓ → SIN hold time tSLIXE SCK fall time SCK rise time tF tR Pin name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx, SOTx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Conditions - Master mode Slave mode Vcc ≥ 4.5 V Min Max Vcc < 4.5 V Min Max Unit - 8 - 8 4tCYCP - 4tCYCP - Mbps ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 30 - 2tCYCP - 30 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance = 30 pF. Document Number: 002-04680 Rev. *D Page 105 of 140 MB9B210T Series tSCYC VOH SCK SOT VOL VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL Master mode tSLSH SCK VIH tR VIH tSHOVE VOH VOL VOH VOL tIVSLE SIN VIH VIL tF * SOT VIL tSHSL tSLIXE VIH VIL VIH VIL Slave mode *: Changes when writing to TDR register Document Number: 002-04680 Rev. *D Page 106 of 140 MB9B210T Series CSIO (SPI = 1, SCINV = 1) (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name Baud rate Serial clock cycle time tSCYC SCKx SCK ↓ → SOT delay time tSLOVI SCKx, SOTx SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI SOT → SCK ↑ delay time tSOVHI Serial clock "L" pulse width Serial clock "H" pulse width tSLSH tSHSL SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK fall time SCK rise time tF tR SCKx, SINx SCKx, SINx SCKx, SOTx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx - Master mode Slave mode Vcc ≥ 4.5 V Vcc < 4.5 V Conditions Min Max Min Max Unit - 8 - 8 4tCYCP - 4tCYCP - Mbps ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 30 - 2tCYCP - 30 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance = 30 pF. Document Number: 002-04680 Rev. *D Page 107 of 140 MB9B210T Series tSCYC VOH SCK tSOVHI tSLOVI VOH VOL SOT VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL Master mode tSHSL tR SCK tSLSH VIH VIH VIL VIL tF VIH VIL tSLOVE VOH VOL SOT VOH VOL tIVSHE tSHIXE VIH VIL SIN VIH VIL Slave mode UART external clock input (EXT = 1) (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Serial clock "L" pulse width Serial clock "H" pulse width SCK fall time SCK rise time Symbol tSLSH tSHSL tF tR Conditions CL = 30 pF tR SCK VIL Document Number: 002-04680 Rev. *D Value Min tCYCP + 10 tCYCP + 10 - tF tSLSH VIH VIL Remarks ns ns ns ns 5 5 tSHSL VIH Unit Max VIL VIH Page 108 of 140 MB9B210T Series 12.4.11 External Input Timing (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name Value Conditions Min Max Unit ADTG FRCKx Input pulse width tINH, tINL ICxx DTTIxX INTxx, NMIX - 2tCYCP* - ns Except Timer mode, Stop mode 2tCYCP* - ns 2tCYCP + 100* - ns Timer mode, Stop mode Remarks A/D converter trigger input Free-run timer input clock Input capture Wave form generator External interrupt NMI 500 - ns *: tCYCP indicates the APB bus clock cycle time. About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected to, see "Block Diagram" in this data sheet. Document Number: 002-04680 Rev. *D Page 109 of 140 MB9B210T Series 12.4.12 Quadrature Position/Revolution Counter timing (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Symbol Value Conditions Min Max Unit AIN pin "H" width tAHL AIN pin "L" width tALL BIN pin "H" width tBHL BIN pin "L" width tBLL BIN rise time from PC_Mode2 or tAUBU AIN pin "H" level PC_Mode3 AIN fall time from PC_Mode2 or tBUAD BIN pin "H" level PC_Mode3 BIN fall time from PC_Mode2 or tADBD AIN pin "L" level PC_Mode3 AIN rise time from PC_Mode2 or tBDAU BIN pin "L" level PC_Mode3 AIN rise time from PC_Mode2 or 2tCYCP* ns tBUAU BIN pin "H" level PC_Mode3 BIN fall time from PC_Mode2 or tAUBD AIN pin "H" level PC_Mode3 AIN fall time from PC_Mode2 or tBDAD BIN pin "L" level PC_Mode3 BIN rise time from PC_Mode2 or tADBU AIN pin "L" level PC_Mode3 ZIN pin "H" width tZHL QCR:CGSC="0" ZIN pin "L" width tZLL QCR:CGSC="0" AIN/BIN rise and fall time tZABE QCR:CGSC="1" from determined ZIN level Determined ZIN level from tABEZ QCR:CGSC="1" AIN/BIN rise and fall time *: tCYCP indicates the APB bus clock cycle time. About the APB bus number which Quadrature Position/Revolution Counter is connected to, see "Block Diagram" in this data sheet. tALL tAHL AIN tAUBU tADBD tBUAD tBDAU BIN tBHL Document Number: 002-04680 Rev. *D tBLL Page 110 of 140 MB9B210T Series tBLL tBHL BIN tBUAU tBDAD tAUBD tADBU AIN tAHL tALL ZIN ZIN AIN/BIN Document Number: 002-04680 Rev. *D Page 111 of 140 MB9B210T Series 12.4.13 I2C Timing (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter SCL clock frequency (Repeated) START condition hold time SDA ↓ → SCL ↓ SCLclock "L" width SCLclock "H" width (Repeated) START setup time SCL ↑ → SDA ↓ Data hold time SCL ↓ → SDA ↓ ↑ Data setup time SDA ↓ ↑ → SCL ↑ STOP condition setup time SCL ↑ → SDA ↑ Bus free time between "STOP condition" and "START condition" Symbol Standard-mode Min Max Conditions Fast-mode Min Max Unit FSCL 0 100 0 400 kHz tHDSTA 4.0 - 0.6 - μs tLOW tHIGH 4.7 4.0 - 1.3 0.6 - μs μs 4.7 - 0.6 - μs 0 3.45*2 0 0.9*3 μs tSUDAT 250 - 100 - ns tSUSTO 4.0 - 0.6 - μs tBUF 4.7 - 1.3 - μs tSUSTA tHDDAT CL = 30 pF, R = (Vp/IOL)*1 Remarks 8 MHz ≤ 2 tCYCP*4 2 tCYCP*4 ns *5 tCYCP ≤ 40 MHz 40 MHz < Noise filter tSP 3 tCYCP*4 3 tCYCP*4 ns *5 tCYCP ≤ 60 MHz 60 MHz < 4 tCYCP*4 4 tCYCP*4 ns *5 tCYCP ≤ 72 MHz *1: R and C represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current. *2: The maximum tHDDAT must satisfy that it does not extend at least "L" period (tLOW) of device's SCL signal. *3: A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the requirement of "tSUDAT ≥ 250 ns". *4: tCYCP is the APB bus clock cycle time. About the APB bus number which I2C is connected to, see "Block Diagram" in this data sheet. To use Standard-mode, set the APB bus clock at 2 MHz or more. To use Fast-mode, set the APB bus clock at 8 MHz or more. *5: The number of steps of the noise filter can be changed with register settings. Change the number of the noise filter steps according to APB2 bus clock frequency. SDA SCL Document Number: 002-04680 Rev. *D Page 112 of 140 MB9B210T Series 12.4.14 ETM Timing (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Symbol Data hold tETMH TRACECLK frequency 1/ tTRACE Pin name TRACECLK, TRACED[3:0] TRACECLK TRACECLK cycle time tTRACE Conditions Min Value Max Unit Vcc ≥ 4.5 V 2 9 Vcc < 4.5 V 2 15 Vcc ≥ 4.5 V - 50 MHz Vcc < 4.5 V - 32 MHz Vcc ≥ 4.5 V 20 - ns Vcc < 4.5 V 31.25 - ns Remarks ns Note: − When the external load capacitance = 30 pF. HCLK TRACECLK TRACED[3:0] Document Number: 002-04680 Rev. *D Page 113 of 140 MB9B210T Series 12.4.15 JTAG Timing (Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name TMS, TDI setup time tJTAGS TCK, TMS, TDI TMS, TDI hold time tJTAGH TCK, TMS, TDI TDO delay time tJTAGD TCK, TDO Conditions Vcc ≥ 4.5 V Min Value Max Unit 15 - ns 15 - ns Vcc ≥ 4.5 V - 25 Vcc < 4.5 V - 45 Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Remarks ns Note: − When the external load capacitance = 30 pF. TCK TMS/TDI TDO Document Number: 002-04680 Rev. *D Page 114 of 140 MB9B210T Series 12.4.16 Ethernet-MAC Timing RMII transmission (100Mbps/10Mbps) (ETHVcc = 3.0V to 3.6V, 4.5V to 5.5V*1) (Vss = 0V, TA = - 40°C to + 85°C, CL=25pF) Parameter Reference Clock Cycle time*2 Reference Clock High pulse width duty Reference Clock Low pulse width duty Symbol Pin name Conditions tREFCYC E_RXCK0_REFCK tREFCYCH E_RXCK0_REFCK tREFCYCL E_RXCK0_REFCK 20 ns (typical) tREFCYCH / tREFCYC tREFCYCL / tREFCYC Min Value Unit Max - - ns 35 65 % 35 65 % E_TX01, E_TX00, E_TXEN0 tRMIITX 12 ns E_TX03_TX11, REFCK ↑ → Transmitted data E_TX02_TX10, Delay time (ch.1) E_TXER0_TXEN1 *1: When ETHV=4.5 V to 5.5 V, it is recommended to add a series resistor at the output pin to suppress the output current. REFCK ↑ → Transmitted data Delay time (ch.0) *2: The reference clock is fixed to 50 MHz in the RMII specifications. The clock accuracy should meet the PHY-device specifications. tREFCYC E_RXCK0_REFCK VIHS tREFCYCH E_TX03_TX11 E_TX02_TX10 E_TX01 E_TX00 E_TXEN0 E_TXER0_TXEN1 Document Number: 002-04680 Rev. *D VIHS VILS tREFCYCL VOH VOL tRMIITX Page 115 of 140 MB9B210T Series RMII receiving (100Mbps/10Mbps) (ETHVcc = 3.0V to 3.6V, 4.5V to 5.5V) (Vss = 0V, TA = - 40°C to + 85°C, CL=25pF) Parameter Reference Clock Cycle time* Reference Clock High pulse width duty Reference Clock Low pulse width duty Symbol Pin name tREFCYC E_RXCK0_REFCK tREFCYCH E_RXCK0_REFCK tREFCYCL E_RXCK0_REFCK Conditions 20 ns (typical) Value Max Unit - - ns 35 65 % 35 65 % - 4 - ns - 2 - ns tREFCYCH / tREFCYC tREFCYCL / tREFCYC E_RX01, E_RX00, E_RXDV0 tRMIIRXS E_RX03_RX11, Received data → REFCK↑ E_RX02_RX10, Setup time(ch.1) E_RXER0_RXDV1 E_RX01, REFCK ↑ → Received data E_RX00, Hold time(ch.0) E_RXDV0 tRMIIRXH E_RX03_RX11, REFCK ↑ → Received data E_RX02_RX10, Hold time (ch.1) E_RXER0_RXDV1 *: The reference clock is fixed to 50 MHz in the RMII specifications. The clock accuracy should meet the PHY-device specifications. Min Received data → REFCK↑ Setup time(ch.0) tREFCYC E_RXCK0_REFCK VIHS E_RX03_RX11 E_RX02_RX10 E_RX01 E_RX00 E_RXDV0 E_RXER0_RXDV1 Document Number: 002-04680 Rev. *D tREFCYCH VIHS VILS tRMIIRXS VIHS VILS tREFCYCL VIHS VILS tRMIIRXH Page 116 of 140 MB9B210T Series Management Interface (ETHVcc = 3.0V to 3.6V, 4.5V to 5.5V) (Vss = 0V, TA = - 40°C to + 85°C, CL=25pF) Parameter Symbol Pin name Conditions Min Value Unit Max Management Clock E_MDC0 Cycle time* (ch.0) tMDCYC 400 Management Clock E_TCK0_MDC1 Cycle time* (ch.1) Management Clock High pulse width duty E_MDC0 (ch.0) tMDCYCH / tMDCYCH 45 55 tMDCYC Management Clock High pulse width duty E_TCK0_MDC1 (ch.1) Management Clock E_MDC0 Low pulse width duty (ch.0) tMDCYCL / tMDCYCL 45 55 tMDCYC Management Clock E_TCK0_MDC1 Low pulse width duty (ch.1) MDC ↓ → MDIO E_MDIO0 Delay time (ch.0) tMDO 60 MDC ↓ → MDIO E_MDIO1 Delay time (ch.1) MDIO → MDC ↑ E_MDIO0 Setup time (ch.0) tMDIS 20 MDIO → MDC ↑ E_MDIO1 Setup time (ch.1) MDC ↑ → MDIO E_MDIO0 Hold time (ch.0) tMDIH 0 MDC ↑ → MDIO E_MDIO1 Hold time (ch.1) *: The clock time should be set to a value greater than the minimum value by setting the Ether-MAC setting register. ns % % ns ns ns tMDCYC E_MDC0 (output) E_TCK0_MDC1 (output) VOH VOL tMDCYCH E_MDIO0 (input) E_MDIO1 (input) Document Number: 002-04680 Rev. *D tMDCYCL VIHS VILS VIHS VILS VIHS VILS VIHS VILS tMDIS tMDIH tMDIS tMDIH tMDO tMDO E_MDIO0 (output) E_MDIO1 (output) VOH VOL VOH VOL VOH VOL Page 117 of 140 MB9B210T Series MII transmission (100Mbps/10Mbps) (ETHVcc = 3.0V to 3.6V, 4.5V to 5.5V*1) (Vss = 0V, TA = - 40°C to + 85°C, CL=25pF) Parameter Transmission Clock Cycle time*2 Transmission Clock High pulse width duty Transmission Clock Low pulse width duty Symbol tTXCYC Pin name Conditions 100 Mbps, 40 ns (typical) 10 Mbps, 400 ns (typical) tTXCYCH / tTXCYC tTXCYCL / tTXCYC E_TCK0_MDC1 tTXCYCH E_TCK0_MDC1 tTXCYCL E_TCK0_MDC1 Min Value Max Unit - - ns - - ns 35 65 % 35 65 % E_TX03_TX11, E_TX02_TX10, TXCK ↑ → Transmitted data E_TX01, tMIITX 24 ns Delay time E_TX00, E_TXEN0, E_TXER0_TXEN1 *1: When ETHV=4.5 V to 5.5 V, it is recommended to add a series resistor at the output pin to suppress the output current. *2: The transmission clock is fixed to 25 MHz or 2.5 MHz in the MII specifications. The clock accuracy should meet the PHY-device specifications. tTXCYC E_TCK0_MDC1 VIHS E_TX03_TX11 E_TX02_TX10 E_TX01 E_TX00 E_TXEN0 E_TXER0_TXEN1 Document Number: 002-04680 Rev. *D VIHS VILS tTXCYCH tTXCYCL VOH VOL tMIITX Page 118 of 140 MB9B210T Series MII receiving (100 Mbps/10 Mbps) (ETHVcc = 3.0V to 3.6V, 4.5V to 5.5V) (Vss = 0V, TA = - 40°C to + 85°C, CL=25pF) Parameter Receiving Clock Cycle time* Receiving Clock High pulse width duty Receiving Clock Low pulse width duty Symbol tRXCYC Pin name Conditions 100 Mbps, 40 ns (typical) 10 Mbps, 400 ns (typical) tRXCYCH / tRXCYC tRXCYCL / tRXCYC E_RXCK0_REFCK tRXCYCH E_RXCK0_REFCK tRXCYCL E_RXCK0_REFCK E_RX03_RX11, E_RX02_RX10, Received data → REFCK ↑ E_RX01, tMIIRXS Setup time E_RX00, E_RXDV0, E_RXER0_RXDV1 E_RX03_RX11, E_RX02_RX10, REFCK ↑ → Received data E_RX01, tMIIRXH Hold time E_RX00, E_RXDV0, E_RXER0_RXDV1 *: The receiving clock 100 Mbps is fixed to 25 MHz or 2.5 MHz in the MII specifications. The clock accuracy should meet the PHY-device specifications. VIHS Document Number: 002-04680 Rev. *D Value Max Unit - - ns - - ns 35 65 % 35 65 % 5 - ns 2 - ns tRXCYC E_RXCK0_REFCK E_RX03_RX11 E_RX02_RX10 E_RX01 E_RX00 E_RXDV0 E_RXER0_RXDV1 Min VIHS tRXCYCH VIHS VILS tMIIRXS VILS tRXCYCL VIHS VILS tMIIRXH Page 119 of 140 MB9B210T Series 12.5 12-bit A/D Converter Electrical characteristics for the A/D converter (Vcc = AVcc = 2.7V to 5.5V, Vss = AVss = 0V, TA = - 40°C to + 85°C) Parameter Resolution Integral Nonlinearity Differential Nonlinearity Zero transition voltage Full-scale transition voltage Pin name Symbol Value Typ Min VZT ANxx - VFST ANxx 1.0*1 - Unit Max 12 ± 4.5 ± 2.5 ± 15 bit LSB LSB mV AVRH ± 15 mV 1.2*1 *2 *2 - - μs - 50 - 2000 ns Tstt - - - 1.0 μs Analog input capacity CAIN - - - 12.9 pF Analog input resistance RAIN - - - Interchannel disparity Analog port input leak current Analog input voltage Reference voltage - - - - 2 3.8 4 - ANxx - - 5 μA - ANxx AVRH AVSS 2.7 - AVRH AVCC V V Conversion time - - Sampling time Ts - Compare clock cycle*3 Tcck State transition time to operation permission ns kΩ Remarks AVRH = 2.7 V to 5.5 V AVcc ≥ 4.5 V AVcc < 4.5 V AVcc ≥ 4.5 V AVcc < 4.5 V AVcc ≥ 4.5 V AVcc < 4.5 V LSB *1: The Conversion time is the value of sampling time (Ts) + compare time (Tc). The condition of the minimum conversion time is the following. AVcc ≥ 4.5 V, HCLK=120 MHz sampling time: 300 ns compare time: 700 ns AVcc < 4.5 V, HCLK=120 MHz sampling time: 500 ns compare time: 700 ns Ensure that it satisfies the value of the sampling time (Ts) and compare clock cycle (Tcck). For setting of the sampling time and compare clock cycle, see "CHAPTER 1-1: A/D Converter" in "FM3 Family PERIPHERAL MANUAL Analog Macro Part". The registers setting of the A/D Converter are reflected in the operation according to the APB bus clock timing. The sampling clock and compare clock is generated from the Base clock (HCLK). About the APB bus number which the A/D Converter is connected to, see "Block Diagram" in this data sheet. *2: A necessary sampling time changes by external impedance. Ensure that it set the sampling time to satisfy (Equation 1). *3: Compare time (Tc) is the value of (Equation 2). Document Number: 002-04680 Rev. *D Page 120 of 140 MB9B210T Series Rext ANxx Analog input pin Analog signal source Comparator RAIN CAIN (Equation 1) Ts ≥ ( RAIN + Rext ) × CAIN × 9 Ts: Sampling time RAIN: Input resistance of A/D = 2 kΩ at 4.5 V ≤ AVCC ≤ 5.5 V Input resistance of A/D = 3.8 kΩ at 2.7 V ≤ AVCC < 4.5 V CAIN: Input capacity of A/D = 12.9 pF at 2.7 V ≤ AVCC ≤ 5.5 V Rext: Output impedance of external circuit (Equation 2) Tc = Tcck × 14 Tc: Compare time Tcck: Compare clock cycle Document Number: 002-04680 Rev. *D Page 121 of 140 MB9B210T Series Definition of 12-bit A/D Converter Terms Resolution: Analog variation that is recognized by an A/D converter. Integral Nonlinearity: Deviation of the line between the zero-transition point (0b000000000000←→0b000000000001) and the full-scale transition point (0b111111111110←→0b111111111111) from the actual conversion characteristics. Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB. Integral Nonlinearity 0xFFF Actual conversion characteristics 0xFFE Actual conversion characteristics 0x(N+1) {1 LSB(N-1) + VZT} VFST VNT 0x004 (Actuallymeasured value) (Actually-measured value) 0x003 Digital output Digital output 0xFFD Differential Nonlinearity Actual conversion characteristics Ideal characteristics 0x002 0x001 0xN Ideal characteristics V(N+1)T 0x(N-1) VNT (Actually-measured value) 0x(N-2) VZT (Actually-measured value) AVss Actual conversion characteristics AVRH AVss AVRH Analog input Integral Nonlinearity of digital output N = Differential Nonlinearity of digital output N = 1LSB = (Actually-measured value) Analog input VNT - {1LSB × (N - 1) + VZT} 1LSB V(N + 1) T - VNT 1LSB [LSB] - 1 [LSB] VFST - VZT 4094 N: A/D converter digital output value. VZT: Voltage at which the digital output changes from 0x000 to 0x001. VFST: Voltage at which the digital output changes from 0xFFE to 0xFFF. VNT: Voltage at which the digital output changes from 0x(N − 1) to 0xN. Document Number: 002-04680 Rev. *D Page 122 of 140 MB9B210T Series 12.6 USB characteristics The USB characteristics of ch.0 and those of ch.1 are the same. USBVcc0 and USBVcc1 are described as USBVcc below. (Vcc = 2.7V to 5.5V, USBVcc = 3.0V to 3.6V, Vss = 0V, TA = - 40°C to + 85°C) Parameter Input characteristics Symbol Pin name Value Conditions Min Max Unit Remarks Input "H" level voltage VIH - 2.0 USBVcc + 0.3 V *1 Input "L" level voltage Differential input sensitivity Different common mode range VIL - Vss - 0.3 0.8 V *1 VDI - 0.2 - V *2 VCM - 0.8 2.5 V *2 External pull-down Output "H" level voltage VOH 2.8 3.6 V *3 resistance= 15 kΩ UDP0, External UDM0 pull-up Output "L" level voltage VOL 0.0 0.3 V *3 resistance= Output 1.5 kΩ charact- Crossover voltage VCRS 1.3 2.0 V *4 eristics Rise time tFR Full-Speed 4 20 ns *5 Fall time tFF Full-Speed 4 20 ns *5 Rise/ fall time matching tFRFM Full-Speed 90 111.11 % *5 Output impedance ZDRV Full-Speed 28 44 Ω *6 Rise time tLR Low-Speed 75 300 ns *7 Fall time tLF Low-Speed 75 300 ns *7 Rise/ fall time matching tLRFM Low-Speed 80 125 % *7 *1: The switching threshold voltage of Single-End-Receiver of USB I/O buffer is set as within VIL (Max) = 0.8V, VIH (Min) = 2.0 V (TTL input standard). There are some hysteresis to lower noise sensitivity. Minimum differential input sensitivity [V] *2: Use differential-Receiver to receive USB differential data signal. Differential-Receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level. Above voltage range is the common mode input voltage range. Common mode input voltage [V] Document Number: 002-04680 Rev. *D Page 123 of 140 MB9B210T Series *3: The output drive capability of the driver is below 0.3 V at Low-State (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to ground and 1.5 kΩ load) at High-State (VOH). *4: The cross voltage of the external differential output signal (D + /D − ) of USB I/O buffer is within 1.3 V to 2.0 V. VCRS specified range *5: They indicate rise time (Trise) and fall time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within ± 10% to minimize RFI emission. Rising time Document Number: 002-04680 Rev. *D Falling time Page 124 of 140 MB9B210T Series *6: USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential Mode). USB standard defines that output impedance of USB driver must be in range from 28Ω to 44Ω. So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance. When using this USB I/O, use it with 25 Ω to 30 Ω (recommendation value 27 Ω)series resistor Rs. 28Ω to 44Ω Equiv. Imped. 28Ω to 44Ω Equiv. Imped. Mount it as external resistance. Rs series resistor 25Ω to 30Ω Series resistor of 27Ω (recommendation value) must be added. And, use "resistance with an uncertainty of 5% by E24 sequence". *7: They indicate rise time (Trise) and fall time (Tfall) of the low-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. Rising time Falling time See Figure "Low-Speed Load (Compliance Load)" for conditions of external load. Document Number: 002-04680 Rev. *D Page 125 of 140 MB9B210T Series Low-Speed Load (Upstream Port Load) - Reference 1 CL = 50pF to 150pF CL = 50pF to 150pF Low-Speed Load (Downstream Port Load) - Reference 2 CL =200pF to 600pF CL =200pF to 600pF Low-Speed Load (Compliance Load) CL = 200pF to 450pF CL = 200pF to 450pF Document Number: 002-04680 Rev. *D Page 126 of 140 MB9B210T Series 12.7 Low-Voltage Detection Characteristics 12.7.1 Low-Voltage Detection Reset (TA = - 40°C to + 85°C) Parameter Detected voltage Released voltage Symbol Value Conditions VDL VDH Min Typ 2.25 2.30 - 2.45 2.50 Max 2.65 2.70 Unit Remarks V V When voltage drops When voltage rises 12.7.2 Interrupt of Low-Voltage Detection (TA = - 40°C to + 85°C) Parameter Symbol Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH LVD stabilization wait time TLVDW Value Conditions SVHI = 0000 SVHI = 0001 SVHI = 0010 SVHI = 0011 SVHI = 0100 SVHI = 0111 SVHI = 1000 SVHI = 1001 - Min Typ Max Unit 2.58 2.67 2.76 2.85 2.94 3.04 3.31 3.40 3.40 3.50 3.68 3.77 3.77 3.86 3.86 3.96 2.8 2.9 3.0 3.1 3.2 3.3 3.6 3.7 3.7 3.8 4.0 4.1 4.1 4.2 4.2 4.3 3.02 3.13 3.24 3.34 3.45 3.56 3.88 3.99 3.99 4.10 4.32 4.42 4.42 4.53 4.53 4.64 V V V V V V V V V V V V V V V V - - 4032 × tCYCP* μs Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises *: tCYCP indicates the APB2 bus clock cycle time. Document Number: 002-04680 Rev. *D Page 127 of 140 MB9B210T Series 12.8 Flash Memory Write/Erase Characteristics 12.8.1 Write / Erase time (Vcc = 2.7V to 5.5V, TA = - 40°C to + 85°C) Value Parameter Typ* Max* Large Sector 0.7 3.7 Small Sector 0.3 1.1 Half word (16-bit) write time 12 Chip erase time 13.6 Sector erase time Unit Remarks s Includes write time prior to internal erase 384 μs Not including system-level overhead time. 68 s Includes write time prior to internal erase *: The typical value is immediately after shipment, the maximum value is guarantee value under 100,000 cycle of erase/write. 12.8.2 Write cycles and data hold time Erase/write cycles (cycle) Data hold time (year) 1,000 20* 10,000 10* 100,000 *: At average + 85°C Document Number: 002-04680 Rev. *D Remarks 5* Page 128 of 140 MB9B210T Series 12.9 Return Time from Low-Power Consumption Mode 12.9.1 Return Factor: Interrupt The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation. Return Count Time (VCC = 2.7V to 5.5V, TA = - 40°C to + 85°C) Parameter SLEEP mode High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode Value Symbol Typ Max* tCYCC Unit ns 40 80 μs 453 737 μs Sub TIMER mode 453 737 μs STOP mode 453 737 μs Low-speed CR TIMER mode Ticnt Remarks *: The maximum value depends on the accuracy of built-in CR. Operation example of return from Low-Power consumption mode (by external interrupt*) Ext.INT Interrupt factor accept Active Ticnt CPU Operation Interrupt factor clear by CPU Start *: External interrupt is set to detecting fall edge. Document Number: 002-04680 Rev. *D Page 129 of 140 MB9B210T Series Operation example of return from Low-Power consumption mode (by internal resource interrupt*) Internal Resource INT Interrupt factor accept Active Ticnt CPU Operation Interrupt factor clear by CPU Start *: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode. Notes: − The return factor is different in each Low-Power consumption modes. − See "CHAPTER 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family PERIPHERAL MANUAL about the return factor from Low-Power consumption mode. − When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "CHAPTER 6: Low Power Consumption Mode" in "FM3 Family PERIPHERAL MANUAL". Document Number: 002-04680 Rev. *D Page 130 of 140 MB9B210T Series 12.9.2 Return Factor: Reset The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation. Return Count Time (VCC = 2.7V to 5.5V, TA = - 40°C to + 85°C) Parameter Value Symbol SLEEP mode High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode Typ Max* Unit 321 461 μs 321 461 μs 441 701 μs Sub TIMER mode 441 701 μs STOP mode 441 701 μs Low-speed CR TIMER mode Trcnt Remarks *: The maximum value depends on the accuracy of built-in CR. Operation example of return from Low-Power consumption mode (by INITX) INITX Internal RST RST Active Release Trcnt CPU Operation Document Number: 002-04680 Rev. *D Start Page 131 of 140 MB9B210T Series Operation example of return from low power consumption mode (by internal resource reset*) Internal Resource RST Internal RST RST Active Release Trcnt CPU Operation Start *: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode. Notes: − The return factor is different in each Low-Power consumption modes. − See "CHAPTER 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family PERIPHERAL MANUAL. − When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "CHAPTER 6: Low Power Consumption Mode" in "FM3 Family PERIPHERAL MANUAL". − The time during the power-on reset/low-voltage detection reset is excluded. See "12.4.7.Power-on Reset Timing in 12.4 AC Characteristics in “12.Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage detection reset. − When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time. − The internal resource reset means the watchdog reset and the CSV reset. Document Number: 002-04680 Rev. *D Page 132 of 140 MB9B210T Series 13. Ordering Information Part number On-chip Flash memory On-chip SRAM MB9BF216SPMC-GK7E1 512 Kbyte 64 Kbyte MB9BF217SPMC-GK7E1 768 Kbyte 96 Kbyte MB9BF218SPMC-GK7E1 1 Mbyte 128 Kbyte MB9BF216TPMC-GK7E1 512 Kbyte 64 Kbyte MB9BF217TPMC-GK7E1 768 Kbyte 96 Kbyte MB9BF218TPMC-GK7E1 1 Mbyte 128 Kbyte MB9BF216TBGL-GK7E1 512 Kbyte 64 Kbyte MB9BF217TBGL-GK7E1 768 Kbyte 96 Kbyte MB9BF218TBGL-GK7E1 1 Mbyte 128 Kbyte Document Number: 002-04680 Rev. *D Package Packing Plastic · LQFP 144-pin (0.5 mm pitch), (LQS144) Plastic · LQFP 176-pin (0.5 mm pitch), (LQP176) Tray Plastic · PFBGA 192-pin (0.8 mm pitch), (LBE192) Page 133 of 140 MB9B210T Series 14. Package Dimensions Package Type Package Code LQFP 176 LQP176 D D1 132 4 5 7 89 133 89 88 132 133 88 E1 E 5 7 4 3 6 176 45 1 176 45 44 44 1 2 5 7 e 3 BOTTOM VIEW 0.10 C A-B D 0.20 C A-B D b 0.08 C A-B D 8 TOP VIEW 2 A 9 c A A' 0.08 C SIDE VIEW SYMBOL L1 0.25 A1 10 L b SECTION A-A' DIMENSIONS MIN. NOM. MAX. 0.05 0.15 1.70 A A1 SEATING PLANE b 0.17 c 0.09 0.22 0.20 D 26.00 BSC D1 24.00 BSC e 0.50 BSC E 26.00 BSC E1 0.27 24.00 BSC L 0.45 0.60 0.75 L1 0.30 0.50 0.70 0 8 PACKAGE OUTLINE, 176 LEAD LQFP 24.0X24.0X1.7 MM LQP176 REV** Document Number: 002-04680 Rev. *D 002-15150 ** Page 134 of 140 MB9B210T Series Package Type Package Code LQFP 144 LQS144 4 D D1 108 4 5 7 7 5 73 109 73 72 D D1 108 109 72 E1 E 5 7 E 4 4 E1 5 7 3 3 6 144 37 1 144 37 36 1 36 BOTTOM VIEW 2 5 7 e 3 0.10 C A-B D 0.20 C A-B D b 0.08 TOP VIEW C A-B D 8 2 A 9 c A A' 0.08 C SEATING PLANE L1 0.25 L A1 10 b SECTION A-A' SIDE VIEW SYMBOL DIMENSIONS MIN. NOM. MAX. 1.70 A A1 0.05 0.15 b 0.17 c 0.09 0.22 0.27 0.20 D 22.00 BSC D1 20.00 BSC e 0.50 BSC E 22.00 BSC 20.00 BSC E1 L 0.45 0.60 0.75 L1 0.30 0.50 0.70 PACKAGE OUTLINE, 144 LEAD LQFP 20.0X20.0X1.7 MM LQS144 REV*A Document Number: 002-04680 Rev. *D 002-13015 *A Page 135 of 140 MB9B210T Series Package Type Package Code FBGA 192 LBE192 002-13493 *A Document Number: 002-04680 Rev. *D Page 136 of 140 MB9B210T Series 15. Major Changes Spansion Publication Number: DS706-00015 Page Section Revision 1.0 Revision 2.0 9 to 11 Pin Assignment 62, 63 Handling Devices Block Diagram 64 76 82 84 116 Electrical Characteristics Recommended Operating Conditions AC Characteristics Main Clock Input Characteristics Operating Conditions of Main and USB/Ethernet PLL (In the case of using main clock for input of PLL) Operating Conditions of Main PLL (In the case of using high-speed internal CR) 5. 12-bit A/D Converter • Electrical Characteristics for the A/D Converter Revision 2.1 Revision 3.0 Features 2 External Bus Interface Features 2 USB Interface Ethernet-MAC Features 2 USB Interface 9, 10 Pin Assignment 51 to 56 I/O Circuit Type 61 Handling Devices 61 Handling Devices Crystal oscillator circuit 62 64 Handling Devices C Pin Block Diagram Change Results Initial release Added the description of "Note". • Revised the description of "•C pin". • Added the description of "•Base Timer". Corrected the figure. - TIOA: input → input/output - TIOB: output → input • Added the "Smoothing capacitor (CS)". • Added the footnote. Added "Internal operating clock frequency (FCM): Master clock". • Added "Main PLL clock frequency (FCLKPLL)". • Added "USB/Ethernet clock frequency (FCLKSPLL)". • Added the Symbol. • Deleted the following Pin name. - "Sampling time" - "Compare clock cycle" - "State transition time to operation permission" - "Analog input capacity" - "Analog input resistance" • Corrected the value of "Compare clock cycle (Tcck)". Max: 10000 → 2000 Company name and layout design change Added the description of Maximum area size Added the description of PLL for USB and Ethernet Added the size of each EndPoint Added SWCLK and SWDIO and SWO · Added the description of I2C to the type of E, F, I, L · Added about +B input Added "Stabilizing power supply voltage" Added the following description "Evaluate oscillation of your using crystal oscillator by your mount board." Changed the description Modified the block diagram 66 Memory Map · Memory map(1) Modified the area of "External Device Area" 67 Memory Map · Memory map(2) Added the summary of Flash memory sector and the note 74, 75 Electrical Characteristics 1. Absolute Maximum Ratings · Added the Clamp maximum current · Added the output current of P80, P81, P82, P83 · Added about +B input Document Number: 002-04680 Rev. *D Page 137 of 140 MB9B210T Series Page Section 76 Electrical Characteristics Recommended Operation Conditions 78, 79 Electrical Characteristics DC Characteristics Current rating 83 85 Electrical Characteristics AC Characteristics Built-in CR Oscillation Characteristics Electrical Characteristics AC Characteristics Power-on Reset Timing 87 to 89 Electrical Characteristics. AC Characteristics External Bus Timing 96 to 103 Electrical Characteristics AC Characteristics CSIO/UART Timing 115 Electrical Characteristics 5. 12bit A/D Converter 124 to 127 Electrical Characteristics Return Time from Low-Power Consumption Mode Ordering Information Change Results · Modified the minimum value of Analog reference voltage · Added Smoothing capacitor · Added the note about less than the minimum power supply voltage · Changed the table format · Added Main TIMER mode current · Added Flash Memory Current · Moved A/D Converter Current Added Frequency stability time at Built-in high-speed CR · Added Time until releasing Power-on reset · Changed the figure of timing Modified Data output time · Modified from UART Timing to CSIO/UART Timing · Changed from Internal shift clock operation to Master mode · Changed from External shift clock operation to Slave mode · Added the typical value of Integral Nonlinearity, Differential Nonlinearity, Zero transition voltage and Full-scale transition voltage · Added Conversion time at AVcc < 4.5 V · Modified Stage transition time to operation permission · Modified the minimum value of Reference voltage Added Return Time from Low-Power Consumption Mode 128 Changed to full part number Note: − Please see “Document History” about later revised information. Document Number: 002-04680 Rev. *D Page 138 of 140 MB9B210T Series Document History Document Title: MB9B210T Series 32-bit Arm® Cortex®-M3 FM3 Microcontroller Document Number: 002-04680 Orig. of Submission Change Date Revision ECN Description of Change ** TOYO 02/10/2015 No change to document contents or format. *A 5197469 TOYO 04/05/2016 Updated to Cypress template Migrated to Cypress and assigned document number 002-04689. Updated “12.4.7 Power-On Reset Timing”. Changed parameter from “Power Supply rising time(Tr)[ms]” to “Power ramp rate(dV/dt)[mV/us]” and added some comments (Page 89) Added Notes for JTAG (Page 52), Changed “J-TAG” to” JTAG” in “4 List of Pin Functions” (Page 34) Updated Package code and dimensions as follows (Page 8-11, 79, 133-136) FPT-144P-M08 -> LQS144, FPT-176P-M07 -> LQP176, BGA-192P-M06 -> LBE192 Change the name from “USB Function” to “USB Device” (Page 1, 7, 50) *B 5560212 YSKA 03/09/2016 Corrected the following statement Analog port input current Analog port input leak current in chapter 12.5. 12-bit A/D Converter (Page 120) Added the Baud rate spec in “12.4.10 CSIO/UART Timing”.(Page 101, 103, 105, 107) Deleted MPNs below from “13. Ordering Information” (Page 133) MB9BF216SPMC-GE1, MB9BF216TBGL-GE1, MB9BF216TPMC-GE1, MB9BF217SPMC-GE1, MB9BF217TBGL-GE1, MB9BF217TPMC-GE1, MB9BF218SPMC-GE1, MB9BF218TBGL-GE1, MB9BF218TPMC-GE1 Added MPNs below to “13. Ordering Information” (Page 133) MB9BF216SPMC-GK7E1, MB9BF216TBGL-GK7E1, MB9BF216TPMC-GK7E1, MB9BF217SPMC-GK7E1, MB9BF217TBGL-GK7E1, MB9BF217TPMC-GK7E1, MB9BF218SPMC-GK7E1, MB9BF218TBGL-GK7E1, MB9BF218TPMC-GK7E1 *C 5797542 YSAT 07/11/2017 Adapted new Cypress logo *D 6013737 YSAT 01/15/2018 Updated Arm trademark and the last page Updated the figure of LBE192 in 14. Package Dimensions Document Number: 002-04680 Rev. *D Page 139 of 140 MB9B210T Series Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products Arm® Cortex® Microcontrollers Automotive Clocks & Buffers Interface Internet of Things Memory cypress.com/arm cypress.com/automotive cypress.com/clocks cypress.com/interface cypress.com/iot cypress.com/mcu PSoC cypress.com/psoc Touch Sensing USB Controllers Wireless Connectivity Cypress Developer Community Community | Projects | Videos | Blogs | Training | Components Technical Support cypress.com/support cypress.com/memory Microcontrollers Power Management ICs PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU cypress.com/pmic cypress.com/touch cypress.com/usb cypress.com/wireless Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All other trademarks or registered trademarks referenced herein are the property of their respective owners. © Cypress Semiconductor Corporation, 2011-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-04680 Rev. *D January 15, 2018 Page 140 of 140