Cypress MB9B210T 32-bit armâ® cortexâ®-m3 fm3 microcontroller Datasheet

The following document contains information on Cypress products. The document has the series
name, product name, and ordering part numbering with the prefix “MB”. However, Cypress will
offer these products to new and existing customers with the series name, product name, and
ordering part number with the prefix “CY”.
How to Check the Ordering Part Number
1. Go to www.cypress.com/pcn.
2. Enter the keyword (for example, ordering part number) in the SEARCH PCNS field and click
Apply.
3. Click the corresponding title from the search results.
4. Download the Affected Parts List file, which has details of all changes
For More Information
Please contact your local sales office for additional information about Cypress products and
solutions.
About Cypress
Cypress is the leader in advanced embedded system solutions for the world's most innovative
automotive, industrial, smart home appliances, consumer electronics and medical products.
Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable,
high-performance memories help engineers design differentiated products and get them to market
first. Cypress is committed to providing customers with the best support and development
resources on the planet enabling them to disrupt markets by creating new product categories in
record time. To learn more, go to www.cypress.com.
MB9B210T Series
32-bit Arm® Cortex®-M3
FM3 Microcontroller
The MB9B210T Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers with high-performance
and competitive cost.
These series are based on the Arm Cortex-M3 Processor with on-chip Flash memory and SRAM, and has peripheral functions
such as Motor Control Timers, ADCs, and Communication Interfaces (USB, UART, CSIO, I 2C, LIN, Ethernet-MAC). The products
which are described in this data sheet are placed into TYPE2 product categories in "FM3 Family PERIPHERAL MANUAL".
Features
32-bit Arm Cortex-M3 Core
 Processor version: r2p1
USB Interface (Max 2 channels)
USB interface is composed of Device and Host.
PLL for USB is built-in, USB clock or Ethernet clock can be
generated by multiplication of Main clock.
 Up to 144 MHz Frequency Operation
 Memory Protection Unit (MPU): improves the reliability of an
embedded system
 Integrated Nested Vectored Interrupt Controller (NVIC): 1
NMI (non-maskable interrupt) and 48 peripheral interrupts
and 16 priority levels
[USB device]
 USB2.0 Full-Speed supported
 Max 6 EndPoint supported
 EndPoint
0 is control transfer
1, 2 can be selected Bulk-transfer,
Interrupt-transfer or Isochronous-transfer
 EndPoint 3-5 can be selected Bulk-transfer or
Interrupt-transfer
 EndPoint 1 to 5 is comprised Double Buffer
• EndPoint 0, 2 to 5:64 bytes
• EndPoint 1: 256 bytes
 EndPoint
 24-bit System timer (Sys Tick): System timer for OS task
management
On-chip Memories
[Flash memory]
 Up to 1 Mbyte
 Built-in Flash Accelerator System with 16 Kbyte trace buffer
memory
The read access to Flash memory can be achieved without
wait cycle up to operation frequency of 72 MHz. Even at the
operation frequency more than 72 MHz, an equivalent
access to Flash memory can be obtained by Flash
Accelerator System.
[USB host]
 USB2.0 Full/Low speed supported
 Bulk-transfer, interrupt-transfer and Isochronous-transfer
support
 USB Device connected/dis-connected automatically detect
 Security function for code protection
 IN/OUT token handshake packet automatically
[SRAM]
 Max 256-byte packet-length supported
This Series contain a total of up to 128 Kbyte on-chip SRAM.
This is composed of two independent SRAM (SRAM0,
SRAM1) . SRAM0 is connected to I-code bus and D-code
bus of Cortex-M3 core. SRAM1 is connected to System bus.
 SRAM0: Up to 64 Kbyte.
 Wake-up function supported
 SRAM1: Up to 64 Kbyte.
Ethernet-MAC (Max 1 channel)
 Compliant with IEEE802.3 specification
 10Mbps / 100 Mbps data transfer rates supported
 MII/RMII for external PHY device supported.
External Bus Interface
 Supports SRAM, NOR and NAND Flash device
 Up to 8 chip selects
 MII:
Max 1channel
Max 1channel
 RMII:
 Full-Duplex and Half-Duplex mode supported.
 Wake-ON-LAN supported
 8-/16-bit Data width
 Built-in dedicated descriptor-system DMAC
 Up to 25-bit Address bit
 Built-in 2 Kbyte Transmit FIFO and 2 Kbyte Receive FIFO.
 Maximum area size: Up to 256 Mbytes
 Compliant IEEE1558-2008 (PTP)
 Supports Address/Data multiplex
 Supports external RDY input
Cypress Semiconductor Corporation
Document Number: 002-04680 Rev. *D
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised January 15, 2018
MB9B210T Series
Multi-function Serial Interface (Max 8 channels)
 4 channels with 16steps×9-bit FIFO (ch.4 to ch.7), 4
channels without FIFO (ch.0 to ch.3)
 Operation mode is selectable from the followings for each
channel.
 UART
 CSIO
 LIN
 I2 C
[UART]
 Full-duplex double buffer
 Selection with or without parity supported
 Built-in dedicated baud rate generator
A/D Converter (Max 32 channels)
[12-bit A/D Converter]
 Successive Approximation Register type
 Built-in 3 unit
 Conversion time: 1.0 μs@ 5 V
 Priority conversion available (priority at 2 levels)
 Scanning conversion mode
 Built-in FIFO for conversion data storage (for SCAN
conversion: 16 steps, for Priority conversion:
4 steps)
Base Timer (Max 16 channels)
 External clock available as a serial clock
Operation mode is selectable from the followings for each
channel.
 Hardware Flow control: Automatically control the
 16-bit PWM timer
transmission by CTS/RTS (only ch.4)
 Various error detect functions available (parity errors, framing
errors, and overrun errors)
[CSIO]
 Full-duplex double buffer
 Built-in dedicated baud rate generator
 Overrun error detect function available
[LIN]
 LIN protocol Rev.2.1 supported
 Full-duplex double buffer
 Master/Slave mode supported
 LIN break field generate (can be changed 13-16-bit length)
 LIN break delimiter generate (can be changed 1-4-bit length)
 Various error detect functions available (parity errors, framing
errors, and overrun errors)
[I2C]
Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps)
supported
DMA Controller (8 channels)
DMA Controller has an independent bus for CPU, so CPU and
DMA Controller can process simultaneously.
 16-bit PPG timer
 16-/32-bit reload timer
 16-/32-bit PWC timer
General Purpose I/O Port
This series can use its pins as General Purpose I/O ports when
they are not used for external bus or peripherals. Moreover, the
port relocate function is built in. It can set which I/O port the
peripheral function can be allocated.
 Capable of pull-up control per pin
 Capable of reading pin level directly
 Built-in the port relocate function
 Up 154 fast General Purpose I/O Ports@ 176 pin Package
 Some pin is 5 V tolerant I/O.
See "Pin Description" to confirm the corresponding pins
Multi-function Timer (Max 3 units)
The Multi-function timer is composed of the following blocks.
 16-bit free-run timer × 3 ch./unit
 Input capture × 4 ch./unit
 Output compare × 6 ch./unit
 A/D activation compare × 3 ch./unit
 Waveform generator × 3 ch./unit
 8 independently configured and operated channels
 16-bit PPG timer × 3 ch./unit
 Transfer can be started by software or request from the
The following function can be used to achieve the motor
control.
 Transfer address area: 32 bit (4 Gbyte)
 PWM signal output function
 Transfer mode: Block transfer/Burst transfer/Demand
 DC chopper waveform output function
built-in peripherals
transfer
 Dead time function
 Transfer data type: byte/half-word/word
 Input capture function
 Transfer block count: 1 to 16
 A/D convertor activate function
 Number of transfers: 1 to 65536
Document Number: 002-04680 Rev. *D
 DTIF (Motor emergency stop) interrupt function
Page 2 of 140
MB9B210T Series
Quadrature Position/Revolution Counter (QPRC)
(Max 3 channels)
The Quadrature Position/Revolution Counter (QPRC) is used
to measure the position of the position encoder. Moreover, it is
possible to use up/down counter.
 The detection edge of the three external event input pins AIN,
BIN and ZIN is configurable.
Clock and Reset
[Clocks]
Five clock sources (2 external oscillators, 2 internal CR
oscillator, and Main PLL) that are dynamically selectable.
 Main Clock:
4 MHz to 50 MHz
 Sub Clock:
32.768 kHz
 16-bit position counter
 High-speed internal CR Clock:
4 MHz
 16-bit revolution counter
 Low-speed internal CR Clock:
100 kHz
 Two 16-bit compare registers
 Main PLL Clock
Dual Timer (32-/16-bit Down Counter)
[Resets]
The Dual Timer consists of two programmable 32-/16-bit down
counters.
Operation mode is selectable from the followings for each
channel.
 Free-running
 Periodic (=Reload)
 One-shot
Watch Counter
The Watch counter is used for wake up from Low Power
Consumption mode.
Interval timer: up to 64 s (Max)@ Sub Clock: 32.768 kHz
External Interrupt Controller Unit
 Up to 32 external interrupt input pin
 Include one non-maskable interrupt (NMI)
Watch dog Timer (2 channels)
A watchdog timer can generate interrupts or a reset when a
time-out value is reached.
This series consists of two different watchdogs, a "Hardware"
watchdog and a "Software" watchdog.
"Hardware" watchdog timer is clocked by low speed internal
CR oscillator. Therefore, "Hardware" watchdog is active in any
power saving mode except STOP mode.
 Reset requests from INITX pin
 Power on reset
 Software reset
 Watchdog timers reset
 Low-voltage detector reset
 Clock supervisor reset
Clock Super Visor (CSV)
Clocks generated by internal CR oscillators are used to
supervise abnormality of the external clocks.
 External OSC clock failure (clock stop) is detected, reset is
asserted.
 External OSC frequency anomaly is detected, interrupt or
reset is asserted.
Low-Voltage Detector (LVD)
This Series include 2-stage monitoring of voltage on the VCC
pins. When the voltage falls below the voltage has been set,
Low-Voltage Detector generates an interrupt or reset.
 LVD1: error reporting via interrupt
 LVD2: auto-reset operation
Low Power Mode
Three Low Power Consumption modes supported.
CRC (Cyclic Redundancy Check) Accelerator
 SLEEP
The CRC accelerator helps a verify data transmission or
storage integrity.
 TIMER
CCITT CRC16 and IEEE-802.3 CRC32 are supported.
 STOP
 CCITT CRC16 Generator Polynomial: 0x1021
Debug
 IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7
 Serial Wire JTAG Debug Port (SWJ-DP)
 Embedded Trace Macrocells (ETM) provide comprehensive
debug and trace facilities.
Document Number: 002-04680 Rev. *D
Page 3 of 140
MB9B210T Series
Power Supply
Four Power Supplies
 Wide range voltage VCC
= 2.7 V to 5.5 V
 USBVCC0
= 3.0 V to 3.6 V: for USB ch.0
I/O voltage, when USB ch.0 is used.
= 2.7 V to 5.5 V: when GPIO is
used.
 USBVCC1
= 3.0 V to 3.6 V: for USB ch.1
I/O voltage, when USB ch.1 is used.
= 2.7 V to 5.5 V: when GPIO is
used.
 ETHVCC
= 3.0 V to 5.5 V: for Ethernet
I/O voltage, when Ethernet is used.
= 2.7 V to 5.5 V: when GPIO is
used.
Document Number: 002-04680 Rev. *D
Page 4 of 140
MB9B210T Series
Contents
1. Product Lineup .................................................................................................................................................................. 7
2. Packages ........................................................................................................................................................................... 8
3. Pin Assignment ................................................................................................................................................................. 9
4. List of Pin Functions....................................................................................................................................................... 12
5. I/O Circuit Type................................................................................................................................................................ 53
6. Handling Precautions ..................................................................................................................................................... 60
6.1
Precautions for Product Design ................................................................................................................................... 60
6.2
Precautions for Package Mounting .............................................................................................................................. 61
6.3
Precautions for Use Environment ................................................................................................................................ 62
7. Handling Devices ............................................................................................................................................................ 63
8. Block Diagram ................................................................................................................................................................. 66
9. Memory Size .................................................................................................................................................................... 67
10. Memory Map .................................................................................................................................................................... 68
11. Pin Status in Each CPU State ........................................................................................................................................ 71
12. Electrical Characteristics ............................................................................................................................................... 77
12.1 Absolute Maximum Ratings ......................................................................................................................................... 77
12.2 Recommended Operating Conditions.......................................................................................................................... 79
12.3 DC Characteristics....................................................................................................................................................... 81
12.3.1 Current Rating .............................................................................................................................................................. 81
12.3.2 Pin Characteristics ....................................................................................................................................................... 83
12.4 AC Characteristics ....................................................................................................................................................... 85
12.4.1 Main Clock Input Characteristics .................................................................................................................................. 85
12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 86
12.4.3 Internal CR Oscillation Characteristics ......................................................................................................................... 86
12.4.4 Operating Conditions of Main and USB/Ethernet PLL (In the case of using main clock for input of PLL) .................... 87
12.4.5 Operating Conditions of Main PLL (In the case of using high-speed internal CR)........................................................ 87
12.4.6 Reset Input Characteristics .......................................................................................................................................... 89
12.4.7 Power-on Reset Timing................................................................................................................................................ 89
12.4.8 External Bus Timing ..................................................................................................................................................... 90
12.4.9 Base Timer Input Timing ............................................................................................................................................ 100
12.4.10 CSIO/UART Timing ................................................................................................................................................ 101
12.4.11 External Input Timing .............................................................................................................................................. 109
12.4.12 Quadrature Position/Revolution Counter timing ...................................................................................................... 110
12.4.13 I2C Timing ............................................................................................................................................................... 112
12.4.14 ETM Timing ............................................................................................................................................................ 113
12.4.15 JTAG Timing ........................................................................................................................................................... 114
12.4.16 Ethernet-MAC Timing ............................................................................................................................................. 115
12.5 12-bit A/D Converter .................................................................................................................................................. 120
12.6 USB characteristics ................................................................................................................................................... 123
12.7 Low-Voltage Detection Characteristics ...................................................................................................................... 127
12.7.1 Low-Voltage Detection Reset ..................................................................................................................................... 127
12.7.2 Interrupt of Low-Voltage Detection ............................................................................................................................. 127
12.8 Flash Memory Write/Erase Characteristics ............................................................................................................... 128
12.8.1 Write / Erase time....................................................................................................................................................... 128
12.8.2 Write cycles and data hold time ................................................................................................................................. 128
12.9 Return Time from Low-Power Consumption Mode .................................................................................................... 129
12.9.1 Return Factor: Interrupt .............................................................................................................................................. 129
12.9.2 Return Factor: Reset .................................................................................................................................................. 131
Document Number: 002-04680 Rev. *D
Page 5 of 140
MB9B210T Series
13. Ordering Information .................................................................................................................................................... 133
14. Package Dimensions .................................................................................................................................................... 134
15. Major Changes .............................................................................................................................................................. 137
Document History ............................................................................................................................................................... 139
Sales, Solutions, and Legal Information ........................................................................................................................... 140
Document Number: 002-04680 Rev. *D
Page 6 of 140
MB9B210T Series
1. Product Lineup
Memory size
Product name
MB9BF216S
MB9BF216T
MB9BF217S
MB9BF217T
MB9BF218S
MB9BF218T
On-chip Flash memory
On-chip RAM
512 Kbyte
64 Kbyte
768 Kbyte
96 Kbyte
1 Mbyte
128 Kbyte
Function
Product name
Pin count
CPU
MB9BF216S
MB9BF217S
MB9BF218S
MB9BF216T
MB9BF217T
MB9BF218T
144
Freq.
Power supply voltage range
USB2.0 (Device/Host)
Ethernet-MAC
DMAC
External Bus Interface
Multi-function Serial Interface
(UART/CSIO/LIN/I2C)
176/192
Cortex-M3
144 MHz
VCC: 2.7 V to 5.5 V, (USBVCC0: 3.0 V to 3.6 V)
(USBVCC1: 3.0 V to 3.6 V) (ETHVCC: 3.0 V to 5.5 V)
2 ch. (Max)
1ch.(Max) MII: 1ch. / RMII: 1ch.(Max)
8 ch.
Addr:19-bit (Max)
Addr:25-bit (Max)
R/Wdata:8-/16-bit (Max)
R/Wdata:8-/16-bit (Max)
CS: 8 (Max)
CS:8 (Max)
Support: SRAM,
Support: SRAM,
NOR & NAND Flash
NOR & NAND Flash
8 ch. (Max)
ch.4 to ch.7: FIFO (16steps × 9-bit)
ch.0 to ch.3: No FIFO
Base Timer
16 ch. (Max)
(PWC/ Reload timer/PWM/PPG)
A/D activation
3 ch.
compare
Input capture
4 ch.
MFFree-run timer
3 ch.
3 units (Max)
Timer
Output compare 6 ch.
Waveform
3 ch.
generator
PPG
3 ch.
QPRC
3 ch. (Max)
Dual Timer
1 unit
Watch Counter
1 unit
CRC Accelerator
Yes
Watchdog timer
1 ch. (SW) + 1 ch. (HW)
External Interrupts
32 pins (Max) + NMI × 1
I/O ports
122 pins (Max)
154 pins (Max)
12-bit A/D converter
24 ch. (3 units)
32 ch. (3 units)
CSV (Clock Super Visor)
Yes
LVD (Low-Voltage Detector)
2 ch.
High-speed
4 MHz
Built-in CR
Low-speed
100 kHz
Debug Function
SWJ-DP/ETM
Note:
−
All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use
the port relocate function of the General I/O port according to your function use.
See "Electrical Characteristics” AC Characteristics Built-in CR Oscillation Characteristics" for accuracy of built-in CR.
Document Number: 002-04680 Rev. *D
Page 7 of 140
MB9B210T Series
2. Packages
Product name
Package
LQFP:
LQFP:
BGA:
LQS144 (0.5 mm pitch)
LQP176 (0.5 mm pitch)
LBE192 (0.8 mm pitch)
MB9BF216S
MB9BF217S
MB9BF218S

-
MB9BF216T
MB9BF217T
MB9BF218T


: Supported
Note:
−
See "Package Dimensions" for detailed information on each package.
Document Number: 002-04680 Rev. *D
Page 8 of 140
MB9B210T Series
3. Pin Assignment
LQP176
VCC
P00/TRSTX
134
133
P02/TDI
P01/TCK/SWCLK
P03/TMS/SWDIO
137
136
135
P90/TIOB08_0/RTO20_1/INT30_0/MAD19_0
P04/TDO/SWO
P91/TIOB09_0/RTO21_1/INT31_0/MAD20_0
140
139
138
P93/TIOB11_0/RTO23_1/SOT5_1/MAD22_0
P92/TIOB10_0/RTO22_1/SIN5_1/MAD21_0
P94/TIOB12_0/RTO24_1/SCK5_1/INT26_0/MAD23_0
143
142
141
PC1/E_RX03
PC0/E_RXER
P95/TIOB13_0/RTO25_1/INT27_0/MAD24_0
144
147
146
145
PC3/E_RX01/TIOA06_1
PC2/E_RX02
PC4/E_RX00/TIOA08_2
149
148
PC6/E_MDIO/TIOA14_0
PC5/E_RXDV/TIOA10_2
PC7/E_MDC/CROUT_1
152
151
150
PC9/E_COL
PC8/E_RXCK_REFCK
PCA/E_CRS
155
154
153
VSS
ETHVCC
PCB/E_COUT
158
157
156
PCD/E_TCK
PCC
PCE/E_TXER/RTS4_0/TIOB06_1
161
160
159
PD0/E_TX02/SCK4_0/TIOB10_2/INT30_1
PCF/E_TX03/CTS4_0/TIOB08_2
PD1/E_TX01/SOT4_0/TIOB14_0/INT31_1
164
163
162
P62/E_PPS/SCK5_0/ADTG_3
PD3/E_TXEN/TIOB03_2
PD2/E_TX00/SIN4_0/TIOA03_2/INT00_2
165
168
167
166
P60/SIN5_0/TIOA02_2/INT15_1
P61/SOT5_0/TIOB02_2/UHCONX0
PF3/TIOA06_0/SIN6_2/INT06_0/AIN2_1
170
169
PF5/SCK6_2/INT08_0/ZIN2_1
PF4/TIOB06_0/SOT6_2/INT07_0/BIN2_1
USBVCC0
173
172
171
P81/UDP0
VSS
176
175
174
P80/UDM0
(TOP VIEW)
VCC
1
132
VSS
PA0/RTO20_0/TIOA08_0/FRCK1_0
2
131
P83/UDP1
PA1/RTO21_0/TIOA09_0/IC10_0
3
130
P82/UDM1
PA2/RTO22_0/TIOA10_0/IC11_0
4
129
USBVCC1
PA3/RTO23_0/TIOA11_0/IC12_0
5
128
PF6/FRCK2_0/NMIX
PA4/RTO24_0/TIOA12_0/IC13_0/INT03_0
6
127
P20/INT05_0/CROUT_0/UHCONX1/AIN1_1/MAD18_0
PA5/RTO25_0/TIOA13_0/INT10_2
7
126
P21/SIN0_0/INT06_1/BIN1_1
P05/TRACED0/TIOA05_2/SIN4_2/INT00_1
8
125
P22/AN31/SOT0_0/TIOB07_1/ZIN1_1
P06/TRACED1/TIOB05_2/SOT4_2/INT01_1
9
124
P23/AN30/SCK0_0/TIOA07_1/RTO00_1
P07/TRACED2/ADTG_0/SCK4_2
10
123
P24/AN29/SIN2_1/INT01_2/RTO01_1/MAD17_0
P08/TRACED3/TIOA00_2/CTS4_2
11
122
P25/AN28/SOT2_1/RTO02_1/MAD16_0
P09/TRACECLK/TIOB00_2/RTS4_2/DTTI2X_0
12
121
P26/AN27/SCK2_1/RTO03_1/MAD15_0
P50/INT00_0/AIN0_2/SIN3_1/RTO10_0/IC20_0/MOEX_0
13
120
P27/AN26/INT02_2/RTO04_1/MAD14_0
P51/INT01_0/BIN0_2/SOT3_1/RTO11_0/IC21_0/MWEX_0
14
119
P28/AN25/ADTG_4/INT09_0/RTO05_1/MAD13_0
P52/INT02_0/ZIN0_2/SCK3_1/RTO12_0/IC22_0/MDQM0_0
15
118
P29/AN24/MAD12_0
P53/SIN6_0/TIOA01_2/INT07_2/RTO13_0/IC23_0/MDQM1_0
16
117
PB7/AN23/TIOB12_1/INT23_0/ZIN2_2
P54/SOT6_0/TIOB01_2/RTO14_0/MALE_0
17
116
PB6/AN22/TIOA12_1/SCK0_2/INT22_0/BIN2_2
P55/SCK6_0/ADTG_1/RTO15_0/MRDY_0
18
115
PB5/AN21/TIOB11_1/SOT0_2/INT21_0/AIN2_2
P56/SIN1_0/INT08_2/TIOA09_2/DTTI1X_0/MNALE_0
19
114
PB4/AN20/TIOA11_1/SIN0_2/INT20_0
P57/SOT1_0/TIOB09_2/INT16_1/MNCLE_0
20
113
PB3/AN19/TIOB10_1/INT19_0
P58/SCK1_0/TIOA11_2/INT17_1/MNWEX_0
21
112
PB2/AN18/TIOA10_1/SCK7_2/INT18_0
P59/SIN7_0/TIOB11_2/INT09_2/MNREX_0
22
111
PB1/AN17/TIOB09_1/SOT7_2/INT17_0
P5A/SOT7_0/TIOA13_1/INT18_1/MCSX0_0
23
110
PB0/AN16/TIOA09_1/SIN7_2/INT16_0
P5B/SCK7_0/TIOB13_1/INT19_1/MCSX1_0
24
109
VSS
P5C/TIOA06_2/INT28_0/IC20_1
25
108
AVSS
P5D/TIOB06_2/INT29_0/DTTI2X_1
26
107
AVRH
VSS
27
106
AVCC
P30/AIN0_0/TIOB00_1/INT03_2
28
105
P1F/AN15/ADTG_5/INT29_1/TIOB15_2/FRCK0_1/MAD11_0
P31/BIN0_0/TIOB01_1/SCK6_1/INT04_2
29
104
P1E/AN14/RTS4_1/INT28_1/TIOA15_2/DTTI0X_1/MAD10_0
P32/ZIN0_0/TIOB02_1/SOT6_1/INT05_2
30
103
P1D/AN13/CTS4_1/INT27_1/TIOB14_2/IC03_1/MAD09_0
P33/INT04_0/TIOB03_1/SIN6_1/ADTG_6
31
102
P1C/AN12/SCK4_1/INT26_1/TIOA14_2/IC02_1/MAD08_0
P34/FRCK0_0/TIOB04_1
32
101
P1B/AN11/SOT4_1/INT25_1/TIOB13_2/IC01_1/MAD07_0
P35/IC03_0/TIOB05_1/INT08_1
33
100
P1A/AN10/SIN4_1/INT05_1/TIOA13_2/IC00_1/MAD06_0
P36/IC02_0/SIN5_2/INT09_1/TIOA12_2/MCSX2_0
34
99
P19/AN09/SCK2_2/INT22_1/MAD05_0
P37/IC01_0/SOT5_2/INT10_1/TIOB12_2/MCSX3_0
35
98
P18/AN08/SOT2_2/INT21_1/MAD04_0
P38/IC00_0/SCK5_2/INT11_1/MCLKOUT_0
36
97
P17/AN07/SIN2_2/INT04_1/MAD03_0
P39/DTTI0X_0/ADTG_2
37
96
P16/AN06/SCK0_1/INT20_1/MAD02_0
P3A/RTO00_0/TIOA00_1
38
95
P15/AN05/SOT0_1/IC03_2/MAD01_0
P3B/RTO01_0/TIOA01_1
39
94
P14/AN04/SIN0_1/INT03_1/IC02_2/MAD00_0
P3C/RTO02_0/TIOA02_1
40
93
P13/AN03/SCK1_1/IC01_2/MCSX4_0
P3D/RTO03_0/TIOA03_1
41
92
P12/AN02/SOT1_1/IC00_2/MCSX5_0
P3E/RTO04_0/TIOA04_1
42
91
P11/AN01/SIN1_1/INT02_1/FRCK0_2/MCSX6_0
P3F/RTO05_0/TIOA05_1
43
90
P10/AN00/MCSX7_0
VSS
44
89
VCC
87
88
PE3/X1
VSS
84
85
86
MD0
PE2/X0
PE0/MD1
81
82
83
PF1/TIOA08_1/SOT1_2/INT14_0
PF0/TIOB15_1/SIN1_2/INT13_0/IC23_1
PF2/TIOB08_1/SCK1_2/INT15_0
78
79
80
P7E/TIOB14_1/IC21_1/INT24_0
P7C/TIOA07_0/INT11_0
P7F/TIOA15_1/IC22_1/INT25_0
77
P7B/TIOB07_0/INT10_0
P7D/TIOA14_1/FRCK2_1/INT12_0
74
75
76
P7A/ZIN1_0/INT24_1/MADATA15_0
P78/AIN1_0/TIOA15_0/MADATA13_0
P79/BIN1_0/TIOB15_0/INT23_1/MADATA14_0
72
73
P77/SCK3_0/TIOB07_2/INT12_2/MADATA12_0
69
70
71
P74/SCK2_0/ZIN2_0/MADATA09_0
P75/SIN3_0/ADTG_8/INT07_1/MADATA10_0
P76/SOT3_0/TIOA07_2/INT11_2/MADATA11_0
66
67
68
P71/INT13_2/TIOB04_2/MADATA06_0
P72/SIN2_0/INT14_2/AIN2_0/MADATA07_0
P70/TIOA04_2/MADATA05_0
P73/SOT2_0/INT15_2/BIN2_0/MADATA08_0
63
64
65
P4E/TIOB05_0/INT06_2/SIN7_1/ZIN1_2/MADATA04_0
P4B/TIOB02_0/IC12_1/ZIN0_1/MADATA01_0
P4D/TIOB04_0/FRCK1_1/SOT7_1/BIN1_2/MADATA03_0
60
61
62
P4A/TIOB01_0/IC11_1/BIN0_1/SCK3_2/MADATA00_0
P4C/TIOB03_0/IC13_1/SCK7_1/AIN1_2/MADATA02_0
57
58
59
INITX
P48/DTTI1X_1/INT14_1/SIN3_2
56
P47/X1A
P49/TIOB00_0/IC10_1/AIN0_1/SOT3_2
53
54
55
C
VSS
P45/TIOA05_0/RTO15_1
VCC
51
52
P44/TIOA04_0/RTO14_1
P46/X0A
48
49
50
P42/TIOA02_0/RTO12_1
P43/TIOA03_0/RTO13_1/ADTG_7
45
46
47
VCC
P40/TIOA00_0/RTO10_1/INT12_1
P41/TIOA01_0/RTO11_1/INT13_1
LQFP - 176
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin. TIOA09_0, TIOA09_1, and TIOA09_2 cannot be used as the external startup trigger input (TGIN
signal) at I/O mode 1 (timer full mode) of the Base Timer. See "Base Timer" in “Handling Devices" for details.
Document Number: 002-04680 Rev. *D
Page 9 of 140
MB9B210T Series
LQS144
P00/TRSTX
VCC
P01/TCK/SWCLK
111
110
109
P03/TMS/SWDIO
P02/TDI
P04/TDO/SWO
114
113
112
PC0/E_RXER
PC1/E_RX03
116
115
PC3/E_RX01/TIOA06_1
PC2/E_RX02
PC4/E_RX00/TIOA08_2
119
118
117
PC6/E_MDIO/TIOA14_0
PC5/E_RXDV/TIOA10_2
PC7/E_MDC/CROUT_1
122
121
120
PC8/E_RXCK_REFCK
PC9/E_COL
124
123
ETHVCC
PCA/E_CRS
VSS
127
126
125
PCC
PCB/E_COUT
PCD/E_TCK
130
129
128
PCF/E_TX03/CTS4_0/TIOB08_2
PCE/E_TXER/RTS4_0/TIOB06_1
PD0/E_TX02/SCK4_0/TIOB10_2/INT30_1
133
132
131
PD1/E_TX01/SOT4_0/TIOB14_0/INT31_1
PD2/E_TX00/SIN4_0/TIOA03_2/INT00_2
135
134
P62/E_PPS/SCK5_0/ADTG_3
PD3/E_TXEN/TIOB03_2
P61/SOT5_0/TIOB02_2/UHCONX0
138
137
136
PF5/SCK6_2/INT08_0/ZIN2_1
P60/SIN5_0/TIOA02_2/INT15_1
USBVCC0
141
140
139
P81/UDP0
VSS
144
143
142
P80/UDM0
(TOP VIEW)
VCC
1
108
VSS
PA0/RTO20_0/TIOA08_0/FRCK1_0
2
107
P83/UDP1
PA1/RTO21_0/TIOA09_0/IC10_0
3
106
P82/UDM1
PA2/RTO22_0/TIOA10_0/IC11_0
4
105
USBVCC1
PA3/RTO23_0/TIOA11_0/IC12_0
5
104
PF6/FRCK2_0/NMIX
PA4/RTO24_0/TIOA12_0/IC13_0/INT03_0
6
103
P20/INT05_0/CROUT_0/UHCONX1/AIN1_1/MAD18_0
PA5/RTO25_0/TIOA13_0/INT10_2
7
102
P21/SIN0_0/INT06_1/BIN1_1
P05/TRACED0/TIOA05_2/SIN4_2/INT00_1
8
101
P22/AN31/SOT0_0/TIOB07_1/ZIN1_1
P06/TRACED1/TIOB05_2/SOT4_2/INT01_1
9
100
P23/AN30/SCK0_0/TIOA07_1/RTO00_1
P07/TRACED2/ADTG_0/SCK4_2
10
99
P24/AN29/SIN2_1/INT01_2/RTO01_1/MAD17_0
P08/TRACED3/TIOA00_2/CTS4_2
11
98
P25/AN28/SOT2_1/RTO02_1/MAD16_0
P09/TRACECLK/TIOB00_2/RTS4_2/DTTI2X_0
12
97
P26/AN27/SCK2_1/RTO03_1/MAD15_0
P50/INT00_0/AIN0_2/SIN3_1/RTO10_0/IC20_0/MOEX_0
13
96
P27/AN26/INT02_2/RTO04_1/MAD14_0
P51/INT01_0/BIN0_2/SOT3_1/RTO11_0/IC21_0/MWEX_0
14
95
P28/AN25/ADTG_4/INT09_0/RTO05_1/MAD13_0
P52/INT02_0/ZIN0_2/SCK3_1/RTO12_0/IC22_0/MDQM0_0
15
94
P29/AN24/MAD12_0
P53/SIN6_0/TIOA01_2/INT07_2/RTO13_0/IC23_0/MDQM1_0
16
93
VSS
P54/SOT6_0/TIOB01_2/RTO14_0/MALE_0
17
92
AVSS
P55/SCK6_0/ADTG_1/RTO15_0/MRDY_0
18
91
AVRH
P56/SIN1_0/INT08_2/TIOA09_2/DTTI1X_0/MNALE_0
19
90
AVCC
P57/SOT1_0/TIOB09_2/INT16_1/MNCLE_0
20
89
P1F/AN15/ADTG_5/INT29_1/TIOB15_2/FRCK0_1/MAD11_0
P58/SCK1_0/TIOA11_2/INT17_1/MNWEX_0
21
88
P1E/AN14/RTS4_1/INT28_1/TIOA15_2/DTTI0X_1/MAD10_0
LQFP - 144
73
VCC
VSS
PE2/X0
PE3/X1
MD0
PE0/MD1
P7A/ZIN1_0/INT24_1/MADATA15_0
P78/AIN1_0/TIOA15_0/MADATA13_0
P79/BIN1_0/TIOB15_0/INT23_1/MADATA14_0
P75/SIN3_0/ADTG_8/INT07_1/MADATA10_0
P76/SOT3_0/TIOA07_2/INT11_2/MADATA11_0
P77/SCK3_0/TIOB07_2/INT12_2/MADATA12_0
P74/SCK2_0/ZIN2_0/MADATA09_0
P72/SIN2_0/INT14_2/AIN2_0/MADATA07_0
P73/SOT2_0/INT15_2/BIN2_0/MADATA08_0
P70/TIOA04_2/MADATA05_0
P71/INT13_2/TIOB04_2/MADATA06_0
P4C/TIOB03_0/IC13_1/SCK7_1/AIN1_2/MADATA02_0
P4E/TIOB05_0/INT06_2/SIN7_1/ZIN1_2/MADATA04_0
P4D/TIOB04_0/FRCK1_1/SOT7_1/BIN1_2/MADATA03_0
P49/TIOB00_0/IC10_1/AIN0_1/SOT3_2
P4B/TIOB02_0/IC12_1/ZIN0_1/MADATA01_0
P4A/TIOB01_0/IC11_1/BIN0_1/SCK3_2/MADATA00_0
INITX
P47/X1A
P48/DTTI1X_1/INT14_1/SIN3_2
VCC
P46/X0A
C
VSS
P45/TIOA05_0/RTO15_1
P42/TIOA02_0/RTO12_1
P44/TIOA04_0/RTO14_1
P43/TIOA03_0/RTO13_1/ADTG_7
VCC
P40/TIOA00_0/RTO10_1/INT12_1
P41/TIOA01_0/RTO11_1/INT13_1
70
36
71
P10/AN00/MCSX7_0
VSS
72
74
67
35
68
P11/AN01/SIN1_1/INT02_1/FRCK0_2/MCSX6_0
P3F/RTO05_0/TIOA05_1
69
P12/AN02/SOT1_1/IC00_2/MCSX5_0
75
65
76
34
66
33
P3E/RTO04_0/TIOA04_1
62
P13/AN03/SCK1_1/IC01_2/MCSX4_0
P3D/RTO03_0/TIOA03_1
63
77
64
32
59
P14/AN04/SIN0_1/INT03_1/IC02_2/MAD00_0
P3C/RTO02_0/TIOA02_1
60
P15/AN05/SOT0_1/IC03_2/MAD01_0
78
61
79
31
57
30
P3B/RTO01_0/TIOA01_1
58
P16/AN06/SCK0_1/INT20_1/MAD02_0
P3A/RTO00_0/TIOA00_1
54
80
55
29
56
P17/AN07/SIN2_2/INT04_1/MAD03_0
P39/DTTI0X_0/ADTG_2
51
P18/AN08/SOT2_2/INT21_1/MAD04_0
81
52
82
28
53
27
P38/IC00_0/SCK5_2/INT11_1/MCLKOUT_0
48
P19/AN09/SCK2_2/INT22_1/MAD05_0
P37/IC01_0/SOT5_2/INT10_1/TIOB12_2/MCSX3_0
49
83
50
26
46
P1A/AN10/SIN4_1/INT05_1/TIOA13_2/IC00_1/MAD06_0
P36/IC02_0/SIN5_2/INT09_1/TIOA12_2/MCSX2_0
47
84
43
25
44
P1B/AN11/SOT4_1/INT25_1/TIOB13_2/IC01_1/MAD07_0
VSS
45
85
40
24
41
P1C/AN12/SCK4_1/INT26_1/TIOA14_2/IC02_1/MAD08_0
P5B/SCK7_0/TIOB13_1/INT19_1/MCSX1_0
42
P1D/AN13/CTS4_1/INT27_1/TIOB14_2/IC03_1/MAD09_0
86
37
87
23
38
22
39
P59/SIN7_0/TIOB11_2/INT09_2/MNREX_0
P5A/SOT7_0/TIOA13_1/INT18_1/MCSX0_0
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin. TIOA09_0, TIOA09_1, and TIOA09_2 cannot be used as the external startup trigger input (TGIN
signal) at I/O mode 1 (timer full mode) of the Base Timer. See "Base Timer" in "Handling Devices" for details.
Document Number: 002-04680 Rev. *D
Page 10 of 140
MB9B210T Series
LBE192
(TOP VIEW)
1
A
2
3
UDP0 UDM0
4
5
6
7
8
9
USB
ETH
VSS PCD PCB VSS VCC
VCC0
10
11
12
13
14
PC8 VSS TCK VCC
B
VSS PA0 PF5 PF3 P61 PD1 PCA PC1 P95 P92 TDO TMS
C
VCC PA1 PA2 PF4 P60 PD2 PCC PC5 PC0 P93 P90
D
PA5 PA4 P05 P06 PA3 PD3 PCE PC6 PC2 P94 P91 P21 P20 UDM1
E
VSS P07 P08 P09 P50 P62 PCF PC7 PC3 P25 P24 P23 P22 VCC1
F
P51 P52 P53 P54 P55 P56 PD0 PC9 PC4 P29 P28 P27 P26 VSS
G
VSS P57 P58 P59 P5A P5B VSS VSS PB7 PB6 PB5 PB4 PB3 AVSS
H
P5C P5D P30 P31 P32 P33 VSS VSS P1F P1E PB2 PB1 PB0 AVRH
J
VSS P37 P36 P35 P34 P70 VSS P76 P1D P1C P1B P1A P19 AVCC
K
P38 P39 P3A P3B P4A P4E VSS P74 P7B P7F P18 P16 P15 P17
L
P3C P3D P3E P43 P49 P4D VSS P73 P7A P7E P14 P13 P12 VSS
M
VSS P3F P42 P44 P48 P4C VSS P72 P79 PF0 PF2 P11 P10 VCC
N
VCC P40 P41 P45 INITX P4B VSS P71 P78 P7D PF1 MD0 MD1 VSS
P
TRSTX
VSS
TDI PF6 UDP1
USB
C
VSS VCC X0A X1A VSS P75 P77 P7C VSS
X0
X1
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin. TIOA09_0, TIOA09_1, and TIOA09_2 cannot be used as the external startup trigger input (TGIN
signal) at I/O mode 1 (timer full mode) of the Base Timer. See "Base Timer" in "Handling Devices" for details.
Document Number: 002-04680 Rev. *D
Page 11 of 140
MB9B210T Series
4. List of Pin Functions
List of pin numbers
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins,
there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to
select the pin.
Pin No
LQFP-144
LQFP-176
1
1
BGA-192
C1
Pin Name
I/O circuit
type
VCC
Pin state
type
-
PA0
2
2
B2
RTO20_0
TIOA08_0
G
I
G
I
G
I
G
I
G
H
G
H
E
F
E
F
FRCK1_0
PA1
3
3
C2
RTO21_0
TIOA09_0
IC10_0
PA2
4
4
C3
RTO22_0
TIOA10_0
IC11_0
PA3
5
5
D5
RTO23_0
TIOA11_0
IC12_0
PA4
RTO24_0
6
6
D2
TIOA12_0
IC13_0
INT03_0
PA5
7
7
D1
RTO25_0
TIOA13_0
INT10_2
P05
TRACED0
8
8
D3
TIOA05_2
SIN4_2
INT00_1
P06
TRACED1
9
9
D4
TIOB05_2
SOT4_2
INT01_1
Document Number: 002-04680 Rev. *D
Page 12 of 140
MB9B210T Series
LQFP-176
Pin No
LQFP-144
Pin Name
BGA-192
I/O circuit
type
Pin state
type
E
G
E
G
E
G
E
H
E
H
E
H
P07
10
10
E2
TRACED2
ADTG_0
SCK4_2
P08
11
11
E3
TRACED3
TIOA00_2
CTS4_2
P09
TRACECLK
12
12
E4
TIOB00_2
RTS4_2
DTTI2X_0
P50
INT00_0
AIN0_2
13
13
E5
SIN3_1
RTO10_0
IC20_0
MOEX_0
P51
INT01_0
BIN0_2
14
14
F1
SOT3_1
RTO11_0
IC21_0
MWEX_0
P52
INT02_0
ZIN0_2
15
15
F2
SCK3_1
RTO12_0
IC22_0
MDQM0_0
Document Number: 002-04680 Rev. *D
Page 13 of 140
MB9B210T Series
LQFP-176
Pin No
LQFP-144
Pin Name
BGA-192
I/O circuit
type
Pin State
type
E
H
E
I
E
I
E
H
E
H
E
H
E
H
P53
SIN6_0
TIOA01_2
16
16
F3
INT07_2
RTO13_0
IC23_0
MDQM1_0
P54
SOT6_0
17
17
F4
TIOB01_2
RTO14_0
MALE_0
P55
SCK6_0
18
18
F5
ADTG_1
RTO15_0
MRDY_0
P56
SIN1_0
19
19
F6
INT08_2
TIOA09_2
DTTI1X_0
MNALE_0
P57
SOT1_0
20
20
G2
TIOB09_2
INT16_1
MNCLE_0
P58
SCK1_0
21
21
G3
TIOA11_2
INT17_1
MNWEX_0
P59
SIN7_0
22
22
G4
TIOB11_2
INT09_2
MNREX_0
Document Number: 002-04680 Rev. *D
Page 14 of 140
MB9B210T Series
Pin No
LQFP-144
LQFP-176
Pin name
BGA-192
I/O circuit
type
Pin state
type
E
H
E
H
E
H
E
H
P5A
SOT7_0
23
23
G5
TIOA13_1
INT18_1
MCSX0_0
P5B
SCK7_0
24
24
G6
TIOB13_1
INT19_1
MCSX1_0
P5C
25
-
H1
TIOA06_2
INT28_0
IC20_1
P5D
26
-
H2
TIOB06_2
INT29_0
DTTI2X_1
27
25
J1
VSS
-
P30
28
-
H3
AIN0_0
TIOB00_1
E
H
E
H
E
H
E
H
INT03_2
P31
BIN0_0
29
-
H4
TIOB01_1
SCK6_1
INT04_2
P32
ZIN0_0
30
-
H5
TIOB02_1
SOT6_1
INT05_2
P33
INT04_0
31
-
H6
TIOB03_1
SIN6_1
ADTG_6
Document Number: 002-04680 Rev. *D
Page 15 of 140
MB9B210T Series
Pin No
LQFP-144
LQFP-176
Pin name
BGA-192
I/O circuit
type
Pin state
type
E
I
E
H
E
H
E
H
E
H
E
I
G
I
G
I
G
I
P34
32
-
J5
FRCK0_0
TIOB04_1
P35
33
-
J4
IC03_0
TIOB05_1
INT08_1
P36
IC02_0
34
26
J3
SIN5_2
INT09_1
TIOA12_2
MCSX2_0
P37
IC01_0
35
27
J2
SOT5_2
INT10_1
TIOB12_2
MCSX3_0
P38
IC00_0
36
28
K1
SCK5_2
INT11_1
MCLKOUT_0
P39
37
29
K2
DTTI0X_0
ADTG_2
P3A
38
30
K3
RTO00_0
TIOA00_1
P3B
39
31
K4
RTO01_0
TIOA01_1
P3C
40
32
L1
RTO02_0
TIOA02_1
Document Number: 002-04680 Rev. *D
Page 16 of 140
MB9B210T Series
LQFP-176
Pin No
LQFP-144
Pin name
BGA-192
I/O circuit
type
Pin state
type
G
I
G
I
G
I
P3D
41
33
L2
RTO03_0
TIOA03_1
P3E
42
34
L3
RTO04_0
TIOA04_1
P3F
43
35
M2
RTO05_0
44
36
M1
VSS
-
45
37
N1
VCC
-
TIOA05_1
P40
46
38
N2
TIOA00_0
RTO10_1
G
H
G
H
G
I
G
I
G
I
G
I
INT12_1
P41
47
39
N3
TIOA01_0
RTO11_1
INT13_1
P42
48
40
M3
TIOA02_0
RTO12_1
P43
49
41
L4
TIOA03_0
RTO13_1
ADTG_7
P44
50
42
M4
TIOA04_0
RTO14_1
P45
51
43
N4
TIOA05_0
52
44
P2
C
-
53
45
P3
VSS
-
54
46
P4
VCC
-
55
47
P5
56
48
P6
57
49
N5
RTO15_1
P46
X0A
P47
X1A
INITX
D
M
D
N
B
C
E
H
P48
58
50
M5
DTTI1X_1
INT14_1
SIN3_2
Document Number: 002-04680 Rev. *D
Page 17 of 140
MB9B210T Series
LQFP-176
Pin No
LQFP-144
Pin name
BGA-192
I/O circuit
type
Pin state
type
E
I
E
I
E
I
E
I
E
I
E
H
E
I
E
H
P49
TIOB00_0
59
51
L5
IC10_1
AIN0_1
SOT3_2
P4A
TIOB01_0
60
52
K5
IC11_1
BIN0_1
SCK3_2
MADATA00_0
P4B
TIOB02_0
61
53
N6
IC12_1
ZIN0_1
MADATA01_0
P4C
TIOB03_0
62
54
M6
IC13_1
SCK7_1
AIN1_2
MADATA02_0
P4D
TIOB04_0
63
55
L6
FRCK1_1
SOT7_1
BIN1_2
MADATA03_0
P4E
TIOB05_0
64
56
K6
INT06_2
SIN7_1
ZIN1_2
MADATA04_0
P70
65
57
J6
TIOA04_2
MADATA05_0
P71
66
58
N8
INT13_2
TIOB04_2
MADATA06_0
Document Number: 002-04680 Rev. *D
Page 18 of 140
MB9B210T Series
Pin No
LQFP-144
LQFP-176
Pin name
BGA-192
I/O circuit
type
Pin state
type
E
H
E
H
E
I
E
H
E
H
E
H
E
I
E
H
P72
SIN2_0
67
59
M8
INT14_2
AIN2_0
MADATA07_0
P73
SOT2_0
68
60
L8
INT15_2
BIN2_0
MADATA08_0
P74
69
61
K8
SCK2_0
ZIN2_0
MADATA09_0
P75
SIN3_0
70
62
P8
ADTG_8
INT07_1
MADATA10_0
P76
SOT3_0
71
63
J8
TIOA07_2
INT11_2
MADATA11_0
P77
SCK3_0
72
64
P9
TIOB07_2
INT12_2
MADATA12_0
P78
73
65
N9
AIN1_0
TIOA15_0
MADATA13_0
P79
BIN1_0
74
66
M9
TIOB15_0
INT23_1
MADATA14_0
-
-
E1
VSS
-
-
-
G1
VSS
-
Document Number: 002-04680 Rev. *D
Page 19 of 140
MB9B210T Series
Pin No
LQFP-144
LQFP-176
Pin name
BGA-192
I/O circuit
type
Pin state
type
E
H
E
H
E
H
E
H
E
H
E
H
I*
H
I*
H
I*
H
C
P
J
D
A
A
A
B
P7A
75
67
L9
ZIN1_0
INT24_1
MADATA15_0
P7B
76
-
K9
TIOB07_0
INT10_0
P7C
77
-
P10
TIOA07_0
INT11_0
P7D
78
-
N10
TIOA14_1
FRCK2_1
INT12_0
P7E
79
-
L10
TIOB14_1
IC21_1
INT24_0
P7F
80
-
K10
TIOA15_1
IC22_1
INT25_0
PF0
TIOB15_1
81
-
M10
SIN1_2
INT13_0
IC23_1
PF1
82
-
N11
TIOA08_1
SOT1_2
INT14_0
PF2
83
-
M11
TIOB08_1
SCK1_2
INT15_0
84
68
N13
85
69
N12
86
70
P12
87
71
P13
Document Number: 002-04680 Rev. *D
PE0
MD1
MD0
PE2
X0
PE3
X1
Page 20 of 140
MB9B210T Series
LQFP-176
88
Pin No
LQFP-144
72
BGA-192
N14
VSS
-
89
73
M14
VCC
-
-
-
L7
VSS
-
-
-
K7
VSS
-
Document Number: 002-04680 Rev. *D
Pin name
I/O circuit
type
Pin state
type
Page 21 of 140
MB9B210T Series
Pin No
LQFP-176
LQFP-144
Pin name
BGA-192
I/O circuit
type
Pin state
type
F
K
F
L
F
K
F
K
F
L
F
K
F
L
F
L
P10
90
74
M13
AN00
MCSX7_0
P11
AN01
91
75
M12
SIN1_1
INT02_1
FRCK0_2
MCSX6_0
P12
AN02
92
76
L13
SOT1_1
IC00_2
MCSX5_0
P13
AN03
93
77
L12
SCK1_1
IC01_2
MCSX4_0
P14
AN04
94
78
L11
SIN0_1
INT03_1
IC02_2
MAD00_0
P15
AN05
95
79
K13
SOT0_1
IC03_2
MAD01_0
P16
AN06
96
80
K12
SCK0_1
INT20_1
MAD02_0
P17
AN07
97
81
K14
SIN2_2
INT04_1
MAD03_0
-
-
P7
VSS
-
-
-
P11
VSS
-
-
-
L14
VSS
-
Document Number: 002-04680 Rev. *D
Page 22 of 140
MB9B210T Series
LQFP-176
Pin No
LQFP-144
Pin name
BGA-192
I/O circuit
type
Pin state
type
F
L
F
L
F
L
F
L
F
L
F
L
F
L
P18
AN08
98
82
K11
SOT2_2
INT21_1
MAD04_0
P19
AN09
99
83
J13
SCK2_2
INT22_1
MAD05_0
P1A
AN10
SIN4_1
100
84
J12
INT05_1
TIOA13_2
IC00_1
MAD06_0
P1B
AN11
SOT4_1
101
85
J11
INT25_1
TIOB13_2
IC01_1
MAD07_0
P1C
AN12
SCK4_1
102
86
J10
INT26_1
TIOA14_2
IC02_1
MAD08_0
P1D
AN13
CTS4_1
103
87
J9
INT27_1
TIOB14_2
IC03_1
MAD09_0
P1E
AN14
RTS4_1
104
88
H10
INT28_1
TIOA15_2
DTTI0X_1
MAD10_0
Document Number: 002-04680 Rev. *D
Page 23 of 140
MB9B210T Series
Pin No
LQFP-144
LQFP-176
Pin name
BGA-192
I/O circuit
type
Pin state
type
F
L
P1F
AN15
ADTG_5
105
89
H9
INT29_1
TIOB15_2
FRCK0_1
MAD11_0
106
90
J14
AVCC
-
107
91
H14
AVRH
-
108
92
G14
AVSS
-
109
93
F14
VSS
-
PB0
AN16
110
-
H13
TIOA09_1
F
L
F
L
F
L
F
L
F
L
F
L
SIN7_2
INT16_0
PB1
AN17
111
-
H12
TIOB09_1
SOT7_2
INT17_0
PB2
AN18
112
-
H11
TIOA10_1
SCK7_2
INT18_0
PB3
113
-
G13
AN19
TIOB10_1
INT19_0
PB4
AN20
114
-
G12
TIOA11_1
SIN0_2
INT20_0
PB5
AN21
115
-
G11
TIOB11_1
SOT0_2
INT21_0
AIN2_2
-
-
G7
VSS
-
-
-
J7
VSS
-
Document Number: 002-04680 Rev. *D
Page 24 of 140
MB9B210T Series
Pin No
LQFP-144
LQFP-176
Pin name
BGA-192
I/O circuit
type
Pin state
type
F
L
F
L
F
K
F
L
F
L
F
K
F
K
F
L
PB6
AN22
116
-
G10
TIOA12_1
SCK0_2
INT22_0
BIN2_2
PB7
AN23
117
-
G9
TIOB12_1
INT23_0
ZIN2_2
P29
118
94
F10
AN24
MAD12_0
P28
AN25
119
95
F11
ADTG_4
INT09_0
RTO05_1
MAD13_0
P27
AN26
120
96
F12
INT02_2
RTO04_1
MAD14_0
P26
AN27
121
97
F13
SCK2_1
RTO03_1
MAD15_0
P25
AN28
122
98
E10
SOT2_1
RTO02_1
MAD16_0
P24
AN29
123
99
E11
SIN2_1
INT01_2
RTO01_1
MAD17_0
Document Number: 002-04680 Rev. *D
Page 25 of 140
MB9B210T Series
LQFP-176
Pin No
LQFP-144
Pin name
BGA-192
I/O circuit
type
Pin state
type
F
K
F
K
E
H
E
H
I*
J
P23
AN30
124
100
E12
SCK0_0
TIOA07_1
RTO00_1
P22
AN31
125
101
E13
SOT0_0
TIOB07_1
ZIN1_1
P21
126
102
D12
SIN0_0
INT06_1
BIN1_1
P20
INT05_0
127
103
D13
CROUT_0
UHCONX1
AIN1_1
MAD18_0
PF6
128
104
C13
FRCK2_0
129
105
E14
130
106
D14
131
107
C14
132
108
B14
VSS
-
133
109
A13
VCC
-
NMIX
134
110
B13
135
111
A12
136
112
C12
137
113
B12
138
114
B11
USBVCC1
P82
UDM1
P83
UDP1
P00
TRSTX
P01
TCK
SWCLK
P02
TDI
H
O
H
O
E
E
E
E
E
E
E
E
E
E
P03
Document Number: 002-04680 Rev. *D
TMS
SWDIO
P04
TDO
SWO
Page 26 of 140
MB9B210T Series
Pin No
LQFP-144
LQFP-176
Pin name
BGA-192
I/O circuit
type
Pin state
type
E
H
P90
TIOB08_0
139
-
C11
RTO20_1
INT30_0
MAD19_0
-
-
A8
Document Number: 002-04680 Rev. *D
VSS
-
Page 27 of 140
MB9B210T Series
Pin No
LQFP-144
LQFP-176
Pin name
BGA-192
I/O circuit
type
Pin state
type
E
H
E
I
E
I
E
H
E
H
K
Q
K
Q
K
Q
K
Q
K
Q
K
Q
P91
TIOB09_0
140
-
D11
RTO21_1
INT31_0
MAD20_0
P92
TIOB10_0
141
-
B10
RTO22_1
SIN5_1
MAD21_0
P93
TIOB11_0
142
-
C10
RTO23_1
SOT5_1
MAD22_0
P94
TIOB12_0
143
-
D10
RTO24_1
SCK5_1
INT26_0
MAD23_0
P95
TIOB13_0
144
-
B9
RTO25_1
INT27_0
MAD24_0
145
115
C9
146
116
B8
147
117
D9
PC0
E_RXER
PC1
E_RX03
PC2
E_RX02
PC3
148
118
E9
E_RX01
TIOA06_1
PC4
149
119
F9
E_RX00
TIOA08_2
PC5
150
120
C8
E_RXDV
TIOA10_2
-
-
A5
Document Number: 002-04680 Rev. *D
VSS
-
Page 28 of 140
MB9B210T Series
Pin No
LQFP-144
LQFP-176
Pin name
BGA-192
I/O circuit
type
Pin state
type
K
Q
L
Q
K
Q
K
Q
K
Q
PC6
151
121
D8
E_MDIO
TIOA14_0
PC7
152
122
E8
E_MDC
CROUT_1
PC8
153
123
A10
154
124
F8
155
125
B7
156
126
A9
ETHVCC
-
157
127
A11
VSS
-
158
128
A7
159
129
C7
160
130
A6
E_RXCK_REFCK
PC9
E_COL
PCA
E_CRS
PCB
E_COUT
PCC
PCD
E_TCK
L
Q
K
Q
K
Q
L
Q
L
Q
L
R
L
R
PCE
161
131
D7
E_TXER
RTS4_0
TIOB06_1
PCF
162
132
E7
E_TX03
CTS4_0
TIOB08_2
PD0
E_TX02
163
133
F7
SCK4_0
TIOB10_2
INT30_1
PD1
E_TX01
164
134
B6
SOT4_0
TIOB14_0
INT31_1
-
-
N7
VSS
-
-
-
G8
VSS
-
-
-
H7
VSS
-
-
-
H8
VSS
-
Document Number: 002-04680 Rev. *D
Page 29 of 140
MB9B210T Series
Pin No
LQFP-144
LQFP-176
Pin name
BGA-192
I/O circuit
type
Pin state
type
L
R
L
Q
E
Q
E
I
E
H
I*
H
I*
H
I*
H
PD2
E_TX00
165
135
C6
SIN4_0
TIOA03_2
INT00_2
PD3
166
136
D6
E_TXEN
TIOB03_2
P62
167
137
E6
E_PPS
SCK5_0
ADTG_3
P61
168
138
B5
SOT5_0
TIOB02_2
UHCONX0
P60
169
139
C5
SIN5_0
TIOA02_2
INT15_1
PF3
TIOA06_0
170
-
B4
SIN6_2
INT06_0
AIN2_1
PF4
TIOB06_0
171
-
C4
SOT6_2
INT07_0
BIN2_1
PF5
SCK6_2
172
140
B3
173
141
A4
174
142
A3
175
143
A2
176
144
B1
VSS
-
M7
VSS
-
INT08_0
ZIN2_1
*: 5 V tolerant I/O
Document Number: 002-04680 Rev. *D
USBVCC0
P80
UDM0
P81
UDP0
H
O
H
O
Page 30 of 140
MB9B210T Series
List of pin functions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins,
there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to
select the pin.
Module
ADC
ADTG_0
LQFP176
10
Pin No
LQFP144
10
BGA192
E2
ADTG_1
18
18
F5
Pin name
Function
ADTG_2
37
29
K2
ADTG_3
167
137
E6
ADTG_4
119
95
F11
ADTG_5
105
89
H9
ADTG_6
31
-
H6
ADTG_7
49
41
L4
ADTG_8
70
62
P8
AN00
90
74
M13
AN01
91
75
M12
AN02
92
76
L13
AN03
93
77
L12
AN04
94
78
L11
AN05
95
79
K13
AN06
96
80
K12
AN07
97
81
K14
AN08
98
82
K11
AN09
99
83
J13
AN10
100
84
J12
AN11
101
85
J11
AN12
102
86
J10
AN13
103
87
J9
AN14
104
88
H10
105
89
H9
110
-
H13
AN17
111
-
H12
AN18
112
-
H11
AN19
113
-
G13
AN20
114
-
G12
AN21
115
-
G11
AN22
116
-
G10
AN23
117
-
G9
AN24
118
94
F10
AN25
119
95
F11
AN26
120
96
F12
AN27
121
97
F13
AN28
122
98
E10
AN29
123
99
E11
AN30
124
100
E12
AN31
125
101
E13
AN15
AN16
Document Number: 002-04680 Rev. *D
A/D converter external trigger input pin
A/D converter analog input pin.
ANxx describes ADC ch.xx.
Page 31 of 140
MB9B210T Series
Module
Base Timer
0
Pin name
TIOA0_0
TIOA0_1
Base timer ch.0 TIOA pin
K3
11
E3
L5
28
-
H3
TIOB0_2
12
12
E4
TIOA1_0
47
39
N3
39
31
K4
16
16
F3
60
52
K5
29
-
H4
TIOB1_2
17
17
F4
TIOA2_0
48
40
M3
TIOA1_1
Base timer ch.0 TIOB pin
Base timer ch.1 TIOA pin
TIOA2_1
Base timer ch.1 TIOB pin
40
32
L1
169
139
C5
61
53
N6
30
-
H5
TIOB2_2
168
138
B5
TIOA3_0
49
41
L4
Base timer ch.2 TIOA pin
TIOB2_0
TIOB2_1
TIOA3_1
Base timer ch.2 TIOB pin
41
33
L2
165
135
C6
62
54
M6
31
-
H6
TIOB3_2
166
136
D6
TIOA4_0
50
42
M4
42
34
L3
65
57
J6
63
55
L6
32
-
J5
TIOB4_2
66
58
N8
TIOA5_0
51
43
N4
43
35
M2
8
8
D3
64
56
K6
33
-
J4
TIOB5_2
9
9
D4
TIOA6_0
170
-
B4
148
118
E9
25
-
H1
171
-
C4
161
131
D7
26
-
H2
Base timer ch.3 TIOA pin
TIOA3_2
TIOB3_0
TIOB3_1
TIOA4_1
Base timer ch.3 TIOB pin
Base timer ch.4 TIOA pin
TIOA4_2
TIOB4_0
TIOB4_1
TIOA5_1
Base timer ch.4 TIOB pin
Base timer ch.5 TIOA pin
TIOA5_2
TIOB5_0
TIOB5_1
Base Timer
6
30
51
TIOA2_2
Base Timer
5
38
11
TIOB1_1
Base Timer
4
BGA192
N2
59
TIOB1_0
Base Timer
3
Pin No
LQFP144
38
TIOB0_0
TIOA1_2
Base Timer
2
LQFP176
46
TIOA0_2
TIOB0_1
Base Timer
1
Function
TIOA6_1
Base timer ch.5 TIOB pin
Base timer ch.6 TIOA pin
TIOA6_2
TIOB6_0
TIOB6_1
TIOB6_2
Document Number: 002-04680 Rev. *D
Base timer ch.6 TIOB pin
Page 32 of 140
MB9B210T Series
Module
Base Timer
7
LQFP176
77
Pin No
LQFP144
-
BGA192
P10
124
100
E12
TIOA07_2
71
63
J8
TIOB07_0
76
-
K9
Pin name
TIOA07_0
TIOA07_1
TIOB07_1
Base Timer
8
Function
Base timer ch.7 TIOA pin
125
101
E13
TIOB07_2
72
64
P9
TIOA08_0
2
2
B2
TIOA08_1
Base timer ch.7 TIOB pin
82
-
N11
149
119
F9
139
-
C11
83
-
M11
TIOB08_2
162
132
E7
TIOA09_0
3
3
C2
110
-
H13
19
19
F6
140
-
D11
111
-
H12
TIOB09_2
20
20
G2
TIOA10_0
4
4
C3
Base timer ch.8 TIOA pin
TIOA08_2
TIOB08_0
TIOB08_1
Base Timer
9
TIOA09_1
Base timer ch.8 TIOB pin
Base timer ch.9 TIOA pin
TIOA09_2
TIOB09_0
TIOB09_1
Base Timer
10
TIOA10_1
Base timer ch.9 TIOB pin
112
-
H11
150
120
C8
141
-
B10
113
-
G13
TIOB10_2
163
133
F7
TIOA11_0
5
5
D5
114
-
G12
21
21
G3
142
-
C10
115
-
G11
TIOB11_2
22
22
G4
TIOA12_0
6
6
D2
116
-
G10
34
26
J3
143
-
D10
117
-
G9
TIOB12_2
35
27
J2
TIOA13_0
7
7
D1
23
23
G5
100
84
J12
Base timer ch.10 TIOA pin
TIOA10_2
TIOB10_0
TIOB10_1
Base Timer
11
TIOA11_1
Base timer ch.10 TIOB pin
Base timer ch.11 TIOA pin
TIOA11_2
TIOB11_0
TIOB11_1
Base Timer
12
TIOA12_1
Base timer ch.11 TIOB pin
Base timer ch.12 TIOA pin
TIOA12_2
TIOB12_0
TIOB12_1
Base Timer
13
TIOA13_1
Base timer ch.12 TIOB pin
Base timer ch.13 TIOA pin
TIOA13_2
TIOB13_0
TIOB13_1
TIOB13_2
Document Number: 002-04680 Rev. *D
Base timer ch.13 TIOB pin
144
-
B9
24
24
G6
101
85
J11
Page 33 of 140
MB9B210T Series
Module
Base Timer
14
Pin name
TIOA14_0
TIOA14_1
Base timer ch.14 TIOA pin
Pin No
LQFP144
121
BGA192
D8
78
-
N10
102
86
J10
TIOB14_0
164
134
B6
79
-
L10
TIOB14_2
103
87
J9
TIOA15_0
73
65
N9
TIOA15_1
Base timer ch.14 TIOB pin
Base timer ch.15 TIOA pin
TIOA15_2
TIOB15_0
TIOB15_1
Base timer ch.15 TIOB pin
TIOB15_2
Debugger
LQFP176
151
TIOA14_2
TIOB14_1
Base Timer
15
Function
80
-
K10
104
88
H10
74
66
M9
81
-
M10
105
89
H9
135
111
A12
137
113
B12
SWO
Serial wire debug interface clock input
pin
Serial wire debug interface data input /
output pin
Serial wire viewer output pin
138
114
B11
TCK
JTAG test clock input pin
135
111
A12
TDI
JTAG test data input pin
136
112
C12
TDO
JTAG debug data output pin
138
114
B11
TMS
JTAG test mode state input/output pin
137
113
B12
TRACECLK
Trace CLK output pin of ETM
12
12
E4
TRACED0
8
8
D3
TRACED1
9
9
D4
10
10
E2
11
11
E3
134
110
B13
SWCLK
SWDIO
TRACED2
Trace data output pin of ETM
TRACED3
TRSTX
Document Number: 002-04680 Rev. *D
JTAG test reset input pin
Page 34 of 140
MB9B210T Series
Module
External
Bus
MAD00_0
LQFP176
94
Pin No
LQFP144
78
BGA192
L11
MAD01_0
95
79
K13
MAD02_0
96
80
K12
MAD03_0
97
81
K14
MAD04_0
98
82
K11
MAD05_0
99
83
J13
MAD06_0
100
84
J12
MAD07_0
101
85
J11
MAD08_0
102
86
J10
MAD09_0
103
87
J9
MAD10_0
104
88
H10
105
89
H9
118
94
F10
MAD13_0
119
95
F11
MAD14_0
120
96
F12
MAD15_0
121
97
F13
MAD16_0
122
98
E10
MAD17_0
123
99
E11
MAD18_0
127
103
D13
MAD19_0
139
-
C11
MAD20_0
140
-
D11
MAD21_0
141
-
B10
MAD22_0
142
-
C10
MAD23_0
143
-
D10
MAD24_0
144
-
B9
MCSX0_0
23
23
G5
MCSX1_0
24
24
G6
MCSX2_0
34
26
J3
MCSX3_0
35
27
J2
Pin name
Function
MAD11_0
MAD12_0
MCSX4_0
External bus interface address bus
External bus interface chip select
output pin
93
77
L12
MCSX5_0
92
76
L13
MCSX6_0
91
75
M12
MCSX7_0
90
74
M13
15
15
F2
16
16
F3
13
13
E5
14
14
F1
MDQM0_0
MDQM1_0
MOEX_0
MWEX_0
Document Number: 002-04680 Rev. *D
External bus interface byte mask
signal output
External bus interface read enable
signal for SRAM
External bus interface write enable
signal for SRAM
Page 35 of 140
MB9B210T Series
Module
External
Bus
LQFP176
Pin No
LQFP144
BGA192
19
19
F6
20
20
G2
22
22
G4
21
21
G3
MADATA00_0
60
52
K5
MADATA01_0
61
53
N6
MADATA02_0
62
54
M6
MADATA03_0
63
55
L6
MADATA04_0
64
56
K6
MADATA05_0
65
57
J6
MADATA06_0
66
58
N8
67
59
M8
68
60
L8
MADATA09_0
69
61
K8
MADATA10_0
70
62
P8
MADATA11_0
71
63
J8
MADATA12_0
72
64
P9
MADATA13_0
73
65
N9
MADATA14_0
74
66
M9
75
67
L9
17
17
F4
18
18
F5
36
28
K1
Pin name
MNALE_0
MNCLE_0
MNREX_0
MNWEX_0
MADATA07_0
MADATA08_0
Function
External bus interface ALE signal to
control NAND Flash output pin
External bus interface CLE signal to
control NAND Flash output pin
External bus interface read enable
signal to control NAND Flash
External bus interface write enable
signal to control NAND Flash
External bus interface data bus
(Address / data multiplex bus)
MADATA15_0
MALE_0
MRDY_0
MCLKOUT_0
Document Number: 002-04680 Rev. *D
External bus interface Address Latch
enable output signal for multiplex
External bus interface external RDY
input signal
External bus interface external clock
output
Page 36 of 140
MB9B210T Series
Module
External
Interrupt
Function
LQFP176
13
Pin No
LQFP144
13
BGA192
E5
External interrupt request 00 input pin
8
8
D3
INT00_2
165
135
C6
INT01_0
14
14
F1
Pin name
INT00_0
INT00_1
INT01_1
9
9
D4
INT01_2
123
99
E11
INT02_0
15
15
F2
91
75
M12
120
96
F12
INT02_1
External interrupt request 01 input pin
External interrupt request 02 input pin
INT02_2
INT03_0
6
6
D2
94
78
L11
INT03_2
28
-
H3
INT04_0
31
-
H6
97
81
K14
29
-
H4
INT03_1
INT04_1
External interrupt request 03 input pin
External interrupt request 04 input pin
INT04_2
INT05_0
INT05_1
INT05_2
INT06_0
INT06_1
127
103
D13
External interrupt request 05 input pin
100
84
J12
External interrupt request 06 input pin
30
170
126
102
H5
B4
D12
64
56
K6
171
-
C4
70
62
P8
INT06_2
INT07_0
INT07_1
External interrupt request 07 input pin
INT07_2
16
16
F3
INT08_0
172
140
B3
INT08_1
33
-
J4
INT08_2
19
19
F6
INT09_0
119
95
F11
34
26
J3
22
22
G4
INT09_1
External interrupt request 08 input pin
External interrupt request 09 input pin
INT09_2
INT10_0
INT10_1
INT10_2
INT11_0
INT11_1
76
-
K9
External interrupt request 10 input pin
35
27
J2
External interrupt request 11 input pin
7
77
36
7
28
D1
P10
K1
71
63
J8
INT11_2
INT12_0
78
-
N10
External interrupt request 12 input pin
46
38
N2
External interrupt request 13 input pin
72
81
47
64
39
P9
M10
N3
INT13_2
66
58
N8
INT14_0
82
-
N11
58
67
50
59
M5
M8
INT12_1
INT12_2
INT13_0
INT13_1
INT14_1
INT14_2
Document Number: 002-04680 Rev. *D
External interrupt request 14 input pin
Page 37 of 140
MB9B210T Series
Module
External
Interrupt
Function
LQFP176
83
Pin No
LQFP144
-
BGA192
M11
External interrupt request 15 input pin
169
139
C5
INT15_2
68
60
L8
INT16_0
110
-
H13
Pin name
INT15_0
INT15_1
INT16_1
INT17_0
INT17_1
INT18_0
INT18_1
INT19_0
INT19_1
INT20_0
INT20_1
INT21_0
INT21_1
INT22_0
INT22_1
INT23_0
INT23_1
INT24_0
INT24_1
INT25_0
INT25_1
INT26_0
INT26_1
INT27_0
INT27_1
INT28_0
INT28_1
INT29_0
INT29_1
INT30_0
INT30_1
INT31_0
INT31_1
NMIX
Document Number: 002-04680 Rev. *D
External interrupt request 16 input pin
External interrupt request 17 input pin
External interrupt request 18 input pin
External interrupt request 19 input pin
External interrupt request 20 input pin
External interrupt request 21 input pin
External interrupt request 22 input pin
External interrupt request 23 input pin
External interrupt request 24 input pin
External interrupt request 25 input pin
External interrupt request 26 input pin
External interrupt request 27 input pin
External interrupt request 28 input pin
External interrupt request 29 input pin
External interrupt request 30 input pin
External interrupt request 31 input pin
Non-Maskable Interrupt input
20
20
G2
111
-
H12
21
21
G3
112
-
H11
23
23
G5
113
-
G13
24
24
G6
114
-
G12
96
80
K12
115
-
G11
98
82
K11
116
-
G10
99
83
J13
117
-
G9
74
66
M9
79
-
L10
75
67
L9
80
-
K10
101
85
J11
143
-
D10
102
86
J10
144
-
B9
103
87
J9
25
-
H1
104
88
H10
26
-
H2
105
89
H9
139
-
C11
163
133
F7
140
-
D11
164
134
B6
128
104
C13
Page 38 of 140
MB9B210T Series
P00
LQFP176
134
Pin No
LQFP144
110
BGA192
B13
P01
135
111
A12
P02
136
112
C12
P03
137
113
B12
138
114
B11
8
8
D3
P06
9
9
D4
P07
10
10
E2
P08
11
11
E3
P09
12
12
E4
P10
90
74
M13
P11
91
75
M12
P12
92
76
L13
P13
93
77
L12
P14
94
78
L11
P15
95
79
K13
P16
96
80
K12
97
81
K14
98
82
K11
P19
99
83
J13
P1A
100
84
J12
P1B
101
85
J11
P1C
102
86
J10
P1D
103
87
J9
P1E
104
88
H10
P1F
105
89
H9
P20
127
103
D13
P21
126
102
D12
P22
125
101
E13
P23
124
100
E12
P24
123
99
E11
Module
GPIO
Pin name
P04
P05
P17
P18
P25
Function
General-purpose I/O port 0
General-purpose I/O port 1
General-purpose I/O port 2
122
98
E10
P26
121
97
F13
P27
120
96
F12
P28
119
95
F11
P29
118
94
F10
Document Number: 002-04680 Rev. *D
Page 39 of 140
MB9B210T Series
Module
GPIO
Pin name
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P3A
P3B
P3C
P3D
P3E
P3F
P40
P41
P42
P43
P44
P45
P46
P47
P48
P49
P4A
P4B
P4C
P4D
P4E
P50
P51
P52
P53
P54
P55
P56
P57
P58
P59
P5A
P5B
P5C
P5D
Document Number: 002-04680 Rev. *D
Function
General-purpose I/O port 3
General-purpose I/O port 4
General-purpose I/O port 5
LQFP176
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
46
47
48
49
50
51
55
56
58
59
60
61
62
63
64
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Pin No
LQFP144
26
27
28
29
30
31
32
33
34
35
38
39
40
41
42
43
47
48
50
51
52
53
54
55
56
13
14
15
16
17
18
19
20
21
22
23
24
-
BGA192
H3
H4
H5
H6
J5
J4
J3
J2
K1
K2
K3
K4
L1
L2
L3
M2
N2
N3
M3
L4
M4
N4
P5
P6
M5
L5
K5
N6
M6
L6
K6
E5
F1
F2
F3
F4
F5
F6
G2
G3
G4
G5
G6
H1
H2
Page 40 of 140
MB9B210T Series
Module
GPIO
Pin name
P60
P61
P62
P70
P71
P72
P73
P74
P75
P76
P77
P78
P79
P7A
P7B
P7C
P7D
P7E
P7F
P80
P81
P82
P83
P90
P91
P92
P93
P94
P95
PA0
PA1
PA2
PA3
PA4
PA5
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
Document Number: 002-04680 Rev. *D
Function
General-purpose I/O port 6
General-purpose I/O port 7
General-purpose I/O port 8
General-purpose I/O port 9
General-purpose I/O port A
General-purpose I/O port B
LQFP176
169
168
167
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
174
175
130
131
139
140
141
142
143
144
2
3
4
5
6
7
110
111
112
113
114
115
116
117
Pin No
LQFP144
139
138
137
57
58
59
60
61
62
63
64
65
66
67
142
143
106
107
2
3
4
5
6
7
-
BGA192
C5
B5
E6
J6
N8
M8
L8
K8
P8
J8
P9
N9
M9
L9
K9
P10
N10
L10
K10
A3
A2
D14
C14
C11
D11
B10
C10
D10
B9
B2
C2
C3
D5
D2
D1
H13
H12
H11
G13
G12
G11
G10
G9
Page 41 of 140
MB9B210T Series
Module
GPIO
Pin name
PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7
PC8
PC9
PCA
PCB
PCC
PCD
PCE
PCF
PD0
PD1
PD2
PD3
PE0
PE2
PE3
PF0
PF1
PF2
PF3
PF4
PF5
PF6
Document Number: 002-04680 Rev. *D
Function
General-purpose I/O port C
General-purpose I/O port D
General-purpose I/O port E
General-purpose I/O port F*
LQFP176
145
146
147
148
149
150
151
152
153
154
155
158
159
160
161
162
163
164
165
166
84
86
87
81
82
83
170
171
172
128
Pin no
LQFP144
115
116
117
118
119
120
121
122
123
124
125
128
129
130
131
132
133
134
135
136
68
70
71
140
104
BGA192
C9
B8
D9
E9
F9
C8
D8
E8
A10
F8
B7
A7
C7
A6
D7
E7
F7
B6
C6
D6
N13
P12
P13
M10
N11
M11
B4
C4
B3
C13
Page 42 of 140
MB9B210T Series
Module
MultiFunction
Serial
0
Pin name
Pin No.
LQFP144
102
BGA192
D12
94
78
L11
114
-
G12
Multi-function serial interface ch.0
output pin.
This pin operates as SOT0 when it is
used in a UART/CSIO/LIN (operation
modes 0 to 3) and as SDA0 when it is
used in an I2C (operation mode 4).
125
101
E13
95
79
K13
115
-
G11
Multi-function serial interface ch.0
clock I/O pin.
This pin operates as SCK0 when it is
used in a CSIO (operation mode 2)
and as SCL0 when it is used in an I2C
(operation mode 4).
124
100
E12
96
80
K12
116
-
G10
19
19
F6
91
75
M12
81
-
M10
Multi-function serial interface ch.1
output pin.
This pin operates as SOT1 when it is
used in a UART/CSIO/LIN (operation
modes 0 to 3) and as SDA1 when it is
used in an I2C (operation mode 4).
20
20
G2
92
76
L13
82
-
N11
Multi-function serial interface ch.1
clock I/O pin.
This pin operates as SCK1 when it is
used in a CSIO (operation mode 2)
and as SCL1 when it is used in an I2C
(operation mode 4).
21
21
G3
93
77
L12
83
-
M11
SIN0_0
SIN0_1
SIN0_2
SOT0_0
(SDA0_0)
SOT0_1
(SDA0_1)
SOT0_2
(SDA0_2)
SCK0_0
(SCL0_0)
SCK0_1
(SCL0_1)
SCK0_2
(SCL0_2)
MultiFunction
Serial
1
LQFP176
126
Function
Multi-function serial interface ch.0
input pin
SIN1_0
SIN1_1
SIN1_2
SOT1_0
(SDA1_0)
SOT1_1
(SDA1_1)
SOT1_2
(SDA1_2)
SCK1_0
(SCL1_0)
SCK1_1
(SCL1_1)
SCK1_2
(SCL1_2)
Document Number: 002-04680 Rev. *D
Multi-function serial interface ch.1
input pin
Page 43 of 140
MB9B210T Series
Module
MultiFunction
Serial
2
Pin name
SIN2_0
SIN2_1
SIN2_2
SOT2_0
(SDA2_0)
SOT2_1
(SDA2_1)
SOT2_2
(SDA2_2)
SCK2_0
(SCL2_0)
SCK2_1
(SCL2_1)
SCK2_2
(SCL2_2)
MultiFunction
Serial
3
Function
SIN3_2
SOT3_0
(SDA3_0)
SOT3_1
(SDA3_1)
SOT3_2
(SDA3_2)
SCK3_0
(SCL3_0)
SCK3_1
(SCL3_1)
SCK3_2
(SCL3_2)
Document Number: 002-04680 Rev. *D
Pin No.
LQFP144
BGA192
M8
67
59
Multi-function serial interface ch.2
input pin
123
99
E11
97
81
K14
Multi-function serial interface ch.2
output pin.
This pin operates as SOT2 when it is
used in a UART/CSIO/LIN (operation
modes 0 to 3) and as SDA2 when it is
used in an I2C (operation mode 4).
68
60
L8
122
98
E10
98
82
K11
69
61
K8
121
97
F13
99
83
J13
Multi-function serial interface ch.2
clock I/O pin.
This pin operates as SCK2 when it is
used in a CSIO (operation mode 2)
and as SCL2 when it is used in an I2C
(operation mode 4).
SIN3_0
SIN3_1
LQFP176
70
62
P8
Multi-function serial interface ch.3
input pin
13
13
E5
58
50
M5
Multi-function serial interface ch.3
output pin.
This pin operates as SOT3 when it is
used in a UART/CSIO/LIN (operation
modes 0 to 3) and as SDA3 when it is
used in an I2C (operation mode 4).
71
63
J8
14
14
F1
59
51
L5
Multi-function serial interface ch.3
clock I/O pin.
This pin operates as SCK3 when it is
used in a CSIO (operation mode 2)
and as SCL3 when it is used in an I2C
(operation mode 4).
72
64
P9
15
15
F2
60
52
K5
Page 44 of 140
MB9B210T Series
Module
MultiFunction
Serial
4
Pin name
LQFP176
165
Pin No
LQFP144
135
BGA192
C6
Multi-function serial interface ch.4
input pin
100
84
J12
8
8
D3
Multi-function serial interface ch.4
output pin.
This pin operates as SOT4 when it is
used in a UART/CSIO/LIN (operation
modes 0 to 3) and as SDA4 when it is
used in an I2C (operation mode 4).
164
134
B6
101
85
J11
9
9
D4
Multi-function serial interface ch.4
clock I/O pin.
This pin operates as SCK4 when it is
used in a CSIO (operation mode 2)
and as SCL4 when it is used in an I2C
(operation mode 4).
163
133
F7
102
86
J10
10
10
E2
161
131
D7
104
88
H10
12
12
E4
162
132
E7
103
87
J9
Function
SIN4_0
SIN4_1
SIN4_2
SOT4_0
(SDA4_0)
SOT4_1
(SDA4_1)
SOT4_2
(SDA4_2)
SCK4_0
(SCL4_0)
SCK4_1
(SCL4_1)
SCK4_2
(SCL4_2)
RTS4_0
RTS4_1
RTS4_2
Multi-function serial interface ch.4
RTS output pin
CTS4_0
CTS4_1
CTS4_2
MultiFunction
Serial
5
Multi-function serial interface ch.4
CTS input pin
SIN5_0
SIN5_1
SIN5_2
SOT5_0
(SDA5_0)
SOT5_1
(SDA5_1)
SOT5_2
(SDA5_2)
SCK5_0
(SCL5_0)
SCK5_1
(SCL5_1)
SCK5_2
(SCL5_2)
Document Number: 002-04680 Rev. *D
11
11
E3
169
139
C5
Multi-function serial interface ch.5
input pin
141
-
B10
34
26
J3
Multi-function serial interface ch.5
output pin.
This pin operates as SOT5 when it is
used in a UART/CSIO/LIN (operation
modes 0 to 3) and as SDA5 when it is
used in an I2C (operation mode 4).
168
138
B5
142
-
C10
35
27
J2
Multi-function serial interface ch.5
clock I/O pin.
This pin operates as SCK5 when it is
used in a CSIO (operation mode 2)
and as SCL5 when it is used in an I2C
(operation mode 4).
167
137
E6
143
-
D10
36
28
K1
Page 45 of 140
MB9B210T Series
Module
MultiFunction
Serial
6
Pin name
SIN6_0
SIN6_1
SIN6_2
SOT6_0
(SDA6_0)
SOT6_1
(SDA6_1)
SOT6_2
(SDA6_2)
SCK6_0
(SCL6_0)
SCK6_1
(SCL6_1)
SCK6_2
(SCL6_2)
MultiFunction
Serial
7
Function
Multi-function serial interface ch.6
input pin
Multi-function serial interface ch.6
output pin.
This pin operates as SOT6 when it is
used in a UART/CSIO/LIN (operation
modes 0 to 3) and as SDA6 when it is
used in an I2C (operation mode 4).
Multi-function serial interface ch.6
clock I/O pin.
This pin operates as SCK6 when it is
used in a CSIO (operation mode 2)
and as SCL6 when it is used in an I2C
(operation mode 4).
SIN7_0
SIN7_1
SIN7_2
SOT7_0
(SDA7_0)
SOT7_1
(SDA7_1)
SOT7_2
(SDA7_2)
SCK7_0
(SCL7_0)
SCK7_1
(SCL7_1)
SCK7_2
(SCL7_2)
Document Number: 002-04680 Rev. *D
Multi-function serial interface ch.7
input pin
Multi-function serial interface ch.7
output pin.
This pin operates as SOT7 when it is
used in a UART/CSIO/LIN (operation
modes 0 to 3) and as SDA7 when it is
used in an I2C (operation mode 4).
Multi-function serial interface ch.7
clock I/O pin.
This pin operates as SCK7 when it is
used in a CSIO (operation mode 2)
and as SCL7 when it is used in an I2C
(operation mode 4).
LQFP176
16
Pin No
LQFP144
16
BGA192
F3
31
-
H6
170
-
B4
17
17
F4
30
-
H5
171
-
C4
18
18
F5
29
-
H4
172
140
B3
22
22
G4
64
56
K6
110
-
H13
23
23
G5
63
55
L6
111
-
H12
24
24
G6
62
54
M6
112
-
H11
Page 46 of 140
MB9B210T Series
Module
MultiFunction
Timer
0
LQFP176
Pin No
LQFP144
BGA192
37
29
K2
104
88
H10
32
-
J5
105
89
H9
91
75
M12
IC00_0
36
28
K1
IC00_1
100
84
J12
IC00_2
92
76
L13
IC01_0
35
27
J2
101
85
J11
93
77
L12
Pin name
DTTI0X_0
DTTI0X_1
Function
Input signal controlling wave form
generator outputs RTO00 to RTO05
of multi-function timer 0.
FRCK0_0
FRCK0_1
FRCK0_2
16-bit free-run timer ch.0 external
clock input pin
IC01_1
IC01_2
IC02_0
16-bit input capture ch.0 input pin of
multi-function timer 0.
ICxx describes channel number.
34
26
J3
IC02_1
102
86
J10
IC02_2
94
78
L11
IC03_0
33
-
J4
IC03_1
103
87
J9
IC03_2
95
79
K13
38
30
K3
124
100
E12
39
31
K4
123
99
E11
40
32
L1
122
98
E10
41
33
L2
121
97
F13
42
34
L3
120
96
F12
43
35
M2
119
95
F11
RTO00_0
(PPG00_0)
RTO00_1
(PPG00_1)
RTO01_0
(PPG00_0)
RTO01_1
(PPG00_1)
RTO02_0
(PPG02_0)
RTO02_1
(PPG02_1)
RTO03_0
(PPG02_0)
RTO03_1
(PPG02_1)
RTO04_0
(PPG04_0)
RTO04_1
(PPG04_1)
RTO05_0
(PPG04_0)
RTO05_1
(PPG04_1)
Document Number: 002-04680 Rev. *D
Wave form generator output of
multi-function timer 0.
This pin operates as PPG00 when it
is used in PPG0 output modes.
Wave form generator output of
multi-function timer 0.
This pin operates as PPG00 when it
is used in PPG0 output modes.
Wave form generator output of
multi-function timer 0.
This pin operates as PPG02 when it
is used in PPG0 output modes.
Wave form generator output of
multi-function timer 0.
This pin operates as PPG02 when it
is used in PPG0 output modes.
Wave form generator output of
multi-function timer 0.
This pin operates as PPG04 when it
is used in PPG0 output modes.
Wave form generator output of
multi-function timer 0.
This pin operates as PPG04 when it
is used in PPG0 output modes.
Page 47 of 140
MB9B210T Series
Module
MultiFunction
Timer
1
Pin name
DTTI1X_0
DTTI1X_1
FRCK1_0
FRCK1_1
LQFP176
Pin No
LQFP144
BGA192
Input signal controlling wave form
generator outputs RTO10 to RTO15
of multi-function timer 1.
19
19
F6
58
50
M5
16-bit free-run timer ch.1 external
clock input pin
2
2
B2
Function
63
55
L6
IC10_0
3
3
C2
IC10_1
59
51
L5
IC11_0
4
4
C3
60
52
K5
5
5
D5
IC12_1
61
53
N6
IC13_0
6
6
D2
IC13_1
62
54
M6
Wave form generator output of
multi-function timer 1.
This pin operates as PPG10 when it
is used in PPG1 output modes.
13
13
E5
46
38
N2
Wave form generator output of
multi-function timer 1.
This pin operates as PPG10 when it
is used in PPG1 output modes.
14
14
F1
47
39
N3
Wave form generator output of
multi-function timer 1.
This pin operates as PPG12 when it
is used in PPG1 output modes.
15
15
F2
48
40
M3
Wave form generator output of
multi-function timer 1.
This pin operates as PPG12 when it
is used in PPG1 output modes.
16
16
F3
49
41
L4
Wave form generator output of
multi-function timer 1.
This pin operates as PPG14 when it
is used in PPG1 output modes.
17
17
F4
50
42
M4
Wave form generator output of
multi-function timer 1.
This pin operates as PPG14 when it
is used in PPG1 output modes.
18
18
F5
51
43
N4
IC11_1
IC12_0
RTO10_0
(PPG10_0)
RTO10_1
(PPG10_1)
RTO11_0
(PPG10_0)
RTO11_1
(PPG10_1)
RTO12_0
(PPG12_0)
RTO12_1
(PPG12_1)
RTO13_0
(PPG12_0)
RTO13_1
(PPG12_1)
RTO14_0
(PPG14_0)
RTO14_1
(PPG14_1)
RTO15_0
(PPG14_0)
RTO15_1
(PPG14_1)
Document Number: 002-04680 Rev. *D
16-bit input capture ch.1 input pin of
multi-function timer 1.
ICxx describes channel number
Page 48 of 140
MB9B210T Series
Module
MultiFunction
Timer
2
Pin name
DTTI2X_0
DTTI2X_1
FRCK2_0
FRCK2_1
LQFP176
Pin No
LQFP144
BGA192
Input signal controlling wave form
generator outputs RTO20 to RTO25
of multi-function timer 2.
12
12
E4
26
-
H2
16-bit free-run timer ch.2 external
clock input pin
128
104
C13
Function
78
-
N10
IC20_0
13
13
E5
IC20_1
25
-
H1
IC21_0
14
14
F1
79
-
L10
15
15
F2
IC21_1
IC22_0
16-bit input capture ch.2 input pin of
multi-function timer 2.
ICxx describes channel number.
IC22_1
80
-
K10
IC23_0
16
16
F3
IC23_1
81
-
M10
2
2
B2
139
-
C11
3
3
C2
140
-
D11
4
4
C3
141
-
B10
5
5
D5
142
-
C10
6
6
D2
143
-
D10
7
7
D1
144
-
B9
RTO20_0
(PPG20_0)
RTO20_1
(PPG20_1)
RTO21_0
(PPG20_0)
RTO21_1
(PPG20_1)
RTO22_0
(PPG22_0)
RTO22_1
(PPG22_1)
RTO23_0
(PPG22_0)
RTO23_1
(PPG22_1)
RTO24_0
(PPG24_0)
RTO24_1
(PPG24_1)
RTO25_0
(PPG24_0)
RTO25_1
(PPG24_1)
Document Number: 002-04680 Rev. *D
Wave form generator output of
multi-function timer 2.
This pin operates as PPG20 when it
is used in PPG2 output modes.
Wave form generator output of
multi-function timer 2.
This pin operates as PPG20 when it
is used in PPG2 output modes.
Wave form generator output of
multi-function timer 2.
This pin operates as PPG22 when it
is used in PPG2 output modes.
Wave form generator output of
multi-function timer 2.
This pin operates as PPG22 when it
is used in PPG2 output modes.
Wave form generator output of
multi-function timer 2.
This pin operates as PPG24 when it
is used in PPG2 output modes.
Wave form generator output of
multi-function timer 2.
This pin operates as PPG24 when it
is used in PPG2 output modes.
Page 49 of 140
MB9B210T Series
Module
Quadrature
Position/
Revolution
Counter
0
LQFP176
28
Pin No
LQFP144
-
BGA192
H3
59
51
L5
AIN0_2
13
13
E5
BIN0_0
29
-
H4
Pin name
Function
AIN0_0
AIN0_1
BIN0_1
QPRC ch.0 AIN input pin
60
52
K5
BIN0_2
14
14
F1
ZIN0_0
30
-
H5
61
53
N6
15
15
F2
ZIN0_1
QPRC ch.0 BIN input pin
QPRC ch.0 ZIN input pin
ZIN0_2
Quadrature
Position/
Revolution
Counter
1
AIN1_0
73
65
N9
127
103
D13
AIN1_2
62
54
M6
BIN1_0
74
66
M9
126
102
D12
63
55
L6
AIN1_1
BIN1_1
QPRC ch.1 AIN input pin
QPRC ch.1 BIN input pin
BIN1_2
ZIN1_0
75
67
L9
125
101
E13
ZIN1_2
64
56
K6
AIN2_0
67
59
M8
170
-
B4
115
-
G11
68
60
L8
171
-
C4
ZIN1_1
Quadrature
Position/
Revolution
Counter
2
AIN2_1
QPRC ch.1 ZIN input pin
QPRC ch.2 AIN input pin
AIN2_2
BIN2_0
BIN2_1
QPRC ch.2 BIN input pin
BIN2_2
116
-
G10
ZIN2_0
69
61
K8
172
140
B3
117
-
G9
ZIN2_1
QPRC ch.2 ZIN input pin
ZIN2_2
USB0
UDM0
USB ch.0 device/host D – pin
174
142
A3
UDP0
USB ch.0 device/host D + pin
USB ch.0.
USB external pull-up control pin
USB ch.1 device/host D – pin
175
143
A2
168
138
B5
130
106
D14
USB ch.1 device/host D + pin
USB ch.1.
USB external pull-up control pin
131
107
C14
127
103
D13
UHCONX0
USB1
UDM1
UDP1
UHCONX1
Document Number: 002-04680 Rev. *D
Page 50 of 140
MB9B210T Series
Module
Ethernet
Pin name
Pin No
LQFP144
124
BGA192
F8
Collision detection
E_COUT
Clock output for EtherPHY
158
128
A7
E_CRS
Carrier detection
155
125
B7
E_MDC
Management clock
152
122
E8
E_MDIO
Management data input/output
151
121
D8
E_PPS
PTP counter monitor
167
137
E6
E_RX00
Received data0
149
119
F9
E_RX01
Received data1
148
118
E9
E_RX02
Received data2
147
117
D9
E_RX03
146
116
B8
153
123
A10
E_RXDV
Received data3
Received clock input/
reference clock
Received data enable
150
120
C8
E_RXER
Received data error detection
145
115
C9
E_TCK
Transition clock input
160
130
A6
E_TX00
Transition data0
165
135
C6
E_TX01
Transition data1
164
134
B6
E_TX02
Transition data2
163
133
F7
E_TX03
Transition data3
162
132
E7
E_TXEN
Transition data enable
166
136
D6
E_TXER
Transition data error detection
External Reset Input Pin.
A reset is valid when INITX="L".
Mode 0 pin.
During normal operation, MD0="L"
must be input. During serial
programming to flash memory,
MD0="H" must be input.
Mode 1 pin.
During serial programming to flash
memory, MD1="L" must be input.
Power supply Pin
Power supply pin
Power supply Pin
Power supply Pin
Power supply Pin
161
131
D7
57
49
N5
85
69
N12
84
68
N13
1
45
54
89
133
173
129
1
37
46
73
109
141
105
C1
N1
P4
M14
A13
A4
E14
156
126
A9
INITX
Mode
MD0
MD1
Power
LQFP176
154
E_COL
E_RXCK_REFCK
Reset
Function
VCC
VCC
VCC
VCC
VCC
USBVCC0
USBVCC1
ETHVCC
Document Number: 002-04680 Rev. *D
3.3V Power supply port for USB I/O
3.3V Power supply port for Ethernet
I/O
Page 51 of 140
MB9B210T Series
Module
GND
Clock
Analog
Power
Pin name
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
X0
X0A
X1
X1A
CROUT_0
Function
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
GND Pin
Main clock (oscillation) input pin
Sub clock (oscillation) input pin
Main clock (oscillation) I/O pin
Sub clock (oscillation) I/O pin
LQFP176
27
44
53
88
109
132
157
176
86
55
87
56
127
Pin No
LQFP144
25
36
45
72
93
108
127
144
70
47
71
48
103
BGA192
J1
M1
P3
N14
F14
B14
A11
B1
E1
G1
P7
P11
L14
A8
A5
N7
M7
L7
K7
J7
G7
H7
H8
G8
P12
P5
P13
P6
D13
152
122
E8
CROUT_1
Built-in high-speed CR-osc clock
output port
AVCC
A/D converter analog power pin
106
90
J14
AVRH
A/D converter analog reference
voltage input pin
107
91
H14
Analog
AVSS
A/D converter GND pin
108
92
G14
GND
C pin
C
Power stabilization capacity pin
52
44
P2
Note:
−
While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to
all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other
devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP
controller.
Document Number: 002-04680 Rev. *D
Page 52 of 140
MB9B210T Series
5. I/O Circuit Type
Type
A
Circuit
Remarks
It is possible to select the main
oscillation / GPIO function
Pull-up
When the main oscillation is
selected.
resistor
P-ch
P-ch
Digital output
−
Oscillation feedback resistor
: Approximately 1 MΩ
X1
−
N-ch
Digital output
R
Pull-up resistor control
With Standby mode control
When the GPIO is selected.
−
CMOS level output.
−
CMOS level hysteresis input
−
With pull-up resistor control
−
With standby mode control
−
Pull-up resistor
: Approximately 50 kΩ
Digital input
−
IOH=-4 mA, IOL=4 mA
Standby mode control
Clock input
Feedback
resistor
Standby mode control
Digital input
Standby mode control
Pull-up
resistor
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0
Pull-up resistor control
Document Number: 002-04680 Rev. *D
Page 53 of 140
MB9B210T Series
Type
B
Circuit
Remarks
−
CMOS level hysteresis input
−
Pull-up resistor
: Approximately 50 kΩ
Pull-up resistor
Digital input
C
Digital input
N-ch
Document Number: 002-04680 Rev. *D
−
Open drain output
−
CMOS level hysteresis input
Control pin
Page 54 of 140
MB9B210T Series
Type
D
Circuit
Remarks
It is possible to select the sub
oscillation / GPIO function
Pull-up
When the sub oscillation is
selected.
resistor
P-ch
P-ch
−
Digital output
X1A
Oscillation feedback resistor
: Approximately 5 MΩ
−
With Standby mode control
When the GPIO is selected.
N-ch
Digital output
R
Pull-up resistor control
−
CMOS level output.
−
CMOS level hysteresis input
−
With pull-up resistor control
−
With standby mode control
−
Pull-up resistor
: Approximately 50 kΩ
Digital input
−
IOH=-4 mA, IOL=4 mA
Standby mode control
Clock input
Feedback
resistor
Standby mode control
Digital input
Standby mode control
Pull-up
resistor
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0A
Pull-up resistor control
Document Number: 002-04680 Rev. *D
Page 55 of 140
MB9B210T Series
Type
E
Circuit
P-ch
P-ch
Remarks
Digital output
−
CMOS level output
−
CMOS level hysteresis input
−
With pull-up resistor control
−
With standby mode control
−
Pull-up resistor
: Approximately 50 kΩ
−
IOH=-4 mA, IOL=4 mA
−
When this pin is used as an
I2C pin, the digital output P-ch
N-ch
transistor is always off
Digital output
R
−
+B input is available
−
CMOS level output
−
CMOS level hysteresis input
−
With input control
−
Analog input
−
With pull-up resistor control
−
With standby mode control
−
Pull-up resistor
Pull-up resistor control
Digital input
Standby mode control
F
P-ch
P-ch
Digital output
: Approximately 50 kΩ
N-ch
Digital output
−
IOH=-4 mA, IOL=4 mA
−
When this pin is used as an
I2C pin, the digital output P-ch
transistor is always off
−
R
+B input is available
Pull-up resistor control
Digital input
Standby mode control
Analog input
Input control
Document Number: 002-04680 Rev. *D
Page 56 of 140
MB9B210T Series
Type
G
Circuit
P-ch
Remarks
Digital output
P-ch
N-ch
−
CMOS level output
−
CMOS level hysteresis input
−
With pull-up resistor control
−
With standby mode control
−
Pull-up resistor
: Approximately 50 kΩ
−
IOH=-12 mA, IOL=12 mA
−
+B input is available
Digital output
R
Pull-up resistor control
Digital input
Standby mode control
H
GPIO Digital output
GPIO Digital input/output direction
GPIO Digital input
It is possible to select the USB
I/O / GPIO function.
When the USB I/O is selected.
−
Full-speed, Low-speed control
GPIO Digital input circuit control
UDP (+) output
EBP
Differential
EBM
When the GPIO is selected.
−
CMOS level output
USB Full-speed/Low-speed control
−
CMOS level hysteresis input
UDP (+) input
−
With standby mode control
−
IOH= -20.5 mA,
Differential input
IOL= 18.5 mA
USB/GPIO select
UDM (-) input
UDM (-) output
USB Digital input/output direction
GPIO Digital output
GPIO Digital input/output direction
GPIO Digital input
GPIO Digital input circuit control
Document Number: 002-04680 Rev. *D
Page 57 of 140
MB9B210T Series
Type
I
Circuit
P-ch
Remarks
Digital output
−
CMOS level output
−
CMOS level hysteresis input
−
5 V tolerant
−
With standby mode control
−
IOH=-4 mA, IOL=4 mA
−
Available to control of PZR
registers.
−
When this pin is used as an
I2C pin, the digital output P-ch
N-ch
transistor is always off
Digital output
R
Digital input
Standby mode control
J
CMOS level hysteresis input
Mode input
Document Number: 002-04680 Rev. *D
Page 58 of 140
MB9B210T Series
Type
K
Circuit
P-ch
P-ch
N-ch
Remarks
Digital output
−
CMOS level output
−
TTL level hysteresis input
−
With pull-up resistor control
−
With standby mode control
−
Pull-up resistor
: Approximately 50 kΩ
−
IOH=-4 mA, IOL=4 mA
−
CMOS level output
−
CMOS level hysteresis input
−
With pull-up resistor control
−
With standby mode control
−
Pull-up resistor
Digital output
R
Pull-up resistor control
Digital input
Standby mode control
L
P-ch
P-ch
Digital output
: Approximately 50 kΩ
−
IOH=-8 mA, IOL=8 mA
−
When this pin is used as an
I2C pin, the digital output P-ch
N-ch
transistor is always off
Digital output
−
R
+B input is available
Pull-up resistor control
Digital input
Standby mode control
Document Number: 002-04680 Rev. *D
Page 59 of 140
MB9B210T Series
6. Handling Precautions
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in
which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to
minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.
6.1
Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
certain established limits, called absolute maximum ratings. Do not exceed these ratings.
Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical
characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely
affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users
considering application outside the listed conditions are advised to contact their sales representative beforehand.
Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output
functions.
1. Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and
in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design
stage.
2. Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such
conditions if present for extended periods of time can damage the device.
Therefore, avoid this type of connection.
3. Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected
through an appropriate resistance to a power supply pin or ground pin.
Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally
high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of
several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or
damage from high heat, smoke or flame. To prevent this from happening, do the following:
1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal
noise, surge levels, etc.
2. Be sure that abnormal current flows do not occur during the power-on sequence.
Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic
interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.
Fail-Safe Design
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.
Document Number: 002-04680 Rev. *D
Page 60 of 140
MB9B210T Series
Precautions Related to Usage of Devices
Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.)
are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from
such use without prior approval.
6.2
Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you
should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales
representative.
Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or
mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected
to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress
recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be
verified before mounting.
Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed
or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections
caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of
mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended
conditions.
Lead-Free Packaging
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength
may be reduced under some conditions of use.
Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of
moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing
moisture resistance and causing packages to crack. To prevent, do the following:
1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in
locations where temperature changes are slight.
2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C
and 30°C.
When you open Dry Package that recommends humidity 40% to 70% relative humidity.
3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica
gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended
conditions for baking.
Condition: 125°C/24 h
Document Number: 002-04680 Rev. *D
Page 61 of 140
MB9B210T Series
Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:
1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be
needed to remove electricity.
2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1
MΩ).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is
recommended.
4. Ground all fixtures and instruments, or protect with anti-static measures.
5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.
6.3
Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:
1. Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated,
consider anti-humidity processing.
2. Discharge of Static Electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use
anti-static measures or processing to prevent discharges.
3. Corrosive Gases, Dust, or Oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use
devices in such conditions, consider ways to prevent such exposure or to protect the devices.
4. Radiation, Including Cosmic Radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding
as appropriate.
5. Smoke, Flame
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin
to smoke or burn, there is danger of the release of toxic gases.
Customers considering the use of Cypress products in other special environmental conditions should consult with sales
representatives.
Document Number: 002-04680 Rev. *D
Page 62 of 140
MB9B210T Series
7. Handling Devices
Power supply pins
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to
prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground
lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the
ground level, and to conform to the total output current rating.
Moreover, connect the current supply source with each Power supply pins and GND pins of this device at low impedance. It is also
advisable that a ceramic capacitor of approximately 0.1 μF be connected as a bypass capacitor between each Power supply pins
and GND pins, between AVCC pin and AVSS pin near this device.
Stabilizing power supply voltage
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended
operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that
the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC
value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a
momentary fluctuation on switching the power supply.
Crystal oscillator circuit
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1,
X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as
possible.
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by
ground plane as this is expected to produce stable operation.
Evaluate oscillation of your using crystal oscillator by your mount board.
Using an external clock
When using an external clock, the clock signal should be input to the X0, X0A pin only and the X1,X1A pin should be kept open.
 Example of Using an External Clock
Device
X0(X0A)
Open
X1(X1A)
Handling when using Multi-function serial pin as I2C pin
If it is using multi-function serial pin as I2C pins, P-ch transistor of digital output is always disable. However, I 2C pins need to keep
the electrical characteristic like other pins and not to connect to external I2C bus system with power OFF.
Document Number: 002-04680 Rev. *D
Page 63 of 140
MB9B210T Series
C Pin
This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between the C pin and the GND
pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F
characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use
by evaluating the temperature characteristics of a capacitor.
A smoothing capacitor of about 4.7 μF would be recommended for this series.
C
Device
Cs
VSS
GND
Mode pins (MD0)
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays
low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection
impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is
because of preventing the device erroneously switching to test mode due to noise.
Notes on power-on
Turn power on/off in the following order or at the same time.
If not using the A/D converter, connect AVCC =VCC and AVSS = VSS.
Turning on:
VCC → USBVCC0
VCC → USBVCC1
VCC → ETHVCC
VCC → AVCC → AVRH
Turning off:
AVRH → AVCC → VCC
ETHVCC → VCC
USBVCC1 → VCC
USBVCC0 → VCC
Serial Communication
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.
Therefore, design a printed circuit board so as to avoid noise.
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end.
If an error is detected, retransmit the data.
Document Number: 002-04680 Rev. *D
Page 64 of 140
MB9B210T Series
Differences in features among the products with different memory sizes and between Flash products and
MASK products
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among
the products with different memory sizes and between Flash products and MASK products are different because chip layout and
memory structures are different.
If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.
Base Timer
In the case of using ch.8 and ch.9 at I/O mode 1 (timer full mode), the TIOA09 pin cannot be used for external startup trigger input
(TGIN).
Be sure to use the pin with making ESG1 and ESG2 bits of the Timer Control Register (Ch.9-TMCR) in the Base Timer to be "0b00"
in order to disable trigger input.
Document Number: 002-04680 Rev. *D
Page 65 of 140
MB9B210T Series
8. Block Diagram
MB9BF216/217/218
TRSTX,TCK,
TDI,TMS
TDO
TRACED[3:0],
TRACECLK
SWJ-DP
ETM
TPIU
ROM
Table
SRAM0
32/48/64Kbyte
MPU NVIC
Multi-layer AHB (Max 144MHz)
Cortex-M3 Core I
144MHz(Max)
D
Sys
AHB-APB Bridge:
APB0(Max 72MHz)
Dual-Timer
Watchdog Timer
(Software)
Clock Reset
Generator
INITX
Watchdog Timer
(Hardware)
On-chip Flash
512Kbyte/
768Kbyte/
1024Kbyte
Flash I/F
Security
Trace Buffer
(16Kbyte)
SRAM1
32/48/64Kbyte
USBVCC0
USB 2.0
(Host/
Func)
PHY
USB 2.0
(Host/
Func)
PHY
UDP0,UDM0
UHCONX0
USBVCC1
UDP1,UDM1
UHCONX1
CSV
DMAC
8ch.
CLK
X0A
X1A
CROUT
AVCC,
AVSS,AVRH
Main
Osc
Sub
Osc
PLL
Source Clock
CR
4MHz
AHB-AHB
Bridge
(Slave)
X1
CR
100kHz
E_TXx,
E_RXx,
E_MDx
Ethernet-MAC
12-bit A/D Converter
AHB-AHB
Bridge
(Master)
X0
Unit 0
AN[31:00]
Unit 1
ADTG[8:0]
Unit 2
MAD[24:00]
AIN[2:0]
BIN[2:0]
QPRC
3ch.
ZIN[2:0]
A/D Activation
Compare
3ch.
IC0[3:0]
IC1[3:0]
IC2[3:0]
FRCK[2:0]
16-bit Input Capture
4ch.
16-bit Free-run Timer
3ch.
16-bit Output
Compare
6ch.
DTTI[2:0]X
RTO0[5:0]
RTO1[5:0]
RTO2[5:0]
USB-Ethernet Clk Ctrl
AHB-APB Bridge : APB2 (Max 72MHz)
TIOB[15:00]
External Bus I/F
Base Timer
16-bit 16ch./
32-bit 8ch.
AHB-APB Bridge : APB1 (Max 72MHz)
TIOA[15:00]
MADATA[15:00]
PLL
Power On
Reset
LVD Ctrl
IRQ-Monitor
MCSX[7:0],
MOEX,MWEX,
MNALE,
MNCLE,
MNWEX,
MNREX,
MDQM[1:0]
MALE
MRDY
MCLKOUT
LVD
Regulator
C
CRC
Accelerator
Watch Counter
External Interrupt
Controller
32-pin + NMI
Waveform Generator
3ch.
MODE-Ctrl
16-bit PPG
3ch.
GPIO
Multi-function Timer ×3
Multi-Function
Serial I/F 8ch.
(with FIFO ch.4 to ch.7)
HW flow control(ch.4)
INT[31:00]
NMIX
MD[1:0]
PIN-Function-Ctrl
P0x,
P1x,
.
.
.
PFx
SCK[7:0]
SIN[7:0]
SOT[7:0]
CTS4
RTS4
Note:
−
The following items vary depending on the package.
• External bus address
• 12-bit A/D converter channel
Document Number: 002-04680 Rev. *D
Page 66 of 140
MB9B210T Series
9. Memory Size
See "Memory Size" in "Product Lineup" to confirm the memory size.
Document Number: 002-04680 Rev. *D
Page 67 of 140
MB9B210T Series
10. Memory Map
Memory Map(1)
Peripherals Area
0x41FF_FFFF
Reserved
0x4006_7000
0xFFFF_FFFF
0x4006_6000
Reserved
0x4006_4000
Cortex-M3 Private
Peripherals
0x4006_1000
Ethernet-Control-Reg.
Ethernet-MAC0
0xE010_0000
0xE000_0000
Reserved
0x4006_0000
DMAC
USB ch.1
0x4005_0000
Reserved
USB ch.0
0x4004_0000
0x4003_F000
0x7000_0000
0x6000_0000
0x4200_0000
0x4000_0000
Reserved
External Device
Area
0x4003_B000
Reserved
0x4003_8000
0x4400_0000
0x4003_A000
0x4003_9000
0x4003_7000
32Mbyte
Bit band alias
Peripherals
0x4003_6000
0x4003_5000
0x4003_4000
0x4003_3000
0x4003_2000
Reserved
0x2400_0000
0x2200_0000
0x2008_0000
0x2000_0000
0x1FFF_0000
0x0010_2000
See the next page
“●Memory Map (2)” for
the memory size details.
0x0010_0000
0x4003_1000
0x4003_0000
32Mbyte
Bit band alias
0x4002_F000
0x4002_E000
Reserved
0x4002_8000
SRAM1
SRAM0
Reserved
Security/CR Trim
Watch Counter
CRC
MFS
Reserved
USB-Ethernet Clk Ctrl
LVD Ctrl
Reserved
GPIO
Reserved
Int-Req.Read
EXTI
Reserved
CR Trim
Reserved
0x4002_7000
0x4002_6000
0x4002_5000
0x4002_4000
0x4002_3000
0x4002_2000
0x4002_1000
0x4002_0000
On-chip Flash
EXT-bus I/F
0x4001_6000
0x4001_5000
0x0000_0000
0x4001_3000
0x4001_2000
0x4001_1000
0x4001_0000
A/DC
QPRC
Base Timer
PPG
Reserved
MFT unit2
MFT unit1
MFT unit0
Reserved
Dual Timer
Reserved
SW WDT
HW WDT
Clock/Reset
Reserved
0x4000_1000
0x4000_0000
Document Number: 002-04680 Rev. *D
Flash I/F
Page 68 of 140
MB9B210T Series
Memory Map(2)
MB9BF218S/T
MB9BF217S/T
0x2008_0000
MB9BF216S/T
0x2008_0000
0x2008_0000
Reserved
Reserved
0x2001_0000
Reserved
0x2001_C000
SRAM1
64Kbyte
0x2000_8000
SRAM1
48Kbyte
0x2000_0000
SRAM1
32Kbyte
0x2000_0000
0x2000_0000
SRAM0
32Kbyte
SRAM0
48Kbyte
SRAM0
64Kbyte
0x1FFF_8000
0x1FFF_4000
Reserved
0x1FFF_0000
Reserved
Reserved
0x0010_2000
0x0010_1000
0x0010_0000
0x0010_2000
CR trimming
Security
0x0010_1000
0x0010_0000
0x0010_2000
CR trimming
Security
0x0010_1000
0x0010_0000
CR trimming
Security
Reserved
0x000C_0000
Reserved
SA10-19(64KBx10)
0x0000_0000
SA4-7(8KBx4)
0x0008_0000
SA10-15(64KBx6)
SA8-9(48KBx2)
0x0000_0000
SA4-7(8KBx4)
Flash 512Kbyte
SA8-9(48KBx2)
Flash 768Kbyte
Flash 1Mbyte
SA10-23(64KBx14)
SA8-9(48KBx2)
0x0000_0000
SA4-7(8KBx4)
See "MB9BD10T/610T/510T/410T/310T/210T/110T Series Flash Programming Manual" for sector structure of Flash.
Document Number: 002-04680 Rev. *D
Page 69 of 140
MB9B210T Series
Peripheral Address Map
Start address
End address
Bus
Peripherals
0x4000_0000
0x4000_0FFF
0x4000_1000
0x4000_FFFF
0x4001_0000
0x4001_0FFF
Clock/Reset Control
0x4001_1000
0x4001_1FFF
Hardware Watchdog timer
0x4001_2000
0x4001_2FFF
0x4001_3000
0x4001_4FFF
0x4001_5000
0x4001_5FFF
Dual-Timer
0x4001_6000
0x4001_FFFF
Reserved
0x4002_0000
0x4002_0FFF
Multi-function timer unit0
0x4002_1000
0x4002_1FFF
Multi-function timer unit1
0x4002_2000
0x4002_3FFF
Multi-function timer unit2
0x4002_4000
0x4002_4FFF
PPG
0x4002_5000
0x4002_5FFF
0x4002_6000
0x4002_6FFF
0x4002_7000
0x4002_7FFF
A/D Converter
0x4002_8000
0x4002_DFFF
Reserved
0x4002_E000
0x4002_EFFF
Internal CR trimming
0x4002_F000
0x4002_FFFF
Reserved
0x4003_0000
0x4003_0FFF
External Interrupt Controller
0x4003_1000
0x4003_1FFF
Interrupt Request Batch-Read Function
0x4003_2000
0x4003_2FFF
Reserved
0x4003_3000
0x4003_3FFF
GPIO
0x4003_4000
0x4003_4FFF
Reserved
0x4003_5000
0x4003_5FFF
0x4003_6000
0x4003_6FFF
0x4003_7000
0x4003_7FFF
Reserved
0x4003_8000
0x4003_8FFF
Multi-function serial Interface
0x4003_9000
0x4003_9FFF
CRC
0x4003_A000
0x4003_AFFF
Watch Counter
0x4003_B000
0x4003_EFFF
Reserved
0x4003_F000
0x4003_FFFF
External Memory interface
0x4004_0000
0x4004_FFFF
USB ch.0
0x4005_0000
0x4005_FFFF
USB ch.1
0x4006_0000
0x4006_3FFF
0x4006_4000
0x4006_6FFF
Ethernet-MAC/Ethernet-MAC Control Register
0x4006_7000
0x41FF_FFFF
Reserved
Document Number: 002-04680 Rev. *D
AHB
APB0
APB1
Flash memory I/F register
Reserved
Software Watchdog timer
Reserved
Base Timer
Quadrature Position/Revolution Counter
Low-Voltage Detector
APB2
AHB
USB-Ethernet clock generator
DMAC register
Page 70 of 140
MB9B210T Series
11. Pin Status in Each CPU State
The terms used for pin status have the following meanings.
 INITX=0
This is the period when the INITX pin is the "L" level.
 INITX=1
This is the period when the INITX pin is the "H" level.
 SPL=0
This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "0".
 SPL=1
This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "1".
 Input enabled
Indicates that the input function can be used.
 Internal input fixed at "0"
This is the status that the input function cannot be used. Internal input is fixed at "L".
 Hi-Z
Indicates that the output drive transistor is disabled and the pin is put in the Hi-Z state.
 Setting disabled
Indicates that the setting is disabled.
 Maintain previous state
Maintains the state that was immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.
 Analog input is enabled
Indicates that the analog input is enabled.
 Trace output
Indicates that the trace function can be used.
Document Number: 002-04680 Rev. *D
Page 71 of 140
MB9B210T Series
List of Pin Status
Pin
status
type
Power-on
reset or low
voltage
detection
state
Power
supply
unstable
Setting
disabled
INITX=0
Setting
disabled
INITX=1
Setting
disabled
Main crystal
oscillator
input pin
GPIO
selected
Input
enabled
Input
enabled
Setting
disabled
Main crystal
oscillator
output pin
INITX input
pin
Function
group
GPIO
selected
A
B
C
D
E
F
INITX
input state
Run mode
or sleep
mode state
Timer mode or sleep mode
state
Power
supply
stable
INITX=1
Maintain
previous
state
SPL=0
Maintain
previous
state
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z/
Internal input
fixed at "0"
Hi-Z/
Internal
input fixed at
"0"/
or Input
enable
Hi-Z/
Internal
input fixed
at "0"
Hi-Z/
Internal input
fixed at "0"
Maintain
previous
state
Pull-up/
Input
enabled
Input
enabled
Hi-Z
Pull-up/
Input
enabled
Input
enabled
Pull-up/
Input
enabled
Setting
disabled
Pull-up/ Input
enabled
Maintain
previous
state/ Hi-Z at
oscillation
stop*1/
Internal input
fixed at "0"
Pull-up/ Input
enabled
Maintain
previous state/
Hi-Z at
oscillation
stop*1/
Internal input
fixed at "0"
Pull-up/ Input
enabled
Input
enabled
Maintain
previous
state
Input
enabled
Maintain
previous
state
Input enabled
Setting
disabled
Maintain
previous
state
Power supply stable
GPIO
selected
Setting
disabled
Pull-up/
Input
enabled
Input
enabled
Pull-up/
Input
enabled
Setting
disabled
Trace
selected
External
interrupt
enabled
selected
GPIO
selected, or
other than
above
resource
selected
Setting
disabled
Setting
disabled
Mode input
pin
JTAG
selected
Device
internal
reset state
Hi-Z
Document Number: 002-04680 Rev. *D
Hi-Z/
Input
enabled
Hi-Z/
Input
enabled
Power supply stable
Maintain
previous
state
INITX=1
SPL=1
Hi-Z/ Internal
input fixed at
"0"
Maintain
previous state
Hi-Z/ Internal
input fixed at
"0"
Trace output
Maintain
previous state
Hi-Z/
Internal input
fixed at "0"
Page 72 of 140
MB9B210T Series
Pin
status
type
G
H
I
J
Function
group
Trace
selected
GPIO
selected, or
other than
above
resource
selected
External
interrupt
enabled
selected
GPIO
selected, or
other than
above
resource
selected
GPIO
selected,
resource
selected
NMIX
selected
GPIO
selected, or
other than
above
resource
selected
Power-on
reset or low
voltage
detection
state
Power
supply
unstable
Setting
disabled
Hi-Z
INITX
input state
Device
internal
reset state
Power supply stable
Run mode
or sleep
mode state
Timer mode or sleep mode
state
Power
supply
stable
INITX=1
Maintain
previous
state
SPL=0
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Power supply stable
INITX=0
Setting
disabled
Hi-Z/
Input
enabled
INITX=1
Setting
disabled
Hi-Z/
Input
enabled
Setting
disabled
Setting
disabled
Setting
disabled
Hi-Z
Hi-Z/
Input
enabled
Hi-Z/
Input
enabled
Hi-Z
Hi-Z/
Input
enabled
Hi-Z/
Input
enabled
Maintain
previous
state
Maintain
previous
state
Hi-Z/ Internal
input fixed at
"0"
Setting
disabled
Hi-Z
Setting
disabled
Hi-Z/
Input
enabled
Setting
disabled
Hi-Z/
Input
enabled
Maintain
previous
state
Maintain
previous
state
Maintain
previous state
Hi-Z/
Internal input
fixed at "0"
Document Number: 002-04680 Rev. *D
INITX=1
SPL=1
Trace output
Hi-Z/
Internal input
fixed at "0"
Maintain
previous state
Hi-Z/
Internal input
fixed at "0"
Page 73 of 140
MB9B210T Series
Pin
status
type
Function
group
Power-on
reset or low
voltage
detection
state
Power
supply
unstable
Hi-Z
INITX
input state
Device
internal
reset state
Power supply stable
Run mode
or sleep
mode state
Timer mode or sleep mode
state
Power
supply
stable
INITX=1
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
INITX=1
SPL=0
SPL=1
Hi-Z/
Hi-Z/
Internal input Internal input
fixed at "0"/
fixed at "0"/
Analog input
Analog input
enabled
enabled
Power supply stable
GPIO
selected, or
other than
above
resource
selected
External
interrupt
enabled
selected
Analog input
selected
Setting
disabled
INITX=0
Hi-Z/
Internal
input fixed
at "0"/
Analog
input
enabled
Setting
disabled
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Maintain
previous state
Hi-Z
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
GPIO
selected, or
other than
above
resource
selected
GPIO
selected
Setting
disabled
Hi-Z/
Internal
input fixed
at "0"/
Analog
input
enabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z/
Internal input
fixed at "0"
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z/ Internal
input fixed at
"0"
Sub crystal
oscillator
input pin
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input enabled
Analog input
selected
K
L
INITX=1
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z/
Internal input
fixed at "0"
M
Document Number: 002-04680 Rev. *D
Page 74 of 140
MB9B210T Series
Pin
status
type
Function
group
GPIO
selected
N
Power-on
reset or low
voltage
detection
state
Power
supply
unstable
Setting
disabled
INITX
input state
Device
internal
reset state
Power supply stable
INITX=0
Setting
disabled
INITX=1
Setting
disabled
Power
supply
stable
INITX=1
Maintain
previous
state
Sub crystal
oscillator
output pin
Hi-Z/
Internal input
fixed at "0"/
or Input
enable
Hi-Z/
Internal
input fixed
at "0"
Hi-Z/
Internal input
fixed at "0"
Maintain
previous
state
GPIO
selected
Hi-Z
Hi-Z/
Input
enabled
Hi-Z/
Input
enabled
Maintain
previous
state
USB I/O pin
Setting
disabled
Setting
disabled
Setting
disabled
Mode input
pin
Input
enabled
Input
enabled
GPIO
selected
Setting
disabled
Ethernet
input or
output pin
selected*3
Setting
disabled
GPIO
selected, or
other than
above
resource
selected
Hi-Z
O
Document Number: 002-04680 Rev. *D
Timer mode or sleep mode
state
Power supply stable
SPL=0
Maintain
previous
state
INITX=1
SPL=1
Hi-Z/
Internal input
fixed at "0"
Maintain
previous
state/ Hi-Z at
oscillation
stop*2/
Internal input
fixed at "0"
Maintain
previous
state
Maintain
previous state/
Hi-Z at
oscillation
stop*2/
Internal input
fixed at "0"
Hi-Z/ Internal
input fixed at
"0"
Maintain
previous
state
Output
Hi-Z at
transmission
/ Input
enabled/
Internal input
fixed at "0" at
reception
Hi-Z at
transmission/
Input enabled/
Internal input
fixed at "0" at
reception
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z/
Input enabled
Setting
disabled
Setting
disabled
P
Q
Run mode
or sleep
mode state
Hi-Z/
Input
enabled
Hi-Z/
Input
enabled
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Hi-Z/
Internal input
fixed at "0"
Page 75 of 140
MB9B210T Series
Pin
status
type
Function
group
Power-on
reset or low
voltage
detection
state
Power
supply
unstable
-
INITX
input state
Device
internal
reset state
Power supply stable
INITX=0
-
INITX=1
-
Run mode
or sleep
mode state
Power
supply
stable
INITX=1
-
Timer mode or sleep mode
state
Power supply stable
SPL=0
Ethernet
input or
output pin
selected*3
Setting
Setting
Setting
disabled
disabled
disabled
External
interrupt
Maintain
Maintain
enabled
R
previous
previous
selected
state
state
GPIO
selected, or
Hi-Z/
Hi-Z/
other than
Hi-Z
Input
Input
above
enabled
enabled
resource
selected
*1: Oscillation is stopped at Sub timer mode, Low speed CR timer mode, and STOP mode.
INITX=1
SPL=1
Maintain
previous
state
Hi-Z/
Internal input
fixed at "0"
*2: Oscillation is stopped at STOP mode.
*3: When selected by EPFR14.E_SPLC register.
Document Number: 002-04680 Rev. *D
Page 76 of 140
MB9B210T Series
12. Electrical Characteristics
12.1 Absolute Maximum Ratings
Parameter
Power supply voltage*1,*2
Power supply voltage (for USB ch.0)*1,*3
Power supply voltage (for USB ch.1)*1,*3
Ethernet)*1,*4
Power supply voltage (for
Analog power supply voltage*1,*5
Analog reference voltage*1,*5
Symbol
Vcc
USBVcc
0
USBVcc
1
ETHVcc
AVcc
AVRH
Min
Vss - 0.5
Input
Vss - 0.5
Vss + 6.5
V
Vss - 0.5
Vss + 6.5
V
Vss - 0.5
Vss - 0.5
Vss - 0.5
Vss + 6.5
Vss + 6.5
Vss + 6.5
V
V
V
Vss - 0.5
Vcc + 0.5
(≤ 6.5 V)
V
Except for USB pin
and
Ethernet-MAC pin
V
USB ch.0 pin
V
USB ch.1 pin
V
Ethernet-MAC pin
V
5 V tolerant
Vss - 0.5
Vss - 0.5
Vss - 0.5
Analog pin input
VIA
Vss - 0.5
Output voltage*1
VO
Vss - 0.5
Clamp maximum current
ICLAMP
Σ
[ICLAMP]
-2
Clamp total maximum current
Remarks
V
VI
voltage*1
Unit
Max
Vss + 6.5
Vss - 0.5
voltage*1
Rating
USBVcc0 +
0.5
(≤ 6.5 V)
USBVcc1 +
0.5
(≤ 6.5 V)
ETHVcc + 0.5
(≤ 6.5 V)
Vss + 6.5
AVcc + 0.5
(≤ 6.5 V)
Vcc + 0.5
(≤ 6.5 V)
+2
+20
10
20
"L" level maximum output
IOL
20
39
4
8
"L" level average output current*7
IOLAV
12
18.5
"L" level total maximum output current
∑IOL
100
"L" level total average output current*8
∑IOLAV
50
- 10
- 20
"H" level maximum output current*6
IOH
- 20
- 39
-4
-8
7
"H" level average output current*
IOHAV
- 12
- 20.5
"H" level total maximum output current
∑IOH
- 100
"H" level total average output current*8
∑IOHAV
- 50
Power consumption
PD
1000
Storage temperature
TSTG
- 55
+ 150
*1: These parameters are based on the condition that Vss = AVss = 0.0 V.
current*6
V
V
mA
*9
mA
*9
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mW
°C
4 mA type
8 mA type
12 mA type
P80,P81,P82,P83
4 mA type
8 mA type
12 mA type
P80,P81,P82,P83
4 mA type
8 mA type
12 mA type
P80,P81,P82,P83
4 mA type
8 mA type
12 mA type
P80,P81,P82,P83
*2: Vcc must not drop below Vss - 0.5 V.
*3: USBVcc0 and USBVcc1 must not drop below Vss - 0.5 V.
*4: ETHVcc must not drop below Vss - 0.5 V.
Document Number: 002-04680 Rev. *D
Page 77 of 140
MB9B210T Series
*5: Ensure that the voltage does not to exceed Vcc + 0.5 V, for example, when the power is turned on.
*6: The maximum output current is the peak value for a single pin.
*7: The average output is the average current for a single pin over a period of 100 ms.
*8: The total average output current is the average current for all pins over a period of 100 ms.
*9:
•
•
•
•
•
See "List of Pin Functions" and "I/O Circuit Type" about +B input available pin.
Use within recommended operating conditions.
Use at DC voltage (current) the +B input.
The +B signal should always be applied a limiting resistance placed between the +B signal and the device.
The value of the limiting resistance should be set so that when the +B signal is applied the input current to the device pin does
not exceed rated values, either instantaneously or for prolonged periods.
• Note that when the device drive current is low, such as in the low-power consumption modes, the +B input potential may pass
through the protective diode and increase the potential at the VCC and AVCC pin, and this may affect other devices.
• Note that if a +B signal is input when the device power supply is off (not fixed at 0 V), the power supply is provided from the
pins, so that incomplete operation may result.
• The following is a recommended circuit example (I/O equivalent circuit).
Protection Diode
VCC
VCC
Limiting
resistor
P-ch
+B input (0V to 16V)
N-ch
Digital output
Digital input
AVCC
Analog input
WARNING:
−
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
absolute maximum ratings. Do not exceed these ratings.
Document Number: 002-04680 Rev. *D
Page 78 of 140
MB9B210T Series
12.2 Recommended Operating Conditions
(Vss = AVss = 0.0V)
Parameter
Symbol
Conditions
Power supply voltage
Vcc
-
Power supply voltage
(3 V power supply) for
USB ch.0
USBVcc0
-
Power supply voltage
(3 V power supply) for
USB ch.1
USBVcc1
Value
Min
2.7*8
3.0
2.7
3.0
2.7
3.0
Power supply voltage for
Ethernet
ETHVcc
-
4.5
2.7
Analog power supply voltage
Analog reference voltage
Smoothing capacitor
AVcc
AVRH
CS
Max
5.5
3.6
(≤ Vcc)
5.5
(≤ Vcc)
3.6
(≤ Vcc)
5.5
(≤ Vcc)
3.6
(≤ Vcc)
5.5
(≤ Vcc)
5.5
(≤ Vcc)
5.5
AVcc
10
2.7
2.7
1
When
LQS144,
Operating
mounted on
LQP176,
TA
- 40
+ 85
temperature
four-layer
LBE192
PCB
*1: When P81/UDP0 and P80/UDM0 pin are used as USB (UDP0, UDM0).
Unit
Remarks
V
*1
V
*2
*3
V
*4
*5
V
*5
*6
V
V
μF
AVcc = Vcc
for built-in regulator *7
°C
*2: When P81/UDP0 and P80/UDM0 pin are used as GPIO (P81, P80).
*3: When P83/UDP1 and P82/UDM1 pin are used as USB (UDP1, UDM1).
*4: When P83/UDP1 and P82/UDM1 pin are used as GPIO (P83, P82).
*5: When the pins in "Ethernet-MAC pins" except P62/E_PPS0_PPS1/SCK5_0/ADTG_3 pin are used as Ethernet-MAC pin.
*6: When the pins in "Ethernet-MAC pins" except P62/E_PPS0_PPS1/SCK5_0/ADTG_3 pin are used as function pins other than
Ethernet-MAC pin.
*7: See "C pin" in "Handling Devices" for the connection of the smoothing capacitor.
*8: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage
or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or built-in
Low-speed CR is possible to operate only.
WARNING:
−
The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All
of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may
adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or
combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to
contact their representatives beforehand.
Document Number: 002-04680 Rev. *D
Page 79 of 140
MB9B210T Series
Ethernet-MAC pins
Pin Name
P62/E_PPS0_PPS1/SCK5_0/ADTG_3
PC0/E_RXER0_RXDV1
PC1/E_RX03_RX11
PC2/E_RX02_RX10
PC3/E_RX01/TIOA06_1
PC4/E_RX00/TIOA08_2
PC5/E_RXDV0/TIOA10_2
PC6/E_MDIO0/TIOA14_0
PC7/E_MDC0/CROUT_1
PC8/E_RXCK0_REFCK
PC9/E_COL0
PCA/E_CRS0
PCB/E_COUT
PCC/E_MDIO1
PCD/E_TCK0_MDC1
PCE/E_TXER0_TXEN1/RTS4_0/
TIOB06_1
PCF/E_TX03_TX11/CTS4_0/TIOB08_2
PD0/E_TX02_TX10/SCK4_0/TIOB10_2/
INT30_1
Ethernet-MAC
function
Except for Ethernet-MAC
function
E_PPS0_PPS1*
E_RXER0_RXDV1
E_RX03_RX11
E_RX02_RX10
E_RX01
E_RX00
E_RXDV0
E_MDIO0
E_MDC0
E_RXCK0_REFCK
E_COL0
E_CRS0
E_COUT
E_MDIO1
E_TCK0_MDC1
P62 /SCK5_0/ADTG_3
PC0
PC1
PC2
PC3/TIOA06_1
PC4/TIOA08_2
PC5/TIOA10_2
PC6/TIOA14_0
PC7/CROUT_1
PC8
PC9
PCA
PCB
PCC
PCD
E_TXER0_TXEN
PCE/RTS4_0/TIOB06_1
Power
Supply
type
Vcc
ETHVcc
PCF/CTS4_0/TIOB08_2
PD0/SCK4_0/TIOB10_2/
E_TX02_TX10
INT30_1
PD1/SOT4_0/TIOB14_0/
PD1/E_TX01/SOT4_0/TIOB14_0/INT31_1
E_TX01
INT31_1
PD2/E_TX00/SIN4_0/TIOA03_2/INT00_2
E_TX00
PD2/TIOA03_2/INT00_2
PD3/E_TXEN0/TIOB03_2
E_TXEN0
PD3/TIOB03_2
*: It is used to confirm the PTP counter cycle in Ethernet-MAC by wave forms.
Document Number: 002-04680 Rev. *D
E_TX03_TX11
Page 80 of 140
MB9B210T Series
12.3 DC Characteristics
12.3.1 Current Rating
(Vcc = AVcc = USBVcc0 = USBVcc1 = ETHVcc = 2.7V to 5.5V, Vss = AVss = 0V, TA = - 40°C to + 85°C)
Parameter
Symbo
l
Pin
name
Conditions
PLL
RUN mode
RUN
mode
current
Icc
High-speed
CR
RUN mode
VCC
Sub
RUN mode
Low-speed
CR
RUN mode
CPU: 144 MHz,
Peripheral: 72 MHz,
Flash 2 Wait,
TraceBuffer: ON,
FRWTR.RWT = 10,
FSYNDN.SD = 000,
FBFCR.BE = 1
CPU: 72 MHz,
Peripheral: 72 MHz,
Flash 0 Wait,
TraceBuffer: OFF,
FRWTR.RWT = 00,
FSYNDN.SD = 000,
FBFCR.BE = 0
CPU/ Peripheral: 4 MHz*2,
Flash 0 Wait,
FRWTR.RWT = 00,
FSYNDN.SD = 000
CPU/ Peripheral: 32 kHz,
Flash 0 Wait,
FRWTR.RWT = 00,
FSYNDN.SD = 000
CPU/ Peripheral: 100 kHz,
Flash 0 Wait,
FRWTR.RWT = 00,
FSYNDN.SD = 000
PLL
SLEEP
Peripheral: 72 MHz
mode
High-speed
CR
Peripheral: 4 MHz*2
SLEEP
SLEEP
mode
mode
Iccs
Sub
current
SLEEP
Peripheral: 32 kHz
mode
Low-speed
CR
Peripheral: 100 kHz
SLEEP
mode
*1: When all ports are fixed, Ethernet is stopped.
Value
Typ*3
Max*4
Unit
100
180
mA
*1, *5
65
135
mA
*1, *5
6
57.8
mA
*1
1.3
51.7
mA
*1, *6
1.3
51.7
mA
*1
30
89
mA
*1, *5
4.5
55.9
mA
*1
1.2
51.6
mA
*1, *6
1.2
51.6
mA
*1
Remarks
*2: When setting it to 4 MHz by trimming.
*3: TA=+25°C, VCC=5.5 V
*4: TA=+85°C, VCC=5.5 V
*5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
*6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
Document Number: 002-04680 Rev. *D
Page 81 of 140
MB9B210T Series
(Vcc = AVcc = USBVcc0 = USBVcc1 = ETHVcc = 2.7V to 5.5V, Vss = AVss = 0V, TA = - 40°C to + 85°C)
Parameter
TIMER
mode
current
Symbo
l
Pin
name
Main
TIMER
mode
ICCT
VCC
STOP
mode
current
ICCH
Value
Typ*2
Max*2
Conditions
Sub
TIMER
mode
STOP mode
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
Unit
Remarks
4
10
mA
*1, *3
-
55
mA
*1, *3
1.1
5
mA
*1, *4
-
50
mA
*1, *4
1
5
mA
*1
-
50
mA
*1
*1: When all ports are fixed.
*2: VCC=5.5 V
*3: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
*4: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
Low-Voltage Detection Current
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Low-voltage
detection circuit
(LVD) power
supply current
Pin
name
Symbol
ICCLVD
VCC
Conditions
At operation
for interrupt
Typ
4
Value
Max
7
Unit
μA
Remarks
At not detect
Flash Memory Current
(VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Flash memory
write/erase
current
Pin
name
Symbol
ICCFLASH
VCC
Conditions
At Write/Erase
Typ
12
Value
Max
14
Unit
Remarks
mA
A/D Converter Current
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 85°C)
Parameter
Power supply
current
Reference power
supply current
Pin
name
Symbol
ICCAD
ICCAVRH
AVCC
AVRH
Document Number: 002-04680 Rev. *D
Conditions
Typ
Value
Max
Unit
At 1unit
operation
0.57
0.72
mA
At stop
0.06
35
μA
At 1unit
operation
AVRH=5.5 V
1.1
1.96
mA
At stop
0.06
4
μA
Remarks
Page 82 of 140
MB9B210T Series
12.3.2 Pin Characteristics
(Vcc = USBVcc0 = USBVcc1 = ETHVcc = AVcc = 2.7V to 5.5V, Vss = AVss = 0V, TA = - 40°C to + 85°C)
Parameter
"H" level input
voltage
(hysteresis
input)
"L" level input
voltage
(hysteresis
input)
Symbol
VIHS
VILS
Pin name
CMOS
hysteresis
input pin,
MD0, MD1
-
5 V tolerant
input pin
-
TTL
Schmitt
input pin
Min
Max
Unit
Remarks
*1
Vcc
(ETHVcc) + 0.3
V
Vcc × 0.8
-
Vss + 5.5
V
-
2.0
-
ETHVcc + 0.3
V
CMOS
hysteresis
input pin,
MD0, MD1
-
Vss - 0.3
-
Vcc
(ETHVcc) × 0.2
V
5 V tolerant
input pin
-
Vss - 0.3
-
Vcc × 0.2
V
TTL
Schmitt
input pin
-
Vss - 0.3
-
0.8
V
Vcc
(ETHVcc) - 0.5
-
Vcc
(ETHVcc)
V
*1
ETHVcc - 0.5
-
ETHVcc
V
*1
Vcc - 0.5
-
Vcc
V
USBVcc - 0.4
-
USBVcc
V
4 mA type
8 mA type
VOH
12 mA type
P80, P81,
P82, P83
Document Number: 002-04680 Rev. *D
Vcc (ETHVcc) < 4.5 V,
IOH = - 2 mA
ETHVcc ≥ 4.5 V,
IOH = - 8 mA
ETHVcc < 4.5 V,
IOH = - 4 mA
Vcc ≥ 4.5 V,
IOH = - 12 mA
Vcc < 4.5 V,
IOH = - 8 mA
USBVcc ≥ 4.5 V,
IOH = - 20.5 mA
USBVcc < 4.5 V,
IOH = - 13.0 mA
Vcc
(ETHVcc) × 0.8
Typ
-
Vcc (ETHVcc) ≥ 4.5 V,
IOH = - 4 mA
"H" level
output voltage
Value
Conditions
*1
*2
Page 83 of 140
MB9B210T Series
Parameter
Symbol
Pin name
4 mA type
8 mA type
"L" level
output voltage
VOL
12 mA type
P80, P81,
P82, P83
Input leak
current
Pull-up
resistance
value
IIL
-
RPU
Pull-up pin
Value
Conditions
Vcc (ETHVcc) ≥ 4.5 V,
IOL = 4 mA
Min
Typ
Max
Unit
Remarks
Vss
-
0.4
V
*1
Vss
-
0.4
V
*1
Vss
-
0.4
V
Vss
-
0.4
V
-
-5
-
+5
μA
Vcc ≥ 4.5 V
25
50
100
Vcc < 4.5 V
30
80
200
Vcc (ETHVcc) < 4.5 V,
IOL = 2 mA
ETHVcc ≥ 4.5 V,
IOL = 8 mA
ETHVcc < 4.5 V,
IOL = 4 mA
Vcc ≥ 4.5 V,
IOL = 12 mA
Vcc < 4.5 V,
IOL = 8 mA
USBVcc ≥ 4.5 V,
IOL = 18.5 mA
USBVcc < 4.5 V,
IOL = 10.5 mA
*2
kΩ
Other than
VCC,
USBVCC0,
USBVCC1,
Input
CIN
ETHVCC,
5
15
pF
capacitance
VSS,
AVCC,
AVSS,
AVRH
*1: The power supply type varies depending on the pin position.
For example, power supply A (power supply B) shows that either of power supply A or power supply B becomes a power supply
voltage.
*2: USBVcc0 and USBVcc1 are described as USBVcc.
Document Number: 002-04680 Rev. *D
Page 84 of 140
MB9B210T Series
12.4 AC Characteristics
12.4.1 Main Clock Input Characteristics
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Input frequency
Input clock cycle
Input clock pulse
width
Input clock rise
time and fall time
Internal operating
clock*1 frequency
Symbol
Pin name
FCH
X0,
X1
Value
Conditions
Min
Max
Unit
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
PWH/tCYLH,
PWL/tCYLH
4
4
4
4
20
50
50
20
50
20
250
250
45
55
%
-
-
5
ns
Remarks
MHz
When crystal oscillator is
connected
MHz
When using external
clock
tCF,
tCR
FCM
-
-
-
144
MHz
When using external
clock
When using external
clock
When using external
clock
Master clock
FCC
FCP0
FCP1
FCP2
-
-
-
144
72
72
72
MHz
MHz
MHz
MHz
Base clock (HCLK/FCLK)
APB0 bus clock*2
APB1 bus clock*2
APB2 bus clock*2
tCYLH
-
ns
tCYCC
tCYCP0
tCYCP1
tCYCP2
6.94
ns
Base clock (HCLK/FCLK)
13.8
ns
APB0 bus clock*2
Internal operating
1
clock* cycle time
13.8
ns
APB1 bus clock*2
13.8
ns
APB2 bus clock*2
*1: For more information about each internal operating clock, see "CHAPTER 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL".
*2: For about each APB bus which each peripheral is connected to, see "Block Diagram" in this data sheet.
X0
Document Number: 002-04680 Rev. *D
Page 85 of 140
MB9B210T Series
12.4.2 Sub Clock Input Characteristics
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Input frequency
Input clock cycle
Input clock pulse
width
Pin
name
Symbol
1/tCYLL
X0A,
X1A
tCYLL
-
Value
Conditions
Min
Typ
Max
Unit
Remarks
-
-
32.768
-
kHz
-
32
-
100
kHz
When crystal oscillator is
connected
When using external clock
PWH/tCYLL,
PWL/tCYLL
10
-
31.25
μs
When using external clock
45
-
55
%
When using external clock
X0A
12.4.3 Internal CR Oscillation Characteristics
High-speed Internal CR
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Clock frequency
Frequency stability
time
Symbo
l
FCRH
tCRWT
Value
Conditions
Min
Typ
Max
TA = + 25°C
3.96
4
4.04
TA = 0°C to + 70°C
3.84
4
4.16
TA = - 40°C to + 85°C
3.8
4
4.2
TA = - 40°C to + 85°C
3
4
5
-
-
-
90
Unit
Remarks
When trimming*
MHz
When not trimming
μs
*2
*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming.
*2: Frequency stable time is time to stable of the frequency of the High-speed CR clock after the trim value is set. After setting the
trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock.
Low-speed Internal CR
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Clock frequency
Symbol
FCRL
Conditions
-
Document Number: 002-04680 Rev. *D
Value
Min
50
Typ
100
Max
150
Unit
Remarks
kHz
Page 86 of 140
MB9B210T Series
12.4.4 Operating Conditions of Main and USB/Ethernet PLL (In the case of using main clock for input of PLL)
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
Value
Symbol
Min
Typ
Max
Unit
Remarks
tLOCK
100
-
-
μs
FPLLI
4
-
16
PLL multiple rate
-
13
-
75
PLL macro oscillation clock frequency
Main PLL clock frequency*2
FPLLO
FCLKPLL
200
-
-
300
144
MHz
multip
le
MHz
MHz
USB/Ethernet clock frequency*3
FCLKSPLL
-
-
50
MHz
After the M frequency
division
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see "CHAPTER 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL".
*3: For more information about USB/Ethernet clock, see "CHAPTER 2-3: USB/Ethernet Clock Generation" in "FM3 Family
PERIPHERAL MANUAL Communication Macro Part".
12.4.5 Operating Conditions of Main PLL (In the case of using high-speed internal CR)
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Value
Ty
Ma
p
x
Symbol
Mi
n
tLOCK
100
-
-
μs
FPLLI
3.8
4
4.2
PLL multiple rate
-
50
-
71
PLL macro oscillation clock frequency
Main PLL clock frequency*2
FPLLO
FCLKPLL
190
-
-
300
144
MHz
multip
le
MHz
MHz
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
Unit
Remarks
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see "CHAPTER 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL".
Note:
−
Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the frequency has been trimmed.
Main PLL connection
Main clock (CLKMO)
High-speed CR clock (CLKHC)
PLL input
clock
K
divider
Main
PLL
PLL macro
oscillation clock
M
divider
Main PLL
clock
(CLKPLL)
N
divider
Document Number: 002-04680 Rev. *D
Page 87 of 140
MB9B210T Series
USB/Ethernet PLL connection
Main clock (CLKMO)
PLL input
clock
K
divider
USB/Ethernet
PLL
PLL macro
oscillation clock
M
divider
USB/Ethernet
clock
N
divider
Document Number: 002-04680 Rev. *D
Page 88 of 140
MB9B210T Series
12.4.6 Reset Input Characteristics
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Pin
name
Symbol
Reset input time
tINITX
INITX
Value
Conditions
Min
500
-
Unit
Max
Remarks
ns
-
12.4.7 Power-on Reset Timing
(Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Power supply shut down time
tOFF
Power ramp rate
Time until releasing Power-on
reset
dV/dt
Pin
name
Value
Conditions
VCC
Unit
Remarks
Min
Typ
Max
-
50
-
-
ms
*1
Vcc:0.2 V to 2.70 V
0.9
-
1000
mV/μs
*2
-
0.46
-
0.76
ms
tPRT
*1: VCC must be held below 0.2 V for minimum period of tOFF. Improper initialization may occur if this condition is not met.
*2: This dV/dt characteristic is applied at the power-on of cold start (tOFF>50 ms).
Note:
−
If tOFF cannot be satisfied designs must assert external reset(INITX) at power-up and at any brownout event per 12. 4. 6.
2.7V
VCC
VDH
0.2V
dV/dt
0.2V
tPRT
Internal RST
CPU Operation
RST Active
0.2V
tOFF
release
start
Glossary
VDH: detection voltage of Low Voltage detection reset. See “12.7 Low-Voltage Detection Characteristics”
Document Number: 002-04680 Rev. *D
Page 89 of 140
MB9B210T Series
12.4.8 External Bus Timing
External bus clock output characteristics
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Output frequency
Symbol
tCYCLE
Pin name
MCLKOUT*1
Value
Conditions
Vcc ≥ 4.5 V
Vcc < 4.5 V
Min
Max
50*2
32*3
-
Unit
MHz
MHz
*1: External bus clock (MCLKOUT) is divided clock of HCLK.
For more information about setting of clock divider, see "CHAPTER 12: External Bus Interface" in "FM3 Family PERIPHERAL
MANUAL".
When external bus clock is not output, this characteristic does not give any effect on external bus operation.
*2: When AHB bus clock frequency is more than 100 MHz, the divider setting for MCLKOUT must be more than 4.
*3: When AHB bus clock frequency is more than 64 MHz, the divider setting for MCLKOUT must be more than 4.
MCLKOUT
1
External bus signal input/output characteristics
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Signal input characteristics
Signal output characteristics
Symbol
Conditions
Value
VIH
VIL
VOH
-
VOL
0.8 × VCC
V
0.2 × VCC
V
0.8 × VCC
V
0.2 × VCC
V
Input signal
VIH
VIL
VIH
VIL
Output signal
VOH
VOL
VOH
VOL
Document Number: 002-04680 Rev. *D
Unit
Remarks
Page 90 of 140
MB9B210T Series
Separate Bus Access Asynchronous SRAM Mode
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin name
MOEX
Min pulse width
tOEW
MOEX
MCSX ↓ → Address
output delay time
tCSL – AV
MCSX[7:0],
MAD[24:0]
MOEX ↑ →
Address hold time
tOEH - AX
MOEX,
MAD[24:0]
MCSX ↓ →
MOEX ↓ delay time
tCSL - OEL
MOEX ↑ →
MCSX ↑ time
tOEH - CSH
MCSX ↓ →
MDQM ↓ delay time
tCSL - RDQML
MCSX,
MDQM[1:0]
Data set up →
MOEX ↑ time
tDS - OE
MOEX,
MADATA[15:0]
MOEX ↑ →
Data hold time
tDH - OE
MOEX,
MADATA[15:0]
MWEX
Min pulse width
tWEW
MWEX
MWEX ↑ → Address
output delay time
tWEH - AX
MWEX,
MAD[24:0]
MCSX ↓ →
MWEX ↓ delay time
tCSL - WEL
MWEX ↑ →
MCSX ↑ delay time
tWEH - CSH
MCSX ↓ →
MDQM ↓ delay time
tCSL-WDQML
MCSX,
MDQM[1:0]
MCSX ↓ →
Data output time
tCSL - DV
MCSX,
MADATA[15:0]
MWEX ↑ →
Data hold time
tWEH - DX
MWEX,
MADATA[15:0]
MOEX,
MCSX[7:0]
MWEX,
MCSX[7:0]
Conditions
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Min
Value
Max
Unit
MCLK×n-3
-
-9
-12
MCLK×m-9
MCLK×m-12
20
38
+9
+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
-
0
-
ns
MCLK×n-3
-
ns
0
MCLK×m-9
MCLK×m-12
0
0
MCLK×n-9
MCLK×n-12
0
MCLK×n-9
MCLK×n-12
MCLK-9
MCLK-12
0
MCLK×m+9
MCLK×m+12
MCLK×n+9
MCLK×n+12
MCLK×m+9
MCLK×m+12
MCLK×n+9
MCLK×n+12
MCLK+9
MCLK+12
MCLK×m+9
MCLK×m+12
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note:
−
When the external load capacitance = 30 pF. (m = 0 to 15, n = 1 to 16)
Document Number: 002-04680 Rev. *D
Page 91 of 140
MB9B210T Series
tCYCLE
MCLK
tOEH-CSH
tWEH-CSH
MCSX[7:0]
tCSL-AV
MAD[24:0]
tOEH-AX
Address
tWEH-AX
tCSL-AV
Address
tCSL-OEL
MOEX
tOEW
tCSL-WDQML
tCSL-RDQML
MDQM[1:0]
MWEX
MADATA[15:0]
tCSL-WEL
tWEW
tDS-OE
tDH-OE
RD
tWEH-DX
WD
Invalid
tCSL-DV
Document Number: 002-04680 Rev. *D
Page 92 of 140
MB9B210T Series
Separate Bus Access Synchronous SRAM Mode
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Address delay time
Symbol
tAV
tCSL
MCSX delay time
tCSH
tREL
MOEX delay time
tREH
Pin name
MCLK,
MAD[24:0]
MCLK,
MCSX[7:0]
MCLK,
MOEX
Data set up →
MCLK ↑ time
tDS
MCLK,
MADATA[15:0]
MCLK ↑ →
Data hold time
tDH
MCLK,
MADATA[15:0]
tWEL
MWEX delay time
tWEH
MDQM[1:0]
delay time
tDQML
tDQMH
MCLK,
MWEX
MCLK,
MDQM[1:0]
MCLK ↑ →
Data output time
tOD
MCLK,
MADATA[15:0]
MCLK ↑ →
Data hold time
tOD
MCLK,
MADATA[15:0]
Conditions
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Min
1
1
1
1
1
Value
Max
9
12
9
12
9
12
9
12
9
12
Unit
ns
ns
ns
ns
ns
19
37
-
ns
0
-
ns
1
1
1
1
MCLK+1
1
9
12
9
12
9
12
9
12
MCLK+18
MCLK+24
18
24
ns
ns
ns
ns
ns
ns
Note:
−
When the external load capacitance = 30 pF.
Document Number: 002-04680 Rev. *D
Page 93 of 140
MB9B210T Series
tCYCLE
MCLK
tCSL
tCSH
MCSX[7:0]
tAV
MAD[24:0]
tAV
Address
Address
tREL
tREH
tDQML
tDQMH
MOEX
tDQML
tDQMH
tWEL
tWEH
MDQM[1:0]
MWEX
MADATA[15:0]
tDS
tDH
RD
tOD
WD
Invalid
tODS
Document Number: 002-04680 Rev. *D
Page 94 of 140
MB9B210T Series
Multiplexed Bus Access Asynchronous SRAM Mode
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Multiplexed
address delay time
tALE-CHMADV
Multiplexed
address hold time
tCHMADH
Pin name
MALE,
MADATA[15:0]
Value
Conditions
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Min
0
MCLK×n+0
MCLK×n+0
Max
10
20
MCLK×n+10
MCLK×n+20
Unit
ns
ns
Note:
−
When the external load capacitance = 30 pF. (m = 0 to 15, n = 1 to 16)
MCLK
MCSX[7:0]
MALE
MAD [24:0]
MOEX
MDQM [1:0]
MWEX
MADATA[15:0]
Document Number: 002-04680 Rev. *D
Page 95 of 140
MB9B210T Series
Multiplexed Bus Access Synchronous SRAM Mode
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
tCHAL
MALE delay time
tCHAH
MCLK ↑ →
Multiplexed
Address delay time
tCHMADV
MCLK ↑ →
Multiplexed
Data output time
tCHMADX
Pin name
MCLK,
ALE
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Vcc ≥ 4.5 V
MCLK,
MADATA[15:0]
Value
Conditions
Min
Max
Unit
9
12
9
12
ns
ns
ns
ns
1
tOD
ns
1
tOD
ns
1
1
Remarks
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Note:
−
When the external load capacitance = 30 pF.
MCLK
MCSX[7:0]
MALE
MAD [24:0]
MOEX
MDQM [1:0]
MWEX
MADATA[15:0]
Document Number: 002-04680 Rev. *D
Page 96 of 140
MB9B210T Series
NAND Flash Mode
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin name
Value
Conditions
Vcc ≥ 4.5 V
MNREX
tNREW
MNREX
Min pulse width
Vcc < 4.5 V
Vcc ≥ 4.5 V
Data setup →
MNREX,
tDS – NRE
MNREX↑time
MADATA[15:0]
Vcc < 4.5 V
Vcc ≥ 4.5 V
MNREX↑→
MNREX,
tDH – NRE
Data hold time
MADATA[15:0]
Vcc < 4.5 V
Vcc ≥ 4.5 V
MNALE↑→
MNALE,
tALEH - NWEL
MNWEX delay time
MNWEX
Vcc < 4.5 V
Vcc ≥ 4.5 V
MNALE↓→
MNALE,
tALEL - NWEL
MNWEX delay time
MNWEX
Vcc < 4.5 V
Vcc ≥ 4.5 V
MNCLE↑→
MNCLE,
tCLEH - NWEL
MNWEX delay time
MNWEX
Vcc < 4.5 V
Vcc ≥ 4.5 V
MNWEX↑→
MNCLE,
tNWEH - CLEL
MNCLE delay time
MNWEX
Vcc < 4.5 V
Vcc ≥ 4.5 V
MNWEX
tNWEW
MNWEX
Min pulse width
Vcc < 4.5 V
Vcc ≥ 4.5 V
MNWEX↓→
MNWEX,
tNWEL – DV
Data output time
MADATA[15:0]
Vcc < 4.5 V
Vcc ≥ 4.5 V
MNWEX↑→
MNWEX,
tNWEH – DX
Data hold time
MADATA[15:0]
Vcc < 4.5 V
Note:
−
When the external load capacitance = 30 pF. (m=0 to 15, n=1 to 16)
Min
Max
Unit
MCLK×n-3
-
ns
20
38
-
ns
0
-
ns
MCLK×m-9
MCLK×m-12
MCLK×m-9
MCLK×m-12
MCLK×m-9
MCLK×m-12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
0
MCLK×n-3
-
-9
-12
+9
+12
MCLK×m+9
MCLK×m+12
0
ns
ns
ns
ns
ns
ns
ns
NAND Flash Read
MCLK
MNREX
MADATA[15:0]
Document Number: 002-04680 Rev. *D
Read
Page 97 of 140
MB9B210T Series
NAND Flash Address Write
MCLK
MNALE
MNCLE
MNWEX
MADATA[15:0]
Write
NAND Flash Command Write
MCLK
MNALE
MNCLE
MNWEX
MADATA[15:0]
Document Number: 002-04680 Rev. *D
Write
Page 98 of 140
MB9B210T Series
External Ready Input Timing
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
MCLK ↑
MRDY input
setup time
Symbol
tRDYI
Pin name
Conditions
MCLK,
MRDY
Vcc ≥ 4.5 V
19
Vcc < 4.5 V
37
Min
Value
Max
-
Unit
Remarks
ns
When RDY is input
···
MCLK
Over 2cycles
Original
MOEX
MWEX
tRDYI
MRDY
When RDY is released
MCLK
··· ···
2 cycles
Extended
MOEX
MWEX
MRDY
Document Number: 002-04680 Rev. *D
tRDYI
0.5×VCC
Page 99 of 140
MB9B210T Series
12.4.9 Base Timer Input Timing
Timer input timing
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Input pulse width
Symbol
Pin name
Conditions
TIOAn/TIOBn
(when using as
ECK, TIN)
tTIWH,
tTIWL
Min
2tCYCP
-
tTIWH
Value
Max
Unit
Remarks
ns
-
tTIWL
ECK
VIHS
TIN
VIHS
VILS
VILS
Trigger input timing
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Input pulse width
Symbol
tTRGH,
tTRGL
Pin name
Conditions
TIOAn/TIOBn
(when using
as TGIN)
2tCYCP
-
tTRGH
TGIN
VIHS
Min
Value
-
Max
Unit
Remarks
ns
tTRGL
VIHS
VILS
VILS
Note:
−
tCYCP indicates the APB bus clock cycle time.
−
About the APB bus number which Base Timer is connected to, see "Block Diagram" in this data sheet.
Document Number: 002-04680 Rev. *D
Page 100 of 140
MB9B210T Series
12.4.10 CSIO/UART Timing
CSIO (SPI = 0, SCINV = 0)
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Baud rate
Serial clock cycle time
Symbo
l
tSCYC
SCK ↓ → SOT delay time
tSLOVI
SIN → SCK ↑ setup time
tIVSHI
SCK ↑ → SIN hold time
tSHIXI
Serial clock "L" pulse width
Serial clock "H" pulse width
tSLSH
tSHSL
SCK ↓ → SOT delay time
tSLOVE
SIN → SCK ↑ setup time
tIVSHE
SCK ↑ → SIN hold time
tSHIXE
SCK fall time
SCK rise time
tF
tR
Parameter
Pin
name
SCKx
SCKx
,
SOTx
SCKx
,
SINx
SCKx
,
SINx
SCKx
SCKx
SCKx
,
SOTx
SCKx
,
SINx
SCKx
,
SINx
SCKx
SCKx
Conditions
-
Master
mode
Slave mode
Vcc ≥ 4.5 V
Min
Max
Vcc < 4.5 V
Min
Max
Unit
-
8
-
8
4tCYCP
-
4tCYCP
-
Mbps
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance = 30 pF.
Document Number: 002-04680 Rev. *D
Page 101 of 140
MB9B210T Series
tSCYC
VOH
SCK
VOL
VOL
tSLOVI
VOH
VOL
SOT
tIVSHI
VIH
VIL
SIN
tSHIXI
VIH
VIL
Master mode
tSLSH
SCK
VIH
tF
SOT
VIL
tSHSL
VIL
VIH
VIH
tR
tSLOVE
VOH
VOL
SIN
tIVSHE
VIH
VIL
tSHIXE
VIH
VIL
Slave mode
Document Number: 002-04680 Rev. *D
Page 102 of 140
MB9B210T Series
CSIO (SPI = 0, SCINV = 1)
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Baud rate
Serial clock cycle time
Symbo
l
tSCYC
SCK ↑ → SOT delay time
tSHOVI
SIN → SCK ↓ setup time
tIVSLI
SCK ↓ → SIN hold time
tSLIXI
Serial clock "L" pulse width
Serial clock "H" pulse width
tSLSH
tSHSL
SCK ↑ → SOT delay time
tSHOVE
SIN → SCK ↓ setup time
tIVSLE
SCK ↓ → SIN hold time
tSLIXE
SCK fall time
SCK rise time
tF
tR
Parameter
Pin
name
SCKx
SCKx
,
SOTx
SCKx
,
SINx
SCKx
,
SINx
SCKx
SCKx
SCKx
,
SOTx
SCKx
,
SINx
SCKx
,
SINx
SCKx
SCKx
Conditions
-
Master
mode
Slave mode
Vcc ≥ 4.5 V
Min
Max
Vcc < 4.5 V
Min
Max
Unit
-
8
-
8
4tCYCP
-
4tCYCP
-
Mbps
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance = 30 pF.
Document Number: 002-04680 Rev. *D
Page 103 of 140
MB9B210T Series
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
VOL
SOT
tIVSLI
tSLIXI
VIH
VIL
VIH
VIL
SIN
Master mode
tSHSL
SCK
VIH
VIH
VIL
tR
SOT
tSLSH
VIL
VIL
tF
tSHOVE
VOH
VOL
SIN
tIVSLE
VIH
VIL
tSLIXE
VIH
VIL
Slave mode
Document Number: 002-04680 Rev. *D
Page 104 of 140
MB9B210T Series
CSIO (SPI = 1, SCINV = 0)
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Baud rate
Serial clock cycle time
tSCYC
SCK ↑ → SOT delay time
tSHOVI
SIN → SCK ↓ setup time
tIVSLI
SCK ↓ → SIN hold time
tSLIXI
SOT → SCK ↓ delay time
tSOVLI
Serial clock "L" pulse width
Serial clock "H" pulse width
tSLSH
tSHSL
SCK ↑ → SOT delay time
tSHOVE
SIN → SCK ↓ setup time
tIVSLE
SCK ↓ → SIN hold time
tSLIXE
SCK fall time
SCK rise time
tF
tR
Pin
name
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx,
SOTx
SCKx
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
Conditions
-
Master mode
Slave mode
Vcc ≥ 4.5 V
Min
Max
Vcc < 4.5 V
Min
Max
Unit
-
8
-
8
4tCYCP
-
4tCYCP
-
Mbps
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance = 30 pF.
Document Number: 002-04680 Rev. *D
Page 105 of 140
MB9B210T Series
tSCYC
VOH
SCK
SOT
VOL
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
Master mode
tSLSH
SCK
VIH
tR
VIH
tSHOVE
VOH
VOL
VOH
VOL
tIVSLE
SIN
VIH
VIL
tF
*
SOT
VIL
tSHSL
tSLIXE
VIH
VIL
VIH
VIL
Slave mode
*: Changes when writing to TDR register
Document Number: 002-04680 Rev. *D
Page 106 of 140
MB9B210T Series
CSIO (SPI = 1, SCINV = 1)
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin
name
Baud rate
Serial clock cycle time
tSCYC
SCKx
SCK ↓ → SOT delay time
tSLOVI
SCKx,
SOTx
SIN → SCK ↑ setup time
tIVSHI
SCK ↑ → SIN hold time
tSHIXI
SOT → SCK ↑ delay time
tSOVHI
Serial clock "L" pulse width
Serial clock "H" pulse width
tSLSH
tSHSL
SCK ↓ → SOT delay time
tSLOVE
SIN → SCK ↑ setup time
tIVSHE
SCK ↑ → SIN hold time
tSHIXE
SCK fall time
SCK rise time
tF
tR
SCKx,
SINx
SCKx,
SINx
SCKx,
SOTx
SCKx
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
-
Master mode
Slave mode
Vcc ≥ 4.5 V
Vcc < 4.5 V
Conditions
Min
Max
Min
Max
Unit
-
8
-
8
4tCYCP
-
4tCYCP
-
Mbps
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance = 30 pF.
Document Number: 002-04680 Rev. *D
Page 107 of 140
MB9B210T Series
tSCYC
VOH
SCK
tSOVHI
tSLOVI
VOH
VOL
SOT
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VOH
VOL
VIH
VIL
Master mode
tSHSL
tR
SCK
tSLSH
VIH
VIH
VIL
VIL
tF
VIH
VIL
tSLOVE
VOH
VOL
SOT
VOH
VOL
tIVSHE
tSHIXE
VIH
VIL
SIN
VIH
VIL
Slave mode
UART external clock input (EXT = 1)
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Serial clock "L" pulse width
Serial clock "H" pulse width
SCK fall time
SCK rise time
Symbol
tSLSH
tSHSL
tF
tR
Conditions
CL = 30 pF
tR
SCK
VIL
Document Number: 002-04680 Rev. *D
Value
Min
tCYCP + 10
tCYCP + 10
-
tF
tSLSH
VIH
VIL
Remarks
ns
ns
ns
ns
5
5
tSHSL
VIH
Unit
Max
VIL
VIH
Page 108 of 140
MB9B210T Series
12.4.11 External Input Timing
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin name
Value
Conditions
Min
Max
Unit
ADTG
FRCKx
Input pulse width
tINH,
tINL
ICxx
DTTIxX
INTxx,
NMIX
-
2tCYCP*
-
ns
Except
Timer mode,
Stop mode
2tCYCP*
-
ns
2tCYCP + 100*
-
ns
Timer
mode,
Stop mode
Remarks
A/D converter trigger
input
Free-run timer input
clock
Input capture
Wave form generator
External interrupt
NMI
500
-
ns
*: tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected to, see "Block
Diagram" in this data sheet.
Document Number: 002-04680 Rev. *D
Page 109 of 140
MB9B210T Series
12.4.12 Quadrature Position/Revolution Counter timing
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Value
Conditions
Min
Max
Unit
AIN pin "H" width
tAHL
AIN pin "L" width
tALL
BIN pin "H" width
tBHL
BIN pin "L" width
tBLL
BIN rise time from
PC_Mode2 or
tAUBU
AIN pin "H" level
PC_Mode3
AIN fall time from
PC_Mode2 or
tBUAD
BIN pin "H" level
PC_Mode3
BIN fall time from
PC_Mode2 or
tADBD
AIN pin "L" level
PC_Mode3
AIN rise time from
PC_Mode2 or
tBDAU
BIN pin "L" level
PC_Mode3
AIN rise time from
PC_Mode2 or
2tCYCP*
ns
tBUAU
BIN pin "H" level
PC_Mode3
BIN fall time from
PC_Mode2 or
tAUBD
AIN pin "H" level
PC_Mode3
AIN fall time from
PC_Mode2 or
tBDAD
BIN pin "L" level
PC_Mode3
BIN rise time from
PC_Mode2 or
tADBU
AIN pin "L" level
PC_Mode3
ZIN pin "H" width
tZHL
QCR:CGSC="0"
ZIN pin "L" width
tZLL
QCR:CGSC="0"
AIN/BIN rise and fall time
tZABE
QCR:CGSC="1"
from determined ZIN level
Determined ZIN level from
tABEZ
QCR:CGSC="1"
AIN/BIN rise and fall time
*: tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Quadrature Position/Revolution Counter is connected to, see "Block Diagram" in this data
sheet.
tALL
tAHL
AIN
tAUBU
tADBD
tBUAD
tBDAU
BIN
tBHL
Document Number: 002-04680 Rev. *D
tBLL
Page 110 of 140
MB9B210T Series
tBLL
tBHL
BIN
tBUAU
tBDAD
tAUBD
tADBU
AIN
tAHL
tALL
ZIN
ZIN
AIN/BIN
Document Number: 002-04680 Rev. *D
Page 111 of 140
MB9B210T Series
12.4.13 I2C Timing
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
SCL clock frequency
(Repeated) START condition
hold time
SDA ↓ → SCL ↓
SCLclock "L" width
SCLclock "H" width
(Repeated) START setup time
SCL ↑ → SDA ↓
Data hold time
SCL ↓ → SDA ↓ ↑
Data setup time
SDA ↓ ↑ → SCL ↑
STOP condition setup time
SCL ↑ → SDA ↑
Bus free time between
"STOP condition" and
"START condition"
Symbol
Standard-mode
Min
Max
Conditions
Fast-mode
Min
Max
Unit
FSCL
0
100
0
400
kHz
tHDSTA
4.0
-
0.6
-
μs
tLOW
tHIGH
4.7
4.0
-
1.3
0.6
-
μs
μs
4.7
-
0.6
-
μs
0
3.45*2
0
0.9*3
μs
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
μs
tBUF
4.7
-
1.3
-
μs
tSUSTA
tHDDAT
CL = 30 pF,
R = (Vp/IOL)*1
Remarks
8 MHz ≤
2 tCYCP*4 2 tCYCP*4 ns
*5
tCYCP ≤ 40 MHz
40 MHz <
Noise filter
tSP
3 tCYCP*4 3 tCYCP*4 ns
*5
tCYCP ≤ 60 MHz
60 MHz <
4 tCYCP*4 4 tCYCP*4 ns
*5
tCYCP ≤ 72 MHz
*1: R and C represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively.
Vp indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current.
*2:
The maximum tHDDAT must satisfy that it does not extend at least "L" period (tLOW) of device's SCL signal.
*3:
A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the
requirement of "tSUDAT ≥ 250 ns".
*4:
tCYCP is the APB bus clock cycle time.
About the APB bus number which I2C is connected to, see "Block Diagram" in this data sheet.
To use Standard-mode, set the APB bus clock at 2 MHz or more.
To use Fast-mode, set the APB bus clock at 8 MHz or more.
*5:
The number of steps of the noise filter can be changed with register settings.
Change the number of the noise filter steps according to APB2 bus clock frequency.
SDA
SCL
Document Number: 002-04680 Rev. *D
Page 112 of 140
MB9B210T Series
12.4.14 ETM Timing
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Data hold
tETMH
TRACECLK
frequency
1/ tTRACE
Pin name
TRACECLK,
TRACED[3:0]
TRACECLK
TRACECLK
cycle time
tTRACE
Conditions
Min
Value
Max
Unit
Vcc ≥ 4.5 V
2
9
Vcc < 4.5 V
2
15
Vcc ≥ 4.5 V
-
50
MHz
Vcc < 4.5 V
-
32
MHz
Vcc ≥ 4.5 V
20
-
ns
Vcc < 4.5 V
31.25
-
ns
Remarks
ns
Note:
−
When the external load capacitance = 30 pF.
HCLK
TRACECLK
TRACED[3:0]
Document Number: 002-04680 Rev. *D
Page 113 of 140
MB9B210T Series
12.4.15 JTAG Timing
(Vcc = 2.7V to 5.5V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin name
TMS, TDI setup time tJTAGS
TCK,
TMS, TDI
TMS, TDI hold time
tJTAGH
TCK,
TMS, TDI
TDO delay time
tJTAGD
TCK,
TDO
Conditions
Vcc ≥ 4.5 V
Min
Value
Max
Unit
15
-
ns
15
-
ns
Vcc ≥ 4.5 V
-
25
Vcc < 4.5 V
-
45
Vcc < 4.5 V
Vcc ≥ 4.5 V
Vcc < 4.5 V
Remarks
ns
Note:
−
When the external load capacitance = 30 pF.
TCK
TMS/TDI
TDO
Document Number: 002-04680 Rev. *D
Page 114 of 140
MB9B210T Series
12.4.16 Ethernet-MAC Timing
RMII transmission (100Mbps/10Mbps)
(ETHVcc = 3.0V to 3.6V, 4.5V to 5.5V*1)
(Vss = 0V, TA = - 40°C to + 85°C, CL=25pF)
Parameter
Reference Clock
Cycle time*2
Reference Clock
High pulse width duty
Reference Clock
Low pulse width duty
Symbol
Pin name
Conditions
tREFCYC
E_RXCK0_REFCK
tREFCYCH
E_RXCK0_REFCK
tREFCYCL
E_RXCK0_REFCK
20 ns (typical)
tREFCYCH /
tREFCYC
tREFCYCL /
tREFCYC
Min
Value
Unit
Max
-
-
ns
35
65
%
35
65
%
E_TX01,
E_TX00,
E_TXEN0
tRMIITX
12
ns
E_TX03_TX11,
REFCK ↑ → Transmitted data
E_TX02_TX10,
Delay time (ch.1)
E_TXER0_TXEN1
*1: When ETHV=4.5 V to 5.5 V, it is recommended to add a series resistor at the output pin to suppress the output current.
REFCK ↑ → Transmitted data
Delay time (ch.0)
*2: The reference clock is fixed to 50 MHz in the RMII specifications. The clock accuracy should meet the PHY-device
specifications.
tREFCYC
E_RXCK0_REFCK
VIHS
tREFCYCH
E_TX03_TX11
E_TX02_TX10
E_TX01
E_TX00
E_TXEN0
E_TXER0_TXEN1
Document Number: 002-04680 Rev. *D
VIHS
VILS
tREFCYCL
VOH
VOL
tRMIITX
Page 115 of 140
MB9B210T Series
RMII receiving (100Mbps/10Mbps)
(ETHVcc = 3.0V to 3.6V, 4.5V to 5.5V)
(Vss = 0V, TA = - 40°C to + 85°C, CL=25pF)
Parameter
Reference Clock
Cycle time*
Reference Clock
High pulse width duty
Reference Clock
Low pulse width duty
Symbol
Pin name
tREFCYC
E_RXCK0_REFCK
tREFCYCH
E_RXCK0_REFCK
tREFCYCL
E_RXCK0_REFCK
Conditions
20 ns (typical)
Value
Max
Unit
-
-
ns
35
65
%
35
65
%
-
4
-
ns
-
2
-
ns
tREFCYCH /
tREFCYC
tREFCYCL /
tREFCYC
E_RX01,
E_RX00,
E_RXDV0
tRMIIRXS
E_RX03_RX11,
Received data → REFCK↑
E_RX02_RX10,
Setup time(ch.1)
E_RXER0_RXDV1
E_RX01,
REFCK ↑ → Received data
E_RX00,
Hold time(ch.0)
E_RXDV0
tRMIIRXH
E_RX03_RX11,
REFCK ↑ → Received data
E_RX02_RX10,
Hold time (ch.1)
E_RXER0_RXDV1
*: The reference clock is fixed to 50 MHz in the RMII specifications.
The clock accuracy should meet the PHY-device specifications.
Min
Received data → REFCK↑
Setup time(ch.0)
tREFCYC
E_RXCK0_REFCK
VIHS
E_RX03_RX11
E_RX02_RX10
E_RX01
E_RX00
E_RXDV0
E_RXER0_RXDV1
Document Number: 002-04680 Rev. *D
tREFCYCH
VIHS
VILS
tRMIIRXS
VIHS
VILS
tREFCYCL
VIHS
VILS
tRMIIRXH
Page 116 of 140
MB9B210T Series
Management Interface
(ETHVcc = 3.0V to 3.6V, 4.5V to 5.5V)
(Vss = 0V, TA = - 40°C to + 85°C, CL=25pF)
Parameter
Symbol
Pin name
Conditions
Min
Value
Unit
Max
Management Clock
E_MDC0
Cycle time* (ch.0)
tMDCYC
400
Management Clock
E_TCK0_MDC1
Cycle time* (ch.1)
Management Clock
High pulse width duty
E_MDC0
(ch.0)
tMDCYCH /
tMDCYCH
45
55
tMDCYC
Management Clock
High pulse width duty
E_TCK0_MDC1
(ch.1)
Management Clock
E_MDC0
Low pulse width duty (ch.0)
tMDCYCL /
tMDCYCL
45
55
tMDCYC
Management Clock
E_TCK0_MDC1
Low pulse width duty (ch.1)
MDC ↓ → MDIO
E_MDIO0
Delay time (ch.0)
tMDO
60
MDC ↓ → MDIO
E_MDIO1
Delay time (ch.1)
MDIO → MDC ↑
E_MDIO0
Setup time (ch.0)
tMDIS
20
MDIO → MDC ↑
E_MDIO1
Setup time (ch.1)
MDC ↑ → MDIO
E_MDIO0
Hold time (ch.0)
tMDIH
0
MDC ↑ → MDIO
E_MDIO1
Hold time (ch.1)
*: The clock time should be set to a value greater than the minimum value by setting the Ether-MAC setting register.
ns
%
%
ns
ns
ns
tMDCYC
E_MDC0 (output)
E_TCK0_MDC1 (output)
VOH
VOL
tMDCYCH
E_MDIO0 (input)
E_MDIO1 (input)
Document Number: 002-04680 Rev. *D
tMDCYCL
VIHS
VILS
VIHS
VILS
VIHS
VILS
VIHS
VILS
tMDIS
tMDIH
tMDIS
tMDIH
tMDO
tMDO
E_MDIO0 (output)
E_MDIO1 (output)
VOH
VOL
VOH
VOL
VOH
VOL
Page 117 of 140
MB9B210T Series
MII transmission (100Mbps/10Mbps)
(ETHVcc = 3.0V to 3.6V, 4.5V to 5.5V*1)
(Vss = 0V, TA = - 40°C to + 85°C, CL=25pF)
Parameter
Transmission Clock
Cycle time*2
Transmission Clock
High pulse width duty
Transmission Clock
Low pulse width duty
Symbol
tTXCYC
Pin name
Conditions
100 Mbps,
40 ns (typical)
10 Mbps,
400 ns (typical)
tTXCYCH /
tTXCYC
tTXCYCL /
tTXCYC
E_TCK0_MDC1
tTXCYCH
E_TCK0_MDC1
tTXCYCL
E_TCK0_MDC1
Min
Value
Max
Unit
-
-
ns
-
-
ns
35
65
%
35
65
%
E_TX03_TX11,
E_TX02_TX10,
TXCK ↑ → Transmitted data
E_TX01,
tMIITX
24
ns
Delay time
E_TX00,
E_TXEN0,
E_TXER0_TXEN1
*1: When ETHV=4.5 V to 5.5 V, it is recommended to add a series resistor at the output pin to suppress the output current.
*2: The transmission clock is fixed to 25 MHz or 2.5 MHz in the MII specifications.
The clock accuracy should meet the PHY-device specifications.
tTXCYC
E_TCK0_MDC1
VIHS
E_TX03_TX11
E_TX02_TX10
E_TX01
E_TX00
E_TXEN0
E_TXER0_TXEN1
Document Number: 002-04680 Rev. *D
VIHS
VILS
tTXCYCH
tTXCYCL
VOH
VOL
tMIITX
Page 118 of 140
MB9B210T Series
MII receiving (100 Mbps/10 Mbps)
(ETHVcc = 3.0V to 3.6V, 4.5V to 5.5V)
(Vss = 0V, TA = - 40°C to + 85°C, CL=25pF)
Parameter
Receiving Clock
Cycle time*
Receiving Clock
High pulse width duty
Receiving Clock
Low pulse width duty
Symbol
tRXCYC
Pin name
Conditions
100 Mbps,
40 ns (typical)
10 Mbps,
400 ns (typical)
tRXCYCH /
tRXCYC
tRXCYCL /
tRXCYC
E_RXCK0_REFCK
tRXCYCH
E_RXCK0_REFCK
tRXCYCL
E_RXCK0_REFCK
E_RX03_RX11,
E_RX02_RX10,
Received data → REFCK ↑
E_RX01,
tMIIRXS
Setup time
E_RX00,
E_RXDV0,
E_RXER0_RXDV1
E_RX03_RX11,
E_RX02_RX10,
REFCK ↑ → Received data
E_RX01,
tMIIRXH
Hold time
E_RX00,
E_RXDV0,
E_RXER0_RXDV1
*: The receiving clock 100 Mbps is fixed to 25 MHz or 2.5 MHz in the MII specifications.
The clock accuracy should meet the PHY-device specifications.
VIHS
Document Number: 002-04680 Rev. *D
Value
Max
Unit
-
-
ns
-
-
ns
35
65
%
35
65
%
5
-
ns
2
-
ns
tRXCYC
E_RXCK0_REFCK
E_RX03_RX11
E_RX02_RX10
E_RX01
E_RX00
E_RXDV0
E_RXER0_RXDV1
Min
VIHS
tRXCYCH
VIHS
VILS
tMIIRXS
VILS
tRXCYCL
VIHS
VILS
tMIIRXH
Page 119 of 140
MB9B210T Series
12.5 12-bit A/D Converter
Electrical characteristics for the A/D converter
(Vcc = AVcc = 2.7V to 5.5V, Vss = AVss = 0V, TA = - 40°C to + 85°C)
Parameter
Resolution
Integral Nonlinearity
Differential Nonlinearity
Zero transition voltage
Full-scale transition
voltage
Pin
name
Symbol
Value
Typ
Min
VZT
ANxx
-
VFST
ANxx
1.0*1
-
Unit
Max
12
± 4.5
± 2.5
± 15
bit
LSB
LSB
mV
AVRH ± 15
mV
1.2*1
*2
*2
-
-
μs
-
50
-
2000
ns
Tstt
-
-
-
1.0
μs
Analog input capacity
CAIN
-
-
-
12.9
pF
Analog input resistance
RAIN
-
-
-
Interchannel disparity
Analog port input leak
current
Analog input voltage
Reference voltage
-
-
-
-
2
3.8
4
-
ANxx
-
-
5
μA
-
ANxx
AVRH
AVSS
2.7
-
AVRH
AVCC
V
V
Conversion time
-
-
Sampling time
Ts
-
Compare clock cycle*3
Tcck
State transition time to
operation permission
ns
kΩ
Remarks
AVRH = 2.7 V to 5.5 V
AVcc ≥ 4.5 V
AVcc < 4.5 V
AVcc ≥ 4.5 V
AVcc < 4.5 V
AVcc ≥ 4.5 V
AVcc < 4.5 V
LSB
*1: The Conversion time is the value of sampling time (Ts) + compare time (Tc).
The condition of the minimum conversion time is the following.
AVcc ≥ 4.5 V, HCLK=120 MHz
sampling time: 300 ns
compare time: 700 ns
AVcc < 4.5 V, HCLK=120 MHz
sampling time: 500 ns
compare time: 700 ns
Ensure that it satisfies the value of the sampling time (Ts) and compare clock cycle (Tcck).
For setting of the sampling time and compare clock cycle, see "CHAPTER 1-1: A/D Converter" in "FM3 Family PERIPHERAL
MANUAL Analog Macro Part".
The registers setting of the A/D Converter are reflected in the operation according to the APB bus clock timing.
The sampling clock and compare clock is generated from the Base clock (HCLK).
About the APB bus number which the A/D Converter is connected to, see "Block Diagram" in this data sheet.
*2: A necessary sampling time changes by external impedance.
Ensure that it set the sampling time to satisfy (Equation 1).
*3: Compare time (Tc) is the value of (Equation 2).
Document Number: 002-04680 Rev. *D
Page 120 of 140
MB9B210T Series
Rext
ANxx
Analog input pin
Analog signal
source
Comparator
RAIN
CAIN
(Equation 1) Ts ≥ ( RAIN + Rext ) × CAIN × 9
Ts:
Sampling time
RAIN:
Input resistance of A/D = 2 kΩ at 4.5 V ≤ AVCC ≤ 5.5 V
Input resistance of A/D = 3.8 kΩ at 2.7 V ≤ AVCC < 4.5 V
CAIN:
Input capacity of A/D = 12.9 pF at 2.7 V ≤ AVCC ≤ 5.5 V
Rext:
Output impedance of external circuit
(Equation 2) Tc = Tcck × 14
Tc:
Compare time
Tcck:
Compare clock cycle
Document Number: 002-04680 Rev. *D
Page 121 of 140
MB9B210T Series
Definition of 12-bit A/D Converter Terms
 Resolution:
Analog variation that is recognized by an A/D converter.
 Integral Nonlinearity:
Deviation of the line between the zero-transition point
(0b000000000000←→0b000000000001) and the full-scale transition point
(0b111111111110←→0b111111111111) from the actual conversion characteristics.
 Differential Nonlinearity:
Deviation from the ideal value of the input voltage that is required to change the output
code by 1 LSB.
Integral Nonlinearity
0xFFF
Actual conversion
characteristics
0xFFE
Actual conversion
characteristics
0x(N+1)
{1 LSB(N-1) + VZT}
VFST
VNT
0x004
(Actuallymeasured
value)
(Actually-measured
value)
0x003
Digital output
Digital output
0xFFD
Differential Nonlinearity
Actual conversion
characteristics
Ideal characteristics
0x002
0x001
0xN
Ideal characteristics
V(N+1)T
0x(N-1)
VNT
(Actually-measured
value)
0x(N-2)
VZT (Actually-measured value)
AVss
Actual conversion characteristics
AVRH
AVss
AVRH
Analog input
Integral Nonlinearity of digital output N =
Differential Nonlinearity of digital output N =
1LSB =
(Actually-measured
value)
Analog input
VNT - {1LSB × (N - 1) + VZT}
1LSB
V(N + 1) T - VNT
1LSB
[LSB]
- 1 [LSB]
VFST - VZT
4094
N:
A/D converter digital output value.
VZT:
Voltage at which the digital output changes from 0x000 to 0x001.
VFST:
Voltage at which the digital output changes from 0xFFE to 0xFFF.
VNT:
Voltage at which the digital output changes from 0x(N − 1) to 0xN.
Document Number: 002-04680 Rev. *D
Page 122 of 140
MB9B210T Series
12.6 USB characteristics
The USB characteristics of ch.0 and those of ch.1 are the same.
USBVcc0 and USBVcc1 are described as USBVcc below.
(Vcc = 2.7V to 5.5V, USBVcc = 3.0V to 3.6V, Vss = 0V, TA = - 40°C to + 85°C)
Parameter
Input
characteristics
Symbol
Pin
name
Value
Conditions
Min
Max
Unit
Remarks
Input "H" level voltage
VIH
-
2.0
USBVcc + 0.3
V
*1
Input "L" level voltage
Differential input
sensitivity
Different common mode
range
VIL
-
Vss - 0.3
0.8
V
*1
VDI
-
0.2
-
V
*2
VCM
-
0.8
2.5
V
*2
External
pull-down
Output "H" level voltage
VOH
2.8
3.6
V
*3
resistance=
15 kΩ
UDP0, External
UDM0 pull-up
Output "L" level voltage
VOL
0.0
0.3
V
*3
resistance=
Output
1.5 kΩ
charact- Crossover voltage
VCRS
1.3
2.0
V
*4
eristics
Rise time
tFR
Full-Speed 4
20
ns
*5
Fall time
tFF
Full-Speed 4
20
ns
*5
Rise/ fall time matching
tFRFM
Full-Speed 90
111.11
%
*5
Output impedance
ZDRV
Full-Speed 28
44
Ω
*6
Rise time
tLR
Low-Speed 75
300
ns
*7
Fall time
tLF
Low-Speed 75
300
ns
*7
Rise/ fall time matching
tLRFM
Low-Speed 80
125
%
*7
*1: The switching threshold voltage of Single-End-Receiver of USB I/O buffer is set as within VIL (Max) = 0.8V, VIH (Min) = 2.0 V (TTL
input standard).
There are some hysteresis to lower noise sensitivity.
Minimum differential input
sensitivity [V]
*2: Use differential-Receiver to receive USB differential data signal.
Differential-Receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local
ground reference level.
Above voltage range is the common mode input voltage range.
Common mode input voltage [V]
Document Number: 002-04680 Rev. *D
Page 123 of 140
MB9B210T Series
*3: The output drive capability of the driver is below 0.3 V at Low-State (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to
ground and 1.5 kΩ load) at High-State (VOH).
*4: The cross voltage of the external differential output signal (D + /D − ) of USB I/O buffer is within 1.3 V to 2.0 V.
VCRS specified range
*5: They indicate rise time (Trise) and fall time (Tfall) of the full-speed differential data signal.
They are defined by the time between 10% and 90% of the output signal voltage.
For full-speed buffer, Tr/Tf ratio is regulated as within ± 10% to minimize RFI emission.
Rising time
Document Number: 002-04680 Rev. *D
Falling time
Page 124 of 140
MB9B210T Series
*6: USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential Mode).
USB standard defines that output impedance of USB driver must be in range from 28Ω to 44Ω. So, discrete series resistor (Rs)
addition is defined in order to satisfy the above definition and keep balance.
When using this USB I/O, use it with 25 Ω to 30 Ω (recommendation value 27 Ω)series resistor Rs.
28Ω to 44Ω Equiv. Imped.
28Ω to 44Ω Equiv. Imped.
Mount it as external resistance.
Rs series resistor 25Ω to 30Ω
Series resistor of 27Ω (recommendation value) must be added.
And, use "resistance with an uncertainty of 5% by E24 sequence".
*7: They indicate rise time (Trise) and fall time (Tfall) of the low-speed differential data signal.
They are defined by the time between 10% and 90% of the output signal voltage.
Rising time
Falling time
See Figure "Low-Speed Load (Compliance Load)" for conditions of external load.
Document Number: 002-04680 Rev. *D
Page 125 of 140
MB9B210T Series
Low-Speed Load (Upstream Port Load) - Reference 1
CL = 50pF to 150pF
CL = 50pF to 150pF
Low-Speed Load (Downstream Port Load) - Reference 2
CL =200pF to
600pF
CL =200pF to
600pF
Low-Speed Load (Compliance Load)
CL = 200pF to 450pF
CL = 200pF to 450pF
Document Number: 002-04680 Rev. *D
Page 126 of 140
MB9B210T Series
12.7 Low-Voltage Detection Characteristics
12.7.1 Low-Voltage Detection Reset
(TA = - 40°C to + 85°C)
Parameter
Detected voltage
Released voltage
Symbol
Value
Conditions
VDL
VDH
Min
Typ
2.25
2.30
-
2.45
2.50
Max
2.65
2.70
Unit
Remarks
V
V
When voltage drops
When voltage rises
12.7.2 Interrupt of Low-Voltage Detection
(TA = - 40°C to + 85°C)
Parameter
Symbol
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
LVD stabilization
wait time
TLVDW
Value
Conditions
SVHI = 0000
SVHI = 0001
SVHI = 0010
SVHI = 0011
SVHI = 0100
SVHI = 0111
SVHI = 1000
SVHI = 1001
-
Min
Typ
Max
Unit
2.58
2.67
2.76
2.85
2.94
3.04
3.31
3.40
3.40
3.50
3.68
3.77
3.77
3.86
3.86
3.96
2.8
2.9
3.0
3.1
3.2
3.3
3.6
3.7
3.7
3.8
4.0
4.1
4.1
4.2
4.2
4.3
3.02
3.13
3.24
3.34
3.45
3.56
3.88
3.99
3.99
4.10
4.32
4.42
4.42
4.53
4.53
4.64
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
-
-
4032 × tCYCP*
μs
Remarks
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
*: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-04680 Rev. *D
Page 127 of 140
MB9B210T Series
12.8 Flash Memory Write/Erase Characteristics
12.8.1 Write / Erase time
(Vcc = 2.7V to 5.5V, TA = - 40°C to + 85°C)
Value
Parameter
Typ*
Max*
Large Sector
0.7
3.7
Small Sector
0.3
1.1
Half word (16-bit)
write time
12
Chip erase time
13.6
Sector erase
time
Unit
Remarks
s
Includes write time prior to internal erase
384
μs
Not including system-level overhead time.
68
s
Includes write time prior to internal erase
*: The typical value is immediately after shipment, the maximum value is guarantee value under 100,000 cycle of erase/write.
12.8.2 Write cycles and data hold time
Erase/write cycles
(cycle)
Data hold time
(year)
1,000
20*
10,000
10*
100,000
*: At average + 85°C
Document Number: 002-04680 Rev. *D
Remarks
5*
Page 128 of 140
MB9B210T Series
12.9 Return Time from Low-Power Consumption Mode
12.9.1 Return Factor: Interrupt
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the
program operation.
Return Count Time
(VCC = 2.7V to 5.5V, TA = - 40°C to + 85°C)
Parameter
SLEEP mode
High-speed CR TIMER mode,
Main TIMER mode,
PLL TIMER mode
Value
Symbol
Typ
Max*
tCYCC
Unit
ns
40
80
μs
453
737
μs
Sub TIMER mode
453
737
μs
STOP mode
453
737
μs
Low-speed CR TIMER mode
Ticnt
Remarks
*: The maximum value depends on the accuracy of built-in CR.
Operation example of return from Low-Power consumption mode (by external interrupt*)
Ext.INT
Interrupt factor
accept
Active
Ticnt
CPU
Operation
Interrupt factor
clear by CPU
Start
*: External interrupt is set to detecting fall edge.
Document Number: 002-04680 Rev. *D
Page 129 of 140
MB9B210T Series
Operation example of return from Low-Power consumption mode (by internal resource interrupt*)
Internal
Resource INT
Interrupt factor
accept
Active
Ticnt
CPU
Operation
Interrupt factor
clear by CPU
Start
*: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.
Notes:
−
The return factor is different in each Low-Power consumption modes.
−
See "CHAPTER 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family PERIPHERAL
MANUAL about the return factor from Low-Power consumption mode.
−
When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption
mode transition. See "CHAPTER 6: Low Power Consumption Mode" in "FM3 Family PERIPHERAL MANUAL".
Document Number: 002-04680 Rev. *D
Page 130 of 140
MB9B210T Series
12.9.2 Return Factor: Reset
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program
operation.
Return Count Time
(VCC = 2.7V to 5.5V, TA = - 40°C to + 85°C)
Parameter
Value
Symbol
SLEEP mode
High-speed CR TIMER mode,
Main TIMER mode,
PLL TIMER mode
Typ
Max*
Unit
321
461
μs
321
461
μs
441
701
μs
Sub TIMER mode
441
701
μs
STOP mode
441
701
μs
Low-speed CR TIMER mode
Trcnt
Remarks
*: The maximum value depends on the accuracy of built-in CR.
Operation example of return from Low-Power consumption mode (by INITX)
INITX
Internal RST
RST Active
Release
Trcnt
CPU
Operation
Document Number: 002-04680 Rev. *D
Start
Page 131 of 140
MB9B210T Series
Operation example of return from low power consumption mode (by internal resource reset*)
Internal
Resource RST
Internal RST
RST Active
Release
Trcnt
CPU
Operation
Start
*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.
Notes:
−
The return factor is different in each Low-Power consumption modes.
−
See "CHAPTER 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family PERIPHERAL
MANUAL.
−
When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption
mode transition. See "CHAPTER 6: Low Power Consumption Mode" in "FM3 Family PERIPHERAL MANUAL".
−
The time during the power-on reset/low-voltage detection reset is excluded. See "12.4.7.Power-on Reset Timing in 12.4 AC
Characteristics in “12.Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage detection
reset.
−
When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is
necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time.
−
The internal resource reset means the watchdog reset and the CSV reset.
Document Number: 002-04680 Rev. *D
Page 132 of 140
MB9B210T Series
13. Ordering Information
Part number
On-chip
Flash
memory
On-chip
SRAM
MB9BF216SPMC-GK7E1
512 Kbyte
64 Kbyte
MB9BF217SPMC-GK7E1
768 Kbyte
96 Kbyte
MB9BF218SPMC-GK7E1
1 Mbyte
128 Kbyte
MB9BF216TPMC-GK7E1
512 Kbyte
64 Kbyte
MB9BF217TPMC-GK7E1
768 Kbyte
96 Kbyte
MB9BF218TPMC-GK7E1
1 Mbyte
128 Kbyte
MB9BF216TBGL-GK7E1
512 Kbyte
64 Kbyte
MB9BF217TBGL-GK7E1
768 Kbyte
96 Kbyte
MB9BF218TBGL-GK7E1
1 Mbyte
128 Kbyte
Document Number: 002-04680 Rev. *D
Package
Packing
Plastic · LQFP 144-pin
(0.5 mm pitch), (LQS144)
Plastic · LQFP 176-pin
(0.5 mm pitch), (LQP176)
Tray
Plastic · PFBGA 192-pin
(0.8 mm pitch), (LBE192)
Page 133 of 140
MB9B210T Series
14. Package Dimensions
Package Type
Package Code
LQFP 176
LQP176
D
D1
132
4
5 7
89
133
89
88
132
133
88
E1
E
5
7
4
3
6
176
45
1
176
45
44
44
1
2 5 7
e
3
BOTTOM VIEW
0.10 C A-B D
0.20 C A-B D
b
0.08
C A-B
D
8
TOP VIEW
2
A
9
c
A
A'
0.08 C
SIDE VIEW
SYMBOL
L1
0.25
A1
10
L
b
SECTION A-A'
DIMENSIONS
MIN.
NOM. MAX.
0.05
0.15
1.70
A
A1
SEATING
PLANE
b
0.17
c
0.09
0.22
0.20
D
26.00 BSC
D1
24.00 BSC
e
0.50 BSC
E
26.00 BSC
E1
0.27
24.00 BSC
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
0
8
PACKAGE OUTLINE, 176 LEAD LQFP
24.0X24.0X1.7 MM LQP176 REV**
Document Number: 002-04680 Rev. *D
002-15150 **
Page 134 of 140
MB9B210T Series
Package Type
Package Code
LQFP 144
LQS144
4
D
D1
108
4
5 7
7 5
73
109
73
72
D
D1
108
109
72
E1
E
5
7
E
4
4
E1
5
7
3
3
6
144
37
1
144
37
36
1
36
BOTTOM VIEW
2 5 7
e
3
0.10 C A-B D
0.20 C A-B D
b
0.08
TOP VIEW
C A-B
D
8
2
A
9 c
A
A'
0.08 C
SEATING
PLANE
L1
0.25
L
A1
10
b
SECTION A-A'
SIDE VIEW
SYMBOL
DIMENSIONS
MIN. NOM. MAX.
1.70
A
A1
0.05
0.15
b
0.17
c
0.09
0.22
0.27
0.20
D
22.00 BSC
D1
20.00 BSC
e
0.50 BSC
E
22.00 BSC
20.00 BSC
E1
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
PACKAGE OUTLINE, 144 LEAD LQFP
20.0X20.0X1.7 MM LQS144 REV*A
Document Number: 002-04680 Rev. *D
002-13015 *A
Page 135 of 140
MB9B210T Series
Package Type
Package Code
FBGA 192
LBE192
002-13493 *A
Document Number: 002-04680 Rev. *D
Page 136 of 140
MB9B210T Series
15. Major Changes
Spansion Publication Number: DS706-00015
Page
Section
Revision 1.0
Revision 2.0
9 to 11
Pin Assignment
62, 63
Handling Devices
Block Diagram
64
76
82
84
116
Electrical Characteristics
Recommended Operating Conditions
AC Characteristics
Main Clock Input Characteristics
Operating Conditions of Main and
USB/Ethernet PLL (In the case of using
main clock for input of PLL)
Operating Conditions of Main PLL (In the
case of using high-speed internal CR)
5. 12-bit A/D Converter
• Electrical Characteristics for the A/D
Converter
Revision 2.1
Revision 3.0
Features
2
External Bus Interface
Features
2
USB Interface
Ethernet-MAC
Features
2
USB Interface
9, 10
Pin Assignment
51 to 56
I/O Circuit Type
61
Handling Devices
61
Handling Devices
Crystal oscillator circuit
62
64
Handling Devices
C Pin
Block Diagram
Change Results
Initial release
Added the description of "Note".
• Revised the description of "•C pin".
• Added the description of "•Base Timer".
Corrected the figure.
- TIOA: input → input/output
- TIOB: output → input
• Added the "Smoothing capacitor (CS)".
• Added the footnote.
Added "Internal operating clock frequency (FCM):
Master clock".
• Added "Main PLL clock frequency (FCLKPLL)".
• Added "USB/Ethernet clock frequency (FCLKSPLL)".
• Added the Symbol.
• Deleted the following Pin name.
- "Sampling time"
- "Compare clock cycle"
- "State transition time to operation permission"
- "Analog input capacity"
- "Analog input resistance"
• Corrected the value of "Compare clock cycle (Tcck)".
Max: 10000 → 2000
Company name and layout design change
Added the description of Maximum area size
Added the description of PLL for USB and Ethernet
Added the size of each EndPoint
Added SWCLK and SWDIO and SWO
· Added the description of I2C to the type of E, F, I, L
· Added about +B input
Added "Stabilizing power supply voltage"
Added the following description
"Evaluate oscillation of your using crystal oscillator by your
mount board."
Changed the description
Modified the block diagram
66
Memory Map
· Memory map(1)
Modified the area of "External Device Area"
67
Memory Map
· Memory map(2)
Added the summary of Flash memory sector and the note
74, 75
Electrical Characteristics
1. Absolute Maximum Ratings
· Added the Clamp maximum current
· Added the output current of P80, P81, P82, P83
· Added about +B input
Document Number: 002-04680 Rev. *D
Page 137 of 140
MB9B210T Series
Page
Section
76
Electrical Characteristics
Recommended Operation Conditions
78, 79
Electrical Characteristics
DC Characteristics
Current rating
83
85
Electrical Characteristics
AC Characteristics
Built-in CR Oscillation Characteristics
Electrical Characteristics
AC Characteristics
Power-on Reset Timing
87 to 89
Electrical Characteristics.
AC Characteristics
External Bus Timing
96 to
103
Electrical Characteristics
AC Characteristics
CSIO/UART Timing
115
Electrical Characteristics
5. 12bit A/D Converter
124 to
127
Electrical Characteristics
Return Time from Low-Power
Consumption Mode
Ordering Information
Change Results
· Modified the minimum value of Analog reference
voltage
· Added Smoothing capacitor
· Added the note about less than the minimum power
supply voltage
· Changed the table format
· Added Main TIMER mode current
· Added Flash Memory Current
· Moved A/D Converter Current
Added Frequency stability time at Built-in high-speed
CR
· Added Time until releasing Power-on reset
· Changed the figure of timing
Modified Data output time
· Modified from UART Timing to CSIO/UART Timing
· Changed from Internal shift clock operation to Master
mode
· Changed from External shift clock operation to Slave
mode
· Added the typical value of Integral Nonlinearity,
Differential Nonlinearity, Zero transition voltage and
Full-scale transition voltage
· Added Conversion time at AVcc < 4.5 V
· Modified Stage transition time to operation permission
· Modified the minimum value of Reference voltage
Added Return Time from Low-Power Consumption
Mode
128
Changed to full part number
Note:
−
Please see “Document History” about later revised information.
Document Number: 002-04680 Rev. *D
Page 138 of 140
MB9B210T Series
Document History
Document Title: MB9B210T Series 32-bit Arm® Cortex®-M3 FM3 Microcontroller
Document Number: 002-04680
Orig. of
Submission
Change
Date
Revision
ECN
Description of Change
**

TOYO
02/10/2015
No change to document contents or format.
*A
5197469
TOYO
04/05/2016
Updated to Cypress template
Migrated to Cypress and assigned document number 002-04689.
Updated “12.4.7 Power-On Reset Timing”. Changed parameter from “Power Supply
rising time(Tr)[ms]” to “Power ramp rate(dV/dt)[mV/us]” and added some comments
(Page 89)
Added Notes for JTAG (Page 52), Changed “J-TAG” to” JTAG” in “4 List of Pin
Functions” (Page 34)
Updated Package code and dimensions as follows (Page 8-11, 79, 133-136)
FPT-144P-M08 -> LQS144,
FPT-176P-M07
-> LQP176,
BGA-192P-M06 -> LBE192
Change the name from “USB Function” to “USB Device” (Page 1, 7, 50)
*B
5560212
YSKA
03/09/2016
Corrected the following statement
Analog port input current  Analog port input leak current
in chapter 12.5. 12-bit A/D Converter (Page 120)
Added the Baud rate spec in “12.4.10 CSIO/UART Timing”.(Page 101, 103, 105,
107)
Deleted MPNs below from “13. Ordering Information” (Page 133)
MB9BF216SPMC-GE1, MB9BF216TBGL-GE1, MB9BF216TPMC-GE1,
MB9BF217SPMC-GE1, MB9BF217TBGL-GE1, MB9BF217TPMC-GE1,
MB9BF218SPMC-GE1, MB9BF218TBGL-GE1, MB9BF218TPMC-GE1
Added MPNs below to “13. Ordering Information” (Page 133)
MB9BF216SPMC-GK7E1, MB9BF216TBGL-GK7E1, MB9BF216TPMC-GK7E1,
MB9BF217SPMC-GK7E1, MB9BF217TBGL-GK7E1, MB9BF217TPMC-GK7E1,
MB9BF218SPMC-GK7E1, MB9BF218TBGL-GK7E1, MB9BF218TPMC-GK7E1
*C
5797542
YSAT
07/11/2017
Adapted new Cypress logo
*D
6013737
YSAT
01/15/2018
Updated Arm trademark and the last page
Updated the figure of LBE192 in 14. Package Dimensions
Document Number: 002-04680 Rev. *D
Page 139 of 140
MB9B210T Series
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Arm® Cortex® Microcontrollers
Automotive
Clocks & Buffers
Interface
Internet of Things
Memory
cypress.com/arm
cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/iot
cypress.com/mcu
PSoC
cypress.com/psoc
Touch Sensing
USB Controllers
Wireless Connectivity
Cypress Developer Community
Community | Projects | Videos | Blogs | Training | Components
Technical Support
cypress.com/support
cypress.com/memory
Microcontrollers
Power Management ICs
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU
cypress.com/pmic
cypress.com/touch
cypress.com/usb
cypress.com/wireless
Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
All other trademarks or registered trademarks referenced herein are the property of their respective owners.
© Cypress Semiconductor Corporation, 2011-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or
other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are
infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction,
modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security
breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not
assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or
programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application
made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of
weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or
hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is
any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable,
in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress
products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Document Number: 002-04680 Rev. *D
January 15, 2018
Page 140 of 140
Similar pages